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Summary

This thesis consists of four chapters, each with its own notation and references.
Chapters 1, 2 and 3 are independent pieces of research.

Chapter 0 is an introduction which setsout the definitions and results needed in the
main part of the thesis.

In Chapter 1, we derive asymptotic formulae for the number of closed orbits of a toral
automorphism which is ergodic, but not necessarily hyperbolic. Previously, such formulae
were known only in the hyperbolic case. The proof uses an analogy with the Prime
Number Theorem. We also give a new proof of the uniform distribution of periodic points.

In Chapter 2, we derive various asymptotic formulae for the numbers of closed orbits
in the Lorenz and Smale horseshoe templates with given knot invariants, (specifically braid
index and genus ). We indicate how these estimates can be applied to more complicated
flows by giving a bound for the genus of knotted periodic orbits in the ' figure of eight
template'.

In Chapter 3, we prove a dynamical version of the Chebotarev density theorem for
group extensions of geodesic flows on compact manifolds of variable negative curvature.
Specifically, the group is taken to be the weak direct sum of a finite abelian group. We
outline an application to twisted orbits.
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Introduction

Sl Prime Orbit Theorems

The aim of this thesis is to study the asymptotic behaviour of closed orbits of
certain systems which are either hyperbolic, or have some hyperbolic structure. The
specific models we study are quasihyperbolic toral automorphisms, the Lorenz attractor
and geodesic flows on the unit tangent bundle of surfaces of (variable) negative
curvature. The common theme in all our work is the use of ideas from analytic number
theory, and in particular the Prime Number Theorem. Results which exploit the analogy
between closed orbits of flows or diffeomorphisms, and prime numbers are known as
' prime orbit theorems .

All our results have been motivated by a prime orbit theorem in [PP1] which we
brieflydescribe.

Let tp, bea C1 flow on a compact CO0 Riemannian manifold M. A compact
tp-invariant set A without fixed points is called hyperbolic if the tangent bundle of
M restricted to A has a continuous splitting as a Whitney sum of three Dtp-invariant
sub-bundles

TAM - EOE*O© Eu

where E is the one-dimensional~tangent to the flow, and Eu and Es are respectively
exponentially expanded and contracted by Dtp, i.e. there exist positive constants C
and X such that

(a) WDtp,(v)N S Ce"Xtllvl , forall v6 E*, t*0,

(b) WDtp,(v)| £ Ce-~1llvil, forall ve Eu,t£0.

A hyperbolic set A iscalled basic if
(i) the periodic orbits of tp, | A are dense in A,
(ii) A containsadense tp-orbit.
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(iii’) thereisanopen neighbourhood U of A suchthat A = O qt(U).

The non-wanderine set Q of (p is defined by
i2 = {x6M: Vopen Vax, VtQ>0, 3t>to suchthat t(V)r>V*fi}.

The flow tp satisfies Axiom A (adefinition due to Smale [S1), if Q canbe
written as the disjoint union of a finite number of basic sets and hyperbolic fixed points.
Axiom A flows are generalisations of Anosov flows [A] Aflow tpon M is
called Anosov if M is hyperbolic set.

An Axiom A flow tp , restricted to a non-trivial basic set A, is topologically
weak mixing if there are no non-trivial solutionsto Fo<qt = e'al<gt (all 16 IR),
for a>0, Fe C(A). Ifthisequation does have a non-trivial solution, then the value
of a iscalled an eigenfreouencv .

Let t denote a generic closed orbitof (pIA, of least period X(x ). Let h
denote the topological entropy of <plA.

Theorem 1.1 [PP11

(i) If gt istopologically weak mixing then

# {t :I(t)Sx} as X —M».

h x

(ii) If gt is not topologically weak mixing, with least positive eigenfrequency a,
then

#{t:X(t) £ x) | C

Remark 1.2 Foran Axiom A diffeomorphism, case (ii) reduces to
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#{t:X (t)Ex}

as x—>00 through the positive integers.

The proof uses the analytic properties of the Ruelle zeta function [R1], defined
by

<>
T

The Euler product converges for Re(s) > h, and defines a function which is analytic
and non-zero in this half plane.

If < is weak mixing then £(s) isanalytic in a neighbourhood of Re(s) £ h,
with the exception of asimple pole at s « h. If @ is not weak mixing, with least
positive eigenfrequency a, then £('s) is analytic in a neighbourhood of Re(s) £ h,
with the exception of simple poles located at h + nia, foreach neZ.

Theorem 1.1 follows by imitating the proof of the Prime Number Theorem.

The contents of the remainder of the introduction are as follows. Section two
contains a description of symbolic dynamics for Axiom A flows and interval maps.
Sections three and four may be regarded as introductions the chapters one and two

respectively. Sections five and six contain some introductory material for chapter three.
§2  Symbolic dynamics

We begin by defining shifts of finite type. These were first introduced in a purely
mathematical contextin [P I). Let A bea kxk, zero-one matrix and suppose that

A isirreducible, i.e. foreach i,j , thereexists n suchthat An(i,j)>0. Let

LA - {x- <a)n, E{1,2...k¥:A(x,, )- lLalnez),
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and
\% (»- (*»W fo)« n.2..,,,k}“"0): A(X,.xn+l) - 1,alln20).

If (1,2.....k} isgiven thediscrete topology then XA and £ A+ are compact
and zerodimensional with the Tychonoffproduct topology”The shift
a :ZA—*fa (resp. a : EA+ —pZA+) isdefinedby (cx)n w xn+l forall
ne Z, andis ahomeomorphism (resp. continuous bounded-to-one map ).

Let r : ZA—» IR+ be Holder continuous. Define the r-suspension space

£/ - {(M)eTA«B:0StSr(x),(x1r(x))-(ox10)},
which inherits the product topology from ZA and IR The suspension flow is
definedtobethe flow ar, (x,s) = (X s+1) , subjectto the identifeation.
( A similar suspension semiflow can be constructed for o : EA+ —»£A+).

In [B11, Bowen used suspensions of shifts of finite type to model the dynamics
of Axiom A flows. Again let 9 be an Axiom A flow restricted to a non-trivial basic
set.

For e>0, one can construct disjoint (local) cross sections Tj,... ,Tfec M
with diam(Tj)<e, ashiftoffinitetype (£A,a ) andacontinuous suijection
rt:LA—\JTj suchthat n({xe ZA:x0=i}) » Tj. (The Tj arecalleda
Markov partition for 9 1A. See [B 1l for further details). Furthermore, if x e TA
with Xg»i, Xj-j ,then 97 n(x) = ttc(x)6 Tj, where

r(x) = inf {t>0:tpn(x) 6 Tj,somej }

Bowen extended this construction to prove

Proposition 2.1 IB11 There is a suspended flow or, : EA —»ZA  with Holder
continuous height function r : EA—wIR¢, a Holder continuous, surjective, bounded-
to-one map n : ZA—»M suchthat rioort - (<!, Further, if m isthe
measure of maximal entropy for ort then II*m is the measure of maximal entropy
of tp.
1 éicde-K O " ock'l,
y) roce *
JC.' = Ul fxJ
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We now describe the symbolic dynamics for interval maps ( following roughly
the exposition in [B21 chapternine ). Let T :1—» beamap. We will always

assume there is apartition 0 * c0< <..<cr- 1 of |, sothat

(i) T|(cs,ci+l) is C1 and strictly monotonic,

(ii) Thelimits lim T(x) and lim T(x) exist

G XAg+
00
Let Jj = (Cj,ci+l) for 1£if£r. Let B= U T"'m({Gy,cC,....... cr})c |,
m-0
which is at mostacountable set. Define Ig(~) — j if £e B, and let

let g (%) * kg(T™”"), for e I\ B. Thuswe have a well defined map
—>{0,1...... r)““«» givenby (X$) « ( kj(5) )i6IM0>. Theimage
of p istheset Z(T), defined by
T) - {x =(x, e {1... r }*kJ0I; x. p(f ), some%6 I\ B}
Again, Z(T) inheritsthe Tychonoff product topology induced by the discrete
topology on {1,...,r}. Theshiftmap a :L(T)—wL(T) isthecontinuous,
bounded to one map (ax )n « xn+j.

Parry [P2] considered maps T which are locally onto, i.e. foreach open

m

interval Jc |, thereexists m suchthat U T>J - I Inthis case there isa well
j-0

defined map p:£(T) —» given by

@ n
p(x) = n n T-iJ
n-0 j-0 ]

is continuous and conjugates o|£(T) and T| I\B . Parry usedthe map p to
show that, except for certain special cases, T istopologically conjugate to a piecewise

linear map with constant slope. Moreover, the slope equals the entropy of a 1Z(T).
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The natural order on | induces an orderon Z(T) as follows. Define
0(i) = ( 1 if TI(Cj,Cj) isincreasing,
/-1 if TI(Q_,Cj) isdecreasing.
Extend this to finite sequences by 0(xgX ..xm) = 0(x0)0(Xj) .. 0(xm).
Define a total orderingon {1,2,....r as follows. Given x +y, choose m
such that xm” ym but xjmyj for j<m. Let x£y if
(ym*" xm) ® *0x,..x*.,) > 0,
(taking 0(0)» 1 when m=0). Itisnotdifficult to show that the limits

lim p(™) and w®) = lim p(£)
*tei-1+
W»
exist. Then u®, v® g L(T) and

«T) - {xe {1,2... ude £ akx £ vl'ke, all kiO ).

A particularly simple class of interval maps are the Markov maps. Let S be a
finite setof pointsin | with T(S) c: S. Write S as S- {c0,Cj.....ck},
where cQ<Cj < ...<ck. Again, we assume that T is strictly monotonic and
continuous on each interval (citci+1). Thendefinea kxk matrix by

A(ij) - cClI if T(Cj,ci+l) 3 (cj,cj+1),
(0 if T(Cjci4)o (Cj,Cj+l).
(Ourassumptions on T ensure these are the only possibilities). Then define

*:La—4* by

a( X)

The map n isa semiconjugacy, n o = T n, andis one-to-one except for at
most a countable number of points where it is at most k-to-one.
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83  Toral Automorphisms

Let Tn = IRn/ ZN denote the N-dimensional torus, and let S be an
automorphismof TIN. Thus Se GL(N,Z) , i.e. Sisgivenbyan N xN matrix
with integer entries, and further det S = + 1. We suppose that S isergodic,
which isequivalent to assuming that S has no eigenvalues that are roots of unity.

Apoint x g Tin is periodic under S if and only if all its cordinates are rational.
Thus the set of periodic points is countably infinite. Let Fixn = {xg Tn: Snx=x}
which isafinite set, and let jin be the probability measure equidistributed on Fixn.
The periodic points are uniformly distributed in YN if and only if [i.n—b»}i in the
weak* topology on the space of S-invariant probability measures, where p. is Haar
measure.

The cardinality of Fixn can be computed from the following well known formula
card Fix, - ldet(Sn- 1)1 - Fl 1 X - 11
X

where the product is over all eigenvalues A of S. The topological entropy h=h(S)

may becalculated from the formula

= X log IX1,
W\T>1

where the sum is over all eigenvalues A of S with 1AI>1.

The following result is needed in the proof of Theorem 1.6 in chapter one.

Proposition 3.1 [HPI (Theorems 7.1,7.6). Let G be acompact topological
groupand let N be the connected component of the identity e in G. Then N isa

closed subgroup of G and G/ N is finite.

We now examine the hyperbolic structure of S. Considering S as a linear

transformation of IRN, there is an S-invariant decomposition
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nN = Es © Eu0 Ec,

where Es is the eigenspace corresponding to the eigenvalues of S less than one in
modulus, Ec corresponds to those eigenvalues of modulus one and Eu to the rest.
Themap S iscalled hyperbolic if S has noeigenvalues of modulus one. In this
case S is an Anosov diffeomorphism and we can apply the methods of 81 to study
the periodic orbits. The ergodic toral automorphisms are also refered to as
‘quasihyperbolic ', a name invented by Lind [L I) to reflect their partial hyperbolic
behaviour. ( The impossibility of constructing Markov partitions for non-ergodic
toral automorphisms was shown in [L2)).

Finally, we make some remarks about almost periodic functions. A useful
reference for thisis [Pe ]

Let T : X—»X be an ergodic isometry of acompact metric space (X ,d) with
respect to a Borel probability measure p , which assigns positive measure to each

non-empty open subsetof X.

Definition 3.2 Asequence {a,:n€ Z} in X iscalled almost periodic if for

each e >0, thesetof p6 Z forwhich

9P d<*n+p«n> < E
n
isrelatively dense, i.e. thereisa real number K such thateach interval in IR of

length K contains at least one such p. ( These values of p are called the e-periods ).

Lemma 3.3 For Xge X and feC (X)), thesequence {f(T"Xg) :n€ Z}

isalmost periodic.
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84 Lorenz knots

The famous system of differential equations

X - -10x + 10y
¥ 28 -y - xz
z - -(8/3)z + xy

of E.N. Lorenz [Lo] has been extensively studied, ( see for example [G ], [R2)),
as it is an importantexample ofa " strange attractor ", in the sense of the Ruelle-
Takens definition [RT]. This model A, together with a flow yt was used by
experimentalists to study atmospheric convection. A geometric model L was
proposed for the Lorenz system by Williamsin [W1 ], which is generally accepted is
an accurate model of A, although this is still to be rigorously proved.

Briefly, it is hypothesised that thereisa (one-dimensional) strong stable
direction for A, which leads (via the stable manifold theorem) toa one-
dimensional foliation 7 of an open neighbourhood N of A by strong stable
manifolds W5(x ), for xe A. The connected componentsofW s(x )n N are

collapsed, yielding aquotient N/ ~ = H, which fits the commutative diagram

H e »H
*

in which \jrt is the original flow, and <t isasemiflow . This semiflow is well
defined for t£ 0 since \j/t leaves N invariantfor t£0, and f invariant forall t.
The geometric Lorenz attractor L, with itsflow <t isthe "inverse limit' of . (See
[W11for further details).
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In particular, H isatwodimensional branched manifold , together with a
semiflow (5. ( The pair (H, qt) is known as a template ). We have sketched H in
figure 4.1. We parameterise the branch line | as [0,1]. Atypical Poincari map

T :1—» for qt on | isillustrated in figure 4.2.

o C

figure 4.1 figure 4.2

Themap T hasa single pointof discontinuity at ce (0,1), TI (I\ c¢) is C1and
strictly increasing , and T(c") = 1, T(c+) = 0. Thus we can reduce the dynamics
from three dimensions to two dimensions, using the strong stable foliation, to one
dimension by a Poincar6 section, and can continue to symbolic dynamics which is zero

dimensional. The mostimportant observation is

Proposition 4.1 [BW1] The periodic orbits of the three dimensional geometric
Lorenz attractor correspond one-to-one with those of the semiflow <t on the

branched two manifold H. This correspondence is up to isotopy.

