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Summary

This thesis consists of four chapters, each with its own notation and references. 

Chapters 1, 2 and 3 are independent pieces of research.

Chapter 0 is an introduction which sets out the definitions and results needed in the 

main part of the thesis.

In Chapter 1, we derive asymptotic formulae for the number of closed orbits of a toral 

automorphism which is ergodic, but not necessarily hyperbolic. Previously, such formulae 

were known only in the hyperbolic case. The proof uses an analogy with the Prime 

Number Theorem. We also give a new proof of the uniform distribution of periodic points.

In Chapter 2, we derive various asymptotic formulae for the numbers of closed orbits 

in the Lorenz and Smale horseshoe templates with given knot invariants, ( specifically braid 

index and genus ). We indicate how these estimates can be applied to more complicated 

flows by giving a bound for the genus of knotted periodic orbits in the ' figure of eight 

template'.

In Chapter 3, we prove a dynamical version of the Chebotarev density theorem for 

group extensions of geodesic flows on compact manifolds of variable negative curvature. 

Specifically, the group is taken to be the weak direct sum of a finite abelian group. We 

outline an application to twisted orbits.
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Introduction

SI Prime Orbit Theorems

The aim of this thesis is to study the asymptotic behaviour of closed orbits of 

certain systems which are either hyperbolic, or have some hyperbolic structure. The 

specific models we study are quasihyperbolic toral automorphisms, the Lorenz attractor 

and geodesic flows on the unit tangent bundle of surfaces of ( variable) negative 

curvature. The common theme in all our work is the use of ideas from analytic number 

theory, and in particular the Prime Number Theorem. Results which exploit the analogy 

between closed orbits of flows or diffeomorphisms, and prime numbers are known as 

' prime orbit theorems '.

All our results have been motivated by a prime orbit theorem in [ PP1 ] which we 

brieflydescribe.

Let tp, be a C1 flow on a compact C00 Riemannian manifold M. A compact 

tp-invariant set A without fixed points is called hyperbolic if the tangent bundle of 

M restricted to A has a continuous splitting as a Whitney sum of three Dtp-invariant 

sub-bundles

TA M -  E © E* © Eu

where E is the one-dimensional^tangent to the flow, and Eu and Es are respectively 

exponentially expanded and contracted by Dtp, i.e. there exist positive constants C 

and X such that

( a ) II Dtp, ( v ) II S C e"Xt II v I , for all v 6 E*, t * 0,

( b ) II Dtp_, ( v ) || £ C e-^1 II v II , for all v e Eu , t £ 0.

A hyperbolic set A is called basic if 

( i ) the periodic orbits of tp, I A are dense in A,

( ii ) A contains a dense tp-orbit.
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( iii ) there is an open neighbourhood U of A such that A =* O  <pt ( U ).

The non-wanderine set Q of (p is defined by 

i2 = { x 6 M : V open V a x ,  VtQ>0, 3  t > to such that <pt (V )r> V * f i} .

The flow tp satisfies Axiom A ( a definition due to Smale [S I), if Q can be 

written as the disjoint union of a finite number of basic sets and hyperbolic fixed points. 

Axiom A flows are generalisations of Anosov flows [ A ]. A flow tp on M is 

called Anosov if M is hyperbolic set.

An Axiom A flow tp , restricted to a non-trivial basic set A , is topologically 

weak mixing if there are no non-trivial solutions to F o <pt = e 'a 1 <pt ( all 16 IR ), 

for a > 0 , F e C( A ). If this equation does have a non-trivial solution, then the value 

of a is called an eigenfreouencv .

Let t denote a generic closed orbit of (p I A , of least period X( x ). Let h 

denote the topological entropy of <p I A.

Theorem 1.1 [ PP1 1

( i ) If <pt is topologically weak mixing then

# { t  : l ( t ) S x }
h x e

h x as x —M».

( ii ) If <pt is not topologically weak mixing, with least positive eigenfrequency a, 

then

2 nn h

# { t : X ( t ) £ x ) I  C
a

a

Remark 1.2 For an Axiom A diffeomorphism, case ( i i ) reduces to
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# { t : X ( t ) £ x }
he c

X

as x —>oo through the positive integers.

The proof uses the analytic properties of the Ruelle zeta function [ R1 ], defined 

by

The Euler product converges for Re( s ) > h , and defines a function which is analytic 

and non-zero in this half plane.

If <p is weak mixing then £( s ) is analytic in a neighbourhood of Re( s ) £  h, 

with the exception of a simple pole at s « h. If cp is not weak mixing, with least 

positive eigenfrequency a, then £( s ) is analytic in a neighbourhood of Re( s ) £ h, 

with the exception of simple poles located at h + n i a, for each n e Z .

Theorem 1.1 follows by imitating the proof of the Prime Number Theorem.

The contents of the remainder of the introduction are as follows. Section two 

contains a description of symbolic dynamics for Axiom A flows and interval maps. 

Sections three and four may be regarded as introductions the chapters one and two 

respectively. Sections five and six contain some introductory material for chapter three.

§2 Symbolic dynamics

We begin by defining shifts of finite type. These were first introduced in a purely 

mathematical context in [ P I ). Let A be a k x k ,  zero-one matrix and suppose that

A is irreducible, i.e. for each i, j  , there exists n such that An( i, j  ) > 0. Let 

LA -  { x -  < xn )n„  E { 1,2......k }* : A( x „ , ) -  1 , all n e Z ),

;<«> T
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and
V  ( » -  (*» W f o ) «  n . 2 . . „ , k } “ ^ 0 ) : A( x„ . xn+1 ) -  1 , all n 2 0 ) .

If (1,2......k} is given the discrete topology then XA and £A+ are compact

and zero dimensional with the Tychonoff product topology^The shift
a  : ZA —* £a ( resp. a  : £A+ —► ZA+ ) is defined by ( c x ) n ■* xn+1 for all 

n e Z, and is a homeomorphism ( resp. continuous bounded-to-one map ).

Let r : ZA —» IR+ be Holder continuous. Define the r-suspension space 

£ /  -  { ( M ) e ï A « B : 0 S t S r ( x ) , ( x 1r ( x ) ) - ( o x 10 ) } ,  

which inherits the product topology from ZA and IR. The suspension flow is 

defined to be the flow a r, ( x, s ) = ( x, s + 1 ) , subject to the identifeation.

( A similar suspension semiflow can be constructed for o  : £A+ —» £A+ ).

In [ B11, Bowen used suspensions of shifts of finite type to model the dynamics 

of Axiom A flows. Again let 9  be an Axiom A flow restricted to a non-trivial basic 

set.

For e>0, one can construct disjoint (local) cross sections T j,... , Tfcc  M 

with diam ( Tj ) < e, a shift of finite type ( £A , a  ) and a continuous suijection 

rt : LA —♦ VJj Tj such that n( { x e ZA : x0 = i } ) » Tj. ( The Tj are called a 

Markov partition for 9 1 A. See [B ll for further details ). Furthermore, if x e ï A 

with Xq » i , Xj -  j , then 9 ^  n( x ) = tt c( x ) 6 Tj , where

r( x ) = inf { t > 0 : tp, n( x ) 6 Tj , some j  }.

Bowen extended this construction to prove

Proposition 2.1 l B11 There is a suspended flow or, : £Ar —» ZAr with Holder 

continuous height function r : £A —► IR+, a Holder continuous, surjective, bounded- 
to-one map n  : ZAr—»M such that r io o rt -  (p(<Il, Further, if m is the 

measure of maximal entropy for ort then II* m is the measure of maximal entropy 
of tp,.

1 éicôe-K O ^ ock' I ,

, y ) r  cc* *
JC.' =  U I f x J
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We now describe the symbolic dynamics for interval maps ( following roughly 

the exposition in [ B21, chapter nine ). Let T : I —► I be a map. We will always 

assume there is a partition 0 * c0 < <... < cr -  1 of I , so that

( i ) T | ( cs , ci+1) is C1 and strictly monotonic,

( i i ) The limits lim T( x ) and lim T( x ) exist
xtCj" xAcj+

00
Let Jj = ( Cj, ci+1) for 1 £  i £  r. Let B = U  T"m ( { Cq , c , .......cr } ) c  I,

m-0

which is at most a countable set. Define Icq ( ^ ) — j if £ e B , and let 

let lq (%) * kg ( T> ^ ) ,  for e  I \  B. Thus we have a well defined map

—> { 0 ,1 ...... r ) “ “’«» given by (X $ ) « ( kj ( 5 )  )i6lM0>. Theimage

of p is the set Z( T ) ,  defined by

T ) -  { x = ( x,, e {1...... r }*kJ(0l; x .  p( f, ) ,  some % 6 I \  B }.

Again, Z (T ) inherits the Tychonoff product topology induced by the discrete 

topology on { 1,..., r  }. The shift map a : L( T ) —► L( T ) is the continuous, 

bounded to one map ( ax )n « xn+j.

Parry [P2] considered maps T which are locally onto, i.e. for each open

m
interval J  c  I, there exists m such that U  T> J -  I. In this case there is a well 

j-0

defined map p : £( T  ) —► I given by

oo n
p( x ) = n  n  T-i J_

jn-0 j-0

is continuous and conjugates o |£ ( T )  and T | I \ B .  Parry used the map p to 

show that, except for certain special cases, T is topologically conjugate to a piecewise 

linear map with constant slope. Moreover, the slope equals the entropy of a  I Z( T ).
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The natural order on I induces an order on Z( T ) as follows. Define 

0( i ) = (  1 if TI ( Cj_j , Cj) is increasing,

/  -  1 if TI ( Cj_ j , Cj) is decreasing.

Extend this to finite sequences by 0( xq Xj ... xm ) = 0( x0 ) 0( Xj ) ... 0( xm ). 

Define a total ordering on { 1, 2 ,.... r as follows. Given x + y, choose m

such that xm ^  ym but xj ■ yj for j < m. Let x £  y if

( ym " xm ) ®( *0 x, ... x * ., ) > 0 ,

( taking 0( 0  ) » 1 when m = 0 ). It is not difficult to show that the limits

exist. Then u®  , v® g L( T ) and

« T )  -  { x e {1,2.......ulXk> £ a k x £ vl' k> , all k iO  ).

A particularly simple class of interval maps are the Markov maps. Let S be a

finite set of points in I with T( S ) c: S. Write S as S -  {c0 , C j...... ck },

where cQ < Cj < ... < ck. Again, we assume that T is strictly monotonic and 

continuous on each interval ( cit ci+1). Then define a k x k  matrix by 

A ( i , j )  -  C l  if T( Cj, ci+1) 3  ( c j ,c j+1),

( 0  if T( Cj, ci+j ) o  (C j,Cj+1).

( Our assumptions on T ensure these are the only possibilities). Then define 

* :L a —♦* by

lim p( ^ ) 
*tci-l+

and v®) = lim p( £ )

W»

7t( X )

The map n is a semiconjugacy, n o  =■ T n , and is one-to-one except for at 

most a countable number of points where it is at most k-to-one.
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83 Toral Automorphisms

Let Tn = IRn /  ZN denote the N-dimensional torus, and let S be an 

automorphism of TTN. Thus S e  GL( N, Z ) , i.e. S is given by an N x N matrix 

with integer entries, and further det S = ± 1. We suppose that S isergodic, 

which is equivalent to assuming that S has no eigenvalues that are roots of unity.

A point x g TTn is periodic under S if and only if all its cordinates are rational. 

Thus the set of periodic points is countably infinite. Let Fixn = { x g T n : Sn x = x }, 

which is a finite set, and let jin be the probability measure equidistributed on Fixn. 

The periodic points are uniformly distributed in YN if and only if |i.n —► |i in the 

weak* topology on the space of S-invariant probability measures, where p. is Haar 

measure.

The cardinality of Fixn can be computed from the following well known formula

card Fix„ -  I det ( Sn -  I ) I -  FI I Xn -  1 I
X

where the product is over all eigenvalues A. of S. The topological entropy h = h( S ) 

may be calculated from the formula

h = X  log IX. I ,
\\T>1

where the sum is over all eigenvalues A. of S with I A. I > 1.

The following result is needed in the proof of Theorem 1.6 in chapter one.

Proposition 3.1 [H Pl (Theorems 7 .1 ,7 .6 ). Let G be a compact topological 

group and let N be the connected component of the identity e in G. Then N is a 

closed subgroup of G and G /  N is finite.

We now examine the hyperbolic structure of S. Considering S as a linear 

transformation of IRN , there is an S-invariant decomposition
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n N = Es © Eu 0  Ec ,

where Es is the eigenspace corresponding to the eigenvalues of S less than one in 

modulus, Ec corresponds to those eigenvalues of modulus one and Eu to the rest. 

The map S is called hyperbolic if S has no eigenvalues of modulus one. In this 

case S is an Anosov diffeomorphism and we can apply the methods of §1 to study 

the periodic orbits. The ergodic toral automorphisms are also refered to as 

' quasihyperbolic ' ,  a name invented by Lind [ L I ) to reflect their partial hyperbolic 

behaviour. ( The impossibility of constructing Markov partitions for non-ergodic 

toral automorphisms was shown in [ L 2 )).

Finally, we make some remarks about almost periodic functions. A useful 

reference for this is [ Pe ].

Let T : X —► X be an ergodic isometry of a compact metric space ( X , d ) with 

respect to a Borel probability measure p , which assigns positive measure to each 

non-empty open subset of X.

Definition 3.2 A sequence { a„ : n € Z } in X is called almost periodic if for 

each e > 0, the set of p 6 Z for which

SUP d<*n+p.«n> < E
n

is relatively dense, i.e. there is a real number K such that each interval in IR of 

length K contains at least one such p. ( These values of p are called the e-periods ).

Lemma 3.3 For Xq e X and f e C ( X ) ,  the sequence { f( T" Xq ) : n € Z } 

is almost periodic.
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§4 Lorenz knots

The famous system of differential equations

X -  -  10 x  + 10 y

ÿ 28 -  y -  x z

z -  -  (8 /3  ) z + x y

of E. N. Lorenz [ Lo ] has been extensively studied, ( see for example [ G ], [ R2)), 

as it is an important example of a " strange attractor " , in the sense of the Ruelle- 

Takens definition [ RT ]. This model A , together with a flow y t was used by 

experimentalists to study atmospheric convection. A geometric model L was 

proposed for the Lorenz system by Williams in [ W1 ], which is generally accepted is 

an accurate model of A, although this is still to be rigorously proved.

Briefly, it is hypothesised that there is a ( one-dimensional) strong stable 

direction for A, which leads ( via the stable manifold theorem ) to a one

dimensional foliation 7  of an open neighbourhood N of A by strong stable 

manifolds W5 ( x ), for x e  A. The connected components o f W s ( x ) n N  are 

collapsed, yielding a quotient N /  ~  = H , which fits the commutative diagram 

N't
N --------► N

1 I
H ------- ► H

*1

in which \jrt is the original flow, and <pt is a semiflow . This semiflow is well 

defined for t £  0  since \j/t leaves N invariant for t £  0 , and f  invariant for all t. 

The geometric Lorenz attractor L, with its flow <pt is the ' inverse lim it' of <j5(. ( See 

[ W 11 for further details).
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In particular, H is a two dimensional branched manifold , together with a 

semiflow (¡5,. ( The pair ( H, <pt ) is known as a template ). We have sketched H in 

figure 4.1. We parameterise the branch line I as [0 ,1 ]. A typical Poincari map 

T  : I —► I for <pt on I is illustrated in figure 4.2.

The map T has a single point of discontinuity at c e  (0 ,1 ) , TI ( I \  c ) is C1 and 

strictly increasing , and T(c") = 1, T (c+ ) = 0. Thus we can reduce the dynamics 

from three dimensions to two dimensions, using the strong stable foliation, to one 

dimension by a Poincar6 section, and can continue to symbolic dynamics which is zero 

dimensional. The most important observation is

Proposition 4.1 [ BW1 ] The periodic orbits of the three dimensional geometric 

Lorenz attractor correspond one-to-one with those of the semiflow <pt on the 

branched two manifold H. This correspondence is up to isotopy.

In the case of the Lorenz attractor, we modify the symbolic dynamics

of §2 slightly as follows. Label the interval [ 0, c ) with ' x ' and ( c, 1 ] with ' y '. 

