
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/109313 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk


Complete Parameterized Presentations 
and

Almost Convex Cayley Graphs

by
William Francis Simmonds.

Thesis submitted for the Degree o f  
Doctor o f  Philosophy 

at the University o f Warwick 
November 1991.

Mathematics Institute, 
University of Warwick, 

Gibbet Hill Road, 
Coventry CV4 7AL.





Acknowledgements

I would first like to say thank you to my supervisor Doctor Derek Holt: for suggesting 
research problems; for his help; for the care with which he read the proofs of my main 
results; also, for the kindness and patience he has shown towards me during my (lengthy) 
stay at Warwick -  which was considerably more than I deserved.

If I may, I would like to take this opportunity (on resubmitting) to thank my Ph.D 
examiners Professor David Epstein (internal) and Doctor Geoff Smith (from Bath 
University). With hindsight, I realise that reading through my original thesis must have 
been pretty distressful for them. I would like to thank them for having persevered, and for 
their (many) suggestions for improvement (which I certainly bore in mind whilst writing 
this, hopefully, more readable thesis).

There are so many friends who I would like to thank at this point, but I have special 
reasons for saying thank you to the following people:

Marcos Bothelo,
Zac Coclho,

Matija Cencelj,
Stamatis Dostoglou,

Hermann Haaf,
Sofia Lambropoulou,
Ana Paula Santana, 

and
Elaine Shiels

(for, among other things, her help with the Macintoshs (temperamental 
machines which I most definitely do not want to see ever again!)).

1 am also pleased to acknowledge the (S)cience and (E)ngineering (R)esearch (C)ouncil 
for funding during the first two years of my Ph.D study.

Declaration

The work of chapters 3,4 and 5 is, to the best of my knowledge, original, unless stated 
to the contrary.



Summary

This thesis is meant as a contribution to the theory of three classes of groups, those 

classes being the groups defined by complete parameterized presentations, automatic 

groups, and groups with almost convex Cayley graphs.

Chapter 1 is basically definitions and terminology. Chapter 2 is a short exposition o f the 

theory of automatic groups; we prove only one major result in this chapter (due to 

(CHEPT)), i.e., that the abelian groups are automatic.

In chapter 3 we study presentations of groups and monoids which are complete (with 

respect to certain orderings of the words in their generators). Such presentations define 

monoids with fast solutions to their word problems. We define a class of (possibly infinite) 

presentations which we call r-porameterized, or o f type Pr ; these presentations are the 

central theme of this thesis. With the help of the computer program described in chapter 4, 

we demonstrate that there are group presentations which have infinite r-parameterized 

completions (i.e. complete supersets), but which have no finite completion with respect to 

any ShortLex ordering. The 1-parameterized presentations are, arguably, the simplest non 

finite presentations we can define (at least as far as groups are concerned), but we prove 

that completeness of such presentations is not in general decidable.

Chapter 4 is the description of a (short) program which attempts to complete 

1-parameterized group presentations by the Knuth-Bendix method. We conclude the 

chapter with a short report on its implementation.
In chapter 5 we study groups with almost convex Cayley graphs. Such graphs are 

recursive, but the property of being almost convex does tend to be hard to prove or 

disprove in practice. We prove that the word length preserving complete groups and the 

least length bounded automatic groups have almost convex Cayley graphs. We believe that 

these are strict subclasses because (we shall prove) the group U(3,Z) is almost convex, but 

is already known not to be automatic and, we conjecture, it has no r-parameterized 

complete (ShortLex) presentation. We conclude chapter 5 with a slightly generalized, 

arguably simpler, algebraic proof of J.W. Cannon's theorem that the abelian by finite 

groups are almost convex.
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Introduction

§ 0

This thesis is meant as a modest contribution to the theory of two classes of groups, 

those classes being the groups with complete presentations, with respect to a finite 

semigroup generating set, and the groups with almost convex Cayley graphs, with respect 

to a finite semigroup generating set. The study of these groups, primarily the complete 

groups, overlaps with a third class of groups, the automatic groups, but it is the groups 

defined by complete presentations which the author considers to be the focal point of this 

work and this is reflected in the layout of this thesis.
Chapter 1 is basically terminology, but we also quote some results on, and examples of, 

regular languages to which we will refer in the subsequent chapters.

Chapter 2 is meant as a short exposition of the theory of automatic groups and none of 

the work in this chapter is original.
A group G with finite semigroup generating set C may be automatic with respect to a 

finite state automaton called the word acceptor. The language of the word acceptor would 
be a subset of C*. the free monoid on C, and the restriction, to this regular language, of the 

natural homomorphism from C* to G would be surjective. If (G,C) were automatic then 

(basically) there would be an interpretation, defined by the word acceptor, o f the 
multiplication in the group G in terms of regular languages over the alphabet CxC.

Automatic groups are currently the subject of much research (primarily because of their 

applications to certain topological problems). There is a substantial paper entitled ‘Word 
Processing and Group Theory’ (CEHPT), a collaboration of five authors closely concerned 

with the development of automatic groups, which details most of the current work in 

automatic groups. We will be referring to this paper frequently.
The emphasis of the work in chapter 2 is squarely on results which are referred to in 

chapters 3 and 5 and the only major result which is proved in this chapter is that the abelian 

groups are automatic. We believed this proof really should be included because it is a 

prerequisite of a proof in chapter 5 (abelian by finite groups are almost convex).

In chapters 3,4 and 5 we will be working with groups and monoids defined by
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complete presentations. If < CI H_) is a monoid presentation then the members of . taken 

as ordered pairs of words in C*. may be thought of as rewrite rules for the words in C* (if 

a word has a subword s with ( s , r) in X. then that word can be rewritten with the 
subword s replaced by r). The presentation ( C 1 X_) would then be complete, with respect 

to some total ordering on the words of C*, if, using the the rewrite rules of ^repeatedly, 

all words can be rewritten as the least word in their ( X_) congruence class.

So, if < CI X. > were complete, and X. at least recursive, then the least words in the 

( x. ) equivalence classes (called the representatives) will be a tractable normal form for the 
elements of the monoid M= C*/( X. > in terms of the generators C. If M is a group and X. 

finite, then the set of representatives is a regular subset of C*, and thus a possible candidate 

for the language of a word acceptor of an automatic structure for (M,C). However, we give 

an example of a group (3.1.4) which is not automatic with the word acceptor accepting the 

set of representatives (although it is true that a group defined by a complete presentation 

where rewriting words involves no backtracking is automatic with word acceptor 

accepting the set of representatives).
Complete presentations are a small part of the more general theory of rewriting 

techniques which has a long history in theoretical computer science. So, not surprisingly, 

computers are apt tools for the (more recent) study of complete group and monoid 
presentations. In his paper ‘Presentations of Groups and Monoids’ (Gilman 79) R. Gilman 

describes an implementation of the Knuth-Bendix procedure for computing finite complete 

presentations. In his follow-up paper ‘Enumerating Infinitely Many Cosets’ (Gilman 84), 
Gilman notes that the success of this procedure is rather sensitive to the well ordering of the 

words and suggests that the procedure might be improved if it were to look for certain 

classes of infinite presentations which we will be calling 1-parameterized.

Chapter 3 has two sections; section 3.1 is part expository, part original; section 3.2 is 

original. In this chapter we define r-parameterized presentations (which have been referred 

to by several authors) and look at some examples. Using the computer program, described 

in chapter 4, we are able to give an example of a group presentation with a 1-parameterized 
completion (i.e. complete superset of the defining relations), but no finite completion 
whatever the choice of ShortLex ordering on the words of C*.

The 1-parameterized presentations are, arguably, the simplest infinite presentations
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which we could hope to define, but, nevertheless, there would still appear to be significant 

problems in the study of such presentations. Whereas completeness is decidable for finite 

presentations, it is not always decidable for 1-parameterized monoid presentations. We 

prove this by reducing the halting problem of a Turing machine to the problem of deciding 

the completeness of a 1 -parameterized monoid presentation (although the monoid 

presentation in question may not be that of a group). Moreover, C.C. Squier in his paper 

‘Word problems and homological finiteness conditions’ (Squier) cites an example of a 

monoid defined by a 1 -parameterized presentation which suggests that the existing 

structure theorems for finite complete groups are perhaps unlikely to be extended to groups 

defined by 1 -parameterized complete presentations.
In the first four sections of chapter 4 we describe a computer program (written in 

pseudo ‘C’) which attempts to complete (ShortLex) 1-parameterized group presentations. 

Such programs (of Knuth-Bendix completion) can be kept rather simple, but we do 

employ some non-standard techniques to speed up the completion process. The program 

appears to be reasonably successful and we used it to compute some of the presentations of 

chapter 3. We conclude chapter 4 with a short report on its implementation (i.e. section 4.5).

Almost convex groups, or to precise, groups with almost convex Cayley graphs are a 

large class of groups defined by J.W. Cannon in his preprint ‘Almost Convex Groups’ 

(81). This class of groups is of interest because their Cayley graphs are (in theory at least) 

recursive, in fact there is an efficient algorithm for constructing such graphs. There are 

several problems in this subject, notably that the property of a Cayley graph being almost 

convex does tend to be rather difficult to prove or disprove in practice.
We begin chapter 5 by proving that the groups defined by complete parameterized 

presentations with word length preserving orderings and the least length bounded 

automatic groups have almost convex Cayley graphs. We believe these classes to be strict 

inclusions. In 5.3 we prove that the (nilpotent, non abelian) group of 3 by 3 unitriangular 

matrices over Z has an almost convex Cayley graph (with respect to a certain set of 

generators). This group has no automatic structure, that much is known, and, we 

conjecture, that it has no complete, parameterized presentation with respect to a Shortlex 

ordering. We conclude chapter 5 with an alternative (and slightly generalized) algebraic 

proof of Cannon's theorem that the abelian by finite groups are almost convex.
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§ 1

Definitions and Terminology

Words and Monoids.

Formal word manipulation plays a large part in this thesis. If S is a set of symbols then 

we write S* for the the free monoid of formal words in S, i.e., the monoid consisting of the 

words of S* with multiplication being concatenation and the identity element being the 

empty word. The set of symbols S may then be referred to as the as the alphabet of S*.

The symbol £ is reserved throughout the thesis for the empty word.

If v  and u> are words of S* then we write v s  w when v  and iv are identical words. We 

write\w\ for the number of symbols occurring in the word u> and, if s is a symbol of S, 

then no. s(zv) is the number of occurrences of the symbol s in the word n>.

If w  is a word of S* and is N with l<i£|«/|,then we write u>[ i ] for be i* symbol of w.

If ije N  w ith ij^ l, then we define zt<i,j ) to be the word w[ '\ 1 n/[i+l ] . . .  n/[j] with the 

conventions zt>( i, j )s£  if i>j, and w( i, j )* n/( i,\u/\) if j>ln/|. We refer to a/( i, j ) as 
being a subword of ui. It is a proper subword of w  if la'l>l and l<i or j<l«/|. It is a 

prefix of u> if i~ l . i t  is a suffix of w if j~lu/|.

Let
(1 ) A : Su{£} —» Dsl

be a map satisfying

(2) A(£)=0.

Then we define the map A* : S* —» N by:
i« K

A*(ii sz .. .sk ) = X  A (ii) , 
i«l

where every 5j belongs to S. We will refer to the map A* as being a length function (on the 

words of S*). When A (j)= l, for all seS, then A*=l I and, unless explicitly stated to the 

contrary, all future references to ‘word length’ are assumed to refer to this length function.
Let A be a map satisfying (1) and (2), and let > be an ordering of the symbol set S, then 

we define the (total) ordering >A on the words of S* by: u/>Av if A*(a/)>A*(i/), or if



A*(«/)=A*(r) and u>[ i ] >v[ i ] where i is the first position in which the words differ. We 

refer to >A as a shortest word/ lexicographical ordering (of S*) (and we write w>Av 

when u » Av or u> ■ v). If A*=l I, then >A is called a ShortLex ordering (of S*).

Presentations o f Monoids and Groups.

If C is a set of symbols and H. is a subset of C*xC*. then we write ( ) for the
congruence generated by 3?_. Also, we will write left(^_) = {left components of the ordered 

pairs in HQ, and right(30 = {right components of the ordered pairs in 1Q. We refer to 

( C I 30 as being a presentation of the monoid M = C*/( %_) (or any monoid which is 
isomorphic to M). We refer to C as a set of generators of M, and refer to %jls a set of 

defining relations of M. The natural homorphism, y : C* —► M, is defined by 

Y(c )=c< HI), for all ce C, where c( 30 denotes the < ^-congruence class of c. We wish to 
stress that, with this terminology, a group presentation, ( CI %_), must be a presentation as 

a semigroup, i.e., whenever ce C, then there is a c ‘e  C with both ( c c ’.E) and ( c ’c.E) 

belonging to
All groups and monoids will be finitely generated (although not necessarily finitely 

presented). If G is a group and C is a generating set of G, then, unless explicitly stated to 

the contrary, C will be assumed inverse closed, i.e, ce C =► e 'e  C (so that C generates G as 

a semigroup). If ge G, then we define llgllc , the norm of g, to be the minimum number of 

generators needed to express g as a product in the generators of C.
If ( CI 30 is a presentation of the monoid M and ^  )rv, then the relation ( rv, v) of 

M may sometimes be written as v=M u>. We wish to stress the distinction between v=M u>, 

which means v( ^  )u>, as opposed to (the much stronger) v~u>. which means that v and iv 

are identical words (of C*).

Cayley Graphs.

Let G be a group with (inverse closed) generating set C. Then r c=rc(G) will denote 

the Cayley graph of G with respect to the generators C, i.e., TC(G) is the directed, labelled 
graph with vertex set G, and a directed edge from g to h, labelled by ce C, if and only if 

gc=h. We may refer to the vertex 1G of TC(G) as being the basepoint of the Cayley graph.
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We define a metric, d^, on the whole of TC(G) as follows. If g and h are two vertices 

of r c(G), then dc(g,h) is the minimum number of edges needed to connect g to h. We then 

define d^ on each edge joining distinct vertices by making that edge isometric to the unit 

interval, and for each edge with the same endpoints, we divide the edge midway and make 

each half interval isometric to the half unit interval. Whence dc  extends uniquely to the 

(standard) path metric on the whole TC(G). We will usually drop the subscript ‘C’ from 

r c (G), t^ ,  et al., when there is no risk of ambiguity (as now).

We wish to stress that we are thinking of the whole of TC(G) as a connected (path) 

metric space. We allow retracing of paths, and a path is said to be a geodesic path if it is a 

shortest path between its endpoints. We note the following facts. If geG, then d (lG,g)=llgll 

and, if g,he G, then d(g,h)=ilgh_1ll. The vertices are distinguished by the fact that they are 

precisely those points of T at integer distances from the basepoint, actually, if ne IKI, then 

S(n) consists precisely of those ge G with norm n. When we refer to an edge or path 

staying within a ball B(r) (re IR), we mean that all points of the edge or path lie in B(r). 

Whence, an edge stays within B(r) if and only if at least one of its endpoints is in B(r-l), a 

path connecting two vertices stays within B(n) (ne IN) if and only if at least one of the end 

points of every edge that it traverses belongs to S(n-l).
If p is a path of I~G(G), then its length is denoted by Ipl and the path which traverses p 

in the opposite direction is denoted by p'1. We say that paths p0 and plt with a common 

basepoint, do not diverge by more than a distance A e IR if (i) and (ii) hold as follows.

(i) the lengths of p0 and pj do not differ by more than A. (ii) for all 0<r< lengths of p0, pt : 

if Pq and pj are the points at distances of r along p0 and pj, respectively, then d(pQ,pj)^A.

We refer the interested reader to the comprehensive study of Cayley graphs (and several 

other subjects mentioned in this thesis) in (Lyndon,Schupp).

Finite State Automata.

We shall abbreviate finite state automata(automaton) to fsa, and adopt some of the 

finite state automata terminology of (CHEPT).

1.1 Definition.

A (partial) deterministic finite state automaton is a quintuple A=(C,S,s,H,x) where:



{
C is a finite set called the alphabet.

S is the finite set of states. 

se S is the start state.

H is a subset of S consisting of the halt (sometimes success ) states. 

x is a partial function, SxC —► S, called the transition function.

The partial transition function is extended to a partial function x : SxC* — ► S 

(inductively) as follows. We define x(p,£)^p, then, for w e  C*, ce C, and provided x(p, w) 

is defined, we define x(p, wc ) = x( x(p, w) , c ). When p=s, we abbreviate x(s, w) to x(w), 

we then define the language of A to be { w e  C* I X{w)e H }, which is written as lan(A).1.2 Definition.

A (partial) non-deterministic finite state automaton is a quintuple A=(C,S,s,H,.imrttS) 

where:

Let (s0,c,Sj) be an arrow; then the state s0 is the source of the arrow, the symbol c is 

the label of the arrow, and the state st is the target of the arrow. A path of arrows is a 

finite, non empty, sequence of arrows aj ,a2 a3 ,.. .,an with, for all l<i<n, the target of the 

arrow aj being the source of the arrow a(j+i). The source of the path is the source of the 

arrow alt the target of the path is the target of the arrow an, and the label of the path is the

n n

C is a finite set called the alphabet. 

S is the finite set of states.

se S is the start state.

\H is a subset of S consisting of the halt (or success ) states. 

XX&PWS is a subset of SxCxS consisiting of the set of arrows.
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word ... cn where, for all l^i^n, Cj is the label of the arrow a{. We can now define

the language of A to be { w e  C* I w  is the label of a path of arrows with source s, and 

with target belonging to H }. The language of A is written lan(A).

n n
Deterministic and non-deterministic fsa can be (helpfully) realised as finite directed 

graphs called state diagrams. Let A=(C,S,s,H,x) be a deterministic fsa, then A's state 

diagram is the directed, labelled graph defined as follows. The vertices of the state diagram 

are the states of A, and there is a directed a edge from state sq to state Sj, labelled by ce C, 

if and only if t(s0,c) is defined and equal to Sj. With this, more natural realization of A, we 

can define the language of A as being the labels of all those paths beginning at the start state 

and ending at a halt state.
Let A=(C,S,s,H, xxxpH's) be a non-deterministic fsa, then A's state diagram is the 

directed, labelled graph defined as follows. The vertices of the state diagram are the states 

of A, and there is a directed a edge from state sq to state Sj, labelled by ce C, if and only if 

(Sq.c.Sj) is an arrow. We could then define the language of A as being the labels of all those 

paths beginning at the start state and ending at a halt state. Also, we see that the 

deterministic fsa are special non-deterministic fsa which have state diagrams with at most 

one directed edge labelled by each ce C starting from each vertex.

We do not assume familiarity with regular languages, but all of the following facts will 
be implicitly referred to at one point or another of the thesis. We refer the reader to 

(Salomaa) for proofs of the (mostly) standard results, and to (Rayward Smith) for an 

introduction to finite state automata.
A subset of C* is the language of a deterministic fsa (with alphabet C) if and only if it is 

the language of a non-deterministic fsa (with alphabet C). If LXH. is the language of a fsa 

with alphabet C, then is said to be a regular (sometimes recognizable) subset (or 

language) of C*. If is a regular subset of C*, then so is its complement, i.e., C'-u&i. 

The class of regular subsets of C* is also closed under unions, intersections and 

concatenation (i.e., if u t Vj and lxh2 are regular, then so is consisting of all

those words where Ĉ e and [¿e

All finite subsets of C* are regular; if S is a regular subset of C*, then the set of words 

in C* which do not contain words of S as subwords is also a regular subset. We shall refer



to the following definition and example in both theorem 2.1.5 (abelian groups are 

automatic) and (implicitly) in theorem 5.4 (abelian by finite groups are almost convex).

1.3 Definition.

If LX)i£ is a regular subset, then lx*L is said to be prefix closed if, whenever Ce 

then, also, pe LX>f_ for all prefixes p of t.

□ D

1.4 Lemma.

Let (cj ,c2,...,ck ) be a subset of C, and let n1,n2,...,nk€ W. Then the subset of C* 

consisting of all those words of the form (Cj)* (c2)*... (ck)* which do not contain more 

than nj Cj's (for l<i<k) is a prefix closed regular subset.

Q2U
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§ 2

Automatic Groups

2.0

The concept of automatic groups, originally suggested by W.P. Thurston, is 

relatively new (85), but there is already much research in the topic (primarily because of 

its applications to certain topological problems).
This chapter is meant as a concise introduction to the theory of automatic groups, 

stating the basic properties and including a short summary. The emphasis is squarely on 

results which will be referred to later and there is only one major theorem proved, i.e, 

that the abelian groups are automatic (a prerequisite of theorem 5.4.1, i.e. abelian by 

finite groups are almost convex). There is a comprehensive paper ‘Word Processing and 

Group Theory’, (CEHPT), a collaboration of five authors, which details most of the 

current work in automatic groups and to which we refer the interested reader. We will be 

referring to this paper frequently. This chapter includes no original work.

2.1.1 Definition (CEHPT).

Let G be a group, C be a finite (semigroup) generating set of G, and fix a symbol, 1 , 

which is not in C. Let y : (C u t 1 ))* —► G be the natural homomorphism which maps 1 

to the identity element of G. We say that (G,C) is an automatic group if there are automata 

W and {M(c)}ceC\_i{ i } so that:

(i) W has alphabet C, and the restriction of the map y to lan(W) —► G is surjective.

With ceCXj{ 1 }:

(ii) M(c) has alphabet (CXj { 1 })*(Cu( 1 )).

(iii) lan(M(c)) = { ( u>\ , u>2 ) I i and u^ are words of the regular language lan(W) 1 *,

2.1
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If (G,C) is automatic (with (i),(h) and (iii) holding) then W is called the word acceptor 
(of (G,C)), and the M(c> are called the multiplication automata (of (G,C)).

There is a more accessible characterization of the automatic groups which we will be 

referring to, but we need first to introduce the concept of word differences.

2.1.2 Definition (CEHPT).

Let G be a group and C be a finite semigroup generating set of G, let y :C*  —► G 

be the natural homomorphism. Let W be an automaton with alphabet C, with the restriction 

of the map y  to lan(W) —► G being suijective. Then we define the set of word 

differences, of (any) ce C, to be:

a /jil.r))-1 Y («^(l,r)) I for all re  IN, and all u>\ , u ^e  lan(W)

satisfying y i ^ c ) = y(n^)}.

W c then have the fo llow ing , o f t referred  to, theorem :

2.1.3 Theorem (CEHPT).

Let (G,C), y and W be as in definition 2.1.2. Then (G,C) will be automatic, with word 

acceptor W, if and only if the set of word differences of each ce C is finite (see (CEHPT)).

n m
We should note the (rather nice) geometrical interpretation of 2.1.3, i.e.: (G,C) is 

automatic, with word acceptor W, if and only if there is a number k with the property that, 

if , u*2, e lan(W), ce C and a^c =q . then the paths of Tc(G), beginning at the 

basepoint, and labelled by v and u>, respectively, do not diverge by more than a distance k. 