In the case of the Lorenz attractor, we modify the symbolic dynamics
of §2 slightly as follows. Label the interval [0,c) with "x" and (c, 1] with 'y".
Regard H T) asasubsetof {x,y}Nu{0} t and denote this setby Xj. We define
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the set B to be precisely those points £, which satisfy T" (%) =c for some n. The
kneading sequence of such a point then takes the form w0, where w isaword of
x's and y's of length n , and the sequence terminates with infinitely many 0's. Thus

the kneading sequences of points in B form a set X2, where
[os] m o]
x2 ¢ o (n{xy}xn {O} ).
m»0 i-1 j-m+

The kneading space X is then defined by X = Xt u X2. Asbefore thereisa
well defined shiftmap o : X — X, and a projection 7t: X —»| such that
rea =T 7t The orbits with kneading sequences in X2 are called saddleconnections
and are not regarded as periodic orbits.

Suppose a periodic orbit x has kneadingword w(x) = x2yxy 6 Xj. Then
w( x) determines the knot type of x as follows. Write down the cyclic permutations

of the aperiodicword x2y xy and order them lexicographically, taking x,y.

1 X2y Xy
3 Xy Xy X
5 yXyx2
2 Xyx2y
4 Yy X2y X

figure 4.3
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One can see that the periodic orbit x is isotopic to the trefoil knot in S3.

To analyse the link of periodic orbits further, we introduce the idea of a braid. A
closed braid on n strands is a presentation of an (oriented ) knotor link so that its
projection onto the plane passes in the same direction about the origin n times. The
braidson n strands form a group Bn (called the Artin braid group [Arl), with
generators Oj ,a2,..., on_j, and relations

°i <Vi °i - <vi Citi .
and

“oi e qfri-ilE2

The above examples are as follows
(a) Thebraid Oj 02" 02 e B3,
(b) Theclosure of the braid Oj 02*Oj 02 e B3,
(c) The full twistbraid A2 e B3.
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A theorem of Alexanderin [At|, states that any knot in S3 can be presented as a
closed braid. The braidindex ofa braid b is the smallest integer n such that the
closure ~ of b isisotopic to a closed braid on n strands. The braid index is a knot
invariant.

The eenus ofaknot K in S3 isdefined to be the minimal genus of any Seifert
surface spanning K.

Abraid be Bn iscalled positive if all the generators in its braid word occur
with positive exponent.

We require two basic results on postive braids.

Proposition 4.2 [FWI If b isa positive braid on n strands, which contains a
full twist A2 e Bn, then n is the braid index of b.

Proposition 4.3 (BW1) Positive braidson n strands, whose closures are
knots, have genus g given by
29 - c-n + 1

where ¢ isthe number of crossings.

In chapter two, we show that all Lorenz knots can be represented as positive
braids.

In [BW2], Birman and Williams show that one can construct a template
(H,4t), (ie. abranched two manifold H, together witha semiflow  on H),
forany Axiom A (nocycles) flowon S3, essentially by collapsing along strong

stable manifolds ( c.f. the Lorenz attractor).

Proposition 4.4 [BW2] Givenan Axiom A (nocycles) flow tp, on S3,
there isatemplate (H,<5) with H c S3, such that, with one or two specified
exceptions, the periodic orbits of <t correspond one-to-one to those under $t.
Moreover, the correspondence is via isotopy.
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In [W2], Williams proposed the following problem

Problem 4.5 IW 21 Let <p bean Axiom A ( nocycles) flow on S3. Say ¢t
has infinitely many periodicorbits {Tj,T,... } which we regard as knots. Since
there are only countably many possible basic sets, only countably many such setsof
periodic orbits can occur. Butthe collection of all infinite sets {Kj ,6 K2....} of
knots has the cardinality of the continuum. Thus only special ones occur for flows.

Which ones ?

Inchapter two, §5, we show thatin the case of the Smale horseshoe map
( studied by Smalein [S]), which is the simplest example of an Axiom A flow, there

are restrictions on the number o f closed orbits in terms of their genus.
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(d)

The diagrams in figure 4.4 are as follows.
(a) Thisillustates a Smale horeshoe map. The ' stadium ' is streched in the

horizontal direction and contracted in the vertical direction. Itis then folded
back on itself as illustrated.

(b) Thisillustrates a suspension of the horseshoe map.
(c) The model is collapsed along the strong unstable manifolds.

(d) After identifying the tops and bottomsin (c), we obtain the horseshoe
template.
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(e) Thisillustrates a typical Poincard map on the branch line. In the classical

horseshoe studied by Smale, the returnmap T :1—» takes the form
25 . 0S5S8*,
2<i-5). i<$si-

As for Lorenz knots, all Smale horeshoe knots can be presented as positive braids.

S5 Geodesic  flows

Probably the most important example of an Axiom A flow is the ' geodesic
flow " which we now describe.

Let S be a COcompact surface of strictly negative sectional curvature with
respect to a Riemannian metric <.,.>. Let

TtS = {(x,v)€TS :<v,v>xm 1}

denote the unit tangent bundle. Define the geodesic flow (t:Tj S —»Tj S as
follows. Given (x,v)e TjS, let y:IR—»S be the unique, unit speed geodesic
through x€ S in thedirection v, attime t=0. (i.e. y(0) - x, Y(0) mv),
thenset aqt(x,v) = (Y(t),?(t)). (Thus gt moves thetangent vector from
Y(0) to Y(1) along the geodesic determined by v). The geodesic flow is Anosov,
and topologically weak mixingby [AAJ

One can give a more precise description of the analytic domain of the Ruelle zeta

function for geodesic flows than for arbitary Axiom A flows.
Theorem 5.1 [Po) Thereexists e >0 suchthat £(s) isanalytic and non-
zerofor Re(s) > h - e, exceptforasimplepoleat s=h. Further, £(s) is

meromorphic on <C

An important property of the geodesic flow is the reversibility of closed orbits.
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Define an involution i:TjS—»TjS by i(x,v) = (x,-v). Thenthe
geodesic flow has the property that @ o/ =/ o cp_,.

86  Differentiability

Throughout this section, B, Bt and B2 will denote complex ( or sometimes,
where specified, real) Banach spaces. References for the definitions and results that
follow are [HP] and [Pa]

Definition 6.1 Amap f:C—»B is saidto be analytic if | of : C—»C is
analytic in the usual sense, for any bounded linear functional | :B—»<C Amap g:
Bj —»B2 is said to be analytic if gof:C—wB2 is analytic, for every analytic map
f:C—»Bv

These definitions may be localised, and in particular, we may define real

analvticitv for maps of open subsets ofreal Banach spaces into real Banach spaces.

Definition 6.2 Let Uc Bj beopenin Bt and f:U—>B2 be a function. If
p € U, wesay f is Frtchet differentiable at p if there exists a bounded linear

transformation dfp : U—»B2 such that

Ff(p+x) - f(p) - df (x)I
2 -4 0 , as x—*0.

Itis not difficult to see that dfp is uniquely determined. If f is Fr6chet differentiable,
with continuous derivative, then say f is C1.

If f is Frfechet differentiable in U then the map df:U—»L(B j, B2) given
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by pt—»dfp is well defined, where L( B2, B2) denotes the space of bounded
linear operators Bj —»B2.

If df isagain differentiable at p€ U, then

d(df)p - € UBj.UB"Bj)),

where the latter space is identified with L2 (B2, B2), i.e. the space of continuous,
bilinear maps Bj x Bj—»B2. Then d2f can also be shown to be symmetric.

Alinearmap IR—»B is completely determined by its value on the basis element
le IR Soadifferentiable function f:U—»B, where peU eR, has derivative

f'(p) definedby f(p) = dfp(1), and by linearity, dfp(a) = a f(p).

Definition 6.3 Amap f:Bj—»B2 is Gateaux differentiable at p if theref

as t—>0, forall xe B. .

The relationship between these various types of differentiability is described in the
following proposition.

Proposition 6.4

(i) [1ff:Bj—»B2 is Frdchetdifferentiable at p then it is Gateaux differentiable at
p and dfp - 5fp.

(ii) If f:Bj—»B2 isreal analytic in a neighbourhood of p e Bj thenf is
Frichet differentiable in U.

Finally, we define the gradient and Hessian operators. For this we need the notion

ofaHilbertmanifold.

Definition 6.5 The manifold M iscalleda C Hilbert manifold if M isa C*
manifold, and foreach pe M, TMp is a seperable Hilbert space. Foreach pe M,
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let <.,.>p bean admissable inner producton TMp, i.e. a positive definite,
symmetric, bilinear formon TMp such thatthe norm llv llp = <v ,v>pi

determines the topology of TMp.

Let f:M—*IR be real valued and C*. Given pe M, dfp is acontinuous
linear functional on TMp. So there exists a unique vector Vfp in the fibre Mp such
that dfp(v) = <v,Vfp>, forall ve Mp. Thenthe map pi—»Vfp iscalled
the gradientof f, and denote by VAf.

Similarly, if f is C2 the Hessian V2f isamap pi—»V2fp , where V2fp
is the symmertic bilinear form givenby d2fp(v,w) = <v, V2fpw>.

Apoint p€ M iscalled acritical pointof f if Vfp= 0. A critical point

pe M iscalled non-degenerate if V2fp isan invertible operator.
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The Prime Orbit Theorem For Quasihyperbolic
Toral Automorphisms

BY
SIMON  WADDINGTON

Abstract For a toral automorphism which is ergodic, but not neccessarily
hyperbolic, we derive asymptotic formulae for the number of closed orbits by
analogy with the Prime Number Theorem. A new proof of the uniform

distribution of periodic points is also given.
§ 0 Introduction

In a paper of Parry and Pollicott [5 ), an analogy between the least periods of
closed orbits of Axiom A diffeomorphisms and prime numbers is used to derive an
analogue of the Prime Number Theorem. More precisely, if (p is an Axiom A
diffeomorphism restricted to a non-trivial basic set A with topological entropy
h =h(<plA),and x denotes a generic prime closed orbit of ¢>I A with least period
X(x) then

card { x :\(x) Ex} — = -

as x —>00 through the positive integers.
In particular, this result holds for an important class of examples of Axiom A

diffeomorphisms, namely the hyperbolic automorphisms of the N-dimensional torus.
1Strictly speaking, their paper concerns flows. The diffeomorphism case is

obtained by taking a flow which is a suspension of a diffeomorphism with constant
height function.
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Markov partitions and the associated symbolic dynamics play a crucial role in the proof.
The aim of this paper is to generalize this result to ergodic automorphisms of the
N-torus, without the hyperbolicity assumption. In [3 1, the term ' quasihyperbolic '
was used to describe the ergodic automorphisms.
non liijfVrHott«

For ergodic”toral automorphisms, Lind [4 ] has shown that Markov partitions

never exist. However, we can still obtain the following result:

Theorem Let S be an ergodic automorphism of TN. Then
h(x+1)
card { X:A®Ex} — -— -— E(Xx)
as x —*00 through the positive integers, where E : IN—»R+ is an explicit, almost

periodic function which is bounded away from zero and infinity.

Here x is a generic prime closed orbitof S, least period X(x),and h=h(S) is
the topological entropy of S.

Our proof relies on the direct computation of the Artin Mazur zeta function for S.
1t will be seen that its behaviour on the circle of convergence has a crucial influence of
the asymptotics.

We also define a notion of ' average order ' and show that card {x:X(x) £ x }
has average order

h(x+1)

(e - 1)x

as x —>oothrough the positive integers, where K is a constant, depending onlyon S.

In the first section, we give a new proof of the uniform distribution of periodic
points of an ergodic toral automorphism. We use the fact that the number of fixed
points of Sn tends to infinity as n tends to infinity. We first indicate how to prove this
using adeep number theoretic result of Gelfond.
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8 1 Uniform Distribution of Periodic Points

Let S be an ergodic automorphism of TN. We will always regard S as an
elementof GL(N,Z) with det S = + 1. Let Fixn = {xe TIN:Snx =x} be the
set of fixed points of Sn. We will require the following result of Gelfond mentioned in

the introduction:

pit ,TA.nr.
Lemma 1.1 [21, Let X=e2n"‘a be algebraic and not a root of unity, for some

0<a < 1. Thengiven e>0,thereisanumber M such thatif n£ M then

1Xn- 11> e-cn.
Using lemma 1.1, we can now deduce :
Proposition 1.2 card Fixn(S) —*00 as n—pwco.

Proof Let X be an arbitary eigenvalue of S. Suppose first that 1X1=1. Let e >0
be given. Then if M is given by lemma 1.1, and n £ max {M, e'llog2} then

1
e < Floglxn 11<n—logz < e
So |n loglXh-11— 0 as n—po.
Secondly, if IX1< 1 then n—log IX"-11—»0 as n—peo.
Finally, if 1X1> 1then

n—logl)m- 11 = n—( log IXI" + log11- Xnl ) —» log IXI as n—»00.

Therefore,
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—Ilog card Fix (S) = X —logIX*- 11 —» X logl1Xl = h(S),
n n Xe sp(S) n IXT>1

and so in particular, card Fixn(S) —»00 as n—»00. O

The above proof really shows that card Fixn( S) increases exponentially with n
which we do not require for our proof of uniform distribution. It would be interesting
to try to prove proposition 1.2 without recourse to Gelfond's Theorem.

We will require the following two basic results on maps of the torus:

Lemma 1.3 Let G be aclosed, connected subgroup of TN and let A :G—»G

be a homomorphism. Then A issuijective if and only if ker A is finite.