Regard H  T ) as a subset of { x, y }Nu{0} t and denote this set by Xj. We define

O C

figure 4.1 figure 4.2
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the set B to be precisely those points £ , which satisfy T" ( %) = c for some n. The 

kneading sequence of such a point then takes the form w 0 , where w is a word of 

x's and y's of length n , and the sequence terminates with infinitely many 0's. Thus 

the kneading sequences of points in B form a set X2 , where

oo m oo
x2 c o  ( n {x,y} x n {0} ).

m»0 i- l j-m+1

The kneading space X is then defined by X = Xt u  X2. As before there is a 

well defined shift map o  : X —► X, and a projection 7t: X —► I such that 

re a  = T 7t. The orbits with kneading sequences in X2 are called saddle connections 

and are not regarded as periodic orbits.

Suppose a periodic orbit x has kneading word w (x) = x2 y x y  6 Xj. Then 

w( x ) determines the knot type of x as follows. Write down the cyclic permutations 

o f the aperiodic word x2 y x y and order them lexicographically, taking x , y.

1 x2 y  x y

3 xy  xy  x

5 y x y x 2

2 x y x 2 y

4 y x2 y x

figure 4.3
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One can see that the periodic orbit x is isotopic to the trefoil knot in S3.

To analyse the link of periodic orbits further, we introduce the idea of a braid. A 

closed braid on n strands is a presentation of an ( oriented ) knot or link so that its 

projection onto the plane passes in the same direction about the origin n times. The 

braids on n strands form a group Bn ( called the Artin braid group [ Ar l ), with

generators Oj , a 2 , . . . ,  o n_ j , and relations

° i <Vi ° i -  < v i °i+i •
and

"  “ j Oi • ¡f I i -  j  I £  2.

The above examples are as follows 

( a ) The braid Oj o 2'‘ 0 2 e B3 ,

( b ) The closure of the braid Oj o 2'* Oj o 2 e B3 , 

( c ) The full twist braid A2 e B3.
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A theorem of Alexander in [ At l , states that any knot in S3 can be presented as a 

closed braid. The braid index o f a braid b is the smallest integer n such that the 

closure ^  of b is isotopic to a closed braid on n strands. The braid index is a knot 

invariant.

The eenus of a knot K in S3 is defined to be the minimal genus of any Seifert 

surface spanning K.

A braid b e Bn is called positive if all the generators in its braid word occur 

with positive exponent.

We require two basic results on postive braids.

Proposition 4.2 [ FW l If b is a positive braid on n strands, which contains a 

full twist A2 e Bn , then n is the braid index of b.

Proposition 4.3 (BW1) Positive braids on n strands, whose closures are 

knots, have genus g given by

2 g  -  c - n  + 1, 

where c is the number of crossings.

In chapter two, we show that all Lorenz knots can be represented as positive 

braids.

In [ BW2 ], Birman and Williams show that one can construct a template 

( H, <jit ) , ( i.e. a branched two manifold H , together with a semiflow on H ), 

for any Axiom A ( no cycles ) flow on S3, essentially by collapsing along strong 

stable manifolds ( c.f. the Lorenz attractor ).

Proposition 4.4 [ BW2 ] Given an Axiom A ( no cycles ) flow tp, on S3 , 

there is a template ( H , <¡5,) with H c  S3 , such that, with one or two specified 

exceptions, the periodic orbits o f <pt correspond one-to-one to those under $ t. 

Moreover, the correspondence is via isotopy.
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In [ W 2 ], W illiam s proposed the fo llow in g  problem .

P rob lem  4 .5  I W 2 1 Let <p, be an A xiom  A  ( no c y c les  )  flow  on S 3. Say q>t 

has infinitely many periodic orbits { Tj , T2 , . . .  } which w e regard as knots. Since  

there are only countably m any possib le basic se ts , o n ly  countably many such sets o f

periodic orbits can occur. But the collection o f  a ll  infin ite sets {  K j , K2 .......} o f

knots has the cardinality o f  the continuum. T hus o n ly  special o nes occur for flow s. 

W hich on es ?

In chapter two, §5, w e  show  that in the c a s e  o f  the Sm ale horseshoe map 

( studied b y Smale in [ S ] ) ,  w hich is the s im plest exam ple o f  an A xiom  A flow , there 

are restrictions on the number o f  c losed  orbits in  term s o f  their genus.



0.15

( d )

The diagrams in figure 4.4 are as follows.

( a ) This illustates a Smale horeshoe map. The ' stadium ' is streched in the 

horizontal direction and contracted in the vertical direction. It is then folded 

back on itself as illustrated.

( b ) This illustrates a suspension of the horseshoe map.

( c ) The model is collapsed along the strong unstable manifolds.

( d  ) After identifying the tops and bottoms in ( c ), we obtain the horseshoe 

template.
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( e ) This illustrates a typical Poincard map on the branch line. In the classical 

horseshoe studied by Smale, the return map T : I —► I takes the form

As for Lorenz knots, all Smale horeshoe knots can be presented as positive braids.

S5 Geodesic flows

Probably the most important example of an Axiom A flow is the ' geodesic 

flow ' which we now describe.

Let S be a C00 compact surface of strictly negative sectional curvature with 

respect to a Riemannian metric < . , .> .  Let

Tt S = { ( x ,v ) € T S  : < v ,v > x ■ 1 } 

denote the unit tangent bundle. Define the geodesic flow (pt : Tj S —► Tj S as 

follows. Given ( x, v ) e  Tj S , let y  : !R —» S be the unique, unit speed geodesic 

through x € S in the direction v, at time t = 0. ( i.e. y( 0 )  -  x , Y( 0 )  ■ v ), 

then set cpt ( x, v ) = ( Y( t ) , ? ( t ) ). ( Thus <pt moves the tangent vector from

Y( 0 )  to Y(1) along the geodesic determined by v ). The geodesic flow is Anosov, 

and topologically weak mixing by [ AA J.

One can give a more precise description of the analytic domain of the Ruelle zeta 

function for geodesic flows than for arbitary Axiom A flows.

Theorem 5.1 [ P o ) There exists e > 0 such that £( s ) is analytic and non

zero for Re( s ) > h -  e , except for a simple pole at s = h. Further, £( s ) is 

meromorphic on <C.

25  . 0 S 5 S * ,

2< i - 5) .  i <$s i -

An important property of the geodesic flow is the reversibility of closed orbits.
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Define an involution i : T j S —►TjS by i ( x ,  v )  =* ( x , - v ) .  Then the 

geodesic flow has the property that (pt o / = /  o cp_,.

86 Differentiability

Throughout this section, B, Bt and B2 will denote complex ( or sometimes, 

where specified, real) Banach spaces. References for the definitions and results that 

follow are [ HP ] and [ Pa ].

Definition 6.1 A map f : C —► B is said to be analytic if l  o f : C —► C is 

analytic in the usual sense, for any bounded linear functional l : B —► <C. A map g : 

Bj —► B2 is said to be analytic if g o f : C —► B2 is analytic, for every analytic map 

f : C —► Bv

These definitions may be localised, and in particular, we may define real 

analvticitv for maps of open subsets of real Banach spaces into real Banach spaces.

Definition 6.2 Let U c  Bj be open in Bt  and f : U —>B2 be a function. If 

p € U, we say f  is Frtchet differentiable at p if there exists a bounded linear 

transformation dfp : U —► B2 such that

I f ( p  +  x )  -  f ( p )  -  df  ( x  ) I
------------------- is—,7--------- ---------  ---- ♦ 0 , as x —* 0.II x II

It is not difficult to see that dfp is uniquely determined. If f is Fr6chet differentiable, 

with continuous derivative, then say f  is C1.

If f  is Frfechet differentiable in U then the map d f : U —► L( B j , B2 ) given



0.18

by pt—»dfp is well defined, where L( B2 , B2 ) denotes the space of bounded 

linear operators Bj —► B2.

If df is again differentiable at p € U, then

d (d f)p -  € U B j .U B ^ B j )) ,

where the latter space is identified with L2 ( B2 , B2 ) ,  i.e. the space of continuous, 

bilinear maps Bj x B j—► B2. Then d2f  can also be shown to be symmetric.

A linear map IR —► B is completely determined by its value on the basis element 

1 e  IR. So a differentiable function f : U —► B, where p e U e R ,  has derivative 

f'( p ) defined by f'( p ) = dfp( 1), and by linearity, dfp( a ) = a  f'( p ).

Definition 6.3 A map f : Bj —»B2 is Gateaux differentiable at p if there * (i)

as t —>0, for all x e B. .

The relationship between these various types of differentiability is described in the 

following proposition.

Proposition 6.4

( i )  I f f :B j  —»B2 is Frdchet differentiable at p then it is Gateaux differentiable at 

p and dfp -  5fp.

( i i ) If f : Bj —► B2 is real analytic in a neighbourhood of p e Bj then f is 

Frichet differentiable in U.

Finally, we define the gradient and Hessian operators. For this we need the notion 

o f a Hilbert manifold.

Definition 6.5 The manifold M is called a C00 Hilbert manifold if M is a C“  

manifold, and for each p e  M, TMp is a seperable Hilbert space. For each p e M,
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let < . , .  >p be an admissable inner product on TMp, i.e. a positive definite, 

symmetric, bilinear form on TMp such that the norm II v II p = < v , v >p i  

determines the topology of TMp.

Let f : M —* IR be real valued and C*. Given p e M, dfp is a continuous 

linear functional on TMp. So there exists a unique vector Vfp in the fibre Mp such 

that dfp ( v ) = < v , Vfp > , for all v e Mp. Then the map p i—► Vfp is called 

the gradient of f, and denote by Vf.

Similarly, if  f  is C2 the Hessian V2f is a map pi—► V2 fp , where V2 fp 

is the symmertic bilinear form given by d2 fp ( v, w ) = < v , V2 fp w > .

A point p € M is called a critical point of  f  if Vfp = 0. A critical point 

p e M is called non-degenerate if V2fp is an invertible operator.
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Chapter 1

The Prime Orbit Theorem for 

Quasihyperbolic Toral Automoiphisms
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The Prime Orbit Theorem For Quasihyperbolic 
Toral Automorphisms

BY

SIMON WADDINGTON

Abstract For a toral automorphism which is ergodic, but not neccessarily 

hyperbolic, we derive asymptotic formulae for the number of closed orbits by 

analogy with the Prime Number Theorem. A new proof of the uniform 

distribution o f periodic points is also given.

§ 0 Introduction

In a paper of Parry and Pollicott [ 5 ), an analogy between the least periods of 

closed orbits of Axiom A diffeomorphisms and prime numbers is used to derive an 

analogue of the Prime Number Theorem. More precisely, if (p is an Axiom A 

diffeomorphism restricted to a non-trivial basic set A with topological entropy 

h = h( <p I A ), and x denotes a generic prime closed orbit of q> I A with least period 

X(x) then

h ( x +1)
card { x : \(x) £ x } — ---------

<e - l ) x

as x —>oo through the positive integers.

In particular, this result holds for an important class of examples of Axiom A 

diffeomorphisms, namely the hyperbolic automorphisms of the N-dimensional torus.

1 Strictly speaking, their paper concerns flows. The diffeomorphism case  is 
obtained by taking a flow which is a suspension of a diffeomorphism with constant 
height function.
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Markov partitions and the associated symbolic dynamics play a crucial role in the proof.

The aim of this paper is to generalize this result to ergodic automorphisms of the 

N-torus, without the hyperbolicity assumption. In [ 3 l, the term ' quasihyperbolic ' 

was used to describe the ergodic automorphisms.
non liijfVrHott«'

For ergodic^toral automorphisms, Lind [ 4 ] has shown that Markov partitions 

never exist. However, we can still obtain the following result:

Theorem Let S be an ergodic automorphism of TN. Then

h ( x + 1)
card { x : A.(x) £ x } — - —  -----  E( x )

as x —*oo through the positive integers, where E : IN —► IR+ is an explicit, almost 

periodic function which is bounded away from zero and infinity.

Here x is a generic prime closed orbit of S, least period X(x), and h = h( S ) is 

the topological entropy of S.

Our proof relies on the direct computation of the Artin Mazur zeta function for S. 

It will be seen that its behaviour on the circle of convergence has a crucial influence of 

the asymptotics.

We also define a notion of ' average order ' and show that card { x : X(x) £  x } 

has average order

h ( x + l )

K -V—( e  -  1 )x

as x —> oo through the positive integers, where K is a constant, depending only on S.

In the first section, we give a new proof of the uniform distribution of periodic 

points of an ergodic toral automorphism. We use the fact that the number of fixed 

points of Sn tends to infinity as n tends to infinity. We first indicate how to prove this 

using a deep number theoretic result of Gelfond.
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8 1 Uniform Distribution of Periodic Points

Let S be an ergodic automorphism of TN. We will always regard S as an 

element of GL( N,Z ) with det S = ± 1. Let Fixn = { x e  TTN : Sn x = x } be the 

set of fixed points of Sn. We will require the following result of Gelfond mentioned in 

the introduction:

Lemma 1.1 [21, Let X = e2 n ‘a  be algebraic and not a root of unity, for some

0 < a  < 1 . Then given e > 0, there is a number M such that if n £ M then

1 Xn -  1 1 > e- c n.

Using lemma 1.1, we can now deduce :

Proposition 1.2 card Fixn( S ) —* oo as n —► co.

Proof Let X be an arbitary eigenvalue of S. Suppose first that 1X1= 1. Let e > 0 

be given. Then if M is given by lemma 1.1, and n £ max { M, e'1 log 2 } then

p i t  , TA.nr.

-  e < — log I Xn -  1 1 < n
1 ,— log 2 < e. n

So i  log I Xn -  1 1 —. n 0 as n —►oo.

Secondly, if IX I < 1 then — log I X" -  1 1 —► 0 as n —► oo. n

Finally, if I X I > 1 then

— log I Xn -  1 1 = — ( log I XI " + log 11 -  Xn I ) —► log I XI as n —»oo. n n

Therefore,
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— log card Fix ( S ) = X  — log I X* -  1 1 —► X  log 1 XI = h( S ), 
n n X e  sp( S ) n  IXT>1

and so in particular, card Fixn( S ) —► oo as n —» oo. □

The above proof really shows that card Fixn( S ) increases exponentially with n 

which we do not require for our proof of uniform distribution. It would be interesting 

to try to prove proposition 1.2 without recourse to Gelfond's Theorem.

We will require the following two basic results on maps of the torus:

Lemma 1.3 Let G be a closed, connected subgroup of TN and let A : G —» G 

be a homomorphism. Then A is suijective if and only if ker A is finite.

Proof Assume first that ker A is finite and suppose, for a contradiction, that A is

not suijective. It follows that the dual homomorphism A : G —»G, defined by 
Z' A
A( y ) = y ° A is not injective. Since G is compact and connected, the dual G is

oi> sc/-*** ■*'■/*•«... 4s** . So there is a character y e  G of infinite order such that
A
A( Y ) « 1 , where 1 is the trivial character; that is 1( x ) -  1 for all x € G. Let 

f  be the subgroup generated by Y- Let K = r A- { x e G :  a(x) = 1 for all a  6 f  },

T U o/e /s  <  =  ^  /  Iter A « - d  X  -  fa /L e r  A? tl+A c«
1 A  /  / . .

Conversely, suppose that A is suijective. Then A : G —► G is injective. Let 

K » ker A which is a closed subgroup of G. Then if we let
A  A A A

KA « { y e G : y(x ) -  1 for all x e K }, it is easy to see that A"1 KA ■ G. Since G 
A  A  A

is torsion free and A is injective, G /  KA is finite. Thus by duality, K is finite, and

A  A  A

lu?/- A is , r a n k  K  = ^  ^  ca-,fr>J.cé>o.
A  A  A

hence K is finite. □



1.5

Lemma 1.4 Let G be as in lemma 1.3 and let B : G —♦ G be an automorphism. 

Then B is ergodic if and only if ker ( Bn -  I ) is finite for all n i l .

P roof An automorphism B : G —» G is ergodic if and only if Bn - I is suijective 

for all n i  1. But for any n i l ,  lemma 1.3 gives that Bn -  I is surjective if and only 

if ker ( Bn -  I ) is finite. □

Using lemma 1.4 we can now deduce the following :

Proposition 1.5 Let S be an ergodic automorphism of TTN and let H be a 

closed, connected subgroup of T N with S H = H. Then with respect to 

Haar measure ,

( i ) S  I H : H —► H is ergodic, and 

( ii ) S I t n  ,  H : TN /  H —* Tn /  H is ergodic.