We can now prove:

2.1.4 Corollary.

11



Let (G,C) be an automatic group with word acceptor W, and take any ge G. Then there 

is a number A with the property that, if e lan(W), and y( u^)g= Y(w^), then the paths

of Tc(G) beginning at the basepoint and labelled by n>\ and , respectively, do not 

diverge by more than a distance A.

Proof:

Let g = cj C2 ... cn (as a product in the generators of C). Then, with a u>\ and 

Pn+1 s  »2»choose r  e lan (W) so that, for l<i£n, px q  =q p-1+1. By theorem 2.1.3, the 

paths beginning at the basepoint and labelled by px and px+\ (l£i<n) do not diverge by more 

than a distance k. Thus the paths beginning at the basepoint and labelled and do not 

diverge by more than a distance A=nk.

This is a summary of some of the major results on automatic groups. The reader will 

find proofs of all these results in (CEHPT).
The property of a group being automatic is independent of the choice of generators 

and all automatic groups are finitely presented with solvable word problem. Computers are 
apt tools for the study of (and, in particular, the construction of) automatic groups, but this 

is not surprising for they were defined with this in mind. There are procedures which 

terminate if a (finitely presented) group is automatic (the development of such procedures 

is, naturally, of particular concern to researchers).

The class of automatic groups is closed under direct products, extensions by finite 

groups, free products with finite amalgamated subgroups and HNN extensions over finite 

subgroups. The finite, free and abelian groups are all automatic. More recently it has been 

proved that the braid groups are automatic. Torsion free, non abelian nilpotent groups are 

not automatic.

We will prove only one major result in this chapter, i.e., that the abelian groups are 

automatic. This proof is included because it is a prerequisite of theorem 5.4.1 (abelian by 

finite groups are almost convex).

2.1.5 Theorem (CEHPT).
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Let G be an abelian group with C= {Cj, c2,. .., ck} a finite set of (semigroup) 

generators of G (i.e., if ce C then c_1e C). Let > be an (arbitrary) ordering of C, and let A* 

be an (arbitrary) length function on the words of C*. Let vex be the subset of C* 

consisting of the >A least words corresponding to each group element. Then (G,C) is 

automatic with lex being the (prefix closed) language of the word acceptor (we refer the 

reader to definition 1.3 of a prefix closed language).

Proof:

If zv is a word of C*. we will write rep(«/) for the >A least word with zv=G rep(zv)

(so that vex- {  rcp(zv) I zve C* }).
We may as well assume Cj< c2<-. .<ck . We will also suppose all words to be words of 

the regular expression:

a )  (c1r ( c 2), ...(ckr .

and redefine concatenation of words to be the product of those words in the free abelian 

monoid on the generators C expressed in the normal form of (1).

If rand zv are words, then we say that vdivides zv, and write v I zv, if every generator 

which occurs in r  also occurs in zvto at least the same degree. If

v s  (c1)nl(c2)n2 ... (ck)nk , ZV3 (c1)nl(c)n2 ... (ck)nk 

(withn1, . . . ,n k ,ri1, ...,n  keN), and v I zv, then zv/ v is defined to be the word:

( C j ) t f  l"nP(c2)^2“n2\ ..(ck)i"k"nk\

Note that, with these conventions, if v  I zv, then zva v( zv/ v ).

(2) Claim.

If zve vex, then se lex whenever s divides zv (so, in particular le x  is prefix closed). 

Proof:

Suppose, for a contradiction, that this claim is false. Then we may define s to be the 
least non-empty word which divides zv but which is not a member o f vex .

13



We will have w * s ( w / s ) ,  and so,if A*( i)>A*(rep( s )), then 

A*(«/) = A* ( s (w / s ))>  A*(rep(5 ) ( a / / i ) ) while w =Grep(i)( w / s ) -  which would 

contradict the fact that w e lex .

So it must be that Am(s) =A*(rep(i)), and thus i[l]>rep(.i)[l] (because we took * to be 

the least non-empty word which divides zt/but which is not in vex ).

Let p, possibly empty, be the largest prefix of a;with no generators in common with s 

(we refer to the definition of prefix given on page 4, i.e., with no reordering of generators). 

Then the generator w[\p\+\] must occur in *, and so: -

(3) w[\p\+\ ] S i[ l]> re p (i)[ l) .

Since p and s both divide w and have no generators in common, so ps I w , and 

therefore w = ps ( w /  (ps)). Whence:-

w =q p s (w /(p s ) )  =G p rep( s)(,w  /  (ps ) ), 

and

(4) A *(w) = A*( p s (w / (ps)))>  A*( p rep (s )(w / (ps))).

As pis a prefix of w. so, by (3) and (4), a/>A prep(s) ( w /  (ps)) -  while 

w =g prep(i) ( w /  (ps)) -  which (again) contradicts the fact that w e vex.

m
We say that a relation of G, ( w , v), is minimal if w >A v and there is no other relation, 

(» ',a),w ith  w > \ v and w\ w  and v I v. Let iW be the set of minimal relations.

(5) Claim.

w e  vex if and only if «¿has a subword belonging to left( M).

Proof:

If «/had a subword belonging to left( M ), then this subword could not belong to vex 

and so, by (2), a/could not belong to vex. Conversely, if a/did not belong to vexr, then we 

could define s to be the least subword of w not belonging to vex. Then every subword o f s 

would belong to vex , and so ( s , rep(i) ) would be a minimal relation, in particular,

¿e left( M ).

14



s
If n and fi are K-tuples of non-negative integers, then we will write n < fi if n(j)< n(j) 

for all l<j^K (where n(j) is the j1*1 component of n, and n(j) is the j*  component of A).

(6) Claim.

If nt , n2 , n3, ... is an infinite sequence of K-tuples of non-negative integers, then 

nr<ns for some r<s.

Proof:

By induction on K. If K=1 then the problem is trivial. So suppose that, for every i>l, 

nj i  n4. Then, for every i> l, there is an s, depending on i, with n ¿(s) < n j(s). So (for some 

s (1<s<k)) there must be an infinite subsequence, n n n .. say, with any two of

these K-tuples having equal s components. We now apply the inductive hypothesis to this 

subsequence to complete the proof.

E
(7) Claim.

The set of minimal relations, M, is finite.

Proof:

If not, then consists of an infinite set of relations:

( (C!)" i.l (c2)n i.2 ... (ck)n i.k , (Cj)n i.(k+l) (c2)n i,(k+2) . . .(ck)n i.2k ), 

say, with the n^e W for all i>l and l£j<2k.

By (6), there would exist rand s so that:-

( nr ,l .....nr,k » nr,(k+l) »—» nr,2k ) ^  ( ns,l »—» ns,k • ns,(k+l)»—• ns,2k )•

Whence:-

(C!)" r.l (C2>nt,2 ... (ck)n rjc I (Cj)" s.l (c^" s.2 ... (Ck)n s.k ,

and

(Cj)n r.(k+l) (C2)n r,(k+2) ... (ck)n r.2k I (Cj)0 s,(k+l) (c2)n ».(k+2) ... (ck)" s.2k ,
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and so the relation

( (C,)n s.l (c2)" ..2 ... (Ck)“ ..k , (ct)" *.(k+l) (C2)n s.(k+2).. ,(Ct )" >.2k ) 

would not be minimal.

m
By (2) and (7), w e  l e x  if and only if w belongs to the regular language (1) and is not 

divisible by any word in (finite) left( M  ). So, by lemma 1.4, l e x  is also a (prefix closed) 

regular language. Thus, to complete the proof of theorem 2.1.5, we need only prove that, 

for any ce C, the set of word differences of c,

(8) { y( «^(1,r))*1 y( aç(l,r)) I for all re N, and all u \ , zt^e lan(W)

satisfying Y(^ic) = Y(“^) }•

is finite.

So take any v, w e lex satisfying wc =q v . We may as well assume that rdoes not 

contain the generator c (otherwise w= v /  c, because both words belong to lex and 

correspond to the same group element ). We cancel the common generators of wand. v\o 

derive the relation w\c =q v\ with w  ̂\ w, v̂  \ v and c and z'j having no common 

generators. It is easy to see that (8) will be finite if we can prove the following:

(9) Claim.

The relation ( a^c , ) is one of the (finite number of) minimal relations.

Proof:

Suppose ( , t»2 ) is a relation with zt  ̂>A *2 » **1 I w \ c, and I Vv  The word w^ is

not a member of l e x  and so it cannot be a subword of w^. Thus must contain the 

generator c, and we have ( (zt^c) /  w ^)\ u \. So the words (zt/jc) /  w^ and v \ /  x>i both 

belong to l e x  and correspond to the same group element, i.e.. (zz^c) /  w^ a i«i /  •

As w\ c and z»i have no generators in common, so it must be that u \c sw i  and , i.e., 

( zz ,̂ ) is the relation ( zt^c, v\ ).

19 and 2.1.S~|
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§3

Monoids with Complete and 
Parameterized Presentations

3.0

Complete presentations are a small part of the computer theoretical study of rewriting 

techniques, which is a far reaching and, potentially, powerful theory with notable 

applications in proof verification of al gebraic theories.
We will be restricting our study to that of monoids with complete presentations (which 

have simple, and fast, solutions to their word problems). In this chapter we will define a 

class of infinite (complete) presentations, which have been referred to by several authors, 

but which we will be calling r-parameterized. As far as group presentations are concerned, 

the (l-)parameterized presentations are, arguably, the simplest non-finite presentations we 

could hope to define, but we will be proving that completeness is not, in general, decidable 

for parameterized monoid presentations. In subsequent chapters (4 and 5 respectively) we 

describe a computer program for completing 1 -parameterized group presentations, and 

prove that the class of the groups defined by r-parameterized complete presentations (with 

word length preserving orderings) have almost convex Cayley graphs.

We recommend the comprehensive account of the history, and major theorems of, 

rewriting techniques in the expository paper ‘History and basic features of the 

critical-pair/completionprocedure’ (Buchberger). Also, we believe (Book), (Jantzen), and 

(2Kapur,Narendon) may be of interest to the reader.

3.1

Let C be a (fixed) finite set and let ©be a (fixed) subset of C*xC* . Let > and > denote 

a (fixed) well ordering of C* so that, for all u, v, rue C* :

u v ^  u; iiu^  u; io> v ^  w u > vu  and uw> uv.

Such orderings are sometimes referred to as Knuth-Bendix orderings, and we will adopt 
this terminology.
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and

right( %_) = { right components of the ordered pairs in }.

We say that is normalized if, whenever ( 6, a )e then 6 > a . If g. is normalized, 

then the ordered pairs of words in g, are called rewrite rules. If ( 6, a )e g. and I 61 = I a\, 

then ( 6 , a ) is said to be a length preserving rule of g..

We say that (C l  g . ) is a normalized presentation of the monoid M if it is a 

presentation of M and g. is normalized. If ( C I ) is a presentation of M, then we can

always find a normalized presentation of M by discarding all those ( 6, a )e with 

6 s  a , and swapping ( i , a) fo r( a , 6) if 6< a (because this would not change the 

congruence( g.)).

If is normalized then u> —> v  implies w> v and t v - S  v implies uf > v, so every 

word would have at least one irreducible descendant (because > is a well ordering).

We say that is complete if it is normalized and every word, u>, in C* has a unique 

irreducible descendant (called the R-representative of tv and denoted by rep ^ ( u/)). We 

say that is Incomplete if it is complete and ( g, )=( ‘D ). We say that < CI ^. > is a 

complete presentation of the monoid M if it is a presentation of M and is complete.

It is easy to prove that, if •g, is ©-complete and *</(©) v  then rep( n/)=rep( v) (s 

least word in the ( © > congruence class of v and tv). So then the representatives would be 

normal forms for the elements of M= C* /  ( © ) in the generators C (and, being the
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irreducible words, being the words with no subword in left( R. ), constitute a regular subset 

of C* if and only if left( R ) is a regular subset of C *).

If R  is complete and recursive (as a subset of C*xC*) then the representative of a word,

;w , is computable. We look for subwords, s , of wior which there is a rule ( s , r ) 

belonging to R. There may be no such no subwords, but, if one exists, then the subword s 

is replaced by r, and the process repeated until no more substitutions can be made. The 

resulting (^-irreducible) word will be the representative of w. In particular, the word 

problem for (M,C) will be solvable.

Let J( ©) be the set of words which are not least in their ( ©) congruence class, but for 

which all proper subwords are least in their ( ©) congruence classes. Then it is reasonably 

easy to prove:

3.1.1 Proposition.

If ( C I ^ .) is normalized then it is ©-complete if and only if left( R  )2 J( © ). (We refer 

the reader to (Hayashi) for a proof of this (standard) result.)

We say that R  is a minimal complete subset (of C*xC*) if it is complete and 

left( R  )=J( R ), ( CI R ) is said to be a minimal complete presentation of the monoid M if 

it is a presentation of M and ^.is minimal complete. We say that R  is a minimal 

CD-complete subset (of C**C*) if it is ©-complete and left( R  )=J( © ).

It is not difficult to prove that there is a unique minimal ©-complete subset of C*xC* 

with respect to the fixed well ordering > (although, clearly, it may not computable), and 

that, if R  is known to be ©-complete, then we can find the minimal ©-complete subset by 

discarding all those ( 6 , a )e CR. where 6 has a proper subword in left( R,).

It is unlikely that an arbitrary presentation will be complete, but there is a practical 

criterion for telling us when this is so - but to describe this we need first to define critical 

pairs.
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Suppose X  is normalized and take ( ( 6\ , ai  ) , ( 62 , XL ) ) to be an ordered pair of rules 

in X- Then the critical pairs of ( ( ^  , a\ ) ,  ( 62 , ) ) are all those pairs of words:

(i) ( aj , ptQs) with k pi^s , for some words p and s .

(ii) ( a\s , pa2 ) with S\s=p(^, for some words £ # p t  6\ and £ # s # ^  .

A critical pair o f  5̂ .is a critical pair of some ordered pair in X- We say that a critical 

pair, ( w , v ), of X  is resolved if the words n^and vhave a common descendant. Then we 

have the following, well known, result.

3.1.2 Lemma (The Knuth-Bendix lemma).

Let X  be a normalized subset of C**C* , then (C l X  > is complete if and only if all the 

critical pairs of X  are resolved.

We refer the reader to the original 1967 paper of (Knuth.Bendix), for historical interest; 

to (Huet) for a, reputably, good presentation of the Knuth-Bendix procedure; but, for a 

proof more suited to our (restricted) study, we recommend the proof of Gilman in 

(Gilman79).
So, for example, checking the completeness of finite presentations is purely mechanical. 

By far the most commonly used Knuth-Bendix orderings are the shortest word/ 

lexicalgraphic orderings. We will be using these orderings almost invariably in theory and 

in practice. In all the examples the Knuth-Bendix ordering is the ShortLex ordering 

defined by the stated lexical graphical ordering on the generators.

We shall refer to the next two examples, 3.1.3 and 3.1.4, of finite complete 

presentations.

3.1.3 Example.

The free abelian group of rank 2 with generators { a<  a-1 < b< } has a finite 

(minimal) complete presentation:

( a . o - i . i . f - * I

( 6a-1 . a - H ) .  ( 6 ' a , air» ) , ( i  »a » , a-»6 » ) >.
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If < CI "K. > is a finite complete presentation then the set of representatives will be a 

regular subset of C* . So it was suggested that the groups defined by finite, complete 

presentations might be automatic with word acceptor accepting the set of representatives - 

but this is not always true, 3.1.4 is a counterexample.

3.1.4 Lemma (CEHPT).

Let G be the wreath product of the infinite cyclic group with the cyclic group of order 2, 

then G has a finite complete presentation, but is not automatic with the word acceptor 

accepting the set of representatives.

Proof:

The group G has presentation:

( a, 6, c I aa = 1 , cS = Sc, 6a = ac ),
and is an automatic group (being the extension of a free abelian group of rank 2 by the 

cyclic group of order 2).

With semigroup generators C={ a< 6 < 6“1 < c <  c_1 }, it is easy to confirm that G has 

a finite complete (semigroup) presentation, (C l 30 , with:

« . - {  ( o » , e ) . ( i i - '  , e ) .  ( i - ' i . e M « - 1 , e ) . ( t - > c , e ) , ( i i , 6 c ) .

( c i" 1 , 6_1c )  , ( c_16 , 6c“ 1 ) , ( c"1^"1 , i “ 1^ 1 ) , ( Sa, ac ) , ( ca , aS) ,

(  6“ 1« , a c " 1 ) , ( c_1a , a  6"1 ) , ( c- 1 6- 1 , 6_1c_1 )  J.

After a few trivial reductions, we see that, for all ne IKI, a ( 6 )n ( c )n and ( 6 )n ( c )n are 

^.-irreducible and:-

a ( 6 ) n ( c ) n a  —>*• ( 6 ) n ( c ) n .

So, with y  : C* —► G being the natural homorphism, we have:- 

y (a (6 )n ( c ) n a )  = Y ( ( i ) n ( c ) n ) .

and, for all re  N, the group elements y( a ( 6 )r )_1 y( ( 6 )(r+1) ) belong to the set of word 

differences of a (cf. definition 2.1.2).

A few more (trivial) reductions yield:-

rep( (  « ( 6 )r ) - *  (  6 )<'+1 >) a « ( b )<r+1> (  c"1 )r ,
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whence the set of word differences of a is infinite. By theorem 2.1.3, G cannot be automatic 

with the word acceptor accepting the set of representatives.

HE9

Comment If < C I ) is a finite complete group presentation then is sometimes said 

to admit no backtracking if, whenever a word c6w is such that ce C, bw is 

^.-irreducible and ( cS, a )e for some word a, then aw is ^-irreducible.

If the Knuth-Bendix ordering is ShortLex, then the property of admitting no 

backtracking can be formulated in terms of alone and, if K_ admits no backtracking, then 

it is reasonably easy to prove that the group G = C* /  ( D ) is automatic with the word 

acceptor accepting the language of the ^.-representatives (the norm of all the word 

differences being no more than max( \b\ )ge ief^ jq).

Actually, no backtracking, as we have defined it, is stronger than is needed to ensure 

that G be automatic. Nevertheless, such nice group presentations are not the norm and it is 

an interesting open problem as to whether an arbitrary finite complete group presentation, 

with respect to some ShortLex ordering, necessarily defines an automatic group.

Rewriting words with no backtracking is particularly fast, but we will not bother to 

comment any further on this subject (cf. (Le Chenadec) where examples are cited of such 
group presentations (the 2-dimensional surface groups)).

We will now formalize a class of monoid presentations which have been referred to by 
several authors (by Le Chenadec and Gilman (84), to name but two).

Let 3 e  (C*)(2p+1) (for some pe IN), then we write 3- (l<i£ 2p+l) for the i th component 

of 3 . We define 3(0) to be the word

B l  ®5 • • • ®(2p+l)>

and, if n=(n1,n2,...,np)e INP, we define 3(n) to be the word

* l(® 2 )n l  ®3(*4>n2 ®5 -  * ( 2 p - l ) ( V nP ® (2p+ D- 

Provided p >0, we may refer to the words «j, ®4.....3 ^  as the repeating factors of 3.
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We will adopt the convention that N°={0}, and note that, with this convention, if 

3  e (C*)° and ne W°, then 3(n) is always the single word

We say that a subset, Ji, of C**C* is r-parameterized, or o f type Pr  (re Ikl) if can 

be partitioned as a finite number of subsets of the form:

(1) { ( $(n), j^(n) ) I nelKJP} with 0<p<r and ® ^  e 

(We stress that we are not insisting the p of (1) to be the same for the different subsets of 

the partition, but r, being a bound on the p's, is a bound on the number of repeating factors 

allowed for the different As and #s.)

Note that, with the convention that N°={0}, the subsets of type Pq are just the finite 

subsets (of C*xC*).

Infinite monoid presentations have been studied by numerous authors. We shall refer to 

C. 6 ’ Dunlaing's work on infinite regular Thue systems (6 ’ Dunlaing) and C. Hayashi's 

work on semi-confluent presentations (Hayashi) - but the (l-)parameterized 

presentations are, arguably, the simplest non-finite group presentations we could hope to 

define. Let us look at a (trivial) example of a complete group presentation of type Pj.

3.1.5 Example.

The free abelian group of rank 2 with generators { a< 6 < a- l < 6_1 } has a (minimal) 
complete presentation of type P :̂

< a ,  a " * ,  6 , 6 - 1  I ( o - l f l , e ) , ( 6 - l 6 , e ) , ( 6 f l , a 6 ) ,

( 6-lfl, a6~ 1 ) , ( fl-l/>, 6fl-l) ,  ( 6-lfl-l , o-l^-l ) ,

( o(6)nfl-1 , (6)n ) (ne N ), ( 6(o-l)n6 l , (a-l)" ) (ne N) >.

However, 3.1.5 is not really of much interest because, with a reordering of the 

generators, there is the finite complete presentation of example 3.1.3. Actually, it is not that 

unusual for a group presentation, (C l ), to be such that there are no finite ©-complete 

subsets with respect to some ShortLex ordering, but to possess finite ©-complete subsets 
after some ShortLex reordering of C (the Dyck groups and surface groups (of 4.5) to name 

but two). We will now demonstrate (with the help of the computer program described in 

chapter 4) that such beneficial reorderings are not always possible (also, cf (Bauer,Otto)).
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3 .1 .6  Lem m a.

Let G be the group defined by the (semigroup) presentation (C l © ) where:

C={ a , a-1 , b , ,  c , },

and

©= {( ofl-i , e ) , ( o - i f l . e ) , ( bb-i , e ) , (  f - t f . e ) ,

( o r1 , E ) , ( c_^c , £ ) ,  ( ba, ab) , ( ca , be ) J.

Then there are (infinite) incomplete subsets of type Pj but no finite ©-complete subsets 

whatever the ShortLex ordering on C* .

Proof:

It is clear from the definition of ©that it suffices to prove that there is no finite 

©-complete subset with a ShonLex ordering < on C* for which a < b.

Case 1. Let < be any ShortLex ordering on C * for which 

a< 6 and a< c '1,

and let be any ©-complete subset with respect to <.

The subset, ^  , (of C**C*), listed below, was generated by the computer program 

described in chapter 4. It is a (minimal) ©-complete subset of type Pj with respect to the 

ShortLex ordering <j defined by aCj a-1 b c<j .

*., = { ( ao-l M-> , E ) , (

( « - > , £ ) , (  e->e, E ) ,  ( 6a. a t)  ,(  ««-> , r ' t ) .

( b~*a, ) , ( ¿ r'a-1 , ) , ( ca. Sc) , ( o r 1 , b~lc ) ,

( c-1 (a)n b , «ur1 (a)n ) (ne IXI),

( c~i (<r^)n b , ac~l (a~l)n ) (ne IM),

( c- , (fl)n . o '1c-1 (a)n ) (ne IN),

( c~1(iT1)nb , <r 1c-1(<r1)n ) (ne IN) }.