Proof Assume first that ker A is finite and suppose, foracontradiction that A is
not suijective. It follows that the dual homomorphism A G—»G defined by
i(y) = y° A is notinjective. Since G is compact and connected, the dual é is
a>sc/-* wwP. 4s™* . So thereisacharacter ye G of infinite order such that
IA(Y) « 1, where 1 isthe trivial character; thatis 1( x) - 1 forall x€ G. Let
f be the subgroup generated by Y- Let K=r A-{xeG : a(x) =1 foralla 6 f },

TUolels < = N /lterA «-d X - fa/Ler A? tI+A c«
A B . rank R = A N ! @rsa.ce>o.

A A A
Conversely, suppose that A is suijective. Then A :G —»G isinjective. Let
K » ker A which is a closed subgroup of G. Then if we let
A o A A A
KA« {y e G:yx)- 1 forall xe K}, itiseasy to see that A'LKAm G. Since G
A A A
is torsion free and A is injective, G / KA s finite. Thus by duality, K is finite, and

hence K is finite. O
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Lemma 1.4 Let G beasinlemma1.3 andlet B :G—4G be an automorphism.

Then B isergodic if and only if ker (Bn - 1) is finite forall nil.

Proof An automorphism B :G—»G is ergodic if and only if Bn - | is suijective
forallni 1. Butforany nil, lemma 1.3 givesthat Bn- | is surjective if and only
if ker (Bn- 1) isfinite. O

Using lemma 1.4 we can now deduce the following :

Proposition 1.5 Let S be an ergodic automorphism of TIN and let H be a
closed, connected subgroup of TN with SH =H. Then with respect to

Haar measure ,

(i) sIH:H—»H isergodic, and

(ii) Slen,H: TN/ H—Tn/ H is ergodic.

Proof
(i) Assume that SIH is notergodic. Then ker ((Sn-1)1H) contains infinitely
many points by lemma 1.4. But therefore ker (( Sn- 1) Itn) is also infinite. So

again by lemma 1.4, S: TN—>TN is not ergodic, giving a contradiction.

(i) Suppose that for some ye TN/ H and n>0, wehave y °(Slen / H)n = y.
By duality, TIN/ H is isomorphic to the annihilator subgroup of H, so y can be
regarded as an elementof TN with y(H) - {1} Thus y°Sn - y, and by the
ergodicity of S, y m1on TN andtherefore y - IJN yH. O

Now let pn be a probability measure which is equidistributed on Fixn( S). Our
main theorem of this section is:
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Theorem 1.6 Let S be anergodic automorphism of TIN. Then for any non-trivial

character y, fyd\Ln = 0 forall n sufficiently large.

Proof Let Y bea non-trivial character of TN. Since pn is Haar measure on the

finite subgroup Fixn(S ),

Y (x) 0 or card Fixn(S).

So suppose there is an infinite sequence (nk) of distinct positive integers such that

yePnisy YO) = cad FIV ()

Since Y restricts to a character on the finite subgroup Fixn(s ) = {y:S ky =y},
wehave yIFix~S) m 1. Let G betheclosure of the group generated by
U Fixnk( S ). Since card Fixnk( S) —»oo as k —»o00, G is an infinite closed
s;lbgroup of Tn and its connected component of the idemil’\isla subtorus with
G / Gq finite. Now G is a proper subgroup of TN, for otherwise Y would be the
trivial character of YN. Moreover, SG«G, S GO "™ Gqg, Yy restricted to G is
identically 1 and Fix~fS) ¢ G forall kS 1.

By proposition |.S, S restricts to an ergodic automorphism of GO and induces an

ergodic automorphism of TIN/ GO. So
Fixnk(S ITN/0Oo) - card { Y+ GO0 :s"“Y+ GO - Y+ G0O> ->00ask-»00.
and for such y and nk, we have (s"k- 1)y = gk g Ga. However,

Sn't- 1: Ggq—»GO0 is surjective (since det( Snc-1)” 0) andso

(Snt- 1)hk - gk for some hke GO. Thus Snt(y-hk) = y-hk,giving
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(S°k-1)(y-hk) =0 and so y- hk e G. Thatis, we have ye G. But
card {y+G0:s"ky+ GO0 = y+G0, ye G} is finite, giving a contradiction. O

Bj tU ik it, Jf L ml“- a'a f«cor-;
Cincc f Cenk tc **f f TOx, ¢u+rd &r i <4/-oritij en
fi*fcL  linear  cokx 4« o e CrorRC-fez-j
Hence pn —»p in the the weak* topology on the space of S-invariant

probability measures. So we have:

Corollary 1.7  The periodic points of an ergodic automorphism of TIN are

uniformly distributed with respect to Haar measure.

Finally we give a brief description of a stronger form of theorem 1.6 which has
been proved by Lind [3]. Let A:ZN —»ZN be the dual automorphism to
S:Tn —» Tn. Itisnotdifficult to show that supp|in = (An-1)2zN . By using
Gelfond's Theorem and a lemma of Katznelson, which was originally used to show that

ergodic toral automorphisms are Bernoulli, there exists r > 1 such that
(An-1) ZN n B(r") = {0},

for all n sufficiently large. Here B(r) isa ball in IRN, radius r, centred on the
origin.
Using this, if a e (0,1) and f: TN—MR is Holder continuous, that is there is
aconstant C such that
If(x)-f(y)l £ Cd(xy)° foral xy€ TN,
then f fdlin —» J fdp exponentially fast as n —weo. Our methods do not seem to

yield these stronger results.
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8 2 The Zeta Function for S

Throughout this section, let S be an ergodic automorphism of TN and let On

denote the cardinality of Fixn(S). Itiseasy to show that ([ 61)
8n - Idet(I-Sn) 1 - 11J(1-X")1 (2.1)

where the product is over all eigenvalues X of S. Let a and b be the number of real

eigenvalues X of S with X>1 and X<-1 respectively.
Lemma 2.1 sign det(1-S") - (-1)*+>nel)
Proof We will write this productin (2.1) as

ri d-xn) = Pjp2p3

where P. = FT¢ (1-X'), P~ & FT (1-X') and
ImeO X«(-1,1)

@- xe(m,p)u (1,oo)d_xr)

First, Pj is real and positive since its terms occur in complex conjugate pairs. The
term P2 is also clearly positive. In P3, each eigenvalue X> 1 contributes a factor
(-1) to sign P3. Each eigenvalue X< -1 contributes ( -1 )n+l to sign P3.
Hence sign P3 = (-1 )*+h(n+1\ [}

Formally, define the Artin Mazur zeta function £s for S by
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Cs <*> exp nz-l 7n' @n

The analyticdomain of £s is described by the following theorem :

Theorem 2.2

(i) G hasradiusof convergence e*h.

(ii) Thereisafinite set U ¢S 1 such that
(a) le U ,and
(b) ifue U then ue U,

and areal number R>1 sothatif Izl < Re"h then £s may be written as

cs (z) - A(z> n
P«U (l-cpz)’

where A(z) isanalytic and non-zero. For pe U, K(p) is an integerand
K(p) = K(p). Moreover, the function A(z) extends to a rational function on
the entire complex plane.

(iii) Gt ehPK®)
Cs<*> pel

a(z)

(1-pe"z)
where a( z) isanalyticin {z:1z1< Re h} forsome R>1

Proof

(i) By Proposition 1.2, if Iz1< e*h then
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i jl
|Z"&|" - 1zl en -» 1zl eh < 1
(ii) By (2.1) andlemma2.1l,
(1) n

Substituting for On in the defining equation for £s gives

s(i) . exp x LA ()prRmEh ) (22)

vie < e=0, 64Y), p, (ems L at)
1 IX1-1 >1
and collect the dominantterms in the product, thatis 1 from fj (1- X’) and Xn
IXI'<1 X

from TT (1-X"), whichoccurswith sign (-1 )on+a+b Then from (2.2),
IX1>1

Cs(*> A(z) exp n)fl i i(I-X )

(2.3)

= A(z exp X -T-emH T1 (1-
(2) pn-ln IXﬂ-l( )

where A(z) isrational and is analytic and non-zero inthedisc {z:1z |1 < Re'h),

for some R > 1. Now we use the expansion
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<L*m)y o X K(p) Pt (2.4)

where U is a finite collection of points on the unit circle, and clearly we must always
have 1e U. The numbers K(p), where pe U, arejust integers?" Substituting for
(24) into (2.3) gives

G - ADX , ¢hX ke
A(z)

Finally, part (b) follows since all roots of the characteristic polynomial of S in

C\ IR occur in complex conjugate pairs.

(iii)  Logarithmically differentiate the formulafor £s inpart (ii). O

§ 3 The Prime Orbit Theorem

In this section, we give asymptotic formulae for the number of periodic orbits of a
quasihyperbolic toral automorphism using an analogy with the Prime Number
Theorem. The function £s will play the role of the Riemann zeta function in the proof.

Let x be a generic prime closed orbit of an ergodic automorphism S of TN,
with least period X(x). Set
T(x) = card {x:X(x) £ x}

Then our main result is

1 Fxrihtr, K(I’>- X'('r') Irw)®



JN(x+1)

Theorem 3.1 T7(x) X

as x—>p0 through the positive integers.

Proof Itis a straight forward exercise to rewrite £s as

Substituting this expression for Cs into theorem 2.2(iii ), and applying the formula

for a geometric progression gives

where a is analytic inthedisc {z:l1z1 <Re-h} forsome R> 1

For computational purposes, it is convenient to introduce fictitious orbits. A
fictitious orbit x' is defined to by a formal product x'=xn forany n£ 1, where X is
a genuine orbit. For such an object, define A(x') = X(x) and X(x') =n X(x).
Substituting into (3.1) gives

X K(p) (peh)") 2" = za(z)

Hence for a possibly smaller R> 1,
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n .
( £ A(x) - £  K(p) (pc ) ) —»0 as n—xo
"h Wx’).n peEU

Defining a function y : IR—» C by

Vi A(X'
(x) X&)Ex (x')
\Y < ity -
x) X, )(t.%(_n Ait?) p%(UK(p) (®e))
X ke, V »l
P8u pc - 1
By rearranging the above expressions, we obtain
h x+1
V(x) - X K(p) (32)

pch-1

for a positive constant Cj.

Wenow wanttorelate y(x) to n(x) = A 1. Firstly,
Apdsx

VOO vGsx AT ghsx VD LAT)

s X W9 X(T) X 1(x) (3.3)

x() 2 x



where [.) denotes ‘integer part'.

To get an inequality in the other direction let x =y y forany y > 1

Then
n(x) My) +
y< £x
s Jq(y) + £ * £ > * L(y) + Voili
x(t)s X y y
X x) *(y) vy y y(*)
hx hyy (3.4)

Combining (3.3) and (3.4) gives the inequality
X *(x) y(x) My) vy Vi
0 £ o iy + (v_|)V|If.x2 (3.5)
To continue the proof we will require the following lemma :

Lemma 3.2 Forany y>1, yN —»0 as }/—m
hyy

Proof Itis sufficient to show that MY ) remains bounded for all y >1. Rewrite £s as
X
G<> < -1

where the product isover all closed orbits of S. We knowthat £s converges for

Iz1 < e~h, so £s isdefined and analyticat z~e-*1*. forany y>1. So
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is(e hT> N <>-chrw » * n < f-*TkO>
n (l+e"hlfy) i (1+c"hTy) dt(y) *
Therefore A "~ remains bounded as g—boo. ]
hyy

w( X
Since —j("—) < C2 forsomeconstant C2, it follows from (3.5) and lemma 3.2 that

X *(x) _ V(x)
hx hx * (Y-1)cC2
But y>1 was chosen arbitarily, so
X k(x) _ y(x)
hx hx 0 X — >00.
e e
Therefore by ( 3.2),
X 7(x) X+1 Ch
hi X K(p> - 0 as  X—>00.
e pe U

(3.6)

Now we use the elementary fact thatif (a,,) and (bn) are sequences of complex
numbers such that la, - bnl —>0 as n—>00 and (bn) is bounded away from

zero then an/ bn —> 1 as n—>c0. We will show that
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is bounded away from zero, then the theorem follows from (3.6 ) and our previous
observation.

Now from (2.4), /or xt-W,

(3.7)

where p(m) = O (1-Xm). Let Xj...... Xr be the eigenvalues of S of modulus one.

Define T: TR—IR by T(Zj..... ZR) - (Xjzt,..., XRzR) (where IR is
this time written multiplicatively ). Define f: TR—»C by

f(Z..... ZR) = (1-2j).(1-2Zj)....(1- zR). Then T is ergodic and

f€ C(TR), sothesequence (f(T*"1,1,...,1))) isalmost periodic, and hence
(p(m) ) is almost periodic.

Let L(e) = {meZ:p(m)>e). Sincealleigenvaluesof S of modulus
one occur in complex conjugate pairs, we have p(m)>0 forall me Z. Sowe can
choose e >0 sothat L(2e) £/0} Since p(m) isalmost periodic, there is a
relatively dense setof translation numbers Pc, with gaps of length at most Ke, so that
if re Pe then forany me Z, wehave Ip(m+r) - p(m)I<e. Soif
me L(2e) and re Pc then p(m +r)>p(m) - e >e andso m+r€ L(e).
But L(2e) £ L(e), sowe concludethat L(e) isrelatively dense in Z with gaps
of length at most 1”. Thus

¥,e_nnp(n-x) £ e n

-n
ne (Lo + Qriw>~{0}
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But (L (e) +x)r*(IKIu {0}) is relatively dense in Wu {0} with gaps of length at
most Kg, and so

-nh r KEh - Keh

e £ , <
ne (L) +x”n (NulOl) r-1

LS

—Ah "
L e p(n-x)> ee >0 for all values of x in the positive integers.o

For our corollary of theorem 3.1, we make the following definition :

Definition 3.3 We say that f( x) has average order g( x ) if
iy f<p> 1 as x—>
* on-l o «<">

If this is the case write f * g.