P roof

( i ) Assume that S I H is not ergodic. Then ker ( ( S n - I ) I H ) contains infinitely 

many points by lemma 1.4. But therefore ker ( (  Sn -  I ) I tn ) is also infinite. So 

again by lemma 1.4, S : TN —> TN is not ergodic, giving a contradiction.

( ii ) Suppose that for some y  e  TN /  H  and n > 0, we have y  ° ( S I t n  /  H )n = y. 

By duality, TTN /  H is isomorphic to the annihilator subgroup of H, so y can be 

regarded as an element of TN with y( H ) -  { 1 }. Thus y ° S n -  y, and by the 

ergodicity of S, y  ■ 1 on TTN and therefore y  -  ljN  y H . □

Now let p n be a probability measure which is equidistributed on Fixn( S ). Our 

main theorem of this section is :
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T h e o r e m  1 .6  Let S be an ergod ic automorphism o f  TTN. Then for any non-trivial 

character y , fy d \L n = 0  for a ll n sufficiently large.

P r o o f  Let Y be a n on-triv ia l character o f  T N. S in ce  p n is Haar m easure on the 

fin ite  subgroup Fixn( S  ),

Y(x) 0  or card Fixn(  S ).

S o  su ppose there is an in fin ite sequence ( nk ) o f  d istinct p ositive integers such that

X  Y(y) = card FlV (S )y « Fix^i S ) k

S in c e  Y restricts to a character on the finite subgroup Fixn([ s  )  = { y : S k y = y } ,

w e  h a v e  y l F i x ^ S )  ■  1. Let G  be the closure o f  the group generated by

U  F ix n ( S  ). Since card F ixn ( S )  —» oo as k  — » oo, G  is  an infinite closed
k=i k k <J„
subgroup o f  T n  and its connected  com ponent o f  the id en tit^ is a  subtorus with

G  /  G q finite. N ow  G  is  a proper subgroup o f  T N, for otherw ise Y w ould be the

triv ia l character o f  Y N. M oreover, S G « G ,  S G 0 " G q , y  restricted to G is

id en tica lly  1 and F i x ^ f S )  c  G for a ll k S  1.

B y  proposition l .S ,  S restricts to an ergodic autom orphism  o f  G 0 and induces an

erg o d ic  automorphism o f  TTN /  G 0. So

c a r £  F ix nk( S l TN / 0 o ) -  card { y +  G0  : s"“ y +  G 0  -  y +  G0  > - > o o a s k - » o o .

and for  such y and nk, w e  have ( s"k -  I )  y  = g k g G q. H ow ever,

S n*c -  1 : G q — »G 0 is  surjective ( since det (  Sn,c - 1 ) ^ 0 )  and so  

(  S n,t -  I ) hk -  gk for som e hk e  G0. Thus Sn,t ( y - h k ) =  y - h k , giving
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( S°k -  I ) ( y -  hk ) = 0 and so y -  hk e G. That is, we have y e  G. But 

card { y + G0 : s"k y + G0 = y + G0 , y e G } is finite, giving a contradiction. □

Bj t U i k  i t ,  J f  . J f ■l'“- a"a f«cor-;
Cin’cc f  Ccn k tc  ** f f T Ox ,  ¿ u + r d  & r  i  •'4/-ori‘ij 6^

fi*,fcL linear  cokx 4« o*» j  e>̂  C^orRC-fez-j
Hence p n —► p in the the weak* topology on the space of S-invariant 

probability measures. So we have:

Corollary 1.7 The periodic points of an ergodic automorphism of TTN are 

uniformly distributed with respect to Haar measure.

Finally we give a brief description of a stronger form of theorem 1.6 which has 

been proved by Lind [ 3 ]. Let A : ZN —► ZN be the dual automorphism to 

S : T n  — ► T n . It is not difficult to show that supp |in = ( An -  I ) Z N . By using 

Gelfond's Theorem and a lemma of Katznelson, which was originally used to show that 

ergodic toral automorphisms are Bernoulli, there exists r > 1 such that

( An -  I ) ZN n  B (r" )  = {0},

for all n sufficiently large. Here B( r ) is a ball in IRN, radius r, centred on the 

origin.

Using this, if a  e ( 0,1 ) and f : TN —► tR is Holder continuous, that is there is 

a constant C such that

I f( x ) -  f( y ) I £  C d( x.y )°  for all x,y € TN, 

then f  f d |in —» J  f dp exponentially fast as n —► oo. Our methods do not seem to 

yield these stronger results.
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8 2 The Zeta Function for S

Throughout this section, let S be an ergodic automorphism of TN and let 0n 

denote the cardinality of Fixn( S ). It is easy to show that ([ 6 1)

8n -  I de t( I -  Sn ) I -  I I J ( 1 - X " )  I (2 .1 )

where the product is over all eigenvalues X o f S. Let a and b be the number of real 

eigenvalues X of S with X>1 and X < -1  respectively.

Lemma 2.1 sign det ( I -  S " ) -  ( -1  )* + >><n ♦ 1)

Proof We will write this product in ( 2.1 ) as

r i  d - x n ) = P j p2 p 3

where P. = FT ( 1 -  X" ) , P~ «* FT (1  -  X" ) and 
ImX f 0 X « ( - l , l )

p3 - n d-xn).
X € ( -00, -1 ) U  ( 1, 00 )

First, Pj is real and positive since its terms occur in complex conjugate pairs. The 

term P2 is also clearly positive. In P3 , each eigenvalue X > 1 contributes a factor 

( -1  ) to sign P3. Each eigenvalue X < -1  contributes ( -1 )n+1 to sign P3. 

Hence sign P3 = ( -1 )* + h(n + 1 \  □

Formally, define the Artin Mazur zeta function £s for S by
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Cs <*> exp Z  7 -  ®nn -1  n

The analytic domain of £s is described by the following theorem :

Theorem 2.2

( i ) Cs has radius of convergence e‘h.

( i i ) There is a finite set U c S 1 such that

( a ) 1 e  U , and

( b ) if u e U then u e U,

and a real number R > 1 so that if I z I < R e"h then £s may be written as

cs ( z )  -  A(z> n
P«U ( l - c p z ) '

where A( z ) is analytic and non-zero. For p e  U, K( p ) is an integer and 

K( p ) = K( p ). Moreover, the function A( z ) extends to  a rational function on 

the entire complex plane.

( iii)
Cs c * >
Cs<*>

X
p e U

eh P K(p)

( 1 -  p e" z )
a ( z )

where a( z ) is analytic in { z : I z I < R e h } for some R > 1.

Proof

( i ) By Proposition 1.2, if I z I < e*h then



1.10

i_ jl

I z "0R I "  -  Iz l  e n - ►  Iz l  eh < 1

( i i )  By (2 .1 )  and lemma 2.1,

( - 1 ) n
Substituting for 0n in the defining equation for £s gives

; s ( i  ) .  exp X  -  zn ( -1 )'
1 n a + b (n + l)

) ( 2.2 )

write n<i-*n> = n d-̂ n) n (*-*■*> n a-*")\  m<i ixi-i m>i

and collect the dominant terms in the product, that is 1 from f j  ( 1 -  X,” ) and Xn
IXI < 1 X

from TT ( 1 -  X" ) ,  which occurs with sign ( -1 )b n + a + b Then from (2 .2 ) , 
IXl> 1

Cs(*> A (z )  exp X  
n -  1 i i  i ( l - X  )

= A( z ) exp X  -T- enH T1 (1 -  ) (2 .3 )
n - 1 n IXTI -  1

where A( z ) is rational and is analytic and non-zero in the disc { z : I z I < R e 'h), 

for some R > 1. Now we use the expansion
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< ! - * " )  -  X  K (p )  p" (2 .4 )

where U is a finite collection of points on the unit circle, and clearly we must always

Finally, part ( b ) follows since all roots of the characteristic polynomial of S in 

C \  IR occur in complex conjugate pairs.

( iii)  Logarithmically differentiate the formula for £s in part ( ii) . □

§ 3 The Prime Orbit Theorem

In this section, we give asymptotic formulae for the number of periodic orbits of a 

quasihyperbolic toral automorphism using an analogy with the Prime Number 

Theorem. The function £s will play the role of the Riemann zeta function in the proof.

Let x be a generic prime closed orbit of an ergodic automorphism S of TTN, 

with least period X(x). Set

have 1 e U. The numbers K(p), where p e U, are just integers?" Substituting for 

( 2.4 ) into ( 2.3 ) gives

Cs(z) = A(z)̂ X e"h X K (p) p"
n -  1 n p g  U

A (z )

7t( x ) = card { x : X( x ) £ x }.

Then our main result is

1 F » r ihtr, K(r> - X’( 'r ' )  I r w ) ®
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Theorem 3.1 7t( x )
eh ( x + 1 )

x

as x —>oo through the positive integers.

Proof It is a straight forward exercise to rewrite £s as

Substituting this expression for Çs into theorem 2.2( iii ), and applying the formula 

for a geometric progression gives

where a  is analytic in the disc { z : I z I < R e-h } for some R > 1.

For computational purposes, it is convenient to introduce fictitious orbits. A 

fictitious orbit x' is defined to by a formal product x '= xn for any n £ 1, where x is 

a genuine orbit. For such an object, define A( x' ) = X( x ) and X( x ') = n X( x ). 

Substituting into (3 .1 ) gives

X  K (p )  ( p e h )" ) z" = z a ( z )

Hence for a possibly smaller R > 1,
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n .
( £  A ( x ')  -  £  K ( p )  ( p c

"h W x ’ ) . n  p €  U
) ) —» 0 as n —>co.

Defining a function y : IR —» C by

V( X  )  -  y  A( x' )
X(0 £ x

V (x ) X < X A i t * )  - X K ( p )  ( p
n -  1 X(tT -  n p g U

e ) )

X K ( p ,  V »1
P 8 u  p c -  1

By rearranging the above expressions, we obtain

, h x + 1

V ( x )  -  X  K ( p )  ------
p c h - l

( 3 2 )

for a positive constant Cj.

We now want to relate y ( x ) to n (x )  = A  1. Firstly,
A.(x5sx

v ( x )  -  X  A(T,) '  £  V t )  IT T )MxTs x turn s  x L M '  J

s X W>)
X(t) 2 x X(T) X  1t( X  ) (3 .3 )
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where [.)  denotes 'integer part'.

To get an inequality in the other direction let x = y  y for any y > 1.

Then

n (x ) M y )  +
y < £  x

s  Jt( y  )  + £ * £ > *  „ ( y )  +  V i l i
x(t) s  x y y

X Jt( X )  

h x
*( y ) y y

h y y
y y( * ) (3 .4 )

Combining ( 3.3 ) and ( 3.4 ) gives the inequality

x * ( x )  y ( x ) M y )  y y0 £
h x

+ ( v _ i ) V i £ 2
h y y  h x (3.5)

To continue the proof we will require the following lemma :

Lemma 3.2 For any y  > 1 , y  ̂ —» 0  as y —► oo.
h y y  7

Proof It is sufficient to show that

Cs<*>

M y ) remains bounded for all y  > 1. Rewrite £s as

n<> -i*")4
where the product is over all closed orbits of S. We know that £s converges for 

I z I < e~h, so £s is defined and analytic at z ^ e -*1*. for any y > l .  So
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i s (e  h T > n <>- c h r w »• * n < f - * T*o>

n  ( 1 + e " h1fy ) i  ( 1 + c " hTy ) Jt(y ) *

Therefore ^  ^  ̂ remains bounded as y —► oo. □
h yy 3

w( x )
Since —j^ — <, C2 for some constant C2 , it follows from ( 3.5 ) and lemma 3.2 that

x * ( x )  _ V ( x )
h x h xe e

* ( Y -  1 ) C2

But y > 1 was chosen arbitarily, so

x k( x ) _ y( x ) 
h x h xe e

0 X — > 00 .

Therefore by ( 3.2),

x 7l( x )
h ie

X  K(p>
pe U

x +1 h
P_____c_ 0 as x —>oo.

(3 .6 )

Now we use the elementary fact that if ( a ,,) and ( bn ) are sequences of complex 

numbers such that I a„ -  bn I —> 0 as n —> oo and ( bn ) is bounded away from 

zero then an /  bn —> 1 as n —> oo. We will show that
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is bounded away from zero, then the theorem follows from ( 3.6 ) and our previous 

observation.

Define T : TR —> I R by T( Zj . . . . .  zR ) -  ( Xj zt , . . . ,  XR zR ) ( where 1TR is

this time written multiplicatively ) .  Define f : TTR —► C by

f( Zj . . . . .  zR ) = ( 1 -  Zj) . ( 1 -  Zj ) . . .  . ( 1 -  zR). Then T is ergodic and

f  € C( TR ), so the sequence ( f( T*^ 1,1,..., 1 ) ) ) is almost periodic, and hence

( p(m) ) is almost periodic.

Let L( e ) = { m e Z : p ( m ) > e ) .  Since all eigenvalues of S of modulus 

one occur in complex conjugate pairs, we have p( m ) > 0 for all m e  Z. So we can 

choose e > 0 so that L( 2 e ) £ / 0 }. Since p( m ) is almost periodic, there is a 

relatively dense set of translation numbers Pc , with gaps of length at most Ke , so that 

if r e  Pe then for any m e  Z, we have I p( m + r ) -  p( m ) I < e. So if 

m e  L( 2 e  ) and r e Pc then p(m  + r ) > p ( m )  -  e > e, and so m + r € L( e ). 

But L( 2 e ) £  L( e ), so we conclude that L( e ) is relatively dense in Z with gaps 

of length at most 1^. Thus

Now from (2.4), /o r  x t-W ,

(3 .7 )

where p( m ) = O  (1 -  Xm ). Let Xj.......Xr be the eigenvalues of S of modulus one.

.V  - n n2 , e  p ( n - x )  £  e 2 -  cn € ( L(e) + x)ri(W>^{0})
- n h
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But ( L (e )  + x )r* (IK Iu  {0} ) is relatively dense in W u  {0} with gaps of length at 

most Kg , and so

n e ( L(e) + x ^ n  (
-nh ve £ 2_, <

N ulO l) r -  1

r KE h - Ke h
> e > 0 .

L — n h " h
e p ( n - x ) >  e e  > 0  for all values of x in the positive integers .o

For our corollary of theorem 3.1, we make the following definition :

Definition 3.3 We say that f( x ) has average order g( x ) if

i  y  f<p >
* n - l  «<">

1 as x —> oo.

If this is the case write f  *  g.

Corollary 3.4 w( x ) *  K( 1 ) —
C c -  1 ) x

Proof Consider the inequality

i  V  n n( n ) 
x n hn - l  e

K ( l )

^ TAis iS '<a i /e ra jC  o rJ&r ' d  j

*» C l l  , 2t>3. ( TAt/r d e f t ' n i f ' .  o-n J q j s

^  ) ch r X —) )
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i I n n( n )
Z  K (p ) i - / —
p e  U p c  -  1

1 x
i  Z  I
x  I n - 1  p e  U \ { 1  }

K (p ) (3 .8 )
p e  -  1

The first term on the right hand side of ( 3 .8 ) tends to 0 as x —> oo by 

theorem 3.1. If p 6 U \  { 1 } is not a root of unity the we may apply uniform 

distribution to deduce that

1 v ' n _— / .  Q —► 0 as x —>oo.
x n - l

Now suppose p € U \  { 1 } is a k* root of unity. Consider the equation

The first term on the right hand side o f ( 3.7 ) equals 0 since pk -  1 . The second 

term is a sum with at most k terms. Thus again we deduce that 

1 x1 V  n «— / .  o —> 0 as x —>oo.
x n - l

Combining the above observations, it follows that the second term on the right hand 

side of (3 .8 )  tends to 0 as x —>oo. Hence the result. □
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Remarks
oo n

( 1 )  If we had substituted Cs ( z )  = exP —  6n

, . _ n h
o b ta in ed  0 n *  e  a s  n  — » oo.

( 2 ) When S is hyperbolic, we obtain

h h x
7t( x ) ~ ---- ----------  -----  as x —» oo ,

( e -  1 ) *

which coincides with the results of [ 5 ].

in ( 3.1 ) then we would have
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Asymptotic formulae for Lorenz and Horseshoe Knots

BY

SIMON WADDINGTON

Abstract W e derive various asymptotic formulae for the numbers of closed orbits 

in the Lorenz and Smale horseshoe templates with given knot invariants, ( specifically 

braid index and genus ). We indicate how these estimates can be applied to more 

complicated flows by giving a bound for the genus o f knotted periodic orbits in the 

'figure o f eight' template.