(1) Claim.

(o)ni  and c_1(a)n are ^.-irreducible words for all neN.
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Proof:

Let zvbe the representative of the word (a)nb (any ne IN). Then

(2) t v ^ ( a ) nb,

because (a)ni  is :R.1-irreducible(andla'l=l(a)n£ l).

Whenever c, respectively appears in the left component of a length preserving 

rewrite rule of then c. respectively c_1. is in the right component of that rewrite rule. 

Also, whenever a-1 or appears in the left component of a length preserving rewrite rule 

of then a"1 or / r 1 is in the right component of that rewrite rule.

So, by (2), only a 's  and b'scould appear in zv. As, there must be at least one b in zv 

(because if zv consisted only of a's it would be -irreducible, contradicting (2)), and 

a< b, whence zv = (a)n6 (is irreducible).

Now let zv be the ^.-representative of the word c_1(a)n (for any ne IN). The word 

c_1(a)n is -irreducible, and so iv — c-1(a)n. Because has no length preserving 

rewrite rule in which c~1 is the first generator of the right component, so it must be that 

iv[ 11 a  c~l . Thus w[ 2 , \iv\ 1 is the ^.-representative of (a)n which (we have already 

proved) is ^.-irreducible, whence zvm c-l(a)n (is ^.-irreducible).

m
We have, for all ne IN, c_1(a)n6( ©) ac~l (a)n, while a< c 1. So, by (1) and 3.1.1, 

c_1(fl)nfie J(© ) c  left( for all nelN.

Case 2. Let < to be any ShortLex ordering on C* for which 

a < b and c~1 < a ,

let be any ©-complete subset with respect to <.

The subset, H_2 . (of C**C*), listed below, was generated by the computer program 

described in chapter 4. It is a (minimal) ©-complete subset of type Pj with respect to the 

ShortLex ordering <j defined by c <2 c_1 <2 a <2 art <2 b <2 b' 1 .
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3t2« { (  aa-l , e  ) . (  i r< a .e  ).(< «->  , £ ) , ( / > - '« , £ ) ,

( cc”* , £ ) , ( c_*c , £ ) , ( 6a , a£ ) , ( /><r 1 , t r 1^ ), 

( £ -1a , a i r l  ) , ( £_l<rl , ) , ( flc“l  , c"^i ),

( a ^ c '1 , c-1 /»'1 ) , ( & , « ) , (  6_1c , ca-1 ),

( £c_1(a )n£ , af>c_1(a)n ) (ne IN),

( 5c_1(<r1)ni  , aic- l(<r1)n ) (ne IN),

( 5 '1c_1(a)n6 , fl6_1c_1(fl)n ) (ne IN),

( 1 c- 1 (<*~1 )n^ ) (ne IN),

( ic-l(a)n^ - l  , fl-l5c-l(a)n ) (ne N),

( , <r1£c_1(<r1)n ) (ne IN),

(  i -1c '1(n )n^_1 . <r16 '1c_1(‘*)n ) (neW),

( i _1c_1(fl_1)ni ' 1 . <r1£ '1c_1(<r1)n ) (ne IN),

( i -1c_1(fl-1 )n^"1 , er^ir^tr^ (a-1)11) (ne IKI),

(  bc~^(a)naca , a6c~l (a)nac) (ne IN),

( 6c~la~l(a~l)nca , a6c~^ar^(ar^)nc ) (ne IN),

( 6_1c*1a(a )nc a , a6_ V ^ a V ’c ) (ne IN),

( b~\c- l t r l ( , i r l ) nca , a£- l<:~l<rl(a-l)ne ) (ne IN),

( 6c~la(a)nc tr l  , <r1ie"1ii(fl)ne ) (ne IN),

(  £<r1a"1(a-1 )nca-l , <r1ic_1<r1(a-1)nc ) (ne IN),

( tf*1«- , fl(a)na r 1 , tr^i'^c~^a(a)nc ) (ne IN),

( i -1c ', <r, («-1)n« r 1 , a-1 6 1 c-1fl-1(fl-1)nc ) (ne IN) }.

(3) Claim.

c-1(a)ni  and 6c_i(a )n are ^.-irreducible for all ne IN.

Proof:

Let w  be the ^.-representative o f  the word c_1(a )ni  (any n e  IN). T hen:-

(4) w  c-1 ( a )n 6.

26



because c~^(a)nb is ¡^-irreducible.

Whenever one of the generators a- * or £-1 appears in the right component of a length 

preserving rule of %_2, then <r1 or appears in the left component of that rule. So neither 

a-1  nor Brl appear in the ¡^"descendants ° f  uf- Whenever c appears in the right 

component of a length preserving rule of , then it also appears in the left component of 

that rule. So c cannot appear in the ¡^-descendants ° f w ■

Thus only a , b or c_1 appear in u>. By (3), c_1  can appear only once in tv because, 

whenever it appears in a length preserving rule of ¡K.2  - appears precisely once in both 

components of that rule. Because c~̂ < a< b (and the words c~^(a)* are ¡^-irreducible), 

whence tv* c 'i(a)n £ (is ¡ .̂-irreducible).

Now let tv be the ¡^.-representative of the word £c_l(a)n (for any ne IN). The word 

5c_1(a)n is ¡^-irreducible, a°d so w 6 c_i(a)n. Because ¡^.2  ^as no length

preserving rewrite rule in which b is the first generator of the right component, so it must 

be that zv[ 1 ] a b. Thus zvl 2 ,1 iv I ] is the ¡^.-representative of c_1(fl)n, which (we have 

already proved) is ¡^.-irreducible, whence tv s  Bc~^(a)n (is ¡^-irreducible).

a
We have, for all ne N, £c~l(a)n£ ( ¡D) abc~^(a)n, while a < b. So, by (3) and 3.1.1, 

6c~Ha)n6e  J( <D ) c  left( ) for all neN.

As a final example, 3.1.7 is a complete, 2-parameterized presentation of the 2-braid 

group (we computed this by running a Knuth-Bendix finite-completion program, 

guessing the necessary parameterized relations, and then confirming the completeness by 
hand).

We believe (but have not proved) there is no finite ShortLex completion for the 2-braid 

group (but the reader may be interested to know that there is a finite completion of the 

monoid presentation ( a , 61 ( bab, aba ) ) (see (* Kapur,Narendon) and cf (Bauer.Otto)).

3.1.7 Example.
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The 2-braid group with generators { a < i< f l - 1 < i - 1 } has a minimal complete 

presentation of type P2 as follows.

< a , a-1 , B , i - 1 I ( aa-1 , £ ) ,  ( tr U  , £  ) ,  ( BB' , £ ) ,

( B~^B, £ ) ,  ( B~^a~^B~  ̂ , ar^B~^ar^ )  ,

( Ba-Htr')nB-' , t r U - H ^ a  ) (ne  N).

( Baaa(,a)nBa, aBaaB(B)nB) (neW),

( ¿ - l o - V 1)"*. ) (ne N),

( i-lfl-lfl-lfl-l(a-1)n/i-1fl-1 , a ) (neN),

(  i-lfl-2(fl- l)n(5-1)m/i-1fl, fli-1( i - 1)n(a_ ,)mfl*2^ 1 ) (neW, meW),

( Baa(a)n(.BynBar1 , a-16(6)n(a)maa6 ) (ne W, m e W) ).

There are several examples which could be cited of (sub)classes of groups which may 
possess parametrized, but not finite, complete presentations. Le Chenadec has described 

(possibly infinite) complete presentations of the Coxeter groups and has observed that, 
whereas some of these groups (with partial commutivity of the generators) may not possess 

finite complete presentations, they do have complete parameterized presentations (cf.

(Le Chenadec) and the report of 4.5).

In some programs (beyond the scope of the authors work) currently being written in the 

research of automatic groups, the word differences are computed by attempting to find 

complete sets of relations, and it seems that, in practice, these relations are often 

r-parameterized (see (Epstein, Holt, Rees)).

The structure of groups and monoids defined by finite complete presentations has been 

studied by C.C. Squier (Squier), and by J.R.J. Groves and G.C. Smith in (Groves,Smith). 

In his paper ‘Word problems and homological finiteness conditions’, Squier proves that 

monoids defined by finite complete presentations have a certain homological finiteness 

condition (called (FP)3) and cites an example of a monoid defined by a complete 

1-parameterized presentation which does not have this condition (see Squier). So there are



monoids which have parameterized complete presentations but which are not defined by 

any finite complete presentation.

In (Hayashi), C. Hayashi works with semi-confluent presentations^  monoids M with 

generators C, say). Basically, by adjoining a dummy generator to C, Hayashi was able to 

write a program which attempts completions of presentations considered as (possibly 

infinite) regular languages over CxC. If the presentation is successfully completed then, by 

adjoining the rule which maps the dummy generator to £, it yields a complete presentation 

of M which Hayashi calls a semi-confluent presentation of M. The program is an 

improvement on finite completion programs, but the undecidability of completeness of such 

presentations is, apparently, not raised.

C. 6 '  Dunlaing has studied infinite regular thue systems. These are monoid (but not 

group) presentations, (C l > , where left( ^ .) is a regular subset of C*. &  Dunlaing has

proved that the completeness of such a presentation is decidable if it is monadic (i.e., all 

words in right( ) have length 0  or 1 ), but that completeness is not necessarily decidable 

otherwise (see (6 ’ Dunlaing)). In the next section we will prove that completeness of the 
Pj presentations is not necessarily decidable.
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3.2

Completeness o f a monoid presentation 
o f  type Pr>Q can be undecidable.

In (6 ’ Dunlaing) C. 6 ’ Dunlaing proves that there are infinite regular monoid 

presentations for which completeness is undecidable. In theorem 3.2.2 we focus on the 

o presentations and prove that there are monoid presentations of type P j for which 

completeness is undecidable (which provides some excuse for omitting, from our program 

of chapter 4, a method for deciding the completeness of the group presentations of type Pj).

The proof of theorem 3.2.2 depends on the theory of Turing machines and, with prior 

agreement on semantics and suitable notation, is easy and concise. So, we will begin with a 

brief r6 sum6  of Turing machines.

Turing Machines.

There is a plethora of similar, but equivalent, models of Turing machines. The model 

we describe is probably the simplest, and the one best suited to our needs.

Informally, a Turing machine, T, consists of a finite state control device coupled to a 
primitive data storage device via a scan/print head. This ‘data storage device’ may be 

thought of as a (variable) finite paper tape partitioned into a row of squares. In each of these 

squares we can print a single symbol from T 's finite tape alphabet, A , which has the 

reserved symbol ‘ ® ’ (for blank) as a member. The paper tape will always be finite but, 

when necessary, it can be extended at either end by splicing on an extra square preprinted 
with the single symbol ‘ ®’.

In each of its possible discrete configurations the machine T will be scanning, by way 

of its scan/print head, a single square of the paper tape, and a single state of T 's finite state 
set, S, will be entered in the state control device.

Machine T 's deterministic processing technique is, ostensibly, rather primitive and 

completely controlled by a finite set of commands called the transitions of T. The 
transitions determine the machines consecutive configurations.
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The state set of T has two reserved states called the start state and the halt state. 

Whenever T 's configuration is such that there is a state of S-{halt state) entered in the state 

control device, then, depending solely on the current entry of the state control device and 

the symbol on the square currently being read by the scan/print head, the machine is 

commanded by a transition to, in one go:

(1) enter a single state of S-{start state) in the state control device,

(2) overprint the symbol on the scanned square by a single symbol from A ,

(3) shift the scan/print head one square to the left, or one square to the right.

If, during the process of (3), the scan/print head attempts to move off one end of the paper 

tape, then one exta square, preprinted with the single symbol ‘ •B ’, is spliced onto that end 

of the tape.

As both S and A are finite, we see that the transitions of T can be defined by a finite set 
of quintuples of the form:

( current state , symbol being scanned , new state , symbol printed , (L)eft or
(R)ight motion of scan/print head ).

The machine is said to be stable, i.e., there is no subsequent processing, when and 

only when the halt state is entered in the state control device. When we refer to Cg, Cj as 

being consecutive configurations o f T, we mean that the machine T is not stable in the 

configuration Cg, but changes its configuration to Cj (without there being an intermediate 

configuration). We will, for the sake of clarity, abbreviate the phrase consecutive 
configurations o f T  to c.c.T.

Machine T 's  start configurations are configurations of the machine with the start state 

entered in the state control device, and T's halt configurations are configurations of the 

machine with the halt state entered in the state control device. If T is set up in a start 

configuration then the subsequent computation of the machine need not stop, but if it does 
stop, then it must stop in the first halt configuration of that computation.

The halting problem of machine T, set up in some start configuration, is the problem of 

being able to decide whether the subsequent computation of T stops. The traditional notion 

of decidability guarantees T uring machines with undecidable halting problems (cf 
(Kfoury.Moll.Arbib)).
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With this model of T in mind, we give the formal definition of a Turing machine.

3.2.1 Definition.

A (deterministic) Turing machine, T, is defined by a quintuple 

( S , , l ,p 0 ,PH.T),

where:

( T : S-(p h) x A —♦ S -(pqJ x A x (L.R) is the transition function .

A is the finite tape alphabet , and the symbol ‘ ® ’ is in A. 

PO in S is the start state. 

p H in S is the halt state.

S is the finite ilare set.

3.2.2 Theorem.

Completeness of a monoid presentation of type Pj can be undecidable.

Proof:

We fix a Turing machine, T, with an undecidable halting problem, and suppose T to be 

defined by the quintuple:

We may as well assume that S and .flare disjoint.

Let */* and ‘ #  ’ be four (dummy) symbols not of S<̂» A , and then put:

( S , .fl, Po, pH. t  )•

5 = ^ u S u { £ j , / , # } .

We fix any shortest ShortLex ordering, £ say, of S* with the proviso:

# > /.
We will begin by confecting a subset of S *, ccn&iQ, corresponding to the 

configurations of T. and a monoid presentation, ( S I olxSQi. ), so that the 
cttiofffE-reductions of words in ccrffftg mimic the processing of machine T.
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We define COXJiç to be the set of words {

f l i/fl2 • • -/ f l ( s - l ) # 2 n  p  ^  %+D ■ ■ ■ ° k  *
I l<s<K, all the a j belong to ¡A, ne N, and pe S J.

We define the correspondence

Ç : coSjig—► set of configurations of machine T 

as follows. We let

- . / q (,_1)# 2np ^  V i l ) . . .  ° * s  '
be the configuration of machine T with the state p entered in the state control device and 

currently scanning the s1*1 square of the paper tape

a\  “ 2 | | | aK | •

If Ce co*Cnç, then we write no.#( C) for the number of ‘ # ’ symbols 

which occur in C.
We wish to mimic T 's processing by defining CHXXgt so that the following holds.

(V

(0  Q) e  ccm ig  and Cq c'y&xgt C\ ~ C l  • ■ ■ ~*cxixXgT Cn 

if and only if

(ii) Co, C\ ,..., Cn e  COXJIQ with no.#(Cj )=no.#(Qj+1))+2, for 0<i<n, 

and Ç(i^), Ç(Ci)..... Ç(Cn) being c.c.T.

Before commencing with the construction of oixHgz, we should, informally, motivate 
the definition of cô CFig &nd the statement of (1 ).

Let us suppose the halting problem of T, set up in configuration Cq , say, is 

undecidable. The gist of (1) is as follows. Subject to (arbitrary) Ç- ,(C0) being such 

that no.#(t<) )£2n, there is a halt-reduction (i) if and only if there are at least n c.c.T, 

beginning with T set up in configuration C0 . Also, up to no.#(q) ), the n words of 

reduction (i) correspond to the first n c.c.T of the computation of Cq (so, the more # 's in
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Q), the longer the reduction (i), the longer we mimic the computation of T).

Suppose we define STAXJto be all those words of Ç_1(C0) which have at least two # 's. 
We will see that cHxHgz is (trivially) complete. As each CHXXgTreduction decreases the 

number of # 's by two, whence the computation of T does not stop if and only if every 

word of STXRJhas c^ia^x-representative corresponding to a non-halt, non-start 

configuration, and containing zero # 's. We can then append to CHXslgT, to derive 

(complete) tiAUT, three rewrite rules so that precisely the latter words •Hskl.'T-reduce to the 

empty word. Whence (lemma 3.2.4), the computation of T does not stop if and only if 

every word of SIAXJhas the empty word as ?£*£T-representative. We finish by appending 

to Wujtthe (1 -parameterized) set of rules which reduce every word of staajto the empty 

word. By so doing, we define a 1 -parameterized presentation with undecidable 

completeness (lemma 3.2.5).

Let us now consider a computation of T. We have already mentioned that T 's 

transitions can be defined by a subset of

(S-{pH>) x Ax (S-ipo» x A x  {L,R}.

So let us suppose, during this computation, T 's current configuration is:

; ( £ /  0, / « 2 - ../<■(,_,) #(2 "+2>pas a ^ i  ),

with s>l, and that there is a transition:

Then p would be entered in the state control device, the symbol in the slh square, as . would 

be overprinted by the symbol o, and the scan/print head would shift one square to the left. 

So the machines configuration changes to:-

To mimic this transition, cxxs(gz must have the rewrite rule:-

(2)

Supposing T 's current configuration is:

Ç U # (2n+2> pai a2 ... a^S),

and there is a transition:

(p .f lj.JJ .o .L ).
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Then p would be entered in the state control device, the symbol in the first square, a 

would be overprinted by symbol o, and the scan/print head begins to scan an extra square, 

preprinted with the single symbol ‘ ® ’, spliced onto the left end of the tape. So the 

machines configuration changes to:-

Ç U # 2n p v oa2... a ^S ).

To mimic this transition, cHxKgz must have the rewrite rule:- 

(3) (£ # (2n+2)p  ^  , £ # 2np 'Bo).

We define Mcnlxtyr to be the set of all the rewrite rules (2) and (3) for all ne N. 

Suppose T's current configuration is:

Ç( -/«(s-l) # <2n+2)P °s^ s+ l)  - ¡‘k S  ),

with s<k , and that there is a transition:

(p .O s.^ .o .R ).

Then p would be entered in the state control device, the symbol in the slh square, %. would 

be overprinted by the symbol o, and the scan/print head would shift one square to the right. 

So the machines configuration changes to:-

Ç( / » # 2ni  0(s+i \ S  )■

To mimic this transition, cHxXg% must have the rewrite rule:-

(4) ( #2" P «(s+i) )•

Supposing T's current configuration is:

Ç( £ / flj/ «2 . . . / #(2n+2> p \  $ ),

and there is a transition:

Then p would be entered in the state control device, the symbol in the tclh square, aK. is 

overprinted by symbol o, and the scan/print head begins to scan an extra square, preprinted 

with the single symbol ‘ ‘B spliced onto the right end of the tape . So the machines 

configuration changes to:-

y * / « , / « , . . #2n M >  )■

To mimic this transition, cHxXffz must have the rewrite rule:-
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(5) ( #<2n+2> p a* $ / o # 2" p V $ )

(recall the proviso that # > /).

We define M O V l x j q K t  to be the set of all the rewrite rules (4) and (5) for all ne IN. 

We have, m o V l l t t t  = j

( /f l  #(2 n+2) p s , #2n p a o ) , ( £  #<2n+2> p í  , £  #2n p ® o )

I ( p , , o, L) is a transition of T, <ze „3 and n€ IN

Also, ’MOVZ'RJQXT = |

( #(2 n+2) p ,  a , / 0#2n p a ) , ( #(2n+2 ) p s $ , / o # 2n 0  ® * )

I (p  , s, p , o, R ) is a transition of T, ae .3 and ne IN

Whence, with:

cxxxgT. = McrVEHjgtfT,

i.e., crtwigr. consisting of the rewrite rules (2)-(5) for all ne IN, we have the following.

(6)

0) Cq 6  COHJ-IQ and Cq Cx

if and only if

(ii) Co,C\eccn&rg with no.#(q3 )=no.#(£7i)+2 , 

and ^(Cq) , C(Ci) being c.c.T.

We iterate (6 ) to derive:-

( 1)

0) Cq e cot&ig and Co -*CHXxg,L C\ c2 • • • ~*c*cWgT.

if and only if

(ii) Cq ,C \ ..... Cne co^Crrg with no.#(q)=no.#(C(i+1))+2, forO<i<n,

and C(Cb>. C (f i) ......£,(Cn) being c.c.T.
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We now put

Xa u i  =

CXxHS'LKj { ( /a p  , p )  , ( £ p  a , £ p )  , ( £ p  $ , £ ) l  pe S-{ p0 , Ph > and a e ^ } .

Note that ( S I iHAL/r ) is of type Pj and, trivially, is complete (because for ¡Ha lt to 

conceivably have a critical pair, it would be necessary for T to have transitions 

( p , s , p , o, L ) and ( p , s , p , o, R ) -  which is not possible because the transition function of 
T would not be well defined).

We now fix a start configuration, C0  say, so that the halting problem of machine T, set 

up in configuration C0 , is undecidable. Let us suppose:

C_ ,(C o )- {  £ / . . / ■ ■ ( , _ , ) #2" P o S ^ t ) - "  \  t  1 n e N }

(for some Oj, 1 <s<k, belonging to A).

We then put:

(7) STXXX= { £ / aj/f l2 . . . / #^2n+2) p0  Os fl(s+l) ••• ^  ^ I ne IKI }.

3.2.3 Lemma.

The (start state) symbol p0  cannot appear in proper iHsusr- descendants of words 
belonging to s t x x j .

Proof:

By the definition of the transition function of T, there are no transitions of the form 

( P . s . Po»° •L ) or ( P »s • Po» ° •R )• Thus, we can see, from the definitions of cXxHgi. and 
Ma lt , that the symbol p0  does not appear in any word of right( MAcr). The result is then a 

trivial consequence of the formats of staxJ and Ieft( 9iAur).

3.2.4 Lemma.

Let machine T be set up in configuration C0 , then the subsequent computation does not 
stop if and only if the PilCT-representative of every word in STAXJis the empty word.
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Proof:

( If the subsequent computation did not stop, then there would be an infinite 

sequence of c.c.T, say Cg, C j , C2  .• • • •

Then, with arbitrary

Co .  £ / « , / 0 2  # (2"*2) Po S  “(s+l) “k i

belonging to SIAXJ, we define { }i^jSn+i S  COtyiQ by:

no.#(Cj)»2 (n+l-j) and Cje £-l(Cj).