Corollary 3.4 wx) * K(1) —

Cc -1)x
Proof Consider the inequality
i \% nn(n)
K (D
X0 enh
N TAis iS ‘@ilerajC ord&r ' d
> cill, 2t>3. ( TAL/r deft'nif'. on Jgijs

Ay wr X9 )
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H nn(n) ;
| Z K@) i-/—
pe U pc -1
1 X
1 z | K(p) (3.8)
x | n-1 peU\{1} pe -1

The first term on the right hand side of (3.8) tendsto 0 as x—>00 by
theorem 3.1. If p6 U\ {1} is nota rootof unity the we may apply uniform
distribution to deduce that

L \/.' d‘ —» 6 as x—>00.
x n-I

Now suppose p€ U\ {1} isa k* root of unity. Consider the equation

The first term on the right hand side of (3.7 ) equals 0 since pk - 1. The second
term isa sum with at most k terms. Thus again we deduce that

i YX o — ¢ as x—so0.

x n-I
Combining the above observations, it follows that the second term on the right hand

side of (3.8) tendsto 0 as x—>00. Hence the result. O
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Remarks
00 n
(1) Ifwe had substituted G (z) = exP — 6n in (3.1) then we would have
obtained on * enh as n —»oo.
(2) When S is hyperbolic, we obtain
h hx
(x) ~ —— as X —» 00,
(e - 1) ~

which coincides with the results of [5]
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Chapter 2
Asymptotic formulae for Lorenz

and Horseshoe knots
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Asymptotic formulae for Lorenz and Horseshoe Knots
BY

SIMON WADDINGTON

Abstract We derive various asymptotic formulae for the numbers of closed orbits
in the Lorenz and Smale horseshoe templates with given knot invariants, ( specifically
braid index and genus ). We indicate how these estimates can be applied to more
complicated flows by giving a bound for the genus of knotted periodic orbits in the
*figure of eight’ template.

80 Introduction

In this paper, we study the knotted periodic orbits of expanding semiflows on
certain branched two-manifolds ( called templates ). This work is motivated by the
papers of Birman and Williams, [BW1 ] and [BW2].

In [W1), abranched two manifold model was proposed as a model for the full
Lorenz attractor. This branched two manifold ( together with an expanding semiflow )
preserved the knot types of all periodic orbits of the full Lorenz attractor. In [BW1 ],
an effort was made to determine which families of knots actually occur as periodic
orbits in the case where the Poincar6é map T on the branch line had the form
TE£-2$ Cmod 1).

Here we take a more quantitative approach, to give asymptotic formulae for the
numbers of closed orbits with given, well known, knot invariants. Specifically, we
give aprecise formula for u{x:b(x)£ m} and (upperand lower) bounds for
#{t:g(t)Sm ). (b(x)denotes the braid index and g( x) denotes the genus of a

generic closed orbit t ). In all but exceptional cases these numbers are finite, for m
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fixed. Our results hold for a wide choice of Poincar6 maps. We make extensive use of
the kneading theory for the Lorenz attractor, developed in (W1 ]. An essential
observation in all our results is that the link of knotted periodic orbits which exist on a
given template depends only on the kneading invariants. Alternatively, two Poincar6
maps with the same kneading invariants have essentially the same link of knotted
periodicorbits.

Next we consider a different embedding of the Lorenz template, called the Smale
horseshoe template. In the case that the Poincarfc map takes the form
TE£=2i;for 0E£EL£E£\, and 2(1- ") for £<£ £ 1, this template has the same
link of periodic orbits as the suspension of the well known Smale horseshoe map. We
adapt the kneading theory for the Lorenz system, and modify our estimates to give
asymptotic bounds on # {x:g(x)£m}

In [BW2 1, Birman and Williams showed that, given an arbitary Axiom A - no
cycles flow on S3, one can collapse along the local stable manifolds to obtain a
template, together with an expanding semiflow. This can be done so that the periodic
orbits correspond one-to-one and this correspondence is up to isotopy.

Ina well defined sense, all these templates all these templates can be constructed
from Lorenz and horseshoe templates, and so estimates on Lorenz and horseshoe knots
can be used to study the knotted periodic orbits of more complicated flows. We
illustrate this last statementin §6. Using the fact that the ' figure of eight' template
(extensively studied in [BW2)) contains a composite of two Lorenz templates, we
outline how to give a lower bound for # {t :g( t) £ m }, using our previous

estimates.
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81 Preliminarie»

Let K beaknotin S3. By a resultof Artin, every knotin S3 can be presented
as a closed braid m£, where b e Bn for some n. The least such n iscalled the braid
index b(K) of K, and is a knot invariant. Another important knot invariant is the
genus g(K) of K, which is defined to be the minimal genus of any Seifert surface
spanning K

Let H1 denote the branched two manifold model of the Lorenz attractor

(c.f. [W1]), which we have illustrated in figure 1.1.

[¢] G
figure 1.1 figure 1.2

Let t:Hl—H1 (fort”~ 0 ) denote asemiflow on HL which is downwardly
transverse at the branch line I, which we parameteriseas | =[0,1 ] Let T :1—»
denote the Poincarfc map , which fails to be defined only at the point cg (0,1). (See
figure 1.2 for atypical example ).

Each closed orbit x of <t isaknotin S3. Thus x has a well defined braid
index b(x) and genus g(x).

We now consider the Poincarfe map T in more detail. For P>1, we say
T:1—» isin Lp if
(i) T isdifferentiable forall ££c, forsome ce (0,1),
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(ii) limEtcT(E) - 1, lim~ T(£) - 0. T(c) - ¢, and
(iii) T($)EP forall $*c.

Amap T :1—» iscalled locally onto if for any open interval J, there exists
n

n>0 suchthat KITJJ = I. This property was first introduced in [P1], and
j-0

and was subsequently employed in [Pa]
A particularly simple class of maps in Lp are the B- transformations, which take
theform
T$ " Tp.a(®)’ PS+a (mod 1)
forsome 1<(G£2, a£0 and a + 3£ 2.

denote the space of infinite, one-sided sequences of x's and y's

and let

n (n{xy>» n to))

denote all finite sequences of x's and y's which terminate with infinitely many 0's.
Let X =X|UX2, andgive X the topology induced by the metric
d(u,v) X
n om
where u = (un), v- (vn) and un = -1 ifun=x .and 1 ifun=y.
Define the shift o : X—»X by (a x )n =xml. Let <denote the natural
lexicographic ordering on X . generated by the ordering x<0<y.
We say that k= (kE, k,)e K if k£, k, e X and
(A1) kE<Kkj , and
(A2) kE~onkE, onkr ™K. foralln> 0.
Let K° denoteall k=(kE,k,)e K suchthat k£ 0 and kyjcl

Kneading invariants arise in the following way. Let T g Lp, and for £€ I,
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define
if E<c
ko (") if4*C
if £>¢
and ki(4) = m tu).

The (finite or infinite ) sequence k(%) » kg(£)kj( £ )k2(£) ... e X is
called the kneading sequence of £€ I. Moreover, the map " i—»k(£) is strictly
monotonic, and the shift a satisfies a (k(£) ) - k(T(£) ).The kneading invariant
of T, k=«e m(k]|, kp)€ K isdefined to be the pair (k(0),k(1)). Asequence
k(”) is T-admissable ifandonly if k(0) <omk(£) < k(1) , andeither

omk (£)«0 or fomk(£)<k(1)? forall m>0, (1.2).

( omk(£)>k(0)J

Define the trip number T(w ) of a finite word w of x's and y's to be the number of
'xy' syllables in w. (e.g. T(x2y xy) = 2). Suppose that a periodic orbit x has
kneading sequence w(x). ( That is the finite, aperiodic word of x's and y's, w( x), is
repeated indefinately). Then define the tripnumber t(x) tobe t(x) - T(w(x)).
We say that k € K is linearly realisable if there exists a P-transformation with
kneading invariant «.
Amap Te Lp iscalled Markov if there exists a finite set { , we )c |
(containing ¢ ) suchthat T({ N AP)e {r.Si.— >
( Strictly , we should write T(c+) - lim”~ T(5) and T(c") « lim~c T(ij)).

Let A bea kxk matrix whose entriesare 0 or 1 according to the rules

A(ij) . fl if T(ii.5i+1) = <$,.(*,,) (1.3)
[o if T(5i.ti+1)r.(tj.5j+1) - 0

Let Z, {W6 | Jfl...k> A(w,.wn+1) 1, forallnf£0}
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and define ametricon EA by

The shift a : LA—»EA is givenby (a w)n=wnt+l. We defineamap TT:SA—»

by #w) = O Tnt ,iL, " 1. Then 7 is asemiconjugacy na =T it,
n n
n«0
and 7 is Lipschitz ( by use of P in the definition of metric). The map n is one-to-

one except for a countable set of points, where it is two-to-one.

82 Markov Partitions

In this section, we derive conditions for the existence of a Markov P-
transformation realising a given kneading invariant. Our main result ( Proposition 2.2)
refinesaresultin [W2J.

Definition 2.1 [G] Anelement « e K iscalled renormalisable if there exist
finite words Wj , w2 of x's and y's respectively, with respective lengths Nj , N2 with
Nj + N2> 4 such that

ko= wiw™wii w3 . and 10 = wowiMiw™h w™s
Let the shortest ( non-trivial) such choice be (WjM , w2 ) of lengths
( N2(D ). Then replacing wj** by x and w2* by y, we obtain a
renormalised kneading invariant If this process can be repeated ntimes , but not
n+| times, (using the shortest possible choice at each stage ), the kneading invariant
is called n-renormalisable. (If T e Lp then nis finite, [G 1). If K is not

renormalisable, itiscalled prime.
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Proposition 2.2 Let K= (ke ,kr)G K and suppose that K is prime, and that
each of kE, ky is finite or eventually periodic. Then K is linearly realisable by a map

Te Lp,and T isMarkov.

The significance of Ky being prime is that it is a sufficient ( and necessary )

condition for T to be locally onto.

Lemma 23 [G] Let kt e K be the kneading invariant of T e Lp. If T is
primethen T islocally onto.

Lemma 2.4 If Te Lp is locally onto and Markov then the transition matrix A is

irreducible.

Proof By hypothesis, T is locally onto, so for each interval Ji = (~ , £i+1) in the

i
Markov partition, there exists nj>0 such that tj T = 1, fori=1,. k.

j-o
Thus in particular, forany 1£i,££k, JEn T™Jj »~ 0 . Hence
) i-0 )
i i
0 * T™(Jn UTjj) - T_ni(JE)n T'nj(U TIj)
j-0 ) j-0

i
- T-(¥E)n U T-i(J) ¢ T-mE)ndj,
j-0
andhence T ™ (JE) o Jj ¢0. Thus A (t,i) £ 0 and ,since i, £ were
arbitary, A isirreducible. O

Proof of Proposition 2.2  Suppose that K is prime, and each of k£, k, is finite
or eventually periodic. That is, each sequence is of the form w, we X2 or uv

where u, v are finite sequences of x's and y's, and v means that the finite word v is
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to be repeated indefinately. Thenthesets L = {on :n”0} and

R = {onk,.:n£ 0} are finite. Introduce two new points 0 kt and 0 k, to X. Then
let P=Lu Ru {Okj.Okj} ,sothat o P £ P. Write P = {T0,..., Tk}
where T0<rjj <..< rik.

Let Se Lp be any realisation of K and let ~i6 I,i=1,..,k , satisfy
k(Jjj) =rij. Soin particular, 0 =" <..<fk=1 S({" ... £k}) £
{~0,, "k}, and S(c“)=1, S(c+)= 0. (Here k(c")- Ok, and
k(c+)n ij ).

Definea k xk,0-1 matrix A by (1.3). By Lemma2.3, S is locally onto,
and so by Lemma 2.4, A is irreducible. Thus by the Perron Frobenius Theorem for
matrices, A has amaximal positive eigenvalue X with positive eigenvector
e = (ej,... ,ek), (i.e. >0, foreachi). Normalise e sothat ej+...+ ek=1.
Then choose points p0...., Pje | suchthat p0=0, Pj=Q + ... +gj
fori=1... k. Choose T to be the P-transformation T~ = X* + pr (mod 1),
where r = min {j: A(Lj)£E0} DO

S3  Asymptotics for Braid Index

In view of Proposition 2.2, we will now consider a locally onto, Markov P-
transformation T - Te=- Let icTe K denote the kneading invariant of T.
Define f : 1—1"by

fix) -

0 otherwise

Lemma 3.1 If xt e K° thenthereexists N >0 suchthat fN~ 1,
(where f*« f+f«T + foT2+ .. + foT 1)
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Proof Suppose kt g K°, so kt *0 and k,* 1. Thus T(1)* 1 sowe may
choose Nt sothat T4 (5)<c forall £€ (c, 11. Similarly, since T(0) * 0, we
may choose NO” 1 sothat -i"0O(£) >c forall £6 [0,c). Thusforall £g,
Xj(T>£) = 1 for some O£ j£ NO+ Nj, where

J- ((@-a(l+P))p-2(1-a)PJ),
since J is precisely the interval { 2g [0,c): T(2;)>c} Thusforall %e I,
XNO* Nt+1(~) >0 thatis fN2! for n -NO+N ,+1. O

Remark 3.2 The condition «« e K° (thatis x¢« £ (0, w), or (w, 1) forany
we X) may be replaced by the more qualitative assumption that T has no sources.
(Apoint zg | iscalled a source if there exists an open interval V3 z, V 5 |
such that {z} = "V * T“nV )

Definition 3.3 (i) [W31 Foreach sequence ij,..., ir (r £2) ofdistinct
je(1,2... k} such that the product
A(it,i2) A(i2,i3) ... A(ir,ij) * 0,

let (ij,i2..... if) be the equivalence class undercyclic permutations of this r-tuple.
These equivalence classes are called free knot symbols and the indices ij ,i2,..., i,
are called nodes. A free link symbol is a product of free knot symbols, no two of
which have a node in common.
(ii) Let tp:ZA—»{0,1 } bedefined by tp(w) =f( 7t (w)). Define the trip
number t(y) of the free knot symbol y = (ij,i2,...,ir) by

t(y) = qg*ij,i2)+ <(i2,i3) + .. + (ir.»)
For a free link symbol 8 = 8j 82 ... 8p , where 8j,..., 8p are free knot symbols,

define t(8) = Nt(8-) .
i-1
Similarly, let £(y ) denote the number of nodesin y and let

1(8) - £ t<8).
i-1



Alsolet s(y) =j 1 if ris even
/0 if r isodd

and again let s(8)

Example For k = (x3y0,y3x0) , we obtain the matrix

01100000
00010000
00001100
00000011
11000000
00110000
00001000
00000110

and the free knot symbols are
(12475),(1248635),(124875),(135),(136475 >,(136487),
(235), (2475 >,(248635), (24875), (486),

and the corresponding free link symbols are all the fire knot symbols together with the
products

(13S)(486) and (235)(486).