§0 Introduction

In this paper, we study the knotted periodic orbits of expanding semiflows on 

certain branched two-manifolds ( called templates ). This work is motivated by the 

papers of Birman and Williams, [ BW1 ] and [ BW2 ].

In [ W 1), a branched two manifold model was proposed as a model for the full 

Lorenz attractor. This branched two manifold ( together with an expanding semiflow ) 

preserved the knot types of all periodic orbits of the full Lorenz attractor. In [ BW1 ], 

an effort was made to determine which families of knots actually occur as periodic 

orbits in the case where the Poincar6 map T on the branch line had the form 

T  £ -  2 $ C mod 1 ).

Here we take a more quantitative approach, to give asymptotic formulae for the 

numbers of closed orbits with given, well known, knot invariants. Specifically, we 

give a precise formula for u { x : b( x ) £ m } and ( upper and lower) bounds for 

# { t : g ( t ) S m ) .  ( b( x ) denotes the braid index and g( x ) denotes the genus of a 

generic closed orbit t  ). In all but exceptional cases these numbers are finite, for m
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fixed. Our results hold for a wide choice of Poincar6 maps. We make extensive use of 

the kneading theory for the Lorenz attractor, developed in ( W1 ]. An essential 

observation in all our results is that the link of knotted periodic orbits which exist on a 

given template depends only on the kneading invariants. Alternatively, two Poincar6 

maps with the same kneading invariants have essentially the same link of knotted 

periodic orbits.

Next we consider a different embedding of the Lorenz template, called the Smale 

horseshoe template. In the case that the Poincarfc map takes the form 

T £ = 2 i; for 0  £  £ £  \ , and 2( 1 -  ^ ) for £ < £ £ 1, this template has the same 

link of periodic orbits as the suspension of the well known Smale horseshoe map. We 

adapt the kneading theory for the Lorenz system, and modify our estimates to give 

asymptotic bounds on # { x : g( x ) £  m }.

In [ BW2 1, Birman and Williams showed that, given an arbitary Axiom A -  no 

cycles flow on S3, one can collapse along the local stable manifolds to obtain a 

template, together with an expanding semiflow. This can be done so that the periodic 

orbits correspond one-to-one and this correspondence is up to isotopy.

In a well defined sense, all these templates all these templates can be constructed 

from Lorenz and horseshoe templates, and so estimates on Lorenz and horseshoe knots 

can be used to study the knotted periodic orbits of more complicated flows. We 

illustrate this last statement in §6. Using the fact that the ' figure of eight' template 

( extensively studied in [ BW2 ))  contains a composite of two Lorenz templates, we 

outline how to give a lower bound for # { t  : g( t ) £  m } , using our previous

estimates.
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81 Preliminarie»

Let K be a knot in S3. By a result of Artin, every knot in S3 can be presented 

as a closed braid ■£, where b e  Bn for some n. The least such n is called the braid 

index b( K ) of K, and is a knot invariant. Another important knot invariant is the 

genus g( K ) of K, which is defined to be the minimal genus of any Seifert surface 

spanning K.

Let Hl denote the branched two manifold model of the Lorenz attractor 

(c.f. [W l]), which we have illustrated in figure 1.1.

Let <pt : Hl —» Hl ( for t ^ 0  ) denote a semiflow on HL which is downwardly 

transverse at the branch line I, which we parameterise as I = [ 0,1 ]. Let T  : I —► I 

denote the Poincarfc map , which fails to be defined only at the point c g  (0 ,1 ) . ( See 

figure 1.2 for a typical example ).

Each closed orbit x of <pt is a knot in S3. Thus x has a well defined braid 

index b( x ) and genus g( x ).

We now consider the Poincarfe map T in more detail. For P >1, we say 

T : I —► I is in Lp if

( i ) T is differentiable for all £ £ c , for some c e ( 0 ,1 ),

O G

figure 1.1 figure 1.2
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( i i )  lim£tc T( £ ) -  1 , l im ^  T( £ ) -  0. T (c ) -  c , and

( ii i) T ( $ ) £ P for all $ * c.

A map T : I —► I is called locally onto if for any open interval J, there exists

n

n > 0 such that KJ TJ J = I. This property was first introduced in [ PI ], and

and was subsequently employed in [ Pa ].

A particularly simple class of maps in Lp are the B -  transformations, which take 

the form

denote all finite sequences of x's and y's which terminate with infinitely many 0's. 

Let X = X |U X 2 , and give X the topology induced by the metric

where u = ( un ), v -  ( vn ) and un = -1  if un = x .and 1 if un = y.

Define the shift o  : X—» X by ( a  x  )n = xn+1 . Let < denote the natural

lexicographic ordering on X . generated by the ordering x < 0 < y.

We say that k = ( k£ , k ,) e K if k£ , k , e  X and 

( A1 ) k£ < kj , and

( A2 ) k£ ^  on k£ , o n kr ^ kj. for all n > 0.

Let K° denote all k = ( k£ , k,.) e K such that k£ 0 and ky jfc 1.

Kneading invariants arise in the following way. Let T g Lp, and for £ € I,

j-0

T $  " Tp.a( ^ ) ’  PS + a  (m od 1)
for some 1 < (5 £ 2, a  £ 0 and a  + (3 £ 2 .

denote the space o f infinite, one-sided sequences of x's and y's

and let

^  ( n {x,y>» n to))

d( u, v ) X
2"n
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define

if  £ < c

k o ( ^ ) r if  4 * C

Ly if £ > c

and k i ( 4 )  = M t U ) .

The ( finite or infinite ) sequence k( % ) » kg( £ ) kj( £ ) k2( £ ) .....  e X is

called the kneading sequence of £ € I. Moreover, the map ^ i—► k( £ ) is strictly 

monotonic, and the shift a  satisfies a  ( k( £ )  ) -  k( T( £ )  ).The kneading invariant 

of T , k = k t  ■ ( k | , kp) € K is defined to be the pair ( k( 0 ) , k( 1 )) . A sequence 

k( ^ ) is T-admissable if and only if k( 0 )  < om k( £ ) < k( 1 ) , and either 

o m k ( £ ) « 0  or f o m k (£ )< k (  1 ) ? for all m > 0 , (1 .2).

(  o m k( £ )  > k( 0 )  J

Define the trip number T( w ) of a finite word w of x's and y's to be the number of 

'xy' syllables in w. ( e.g. T( x2 y x y ) => 2 ). Suppose that a periodic orbit x has 

kneading sequence w( x ). ( That is the finite, aperiodic word o f x's and y's, w( x ), is 

repeated indefinately). Then define the trip number t ( x )  to be t ( x )  -  T (w (x )).

We say that K  € K is linearly realisable if there exists a P-transformation with 

kneading invariant K.

A map T e Lp is called Markov if there exists a finite set { ,  ••• • ) c  I

( containing c ) such that T( { ^  . . . . .  ^  } ) c  { ^  . Si . — . >•

( Strictly , we should write T( c+ ) -  lim ^  T( 5 )  and T( c" ) « lim ̂ tc T( i j )). 

Let A be a k x k  matrix whose entries are 0 or 1 according to the rules

A ( i . j )  .  f l  if T ( i i .5 i+1) =  < $ ,.(* ,,)  (1 .3 )

[ o  if T(5i . t i+1) r . ( t j .5 j+1) -  0

I J f l ...... k >- A (w „.w n+1) 1 , for all n £ 0 }Let Z, { W 6
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and define a metric on EA by

The shift a  : LA l—► EA is given by ( a  w )n = wn+1 . We define a map 7C : SA —► I

by 7t( w ) = O  T_n t , iL, 1. Then 7t is a semiconjugacy n  a  = T  i t ,
n n+1

n«0

and 7t is Lipschitz ( by use of P in the definition of metric). The map n  is one-to- 

one except for a countable set of points, where it is two-to-one.

82 Markov Partitions

In this section, we derive conditions for the existence of a Markov P- 

transformation realising a given kneading invariant. Our main result ( Proposition 2.2) 

refines a result in [W2J.

Definition 2.1 [ G ] An element k  e K is called renormalisable if there exist 

finite words Wj , w2 of x's and y's respectively, with respective lengths N j , N2 with 

Nj + N2 > 4 such that
i n. n, n, m. nij m-,kt  = wj w2 1 wj i  w2 3 ....  and 1  ̂ = w2 Wj 1 w2 * Wj 3 ....

Let the shortest ( non-trivial) such choice be ( WjM , w2^ ) of lengths

( N2(D ). Then replacing wj^1̂  by x and w2̂  by y , we obtain a

renormalised kneading invariant If this process can be repeated n times , but not

n+l times , ( using the shortest possible choice at each stage ), the kneading invariant

is called n-renormalisable. ( If T e Lp then n is finite, [ G 1 ). If  K is not

renormalisable, it is called prime.
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Proposition 2.2 Let K = ( k e ,k r )G K and suppose that K is prime, and that 

each of k£ , ky is finite or eventually periodic. Then K is linearly realisable by a map 

T e Lp , and T is Markov.

The significance of Ky being prime is that it is a sufficient ( and necessary ) 

condition for T to be locally onto.

Lemma 2.3 [ G ] Let kt  e K be the kneading invariant of T e Lp. If tcT is 

prime then T is locally onto.

Lemma 2.4 If T e Lp is locally onto and Markov then the transition matrix A is 

irreducible.

Proof By hypothesis, T is locally onto, so for each interval Ji = ( ^  , £i+1) in the

"i
Markov partition, there exists n j> 0  such that t j  T*Jj = I , for i = 1,.. ,k.

j - °

Thus in particular, for any 1 £ i, £ £ k, J£ n  T> Jj ^ 0  . Hence
j-0

"i "i
0  * T'"* ( Jf  n  U  T jjj ) -  T_ni(J£) n  T"nj( U  TJJj )

j-0 j-0
"i

-  T-"' ( J£ ) n  U  T-i ( J | ) c  T-"' ( J £ ) n J j ,  
j-0

and hence T "' ( J£ ) o  Jj ¿ 0 .  Thus A ( t , i ) £ 0 and , since i, £ were 

arbitary, A is irreducible. □

Proof o f Proposition 2.2 Suppose that K is prime, and each of k£ , k, is finite 

or eventually periodic. That is, each sequence is of the form w , w e X2 or u v 

where u, v are finite sequences of x's and y's, and v means that the finite word v is
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to be repeated indefinately. Then the sets L = { o n : n ^  0 } and 

R = { on k,.: n £  0 } are finite. Introduce two new points 0 kt  and 0 k, to X. Then 

let P = L u  R u  { O k j.O k j}  , so that o  P £  P. Write P = { T)0 , . . . ,  T]k } 

where T|0 < rjj < ... < rik.

Let S e  Lp be any realisation of K and let ^¡6 I , i= l  , . . , k  , satisfy 

k( Jjj ) = r ij. So in particular, 0 = ^  <  ... < £k = 1, S ( { ^ , . . . ,  £k } ) £

{ ^ 0 , ,  ^k } , and S( c“ ) = 1 , S( c+ ) = 0. ( Here k( c" ) -  Ok, and

k( c+ ) ■  0 kj ).

Define a k x k , 0-1 matrix A by (1 .3 ) . By Lemma 2.3, S is locally onto, 

and so by Lemma 2.4, A is irreducible. Thus by the Perron Frobenius Theorem for 

matrices, A has a maximal positive eigenvalue X with positive eigenvector 

e = ( e j , . . .  ,e k ), ( i.e. ej > 0 , for each i ). Normalise e so that e j+ . . .+  ek = l .  

Then choose points p0 . . . . ,  Pjj e I such that p0 = 0, Pj = Cj + ... + ej

for i = 1 ...... k. Choose T to be the P-transformation T ^  = X^ + pr ( mod 1 ),

where r = min {j : A( 1, j ) £ 0 }. □

S3 Asymptotics for Braid Index

In view of Proposition 2.2, we will now consider a locally onto, Markov P- 

transformation T - Te.=.- Let icT e K denote the kneading invariant of T.

Define f  : I —* I^by

f ix )  -

0 otherwise

Lemma 3.1 If k t  e K° then there exists N > 0 such that fN ̂  1 , 

( where f** « f + f « T  + fo T 2 + ... + f o T ^ 1 ).

l
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Proof Suppose kt g K ° , so kt  * 0  and k, * 1 . Thus T( 1 ) * 1 so we may 

choose Nt so that T*4! ( 5 ) < c for all £ € ( c, 11. Similarly, since T( 0 )  * 0, we 

may choose N0 ̂  1 so that -i"0 ( £ )  > c for all £ 6 [ 0, c ). Thus for all £ g I,

Xj( T> £ ) = 1 for some 0 £ j £ N0 + Nj, where

J -  ( (1  - a ( l + P ) ) p - 2. ( l - a ) P J ),

since J is precisely the interval { 2; g [ 0, c ) : T( 2;) > c }. Thus for all % e  I, 

XjN0* Nt+ 1 ( ^ ) > 0  thatis fN2 ! for n - N 0 + N ,+ 1. □

Remark 3.2 The condition k t  e K° ( that is k t  £ ( 0, w ) ,  or ( w, 1 ) for any 

w e X ) may be replaced by the more qualitative assumption that T has no sources.

( A point z g I is called a source if there exists an open interval V 3 z, V 5 I 

such that {z} = ''"V  * T“n V )•

Definition 3.3 ( i )  [W31 For each sequence ij , . . . ,  ir ( r  £ 2 )  of distinct

ij e ( 1 , 2 ...... k } such that the product

A( it , i2 ) A( i2 , i3 ) .... A( ir , ij ) * 0,

let ( ij , i2 . . . . .  if ) be the equivalence class under cyclic permutations of this r-tuple. 

These equivalence classes are called free knot symbols and the indices ij , i2 , . . . ,  i, 

are called nodes. A free link symbol is a product of free knot symbols, no two of 

which have a node in common.

( ii ) Let tp : ZA —► { 0,1 } be defined by tp( w ) = f( 7t ( w )) . Define the trip 

number t( y ) of the free knot symbol y = ( i j , i2 , . . . ,  ir ) by 

t( y ) = q* i j , i2 ) +  <p( i2 , i3 ) + ... + <p( ir . »1 )•

For a free link symbol 8 = 8j 82 ... 8p , where 8 j , . . . ,  8p are free knot symbols,

define t( 8 )  = ^  t( 8-) .
i - 1

Similarly, let £( y ) denote the number of nodes in y and let

t (8 )  -  £  t<8.) .
i - 1
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Also let s( y )  = j 1 if r is even 

/ 0 if r is odd

and again let s( 8 )

Example For k = ( x3 y 0 , y3 x 0 ) , we obtain the matrix

0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0

and the free knot symbols are

( 1 2 4 7 5 ) ,  ( 1 2 4 8 6 3 5 ) ,  ( 1 2 4 8 7 5 ) ,  ( 1 3 5 ) ,  ( 1 3 6 4 7 5  > ,(1 3 6 4 8 7 ) ,  

( 2 3 5 ) ,  ( 2 4 7 5  > ,( 2 4 8 6 3 5 ) ,  ( 2 4 8 7 5 ) ,  (4 8 6 ) ,

and the corresponding free link symbols are all the fire knot symbols together with the 

products

( 1 3 S ) (4  8 6 )  and ( 2 3 5 ) ( 4 8 6 ) .

Ti» e o  r e  n  3.4 Let K e K° be prime and kj , kj be both finite or eventually 

periodic. Let x = x( A ) denote the largest positive root of the polynomial equation

xk + £ ( - l  ) • » ♦ * »  x* - * »  e- Al(T) -  0 (3 .2 )
y

where the sum is over all free link symbols y. Let X > 0 be the unique root of the 

equation x( A ) = 1 , in A. Then

(e  -  1)

Xm
e
m

# { x : b (x )  S  m } as m —► co. ( 3.3 )
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through the positive integers.

Proof Let k  e  K° , k  = ( , k ,  ) be prime and suppose k t , k,. are both either

finite or eventually periodic. By Proposition 2.2, there is a Markov linear realisation 

T of K.