By (5), we would then have:-

A) ~*oixHgt <-1 (-2 '^cHxKS'L ^n+l) •

As no.#(t^n+1) )=0 and C(C(n+i)) cannot be a halt configuration, so it must be that:-

£(n+l) a M ¿ 2 —/ ^(t-l)P *t*(l+l) — £l i f  

for some aj , l<j<p, belonging to A and pe S-{ pg, p h )- Whence:-

£ /< il/d 2 -/ fl'(t-l)P fl't  «t + 1

fOUJT £ P £l £(t+l)" £p ^

because ( / ap , p )e Malt for all pe S-{ pg, Ph ) and all ae  A ,

“ W r*

because ( £ p a , £ p  )eXALT for all pe S-{p0 ,pH} and all ae  A,

because ( £ p $ , £ ) e MAtr for all pe S -{pg, Ph ) and all ae A.

Whence rep;̂ LT(Co) a £ , as required.

(* ) Conversely, if T 's subsequent computation does stop, then there must be a finite 

sequence of c.c.T, Cg, Cj , C2 . . . . .  Ch say, with Ch being a halt configuration. We could 

then define { ¿j ) ISjSh Q ccrtylQ by:

no.#(C j)-2(h+l-j) and Cye  C'^Cj).

so that, by (5 ):-
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Go ~*cn^Kgt G\ ~*cXxKffL c2 • ■ • ~*cMxXgz <-h ■

As no.#(Q, )=2 and £(£},) is a halt configuration, so it must be that:-

Qn+1) 3  a' l / &2 ■■■/¿(t-l) # 2 Ph °t "(t+l) ••• ¿n $

for some â j , l<j<|0., belonging to A . We can see, by the definition of X-iLT, that this word 

is ?£u.T-irreducible, so CQeSTAXj, while repy^q-iCo ) # £.

m s

We can now define a 1-parameterized presentation, T  = ( S I -u ), of which 

completeness is undecidable.

Recall that ‘MOVZL'ZTT = j

( / f l  #(2n+2) p ,  , # 2n 0 a 0 )  , (  £  # (2n+2) p  ,  , £  # 2n £  <3 0 )

I ( p , i , p ,o ,L ) i s a  transition of T, ae  A  and ne W J.

Also, MOVEfyÇtfT = I

(  # (2n+2) p  ,  fl , / 0# 2n fi a )  , (  # (2n+2) p s $  ,/ o # 2 n  p  3  $ )

I ( p , s , p , <7, R ) is a transition of T, a e  A  and ne Dsl J.

Then we defined ?&ct=

MOVELxrrv MOVEWÇMTV { ( / a p , p ) , ( £ p a , £ p ) , ( £ p $  , £ ) |

p eS -ip o .P n ) and ae a }.

We put:-

(8)  U = { ( c , £ ) |  Ce STAX? } O  9ÎAL1,

where, we remind the reader,

(7 )  S IX K T -  { ( 1 / Ol / a 2 . . . / a ( s , 1) # < 2 n + 2 ) p o 0 s ^ s + 1 ) . . .  ^  f  )  I nelK l}.

Then 2*= ( S I ) will be a normalized monoid presentation of type Pj, with respect to 
any shortlex ordering, >, with the the proviso that # >/. Also, it is easy to prove that the 
completeness of T  is undecidable.
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3.2.5 Lemma.

The completeness of T  is undecidable.

Proof:

Let us suppose, by way of example, that ( pg, as , f>, o, L ) is a transition of T. Then, for 

all ne IKI, the rewrite rule

C /^ C s - l )  # ( 2 n + 2 )  P o  ° s  • # 2 n  ¡> “ ( s - 1 ) »  )

belongs to MctPelttt. We then note that T  will be complete if and only if, for all ne N, the 

critical pairs

( £ / « l/ ^ . . . / ^ i. 2 ) #in i  ,E )
are resolved, i.e, if and only, for all ne Dd,

(9; .£ /« ,/« 2 .../*(,_,) #<2n+2) P o S 'V l ) " '  ^MMLTTT

i  / i 1/ ‘ i " - / v 2) # 2, H - i ) ‘ V i ) " '  “k * e -

We know by, 3.2.3, that the (start state) symbol, p0 , cannot appear in proper 
i6 iCT-descendants of words in STXJtJ. Thus, by (7), the rules of

{ ( C , £ ) I Ce srxicj ) play no part in the reduction (9). It follows, from (8 ), that T  will be 

complete if and only if, for all ne HJ,

£ /  «,/%■ A s - 1> #<2n+2>PoS V l > -  “K* “ W r ’ e ’ 
i.e., if and only if the ^ACT-representative of each word in S'lXRj'xs the empty word. So, 

by 3.2.4, T  will be complete if and only if the computation of T, set up in configuration Cq , 

does not stop (which is undecidable).

13.2.5 and 3i2T|

The 1-parameterized presentations, such as T  of 3.2.1, are the simplest examples of 
r-parameterized presentations with r>l (r- 1  repeating factors being the empty word). 

Although the author would not necessarily agree, it may still seem, perfectly reasonably, to 

some readers to be ‘cheating’ to claim that 3.2.1 demonstrates the undecidability of 

completeness of a general r-parameterized presentation. However, not surprisingly, it is
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easy to redefine ‘MoVll.'ZTT, McnKKjgtfr, ■HXL'T. et al. of theorem 3.2.1, so as to exhibit a 

more ‘realistic’ r-parameterized presentation, with r>l and no empty repeating factors, of 

which completeness is undecidable. We will not bother, however, to pursue this topic any 

further.
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§4

Programming the Knuth-Bendix 
Completion o f (ShortLex)

1-Parameterized Group Presentations

4.0

Suppose ( CI ©) is a normalized monoid presentation. Then there is a corollary of the 

Knuth-Bendix lemma (probably familiar to the reader), called the Knuth-Bendix 

completion procedure, which attempts to complete ©, i.e., find a ©-complete subset of 
C*xC*.

In his paper ‘Presentations of Groups and Monoids’ (Gilman 79), R. Gilman 

(comprehensively) describes the Knuth-Bendix procedure for attempting to compute finite 

©-complete subsets of group presentations. In ‘Enumererating Infinitely Many Cosets’ 

(Gilman 84) he notes that the success of this procedure is susceptible to small changes in 

the Knuth-Bendix ordering (in fact he cites examples 3.1.3 and 3.1.5). Gilman then 

suggests that the program might be improved if it were to attempt to compute 

1 -parameterized, rather than just finite, ©-complete subsets. This is the subject of this 
chapter.

In the first four sections of this chapter we will be describing a computer program 

(written in pseudo ‘C’) which attempts to compute 1 -parameterized ©-complete group 

presentations. We do not claim that this short program is particularly sophisticated (the 

Knuth-Bendix procedure in this restricted setting is anyway not complicated), but it is 

reasonably successful, and we conclude the chapter with a brief report on its 

implementation (i.e. section 4.5). It would be flippant to infer from this that writing a 

program to complete the more general r-parameterized group presentations would be easy. 

Nevertheless, there would probably not be many theoretical difficulties involved in such a 
project, and we believe it to be worth consideration.

42



4.1

Preliminaries

Throughout this chapter ( CI 'D) will be a (semigroup) presentation of a group, G, with 

D being a normalized subset (of C*xC*) of type Pj with respect to a (fixed) ShortLex 

ordering >.

Recall that, if Te (C*)K (k=1 or 3), then Tj (l<i<K) is the i ^  component of T. If ne W, 

then it will be convenient to write T(n) for the word Tj, if K=l, or the word Tx(T2)n T3 , if 

k=3.

If

(1) is a subset of (C*xC*)u((C*)3x(C*)3),

then we write ^  N > for the set { ( ®(n), X n )  ) I ( S , A )e , ne IK1 }. Then V  being of type 

Pj just means that D= ^  N > for some subset, of (C*xC*)u((C*)3 x(C*)3}. We will 

assume to be variable throughout this chapter, but it will always have the form (1 ).

Recall that the critical pairs of ^  N > are all those pairs of words:

(2) ( flj, po2$) with b\ = pfys, for some words p and s ,

(3) with b\s apb i, for some words £ & p£  and £ ^ 5 # ^ ,

where ( S\ , a\ ) and ( ^  , «2 ) are any two rules of u >.

A critical pair is resolved if the words in that pair have a common ^  N )-descendant, 

then the Knuth-Bendix lemma states that:

(4) < CI * " >>

is complete if  and only if all the critical pairs of areresolved.

So, whilst 3̂  w > is not complete there will be critical pairs of N) with distinct 

]& N )-irreducible descendants. Suppose ( to, v) is one such pair with a and ¿.respectively, 

being distinct 3?<N Mrreducible descendants of to and v. Then a new rule (for example; 

( a , 6 ), if o>  ¿ ;o r(  6 , a), if 6> a) may be adjoined to :fl<N>sothat( to, v) is resolved (in 

the augmented 3̂  w )>. By doing this we resolve the critical pair( to, v), and the
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Knuth-Bendix procedure, which we program, is the resolving of all the critical pairs of 

(variable) 3i N) whilst u > is not complete.

There are problems, foremost is that the completeness of (4) may not be decidable. We 

have only proved this for monoid presentations of type Pj, which does not mean that the 

completeness of group presentations of type Pj is not always decidable -  but this is not 

probable (we did try to prove that completeness was decidable for a few restricted classes 

of group presentations of type Pj but without success). Nevertheless, in practice, with 

non-contrived presentations, a reasonable attempt can be made to resolve the

1 -  parameterizedcritical pairs.

The second problem is that there may be critical pairs which can only be described by

2 -  parameterized sets, but we are only attempting to find a complete 1 -parameterized set. 

So these (unavoidable) 2-parameterized critical pairs are supposed disjoint from ^  w >, 

stored appropriately, and thereafter ignored until the (probable) completion of the

1 -parameterized sets stops (if ever). Then, to prove that the resultant w) is complete, we 

must go back and prove that all the 2 -parameterized critical pairs are resolved, i.e., that the 

words in each pair have common ^  N ̂ -descendants.

We will be referring to the members of (C* ) 3 as triples 
will write TV a 1/  whenever a 'kjTj and =

4.1.1 Lemma.

If 'W and V  are triples, then "Ws if and only if 1V1('M¿,)n a ‘p'j(‘I^)n'lA for all

ne IN. (The proof is trivial string manipulation and we omit it.)

If TV and V  are triples, we 
i We then have:

4.1.2 Definition.

We say that a triple T is right sided if Tj is a suffix of |4.1.2|

Let us motivate this terminology. If T  is right sided, then we may write 7 ^  a pTj for 

some word p. Whence *7'1('2 )̂n 7  ̂a (p)n 7 7̂  ̂for all ne IN, i.e., Ta ( e , p , 7 ^7  ̂).

We have:



4.1.3 Lemma.

Let T be a triple, then the following are equivalent (i) T  is right sided, (ii) 7 ^  is a 

proper suffix of a word of the form T f̂T̂ )* 7^(l,r) (0 < r < 17̂ 1 ).(The proof is reasonably 

simple string manipulation, we will omit it.)

4.1.4 Definition.

We say that a triple T is left sided if 7j is a prefix of 7^7^. 14,1,4 |

If T  is left sided, then * 7^ s for some word s, whence Tj(7^)n 7 3  a 7 (¿)n for 

all neW, i.e., 7"» (7^7^,r,E ).

4.1.5 Lemma.

Let 3  be a triple which is not right sided. Then, without altering the set of words 

{ $(n) I neW}, we may redefine B so that “B\[ iBjl ] # “3$. \‘&$ ).

Proof:

Recall that 3  is right sided if is a suffix of , so neither 3j nor -Bj is the empty 

word. So let 3  = ( ac  , bc , d  ) for some words a, b,tf and c e C .  Then, by lemma 4.1.1, we 

may redefine B to be ( a , cb , cet). Note that ( a , cb , cd) could not be right sided (without 

a being a suffix of acb =» ac is a suffix of acbc ,i.e., 3  being right sided - not so). 

Whence, we may repeat if necessary.

E m

Let us illustrate lemma 4.1.5 with a simple example (which may well occur in practice 

as the left component of a rule in a completion of the surface group of a torus with 2  holes).

Let C=( a, b, c, d, a- 1, ,  c_1, cP* } and put B=( b'^ir^ba, cb'^ir^ar^ba, ).We, 

note that B is not right sided. Also:-

B(0)m (6ria-lba)(<t-l)m(brl)(a-lbad-l),

and:-
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®(1)* (6~̂  6a)(c6~  ̂a~^ar  ̂6a)(,d~ )̂*(6~ )̂(,a~  ̂6a c6~̂  ar^){ar^ 6a ct^).

Whence, by lemma 4.1.1, we may redefine B to be the triple:

®=( 6~1, cr^6ac6~^cr^ , cr^6ad~^), 

without altering { ®(n) I ne IKI}, so that ®̂ [ l®jl ] # ®2[ l®2l 1 •

Let ( B, A) e  with ® and A being triples. In corollaries 4.3.4 and 4.3.6, we shall see 

that “B need never, indeed, should never, be left or right sided. By 4.1.5, this fact allows us 

to propose the following (useful property of which we rely on in the next section).

4.1.6 Proposition.

Whenever ($ ,  A )e with B and A being triples, then "B is stored so that 

S , 113 ,1 ] #  1 ^ 1 1 .1 4 X 6 ]

There are numerous practical methods by which the Knuth-Bendix completion of ̂  w > 

may be speeded up. We will not bother to discuss many of these methods but, instead, refer 

the interested reader to the papers (Bachmair, Dershowitz), (Book, &  Dunlaing), and 

(Winkler,Buchberger).

We should just mention the criterion of prime critical pairs. A critical pair (2) is prime 

if ^2  is ^  N >-irreducible, a critical pair (3) is prime if 6\{ \p\ + 1,1 6\\ ) is N ̂ -irreducible. 

When attempting finite completions, non-prime critical pairs need not be resolved. This 

criterion is probably common knowledge (cf. (Gilman79)), but, interestingly, by attempting 

infinite completions, we cannot use it so freely. Let us defer further discussion on this topic 
until a more appropriate point (i.e. page 76).

The pseudo ‘C’ listings in the subsequent sections of this chapter comprise a short, and 

relatively simple, program for attempting a Pj completion of 0̂  N >. We hope to justify our 

believe that, without difficulty, the Knuth-Bendix completion procedure may be applied to 

a program of Pj completions, and that (by the report of 4.5) such a program is worthwhile. 

We would like to recommend the book ‘The C programming language’ by (Kemighan, 

Ritchie) to the reader (unfamiliar with C) who wishes to implement this program.

We believe it would be helpful to the reader to conclude this section with the pseudo 
code for the main body of the completion program.
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Complete( C, <)

/ /  A tte m p ts  to  c om p lete  the  1 - p a ram eterized  p re se n ta tio n  (  C  I ^  w  >) (w ith  respect to  the  

/ /  S h o r tL e x  o rdering  < ) b y  the K n u th -B c n d ix  m e th o d . W e  a ssum e  th a t, i f  (V J A  )e  then  ® is no t 

/ /  le f t  o r  r ig h t sided  ( c f  'p a g e  75 ), a n d  tha t l®jl 1 4  1 ( c f  1.5).

S«{0}cX T ; s - 0 ;  x (p ,c)» c  fo r a ll p e  S  a n d  c e  C ; f ( p ) » 0  fo r  a ll p e  S; 

m o d ify ( ((C .S ,s ,0 .T ) ,f) ,® )  a s  each ( 3 , A  ) o f  ^ .is  inp u t;

/ /  (  ( C ,S ,s , 0 , t ),O  is a  r e d u c lo r  o f  '  ( c f  pp  4 9 - 5 3 ) . )

f o r ( i - l ; i S K I ; i - i + l )  

f o r ( j - i ; j S l * . l ; j « j + l )

{
(® j J l 1) - i lh m em b er o f  C m e m b e r  of 

i f  (® j, A y  ®2 a n d  :*2 ^  to p ic s )

{
C ritP air1((® 1,.11),(®2^?2)); C r itP a ir1((® 2 ..42) . ( « 1. ^ 1));

/ /  (are  de scrib e d  on  p ag e  88.)

C ritP air2((® 1, ^ 1) ,(« 2^ 2) );C r i tP a ir 2((® 2 ^ 2),(® 1, ^ 1));

/ /  (a re  de scrib e d  on  p a g e  9 2 , and m ay  s to re  2 -p a ra m e tc riz e d  c ritica l p a irs  d is jo in t form  %_.)

}
e ls e  {

C ritP air((® j . A ^ X ^ J ^ ) ) ; C r i tP a i r f f « ^ .^ ) , ( ® j  ,A ^));

/ /  (arc  d e sc r ib e d  on  p p  8 0 -8 2 .)

}
/ /  T h e  p ro ce d u re s C ritP a ir , CritPaiT j a n d  C ritP a ir2, c o llec tiv e ly  de scrib e d  in sec tion  4.4,

/ /  com pute  and  reso lve  th e  critica l p a irs  b y  c a llin g  th e  fo llo w in g  p red e fin ed  p ro ce d u re s o f  

/ /  sec tions 4 .2  a n d  4.3 . rcduce(w ord ) (p ag e  55 ); rcd u c e(lr ip lc )  (p ag e 5 6 );scc u rc (w o rd ,w o rd )

/ /  (page  60 ); re so lv c (w o rd .w o rd ) (page  6 3 ) ; m o d ify (rc d u c to r.w o rd ) (p ag e  51);

/ /  rcso Ivc(tr ip le ,tr ip le )  (p ag e  69 ); and  m o d ify (rc d u c to r  .trip le) (page  52). 

f o r  ( e a c h  s e t, { ( ( ’S (n).A (n)) | n e  IN2 }, o f  2 - p a r a m c tc r i /c d  critica l p a irs  ( fo u n d  by C rilP air2)) 

i f  (  rc s o lv c d ? (® ^  ) = = 0  )

writcln('cannot prove',{ ( ( ',*  ,'(n ),',^  ,'(n)) I ne  N2 } arc resolved');

/ / r c s o lv e d ? ( ® ^ ? ) ,  d escrib ed  on  p a g e  7 7 , a ttem p ts  to  p ro v e  th a t th e  c ritica l p a irs  o f  { ( ( 'S (n )^ (n ))  I n e  IN2 } 

/ /  a r e  re so lv e d . I f  reso lv cd ?(® ,j? )«  - 1  fo r a ll th e  q u in tu p le s  ( “B ,A  ) ,  th en  (  C  I w ) )  is  c om p lete .

47



4.2

Computing the functions 
reduce(word) 

and
reduce(triple)

Whilst 3  ̂N > is not complete it is possible for a word to have distinct N Mrreducible 

descendants. So we should agree on one method of computing an (invariant) 

í í  N Mrreducible descendant, reduce( to), for each word to(as a by-product, reduce() is, 

of course, the function rep() provided ^  N > is successfully completed).

We define reduce( word to) as follows. Search for the first subword, s, of to for 

which there is some ( •B, A) in and ne N with s a ®(n). There may be no such pair but, if 

it exists, then replace the subword s by fl(n). Repeat this process until no more substitutions 

can be made. The resulting N ̂ -irreducible) word is defined to be reduce( to).

We will need an analog of reduce(word) which, for a triple T, computes a triple, 

reduce( T  ), so that the words { T(n) I ne Ikl} are simultaneously 71*: w Meduced to the 
words { (reduce( T ))(n) I ne IKI}. This is a problem because there is no reason why we 

should be able to define reduce( T ) so that every word in { (reduce( T  ))(n) I ne W } is 

7& n )-irreducible. We really cannot hope to define reduce( triple T  ) much better than as 

follows.

I fT s  (a , 6, c) with a (respectively b , c) being ^  w Meducible, then redefine T to be 

( reduce(a) , b , c)  (respectively ( a , reduce(6), c ), ( a , b , reduce(c) ) ).

Suppose there is a pair of triples ( ®, A )e 7̂ ,words p. s and tc,re N such that 

*7(0) s  p^K)s  and *7(1) = p'Bi K+r )s. Then, by lemma 4.1.1, *7(n) = p&(K+nr)s for all ne IN, 

and we redefine T  to be ( p̂ ?1(^2)’C •

Repeat while such ( a , b, c )'s or ( ‘B , A )'s exist.

The program frequently calls a procedure which we have named securef word, word). 

We may only call secure( to, v) when to > v, then the reduction to —
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secured (by allocating at most one new rewrite rule to if. N >).

We can suggest a way of considerably speeding up the search for possible subwords 
belonging to lcft( i f  w >). The method is for the program to maintain a rcductor o f i f N>).

4.2.1 Definition.

We say that the pair ((C,S,s,0,T),f) is a rednctor (of i f  N >) if (i) and (ii) hold as 

follows, (i) (C,S,s,0,T) is a deterministic fsa called the reduction automaton of the 

reductor (we refer the reader to definition 1.1 of a deterministic fsa). (ii) f is a map, 

f : S —► power set of I^J, such that, if p is any word, then re f(t(p)) if and only if p has a 

suffix 5(n), where 5 is the left component of the i4*1 member of i f , and ne IKI.

Em

Let us describe the part a reductor plays in the program. If u> is any word, then we will 

know that iv is if  N ̂ -reducible if and only if u/has a prefix p with f(t(p))j£0. Also, if p 

were such a prefix and re f ( t (p)), then, by the definition of T, we know that p has a suffix, 

5(n), with S being the left component of the r^ member of if, but, as yet, we do not know 

the value of n. This is the subject of the next lemma. (i) (ii)

(i) If S is word, then, by convention, n=0.

(ii) If S = ( acq , 6cj , c ) is a triple (with Cq.CjC C), then n is the least integer such that:

p[ I pl-l cl-n(| 6|+1) 1 a c0 .

Proof o f (ii):

Let pos(r)=| p |- | cl—r(| 61+1), then, provided r^O and I p\-\ c|-r(| 61+1) £0, we note 

that p[pos(r)) is the generator in position I cI + r(| 61+1) + 1 of pfrom the right. As the 

word aco (6cj)n c is known to be a prefix of p, it is not difficult to see that, for each r in the 

range 0<r<n: /»(pos(r)l a  cq; and,forr=n: p[pos(r)l a cj. Ascq^C} (cf proposition 4.1.6),
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t h e  r e s u l t  f o l l o w s .

E H ]

Although the reductor is a powerful tool, allowing us to describe fast procedures for 

reducing words and triples, it does have a drawback, i.e., it must be modified whenever 

new rules are adjoined to ^  N >. We must deal with this problem by suggesting procedures 

for the modification of the reductor. Although short and fast, these procedures, 

theoretically, may require substantial memory with which to store the transition function (as 

a ISI by ICI array, where S is the state set); but, in practice, memory is rarely a problem and 

we will not bore the reader w ith theoretical memory estimates (which are, anyway, 

difficult).

The formal proofs of correctness of the procedures we are about to describe require 

numerous inductive arguments, and are not trivial. We have decided to forgo all formal 

proofs of correctness, as we believe they would simply belie the simplicity of this program 

without adding anything to the theory.

We begin by describing a subprocedure, suffix, which is called by both of the 

modification procedures.

suffix( ((C.S.s.0. r) ,0. 6 , F*0) )
{

/ /  P ^  is a  subse t o f  S . L e t  s u f f  b e  the se t o f  w ords w ith  th e  fo llo w in g  p roperty . I f  w  is  a n y  w ord,

/ /  th e n  x(«/)e i f  a n d  o n ly  i f  u> h as  a  su ffix  b e long ing  to  s u f f .