Tireoren 3.4 Let Ke K° beprime and kj,kj be both finite or eventually

periodic. Let x =x(A) denote the largest positive root of the polynomial equation
Xk + £ (-1 )e»e*» x*-*» e-A(M) - 0 (3.2)
y
where the sum is over all free link symbols y. Let X>0 be the unique root of the

equation x(A) = 1,in A. Then

#{x:b(x) S m} as m—peo. (3.3)



through the positive integers.

Proof Let « e K° , «x =( ,k, ) beprime and suppose «kt , k. are both either
finite or eventually periodic. By Proposition 2.2, there is a Markov linear realisation
T of K

Introduce the 'braid index zeta function' for T,
Cr(s) = nx U -c-~V (3.4)

forany se C, whenever the infinite product converges. By [FW ], Corollary 2.4,
b(x) = t(T) where t(x) is the trip number of x. ( To apply this result, we require
that each Lorenz knot defines a positive braid b€ Bn and b = a A2, where A2 is
the full twist braid. We postpone this to Lemma4.l.) So kt(x) = fi,(£),
whenever TnE = £ , n=k p, and p is the leastperiod of

We may rewrite (3.4) as

0
&r(s) exp r?<1 I. . )|:(ixer--) e-,1"ft)
Using standard arguments in symbolic dynamics,
W») - s).
for {s:Re(s) >1-e,sjtl}, where e>0. ByLemma3.1, fN~ 1 for some
N, so we may now apply the non-weak mixing case of the main resultin [P ] to
deduce the formulain (3.3).
In particular, X>0 is the unique positive root of Pressure (- A<p) = 0 , [Pi.
Definea kxk matrix BA by BA(i,j) = A(i,j) e Aiin , whichis
irreducible by Lemma 3.1. Then

det (Ba-x1) - X_(-1)"80" (BA-x1)(1,p(D) .. (BA-xI)(K,p(K))
P

<-I)kxk + 1(-1)"> +k-"> xk-£Y) e"A(Y) (3.5)
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where the sum is over all free link symbols y. To prove (3.5), observe that there are
precisely k-£(y) symbolsin {1,2,... .k} which are not nodes of the free link
symbol y. Foreach such symbol j say, A(j,j) = 0, by virtue of the fact that we
chose ¢" ,c+ to be endpoints of intervals in the Markov partition.
Write Y=YI Y2 « ¥ asa product of free knot symbols , where

Y] = (kIW,...,kdG)) and let k~r+17,..., k™ Nr+*) be those symbols in
{1,2,...,k} which are notnodesof y. Thenif p =y,

( BA -x ) (Lp()) (BA-x1)(2,p(?2)) ...(Ba-x1)(k p(k))

- (BA-x 1) (k,<». YL(KIQ))... (Ba- x u y (). Yr(kdi<)>)
. (Ba- x 1)( TF,(k<MI>))... (Ba- x 1) (

= (-1)k-tly) xk-Ky) c'A™i) c- AKR) e- At(Y)
- (LhHk-«(Y) XeE<Y) e"A *f)

which proves (3.5).
Let x(A) denote the largest positive solution to
det(BA-x1) - 0
(thatis x(A) - cPressurc(- A9) , c.f. tP1). From (3.5).we seethat

x = x(A) is the largest rootof
0 - (-Dkxk * 1 (.'/»e >m-e» k-W GCAIM
Y

which when rearranged gives ( 3.2). Finally, the equation x(A) = 1 hasa

unique positive solution A=X (using [P] again). O

Remark 3.5 Wecanreplace #{x:b(x)<m}by #{x:b(x) =m}in
(3.3). This shows, in particular, that all large numbers are braid numbers for closed
orbits.
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84 Estimates for the genus of Lorenz knots

We continue with the assumption that TmTpa is Markov with kneading
invariant ket - (kt,kr) e K°. Define non-negative integers gf .qr by
gt - min {n:(onkt)0 - y }, and
gr = min {n:(onk,)0 = x }
We will require these numbers in the proof of Lemma4.1, and in Lemma4.2.

The following lemmaextends a result in [BW1]

Lemma 4.1 g(x) £ t(x)(t(x)-1) forallclosed orbits x.

Proof We use the' positive braid representation " for the Lorenz attractor HL, given
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We remark that any closed orbit with trip number t has a representation as an
elementof Bt,and further, this representation is as a positive braid.
Let y denote aclosed orbit with kneading word
w(Y) - f x(xy)> ifq,2qr
I (*y)ty ifg <aq,
with trip number t(y )« 1
First note that w(y ) is allowable. Suppose first that £ qgr. Observe that
since T>1, either qt>1 or gr>1. Thuswe may assume g" > 1. If the word
w(y) isnotallowable then
x(xy)l < ke
by (1.2). Thus T(0) <c and T2(0) > c, and so

« < 31 a+aP > -~a

from which we deducethat ap 2 > 1. Usingtherelation oc+p£2, we obtain
-P3 + 2p2-1> 0

However, this is impossible if p>1, giving acontradiction. If g* < gqr , wecan

prove that w(y) isallowable in a similar way.

Note that y has minimal kneading word length over all closed orbits x with
t(T) - t. Further, byincreasing the word length (keeping t(t ) fixed) canonly
increase the number of self crossings c(x) of x.

Atthe branch lines Bj,B2, y has t- 1 crossings, and the full twist C
contributes t(t- 1) selfcrossings. Thus c(y) - t2- 1. Hence for any closed
orbit x with t(x) m t,

c(x) £ t2 - 1
Using the formula
2g(x) » c(x) - s(x) +1 (4.5)
foraclosed orbit x , represented as a positive braid on s(x) strands (BW11

g(X)ES(t(x)2-1-t(x) +1) = t(x) (t(x) - 1)

for any closed orbit x. O
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We now prove an inequality in the opposite direction.

Lemma 4.2 g(x) £ ~ (Qf +qr -1)t(x)2-t(X) + $ forany

closed orbit x.

Proof Let y denote the closed orbit with kneading word
w(y) foXxyv>(x y* , = R
I (xa<y'r)m>xq-* yq  of qr < <
of trip number t(y) = t, (since gr>1 or qt>1).

This time, w(y) may not be allowable as the kneading word of an orbit of T.
However, it is realisable, for example, as a kneading word of the map
Ni—»2 £ (mod 1). Further, we can estimate ¢ (y ) directly from w (y), without
relying on a particular realisation of w(y).

Note that any orbit x with t(x) =t with word length greater than that of w(y)
isdefinitely not allowable by (1.1). AsinLemmad4.1, decreasing the word length
of w(x) canonly decrease c(x ), (keeping t(x) fixed). Thus for any closed orbit
X, we have

c(T) S ft(X)(t(x) -1) + q.t(x)2 + (q,-1)t(x)2if
Vi(x)(t(x) —1) + (gqj-1)t(t)y2 + q, t(X)2 ,if graqj

- t(x)2(q, +ar) - t(x)
and hence by (4.5),
S(X) £ i (t(t)2 (g, +qr)- I(X) - t(x) +1)

- i t(X)2 (q{ + qr)- t(X) + m]

For real valued, non-negative functions f, g, with g£c>0, write f» g if

ar2q,



Our main result for Lorenz knots is

Theorem 4.3 Let k= (kE, kj)e K° beprime. Let T beany realisation of K,
and let ¢ =qE+ qr, (c £ 3). Then thereexist aconstant A>0 such that

as m —>m (4.6)

Proof Let K= (k£,kr)eK®° beprime. Firstsuppose k = (kE,k,) has
k£, k. both either finite or eventually periodic.

The kneading sequences determined by k define the genus of all closed orbits,
independent of the realisation map T. So we may choose T tobe a Markov
3-transformation T = Tpa by Proposition 2.2.

We consider the right hand inequality in (4.6) first. If g(x) £ m, then by

Lemma4.1, t(x)2 -t(x)£m , andhence
t(t) £ i+ i +4me
Hence, by Proposition 3.4,
3A
2 A-fm
#{x st(x)(t(x)-1) £ m } € € as m—>o.

(ex-1) 7™

Since {x:g(x)Em} ¢ {x:t(x)(t(x)-1)Em } , wehave






»{p>:g(pa) " m} < #(x:g(x)Em} £ #(yn): g(yn) £ m}
.(4.7)

where /") (respectively p(n)) denotes aclosed orbitof U(n) (respectively V(n)).

Let X(°) (respectively p(n>) be the constants givenby (3.2). Then X" is
monotonic decreasing, since by (iii) and (1.2 ) we are deleting closed orbits as n
increases, and bounded below (by pW ), so X(*) AX. Similarly, p(*) t X and
so in particular, X>0.

Let ¢ = qt +qr (with respectto K). Then applying Proposition 3.4 to the left
and right hand termsin (4.7 ) and letting n—w»oo gives (4.6 ). O

Suppose now that k £ K°. Firstassume that kj = 0. Then forany n” 1, the
closed orbit with kneading word w(y) = xn y isallowable. Moreover, y is
unknotted as can easily be seen from the diagram below (figure 4.3), by first
unlooping the x - loop and the the y-loops. Hence g(y) =0, and thus
#{x:9(x)=0) isinfinite.

Similarly, if kj= 1, we obtain the same result by considering the closed orbit

with kneading word xyn. Thus we have proved

Proposition 4.4 If tc£ K° then #{x:g(x) =0} is infinite.



55 The Smale horseshoe template

Wec now apply the techniques developed to analyse Lorenz knots to study the

knotted periodic orbits of the * Smale horseshoe template * as illustrated in figure 5.1.

° cr

figure 51 figure 5.2

The template Hh may be regarded as a differentembedding of the abstract
Lorenz template.

We consider Poincarf maps T :1—»l of the form

(i) T isdifferentiable for x ~ c, forsome ce (0,1),
(ii) T(E)—»1 as ;tc, T(l)- 0, T(c)=c,
(iii) T(£)*p forall £6 (0.c), and T($) £ - p for all %e (c, 1),

for some (> 1, inwhich case we write T e Mp. ( Forexample see figure 5.2).
In this case a P-transformation takes the form
TP.,(*) -JPg +a for 0StSpda(l-a)-c
(p(1-9%) for c<$£1
where 1< P£2 a £0and a+PE£2

Using rule (1.1), eachmap T € Mp determines a space of kneading sequences



Y ¢ X. Defineanorderon X asfollows. Let
6(w) = ff~1 if w=x
1 if w=y
and extend this to arbitary fintte sequences of x's and y's by
o(Waw, ...wm) - 9(w0) O(wt) ... O(wm).
Given w, u , choose m suchthat wm £ um but W = U for j<m. Let
wEu if  (um-wm) O( wOwj ..wm-1) > 0 , ( taking 0(0) = 1
when m =0 ). Thisorder is then the order on X induced by the natural order on the
branch line 1.
The kneading invariantof T , X=( ,hr) e K isdefined tobe the pair
(k(0), k(T(c+))). Let K be the space of such sequences.
For £e I, asequence k(£)e | is T-admissable if and only if
he £ omk(G)
am+lk(C) £ yh
h, £ o™+ Kk($)
amk(%) £ yhf
or amk($) - 0 it *P'(")-c

For a finite, aperiodicword w, let R(w) be the number of yy syallables in the
word w. For aclosed orbit x with kneading word w(x), let r(x) = R(w(x)).
The kneading invariant x iscalled prime if the kneading space Y determined by

X has the property that, for every non-empty cylinder C, there exists N such that

Proposition 5.1 Let x “ (hcehr) » supposethat x *sprime, and suppose
thateachof hj.h, isfinite or eventually periodic. Then T is realisable by a

P- transformation Te Mp, and T is Markov.
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Proof As in the proof of Proposition 2.2, let L - {onkf:n”0},

R = {onkr:n”"O} and set P = LuRvj{OykE£&,Okr}, whichisa finite
setwith a P £ P. Chooseany realisation S of X- Thensince X isprime, S
is locally onto, and hence the transition matrix A is irreducible. Let

e = (ej,e2,..., e) bethe normalised positive eigenvector corresponding to the
maximal positive eigenvalue X for A. Set p0=0, Pj =g+ G_j + .. + Cj
fori-1... k.

Choose T to be the (3-transformation

where r = min {j: I£j<k, A(l,j) £ 0 } and d satisfies
k(pd) - Oyke.O

In view of Proposition 5.1, we now assume that T = Tpa is Markov and

locally onto.

Lemma 5.2 For any closed orbit x,

o) 1 £ (t(T)+ (M) 3(t(x)+ r(x))

Proof Let r:1—pR+ isthe firstreturn time map on |, thatis
r(£)= inf{t>0:(pt(£)€1}. Wenow give a positive braid representation of
the horseshoe template, analogous to that for the Lorenz template. This process
comprises two stages.

Let p denote the unique fixed pointof T, explicitly, p = P'1(2P +a - 1).
Let A denote the closed orbit {<gtp : 0£t<r(p) }. Replace A by two parallel
copies, (i.e. performan 'orbit splitting' along A in the sense of [BW2],
Theorem 2.1). See figure5.3 for the resultof this operation.

Secondly, let T(c+) = z+, T(c") m z~, and cutalong the orbit segments

joining z+ to ¢ and z" to c, (figure5.4). Since z+,z~ do not lie on periodic



orbits, thisoperation leaves the link of periodic orbits invariant.
Rearranging figure 5.4 gives figure 5.5, and hence figure 5.6.



Consider the closed orbit y with kneading word
w(y) - (xy)lyr
which satisfies t(y) - t and r(y) = r.

AsinLemma 4.1, one can show w(y) isallowable. Also, c(y) minimises
c(x) overall closed orbits Xwith t(x) =t and r(x) = r. ( Anyotherorbit x
with the property t(x) » t andr(t) = r must have greater word length, and
hence more self crossings.)

A straightforward calculation gives

c(y) * $t + t(t-1) + $r(r-1)+2t(t-1) +tr+ (t-1)(r —1)

by counting the crossingsat B j,Cj,C2.C3,C4 and B2 respectively,
£ 3/2 t2 + 21r+ 1/2r2 - 3/2r - 21

Thus for any closed orbit X

c(x) | 3/2 t(T)2 +2t(t)r(x)+ 1/2 3/2 r(T) - 21(X) .