Introduce the 'braid index zeta function ' for T ,

C r ( s )  - n U  - c - ^ V  (3 .4 )
X

for any s e C, whenever the infinite product converges. By [ FW ] , Corollary 2.4, 

b( x ) = t( T ) where t( x ) is the trip number of x. ( To apply this result, we require 

that each Lorenz knot defines a positive braid b € Bn and b = a A2 , where A2 is 

the full twist braid. We postpone this to Lemma 4.1 . ) So k t ( x )  = fi, ( £ ) ,  

whenever Tn £ = £ , n = k p , and p is the least period of 

We may rewrite ( 3.4 ) as

& r(s ) exp
oo
Xn-1

ì  X  e - , l "ft) 
" i  « Fixer")

Using standard arguments in symbolic dynamics,

W » )  -  s) .
for { s : Re( s )  > 1 -  e , s jt 1 } , where e > 0. By Lemma 3.1, fN ^  1 for some 

N, so we may now apply the non-weak mixing case of the main result in [ P ] to 

deduce the formula in ( 3.3 ).

In particular, X > 0 is the unique positive root of Pressure ( -  A <p ) = 0 , [P i. 

Define a k x k  matrix BA by BA ( i ,  j )  = A ( i , j )  e_A<̂ i,'i  ̂ , which is 

irreducible by Lemma 3.1. Then

det ( Ba -  x I ) -  X  ( - l ) ”8"0”  ( BA - x I ) ( l , p ( D )  ... ( B A - x I ) ( k , p ( k ) )
p € Sk

< - l ) k xk + I ( - l ) ^ >  + k - ^ >  xk - £(Y) e " At(Y) (3 .5 )
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where the sum is over all free link symbols y. To prove ( 3.5 ), observe that there are 

precisely k - £ ( y )  symbols in { 1 ,2 ,... ,k }  which are not nodes of the free link 

symbol y. For each such symbol j say, A( j, j  ) = 0, by virtue of the fact that we 

chose c" , c+ to be endpoints of intervals in the Markov partition.

Write Y = Yl Y2 ••• Yr as a product of free knot symbols , where 

Yj = ( k |W ,. . . ,  kd G) ) and let k^r+1^, . . . ,  k ^  (̂r+*) be those symbols in 

{ 1, 2 ,. . . ,  k } which are not nodes of y. Then if p  = y,

( BA -  x I ) ( 1, p (l) ) ( BA -  x I ) ( 2, p(2) ) ... ( Ba -  x I ) ( k, p(k))

-  ( BA-  x I ) ( k,<». Y1(k1<1)) )... ( Ba -  x D ( y (,). Yr(kdl<,) >)

. (Ba -  x I)( Tf,(k,<Ml>))... ( Ba -  x I ) (

= ( -1 )k -  t(y) xk - Ky) c' A ^ i) c- A Ky2) e- A t(Yr)

-  (_l )k-«(Y)  Xk-£<Y) e"A *ft)

which proves ( 3.5 ).

Let x( A) denote the largest positive solution to 

det ( BA -  x I ) -  0

(tha tis x( A ) -  cPressurc( - A 9) , c.f. t P 1 ). From ( 3.5 ). we see that 

x = x( A ) is the largest root of

0 -  ( - l ) k xk * I  ( . ! / » ♦  > ■ - • » , k - W  C- A1M
Y

which when rearranged gives ( 3.2). Finally, the equation x( A ) = 1 has a 

unique positive solution A = X ( using [ P ] again ). □

Remark 3.5 We can replace # { x : b ( x ) < m } b y  # { x : b ( x )  = m } i n

( 3.3 ). This shows, in particular, that all large numbers are braid numbers for closed 

orbits.



84 Estim ates for the  genus o f Lorenz knots

We continue with the assumption that T ■ Tp a is Markov with kneading 

invariant kt -  (kt ,kr ) e K°. Define non-negative integers qf .qr by 

qt -  min { n : ( on kt )0 -  y } , and

qr = min { n : ( on k, )0 = x }.
We will require these numbers in the proof of Lemma 4 .1 , and in Lemma 4.2.

The following lemma extends a result in [ BW1 ].

Lemma 4.1 g( x ) £ t( x ) ( t ( x ) - 1) for all closed orbits x.

Proof We use the' positive braid representation ' for the Lorenz attractor HL, given

2.13
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We remark that any closed orbit with trip number t has a representation as an 

element of Bt , and further, this representation is as a positive braid.

Let y  denote a closed orbit with kneading word 

w(Y) -  f  x (x y )>  if q, 2  qr

l  ( * y ) ‘ y if q, < q ,,
with trip number t( y )«  l

First note that w( y ) is allowable. Suppose first that £ qr . Observe that 

since T > 1 ,  either qt > 1 or qr > l .  Thus we may assume q  ̂ > 1. If the word 

w( y ) is not allowable then

x ( x y ) 1 < ke

by (1 .2 ) .  Thus T (0 ) < c and T2( 0 )  > c, and so

«  < 311(1 a  + a  P > - ~ a  ,

from which we deduce that a p 2 > 1. Using the relation o c + p £ 2 ,  we obtain 

-  P3 + 2 p2 -  1 > 0.

However, this is impossible if p > l ,  giving a contradiction. If q* < qr , we can 

prove that w( y ) is allowable in a similar way.

Note that y has minimal kneading word length over all closed orbits x with 

t( T ) -  t . Further, by increasing the word length ( keeping t( t ) fixed) can only 

increase the number of self crossings c( x ) of x.

At the branch lines Bj , B2 , y has t -  1 crossings, and the full twist C 

contributes t( t -  1) self crossings. Thus c( y ) -  t2 -  1. Hence for any closed 

orbit x with t(x ) ■ t,

c (x ) £  t2 -  1 

Using the formula

2 g (x ) » c (x )  -  s (x )  + 1 (4 .5 )

for a closed orbit x , represented as a positive braid on s( x ) strands ( BW11, 

g ( x ) £ $ ( t ( x ) 2 - l - t ( x )  + l )  =. t ( x )  ( t ( x )  -  1) 
for any closed orbit x. □
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We now prove an inequality in the opposite direction.

Lemma 4.2 g( x ) £ ^ (q£ + qr - l ) t ( x ) 2 - t ( X )  + $ for any

closed orbit x.

Proof Let y denote the closed orbit with kneading word

w( y ) f  Xq< yV > ( Xq'  y“'  , A1tr

I  ( xq< y’ r )■-> xq'- ‘ yq'  , ■f qr < q<
of trip number t( y ) = t , ( since qr > 1 or qt > 1 ).

This time, w( y ) may not be allowable as the kneading word of an orbit of T. 

However, it is realisable, for example, as a kneading word of the map 

^ i—► 2 £ ( mod 1 ). Further, we can estimate c ( y ) directly from w ( y ), without 

relying on a particular realisation of w( y ).

Note that any orbit x with t( x ) =* t with word length greater than that of w( y ) 

is definitely not allowable by (1 .1 ). As in Lemma 4.1, decreasing the word length 

of w( x ) can only decrease c( x ), ( keeping t( x ) fixed ). Thus for any closed orbit 

x, we have

C(T)  S f  t ( X ) ( t ( x )  -  1 )  +  q , t ( x ) 2 + ( q , - l )  t ( x ) 2 , i f qr 2 q ,

V t ( x ) ( t ( x )  — 1 )  +  ( q j - l ) t ( t ) 2 +  q,  t ( X )2 , if qr a  qj

-  t ( x ) 2 (q , + qr ) -  t ( x )

and hence by (4.5 ),

S( X ) £ i  ( t ( t  )2 ( q , + qr ) -  I ( X ) -  t ( X ) + 1 )

-  i  t(X )2 (q { + qr ) -  t ( X)  + □

For real valued, non-negative functions f, g , with g £ c > 0, write f  »  g if



2 .1 6

X — »00

lim
1.

Our main result for Lorenz knots is

Theorem 4.3 Let k = ( k£ , k j) e K° be prime. Let T be any realisation of K, 

and let c = q£ + qr , ( c £  3 ). Then there exist a constant A. > 0 such that

Proof Let K = ( k £ ,kr ) e K °  be prime. First suppose k = ( k£ , k,.) has 

k£ , k,. both either finite or eventually periodic.

The kneading sequences determined by k define the genus of all closed orbits, 

independent of the realisation map T. So we may choose T to be a Markov 

3-transformation T = Tp a  by Proposition 2.2.

We consider the right hand inequality in ( 4 .6) first. If g( x ) £ m , then by 

Lemma 4.1, t ( x ) 2 - t ( x ) £ m  , and hence

as m —> oo. (4 .6 )

t ( t )  £ i  + i  + 4 m •
Hence, by Proposition 3.4,

# {  x : t ( x ) ( t ( x ) - l )  £ m }

3 A
2 A -fm

e e

( eX -  1 ) 7™
as m —>oo.

Since { x : g ( x ) £ m }  Ç  { x : t ( x ) ( t ( x ) - l ) £ m  } , we have
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» { p(n> : g( p<n>) ^  m } <, # ( x : g ( x ) £ m }  £ # ( y<n ): g( y<n)) £  m }

..(4 .7 )

where •/") ( respectively p(n) ) denotes a closed orbit of U(n) ( respectively V(n) ).

Let X(°) ( respectively p(n>) be the constants given by ( 3.2 ). Then X ^  is 

monotonic decreasing, since by ( ii i) and (1.2 ) we are deleting closed orbits as n 

increases, and bounded below ( by pW  ), so X(") A X . Similarly, p(") t  X and 

so in particular, X>0.

Let c = qt  + qr ( with respect to K ). Then applying Proposition 3.4 to the left 

and right hand terms in ( 4.7 ) and letting n —► oo gives (4 .6  ). □

Suppose now that k £ K°. First assume that kj = 0. Then for any n ^ 1, the 

closed orbit with kneading word w( y ) = xn y is allowable. Moreover, y is 

unknotted as can easily be seen from the diagram below ( figure 4.3 ), by first 

unlooping the x -  loop and the the y-loops. Hence g( y ) = 0, and thus 

# { x : g ( x ) = 0 )  is infinite.

Similarly, if kj = 1 , we obtain the same result by considering the closed orbit 

with kneading word x yn. Thus we have proved

Proposition 4.4 If tc £ K° then # { x : g ( x )  = 0 } is infinite.
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55 The Smale horseshoe template

Wc now apply the techniques developed to analyse Lorenz knots to study the 

knotted periodic orbits of the ' Smale horseshoe template ' as illustrated in figure 5.1.

The template Hh may be regarded as a different embedding o f the abstract 

Lorenz template.

We consider Poincarf maps T : I —► I of the form

( i ) T  is differentiable for x ^ c, for some c e  (0 ,1  ),

( ii ) T( £ ) —► 1 as ; t c ,  T( 1 ) -  0 , T( c ) = c,

( iii ) T  ( £ ) *  p for all £ 6 (0 . c ) , and T'( $ )  £  -  p for all % e ( c, 1),

for some (5 > 1, in which case we write T e Mp. ( For example see figure 5.2). 

In this case a P-transformation takes the form

TP .„ (^ )  -  J P q  + a  for 0 S t S p 4 ( l - a ) - c

(  p( 1 -  $ ) for c < $ £ 1 

where 1 < P £ 2, a  £  0 and a  + P £ 2.

Using rule ( 1.1 ), each map T € Mp determines a space of kneading sequences

figure 5.1
O
figure 5.2

c r
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Y ç  X. Define an order on X as follows. Let

6( w ) = f  -  1 if w = x

I 1 if w = y{
and extend this to arbitary finite sequences of x's and y's by

0( Wq w,  .... wm ) -  9( w0 ) 0( wt ) .... 0( wm ).

Given w, u , choose m such that wm £ um but Wj = Uj for j < m. Let 

w £ u if ( um -  w m) 0( w0 wj .... wm-1) > 0 , ( taking 0( 0  ) = 1 

when m = 0 ). This order is then the order on X induced by the natural order on the 

branch line I.

The kneading invariant of T , X = ( , hr ) e K is defined to be the pair

( k( 0 ), k( T( c+ )) ) . Let K be the space of such sequences.

For £ e I, a sequence k( £ ) e  I is T-admissable if and only if

For a finite, aperiodic word w, let R( w ) be the number of yy syallables in the 

word w. For a closed orbit x with kneading word w( x ), let r( x ) = R( w( x ) ).

The kneading invariant x  is called prime if the kneading space Y determined by 

X has the property that, for every non-empty cylinder C, there exists N such that

he £ om k( Ç ) 

a m+1 k( Ç ) £ y hj 

h, £ o™+1 k ($ ) 

a m k( % ) £  y hf

or a m k ($ )  -  0 if *P"( ^ ) -  c.

Proposition 5.1 Let x  “  ( hc • hr ) » suppose that x  *s prime, and suppose 

that each of h j .h , is finite or eventually periodic. Then T is realisable by a 

P- transformation T e M p, and T is Markov.
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Proof As in the proof of Proposition 2.2, let L -  { on k£ : n ^  0 },

R = { o n kr :n ^ O }  and set P = L u R v j { O y k £ ,Okr }, which is a finite 

set with a  P £  P. Choose any realisation S of X- Then since X is prime, S 

is locally onto, and hence the transition matrix A is irreducible. Let 

e = ( ej , e2 , . . . ,  e^ ) be the normalised positive eigenvector corresponding to the 

maximal positive eigenvalue X for A. Set p0 = 0 ,  Pj = Cj + Cj_j + ... + Cj 

for i -  1 ...... k.

Choose T to be the (3-transformation

where r = min { j :  l £ j < k ,  A ( l , j )  £ 0  } and d satisfies 

k( pd ) -  0 y k£ . □

In view of Proposition 5.1, we now assume that T = Tpa  is Markov and 

locally onto.

Lemma 5.2 For any closed orbit x,

Proof Let r : I —►IR+ is the first return time map on I, that is 

r ( £ ) =  i n f { t > 0 : ( p t ( £ ) € l } .  We now give a positive braid representation of 

the horseshoe template, analogous to that for the Lorenz template. This process 

comprises two stages.

Let p denote the unique fixed point of T, explicitly, p = P'1 ( 2 P + a  -  1 ). 

Let A denote the closed orbit {<pt p : 0 £ t < r( p ) } . Replace A by two parallel 

copies , ( i.e. perform an ' orbit splitting' along A in the sense of [ BW2 ], 

Theorem 2.1 ). See figure 5.3 for the result of this operation.

Secondly, let T( c+ ) = z+ , T( c" ) ■ z~ , and cut along the orbit segments 

joining z+ to c and z" to c, (figure 5.4). Since z+ , z~ do not lie on periodic

g ( T)  ïï £ ( t ( T ) + r ( T ) )'
2 3 ( t ( x ) +  r ( x ) )
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orbits, this operation leaves the link of periodic orbits invariant.
Rearranging figure 5.4 gives figure 5.5, and hence figure 5.6.
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Consider the closed orbit y  with kneading word

w( y ) -  ( x y ) 1 y r

which satisfies t ( y  ) -  t and r( y ) = r.

As in Lemma 4.1, one can show w( y )  is allowable. Also, c (y ) minimises 

c( x ) over all closed orbits X with t ( x ) = t and r (x )  = r. ( Any other orbit x 

with the property t ( x )  » t a n d r ( t )  = r  must have greater word length, and 

hence more self crossings.)

A straightforward calculation gives

c ( y )  * $ t + t ( t - l )  + $ r ( r - l )  + ^ t ( t - l )  + t r  + ( t - l ) ( r  — 1 )

by counting the crossings at B j , C j , C2 . C3 , C4 and B2 respectively,

£ 3/2 t 2 +  2 1 r + 1/2 r2 -  3 /2  r  -  2 1.

Thus for any closed orbit X,

c(  x ) i  3 / 2  t ( T ) 2 + 2 t ( t ) r ( x ) +  1 / 2 3/2 r ( T)  -  2 1 ( X )  .

Since figure 5 .6  gives a positive braid representation of each closed orbit x of <pt , 

on t( x ) + r( x ) strands, we have by ( 4.5 ), 

g ( T )  a  1 / 2  { 3 / 2  t ( x ) 2 + 2 t ( x ) r ( t )  +  1 / 2  r ( t ) 2 -  3 / 2  r ( x )

-  2 t ( T )  -  t ( t )  -  r ( t ) +  1 )

2  i  C « ( t ) + i ( x ) ) 2 -  3 ( l ( t )  + r ( t ) ) .  □

We now prove an inequality in the opposite direction. We assume, for 

convenience, that q £ > l ,  which ensures that T (0 ) < c.
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Lemma 5.3 For any closed orbit x,

g(x) s i i l i -  ( Tit)1 + 3K O  + 2q( - l ) - j f ( T ) t ( t ) - | t < t )

Proof Given r, t, set r1 = n t, where n = [ r / t ]  + 1 .  Let y  denote the 

closed orbit with kneading word

w ( y ) = ( xq* yn+1 )t_1 xq* 1 yn+1

with t ( Y)  -  t , and r (y)  = r ' et r.