/ /  W e  w ill red e fin e  S.T  a n d  f  a s  fo llow s. ( (C ,S ,s ,0 ,x ) ,f )  w ill rem a in  a  red u c to r fo r \  b u t S

/ /  w ill h ave  a  su b se t, w ith  th e  fo llo w in g  p roperty . I f  i v  is  a n y  w o rd , then  x(u /)e  i f  and  on ly

/ /  i f  w  has a  su ffix  o f  th e  fo rm  s6  w here  s  b e lo n g s to  s u f f .

/ /  W e  note  th a t, i f  P ^ = S ,  then , a s  x (E )= s  (i.e . the  s ta r t s ta te ) , a n d  s be longs S , so  £  h a s  a  su ffix  

/ /  b e long ing  to  s u f f ,  i .e . ,  £ e  s u f f .  A s a ll w o rd s  have  the  e m p ty  w ord  a s  a  su ffix , so  P*1* w ill be 

/ /  such  tha t x ( w ) e  P^1  ̂ i f  a n d  o n ly  i f  u  h a s  6  a s  a  su ffix , 

fo r (  i - 1 ; i £ l £ l ;  i - i +1 )

{
pW-0 ;
cr  Mil;
partition  P ^  a s  p rC j w  p r e jU  . . .  u  p rcn  so  tha t x is c o n s tan t o n  e a c h  p rc j *  (Cj);
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t h e  r e s u l t  f o l l o w s .

Although the reductor is a powerful tool, allowing us to describe fast procedures for 

reducing words and triples, it does have a drawback, i.e., it must be modified whenever 

new rules are adjoined to % w >. We must deal with this problem by suggesting procedures 

for the modification of the reductor. Although short and fast, these procedures, 

theoretically, may require substantial memory with which to store the transition function (as 

a ISI by ICI array, where S is the state set); but, in practice, memory is rarely a problem and 

we will not bore the reader w ith theoretical memory estimates (which are, anyway, 

difficult).

The formal proofs of correctness of the procedures we are about to describe require 

numerous inductive arguments, and are not trivial. We have decided to forgo all formal 

proofs of correctness, as we believe they would simply belie the simplicity of this program 

without adding anything to the theory.

We begin by describing a subprocedure, suffix, which is called by both of the 

modification procedures.

s u f f i x f  ( ( C ,S . s , 0 . t )  , 0 .  6 .  F*°>  )

[
/ /  is a  su b se t o f  S . L e t  s u f f  b e  the  s e t  o f  w ords w ith  th e  fo llo w in g  p ro p er ty . If  u> is  a n y  w ord , 

/ /  then  t (a /)e  i f  a n d  o n ly  i f  w  h as  a  su ffix  b e long ing  to  s u f f .

/ /  W e  w ill re d e f in e  S .t  a n d  f  as fo llow s. ( (C ,S ,s ,0 ,T ) ,f)  w ill re m a in  a r e d u c to r  fo r **), bu t S 

/ /  w ill h ave  a  su b se t, w ith  the  fo llo w in g  p ro p erty . I f  w  is  a n y  w o rd , th e n  x(a>)e i f  and  o n ly

/ /  i f  w  h as  a  su ffix  o f  th e  fo rm  s6  w h ere  s  b e lo n g s to  s u f f .

/ /  W e no te  th a t, i f  P * °* = S , then , a s  x (E )» s  (i.e . the  sta rt s ta te ) , a n d  s  b e lo n g s  S , so  £  h as a  su ffix  

/ /  b e longing  to  s u f f ,  i .e . ,  E e  s u f f . A s  a ll  w o rd s  h av e  the  e m p ty  w o rd  a s  a  su ffix , so  P ^ )  w ill b e  

/ /  such  tha t x(w/)e P*1* i f  a n d  on ly  i f  w  h a s  6  a s  a  suffix , 

fo r ( i —1 ; i s  I I I ; i - i + 1  )

{
P ^ - 0 ;

c r  M il ;

pa rtition  P<°) a s  p r c j  c j  p r e ^ . . .  u  p rc n  so  tha t x is  co n stan t on  e a c h  p rc j »  (Cj);
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fo r  ( j - 1 ; j< n ; j - j +1 )

{
im -x (p ,c i)  w h e re  p  is  any  state o f  p r e j ; 

i f  ( im - « x ( p ,c )  f o r  so m e  p e  P*°* o r  c e  C-{Cj} )  

{

le t ns be a  s ta te  n o t a lready  in S; 

f (n s ) - f ( im ) ;

S-S<-i{ns};

p ( l ) .p ( l ) ^ ,{ n s } ;

x (p ,c i )» n s  f o r  a ll  p e  p r e j ;

T(ns,c )= x (im ,c  )  fo r a ll c e  C ;

}
e lse

p(l) .p d )u {im};

}
fo r ( j - 1 ; j< n ; j - j +1 )

{
le t p e  p r e j ;

t ( x ( p ,c i ) , c i ) - x ( im ,C i  ) fo r a ll p e p r e j ;

)
p(0 ) = p(l);

}
/ /  W e  w ill ne ed  to  r e tu rn  P ^ \  

re tu rn  P*1*;

su ffix (  )

m o d i f y (  ( ( C , S , s , 0 , r )  , 0 .  w o r d  6  )

{
/ /  T h e  p a ra m ete rs  a re  a s  fo llow s: ( (C ,S ,s ,0 ,x ) ,f )  is  a  rcduc to r fo r w > a n d  6  is 

/ /  w ord . I f  (  6 , a )  is  a  r u le ,  th e n  w e m o d ify  ( (C ,S ,s ,0 ,x ) ,f )  to  th a t o f  a  rcd u c to r  fo r 

/ /  W e  f irs t p u t:-  

P( 1) - s u ff ix (  ( C ,S ,s ,0 ,x )  , S ,  6  );

/ /  T h en , w ith  re fe ren c e  to  th e  descrip tion  o f  p rocedu re  su ffix , P ^ s S  w ill b e  such

a n o n -e m p ty

tha t
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/ /  ((C ,S ,s .0 ,T ) .O  is a  r e d u c to r  f o r  ^  ^  > w ith th e  a d d itio n a l p roperty  th a t  t ( u ’)€ if  a n d  on ly  i f  w  

/ /  h a s  6  as a  su ffix . W h en c e , c f  de fin itio n  4 .2 .1 , w e n e e d  on ly  rede fine  

fo r (a ll p€  P*1))

f ( P ) - f ( p M I  30+1);

}

m odify ( red u c to r , w o rd  )

modify(  ((C,S,s,0,r) f). triple ® )

{
/ /  T h e  pa ram eters  are  a s  fo llo w s : ((C ,S ,s ,0 ,T ) ,f)  is  a  reduc to r fo r ^  N ) a n d  ® is a  tr ip le  w hich  is 

/ /  n e ith e r  le ft n o r r ig h t s id e d . I f  A  is a  tr ip le , th e n  w e  m o d ify  ((C ,S ,s , 0 , t) ,O  to  th a t o f  a  reduc to r fo r 

/ /  *<N >u{ ( ® (n ). ^ ( n ) )  I n e  DJ }.

/ /  N o te  that, by  d e fin i tio n  4 .1 .2  and  4 .1 .4 , n o n e  o f  th e  com ponen ts  o r  o f  ® a re  em pty .

/ /  W e  be g in  by pu tting : -  

P (1 )- s u f f ix (  (C ,S ,s , 0 . t). , S  );

/ /  s o  tha t P(1)C S  w ill b e  su c h  th a t  ((C ,S ,s ,0 ,T ) ,f)  re m a in s  a  reductor f o r  3(i N >, b u t w ith  the  

/ /  a dd itiona l p roperty  th a t i (u > )e  P*1} if  and o n ly  i f  w  h a s  35 a  s u f fix .

/ /  T h e  fo llow ing  w h ile - lo o p  fu rth e r red e fin es  t a n d  S so that ( (C ,S ,s ,0 ,x ) , f )  rem ains a  reduc to r 

/ /  fo r  S i w ), bu t so th a t th e re  is  a  subset P*2  ̂o f  S  w ith  th e  property  th a t x ( w ) e  P^  i f  a n d  on ly  i f  u> 

/ /  h a s  a  su ffix  o f  the  form  

a = id e n t i ty  m ap  on  S;

po“p<1)' 
w h ile  ( P j - 0 )

{

W 0 ‘
C(i+ D “  ®21 (i m od  ) + 11;

p a rtitio n  P (j+i )  a s  p rc j i_> p r C jU  . . .  ( J  pren  so  th a t t  is  constan t on  e a c h  p rc j x  {c^}; 

fo r  (  j - 1 ; j< n ; j - j +1 )

{
im - tip .C j)  w here  p  i s  a n y  sta te  o l p rC j;

i f  (  o ( i m ) - - o ( p )  f o r  s o m e  P K w ith  0£ic<i a n d  i+ l - K  m od  iB jl )

T(P-c(i+l))-P  fo r  3,1 P« Prej :
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e lse

<
let n s  b e  a  s ta te  n o t a lready  in S;

f (n s )= f ( im ) ;

a ( n s ) = a ( im ) ;

S = S u { n s} ;

P ( i+ l)= P ( i + l ) ° * n s*; 

x (n s ,c )= o (x ( im ,c ) )  fo r a ll c e C ;  

t ( p .c ( i+ 1p » n s  fo r  a ll p e  p r e j ;

}
}

* < W 0 >

i - i + 1 ;

}

p<2>-u iraxiiJ2i .o pi;
/ /  W e  now  p u L -

P (3)= su ff ix (  ( (C ,S ,s ,0 ,x ) ,O  . «3 , P<2) ):
/ /  T h en  ( (C ,S ,s ,0 ,T ) ,f)  r e m a in s  a  rcduc to r fo r  N \  b u t w ill b e  a  su b se t o f  S  w ith  th e  p roperty  

/ /  th a t t ( u / ) e p ( 3) i f  a n d  o n ly  i f  w  has a  su ffix  o f  th e  fo rm  ®3- W h en c e , c f  d e fin i tio n

/ /  4 .2 .1 , by  red e fin in g : 

fo r  (a ll p e  P^3*)

f ( p ) - f ( p M I  3U +1);

/ /  ( (C ,S ,s ,0 ,x ) ,O  w ill b e  a  r e d u c to r  fo r N Vj { ( cfl(n), ^ ( n ) )  | n ^ l  }. W e  w a n t a  rc d u c to r  fo r 

/ /  16 N (  ® (n ) , ^ ( n )  )  I n e  IN }, so, to  f in ish , w e  need  o n ly  call:

m o d ify (  ( (C ,S ,s ,0 ,x ) ,O  . ® j®3 );

m o d ify (  red u c to r , tr ip le  )

We are almost ready to describe the pseudo code for the functions reduce(word), 

reduce(triple) and for the procedure secure(word, word). Let us begin, however, with two 

short, but labour saving, procedures, and with the procedures for adjoining rules to w \
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shifUeft (  triple T)

/ /  W ith o u t a lte r in g  th e  s e t  o f  w ords { -7(n) I n e N  }, w e  rede fine  T s o  th a t I T jl is m a x im a l. By 

/ /  lem m a 4 .1 .1 , w e  m a y  a c h ie v e  th is  by  th e  fo llo w in g  w h ile -lo o p , 

w h ile  ( I Tjl ] > 0  and  T jl  I T jl 1 -  I 5 I ] )

{
c h r  »  Tj[ I T j l );

'ri “ Ti 0 * lTjl-1); 
T2 - c h r ( ^  (1 , l ^ l - l ) ) ;  

c h r  5  ;

}
}

sh iftle ft(  tr ip le  T )

s h i f t r i g h t  (  tr i p le  T )

{

/ /  W ith o u t a ltering  th e  s e t  o f  w ords { T fn) I n e  IN }. w e rede fine  T s o  th a t I T jl is  m a x im a l. By 

/ /  lem m a 4 .1 .1 , w e m a y  a c h ie v e  th is  by  the  fo llo w in g  w h ile -lo o p , 

w h ile  (  IT 311 >  0  and  T3(U  -  T2( l ] )

{
chr -  Ijlll;

T j -  T jChr

T2- T 2 ( 2 . 1 >51) c h r;

T3 -T 3 (2 , 1 5 1 );
>

}

sh ifrig h t(  tr ip le  T  )

a d j o i n f  r u l e  ( ( b ) , ( a ) )  )

{

/ /  A d jo in s th e  ru le  ( ( b ) , ( a ) )  to  H,w h ere  6  a n d  a a re  w ords . 

m o d ify (  ( (C .S ,s ,0 , t )  , 0 .  b  );
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>

adjoin( )

a d j o i n f  r u l e  ( (B ) ,(A  ) )  )

{

/ /  A djo ins the  ru le  ( ( B ) , ( A  ) )  to  w here  B  a n d  A  a re  tr ip le s . R eca ll tha t, b y  p ro p o sitio n  4 .1 .6 , w e 

/ /  w an t B  to  b e  such  th a t ® j[ l® jl  ̂ *̂ ia t w e m a y  a PPty lem m a 4 .2 .2 ) , bu t w e c an  ach ieve

/ /  th is  by  ca lling  sh iftfeft. 

sh iftle ft(  B ) \

m o d ify (  ( (C ,S ,s ,0 ,x )  ,f), B  ) ;

}

a d jo in ( )

We now describe the pseudo code for the functions reduce( word), reduce( triple ), 

and for the procedure secure( word, word) (all of which refer to lemma 4.2.2)). These 

procedures are actually faster than those we used in practice, this is because, in practice, we 
referred to a less powerful tool (but still akin) to the reductor.

r e d u c e  (  w o r d  w  )

{
/ /  W e  define  s ^  to  b e  the  s ta r t  sta te , s, o f  th e  reduc tion  a u to m ato n .

s(0)- s ;

k - 0 ;

/ /  B y  de fin ition , s^0j= x ( i t< l ,0 ) ) ;  w e p roceed  to  co m p u te  ŝ kj- x(b<1,k)), fo r a ll  1< k S  | w  I . 

w h ile  ( k<  I w  | )

t
k- k+1;
/ /  By defin itio n  1.1, x( b < 1 ,k ) ) - x( b<1,k - 1 )), « i i c D - x i s ^ « ,  *{k 1), so w c  pu t: 

i f ( f ( s (Kp ^ 0 )
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{
/ /  th e n , by  defin itio n  4 .2 .1 ,  if: 

r e  f(s(K));

/ / a n d :  

p -  u< l,K );

/ /  w e kn o w  th a t p  w ill h a v e  a  su ffix  s ■ -Sin) w h ere :

( « , ^ ) - r lh p a i r o f f ;

/ /  and  n e  N.

if  ( «  a n d  A  a re  w o rd s  )

/ /  th e n , by  c o n v e n tio n :-  

n - 0;

e lse

/ /  «  and A  a re  t r ip le s  a n d  w e m ust c a lcu la te  n  b y  th e  m e thod  d e sc r ib e d  in 4 .2 .2 , i.e., 

fo r (  n « 0; /{ te -  I «3 I -  n  I « j  I 1 *  •BjlI « 1 11 ) ; n = n + l ) ;

/ /  W e  now  know  th a t s  m  « ( n ) ,a n d  therefore  w m  p ( l ,  k -  | « (n )l )  « (n ) a<  k +1,1  w \ ). W e  p u t:-

a / - p ( l , K - l « ( n ) l ) ^ ( n ) « < K + l , |* H ) ;

/ /  and  no te  tha t, fo r a l l  l< i^ » c -  I 9 (n ) l, T ( it< l,i)) -s^ Kj. T h u s  w e need o n ly  c a lcu la te  s ^ ,  anew  

/ /  b e g inn ing  a t i= tc - I « ( n ) l , so  w e p u t:-  

tc-K - I «(0)1;

}
}
/ /  W e now  h av e  k =| w  I a n d , fo r  a l l  l< i£ K - l  w  I , f(s(K)) * 0 .  T h u s , by  the  d e fin i tio n  o f  t  and  f, w e 

/ /  know  th a t w  w ill b e  N '- r e d u c e d ,  and  so w e m ay re tu rn  u>. 

retu rn  w  ;

rcd u c c (  w ord  xu  )

r e d u c e  (  tr i p le  T )

do

{
/ /  S to re  a c o p y  o f  T ( f o r  f u tu r e  com parison). 

Tcopy m 7  ;
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/ /  W c begin by searching for triples ( a ,  6, c )  where 7  m ( a ,  b, c ) ,  and a , respectively b or c , 

/ /  is ^  N ^reducible. For each  such triple, we redefine 7 to be ( reducc(a), b , c  ), respectively 

/ /  ( a , reduce(£), c )  o r (  a , b , reduce(c)), and continue if possible.

/ /  We first need to redefine Tj, T2 and T3 , without altering { Tj( T2 )" T3  I ne  W }, so that Tj 

/ /  is o f minimal length. W e  d o  this calling shiftlcft( 7 ) .  

shiftleft( 7 ) ;

«- (T)i; i-  (T)2; c- (T) 3 ;
/ /  In each pass o f the follow ing do-loop, we will attem pt one o f (i) o r (ii) as follows, (i), if 

/ /  possible, strictly reduce a t  least one of 7 ' s  components, then further redefine 7 so that the Tj 

/ /  component is o f m inim al length, (ii), provided (i) was not possible, then, if  possible, redefine 

/ /  T so as to increase I 7 ^  I by  1 and decrease 17 $  I by 1. If  neither (i) nor (ii) was possible, then 

/ /  we exit the do-loop. I t  is not difficult to see that the d o -loop  must stop, and that, when it 

/ /  stops, 7 could not be fu rther redefined (without altering { 7 ^ (  7 2  )n 7 $  I ne  (KJ}) so that one of 

/ /  its components is reducible (as required), 

do 

{

continued;
T -  ( a ,  b , c ) ;  

a=rcduce(a); 

b  =rcducc(f); 

c  =reduce(t);

•f ( (T )! > a  or (T ) 2  > 6  o r (7 ^  >  c )

{
/ /  Wc may be a b le  to  achieve (i) by redefining a, b  and c, without altering

/ /  { a (  b ) n  c l ne  IN }, so  that a is o f minimal length. By lemma 4.1.1, w e may do this

/ /  by the follow ing w hile-loop, i.e., shiftlcfl( ( a , b , c ) )

while ( I a  I ] > 0  and  a [ | a l ) »  b [ \ b \ \ )

l
c h r -  oil a l l ;  

a - a ( l . l a l - l ) ;  

tf =* c h r  ( 6( 1 ,1 b \  - 1) ); 

e = c h r  c ;

/ /  We have ach ieved  (i), and so will need to m ake at least one more pass o f the 

/ /  do-loop , i.e..
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continue-1;
>
T - (a . i . t ) ;

}
if (continue- 0  and I c I >  0  and c [1 ] -  i l l ) )

<
/ /  We may still be able to achieve (ii) by redefining a, 6  and c, without altering 

/ /  { a (  6 ) n  cl neW  }, so as to increase I a I by 1 and decrease I c I by 1. By lemma 4.1.1, 

/ /  we may do this as follows, 

chr -  e l l ] ; 

a = a c h r ;

6 -  6 (2 , 1 61) c h r ; 

c -  e ( 2,1 c l ) ;  

continue-1 ;

}
}
while (continue-= 1 );

/ /  We now search fo r possible triples ( 3 , !A ) o f 5(.with Tj( T2  )nT3 ■ p  'B1(«2)^nr+K^®1i  

/ /  for some words p  , s  and  K j e  W, and, for each such ( B, A ), replace T  by 

/ / ( PA -*3 >■
/ /  By lemma 4.1.1, w e know that ( 3 , .3 ) is such a triple if and only if

/ /  ( 1 ) 1 (0 )  m p *b ( k ) s  and 7 ( 1 ) a  p3 (K +r)i.

/ /  Note that r  must be divisible by I 7^1, actually r=| / |  ®21. So, let us begin by putting:

t°=  7(0); 

i1- 7(1);

/ /  and then setting equal to the start state of the reduction automaton, i.e., 

s(0)-s;

/ /  We proceed to com pute all s(i)=T(t°(l,i)), for l< is  11° | . 

i=0 ;

while ( i< 11°  | )

{
i - i+ 1 ;

/ /  By definition 1.1, T (l°(l,i))-T (T (l°(l,i-l)). t ° [ i l), so  we put:-

s<i>-
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if (f(S(i)) ^ 0 )

/ /  then, by definition 4 .2 .1 , we know that: 

fo rfall j€ f(s ( i p )

if ( ( ® . A  J - j 0* pair o f  ^ .w ith  3  and £  being triples and I 2^1 d ivisible by I ®2I )) ;

{
/ /  then t° ( l  j )  has a  suffix s ■ 3(k) for some tee U. Actually, we need to know 

/ /  the w ords p and s  and ve N where t° ( l ,i)«  jrs(k ) and t0«  . We begin

/ /  by calculating k  by the method described in 4.2.2, i.e., 

for ( k - 0 ; (t°(l,i)X  i -  I ®j I - n I 1 1 4  ) ;k - k+1);

/ /  We now  know  that t°(l,i) has suffix b (k ), and we need to define p  and s  so 

/ /  that:

/ /  2(0 ) ■ p  3 (*c)r , i.e., we need:- 

? - t 0( l4 - l3 ( K ) l ) ;  

s - t ° ( i + l j  t ° l );

/ /  We then d efine :-  

r - |  A  ®2! .

/ / a n d  check 

i f ( 2( l ) - p a ( K + r ) r )

{
/ /  Then (1) does hold, so we m ay redefine:-

T -  (  p  ^ 1( ^ 2>k . ( ^ 2>r. *3 );

/ /  and  reset: - 

i - 0 ;

l ° -  7(0);

i1-H D ;

/ /  W c now break the for-loop, 

break;

}
}
/ /  As a last refinement, w c w ish to search for all possible suffixes, s  o f T , so  that:

"  C> « » i - V O T ,« .
/ /  and all possible prefixes, p o f T j so that:
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/ / (3) t 2 p -+ 3L( n ) P r 2-

/ /  With (2), we could define p  by T ^ m  p  s . and so replace *T b y  ( p , T 2  ,  s  T $ ) .  W ith (3),we could 

/ /  define s  by 7^« p  s , and so  replace T  by (  Tj p , T 2  , s  ). In practice, though, neither is really 

/ /  feasible. It is feasible, however, to check whether Tj has a suffix s , satisfying (2), and, in 

/ /  addition, with s '1 being a prefix o f T2. A lso, we could feasibly check whether T3 has a prefix 

/ /  p , satisfying (3), and with p 1 being a suffix of 7 j.  W e have found that both situations occur, 

/ /  not infrequently, in practice, so it would be worthwhile implementing both checks.