Since figure 5.6 gives a positive braid representation of each closed orbit x of <,
on t(x) + r(x) strands, we have by (4.5),
g(T) a 1/2 {3/2 t(x)2 + 2t(x)r(t) + 1/2 r(t)2 - 3/2 r(x)
- 2t(T) - t(t) -r(t)+ 1)

2 0 Ca(t)+i(x))2 - 3(I(t)+r()). O

We now prove an inequality in the opposite direction. We assume, for

convenience, that q£>1, which ensures that T(0) < c.



Lemma 5.3 For any closed orbit X,

g(x) s iili- (Ti)l+3KO +2q(- | )-jf(T)t(t)-]t<t) -ir(T) +1

Proof Given r, t set r1 = nt, where n =[r/t] +1. Let y denotethe
closed orbit with kneading word

w(y) = ( xg* yn+l )t 1 xg* 1lyn+l
with t(Y) - t, and r(y) = r" etr

If w(y) isnotadmissable then we can apply the same trick as in Lemma 4.2.
To maximise c(y ), we 'equidistribute ' the y's amonst the x's in the kneading
word w(y). Then c(y) formsan upper bound for c(x) amongst all closed orbits
x with t(x) =t and r(x) =r.

The full twist Cj contributes t (t- 1) crossings to c(y ), thereat most
(gE- 1)t2 crossingsat Bj, atmost ~rt2 crossingsat B2, atmost
Art(rt-1) crossingsat C2, ~t(t-1) crossingsat C3 and atmost t2r
crossings at C4.

Thus

c(Y) £ (gE-1)t2 + Jrt2 + $rt(rt-1) + Jt(t-1) + t2r

« t2(| r2+32r + gE-$) - irt- |t.
Since a closed orbit with t (x) = t and r(x) = r isaclosedorbiton t+r

strands, we have by (4.5 ) that
g(x) - *(c(x) - t(x) - r(x) + 1)

S (HE)2+ 3r<X) + 2q,- 1) - i i(t)I(t) - 11(ry - +j

forany closed orbit x. O
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Lemma 5.4 There exists acomputable constant 6 >0 such that

6
tt{x:t(x) +r(x) £m3} -~ [
(c-1)

as m —>00. (5.2)

Proof We proceed in a similarmannerto Lemma3.1 and Proposition 3.4. Define

f:1—>i0,1} by f(G) = I]iU~ where

1-q(1 +P)
1

Itis not difficult to see that f¥> 1 for NEgE. Also, f1(£) = r(x) + t(x)
whenever £e | has leastperiod n under T. Let A be the irreducible transition
matrix given in the proof of Proposition 5.1. Let 9:SA—>{0,1} be defined by
tp(w) = f(n(w)). Then we may apply the main theorem in [P] to deduce (5.2),

where 5>0 is the unique root of Pressure (-t<p) = 0. O

Theorem 55 Let x m(he.hr)e K beprime, and suppose that q£> 1. Let

T be anyrealisation of % Then there exists a constant 8> 0 such that

as m —»qo. (53)

Proof Asin the proofof Theorem 4.3, we only need to prove (5.3 ) for
Xm (hE hr) with hE,hr both either finite oreventually periodic.

Using Proposition 5.2, we can choose the realisation T to be Markov and a
P-transformation, t - tm

To prove the right hand side of the inequality in (5.3 ), note that



*{t:g(x)Em} £ #{x:$(t(x) +r(x))2-3(t(x) +r(x))Em}
= #{x:t(x) +r(x)E 3+ J9 +2m }

48 8 -Im
as m—»0 , by Lemma 5.4.
(e'-1)J1 -A”

To prove the left hand inequality in (5.3 ), observe that, since t(x) and r(x) are
non-negative, if t(x) + r(x) £ k then t(x) £ k and r(x) £ k
Hence, by Lemma 5.3,

g(t) S I 4+ |k3+ i (q(-1)k2- 2k +i

Thus, we have that

#{x:9(x) Em } £ #/ Ax:t(x) +r(x) £

/— % (e 1>+ 3 {l (q(—1)2+«+m

J 2

HV=

as m—»d0 byLemma 54. O
(c - 1) yfm

§ 6 An estimate on the genus of figure of eight knots

This section is a more informal discussion in which we indicate how the results in
84 for the Lorenz template HL can be applied to analyse the knotted periodic orbits
of amore complicated flow. We consider the ‘figure ofeight' template Hg, which

was extensively studied in [BW2], and isillustrated in figure 6.1. Let < denotea



semiflow on Hg, with Poincar6 map T along the branch line | = Iju 120 13 14.
(Asusual I-[0,11]). Atypical example of a Poincar6é map T is given in
figure 6.2. For simplicity, we always assume T is piecewise linear and that

iri>i.

figure 6.1



Let (aj_j,aj), for 1£i <8, denote the intervals on which T is continuous.
For ~e I\ B ,where B = T n{aQ,..., a8}, define
ke (™) - X if Seiaj.j.aj),
andlet Iq(£) = la(T*%). Then let

St - {k<$) - (kj<r> :$el } S X - nn0>{x,...x8}

As usual, there is a shift operator a :zy —»zy definedby (a w)n = wn+l, such
that k(T$) - ok (0.

Define an order on X as follows. Define

Extend this to finite sequences by
6(wOwt ...wm) - 0(w0) O(w,) .. O(wm).
Given w, u , choose m such that wm £ um but W = U for j<m. Let
wSu (um”"wm) & wow, ..wm1l) > 0 , ( taking 0(0 ) - 1
when m =0 ). This order is then the orderon X induced by the natural order on the
branch line 1.
It is well known that the limits
u® . limiU[ lii«<B k($) and V® - lim5Tvi<B k(t, )
exist, (for 1£i£8), and u®, v® e zy. (These sequences Qre. called
kneadingparameters). Further, Zy can be expressed as
Zy = {we X : u® £ okw <v® if wk=x{, forall kSO } (6.1).
We define a new template K with semiflow \yt and Poincard map S :J—»J

asillustrated in figure 6.3 and figure 6.4.



figure 6.3 figure 6.4

Again, we assume S is piecewise linear, and 1S'1> 1. We outline the proof of the

followinglemma.

Lemma 6.1 For asuitable choice of Poincarfe map S, the link of periodic orbits of

yton K is isotopic to a sublink of the periodic orbits of < on Hg.

Proof (Outline). We describe a sequence of operations which convert Hg to K.

Modify TI (aQ,at) sothatitmaps (aQ,a}) linearlyonto (a6,a7), deleting
the redundant partof the template, to give a new Poincartmap T . Let

u<) - limAjA kj(n) and WO> = lim » kj (£)
be the new kneading parameters. Further, itis not hard to see that
uQ) £ Q> £ w> £ V<),

Thus, we have c

We now repeat this operation of the pairs of intervals (a6,a7) and
(ab,T(a6+)), (aj,a3) and (a4,a5), (a4,a5) and(a5,a6), toobtain the
template K' illustrated in figure 6.5, together with kneading space Lc Ly.



It is easy to see that the template K' can be isotoped to the template K. Sinceall
Poincarfc maps were chosen to be piecewise linear, the Poincaré map on 1j u 12 takes
the form illustrated in figure 6.4.

Finally, since the kneading sequences, together with the ordering determine the
links of periodicorbitson K' and Hg, itfollowsfrom ZcLp thatthe link of

periodic orbitson K" is isotopic toa sublink of the periodic orbitson Hg. O

The standard Lorenz attractor HL or lefthanded Lorenz attractor, isas illustrated
in figure 1.1. Arighthanded Lorenzattractor HL' is defined to be the mirror image
of a left handed Lorenz attractor, (i.e. they - arm crosses over the x - arm at the

branch line 1).

Lemma 6.2 The periodic orbits of on K contain the composite of an arbitary
left handed with an arbitary right handed Lorenz knot, (the left handed (resp. right

handed) Lorenz attractor having kneading invariant Kj (resp. k2)).
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Proof We observe that the proof of Proposition 6.1 in [BW 2], which concerned a

specific choice of S, can be applied to arbitary Poincari maps S. O

From now on let po( Hg, 4t) denote the link of all periodic orbits of the
semiflow g on Hg. We use a similar notation for the other templates. Let (pj )t,

(p2)t be semiflows on HL, HL' with respective kneading invariants Kj, k2.

Theorem 6.3 Suppose that the kneading invariants Kj, k2 given in Lemma 6.2

areprime and satisfy Kj, k2g K°. Then there exist positive constants M, d such

that
#{x:g(m)Em} » M © (62)
Jm
where x denotes ageneric closed orbitof <r
( Explicitly, M = — and d - JI (-"i- *

where X, G are the constants associated to the Lorenz attractor, with kneading

invariant Kj, by Theorem 4.3 .)

Proof By Lemma 6.2, thereisasublink L £ po (K, \yt) suchthat L consists
precisely of all sums Xj+x2 where Xj g po(Hr,(Pj)t) and
~2g po (HI'", (p2)t). Sinceeach right handed Lorenz attractor is the mirror image
ofaleft handed Lorenz attractor, and a knot and its mirror image have the same genus.
Theorem 4.3 holds for right handed Lorenz attractors. Also, note that if x =Xj +x2
then g(x) - 9(X) + g(%2).
Thus,
* {xg po(Hg, () : g(x) <sm } £ n {xgpo(Kv,): g(x)£m}
by Lemma6.1,



£ tt {xepo(Kyt):x =xt+*,X e po(HL,(pj)t), Xje po(HL", (p2)y,
g(tj +>x)~m }
by Lemma 6.2,
i » {tepo(KV,)):t - N otte po(HL,(p,)t), e po(HL.(p2),),
g(x1)+g(t2)Sm >

i {t, 6 po(HI.(p,\):9g(x,)S Iml
.« <T, s po(HI,(pj)t) :g(l4) S } (6.3)

Applying Theorem4.3to (6.3) gives(6.2). O
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A Chcbotarcv Theorem for Group Extensions of Negatively
Curved Manifolds and an Application to Twisted Orbits

BY
SIMON WADDINGTON

Abstract We prove a dynamical version of the Chebotarev density theorem for group
extensions of geodesic flows on compact manifolds of variable negative curvature. Specifically,
the group is taken to be the infinite weak direct sum of a finite abelian group. We sketch an

application to twisted orbits which extends a result of Parry and Pollicotl.

SO Introduction

In the last several years, there has been a great deal of interest in proving
asymptotic results for closed orbits of hyperbolic flows using an analogy with theorems
inanalytic number theory. Inparticular, the Chebotarev Theorem describes the way in
which primes in anumber field splitin a finite extension field. The analogous situation
for hyperbolic flows is to consider covering or extension spaces under the action of the
group G and study the distribution of the lifts of closed orbits in terms of the 'Galois
group ' G.

In [PP2], the group G istaken to be compact (and in particular finite), and in
[KS], [Pol], thegroup G is Zd for some d £ 1.

More precisely, in [PP2], it is proved that if (ot isa weak mixing Axiom A
flow with topological entropy hand G is a finite (abelian) group , then to each closed

orbit x of length X(X ), one can associate a ' Frobeniuselement ' <x>e G and

1. eht
#{x: X (x)Et,<x> =¢} - 8O y T aS t—>0°%
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In this paper, we extend this result to the case where G is the infinite weak direct
sum of a finite abelian group H. ( In particular, G is not compact, noreven finitely
generated ). We show that if <t isa geodesic flow on acompact, negatively curved

manifold, thenforany ge G,

u{x:X(x)Et,<X> * g) ~ r-7JI7 eht:-as t—* oo
IHI  (ht8

The proofof this result reduces to a problem in shifts of finite type, using
Bowen's modelling theory. We first prove the theorem in the case H is cyclic and
deduce the general case in §7.

We definean L-function, similar to those inanalytic number theory, and use an
infinite-dimensional version of the Morse Lemma to analyse its analytic domain. It
turns out that the L-functions have the form (const.)(s- 1) log(s—1) at s= 1
We prove a generalisation of the Delange-Wiener-lkehara Tauberian Theorems to
deal with behaviour of this type. We use the Tauberian Theorem to deduce the formula
given above, in 86.

The final section contains a discussion on twisted orbits, in which we give some
ideas for an application of our main result, and is a subject of further research. We
conjecture that, to each closed orbit x , one can associate a polynomial T(x) € Z2[t]
which reflects the changes in orientation in the unstable direction along x. If the

unstable bundle Eu is not orientable, then forany fe Z2it],

#L{x: X (x)Et, T(x) = f> ~ L —h—l- as t—moo.

(ht)3

This result would improve an earlier result of [PP2], where it is shown that
asymptotically half the closed orbits are twisted / untwisted. Inparticular, itreflects

the fact that the closed orbits are twisted in the manifold in a very complicated manner.
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S1  Background

Let A bea kxk, aperiodic, zero-one matrix and define

[oe]
1A - {*6nn_m ...... k>: A<*,e*n+l>" 1 forall nil 1
and give XA the Tychonoff product topology. Let a : £ A—#LA be the shift
homeomorphism givenby (a x)n = xn+l. Let a e (0,1 ), and let Fa denote the
space of real-valued. Holder continuous functionson £A (withnorm Il . lla as in
[PP3 1), and let r:SA—pIR be strictly positive.

Define

= {(x.t) e fa«IR : OStSrU), <xr(x)) ~ (ax.0) }

and asuspended flow otr:LA—>SAr by a,(x,s) ®m (xs+1), subjectto
the identification. Let m denote the measure of maximal entropy of 4t. Then
m = (px£)//rdp, where p. is the equilibrium state of -hr and £ is
Lebesgue measureon IR

Two functions gj ,g2e Fa are said to be cohomologous (written gj ~ g2) if
there isa continuous function k e Fa suchthat gj = g2 + koO - k. Clearly, this
defines an equivalence relation on Fa . A function which is cohomologous to the zero
function in Fa iscalled a coboundarv.

Let H bea finite additive abelian group with the discrete topology. Then the
directsum ©neZ H forms a group under the addition rule
(gn) + (hn) = (gn + hn), and inherits the Tychonoff product topology from H.
Let ©neZ* H denote thesetofall x= (*,)€ ©,e* H suchthat xn=0 for
all but a finite number of indices. Then G = ©nej* H isa subgroup of
®nel and is called the infinite weak direct sum of H. Also, G has the
subspace topology from ©nez H, and is locally compact. A convenient way to
representelements of ©ne  H isas elements of the module H11,t 1J of finite

Laurentpolynomials, with coefficients in H.
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iemr © 3}
Let C < d
©) mez NI
which is a Hilbert space when given the inner product
6m Rm
m
<0, p>
p ez L
Let H. Il be the norm induced by The real Hilbert space CM(IR) is

defined in the obvious way. ( The proofs of completeness are the same as for t2(C)
and t2( IR), except for the inclusion of the weight M*m*).