If w( y )  is not admissable then we can apply the same trick as in Lemma 4.2.

To maximise c( y ), we 'equidistribute ' the y's amonst the x's in the kneading 

word w( y ). Then c (y )  forms an upper bound for c( x ) amongst all closed orbits 

x with t ( x )  = t and r (x)  = r.

The full twist Cj contributes t ( t -  1) crossings to c( y ), there at most 

( q£ -  1 ) t 2 crossings at B j , at most ^ r t 2 crossings at B2 , at most 

^ r t ( r t - 1 )  crossings at C2 , ^ t ( t - l )  crossings at C3 and at most t 2 r 

crossings at C4.

Thus

c ( Y )  £ ( q£ -  1 ) t 2 + | r t 2 + $ r t ( r t - l )  + | t ( t - l )  + t 2r

« t 2 ( |  r2 + 3/2 r  + q£ -  $ ) -  i  r  t  -  | t .

Since a closed orbit with t ( x ) = t and r( x ) = r is a closed orbit on t + r 

strands, we have by (4.5 ) that

g( x)  -  * ( c ( x )  -  t ( x )  -  r ( x )  + 1 )

2

S ( H r )2 + 3 r< X) +  2q ,  -  1 ) -  i  i ( t ) l ( t )  -  | l ( T )  -  + j

- i r ( T )  + I

for any closed orbit x. □
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Lemma 5.4 There exists a computable constant 6 > 0 such that
6

tt { x : t ( x )  + r ( x )  £  m } ~  ---- ~--------
( c -  1 )

e
m

as m —>oo. (5 .2 )

Proof We proceed in a similar manner to Lemma 3.1 and Proposition 3.4. Define

It is not difficult to see that f1* > 1 for N £ q£. Also , f 1 ( £ )  = r ( x )  + t ( x )  

whenever £ e I has least period n under T. Let A be the irreducible transition 

matrix given in the proof of Proposition 5.1. Let <p : S A —> { 0,1} be defined by 

tp( w ) = f(  n ( w )). Then we may apply the main theorem in [ P ] to deduce ( 5.2), 

where 5 > 0 is the unique root of Pressure ( - t < p )  = 0. □

Theorem 5.5 Let x  ■ ( he . hr ) e K be prime , and suppose that q£ > 1. Let 

T be any realisation of %. Then there exists a constant 8 > 0  such that

as m —»co. ( 5.3 )

Proof As in the proof of Theorem 4.3 , we only need to prove (5.3 ) for 

X ■ ( h£, hr ) with h£, hr both either finite or eventually periodic.

Using Proposition 5.2, we can choose the realisation T to be Markov and a 

P-transformation, t - t m

To prove the right hand side of the inequality in (5 .3  ), note that

f  : I —> i 0 ,1}  by f  ( Ç ) = l | iU ̂  where

1 - q ( l  + P)
'i
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* { t : g ( x ) £ m }  £ # { x : $ ( t ( x )  + r ( x ) ) 2 - 3 ( t ( x )  + r ( x ) ) £ m }

= # { x : t ( x )  + r ( x ) £  3 + J 9  + 2 m  }

4 8 8  -J m

( e '  -  1 ) J l  -A”
as m —► 00 , by Lemma 5.4.

To prove the left hand inequality in ( 5.3 ), observe that, since t ( x ) and r ( x ) are 

non-negative, if t ( x )  + r( x ) £  k then t ( x ) £ k and r( x ) £ k. 

Hence, by Lemma 5.3,

g ( t )  S I  It4 + | k 3 + i  ( q( -  1 ) k2 -  2 k  + i  

Thus, we have that

# { x : g ( x )  £  m } £ # ^ x : t ( x )  + r (x)  £

/ 1 /1 . . .2
/- 2 (q« - 1 > + J j  (<¡(-1) + « + m

J  2

( c -  1 )

#.v=
yfm

as m —►00, by Lemma 5.4. □

§ 6 An estimate on the genus of figure of eight knots

This section is a more informal discussion in which we indicate how the results in 

§4 for the Lorenz template HL can be applied to analyse the knotted periodic orbits 

of a more complicated flow. We consider the 'figure of eight' template H g, which 

was extensively studied in [BW2], and is illustrated in figure 6.1 . Let <p, denotea
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semiflow on Hg , with Poincar6 map T along the branch line I = Ij u  I2 o  I3 I4 . 

( As usual I -  [ 0,1 ]). A typical example of a Poincar6 map T is given in 

figure 6.2. For simplicity, we always assume T is piecewise linear and that

i r i > i .

figure 6.1
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Let ( aj_j , a j) , for 1 £  i <, 8 , denote the intervals on which T is continuous. 

For ^ e I \  B , where B = T_n { aQ , . . . ,  a8 }, define

and let lq ( £ )  = Icq ( T* % ). Then let

St  -  { k < $ ) -  ( k j < ^  > : $ e l  } S  X -  n n. 0“> { x , ....... x8 }.

As usual, there is a shift operator a  : Z y — ► Z y  defined by ( a  w )n = wn+1, such 

that k ( T$ )  -  o k ( 0 .

Define an order on X as follows. Define

Extend this to finite sequences by

6( w0 wt ... wm ) -  0( w0 ) 0( w, ) ... 0( wm ).

Given w, u , choose m such that wm £ um but Wj = Uj for j < m. Let 

w S u  ( um " w m ) ®( w0 w, .... wm_1 ) > 0 , ( taking 0( 0  ) -  1 

when m = 0 ). This order is then the order on X induced by the natural order on the 

branch line I.

It is well known that the limits

u® .  limiU[ l i i «B k ( $ )  and V® -  lim5Tvi<B k( t, ) 

exist, (for 1 £ i £ 8 ) , and u® , v® e Zy. ( These sequences Qre. called 

kneading parameters). Further, Zy can be expressed as 

Zy = { w e  X : u® £  o k w <. v® if wk = x{, for all k SO } (6.1).

We define a new template K with semiflow \yt and Poincard map S : J —► J 

as illustrated in figure 6.3 and figure 6.4.

kc ( ^ ) -  xj if S e i a j . j . a j ) ,



figure 6.3 figure 6.4

Again, we assume S is piecewise linear, and I S' I > 1. We outline the proof of the 

followinglemma.

Lemma 6.1 For a suitable choice of Poincarfe map S, the link of periodic orbits of 

y t on K is isotopic to a sublink of the periodic orbits of <p, on Hg.

Proof ( Outline) . We describe a sequence of operations which convert Hg to K.

Modify TI ( aQ, at ) so that it maps ( aQ , a} ) linearly onto ( a6 , a7 ),  deleting 

the redundant part of the template, to give a new Poincart map T . Let

u<°) -  lim ^j^ k j  ( ^ ) and v<0> = l i m ^  k j  (£ )

be the new kneading parameters. Further, it is not hard to see that 

u<0) £  Q<°> £ v<°> £ v<°).

Thus, we have c

We now repeat this operation of the pairs of intervals ( a6 , a7 ) and 

( a5 , T( a6+ ) ) ,  ( a j , a3 ) and ( a4 , a5 ) , ( a4 , a5 ) and ( a5 , a6 ), to obtain the 

template K' illustrated in figure 6.5, together with kneading space L c  Ly.
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It is easy to see that the template K' can be isotoped to the template K. Since all 

Poincarfc maps were chosen to be piecewise linear, the Poincar6 map on Ij u  I2 takes 

the form illustrated in figure 6.4.

Finally, since the kneading sequences, together with the ordering determine the 

links of periodic orbits on K' and Hg , it follows from Z c L p  that the link of 

periodic orbits on K' is isotopic to a sublink of the periodic orbits on Hg. □

The standard Lorenz attractor HL or left handed Lorenz attractor, is as illustrated 

in figure 1.1. A right handed Lorenz attractor HL' is defined to be the mirror image 

of a left handed Lorenz attractor, ( i.e. the y -  arm crosses over the x -  arm at the 

branch line I ).

Lemma 6.2 The periodic orbits of on K contain the composite of an arbitary 

left handed with an arbitary right handed Lorenz knot, ( the left handed ( resp. right 

handed) Lorenz attractor having kneading invariant Kj ( resp. k2 ) ).
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Proof We observe that the proof of Proposition 6.1 in [ BW 2 ], which concerned a 

specific choice of S, can be applied to arbitary Poincari maps S. □

From now on let po( Hg, <pt ) denote the link of all periodic orbits of the 

semiflow <p( on Hg. We use a similar notation for the other templates. Let ( pj )t ,

( p2 )t be semiflows on HL , HL' with respective kneading invariants Kj , k2.

Theorem 6.3 Suppose that the kneading invariants Kj , k2 given in Lemma 6.2 

are prime and satisfy Kj , k2 g  K°. Then there exist positive constants M, d such 

that

where X.j, Cj are the constants associated to the Lorenz attractor, with kneading 

invariant Kj, by Theorem 4.3 .)

Proof By Lemma 6.2, there is a sublink L £  po ( K, \yt ) such that L consists 

precisely of all sums Xj + x2 where Xj g  po ( Hl , ( Pj )t ) and 

^2 g po ( Hl ' , ( p2 )t ) . Since each right handed Lorenz attractor is the mirror image 

of a left handed Lorenz attractor, and a knot and its mirror image have the same genus. 

Theorem 4.3 holds for right handed Lorenz attractors. Also, note that if x = Xj + x2 

then g( x ) -  g( Xj ) + g( %2 ).

Thus,

* { x g  po( Hg , (p( ) : g( x ) <. m } £  n { x g po( K, v , ) :  g( x ) £ m } 

by Lemma 6.1,

# { x : g ( m ) £ m }  »  M e ( 6.2 )
J m

where x denotes a generic closed orbit of <pr

and d -  J l  ( - ^ i -  *  '( Explicitly, M = —
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£ tt { x e po ( K, y t ) :  x = xt + *2 , Xj e po ( HL , ( pj )t ), Xj e po ( HL' , ( p2 )t),

g( t j  + X2 ) ^  m  }

by Lemma 6.2,

i  » { t  e po ( K, V ,) : t  -  ^  . t t e po ( HL , ( p , )t ), e po ( HL' . ( p2 ),),

g(x1 ) + g ( t 2 ) S m >

i  •  { t ,  6 po ( Hl . ( p,  \  ) : g( x, ) S J m l

. « <T, s  po ( Hl , ( pj )t ) : g ( l 4 ) S } (6 .3 )

Applying Theorem 4.3 to ( 6.3 ) gives ( 6.2 ). □
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A Chcbotarcv Theorem for Group Extensions of Negatively 
Curved Manifolds and an Application to Twisted Orbits

BY

SIMON WADDINGTON

Abstract We prove a dynamical version o f the Chebotarev density theorem for group 

extensions o f geodesic flows on compact manifolds o f variable negative curvature. Specifically, 

the group is taken to be the infinite weak direct sum o f a finite abelian group. We sketch an 

application to twisted orbits which extends a result o f Parry and Pollicotl.

SO Introduction

In the last several years, there has been a great deal of interest in proving 

asymptotic results for closed orbits of hyperbolic flows using an analogy with theorems 

in analytic number theory. In particular, the Chebotarev Theorem describes the way in 

which primes in a number field split in a finite extension field. The analogous situation 

for hyperbolic flows is to consider covering or extension spaces under the action of the 

group G and study the distribution of the lifts of closed orbits in terms of the 'Galois 

group ' G.

In [ PP2 ], the group G is taken to be compact ( and in particular finite) ,  and in 

[ KS ], [ Pol ], the group G is Zd for some d £ 1.

More precisely, in [ PP2 ], it is proved that if (pt is a weak mixing Axiom A 

flow with topological entropy h and G is a finite ( abelian) group , then to each closed 

orbit x of length X( x ), one can associate a ' Frobenius element ' < x > e G and

1 eht
# { x : X ( x ) £ t , < x >  = g }  -  ■j-Q-j- y T aS t —>0°-
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In this paper, we extend this result to the case where G is the infinite weak direct 

sum of a finite abelian group H. ( In particular, G is not compact, nor even finitely 

generated ). We show that if <pt is a geodesic flow on a compact, negatively curved 

manifold, then for any g e G,

1 ehtu { x : X ( x ) £ t , < X >  * g )  ~  r-777  =- as t —* oo.
IHI ( h t >3

The proof of this result reduces to a problem in shifts of finite type, using 

Bowen's modelling theory. We first prove the theorem in the case H is cyclic and 

deduce the general case in §7.

We define an L-function, similar to those in analytic number theory, and use an 

infinite-dimensional version of the Morse Lemma to analyse its analytic domain. It 

turns out that the L-functions have the form ( const.) ( s -  1 ) log ( s — 1 ) at s = 1. 

We prove a generalisation of the Delange-Wiener-Ikehara Tauberian Theorems to 

deal with behaviour of this type. We use the Tauberian Theorem to deduce the formula 

given above, in §6.

The final section contains a discussion on twisted orbits, in which we give some 

ideas for an application of our main result, and is a subject of further research. We 

conjecture that, to each closed orbit x , one can associate a polynomial T( x ) € Z2 [ t ] 

which reflects the changes in orientation in the unstable direction along x. If the 

unstable bundle Eu is not orientable, then for any f e Z2 it],

1 ht# { x : X ( x ) £ t , T ( x )  = f >  ~ — — — -  as t —► oo.
( h t )3

This result would improve an earlier result of [ PP2 ], where it is shown that 

asymptotically half the closed orbits are twisted /  untwisted. In particular, it reflects 

the fact that the closed orbits are twisted in the manifold in a very complicated manner.
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SI Background

Let A be a k x k, aperiodic, zero-one matrix and define 

00

I A -  { * 6  n  ...... k > : A< *„ • *n+l > "  1 • fora11 n i l  1
n—oo

and give XA the Tychonoff product topology. Let a  : £ A —■* LA be the shift 

homeomorphism given by ( a  x )n = xn+1. Let a  e ( 0 ,1  ), and let Fa  denote the 

space of real-valued. Holder continuous functions on £ A ( with norm II . Ila  as in 

[ PP3 1), and let r : SA —► IR be strictly positive.

Define

= { ( x . t )  e £a «IR : O S t S r U ) ,  < x, r( x ) )  ~  ( a x . 0 )  } 

and a suspended flow o tr : LAr —> SAr by a , ( x, s ) ■ ( x, s + 1) ,  subject to 

the identification. Let m denote the measure of maximal entropy of <pt. Then 

m = ( p x £ ) / / r d p ,  where p. is the equilibrium state of - h r  and £ is 

Lebesgue measure on IR.

Two functions gj , g2 e Fa  are said to be cohomologous ( written gj ~  g2 ) if 

there is a continuous function k e Fa  such that gj = g2 + koO  -  k. Clearly, this 

defines an equivalence relation on Fa . A function which is cohomologous to the zero 

function in Fa  is called a coboundarv.

Let H be a finite additive abelian group with the discrete topology. Then the 

direct sum ©neZ H forms a group under the addition rule 

( gn ) + ( hn ) = ( gn + hn ) ,  and inherits the Tychonoff product topology from H. 

Let ©neZ* H denote the set of all x=  ( * „ ) €  © „e*  H such that xn = 0 for 

all but a finite number of indices. Then G = © nej*  H is a subgroup of 

® n e l and is called the infinite weak direct sum o f H. Also, G has the 

subspace topology from ©ne z  H, and is locally compact. A convenient way to 

represent elements of © ne H is as elements of the module H11, t 1J of finite 

Laurent polynomials, with coefficients in H.
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Let (C )
iemr

mez M'r
which is a Hilbert space when given the inner product

6 pm Km

< 00 },

< 0, p > I
m e Z MIml

Let H . II be the norm induced by The real Hilbert space CM ( IR ) is

defined in the obvious way. ( The proofs of completeness are the same as for t 2 ( C ) 

and t 2( IR ), except for the inclusion of the weight M*m *).
/ \

Consider R = Z [ t , t ], regarded as an additive abelian group. The dual R is 

isomorphic to IT2 , where IT2 » { 0 - ( 0 m)m€2: 0m e IT . for all m e Z },

( and more generally, if Rd = Zd [ t , t 1) , then Rd a  ( Td )2 ). The space T2 

has the subspace topology induced by the inclusion IT2 cr t 2M ( R  ). This is 

equivalent to the Tychonoff product topology from T.