}

whi,c < ^opy«1 •*■>:
return T ;

>
rcduce( triple T)

s e c u r e  (  w o r d  w , w o r d  u  )

{
/ /  The parameters, a /and u , m ust be such that w >  u, and, by adjoining at most a  single rewrite 

/ /  rule to vi; w \  we aim to secure the reduction w  w y* u . We begin by defining S(0j to be the 

/ /  start state, s, o f the reduction automaton.

s(0 )“ s:

tc=0;

/ /  By definition, s 0̂ j» t( ^ 1,0>) and we proceed to compute, in the following w hile-loop, all 

/ /  S(K)=t( b<1,k)), IS kS I b/ |  . W e may strip common prefixes o f w  and u , and replace a<l,tc) by 

/ /  words t/wiih a<l,K) —»^(N ) v • but the (inductive) hypotheses will always be (i) and (ii) as 

/ /  follows, (i), that w  and « do not have a  non-trivial common prefix or suffix, and, (ii), we do not 

/ /  have b<1,k-1 ) v  with i/ b<kJ w \ )>  u .

/ /  Note that, when k=I w  I , then u> and u  will have no common suffixes or p refixes, and we will 

/ /  not have u / —> 3  ̂N ) v  with i/2r u . We will then check to see whether w  can be w ritten as p  s 

/  /  with p >  u s ' 1 (respectively s  5  p  _,u ). If  so, then we will replace w  with p , and u with i u '1 

/ /  (respectively a/ with s , and u with p  _,u ). W e will then be in the agreeable situation o f being 

/ /  absolutely sure that the reduction 10 _ > ^  n )* “ could not be secured m ore cheaply than by 

/ /  adjoining the rule (a> ,u )  to 1*6 W). 

w hile ( k< M )

60



/ /  By dcfiniiion 1.1, t(*<1,k) ) - t(u<1,k -1 )). tJ k) ) - t( s(k_ j j , i^ k) ) , so  we put:

s(k) - t< S(k-d-^W ):
i f ( f ( s (̂ ) , l0 )

{

k - k+ 1 ;

P rn tt(l,K);

for ( all re f(s(K)) );

<
/ /  we know that p  will have a  suffix s  ■ $(n) where:

( ■ B .A  )= rlh pair o f 35.;

/ /  and ne IN.

if ( 3  and A  a re words )

/ /  then, by  convention:- 

n=0 ;

else

/ /  3  and  A  a re triples and we calculate n by the method described in 4.2.1, i.e., 

for (  n = 0 ; p i  K- I « 3 1 -  n I ®2 1  1 *  ®i( I « i  1 1 ); n = n + l);

/ /  We now  know  that s  -  9(n). and thus * /« p(l, k -  I « (n ) l) 9 (n) a< K +l, I w \ ). So, 

with:-

v m  p ( \ ,  k -  I « (n ) l) * n )  u( K+1 , 1  u - |);

/ /  we w ill have w  _» ^  N ) v. 

if (  V 2  u )

{
/ /  w e p u t:-

/ /  noting that, for all !< & * - I S (n ) |. x (a<l,i))=s(l(). W hence, if we now :- 

strip w and  u o f their largest common prefix and largest common suffix;

/ /  then , w ith :- 

tc=K- I ®(n) I ;

/ /  are  inductive hypothesis, trivially, still holds, and we break the for-loop. 
break;
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4.3

Resolving the Critical Pairs

In this section we describe the procedures for resolving the critical pairs of 3̂  w >. We 

note that there is no problem in deciding, for a single critical relation (u /,v ) ,  whether or 

not the words a;and rhave a common N ̂ -descendant; also there is a more or less 

standard way of resolving these single critical pairs. However, resolving a 1 -parameterized 

set of critical pairs, { ( Tt{n), 'Hn)) I ne N }, say, is not so straightforward because we do 

not have a method of deciding whether or not, for all ne N, the words 'M{n) and Mn) have 

common £  N >-descendants. Actually, we believe that this may be an undecidable problem 

in general (cf. theorem 3.2.2). Nevertheless, we can still describe a procedure, admittedly 

composed of basic techniques, which makes a sensible attempt at resolving these critical 

pairs, and which seems to work reasonably well in practice. Before this though, we will 

describe, so as to provide a complete pseudo program, the (probably) familiar code for 
resolving a single critical pair ( w , v ).

resol ve( word w , word v  )

1

/ /  Wc resolve die critical pair ( w , v ) .

reduce (n/);

reducc(v);

if  (  V m  n/)

return;

swap w  and v  ;

strip w  and v  o f their largest common prefix and largest common suffix; 

let p -largest prefix o f  u> so that aX lp l+ l , M )  > /» -!* ;

•f (  P * t )

{
« / -  u f  Ipl +  1 . M ) ;

»
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let s= largest suffix o f i v  so  that u< 1 , Itt'l-h  I ) > 

if ( s i t )

{
w- 1 , Iwl-lil );

}
adjoin( ((«/),( ?)) ); 

return;

resolve( word z^, word v )

So, for the remainder of this section we are free to study the problem of resolving the 
1 - parameterized critical pairs

{ ( Tt{n), l<n ) ) I ne (Ki }

for (variable) triples TW e(C *)3.

We will frequently refer to the terminology and results of the preliminary section(4.1), 

and to the procedure secure( word u>, word v) (specified in section 4.2). Recall that the 

arguments, w and v , must be such that uf^. v, and by calling secure ( w , v ), we would 
secure the reduction u> —>* v  (by adjoining at most one new rewrite rule to w >).

Now, for many triples, TV and V, the critical pairs ( ( Tt<n), T-fn ) ) 1 ne Ihl} can be 

resolved by adjoining just a finite number of new relations to ^  N). Such methods are the 
subjects of the next three (trivial) lemmas and their corollaries.

4.3A Lemma.

(i) Suppose there is a m e IN such that:

(1) n \ ( i t ,2)m —>* a'l('V2 )m‘i'l - l TVl 

and

(2) (V2 )nV3 y i t ' j  . for all n<m.

Then TV(n) ^  *Kn) for all ne IN.

(H) Suppose there is a m e IN such that:
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('W'2 )m-W'3 -»* ‘M'3 V3 ‘ 1(V2 )m '^ 3  

and

^ l ( ^ 2 n̂ 'M/3 ‘v 3 1 w  . for all n<m.

Then 'W'(n) ^  -Kn) for all ne IN.

Proof o f (i):

We should first note that the relations:

7i\W 3 =G 'fj'l 3̂ and ’Wi(‘H>2)Tn1 \’3 =G

yield:-

W j ( W 2 )m  - G  V , ( V 2) m (V 3H ’3- l )  = G  •

So, both relation:

=G v 1(v2 y"('i'1 -IM'1) ,

andrelation:

'»*l('W;2)n 'Ĥ3 'l'3 ' 1 =g n<m,

are consequences of the relations îtfn) =G 'Kn ), for all ne IN. 

We would have, for all re IN and n<m.

(Tt,2)(rm+n)'W,3 _>* ('l/1('l-'2 )mV1- 1 'JV1)(‘H,2 )((r- 1)m+n)‘H'3

_>• (^ (V 2)m^ f  1)(^ 1(^ 2 )mV f 1 '^ 1)('M'2 )«r-2’m+n)'M'3

•••_>* (V1(T'2)m‘l^ 1)r‘R'1('M;2)n,H,3 , applying (1 ) r times, 

^'1('f,2)mr‘̂ 1 _1 ‘H'1('H,2 )n'W ,̂ 

v  V1(V2 )mr(^ 2)n'V'3 ,b y ( 2 ).

I 4.3.1Q) 1

The proof of 4.3.1(ii) is similar.

Em
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4.3 .2  Corollary.

If I n'2\ >1 V2I , then the critical pairs { ( 7 i{n ), 1 <n ) ) I ne W } may be resolved by the 

followingprocedure.

{
for( m -0 ; 'M,1 ('H'2 )m < 't'1 (a'2)m and ('W'2)m ■H’3<‘H’3 ‘U}’ 1 ('y2)m 1'3 ; m «m + l );

if ( lV1 ('H’2)m S ■U1 CU2 ) m  )

{
sccure( , 't'1 (V2),n V x ~ lr H \  );

for ( n - 1 ; n < m ; n » n + l )

resolve( 'V’1 ‘ 1 '»t'1 (lV2)n JV3 , (V2 )nV3  );

}
else

{
secure( ('H;2)m 1 V3  , ■M’3 't'3 ‘ 1 (V2)rn V3 );

for ( n - 1 ; n < m ; n -n + 1 )

resolve( ‘H'1 ( ‘H'2 )n 'H'3 ,t '3 ' 1 . 'V'1 (1 '2)n );

}
return;

}

1 * ^ 1

4.3.3 Lemma.

Suppose ’W is right sided so, cf. definition 4.1.2, we may define the word p by: 

(1) WXW2 s  pWx.

If:

(2) _>* Vxr 3t

as well as:

(3) PVX _»* VXV2

or

( 4 )  p V x  • « _
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4 .3 .4  Corollary.

If W  is right sided and ‘M'j 'H'j then the critical pairs { ( H{n), l^n ) ) I ne W }
may be resolved by the following procedure.

{
l»(‘H'|*y<l.|* y ); 
secure( 'H'j'JVj , 0^ ^  ); 
if ( pVx> 1\V2 )

secure( pV̂  , );
else

secure( VjVj  , pVj ); 
return;

}

EMI
4.3.5 Lemma.

Suppose TV is left sided so, cf. definition 4.1.4, we may define s by 11^5 . If:

-** V1 1''3

as well as either:

s ->* or ^ 3  5 *<_ V2*̂3 ,

then, for all ne N, *W{n) ^  1 {n).

4.3.6 Corollary.

If -»Vis left sided and , then the critical pairs { ( -W<n) , *Kn ) ) I ne W }
may be resolved by the following procedure.

{
/«(•H'j 'H'jX IIV3I+I, I'W'j'W'jl); 
sccurc( , 't'j'T'j );
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if  ( >  r 2 r 3 )

secu re( V ^ s  >  V j O'j  );

else

secure< )!

re tu rn ;

}

m u

4.3.7 Lemma.

Suppose , I'Ĥ I !=l'i^l ¿0, and define the integer m as follows. If
I'W'jl , then let m be least so that \n \\  ^ 1^1 +m|'I^|; if |tv'1I , then let m be least so 

that ll'jl 1̂ Tv'll +m|'H^I. It would follow that, if 'Kn)>'M{n) for some n, then 'Kn)>'M{n) 
for some n<m+l.

The proof is trivial string manipulation, and we omit it.

We can now describe the procedure for resolving the critical pairs: 

{ ( *M<n) , T<n ) ) I ne OsJ } 
for (variable) triples 'H'Ve (C*)3.

r e s o l  v c (  tr i p le  I V , tr i p le  V )

{
/ /  W e shall resolve the critical pairs { ( -H<n) , V{n ) )  I n€ OJ}. 

i f  ( •HCO-'KO) and <M 1 ) - ‘K 1) ) 

return;

•H^reducc('W);

1 ''*=rcducc(‘l);

i f  ( •M(0 ) - 'K 0 )  and <H{1 )B<K1 )  ) 

return;

if  (  W 2m 1 /2 m e  )  

{
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resolvc( 7t{0),'l{0) );

return;

}
shiftlefl(‘V);

shifUeftiH);

/ /  Recall that shiftleft( triple T )  redefines the components o f T , without altering { Tin) I ne 1W },

/ /  so that T 3  is maximal.

strip “W'-j and 1 '3  o f  their largest common suffix;

shiftrighti-V);

shiftright(‘W);

/ /  Recall that shiftright( triple T )  redefines the components o f T , without altering 

/ /  { 1 (n) I ne N }, so that Tj is maximal, 

strip TVj and Vj o f their largest common prefix; 

if  ( I W 2\ *  |V2I )

{

if ( \w2\ < i*vy >
swap IV and •U,

/ /  We now have |*Ŵ I > 11̂ 1 > 0 , so we may apply the method o f corollary 4.3.2 to 

/ /  resolve all the critical pairs { (  *H(n) , 7{n ) )  I ne IN }.

for( m -0 ; IVj ( Vj (V2)mV j 1 and (H>2) m W 3<H>3 'l'3 '  (V2 )m V3; m -m + 1  ); 

if  ( ‘iv1c»v2)m *  r 1( ^ 2 ) m  V j '  w , )

{
securc( 7 t'1 (lV2)m , 1 ' l (-V 2) m  W 1 ); 

for ( n - 1 ; n<m; n - n + 1  )

rcsolvef 7^'* ■Jv'1 (1 t ,2)n 7 t'3 , );

>
else

{
for ( n - 1 ; n<m; n - n + 1  )

rcsolve( W l ( ‘H>2 ) n ‘W 3 ‘U3  l , 7/1 (7'2)n );

>
return;
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/ /  W e now have |1 V2I « W 2\ >0.

s h i f t i e s t ) ;

shifUeft(T4^;

let m be maximal so that has (*V2)m as prefix, and 1 i'3 has ( 1 t'2)m as prefix, 

if m>0 

{

5V3-'l'3(ml 2̂l+1 ,lV3l);

^«•^(ml'H'.l +1, 1'H'jl);

if  ( reduce('V'j51̂ )sreduce('H ,j5 1t^ ) )

{

/ /  Then a simple (inductive) argument yields 'Vj(T'2)n5 a^( IR( w *) 1»'j(7t'2)n5 y  for all n.

/ /  A lso , a s  ‘P3-('V '2>m5 ^ ,  so { *Kn) I n e  N }g{ I n e  IN } and a s  1 t,3«( 'H '2)m5 1^

/ /  so { "H<n) I n e  N  }£{ I n€  w }. T hus, w e m a y  a s  w ell put:

W 3;

}

>
shiftrigh iit):

shiftright('K);

let m  be maximal so that “Vj has ('V’2)m as suffix, and 71 j  has ( 'H ,2) m  as suffix, 

if  m>0 

{

^ - ^ ( l j ^ l - m l ^ l ) ;

- •W'3(l J'M^I-ml'W^I); 

i f  ( rcd u c e iJ* ^  V3) = re d u c c ( i ,1v^ H t y  )

{

/ /  A  sim p le  ( in d u ctiv e) a rg u m e n t y ie ld s  i ’̂ ( V 2)n V3(  R ( u  >>3>,H^ ( 1t'2)n 'H'3 fo r a ll  n . A lso, 

/ /  a s  1/ l " T v ( rU2 )m ,  s o  { *Kn) I n e  IN } $ {  i ,v ^ ' , '2)n V3 | n e  IN } a n d  as ‘H'1»2»M̂ ('H '2)n , so 

/ /  { ,H<n) I n e  IN } $ {  !Pw ^('W,2)n‘H;3 I n e  N )• T hus, w e m ay  a s  w ell put:

Vj - 5 V ;

7/



//and

}

}
if itfO k 'H O )

swap TV and V,
/ /  We now have I'Ĥ I -  IVjl >0, ‘M0)>1<0) and ,H<0) and 1{0) have no non-empty common

/ /  prefixes and no non-empty common suffixes.

shiftrightf'Ĥ ;
if ( ‘H'j can be written as ps so that the triple ( t , . n'j ) is left or right sided and sW^Zp'V^)

{
‘H'j-.r,

* W V ,!

else

{
shiftleftflt);

if ( 'H'j can be written as ps so that ( ‘W'j, . p) is left or right sided and

{

n - V :
}

}
if ( IV is not already left or right sided )

{
shiftright('W);

let s be of minimal length so that iVj can be written as ps with

{
Wj-r,

Vr p \ ;

}
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sh iftle flC H );

let p be of minimal length so that H'-j can be written as ps with "M'jp >1’̂ ^ )

{

V ,.V y ',

/ /  Note that we still have *M0)>‘K0). 
pm reduce( H \  i t  ’2 ■H'j,); 

if ( ;> pW.j )

se cu re (  l t ’j l t '2 . p H \  );

/ /  W e  now  h av e  'H'1'U’2 —* ^  N )* p 'H j,  w hence  'H’1('H '2 )n 'H'3 - »  ^  m )* ( ^ " i V j l t ' j  , fo r 

/ /  a ll n€  K. W h en c e  (/>)n 1Vl  -H'j ^  1{n ) ( fo r a ll n e  N ) *  ■Hfn) ^  1{n) ( fo r a ll n e  U ). T hus, 

/ /  w e  m ay  p u t:-  

‘W M e .p . 'H ' j 'H ' j ) ;

/ /  so  tha t iV is  n o w  r ig h t s id e d  a n d  'M’j 0̂  ( c f  co ro llary - 4 .3 .4 ).

}
e lse

}

s« red uce( it^ lt '2 it'j); 

if ( •H'j-tt'j 2 ify  )

{
secure( IVj 'JVj , ■H'ji);

/ /  W e now  h av e  'W'j -K'j  - ♦  ^  m )* 1V3J, w hence  i t ' j f W j / ’l t ' j  *  )* •H'1‘H'3( i)n . for 

/ /  a ll n e  M. W h en c e  ^  1<n) ( fo r  a ll n e  N ) -» l t< n )  l< n )  ( fo r  a ll n e  U).

/ / T h u s ,  w e  m a y  p u t:-

■H'-( ■JVj'JVj ,*,£);

/ /  so that IV is now left sided and iVjIt '̂V’j'V'j (cf corollary 4.3.6).
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/ /  Note that we still have 'H(0)>1f0) and that H<0) and 1<0) have no non-empty common 

/ /  prefixes and no non-empty common suffixes, 

if ( *H' is left sided )

{
/ /  We may apply the method of corollary' 4.3.6 to resolve all the critical pairs 
/ /  {( -Mn), -Jfn )) I ne IN }.
S m ( n ’2 i  t’3X iT i jk l ,  \W 2 W } 1 ): 

secure( It'j 1t’3 , 1 ' ^  ); 
if ( v 3i  > r2r3)

securef 1'3s > V2V3 );
else

secure( . V 3 s  ); 

return;
}
if ( W  is right sided )

{
/ /  We may apply the method of corollary 4.3.4- to resolve all the critical pairs 
/ /  { ( iKn) , -Kn )) I ne li }.

l*y>:
sccure( );
if ( )

securef , 'VjVj  );
else

securef VjO'j  . pVj ); 
return;

}

/ /  We know that 'M0)>1{0), *M0) and 1{0) have no non-empty common prefixes and no 

/ /  non-empty common suffixes, and that W is not left or right sided. We now need to know 

/ /  whether -H<n)<a<n) for some ne ftj. By lemma 4.3.7, we know that 'Kn)>‘H{n) for some n if and 

/ /  only if •Kn)>'H<n) for some nSm+1 where m is defined as follows. If llVjl ^ 1 ,  then m is least 
/ /  so that I'H'jl < iV 2 \ if |Vj| 21‘H'jl, then m is least so that IVjI Sj-JVjl +m|*Ĥ |.
if ( IWjl ̂ 1  )
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else

for(m »0; IVjl >l'iv’jl + m lW jl;m -m +l); 

m -m + 1;

fo r(n « l; n<m; n»n*-l) 

if ( ‘H n)> 'H {n))

{

/ / A s  1<0)Sn<0) and 1i'j is not empty (because i t 'i s  not right sided), so it has to be that 1 j«£ . 

for(i=0; i<n; i- i+ 1 ) 

resolve( n { i ) . -t{i));

/ /  W e are now left with the problem of resolving all { (  n { i ) , 1< i)) | i>n} j .e , with:

V-(e. r 2. (V2)"Vj);

‘»'-(‘H'j. W2. (W2)n'H'i>;

/ /  w e want to resolve all { (  n { i ) , *I{i)) I n e  N }. However, we now have •U right sided and 

/ /  w ith l< 0 )-(a '2)n V3 > ‘lVl (W2)nn '3 -'n< 0). So, with reference to corollary 4.3.4, we may 

/ /  resolve the remaining critical pairs, { (  -W{i), 1{ i) ) I ie DJ}, as follows. 

sccure( (Vj)"-!^ , iv'l (1t'2)nn '3 );

if ( Vj TVj» n 'j l i ' j  )

securc( 1/2'H'1 , I t 'j  1V2 );

else

securc( ■H'jiv’j  , );

return;

>

/ /  W e now know that ,W<n)>'Kn) and (amongst other things) that T t'is neither left or right sided,

/ /  so w e resolve the critical pairs { ( 1t< i), -Ki) ) I ie fcl} simply by putting:-

adjoinfCHOX'V); 1

for(m=0; In jl >JVj| ♦ml'l̂ hm-m+l);

rcsolve( trip le  TV, triple V)

1 We note that, a pair ( W , V) (W  and V  being triples) is adjoined to only if W  is 

not left or right sided. Also, suppose we wish to input a set rules { ( Tifn), “Kn ) ) I ne IKI} 

as data to the program. Let us suppose TV is right sided, then, by corollary 4.3.4, we should
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do as follows. Define p by 'H’j'M-,* P^xi- ^ cn input ('M'j'H^ , VjV3) together with 

(pVj, 1^0^). if frt'j ^ or w*th • F^i)« *f 2 ̂  r^ i- Also* b>’ corollary 4.3.6. 
if i t ’were left sided, then we should define iby  i t '3*, and input (Ttj'M'j . 1 \  1 -3)

together with (1' 3 í  . V2 V3), if V3 í  > V2 V3. or w ith (1 '2 13 . 1 3 s), if s. In shon,

w e have justified proposition 4.1.6, i.e., that left( JO should never contain left or right sided 

triples.

Comment Whenever the procedure secure( word, word) is called it might adjoin to 

5̂  N) a rewrite rule, ( b , a ), say. w ith b being J¿ ^ ^reducible. Although such rules do not 

belong to the minimal i t w ̂ -complete presentation (because, cf. theorem 3.1.1, 6« JC ^1̂ )  

it must still be checked against other rules for possible critical superpositions. This is 

certainly a hindrance, but preferable to adjoining an infinite 1 -parameterized set of rules to 

J& N) w hen a finite number of rules w ould suffice.

We hoped that this setback would be somewhat offset by testing for prime critical pairs 

before resolution (we refer the reader to the definition of a prime critical pair on page 46). 

The fact that non-prime critical pairs may be ignored is a commonplace labour saving test 

in finite completion programs, and the fact that it works for such programs is easy to 

prove. We point out that the test works because, w hen attempting finite completions, 
whenever a rule, ( b , a), say, is adjoined J¿ **', it is adjoined w ith the aim of guaranteeing 

that b and a have a common J& ^  ̂ -descendant, namely a . In our program, however, the 

procedure secure might adjoin a rule, ( 6 , a ), to ^  w ) with the aim of guaranteeing that 

6 — u >• a (which is a stronger requirement than that a and b simply have a common 

descendant). It is because of this phenomena that we cannot, so freely, rely on the prime 

critical pair test. Nevertheless, it is not difficult to prove that, by marking the rules which 

are adjoined by secure, we may ignore the non-prime critical pairs of two unmarked sets 
of rules (cf. (Kapur,Musser,Narendon)).