Consider R = Z[t,t ], regarded as an additive abelian group. The dual /R§ is
isomorphic to IT2, where M2 » { 0-(0 m)m€2: Ome IT. forall me Z },
(and more generally, if Rd = zd[t,t 1), then Rd a (Td)2 ). The space T2
has the subspace topology induced by the inclusion 12 cr t2M(R ). This is
equivalent to the Tychonoff product topology from T.

Now let Qm = (Z/M Z)[t,t4] ,( whichisisomorphic to the weak
infinite direct sum  ©n6j* (Z/ M Z), as an additive group ), which has the dual
group Qm isomorphicto (Z/M 1) ‘. By noting that
(Z/IMZ)2» ({0.1/M.2/M
(Z/ MZ)2 as asubgroup of T2. We will use the notation ~ Xe *Qm —*S1
(where 0€ (1/M Z)T) todenote an element of (A)M.

M-1/ M} ,+), we may regard

82 L-functions and G-extensions

Let S denote acompact C° compact, negatively curved surface and let
<t : M —4M be a geodesic flow on the unit tangent bundle M = Tj S. We remark
that the geodesic flow is always topologically weak mixing by [AA ]

We briefly recall the construction of G-extensions and Frobenius classes. Let

K be a Riemannian manifold and suppose G acts freelyon M. Let be a flow
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on M such that g - g $t forall ge G. Let p: X —»X be aprojection
and suppose p = qtp. Then $t iscalled the G-extension of qt.

Given a closed orbit x of gt with least period X(x), forany xe X with
p(x)- xe x, wehave p(<dt) x) - x , (usingtheidentity p$t =<P ) In
particular, there exists aunique ge G such that (x) = gx,independent of
choices of x, x. Denote this elementby <x> 6 G, which is called the Frobenius
element of x.

Due to Bowen, forany e >0, we can construct disjoint ( local) cross sections
Tj,T2..,Tk ¢ X with diam (T4)<e , a shiftof finite type (LA,0) and a
continuous surjection 7t: ZA—» VJj Tj suchthat 4({xeLA:xQ=i}) - Tj.
Furthermore, if xe ZA with Xq=i,Xjmj then <X n(x) = o(x)€Tj,
where r(x) - inf{t>0: ¢t7(x) e Tj,somej }

One can extend this construction to show there is a suspended flow
o,r:ZAr—>LAr , a Holder continuous, surjective, bounded-to-one map
N :ZA —*X suchthat n oo,r * qtoN. Further, if ni is the measure of
maximal entropy of a(r, then FI*** isthe measure of maximal entropy for <, and
the topological entropy isrelated by h(<p) - h m h(o").

We can model the G-extension $t of <p using symbolic dynamics as follows.
For ZA = LAXG, define S:ZA—»ZAby d (x,y) - (0ox,g(x)+y).
From Bowen's construction, we may assume g is Holder continuous (c.f. [PP2 1,
88). Thegroup G action G x ZA—>1A isgiven (Yj,(x, Y2)»* (™ Yi + Y2)e
Extend r to r: ZA—wR+ by r(x.Y) * r(x) andlet

ZA = {(X,y.t) e ZAX|R : 0StEr(xY) >
where (x,y,l(x,y)) and (d (x,y), 0 ) are identified. Define the G-
extension 5t by dtr(x, Y.u) = (X, y.u+ 1), subjectto the identification.
Then the G-action gives o =d / G, o,r = dtr/ G. The projection n extends to
fl: 1 A—»X satisfying flod,r m $t° fl.

For G - Qm, we may define the L-function by



L(s.9> - FI U - Xa(<*>) ¢ hx<) )4 (211
X

for (s,0) e Cx(Z/M 1)z, wheneverthe infinite product (over all closed orbits
T of qt) converges.

Then g:LA—»QM , and gn(x) m k<x>, whenever onx» x and
n- kp(x). ( p(x) isthe least period of x). Define kg :ZA—*[0,1) (mod1)
by the relation ~ Xe°g = e2,like for 0e(Z/M Z)*, and note that

ke E Fa-
Then define formally a ' symbolic ' L-function

L(s,0) exp Fl i ,é_ CZ k i Kj(x) - shr'(x)
- n  x€Fixn
forseC,0e(Z/MZ)z.

Using the comparison  IL(s,0)1 £ L(s,0) - £(s), we see that
L(s,0) converges for Re(s)>1 (See [PP1].), Using Bowen's comparison
of closed orbits of <ut,atr, we have that

Lg.(s,0) = H(s) L(s0),
where H(s) is non-zero and analytic in a neighbourhood of Re(s)” 1,
(independent of 0 ).

Now we make an ‘auxil iary' G-extension with G = R. ( This is defined
formally as a skew product extension of at). Let [X) denote the Frobenius element
of aclosed orbit x. Definean L-function A(s,p) for
(s,p)e CxT1 by

A(.,p) - exp i i £ Xp(r"(x>) e"5hr"(,)
n-1 n xeFixn H
where T:ZA—*R. Again A(s,p) is analyticand non-zerofor Re(s)>1
Alsosince R/ QM » (M)R, wemay write [t]= (<x>,(t)), where
(x)€ R/ Qm. Since

Xe<Ix1) - Xq(<x>) xe<(t)) - Xe(<'t>).

A Mer«, f 1S Cha.rac.itr  of- Cnm
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we have L(s,9) = A(s,0) for all 0e (Z/ MZ)2. (2.4)
Extend kp:ZA—»[0,1) to pe Iz by Xp(r(x)) - e2iiikpXx)

Note that L, A have Euler product representations analogous to (2.1 ).

In section three, we will be examining the analytic domain of L(s,0) indetail.
To compute the dependence on 0, itisconvenient to extend L(s, 0) to afunction
A(s,p), for p€ £2m (IR). Since £2M(IR) is a Banach space, we can then

investigate the analytic dependence of A(s,p) on p.

Proposition 2.1 (i) Foreach 0e (Z/ MZ)z, sk» L(s,0) hasanon-
zero analytic extension to an open neighbourhood of Re(s)£ 1, except for poles at
(s,0), where s=1+ia and k™ - ahr/27t is cohomologous to an element
of C(La;Z).

(ii) Themap A(s,0) extends toanon-zero analytic map
{s:Re(s)>1}x£2M(IR) —» <G and further, it can be extended to a meromorphic
function in a neighbourhood of {s:Re(s) =1,s£1} x 2M IR).

Proof (i) Write L(s,0) = £(-shr + 27tik0) and then apply
Theorem 5.6 in [PP31

(ii) Again, notethat A(s,0)= £(-shr + 27tike) ina neighbourhood of
{*:Re(s)21, s*1} x Tz. Write

Tx) - Eoa ()N 3

where a,,,:£EA—»Z, andforeach x€ £A, am(x ) = 0 for all but finitely many
values of m. Define bm:£A—»T by bm(x) = A.a”x) (mod 1),
where Xe (0,1) is irrational. ( This choice is purely arbitrc.”). For each

pet2M(B), set

kDU ) £ + bm<x>>pm  (mod 1),
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(the addition being in IR). Definethemap Cxt2M(IR)—»C by

(s,p) »* £(- shr + 27tikp), wherever this makes sense, and denote this map
by A(s,0). Itis notdifficult to check that this definition agrees with our previous
definition of A('s,0). The analytic domain of A(s, 0) can then be obtained by
applying Theorem 5.6 in [PP31 asin (i). O

Definition 2.3 Define the windine cycle C of <t to be the map
O :£2m (IR)—»IR givenby <X0) = J kq d*.

Lemma 24 0O »0

Proof C-m0 for geodesic flows, due to the existence of an involution which

reverses the direction of closed orbits, c.f. [KS] O

S3  Analysis of singularities

The following is an extension of the finite dimensional Morse lemmaof [M].



We firstrequire a lemma.

Lemma 3.2 Let F be real analytic in neighbourhood U of 0 e £2M( IR) with
F(0) - 1. Then

F\(9> - 1+é ﬁl" y'<&

for some real analytic functions yn definedin U, with

3F
. 0).
ya<on 39, (9
Proof Furit Hot <

i~ t i—» F(-t6) isdifferentiableasa map IR—MR Then

;. <AF«e) n 1 dF (10)
. - 10) e, at
I — dmif£ y

F(0)
31¢  y,.(9) ' H{ A~ <*8>dt*

Proof of Proposition 3.1 By Lemma 3.2, we may write

9.
> - 1+Ji &~ v®
wherethe V,,'s are real analytic functionsin U.

dF.

Since V., (0 =
#(0) dsn

(0) = 0 , wemay apply Lemma 3.2 to each

function yn + 1, giving

V,(0) | vl

for real analytic functions hmn (8). Hence



F(9) - 1 (9).
) mnez g ol
We can assume that ,sincere canwrite Amp - Amn
I,
and then we have Aim = Amn
and
9m On 1
Fc) - 1 - Y 0 -
<9) mnez  yimi+hi nm (U)
(3.1)
1
Moreover. ( hmn(0))mn€2 2 aemaer (0) \ B(0).

andso B(0) isnegative definite.

Since 0 is a non-degenerate critical point, B(0) is invertible in a
neighbourhood of 0. Define D(0) = B(0) 1B(0), and note that, since
inversion is an analytic map of the open set of invertible operators onto itself,
D:U—»L(£2m (IR), 2M(IR)) and D(0) is itself invertible. Now
D(0) =1, (1 =identity operator), and observe that a square root operator is
defined in a neighbourhood of | by a convergent power series. Thus, we can definea
real analytic map C:U—»L(£2M(R),£2M(IR)), witheach C(0) invertible,

if U is sufficiently small, by C(0) = D(0)i
Mo B(0) and B(0 ) are selfadjoint, and so from the definition of D(0),
D(0)* B(0) - B(0) - B(0) D(0)

(where ' *' denotes adjoint ).

The same relation holds for any polynomial in D(0) and hence for C(0) by

approximation. Hence,

Cle) B(e)C(9) - B(9) C(9)2 - B(9) D<9) - B(0),

B(9) . E(9)" B(0) E(9) , where E isdefined by E(9) - C<9) *
Write V(0) = E(0) 0, sothat



<e,Ble)e>= <Ee)b(o)E(e)e,e>= <b(o) v(0).v(0)>

(3.2)
where \j/ is areal analytic map in a neighbourhood U of 0, and
V(-0) - -V (0).
Now B(0) is anormal, self adjoint operator, and so by the Spectral
Decomposition Theorem ( [RSI),
B(°) - \
where ,p2+— are distinct eigenvalues of B(0), P~ isorthogonal projection
onto the eigenspace spannedby e~ ,(ie. B(0)e” = pn foralln£ 1).

Since B(0) is negative definite, <N < .. <0, (see [RSI ). Letting

we have W* B(0) W = -I, and hence

< W(0),B(0)v(0)> - <v(0), W B(0O)W y(0)>
« -<y(0).y(0)> = -1y(0) H2. (3.3)

where yn(0) * (y(0))n forall n6 Z, andeach yn(0) isa linear
combinationof yn's. Thuseach yn(0) isreal analytic in a neighbourhood U of
0 and yn(-0) - -v,(0). Finally, by combining (3.1) - (3.3 ),we obtain
F(y) = 1 - lyn2. o

Lemma 3.3 L(s,0) hasnopoleson Re(s) = 1,forall 0 jcO.
Proof Let P(G) *={<x>sG:xisa closed orbitof ot}, where G * QM

We firstprove P(G) m G.
Let M denote the G-extension of X. Then G actsfreelyon X and



X = X/ G. Let K beacofinite subgroup of G and define X = X/ K, so
that X = (X /K)/(G/K), ie. X - X/ Q, where Q - G/ K. Let
I x]) e Q denote the Frobenius class of a closed orbit x of at with respect tothe Q-
extension. By [PP2),87, if K<G is cofinite then
ht

cud (1 : ItD e gtk, M DSII - card (G/ K) (3.4)
If G is not generated by Frobenius classes, thatis P(G ) £ G, then there exists a
cofinite subgroup K, where G £ K, such that K contains all Frobenius classes of
closed orbits for the G-extension. Thus [[x]] is the identityof Q =G/ K and Q is
not trivial. This contradicts (3.4) which says that the closed orbits are equidistributed
amongst the Frobenius classes.

Now, if L(s,0) hasapoleat (1+ia,0) then from Proposition 2.1 (i), we
deduce that Xe(<*>) = 1 forall closed orbits x. Thus 0Oe P(G)1, where
P( G )x denotes the annihilator of P(G ). But P(G) = G, and hence
P(G)X= (0), from which we conclude that 0 =0. O

The following result is an adaptation of Proposition 1.1 in [KS], to which we

refer thereader for further details, where appropriate.

Proposition 3.4
(i) Thereexistsa real analyticmap s=s(0) defined on an open
neighbourhood of 0e £2M( IR) suchthat s(0) » 1, and s=s(0) isthe
unique simple pole of A(s,0) around s- 1. Further, s isan even function.
(ii) VRes(0)le-0 =0
(iii) VIms(0)I1Q0 = 0
(iv) V2 Res(e)le,0 isnegative definite
(i.e. < V2 Res(0)I0.0 p,]J > < 0 forall Oe t2M(R )\(0).)
(v) V2Ims(0)I10.0=o0.



Proof (i) Write A(s,0) - £(-shr + 2 ike), wherever this is well
defined. Using the Perturbation Theory for Ruelle operators, (c.f. tKSI,[Pol]),
and Proposition 2.1 (ii), A(s, 0) has aunique simplepole s=s(0) ina
neighbourhood U of 0, and 0%-»s(0) isreal analytic.

Define £ on aneighbourhood W of 0 e Fa by £(K0) = s(0). Using the
relation £(tKq) = s(10), for t small, (ii)- (v) follow from the following

Gateaux derivatives ( see [KS]).

(a) ~ Re ((IK)I -0 forall 8e U,
(b) i Im £(tKg)! - 2n JKOdm forall 8e U,
d2 - 4ii2 @ h. (kft)
(c) Ro5(.Ke)l,.0 - e forall 8e U,

(d) -i-j Im tKg)110 - 0 forall 8€ U.
dt

Here we define  <s hr(k0) = J (kQ- nJ kOdp.)2dp.