Now let Qm = ( Z / M Z ) [ t , t 4 ] , (  which is isomorphic to the weak 

infinite direct sum ©n6j* ( Z /  M Z ) ,  as an additive group ), which has the dual 

group Qm isomorphic to ( Z / M I ) ‘ . By noting that

( Z / M Z )2 »  ( { 0 . 1 / M . 2 / M ........M -l /  M }2 , + ) , we may regard

( Z /  M Z )2 as a subgroup of T2. We will use the notation Xe • Qm —* S1
_ A

( where 0 €  ( I / M Z ) 1 ) to denote an element of QM.

82 L-functions and G-extensions

Let S denote a compact C° compact, negatively curved surface and let 

<pt : M —♦ M be a geodesic flow on the unit tangent bundle M = T j S. We remark 

that the geodesic flow is always topologically weak mixing by [ AA ].

We briefly recall the construction of G-extensions and Frobenius classes. Let 

K  be a Riemannian manifold and suppose G acts freely on M. Let be a flow
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on M such that g -  g $ t for all g e G. Let p : X  —► X  be a projection 

and suppose p = cpt p. Then $t is called the G-extension of cpt.

Given a closed orbit x of cpt with least period X( x ), for any x e X  with 

p( x ) -  x e x, we have p( <J^t) x ) -  x , ( using the identity p $t = <Pt P )• In 

particular, there exists a unique g e G such that ( x ) = g x , independent of

choices of x, x. Denote this element by < x > 6 G , which is called the Frobenius 

element of x.

Due to Bowen, for any e > 0, we can construct disjoint ( local) cross sections 

T j , T2 ..., Tk c  X  with diam ( T4) < e , a shift of finite type ( LA , o ) and a 

continuous surjection 7t: ZA —» VJj Tj such that 7i ( { x e L A :xQ = i } )  -  Tj. 

Furthermore, if x e ZA with Xq = i , Xj ■ j then <p̂ xj n( x ) = 7t o( x ) € T j , 

where r ( x )  -  i n f { t > 0 :  <pt 7t( x ) e T j, some j }.

One can extend this construction to show there is a suspended flow 

o,r : ZAr —> LAr , a Holder continuous, surjective, bounded-to-one map 

n : ZAr —* X  such that n  o o,r * <pt o n. Further, if ni is the measure of 

maximal entropy of a (r , then FI* ** is the measure of maximal entropy for <pt , and 

the topological entropy is related by h ( <p) -  h ■ h( o ' ).

We can model the G-extension $ t of <p, using symbolic dynamics as follows. 

For ZA = LA x G, define <S : ZA —»ZA by d  ( x, y ) -  ( o  x , g( x ) + y ). 

From Bowen's construction, we may assume g is Holder continuous ( c.f. [ PP2 1, 

§8 ). The group G action G x  ZA —> IA is given ( Yj,( x , Y2 ))»-*( *» Yi + Y2 )• 

Extend r to r :  ZA —► IR+ by r(x . Y) * r( x ) and let

ZAr = { ( x, y. t ) e ZA x |R : 0 S t £ r(  x, Y ) >

where (x , y , l ( x ,  y ) )  and ( d  ( x, y ) ,  0 ) are identified. Define the G - 

extension 5 tr by d tr ( x, Y. u ) = ( x, y. u + 1), subject to the identification. 

Then the G-action gives o  = d  /  G, o,r = d tr /  G. The projection n  extends to 

f l : I Ar —► X  satisfying f l o d,r ■ $t ° fl.

For G -  Qm , we may define the L-function by
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L_,(s.9> -  F I  U  -  X a (< * > )  «"' ,hX<' ) )4 ( 2. 1 )1
X

for (s , 0 )  e C x ( Z / M I ) z , whenever the infinite product ( over all closed orbits 

T of <pt ) converges.

Then g : LA —► QM , and gn ( x )  ■ k < x > ,  whenever o n x » x and 

n -  k p( x ). ( p( x ) is the least period of x ). Define kg : ZA —* [ 0 , 1 )  ( mod 1 ) 

by the relation Xe°g  = e2,like for 0 e ( Z / M Z ) * ,  and note that 

ke E Fa-
Then define formally a ' symbolic ' L-function

L( s, 0 ) exp En-1

1 „  2 k  i kj(x) -  s h r"(x)
— 2- c
n  x€Fixn

for s e C , 0 e ( Z / M Z ) z.

Using the comparison I L( s , 0 ) I £ L( s, 0 )  -  £( s ) , we see that 

L( s, 0 ) converges for Re( s ) > 1. ( See [ PP1 ] .) ,  Using Bowen's comparison 

of closed orbits of <pt , a tr , we have that

Lq, ( s, 0 ) = H( s ) L( s, 0 ) ,

where H( s ) is non-zero and analytic in a neighbourhood of Re( s ) ^  1 ,

( independent of 0 ).

Now we make an 'auxil iary' G-extension with G = R. ( This is defined 

formally as a skew product extension of a t ). Let [ X) denote the Frobenius element 

of a closed orbit x. Define an L-function A( s, p ) for 

( s, p ) e C x T1 by

A ( . , p )  -  exp i  i  £  Xp ( r " ( x > )  e" 5hr”(,)
n-1 n  xeFixn H

where T : ZA —* R. Again A( s, p ) is analytic and non-zero for Re( s ) > 1. 

Also since R /  QM » ( M ) R, we may write [ t ] =  ( < x > , ( t ) ) ,  where 

( x ) € R /  Qm. Since

Xe<Ix 1) -  Xq ( < x >)  x e < ( t ) )  -  X e(< 't >).

IS^  Mer«. f C h a . r a c . i t r  of- C  ■
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we have L( s, 9 ) = A( s, 0  ) for all 0 e  ( Z /  M Z )2. ( 2.4)

Extend kp :Z A—»[0 ,1 ) to p e  I z by X p ( r ( x ) )  -  e2iiikp(x)

Note that L , A have Euler product representations analogous to (2.1 ).

In section three, we will be examining the analytic domain of L( s, 0 )  in detail. 

To compute the dependence on 0, it is convenient to extend L( s, 0 )  to a function 

A( s, p ) ,  for p € £2m ( IR ). Since £2M ( IR ) is a Banach space, we can then 

investigate the analytic dependence of A( s, p ) on p.

Proposition 2.1 ( i ) For each 0 e ( Z /  M Z )z  , s I—» L( s, 0 ) has a non

zero analytic extension to an open neighbourhood of Re( s ) £ 1, except for poles at 

( s, 0 ), where s = 1 + i a and k^ -  a h r / 2 7 t  is cohomologous to an element 

of C( La ;Z) .

( i i ) The map A( s, 0 ) extends to a non-zero analytic map 

{ s : Re( s ) > 1 } x £2M ( IR ) —»<C, and further, it can be extended to a meromorphic 

function in a neighbourhood of { s : Re( s)  = l , s £ l }  x £2M( IR ).

Proof ( i ) Write L(s, 0 )  = £ ( - s h r  + 27 t i k0 )  and then apply 

Theorem 5.6 in [ PP31.

( ii ) Again, note that A ( s , 0 ) =  £ ( - s h r  + 27 t i ke ) in a neighbourhood of 

{ *: Re( s ) 2 1 , s * 1} x Tz . Write

T( x ) -  £  a ( x )  ^  fe
meZ

where a,,,: £ A—► Z, and for each x € £A , am( x ) = 0 for all but finitely many 

values of m. Define bm : £A —» T by bm ( x )  = A .a ^ x )  ( mod 1), 

where Xe (0 ,1 )  is irrational. ( This choice is purely arbitrc.^). For each 

p e t 2M ( B ), set

£  + bm<x > > PmkDU ) ( mod 1 ),
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( the addition being in IR ). Define the map C x t 2M ( IR ) —► C by 

( s, p ) »—* £( -  s h r + 27t ikp) ,  wherever this makes sense, and denote this map 

by A( s, 0). It is not difficult to check that this definition agrees with our previous 

definition of A( s, 0). The analytic domain of A( s, 0 )  can then be obtained by 

applying Theorem 5.6 in [ PP3 1, as in ( i ). □

Definition 2.3 Define the windine cycle C> of <pt to be the map 

O : £2m ( IR ) —» IR, given by <I>( 0 ) = J  k q d/*..

Lemma 2.4 O  » 0

Proof C> ■ 0 for geodesic flows, due to the existence of an involution which 

reverses the direction of closed orbits, c.f. [ KS ]. □

S3 Analysis of singularities

The following is an extension of the finite dimensional Morse lemma of [ M ].

1
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We first require a lemma.

Lemma 3.2 Let F be real analytic in neighbourhood U of 0 e £2M ( IR ) with 

F( 0 )  -  1 . Then

M1”F(9> - 1 + à  ^  y-<8)

for some real analytic functions yn defined in U , with

y „ < ° >
3F
39.

( 0 ) .

Proof Fur i t  H o t  t*><

1,^ t i—► F(- t6)  is differentiable as a map IR—► IR. Then

1 dF
F ( 0 )

; <AF«e)  ;  ^

i — dt ■ i £ M nl 30„ ( 10 ) e„ at

31« y „ (9 )  '  j{ ^  <*8 > dt '

Proof o f  Proposition 3.1 By Lemma 3.2, we may write

9 .
F<6> - 1 + Ji ^  v-( 8 )

where the V„ ' s are real analytic functions in U.

dFSince V „ ( 0 )  = -  ( 0 )  = 0 , we may apply Lemma 3.2 to each
" d8n

function y n + 1, giving

V „ ( 0 ) I  — fj=T
M

for real analytic functions hmn ( 8 ). Hence
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0 0n
F ( 9 ) -  1 . y ( 9 ) .l + lnlm.neZ M m

We can assume that , since we can write ^mn - ^mn
rJ

and then we have ^nm = ^mn

and

F<9) -  1 . y 9m 0n (0) - 1
m.ne Z 1 m 1 + 1 n 1 M

nmn

Moreover. ( hmn( 0 ) ) mn€2
_1_
2 aem aer ( 0 )

(3 .1) 

\  B (0).

and so B( 0 )  is negative definite.

Since 0 is a non-degenerate critical point, B( 0 )  is invertible in a 

neighbourhood of 0 . Define D( 0 ) = B( 0 ) 1 B( 0 ) , and note that, since 

inversion is an analytic map of the open set of invertible operators onto itself,

D : U —► L( £2m ( IR ) ,  £2M ( IR ) ) and D( 0 ) is itself invertible. Now 

D( 0 )  = I ,  (1 = identity operator), and observe that a square root operator is 

defined in a neighbourhood of I by a convergent power series. Thus, we can define a 

real analytic map C : U —► L( £2M ( R ) , £2M ( IR ) ) ,  with each C( 0 ) invertible, 

if U is sufficiently small, by C( 0 ) = D( 0 )i .

M o B( 0 ) and B( 0 ) are self adjoint, and so from the definition of D( 0),

D( 0 )* B( 0 ) -  B( 0 ) -  B( 0 ) D( 0 )

( where ' * ' denotes adjoint ).

The same relation holds for any polynomial in D( 0 ) and hence for C( 0 ) by 

approximation. Hence,

C( e  )• B( e ) C( 9 )  -  B( 9 ) C( 9 )2 -  B( 9 )  D< 9 ) -  B( 0),

B( 9 ) .  E (9  )" B( 0 )  E( 9 ) , where E is defined by E( 9 ) -  C<9) ‘.

Write V( 0 ) = E( 0 )  0 , so that
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< e, B( e ) e > = < E( e )• b ( o ) E( e) e , e > = < b ( o ) v( 0). v( 0) >.
(3 .2)

where \j/ is a real analytic map in a neighbourhood U of 0, and 

V ( -0 ) -  - V ( 0 ).

Now B( 0 )  is a normal, self adjoint operator, and so by the Spectral 

Decomposition Theorem ( [RSI),

B ( ° )  -  \  .

where , p2 • — are distinct eigenvalues of B( 0 ), P ^  is orthogonal projection 

onto the eigenspace spanned by e ^  , ( i.e. B( 0 ) e ^  = pn for all n £ 1). 

Since B( 0 )  is negative definite, < ^  < ... < 0 , ( see [RSI ). Letting

we have W* B( 0 ) W =* - I ,  and hence

< \y( 0 ) , B( 0 ) v (  0 ) > -  < v ( 0 ) , W  B( 0 ) W y ( 0 ) >

« - < y ( 0 ) . y ( 0 ) >  = - 1 y( 0 )  II2 . (3 .3 )

where yn( 0 )  * ( y( 0 )  )n for all n 6 Z , and each yn ( 0 )  is a linear 

combination of y n 's . Thus each yn( 0 ) is real analytic in a neighbourhood U of

0 and yn( -0  ) -  -  y„( 0 ). Finally, by combining ( 3.1) -  ( 3.3 ), we obtain

F( y ) = 1 -  II y II 2 . □

Lemma 3.3 L( s, 0 ) has no poles on Re( s ) = 1 , for all 0 jfc 0.

Proof Let P ( G)  *= { < x > s G : x i s a  closed orbit of o t } , where G * QM. 

We first prove P( G ) ■ G.

Let M. denote the G-extension of X. Then G acts freely on X  and
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X  = X /  G. Let K be a cofinite subgroup of G and define X  = X  /  K, so 

that X = ( X / K ) / ( G / K ) ,  i.e. X  -  X /  Q, where Q -  G /  K. Let 

I  x ]) e Q denote the Frobenius class of a closed orbit x of a t with respect to the Q - 

extension. By [ PP2 ), §7, if K < G is cofinite then

h t
cud ( 1  : I tD  e g tK ,  M D S l l  -  card ( G /  K ) (3 .4 )

If G is not generated by Frobenius classes, that is P( G ) £ G, then there exists a 

cofinite subgroup K, where G £ K, such that K contains all Frobenius classes of 

closed orbits for the G-extension. Thus [[ x ]] is the identity of Q = G /  K and Q is 

not trivial. This contradicts (3 .4) which says that the closed orbits are equidistributed 

amongst the Frobenius classes.

Now, if L( s, 0 ) has a pole at ( 1 + i a, 0 ) then from Proposition 2.1 ( i ), we 

deduce that X e (< * > ) = 1 for all closed orbits x. Thus 0 e  P (G )1 , where 

P( G )x denotes the annihilator of P( G ). But P( G ) = G, and hence 

P (G )X = ( 0 ) ,  from which we conclude that 0 = 0. □

The following result is an adaptation of Proposition 1.1 in [ KS ], to which we 

refer the reader for further details, where appropriate.

Proposition 3.4

( i ) There exists a real analytic map s = s (0 ) defined on an open 

neighbourhood of 0 e £2M ( IR ) such that s( 0 )  » 1 , and s = s( 0 ) is the 

unique simple pole of A( s, 0 ) around s -  1. Further, s is an even function.

( i i )  V Re s( 0 )  I e-0 =* 0 

( ii i) V Im s( 0 ) I Q_0 = 0

( iv ) V2 Re s( e ) I e,o is negative definite

(i.e. < V2 R e s (0 ) l0. o p , |J  > < 0 forall 0 e  t 2M( R ) \ ( 0 ) . )

( v )  V2 Im s( 0 ) I 0. o = 0.
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Proof ( i ) Write A( s, 0 ) -  £( -  s h r  + 2 7t i ke ), wherever this is well 

defined. Using the Perturbation Theory for Ruelle operators, ( c.f. t KS l , [ Pol ]), 

and Proposition 2.1 ( i i ), A( s, 0 ) has a unique simple pole s = s( 0 ) in a 

neighbourhood U of 0, and 0 1—► s( 0 ) is real analytic.

Define £ on a neighbourhood W of 0 e Fa  by £( K0 ) = s( 0 ). Using the 

relation £( t Kq ) = s( 10 ), for t small, ( i i ) -  ( v ) follow from the following 

Gateaux derivatives ( see [ KS ]).

( a ) ^  Re (,(l K ,) I -  0 for all 8 e  U,

( b )  i  Im £ ( tK g ) I -  2 n JK 0 dm for all 8 e U,

d2 -  4 ii2 CT2 h.  ( kft)
( c )  R o5(.K e ) l , . 0 -  -------- ^  for all 8 e U,

( d ) - i - j  Im t Kg) 11_0 -  0 for all 8 € U. 
dt

Here we define <s_ h r ( k0 ) = J  ( kQ -  n J  k0 dp. )2 dp .

Note that ( a ) ,  ( c ) follow from the relation A( s, 0 ) = A( s , -  0 ), which 

implies s( 0 ) = s( -0 ). This proves ( i i ) and ( v ). Equality ( ii i) follows 

from ( b ) and Lemma 2.3 . The involution on closed orbits of <pt ensures that s is 

real-valued, and hence even, ( c.f. [ KS ], Proposition 1.1 ).