Recall that the program makes no attempt to resolve the 2-parameterized critical pairs. 

The (unavoidable) 2 -parameterized pairs computed during the completion process are 

supposed disjoint from J¿ N \  stored appropriately, and thereafter ignored until, if ever, the 

(probable) completion of the (1 -parameterized) set 2$ w * stops (cf pages 44 and 92). When
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this happens we must, to prove that ^  ̂  > is complete, confirm that all the 2 -parameterized 

critical pairs are resolved, i.e., have common 3 * ^ ’-descendants. This will most probably 

be true, indeed for most of the examples cited in section 4.5, it was easily confirmed by 

inspection. We infer from this that attempts to prove that a 2-parameterized set of critical 

pairs, { ( HCn), Mn ) ) I ne N2 }, say, are resolved need not be very sophisticated in order 
to be reasonably successful. Basically, by calling reducef , i t j  ) and

reduce( n ’5 ), respectively, we reduce the words of { Ti\(rH,2)nW3 I ne N } and

of { I ne N } as far as possible. We repeat the process with the quintuple V,
and then compare the resulting sets of strings.

reducef qu in tup le  QJ 

{

do

{

T t m p - (  Q.! . Q 2 • 0-3 • Ci4 . <2.5 )

shift! eftifQj.Q.j.Q.j));

( 0.3 . 0 .4 . 0.5  )-reduce(( <2 3 . <2 4 . 0 .5 ))); 
shift r ighi( ( Q.3 . 0 .4 , 0 .5 ));

( Q-i. 0-2 • £ 3  )-reduce(( Oj.O-2 .Cl3 ));
}

while ( 0[0.0)̂ 7Vmp(0.0) or Q[0 .1)*T«n,«).l) or Q[l,0 )*T<mp(0 ,l) or <Xl.l)*r«f<M) )
/ /  i.e., while { d n) Ine N2 }*{ Ttmp(n) I ne U2 }. 
return Q.;

}

reducef quintuple )l

resolved?( qu intuple W . quintuples  V )

{

/ /  We make an attempt to prove that the the critical pairs { ( ^ n ) , ! { n ) ) I ne U2 } are resolved. 
'V'-reducef V); 

reducef TV);
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if ( 'M0,0)#'K0.0) or •M0.1)#‘K0.1) or or 'M1.1)#'KU))

/ /  i.e., while { 0<n) I ne N2 }*{ ,H<n) I ne k2 }.

/ /  we have not confirmed that the critical pairs are resolved, so:
return 0;

else

/ /  the critical pairs arc resolved, and we: 
return 1;

resolved?( quintuple.quintuple)
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4 .4

Computing the Critical Pairs

In this section we will describe the highest level of the completion program, i.e., the 

procedure which computes and then, by calling the predefined procedures of sections 4.2 

and 4.3, resolves all the critical pairs of 9 tw
Recall that the critical pairs of ( ^  , ^  ) and ( ^  , <»2 ), in I t u >, are all those pairs of 

words:

(V  ( a\ , pais) with ^  ■ pfys, for some words p and s.

(2) ( a \s , pi*2 ) with i j i  * pS2 , for some words £ # p # and £ # s # ¿2 -

So the program has to compute all the pairs of the form (1) and (2) for all ( , oj ) and

( ¿2  . <*2 ) in N >. When I t u > is finite this poses no problems, but with N > possibly 
containing (infinite) 1 -parameterized sets, it is not a completely trivial matter to prove that 

all the pairs (1) and (2) are resolved. Anyway, it is natural to split this procedure into four 

parts as follows.
(i) We resolve all the pairs (1) and (2) for a (fixed) ordered pair, ( , a j ) and ( 62 • a2 )

in I t w >. In so doing we might adjoin 1-parameterized rules to f t N *, not that this is 

necessary (to resolve a finite number of critical pairs), but because w e are attempting to 

predict an infinite sequence of rules which would normally be computed and which could 

be 1 -parameterized. The method was suggested by practising on some of the examples of 

section 4.5 (the Dyck and surface groups) and is really quite a natural method of predicting 

the necessary 1 -parameterized rules. We will not comment any further on the method other 

than to say that, although it may not be foolproof, it appears to work just as well as the 

method suggested by Gilman in (Gilman84), but without wasting much time in testing for 

reasonable candidates for the 1 -parameterized rules.
(ii) We resolve all the pairs (1) and (2) for (fixed) ( ij  , oj ) in and all 

( £>2 , °2  )e ( ( ®(n) • A(n) ) I ne DJ } where ( 3 , A ) are (fixed) triples of •Jt.
(iii) We resolve all the pairs (1) and (2) for all ( f>\ , aj )e { ( -3(n), ^(n) ) I ne DJ },

where ( ®, A ) are (fixed) triples of and (fixed) ( ) in i t u >.
(iv) We resolve all the pairs (1) and (2) for all the ( , a\ ) and ( ¿2 , <£ ) belonging to
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(fixed) 1-parameterized sets. This is the only procedure whose correctness we shall bother 

to prove (i.e. corollary 4.4.3).
Comment. We do not test, in any of the pseudo code of this section, for prime critical 

pairs (cf pages 46 and 76), although it is advisable that some such test be made.

C n l P a i r f  w o r d s  (  6j , a j  ) .  w o r d s  (  62. 12) )

{
/ /  Computes and resolves the critical pairs of (( ^  . «2 ) )• where 6\,a\.b2 and o2 are
/ /  words.

for ( all words p , s such that £< p < , £< t < 62 and p62« 6^s)
{

K-lijI-lpl;

if (

ajOrl+l .lajD-ijd.K), 
p is not a suffix of p ̂ (l J* I).

and OjCi)n are ^  * ̂ reduced for all nelW.
)
/ /  Then we note that, with n-1, p(a,M J.< | ̂ "^(l.«)»/*^! J*l )ijd,K)
/ /  Jj| >ô ( l̂ t-t-1 .lojl )mp&i-
/ /  Also, it is not difficult to prove, b> induction on n, that, if /<a2( 1 Jr I j/^d.ic) and 
/ /  belong to w *), and Oj(f)n and a2 are least words in their (3̂  w ̂ -congruence class, then 
/ /  ( piojOJil ̂ "^ ijO .* ) . «|(f/n+l^) will be a critical pair of an 3({u ̂ complete 
/ /  presentation (cf section 3.1, page 19). We also know that the triple (p , «^(ljs I), ^(I.k)) 
/ /  will not be left or right sided, that the words p and â s have no common prefixes, that the 
/ /  words 62(1 ,k) and Ojj have no common suffixes, etc. In short, we prejudge the natural 
/ /  completion process and resolve the (probable) critical pairs (^^ ( l is I j/^O .K ). Oj(s)n ) 
/ /  by putting:
adjoin( ( ( p , ^ ( 1isI). ̂ (I.k) ) , ( a, . t, E ) ) ); 

else if (

ajd.Kj-ijd.x), 
s is not a prefix of s Oj(k+1 JojI ),

I62l > ̂ I  and, if 1^1 -  1021+2 , then Ojll)'* > Oj[21
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)
/ /  Then we note that, with n-1, ajd.tcXajiK-d Jajl ))ns mô s. Also, it is not difficult to 
/ /  prove, by induction on n, that, if OjCl.KX̂ iK+l.lâ l ))nj and ij belong to J(tfk 'j.
/ /  and (p)n*2 aj are least words in their (j{ w ̂ -congruence class, then 
/ /  ( 0j(1,kX4j(k+1 Jdjl ))(n+1)i , 0 ’)(n*1)a2 ) be a critical pair of an ^  w '-complete 
/ /  presentation. We will also know that the triple ( aj(l.K), ajOc-t-l Jojl), s) is not left 
/ /  or right sided, that the words a^l.K) and pâ  have no common prefixes, that the 
/ /  words s and pô  have no common suffixes, etc. So, we prejudge the natural 
/ /  completion process and resolve the (probable) critical pairs 
/ /  ( Ojd.KX^iK+l Jojl))"/, (p)naj ) by putting: 
adjoin( ( ( Oj(l ,tc), «̂ (k+I .lujl). s), ( E . p, o2)) );

else
/ /  we simply: 
resolve( o^s, pâ  ); 

for ( all words p , s such that ij«p62 ) 
resolve( â  , pa^s);

aj(l,KX<*j(*c+l,lajl))"/ and (p)na  ̂are £  *  '-reduced for all ne U.

CritPair( w ords , words )

CritPair( words ( 6, a) , triples (B , A))
{

/ /  Computes and resolves the critical pairs of ( ( i , a ), ( 3(n), ^(n) )) for all ne IN, where 6 and a 
/ /  are words and B and A are triples. 
for( all words p. s and all re fcl such that pB(r)s m 6) 

rcsolve(p^(r)j, a);
for ( all words p , s and all re M such that £< p < 6, £< t < S3 and ?B(r)m 6s) 

resolvt(pAis). a*);
for ( all words p , s and all re N such that E< p < 6, £< s < 83 and jfB(j)m 6s1&$ ) 

resolvc( ( pA(r+n), as ( ij)"% ) for all ne M ); 
for ( all words pand s such that £< p< 6 ,£< s< and pB̂ m6s) 

rcsolve( ( pA(n) , as (32)n'B3 ) for all ne N);
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CniPair( words . triples )

CritPair( triples ( B. A ), words ( b, a))

<
/ /  Computes and resolves the critical pairs of (( 3(n), .afn)). ( i , a )) for all ne N, where B and .■? 
/ /  are triples and ¿ and a are words. 
for( all words p , r such that pbs ■ Sj )

resolve( (pas (B2/'Bj • -<n)) for all ne N ); 
for( all words p . s and re N such that p < B̂  , s < and ■ ®i(®2>r ) 

resolve( (par ( ,  .^r+n)) for all ne fcj); 
for( all words p , s and re N such that p, s< ‘B̂  and pbs )

resolve( ( B^B^X ( pas y1 (B ^ l B$ , ^(nj+nj+nr)) for all ne N and nj.njcr); 
for( all words p , s and re N such that p<B j , s <B3 and pbs «®(r)) 

resol ve( pas, Afr) );
forf all words p , s and re M such that p < Bj , s < S3 and pbs m(B2/-B3 ) 

resolvef ( ■31(32>n pas, . f̂r+n)) for all ne fcJ ); 
for( all words pand s such that p< B$,s <B3 and pbs *B3 ) 

resolvef ( (ij)" par, -1(n)) for all ne ftJ);
for( all words p , r and reU such that £< p< B̂  ,£< s< band pb ■3 (r)r) 

resolvef pa, Afr)s);
forf all words p .rand re N such that £< p< B  ̂,£< s< b and pb miBjfB^s) 

resolvef ( B^B^f' pa, ̂ fr^n)r ) for all ne M ); 
forf all words p, rand rekl such that £< p < 3-j, £< r < ¿andpb*B^s) 

resolvef ( Bx(B2)n pa, .^fn)r) for all ne N );

jCritPairf triples , words )

Let ( ) and ( ®2 • ^ 2  ) ^  (fixed) triples of We are left with the problem of
computing all those (critical) pairs:

(3) ( A^(r) , pA2(s)s ), whenever:

®j(r) * p&2.(s)s.

(4) ( ^j(r)s , pA2<s) ), whenever:
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2Jj(r)i ■ ^ ( s ) , Od^W^jir)! and O d s k l^ s ) ! .

We will write £>j for (® ()j (for i=l,2 and j = 1,2,3). We recall (proposition 4.1.6) that 

neither nor 3^ would be left or right sided. In particular, l/^l J^22l > and 5 0  we may 

define:

L=lcm( lijM. 1̂22̂  )»

and then put:

L j - L / I ^ 2I and  U = L / I ^ 2I •

Since (3) and (4) cannot occur simultaneously, it is natural to describe separate 

procedures for resolving the critical pairs (3) and (4) respectively. We will only be proving 

the correctness of the former, which is the more difficult, but still a straightforward 

corollary of the next lemma.

4.4.1 Lemma.
Suppose ®j(r) a j/3^s)s, and define:

f(p,s )= m ax(0,l/>l+l62i l - l i n l  l - m in iO j i^ l - l ^ l - U I  )•

(i) Suppose:

5l l ( 5j 2)Li *s a prefix of a word of the form 

or

is a prefix of a word of the form ^h (^i i )li(^i2)*- 

Then, provided pe IN is such that r-pLj £ f ( p , s ) / \ ^  •

■Bjir-pLj+nLj) a p^C s-pL^+nL^)* , for all ne N.

(ii) TeiUp,s)/\S\^ +Lj ^  the supposition of (i).

(iii) Suppose pm 5n(£i2)a /’ for some a<r, then:-

® j(r -a + m )a  i(^ i2 )mP ®2 (s)i for all me IN,

and
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■-a < ( L+lp k l^ il-m in iO jij^ -l^ l-U I) )/\b\$ .

(iv) Suppose s * s (¿12)* ¿13 for some y<i, then:-

® j(r -Y + n )  *  p B j i s ) *  ( i j 2 ) n ¿13 f ° r n e  N ,

and

r-y  < ( L+max(0 ,l/>l+l£2 il-l£nl ~*\) V l^nl •

(v) Supposing both (i) and (ii) hold, then, for all m,n € IN,

■ B j i r - a - Y + m + n )  h  ¿ 11 ( 612)"* p 32( s ) 5 (  ¿ 12) "  ¿ 1 3 • 

and

r -a -Y <  ( L + lp l+ ^ il+ ta^+ G I •

The proofs of (i) and (ii) are a little tricky but, nevertheless, are no more than basic 

string manipulation. They would be of little or no interest and so we omit them.

Proof o f  (in):

Substituting pa ¿11 (¿12)°? in the identity:

¿ 1 1 ^ 1 2  )r  ¿13 3  P®2(s)-f.

we derive:-

¿ll(^12)r 1̂3 3  ¿ll(^i2 )a P®2(s)i -
Then, because a<r. we may cancel the common prefix ¿11(612)° to derive:- 

(6,2)(r-°)6i33 P«2(sk.

Whence, for all me IN,

(¿ » (¿ 1 2 > m )( i l2 > (' " a ^ 3  3  ( ¿ ll(* 1 2 )m > P * 2 i* ) s .

i.e.,

(5) •BjO’-a+m ) a ¿n(6i 2)mp 3 2 (s)j 

(which is the first part of (iii)).

We can easily complete the proof of (iii) by proving the following:
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(6 ) Claim .

If r £ Up ,s )/\b\$ + L j, in addition to (iii), then the triple ^  is right sided.

Proof:

If r^U p  ,s)/\b\A + L j, then (ii) would imply (i), i.e..

(7) provided r-pL j >Up , s ) / \ ^  , then

ijir-pL j+nL j) * p^s-pL^+nL^).*, for all ne N.

So we may substitute m=a+Lj in (5), and p=0, n=l in (7), to derive two expressions 

for the word ^(r+Lj), namely:-

®2 (s)-> ■ P*2l(*22)Cs*L2> h i ’ ■

We can then cancel the common suffix { ^ 2  )%h.ls lo obtain

Bu (S i2 ) ^ L0'p = pfa 1(^22) ^  •

Whence, by comparing the suffixes of the latter identity, 521 is a suffix of 2̂ 1 (^22)^» 
which, by lemma 4.1.3, is a criterion of the triple ^  being right sided.

m
Now, we arc assuming (iii), and so, by (6 ) and the proviso that neither of the triples 

nor 2*2 was left or right sided, we must have:-

(8) r< f(p ,s)/\6 tf\ +Lj .

We are assuming ps b\\(b\2)°/’. therefore: -

Up,s )=max(0 ,lpl+l^2 1l-li11l )-min(Ojii3l-li23l-UI)

= Ctl S\2l+fp l+l^2il-min(0,l5j3l-li23l-lr I ).

Substituting for Up ,s) in (8 ):-

r < ( Ctl b\2l+l/> l+l(>2 il-min(0 ,16j 3l-I523l-I.il) ) /|^ j2I +Lj • 

but L ^ L / l i ^ l . whence:-

(9) r - a  < ( L +\p l+l^2il-min(0,l5i3l-li23l-UI) )/\b\$

(which is the second part of (iii)).

|4.4.1(iii)|
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P ro o f o f  (v):

By (iii), we have:-

(5) ®1(r-a+ m )* 5 1 i ( ^ 2 )m />®2(s)i, for all meN,

and, by (iv),

(10) ^ ( r-y + n is p ^ is )  ~s (6\ 2)n ¿13  » for all n€ IKI.

Applying (5) and (10) concurrently we obtain, for all m, ne W,

^(r-a-y+ m + n) * £n(£i2 )m (6i2)n î3

(which is the first part of (v)).

By (iii), we have (9). Also, as we are assuming s*~s ¿13 . therefore:- 

—min(0 ,l 1̂3!—1̂ 23!—1̂ I )= Yl̂ l2̂ +^ l+^23l •

Substituting the latter expression in (9) and rearranging we obtain:- 

r-Ct~Y < ( L+l p 1+1̂ 2ll+ls l+l̂ 23̂  )/l^ i2^

(which is the second pan of (v)).

|4.4.1(v) and 4.4.11

4.4.2 Corollary.

Suppose 'B1(r)sp®2(s)i, p * b \{p , where p is a proper prefix of i i 2 o r° f  ¿1 3 . and 

s=~sf>\3 , where s is a proper suffix of 2 or °f 1̂1- Then, for all m,ne W,

(11) (  .4 j(r+m +n  ) , i „ ( i 12)"> p ^ 2(s) ; ( i 12) » i13 )

are critical pairs which can be resolved (without resorting to 2 -parameterized rules) by the 

following procedure.

{
if ( 6n  ~p̂ 1(s)s>pA2(%)'s 6l2 )
{

see ure( i, 2 p *2(s)'s. p J (̂s)'s i,2);
resolve( ( ^j(r+x), p^2(s)j(i|2)K ) for all ice M )

)
else



{
secureip. f̂s)* £12 , pfysfs);
resolve( ( . ĵ(r-»K). i11(i12)K p-^is) J ij3 ) for all ve k )

}
}

Proof:

By lemma 4.4. l(v), we know that, for all m.ne 1X1,

(12) ^(r+m+n)* £ii(ii2)mP®2(s)*(*12)n*13 . 

so the pairs of (11) will be critical pairs (as claimed). Also, substituting first n=l,m=0 in

(1 1 ), and then n=0 , m=l in (1 1 ), yields two expressions for the word ^ ( r + 1 ), namely:- 

1̂1̂ 12 P ^i3a ^llP ®2(s)5 ̂ 12^13 •

By cancelling the common prefix, ij j , and the common suffix, ^ 3 , we have:- 

S\ip  ̂ (s)} * p «,(5)5 ¿12 •

and so the relation:
¿1 2 ? =G P 1̂2 •

is a consequence of the rules (1 2 ).

So, supposing:

(13) b\2P ̂ 2(s)i -»* p ̂ ( s)^ ̂ 12  »

and

(14) i j ip ^ 2 (s)i (5i 2)K̂ i3 J?j(r+K), for all tee W.

We would then have, for all m.ne IN:-

ill(il2 )n,?^2<s>I <i12)nil3 i Il«I2)(m- ,)5^2<s)J (i12)(n*,)<i13

----- >• fi11J j l 2 (s)i(ii,2)(m+”)<13 .

applying (13) m times,

^j(r+m+n),

b y  ( 1 4 ) .
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applying (15) n times, 

yy  -31(r+m+n),

by (16).

Em

We can now describe the procedure for resolving the critical pairs: 

(3) ( J ij(r), pA2(s)s ), whenever: 

®l(r)ap®2(s)i.

C ritP a irj (  tr ip le s  (  S j , ^  ) ,  tr ip le s  (  ® 2 , A 2 ) )

{

/ /  C o m p u tes  and  re so lv es  the  c rit ica l p a ir(s)

/ /  (3 ) (  , p A 2( s ) i ) .  w henever:

/ /  'B1(r)mpV2(s)s.

frij“ (* i) j fo r > -1 .2  a iu l j - 1 ,2 .3;

L - l c m ( ! i12l . l i j j l ) :

Lj-L/lfjjl;
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Lj-L/lijjl ;
# define f m a x (  0 , Ip^jl - l i j i l  )-min( 0 , Ü13I - \fos  I); 

for( all proper prefixes, p, o f ij2  or ij3  ) 

for( all proper suffixes, s, of ^ 3  )

for(r-0; r< (L+  Ip^jl-mini 0 ,  I613I - l ^ r l  ) ) A ^  ;r»r+l ) 

if ( 1̂ l(^l2)r 1̂3*^11 P^2 l(.h.2^ h 3 s )

resolve( ( J^(r+m), ) for ail me DJ );

for( all proper prefixes, p, o f i j j  )

for( all proper suffixes, j, of éj2 or 6jj )

for(r-0 ; r< ( L+max(0 , Ip ^ l " l^nl)+ 1̂ 23-*! V li^ l ; r-r+1  ) 

if ( i l  1(^12/^13" ?  *2l(*22)S *23**13 ) 

rcsolve( ( ^ (r+ n ), p ^2(s)Xii2)nii3  ) f° r ail me (J ); 

for( all proper prefixes, p, of éj2 or 3 ) 

for( all proper suffixes, s, o f  ¿12 or i j j  )

for(r-0 ; r<( L+l/»%l+ l % i l  )/li12l ; r-r+1 ) 

if ( * ll(* l2)f *13“ * l l  P*2l(*22)S*23**l3 )

{
if ( il2 M 2(s)i > P-̂ 2(s)jÉ12 )

{
secure( 6l2P*2<.s)s, pXl <̂ )s6x2 )î

rcsoIve( ( ^j(r+n), ¿iipA^s); (612)ni l 3 ) f ° r all ne N ):

}
else

secure( p^(s)s6n . 6\Tjpfyd* );

rcsolve( ( ^j(r+n), i u ( i 12)n pX^s)* 3 ) for ail ne HJ );

}
}

for( all proper prefixes, p, o f 6XX )

for( all proper suffixes, s, of i 13)

for(r-0; r< f(p, î )/Iî , 2I + L j; r-r+1 ) 

if ( i n ( i i 2)ri l 3*P *2l(*22)*%* ) 

{

if (
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r> f0> ,,)/lij2l.

and cither:

^1 1 (^ 1 2 ) ^  is a  Pre f 'x o f a word o f the form r ^2 

or

P^2 l(¿ 22)1'2 ' s a  Prcfi* o f a w° rd  ° f  ihc form 61 1 ( i j 2)Li ( i i 2 )*

)
resolve( ( ^ ( r + n L j ) , ^ ^ (s + n L j)  s ) fo r all ne N ) ;

else

resol ve( ^ ( r ) , p t y s)r);

C ritPairi( triples , triples )

4.4.3 Corollary.

The prcK»f of correctness of CritPairjC), i.e., the (critical) pair 

(3) ( ^ j( r ) , pA2(s)s )

is resolved if and only if

(17) « t (r> ■ p&2(s)s.