Note that (a), (c) follow from therelation A(s,0) = A(s,- 0), which
implies s(0) = s(-0). This proves (ii) and (v). Equality (iii) follows
from (b) and Lemma2.3. The involution on closed orbits of <t ensures that s is

real-valued, and henceeven, (c.f. [KS], Proposition 1.1).

Proof of (iv) Firstnotethat P(R) = {[xleR :xisa closed orbitof qt}
= R, by the same argument as in the proofof Lemma 3.3.

Asin [KS 1 itsufficesto prove o_hr2(k0) ~ 0 for all 0e U\ {0},
where U is an open neighbourhood of 0 e £2M(R ). By [PT], o_hr2(k0)=0
ifandonly if kg ~ 0. Firstsupposethat 06 TiZ. If kO —O, then 06 P(R)X

and 0-0 by the sameargument as the proofof Lemma 3.3. Using the group

Ocfne  kr* : (3 hy
r(»/



isomorphism £2M(R) / T* a £2M(*). il sufficesto provethat if kO ~ 0
for 0e £2M(R ) then 0=0. But if ke ~ 0 for 0*0, then

which in turn implies that kp~ 0, where pe TIZ is given by
pm = XOm (mod 1). Further, p* 0 since X is irrational. This contradicts
P(R) = R as before. O

Lemma 3.5 There exists an open domain D containing Re(s)” 1, such that

forall 0e (Z/ MZ)*, L(s,0) hasnopolesin D, except s(0).

Proof By the argumentin [KS], Lemma2.4 , forany 0e £2M(R),A(s 0)
has no poles in an open domain D, containing Re(s) £ 1, except s( 0 ).Since
A(s,0) = L(s,0) for 0e (Z/ MZ)z, L(s,0) hasnopolesin D

except s(0). O

84 Singularities of L-functions

By logarithmic differentiation of (2.1 ), with respectto s, we have

For fj ,f2e Qm ,we have by orthogonality of characters that

10 ft- f2
(2IMZ) 0 if fj*f2 (4.2)



( inleggling with respect to Haar measureon (Z /M Z)1).
Fix fe Qm and apply relation (4.2) to (4.1 ), giving

(s ,f) 15€)  4y(0)

S N 2 hr'(x) e

n“1 xeFixn ,fn(x) - gn(x)

By Lemma 3.4 (ii), and the compactnessof (2 / M Z)z, T(s, f) isanalytic for
s in a neighbourhood of {I +ia:a£0}. Forany small neighbourhood V of

0Oe(Z/MZ)z, and s near 1,

Lts.e)
J u - f> (s50)
(zIMZ)Z\ Vv

dv(6)

is analytic for Re('s)> 1, by the compactnessof (Z/ MZ )z again. Itremains to

analyse the contribution from

J X [0 o)

.0)

for small neighbourhoods V of 0.
By Proposition 3.3 (i), there isanopen neighbourhood U of 0e |2M(R),

and areal analyticmap s=s(0) definedon U such that, forall Oe U,

A(s,0) A

A(s,0) s- s0) o Fs0)



Here A isanon-zero constant and F(s,0) isanalytic in a neighbourhood of s

By applying Proposition 3.1 to s(0),

A'(s,0) A F(s.8)
A<s-e> m s - i +ilel2
Take V = U r* (Z/M 1)Z, andnote that, for 0€ V and Re(s)£ 1,
(where defined ),

A(s0) L'(s 0)
A(5.0) (s0) ( from (2.4)).
Thus,
L'(s, 0)
L(s.0) + G(s,0)

where G(s, 0) isanalyticfor 0e V and s in an open neighbourhood
of Re(s)21. Thus,

dv(0)
s - 1+ o1

H(s)

where H(s) is analytic in an open neighbourhood of {s:Re(s)”~ 1}

By compactnessof (1/M Z )1 again.

dv(0)

is analytic in an open neighbourhood of {s:Re(s)”1}, soitremains to consider



>
I(s) dv(e
(ZIMZ y* s-1+101
Proposition 4.1
(i) n(s.f) - 1(s) + H (s),
where Hj(s) isanalyticin aneighbourhood of Re(s)£l.
1

(ii) 1(s) M (s-1)log(s-1) + ttys),

where H2(s) is analytic in an open neighbourhood of Re(s)£ 1.

Proof (i) Follows from the above discussion.

(ii) Firstwe consider the function

L 1 1
In <«> X X n e
» 1+ X —nJ'r
n--N m
, 1 m- -1
) (4.3)
7s71 e®o 20 k?0 (+1t)
mn
M*1 oA i
is ko | & <izf> + |
Y
M*-1 m"-
L as N—»0o,
S MZ*1 117 S 5> 1 Misi

and hencethe 00 = 1 termin (4.3) isanalytic in an open neighbourhood of

Re(s)£ 1. Now we consider the 0Q= 0 term.



3.



3.19

1, (M-1)2 x
as N —>o00.
T | ~ |

Hence the second term in (4.3) is analytic in aneighbourhood of Re(s)£l.

remains to consider the firstterm in the sum in (4.3 ), namely

-1 r+l

I_I«'k & (.-1)m" +r

We compare this term to the integral
"

N+ ({) (s-1) M™ + x

t -)m" +mn

3" J«

(y-(s-1)MN+ 1 dy

( where the path of integration isa straight line in C, after substituting

y-x + (s-1)M N).

1 (i-c.-dm™) j dy

[ y+(i-( -1)MN) logy ](.—dm"

mn+l



*r o+ M -rh -

i <s-1> log (7T7)

(s-1) log (s-1) + H4(s) ,

where H4 (s) isanalytic in an open neighbourhood of {s:Re(s)etl}.

It remains to estimate

m'-,
IN (s>
(s-1)M +r
M*-1
£ («-1)M N+ r+ 1| (i-1)M N+r
m - I(s- 1) MN+ 1 1|

I(»-1)MN+ 711 1(i-1)MN+ 1l

m"

I(s-1)M + 11

1 L
jn<*> - 0 (4.5)
mn+l (5-1)M +r

as N—>00. Now note that we can write IN(s) as



IN(s> TN<o > - dv(0)
<zimz )yl s - i+ neil
where yN(0) is the characteristic function of the set
An(8) - {8e(zZ/Mz)* :8,=0 forall Inl >N ).

By Lebesgue's Dominated Convergence Theorem, [HP ], IN(s) —»I(s) as
N—peo. Thus from (4.4) and (4.5), we deduce that

I(s) = <s-1)log(s-1) + H,(s).

This completes the proof of Proposition 4.1 (ii). O

85 Proof of theorem for cyclic H

Let Tj(s,f) beasin 8§4. Then

nun - J xoc-f) dv(e>
(zIMZ)
- J X hX(x) Xo(<t>) e sh (T) -f) dv(0)
(zIMZ)*
where H3(s) - X2 h X(r) Xe(k<t>) e"*h (T) ~(-f)



THAs) 1 £ £ hX(e) ¢ shX(T) .

and the latter is analytic in an open neighbourhood of Re(s)S 1, by [P 1). Thus,
H3(s ) is also analytic in an open neighbourhood of Re(s)” 1. So

n(s.f) = (t:<£t>-f}h Mx) ¢ ShMx) + Hé(s)
[09]
1 c¢"* dP(tf) +  H3(s) (5.1)
0
where P(t,f) = hX)((T)£t hX (t)
<T>-f

‘We now apply the following modified version of the Wiener-lkehara-Delange

Tauberian Theorems, which is proved in §6.

Proposition 5.1 Let a(t) be monotonic non-decreasing and continuous from
above, with a(0) = 0. Assume there exists aconstants A je0 such that

[04]
J c¢" do(l) . A(s-1)log(s-1) + f(s)

for Re(s) > 1. The integral is assumed to converge absolutely and the function f(s)

is analytic in a neighbourhood in a neighbourhood of Re(s)£ 1. Then

t
a(t) — A —+ ast—m>



(This means that a(t) / (el/ t2) —»A as t—» 00).

Now take a(t,f) = P(ht,f)/ h, sothat

a(t,f E X(x

0 M xjsi )
<T> - f

giving a(t,f) ~ — -, byvirtueof (5.1) and Proposition 4.2. Now write

t f = 2- 1 » {X:Wt)St, -

et f) MTst ¢ )
<T>=f

foreach fe QM. Trivially, wehave  ad, f) £ t 7(tf)
particular,

lim *<i. f) 1

5.2
t-*eo chl/(ht)3 2 M -2)

Forany O<u<t, write

L) o= omwn e 1
s n(f) + X(T)
u< £t u

s ) o+ a(tu-f)

orequivalently,
K «.f) K(U,f) 1 attf) (5.3)
c [/ (hi)'



If wechoose u=at, forany 0<a<]|, then

k(I.f) » 1
But, since a was arbitary.
TT- n(t,f) A 1 (5.4)
t—»°° e "™/, (ht) S

Combining (5.2) and (5.4) gives

Theorem 5.2 Assume <t is a geodesic flow on the unit tangent bundle Tj S of
acompact, negatively curved surface S. Let G = ©nez* (Z/ M2Z)z .
Then forany ge G,

eht

*(t,9) as t—>00.

M (hy3

86 Proof of Proposition 5.1

Our proofrelies on the following modified version of the Wiener Ikehara

Tauberian Theorem, due to Delange.

Proposition 6.1 (1D ], Theorem V ) Assume there exists a constant A£ 0
such that

00
f(s) = Alog(s-1) - J e St dip(t) , for Re(s)>1
0

and f(s) isanalyticin a neighbourhood of Re(s) £ 1. Then

t
<p(t) ~ A — ast—>00.



Let a(t) beasin thestatementof Proposition 51 So
@

J e-S1 da(t) = A (s-1)log(s-1) + f(s) (6.1

We may differentiate (6.1) withrespectto s. for Re(s)>1, to give
0

I e*1t da(t) -  Alog(s-1) + g(s) (6.2)

where g(s) = f(s) + A. Moreover, g(s) is analytic ina neighbourhood of
Re(s)2l. Let a(t) = ¢(t)/ 1 and rewrite theintegral in (6.2) as

J t e8 da(t) - J e"to(t) - J <> g <>
0 0 0 t

® -st »  —st/ a(t}
where J e P d 1 J . (—p=>d =« '<> (sY).

By integrating the Stieljes integral on theleft hand side of (6.1) by parts, weobtain

[e0)

| e'8da(t) - a(t) a(t) dt

andour hypothesesensurettet [ e SI<x(t)]Q = 0, where Re(s)>1.

Thus J(s) - J e'™M a(l) d - A(s-1)log(s-1) + f(s)
Now note thet we have adifferential equation

4- I(s) = J(s) for Re(s)>l,



As for H cyclic, we can define an L-function for the G-extension



Us.6) - n <1 - Xe<<*>> e"‘hX<) )4

where <T>eRr,0»( OM,07", ...,©WV) e G. Forany fe Rf,
f - (f<,f<2).... fe> , let

nun - j u-n Xxirrlr dQ

where v denotes Haar measureon 0. defineanormon 1.1 on G by

o (m> 1
By mimicing the arguments of §4, we have

1% (e'D...,89)) dv(ew el>
r(’.‘* .Ve *(§<1>§W) (mfx L(«.(8 )

(where V is an open neighbourhood of 0 in é ),

dv,(e0)) ... dvt(8wW) FH(1)
(Z/N%Z)' (m?;!Z) L o

where Hj(s) isanalytic ina neighbourhood of Re(s)”l. Usingthe method of

the proof of Proposition 4.1 (i), we have



tl( s.f) (S-1) 10g(S-1) + Hj<s) .
where IHI1 = Mj M2 .. M,, and H2(s) isanalytic in a neighbourhood of
Re(s)£ 1.

By applying the same arguments as in 85, we arrive at the following general

theorem.

Theorem 7.1 Suppose H is a finite abelian groupand G = ®meZ* H.
Assume <t is a geodesic flow on the unit tangent bundle Tj S of a compact,
negatively curved surface S. Then forany ge G,

1 eht

K(t,9)
IHI1 (hl)'3



88 Some ideas for applications

In this section, we give a more informal discussion about an application of
Theorem7.1.

Since the geodesic flow <t is Anosov, the tangent bundle Tj S can be
decomposedas TjS = E © Eu © Es, where E isthe (one-
dimensional ) tangent bundle to the flow, and Eu and Es are the ((one-dimensional)
unstable and unstable manifolds respectively. We suppose that Eu is not orientable.
Define p:1A—»{1,- 1}z by

P(x) f 1if EV» - P «
1 % DI E%x) - - EV*)m

A closed orbit x is called twisted if the unstable bundle Eu is not orientable in
a neighbourhood of x. Inthe present context, this means that for x g x,

D<Px(t) ELk = ~ Eux. Otherwise X is said to be untwisted.

This condition can be interpreted in terms of one-dimensional frames as follows,
(c.f. (PP21,86). The unstable bundle Eu over Tj S is such that each fibre is one-
dimensional, and let F* denote the oriented frames in Eu. Above each point
x g Tj S, Fux hastwo components corresponding to the two possible orientations.
The condition that Eu is not orientable is equivalent to Fu being connected or Fu
notbeing orientable.

The following result is obtained by constructing a Z2 extensionof Tj S
according to the effectof gt on the orientation of Eu and applying the Chebotarv

theorem for finite group extensions of [PP21

Proposition 8.1 [PP2] If Eu is notorientable then asymptotically half the

closed orbits are twisted / untwisted.



Provided that Eu is not orientable, we conjecture that it is possible to associate
a polynomial T(x) e Z2[11 toeach closed orbit, corresponding to the Frobenius
classofa ©meZ* Z2 - extension. This polynomial reflects the changes in
orientation of the unstable bundle Eu in a neighbourhood of x. By applying Theorem
7.1, we would have aresult which more accurately reflects the complicated behaviour
of the closed orbits. (We remark that the additive groups Z2[t) and Z2[t,t4] are
isomorphic).

Theorem 8.2 Suppose the hypotheses of Theorem 7.1 are satisfied. If Eu is not
orientable, then forany fe Z2[t],

#{x:X(x)Et, T(x) =f} ~ — ——- as t—»00
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