Proof o f ( iv  )  First note that P (R ) = { [ x l e R : x i s a  closed orbit of <pt }

= R, by the same argument as in the proof of Lemma 3.3.

As in [ KS 1, it suffices to prove o_ h r 2 ( k0 ) ^ 0 for all 0 e U \  { 0 }, 

where U is an open neighbourhood of 0 e £2M ( R ). By [ PT ], o_ h r 2 ( k0 ) = 0 

if and only if kg ~ 0. First suppose that 0 6 TTZ. If k0 — 0, then 0 6 P (R )X 

and 0 - 0  by the same argument as the proof of Lemma 3.3. Using the group

c kr* : (£ hy
r(»/

Ocf,n,



3 .14

isomorphism £2M( R )  /  T* a  £2M ( *  ). il suffices to prove that if k0 ~ 0 

for 0 e  £2M ( R ) then 0 = 0. But if ke ~  0 for 0 * 0 ,  then

which in turn implies that kp ~  0, where p e  TTZ is given by

pm = X0m ( mod 1 ). Further, p * 0 since X is irrational. This contradicts

P( R ) = R as before. □

Lemma 3.5 There exists an open domain D containing Re( s ) ^  1, such that 

for all 0 e ( Z /  M Z )* , L(s, 0 )  has no poles in D , except s( 0 ).

Proof By the argument in [ KS ], Lemma 2.4 , for any 0 e £2M ( R ) , A( s, 0 )

has no poles in an open domain D , containing Re( s ) £  1, except s( 0 ). Since

A( s, 0 ) = L( s, 0 ) for 0 e  ( Z /  M Z ) z , L( s, 0 ) has no poles in D 

except s (0 ). □

84 Singularities of L-functions

By logarithmic differentiation of (2.1 ), with respect to s , we have

For fj , f2 e  Qm , we have by orthogonality of characters that

( Z/MZ)
1 if f  t  -  f2 

0 if f  j  * f2 (4 .2 )
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( integating with respect to Haar measure on ( Z / M Z ) 1 ).
*

Fix f e  Qm and apply relation (4 .2 ) to (4.1 ) ,  giving

Tl( s ,f  ) l '( s. e ) dv( 0 )

S  ^  2  h r"( x ) e
n“ 1 xeFixn , f n(x ) -  gn(x)

By Lemma 3.4 ( i i ), and the compactness of ( 2  /  M Z )z , T)( s, f ) is analytic for 

s in a neighbourhood of { l  + i a : a £ 0 } .  For any small neighbourhood V of 

0  e  ( Z /  M Z )z  , and s near 1,

J  u - f >
(  Z /M Z )Z \  V

L’t s . e )
L( s, 0 ) dv( 6 )

is analytic for Re( s ) > 1, by the compactness of ( Z /  MZ )z again. It remains to 

analyse the contribution from

J Xe(-f>
V

L'( s, e )
U  S .0 )

dv( 0 )

for small neighbourhoods V of 0.

By Proposition 3.3 ( i ), there is an open neighbourhood U of 0 e | 2M ( (R ) , 

and a real analytic map s = s( 0 ) defined on U such that, for all 0 e U,

A*( s, 0 ) A
A( s, 0 ) s - s( 0 ) + F( s, 0 )
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Here A is a non-zero constant and F( s, 0 ) is analytic in a neighbourhood of s 

By applying Proposition 3.1 to s( 0 ),

A'( s, 0 ) A

A<s- e > ■ s -  i  + i l e l 2
F (s .8 )

Take V = U r* ( Z / M I ) Z , and note that, for 0 € V and Re( s ) £  1, 

( where defined ),

A'( s, 0 ) 
A( s. 0 )

Thus,

L'( s, 0 )  
L( s, 0 )

L'( s, 0 ) 
L( s, 0 )

( from ( 2.4 ) ).

+ G( s, 0 )

where G( s, 0 ) is analytic for 0 e V and s in an open neighbourhood 

of Re( s ) 2 1 .  Thus,

i  V S t  ■ i
dv( 0 )

v  s -  1 + II011

where H( s ) is analytic in an open neighbourhood of { s : Re( s ) ^ 1 }. 

By compactness of ( l / M Z ) 1 again.

dv( 0 )

H (s)

is analytic in an open neighbourhood of { s : R e ( s ) ^ l} ,  so it remains to consider
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I(s )
( Z/MZ )*

dv( e >
s -  1 + I 0 II

Proposition 4.1

( i )  n ( s , f )  -  I ( s ) + H, ( s ) ,

where H j(s )  is analytic in a neighbourhood of R e ( s )£ l .  

1
( i i ) I ( s ) M ( s -  1 ) log ( s -  1 ) + t t y  s ) ,

where H2( s ) is analytic in an open neighbourhood of Re( s ) £ 1.

Proof ( i ) Follows from the above discussion.

( i i ) First we consider the function 

1
In <«>

1 1
X .... X

n e
» - 1 + X -njr

n - - N  m >“ '

, 1 m" - !  -  1

7 s71 e0? o  ,?o k?o ( j + It ) 
m n

(4 .3 )

M *-! nA i

jS  k?o l ♦ <ì±£> + l
m "

M * -!  m" -

S M2" * 1 117 S  i5> 1 M is i as N —► oo,

and hence the 0O = 1 term in (4.3 ) is analytic in an open neighbourhood of 

Re( s ) £  1. Now we consider the 0Q = 0 term.
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1 , ( M - l ) 2 x
- *  TIT l ~M I as N —>oo.

Hence the second term in (4 .3 ) is analytic in a neighbourhood of R e (s )£ l .  It 

remains to consider the first term in the sum in ( 4.3 ), namely

.  m" -1

Hr* &
r + 1_____

( .  -  1 ) m "  + r

We compare this term to the integral

m"
J— fN+l J

t (1-1) m"  + mn

3 "  J«"

Ô ( s -  1 ) M™ + x

( y -  ( s -  1 )  MN + 1 dy

( where the path of integration is a straight line in C , after substituting 

y - x  + ( s - l ) M N ).

1 ( i - c. - d m " )  j dy

m n+1
[ y + ( i - ( -  1 ) MN ) log y ] ( . - d m "
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*r + M - r h -

i  <s - 1 > log ( 7 T 7  )

( s -  1 ) log ( s -  1 ) + H4 ( s ) ,

where H4 ( s ) is analytic in an open neighbourhood of { s : Re( s ) et 1 }. 

It remains to estimate

m" - ,
J N  ( s >

( s -  1 )M  + r

M*-!

£

m" - i

£

( « - l ) M N + r + l  ( i - l ) M N + r

_________ I ( s -  1 ) MN + r I_________

l ( » - l ) M N + r I I ( i - 1 ) M N + I I

m "

I ( s -  1 ) M + 1 I

1

m n+1

m" - ,
jn <*> -

( 5 -  1 ) M + r 
as N —>oo. Now note that we can write IN ( s ) as

0 (4 .5 )
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d v (0 )IN (s>
< Z/M Z )

T N < 9 >

I  S  -  i + neil2

where yN( 0 )  is the characteristic function of the set

An (8  ) -  { 8 e ( Z /  MZ )* : 8„ = 0 for all I n I > N ).

By Lebesgue's Dominated Convergence Theorem, [ HP ], IN ( s ) —► I ( s ) as 

N —► oo. Thus from ( 4.4 ) and ( 4.5 ), we deduce that

I ( s )  = < s -  1 ) l o g ( s - l )  +  H „ ( s ) .

This completes the proof of Proposition 4.1 ( i i ). □

§5 Proof of theorem for cyclic H

Let Tj( s, f  ) be as in §4. Then

n u n  -  J  x o c - f )  dv(e>
( Z/M Z )

- J
( Z /M Z )*

where H3 ( s )

X  hX (x) X o (< t> )  e sh (T) -  f ) dv(0 )

-  X2 h X ( r )  X e (k < t> )  e " ‘ h (T) ^ ( - f )

Now
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I H , ( s )  I £  £  h X(t ) c' shX(T) ,
3 k-2

and the latter is analytic in an open neighbourhood of Re( s ) S 1, by [ P I ). Thus, 

H3( s  ) is also analytic in an open neighbourhood of Re( s ) ^ 1. So

n ( s . f )  = £  h M x )  c ShMx)  + H, ( s )
( t : <t> -  f } 3

00
1 c" *' d P( t, f ) + H3 ( s ) (5 .1)
0

where P ( t ,f )  = X  h X ( t)  .
hX(T)£t 

<T> -  f

We now apply the following modified version of the Wiener-Ikehara-Delange 

Tauberian Theorems, which is proved in §6.

Proposition 5.1 Let a( t ) be monotonic non-decreasing and continuous from 

above, with a (  0 )  = 0. Assume there exists a constants A jfe 0 such that 
00
J  c "  d o ( l)  .  A ( s -  1 ) log ( s -  1) + f ( s )

for Re( s ) > 1. The integral is assumed to converge absolutely and the function f( s ) 

is analytic in a neighbourhood in a neighbourhood of Re( s ) £ 1. Then

t
a ( t )  — A —j  a s t  —mx>.
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( This means that a (  t ) /  ( el /  t 2 ) —► A as t —» oo). 

Now take a (  t, f ) = P( h t , f  ) /  h , so that

a ( t , f ) E  X(x)
M x js i  
< T >  -  f

giving a ( t ,  f )  ~  — - , by virtue of ( 5.1 ) and Proposition 4.2. Now write

rc( t, f ) = 2- 
M Tst

1 » { X : W t )  S t ,  •

<T> = f

for each f  e  QM . Trivially, we have a d ,  f ) £ t  7t( t, f )

particular,

lim *<i. f ) 1
t - * e o  ch l / ( h t ) 3 2 M

For any 0 < u < t ,  write

Jt( t, f  ) = 7t( u, f  ) +
u < £ t

1

S n ( l . f ) +
u < £ t

X(T)
u

S JtC t, f ) + a ( t .  f ) 
u

orequivalently,

K « .f ) K( U, f  ) 1 a t  t, f )

(5 .2 )

(5 .3 )
c /  ( h i ) '
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If we choose u = a t ,  for any 0 < a < l ,  then

k( l. f  ) „  1

But, since a  was arbitary.

TT- n ( t , f )  ^  1
"■ ,  S Mt —»°° e /  ( h t )

(5 .4 )

Combining ( 5.2 ) and ( 5.4 ) gives

Theorem 5.2 Assume <pt is a geodesic flow on the unit tangent bundle Tj S of 

a compact, negatively curved surface S. Let G = ©nez* ( Z /  M Z )z .

Then for any g e  G,

* (t,9  ) M

h t e

( h t ) 3
as t —>oo .

86 Proof of Proposition 5.1

Our proof relies on the following modified version of the Wiener Ikehara 

Tauberian Theorem, due to Delange.

Proposition 6.1 ( I D ] ,  Theorem V ) Assume there exists a constant A £ 0 

such that

00

f ( s )  = A log ( s -  1) -  J e St dtp( t ) , for Re( s ) > 1
0

and f (s )  is analytic in a neighbourhood of Re( s ) £  1. Then 

t
<p(t) ~  A — a s t  —>oo.
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Let a(t) be as in the statement of Proposition 5.1. So 

00

J e~ S1 da( t ) = A ( s - 1) log ( s - 1) + f( s ) ( 6.1)

We may differentiate (6.1) with respect to s . for Re( s ) > 1, to give 

00

I e" *1 t da( t) -  A log ( s - 1) + g(s) (6.2)

where g( s ) = f  ( s ) + A. Moreover, g( s ) is analytic in a neighbourhood of 

Re( s)2 l. Let a( t) = <p( t) / 1, and rewrite the integral in ( 6.2 ) as

J t e~81 da( t ) - J e"*‘ d<p( t ) - J <*'> d* < « >
0 0 0 t

oo -st » —st/ cl( t }
where J e  ̂ <P(«> dl ■  J • ( — p -  > dl “ '<*> ( s“y).

By integrating the Stieljes integral on the left hand side of (6.1) by parts, we obtain 

00

| e" 81 da( t ) -

and our hypotheses ensure that [ e S l <x(t)]Q = 0 ,  where Re( s ) > 1 .

00

Thus J(s) -  J e 'M a (l) dt -  A ( s - 1 ) log ( s - 1) + f(s)

Now note that we have a differential equation

4- I( s ) = J(s) , for Re(s)>l,

a ( t ) a ( t ) dt



As for H cyclic, we can define an L-function for the G-extension
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U s .6 )  -  n < 1 -  Xe<<*>> e " ‘ hX<' ) ) 4

where < T > e R r , 0 » (  0 M , 0 ^  , ..., ©W ) e  G. For any f e Rf , 

f -  (f< «,f<2 )...... f « >  , let

nu.n - j u-n xirrlr dv<0)

where v denotes Haar measure on 0 .  define a norm on II .11 on G by

II 011 ( m> 1

By mimicing the arguments of §4, we have

n( *■f * ■ L  *. 8<i> 8w , ( ■ f  * (r)
V e G  (9  ....9  ) L ( « . ( 8

l*( *. ( e'1»..., 8<r) ) ) dv(e«> e(->,

( where V is an open neighbourhood of 0 in ê  ),

J - J( Z/MjZ ) ( Z/MfZ )

d v , ( e 0 ) ) .... dvt (8W )
+ H.( ! )

i  *  I  (

where H j ( s )  is analytic in a neighbourhood of R e ( s ) ^ l .  Using the method of 

the proof of Proposition 4.1 ( ii ), we have
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tl( s .f ) ( S - l )  l O g ( S - l )  +  H j < S )  .

where I H I = Mj M2 ... M,., and H2 ( s ) is analytic in a neighbourhood of 

Re( s ) £  1.

By applying the same arguments as in §5 , we arrive at the following general 

theorem.

Theorem 7.1 Suppose H is a finite abelian group and G = ® meZ* H. 

Assume <pt is a geodesic flow on the unit tangent bundle Tj S of a compact, 

negatively curved surface S. Then for any g e G ,

1
IHI

h t
K( t, g )

e
3 oo.

( h t ) '
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88 Some ideas for applications

In this section, we give a more informal discussion about an application of 

Theorem 7.1.

Since the geodesic flow <pt is Anosov, the tangent bundle Tj S can be 

decomposed as T jS  = E © Eu © Es , where E is the (one

dimensional ) tangent bundle to the flow, and Eu and Es are the ( one-dimensional) 

unstable and unstable manifolds respectively. We suppose that Eu is not orientable. 

Define p : I A —► { 1 , -  1 }z  by

A closed orbit x is called twisted if the unstable bundle Eu is not orientable in 

a neighbourhood of x. In the present context, this means that for x g x,

D<Px.(t) EUx = ~ Eux . Otherwise x is said to be untwisted.

This condition can be interpreted in terms of one-dimensional frames as follows,

( c.f. ( PP21, §6 ). The unstable bundle Eu over Tj S is such that each fibre is one

dimensional, and let F“ denote the oriented frames in Eu. Above each point 

x g Tj S , Fux has two components corresponding to the two possible orientations. 

The condition that Eu is not orientable is equivalent to Fu being connected or Fu 

not being orientable.

The following result is obtained by constructing a Z2 extension of Tj S 

according to the effect of <pt on the orientation of Eu and applying the Chebotarv 

theorem for finite group extensions of [ PP21.

Proposition 8.1 [ PP2 ] If Eu is not orientable then asymptotically half the 

closed orbits are twisted /  untwisted.

P( x) f 1 if E V »  -  P « .

- I  *  Df**! E%x) -  -  EV * )  ■
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Provided that Eu is not orientable, we conjecture that it is possible to associate 

a polynomial T( x ) e Z2 [ 11 to each closed orbit, corresponding to the Frobenius 

class of a © meZ* Z2 -  extension. This polynomial reflects the changes in 

orientation of the unstable bundle Eu in a neighbourhood of x. By applying Theorem 

7.1, we would have a result which more accurately reflects the complicated behaviour 

of the closed orbits. ( We remark that the additive groups Z2 [ t ) and Z2 [ t , t 4 ] are 

isomorphic).

Theorem 8.2 Suppose the hypotheses of Theorem 7.1 are satisfied. If Eu is not 

orientable, then for any f e Z2 [ t ] ,

1 ht# { x : X ( x ) £ t , T ( x )  = f }  ~  — —— -  as t —»oo.
( h t )
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