Proof:

The proof that we resolve only the critical pairs is a special case of lemma 4.4.1 (i), (iii), 

(iv), or of corollary 4.4.2 - none of which we bother to restate.

Conversely, we suppose (17) holds. Then, the proof that the critical pair (3) will be 

resolved is basically a restatement of lemma 4.4.1. We suppose (for example):

Isl<lil3l and Ipl j| .

Then s would be a proper suffix of ¿13 and we could write p m6\ \ ( 6\2f*p where a<r and p 

is proper prefix of or ° f ¿13  •
By lemma 4.4.1 (iii), we would have:-

®j(r-a+m) ■ ¿n(^i2 )m /»'-^(s)*, for all me IN, 

and
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r - a  < ( L+lp kt^2 il-inin(0 ,l ^  3I -1 fa \- \s \) )/\b\A .

With 3 j( r - a )« i j |p  ‘31(s)s, and s being a proper suffix of ^ 3  , so the pairs:

( ^ (r -a + m  ) ,  6\\{ 6\2 )m? ^ s) ) 
would be resolved for all m€ HJ (which includes (3)).

Similarly, by lemma 4.4.1 (iv), we could confirm that the pair (3) is resolved when: 

Ul >1̂ 43! and \p\ <l6i i l ,

and, by lemma 4.4.1(v), when:

Ul ^1̂ 13! and \p \ >I/>il.

So, we may now assume:

Ul <1̂ 13! and \p\ <1 11,

i.e., 5 will be a proper suffix of ¿13 and p will be a proper prefix of ¿j i - 

If, in addition:

r< f  (p ,s ) /\B ^  +Li.

then the pair (3) is easily seen to be resolved. So we will also assume: 

r > f(p . s ) / \ ^  +Li-

Then, by lemma 4.4.1 (ii) and (i),

5l l ( i l 2)Lt is a prefix of a word of the form pi>2 l(^22)L2(^22)* • 

or

P^2 l(^22 )L 2 is a prefix of a word of the form £ii(£n)Ll(£i2 )* • 

and, provided peN is such that r-pLj > f(p ,s ) /\6\ i \ , then:-

‘̂ (r-pLj+nLj) a p&fo-'pl^+nL^s , for all ne N.

So, by choosing pe IN maximal so that:

r-pLj ez f(p ,s)/\Sn \,

we will have:-

f(p ,s )/\6\Ji +Li > r_PLi ^ f(p .^)/l^i2l •

Then, with '3j(r-pLj)a /<s-pL2 )i, p being a proper prefix of j and s being a proper
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suffix of ^ 3  , so the pairs:

( ijir -p L j + n L j), s-p l^ + nL2)i ) 

would be resolved for all n€ IN (which includes (3)).

Em

We conclude this section by describing the procedure which resolves the pairs

(4) ( .fljCr) $ , p ty is)  ). whenever:

^(r)* »p&iis) with 0  < Ipl < I^OOl and 0  < U < I'^Cs)!.

We omit the proof of correctness (being a restatement of the proof of corollary 4.4.3). 

Note that it may be necessary for this procedure to store 2-parameterized critical pairs 

which we must (later) prove to be resolved for ^  N > to be complete (cf procedure 

resolved?() defined on page 77). Such pairs will be computed if there are instances of (4) 

w ith both p and s are relatively large, i.e., \p\ > 1 ^ 1  and Ul>l/>13l.

CritPair2( triples ( ) ,  triples ( 3^  , ̂  )  )

{

/ /  Computes and resolves the critical pair(s)

/ /  (4) (  J4j(r)r, p X £ s) ), whenever:

/ /  ®i(r)s

£,j-(®j)j for i - U  and j-1 .2 ,3 ;

L-lcm( li,2l , l i j j l );

L , - L / l i 12l;

L j - i . / l i j j ! :

# define f0>, t ) ~  m ax(0 ,l|> i21l -  I6n l ) - m in ( 0 .1 % *  I -  1 ^ 1 ) ;  

for( all proper prefixes, p, o f £12 or i 13 ) 

for( all proper suffixes, s, o f ¿¡3  )

f o r ( r - 0 ;  r < ( L +  I p ^ J - m in f  0 ,  I£13j I -  I623I ) ) / I ^ j2I ; r « r + l  )

•f (  ^11(^12) ^ 13* - i i i  p  h i ( h i> sh 3 )

resolve ( (  ^ ( r + m ) r , *n(*i2>nV*2(s>) for all m e N );
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for( all proper prefixes, p, o f i n  )

for( all proper suffixes, s, o f i j 2 or ¿21 )

fo r ( r -0 ; r< ( L+max( 0 ,  -  l i n i  ) ) / l i 12l ; r- r+ 1  )

if (  ¿ 1 1 ^ 1 2 )^ 1 3 ^ 3 mP *2l(*22)S*23 )

resolve ( ( . ^ ( r M ^ ) "  ¿23 • P -^2(s+n) ) f ° r all me N ): 

for( all proper prefixes, p, o f 612 or 3 ) 

for( all proper suffixes, s, o f ¿22 o r ¿21 ) 

fo r(r-0 ;r< (L + y + IÌ2i l  ) / l i 12l ; r » r+ l  )

if ( ¿11(^12)*'¿13*^23"¿11 P ¿2l(^22)S¿23 )

slore( ( ^ j( r+ m )i (Ì22)n i 13 , ¿1 i ( i i2)m P -^ (s+ n ) ) for all ne DO );

/ /  We store these 2 -parameterized critical pairs disjoint from 3^ N ). When, if 

/ /  ever, the completion procedure stops, then, to prove that N J is complete, 

/ /  we must confirm that all the w ords o f these 2 -parametcrizcd critical pairs 

/ /  have common ^  w ̂ -descendants (cf. procedure resolved?0 (page 77)). 

for( all proper prefixes, p, o f i n  ) 

for( all proper suffixes, s, o f ¿23 )

fo r ( r -0 ; r< f(p. s ) / l i , 2l + L ^ r - r + l  ) 

if  (  ¿11^12)^13* "  P¿2lí¿22)S¿23 )

and cither:

¿1 ̂ ¿12)Ll 's a prefix of a word of the form pb2i(i22)L'2( i 22)* 

or

^¿2l(^22)^ is a prefix of a word of the form ¿11(612)^1(612)*

)
resolve( (^j(r+nLj)r, pj^fs+nLj) ) for all ne IN ) ;

else

rcsolvc( J?j(r)r, pV2(s) );

CritPair2( triples , triples )
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4 .5

Program Report

This is a brief report on the implementation of the program described in the first four 

sections of this chapter. The program was written in C++ on a Sun 1/130.
The complete presentation of the free abelian group of rank 2 of example 3.1.5 took 

about a second to complete.
Recall the abelian by cyclic group, of lemma 3.1.6, with (semigroup) presentation:

< a ,  <rl , B, Br* . c, c'1 I ( a a '1 . E ), ( or'a, £  ), ( BB~' . £  ), ( ( r1 B.E ),

( ce“l , £ ), ( c~ * c , £ ), ( Ba, aB) , ( ca, Be ) ).

With the SortLex ordering <j defined by a <j <r1 B <j ( r 1 <j c <j c_1, the completion,

listed on page 24, took 2 seconds. With the SortLex ordering < 2 defined by 

c < 2  c- 1  < 2 a < 2  a' 1 < 2  ¿ < 2  the completion, listed on page 26, took about 70 seconds 

and the resolution of some of the 2 -parameterized critical pairs had to be confirmed by 

hand.

The surface group of a torus with p holes has group presentation:

( <*1 . 0 2 ..... °2p I ( °2pfl(2p - l ) • fll a2  - fl2p ) >•
With the ShortLex ordering defined by <a2<a2~^<-■ -<a2p<a2p~̂ * we computed
minimal complete Pj presentations for p=2,3 and 4. The completion of the p=2 

presentation took 6  seconds; the completion of the p=3 presentation took 33 seconds; and 

the completion of the p=4 presentation took 118 seconds.

It would not be difficult to work out the complete Pj presentation for general p, but 

Le Chenadec has already catalogued finite complete presentations with respect to the 
ShortLex ordering defined by:

‘,( 2 p - l ) '1<fl(2 p -l)<  - < f l3"1< fl3< f lr 1 < a l <  fl2"1<a2< - -<fl(2p-2)" ,< fl(2p-2)< a 2p", < a 2p 

(see (Le Chenadec)).

The Coxeter group with presentation:

{ a, B, c, d  I ( aa, E), ( BB , E ) , ( « , £ ) , (  dd, £ ), ( dada, adad ),

( dBdB. BdBd), ( dcd,cdc) >, 

took 31 seconds to complete. We believe, but have not proved, that it has no finite.
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complete (ShortLex) presentation.

In (Le Chenadec) Le Chenadec describes (not necessarily finite) complete presentations 

for the Coxeter groups with no two generators commuting - there are difficulties with 

partial commutivity of the generators. We were able, however, to compute a complete Pj 

presentation for the coxeter group:

( a, B, c, d\ ( aa . E ), ( BB. £ ), ( cc , E ), ( dd, E ), ( ea , ac ). ( cB. Be ),

( dad, ada ), ( dBd, BdB ), ( dcd, cdc ) ),

in 15 seconds. We believe, but have not proved, that there is no finite complete (ShortLex) 

presentation.
With the input of both these Coxeter group presentations the program was unable to 

compute all the necessary 1 -parameterized rules. In both cases we had to run the program 

for a about 30 seconds, guess some of the 1 -  parameterized rules which the program was 

unable to predetermine, and then include these rules as additional data in a (successful) 

rerun of the program.
The completion of the (2,3,8) group, ( a, 61 ( (a)8, £), ( (£)3, £ ), ( aBaB, £ ) ), 

suggested by Gilman(84) took 8 seconds.

The Dyck groups have presentations:

D( nt , n2,.. ,nk)= ( oj, ai..... â  I ( (ai)ni, £ )...... ( (flk)nk- e  ). ( - . £ ) >•

We tried numerous Dyck group presentations and ShortLex orderings, all the presentations 

had either finite or (infinite) Pj presentations. With the ShortLex ordering defined by 

‘3l<fll - 1<a2<<J2 "1<---<flk<flk"1’ there was a Pj completion of D(6,5,5,5) which took 69 

seconds.
It is interesting to note that with respect to the ShortLex ordering defined by:

<*!<: 02<...< a p< flj_1< 0 2 _,<...< ap_i<

a(l>+l)< °(p+2 )^-■ *< “2p< °(p+l)'1< ‘V 2)"1<-
all our examples of Dyck groups on a even number of generators (i.e. k=2p) had finite 

complete presentations. We infer from this that there might well be a better ordering than 

that suggested by Le Chenadec where only confluence is proved (Le Chenadec).
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Almost Convex Cayley Graphs

5.0

§5

The concept of almost convex groups or, more precisely, groups with almost convex 

Cayley graphs, is due to J.W. Cannon and is first defined in Cannon's 1984 preprint of that 

title. The class of almost convex groups is large, and of interest because the (geometrical) 

property of a Cayley graph being almost convex means that it is (in theory at least) 

recursive, in fact there is an efficient method for constructing such graphs (theorem 5.1.3). 

In Cannon's preprint the interested reader will find proofs that the following classes of 

groups are almost convex: the groups satisfying the small cancellation hypothesis, HNN 

extensions of finite groups, free products with amalgamation of two finite groups, and 

discrete groups of Euclidean isometries (the latter groups being free abelian by finite).

There are, however, numerous problems in the subject of almost convexity, notably that 

the property of a Cayley graph being almost convex does tend to be difficult to prove or 

disprove in practice. Also (unlike the automatic groups), it is not known whether a group 

being almost convex is independent of the choice of (inverse closed) generators (although 
we can prove a partial result on the independence of generators, i.e., proposition 5.1.4).

We will begin this chapter with a summary of Cannon's (defining) work which 

appeared in his preprint, notably what is meant by a Cayley graph being almost convex and 

a description of the procedure which constructs almost convex Cayley graphs. Then, in 

section 5.2 we will prove that the class of word length preserving, complete, Pr groups are 

almost convex (i.e. proposition 5.2.1) and, the analog for automatic groups (i.e. theorem 

5.2.10), that the class of least length bounded automatic groups are almost convex (the 

latter is due to (CEHPT)). We believe these subclasses are strict: in section 5.3 we prove 

that the matrix group U(3,Z) is almost convex, but this group is known not to be automatic, 

and, we conjecture, it has no ShortLex, complete, parameterized presentation.

We conclude the chapter with an alternative, generalized, proof of Cannon's theorem 

that the free abelian by finite groups are almost convex (theorem 5.4.1). The proof, by 

reference to 5.2.10, is algebraic, as opposed to Cannon's geometric proof, and is, arguably,
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the simpler proof.

5.1

At this point we recommend that the subsection Cayley Graphs (page 5), of (the 

definition and terminology) chapter 1 be reread, but we make no apologies for repeating the 

following fundamental definitions and facts. We think of the whole of T = rc (G) as a 

connected (path) metric space with metric d=dc ; we allow retracing of paths; a geodesic 

path is a shortest path between its endpoints. If geG, thend(lG,g)=llgll and, if g.heG, then 

d(g,h)=llgh*1ll. We then defined (for all re IR) the r-ball of T to be { p€ T I d(lG,p)<r}, 

and the r-shell to be { pe TI d(lG,p)=r }. The vertices of T are distinguished by the fact 

that they are precisely those points of T at integer distances from the basepoint; if ne IN, 

then S(n) consists precisely of those ge G with norm n. When we refer to an edge or path 

staying within a ball B(r) (re IR), we mean that all points of that edge or path lie in B(r). 

Whence, an edge stays within B(r) if and only if at least one of its endpoints is in B(r-l), a 

path connecting two vertices stays within B(n) (ne IN) if and only if at least one of the end 

points of every edge that it traverses belongs to S(n-l).

We now define, for all Ke IN, the relation join(K), on the points of r c(G), by: p join(K) p 
if and only if p is joined to p by at least one path which stays within B(llpll) and has length 

no more than tc. These relations were introduced as abbreviations and are used frequently 

throughout this chapter (note that, apart from the trivial cases, join(tc) is neither symmetric 

nor transitive).
We can now define the geometrical property of almost convexity.

5.1.1 Definition (Cannon).

Let G be a group generated by C, then:

(i) If K is a positive number then Tc  (G) is said to be almost convexf k),which may be 

written as ac(x), if there is an integer b(ic) with the property that, whenever g,ge G are such 

that llg 11= llg II with d(g,g)£K, then g g. (ii) The Cayley graph Tc  (G) is said to be

almost convex,which may be written as ac, if it is almost convex(tc) for all Ke IN.
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5.1.2 Theorem (Cannon).

If G is generated by C and Tc (G) is almost convex(2), then Tc  (G) is almost convex. 

Proof:

We take arbitrary K and prove that Tc  (G) is almost convex(x). So let us suppose that, 

for some ne DJ, g.ge S(n) with d(g,g )<tc. Let p be a geodesic path between g and g, and 

then define me N to be maximal so that p does not stay completely within B(m). We note 

that:-
(1) IpIStc,

and so we may as well assume that p does not stay within B(m). Whence, m < n+lpl, and 

we have:-

(2)  n - 1  < m < n+lpl.

Now, whilst m>n there will be subpaths of p with just their endpoints belonging to 

S(m), we argue that all such subpaths have length at most 2. This is because no edge of 

such a subpath could have both its endpoints outside of B(m) (without all intermediate 
points on the edge lying outside of B(m) (which would contradict the choice of m)). 

Whence, such subpaths must be a single edge joining the same vertex of S(m), or else a 
path of length 2 which joins two vertices in S(m). Whichever, we see that the subpaths of 
p, with just their endpoints belonging to S(m), will have length at most 2. Whence, by the 

fact that Tc  (G) is ac(2), we may replace each of these paths by paths which stay within 

B(m) and have length bounded by b(2). As there are at most Ipl such subpaths of p, so, at 

the cost of increasing the length of p by a factor of at most b(2 ), we may push p inside the 

ball B(m). By (2), we see that this process need be repeated at most lpl+1 times before p is 

pushed completely within B(n). Thus g and g are joined by a path lying within B(n) and of 

length at most Ipl b(2 )(W+1), which, by (1 ), <, lid b(2 )(,Kl+1).

[5X2]

5.1.3 Theorem (Cannon).

If r c  (G) is almost convex, then Tc  (G) is recursive, i.e., there is a finite procedure for 

constructing B(n) for all ne N.
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P roof:

We will describe the procedure without proof of correctness (which may be found in 

(Cannon)).
Let R be the set of all those relators of G which have length at most b(2) (where b(2) is 

as in definition 5.1.1. Now remove all the trivial relators from R, also all the relators of R 

which have other relators of R as subwords; we continue to call the resultant set R.

We note that B(0) is just the singleton {1G}. Let us now suppose that B(n-l) has been 

constructed, we then proceed, to construct B(n) from B(n-l), as follows:-

Step 1. For each vertex, g, of B(n-l), and for each ce C, if there is not already a 

directed edge labelled by c between g and gc in B(n-l), then add one.

Step 2. If p is a path labelled by a relator of R then identify its endpoints.

Step 3. For each pair of vertices g and g, and for each label c, identify all the edges 

between g and g which are labelled by c.

The resultant graph is B(n).

Comment As the set R is finite, so it may be included as a Finite set of data in the 

method of constructing Tc  (G). However, Cannon mentions, in his preprint, that it is an 

open problem as to whether, knowing that r c  (G) is almost convex, the finite set R can be 

computed (although it is difficult to believe that this would not, in practice, always be 

possible).
It is another, more interesting, but perhaps more difficult, open problem as to whether 

or not the property of almost convexity is dependant of the generating set. We do, however, 

have the following partial result.

5.1.4 Proposition

Let C j and C2  be generating sets of G and suppose that, for all ge G, the difference 

between llg 11̂  and llg 11^ is bounded. Then, if r^ (G )  is almost convex, so also is 

r C2<°)

Proof:
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Let us suppose that:

(1) I U glier HgIIc2* *s bounded by K  for all geG.

By theorem 5.1.2, we need only prove that Tc  (G) is almost convex(2). So suppose g0 

and gj both lie in some n shell of r Cj(G) with:

(2) dC2(g0 ,g1)< 2 .

There will be no loss of generality in assuming n > 4tc+2.

We now choose g0e G so as to lie on a geodesic path of T^(G ) between gg and the 

basepoint and so that:
(3) dC2(g0 ,g0 )=2K+2,

then we will also have:-
(4) dc2(lG . g0  )-n-(2K+2).

5.1.5 Lemma.

If ge G with llg II IIgy II q ,  then n-(4ic+2) < d^OQ.g).

Proof:

If llg II Cj= llgyll Cj* we would have:-

I Hgo” C 2"  Hg H C 2* ^ I  “go11 c 2"  «oH c j  + I H® H C ,  “  Hg IIc j »

which, by (1 ),

<2 tc.

Whence:-

which, by (4), 

i.e..

dC2^G*8) = Hg 'I C2̂  Hgoll C2-2 k

= dc2O G .go)-2,c'

= n-(2K+2)-2tc 

dC2^G -g)^n"(4K+2)-
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By lemma 5.1.5, if g is any element of G satisfying llg llc  ̂= IIgo II Cj» then we must also 

have dUOQ.g) £ n-(4tc+2). As we are, anyway, assuming n>(4ic+2), so it is possible to 

choose gj so that IlgiHc^Hi^cy and with Si ŷing at a distance from gj along

a geodesic path of r^ (G )  between gj and the basepoint. We would have:- 

(6) dC2(g1 ,g 1 )s4K+2,

(7) HgjUcj“ Ulo^Cj’

We now have:-

dc/SO'Sl) * dC2i8 o*8 o>'K,C2<8 o**l>HlC2(«fil)» 
which, by (3), (2) and (6 ),

£  (2 k + 2)+ 2+ (4 k + 2),

Whence:-

dc , < W i ) - | | 6 0 i r ,||c 1'
which, by (1 ),

s ' M r ' I c , «

£ (6 tc+6 )+tc.

We are assuming r^ (G )  to be almost convex, so, with (7) and d^^(gQ,gj) ̂  7k+6, we 

see that g0  and gj are joined by a path, p say, (of r c ^(G)) of bounded length which stays 

within the llgollcj“ball of r c ^(G). As each vertex on p belongs to the (llgollC2+K)-ball of 

r c2(G), s o  each pair of adjacent vertices on p may be joined by a path (of Tc ^(G)), of 

length no more than tc+1, which must stay within the (llg0 llc2+2K+l)-ball of r c^(G). By 

(4), llg0 llc2+2K+l=n-1 , whence, we have found a path of r^ (G ), which stays

within the n ball of r^ (G ), has length no more than lpl(ic+l) (which is bounded), and 

which joins g0  to gj. By the choice of g0  and gj, we have shown that there is a (composite) 

path joining gg to gj, which stays within the n-ball of r c ^(G), and has length at most 

(2»c+2)+lp I(k+1)+(4k+2).

m s
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5.2

wlp-complete groups o f type Pr and 
lib-automatic groups are almost convex.

Let C be any alphabet, then we say that a total ordering, <, of C* is a word length 

preserving ordering (or wlp ordering) if, for all to, ve  C*, \io\ >M ^  w> v. If ( C I HQ is a 

complete presentation with respect to some wlp ordering, then it said to be a 

wlp-complete presentation.

The most familiar wlp orderings must surely be the ShortLex orderings, but there are 

others. As an example, suppose < is any ShortLex ordering of C and ce C. We then define 

the ordering< by: v< to if \v\<\iv\. or 11/| = \u>\ and v< to where v and to are,respectively, 

the words v and to after all occurrences of c have been replaced by £. Then < is a 

(non-ShortLex) wlp Knuth-Bendix ordering which (despite appearances) is not just of 
theoretical interest (similar orderings are used in the computer program of (Hayashi)).

Let (G,C) be an automatic group with word acceptor W, and let y : C* —»G be the 

natural homomorphism. Then we say that (G,C) is least length bounded automatic (or 

lib-automatic) with respect to W, if lfl-lly(f)llc  is bounded (independently of t)  for all 

Ce lan(W). We stress that the property of a group being lib-automatic is usually 

dependant on the generating set (while the property of a group being automatic is an 

invariant of the generating set).

In this section we will prove that the groups defined by parameterized wlp-complete 

presentations are almost convex (i.e. proposition 5.2.1), and that the lib-automatic groups 

are almost convex (i.e. theorem 5.2.9). Theorem 5.2.9 is due to (CHEPT) and is included, 

not just because it is the analog of 5.2.1 for automatic groups, but also because it is pivotal 

to our proof of theorem 5.4.1, i.e., that abelian by finite groups are almost convex.

5.2.1 Proposition.

Let T= ( CI H_) be a wlp-complete presentation of type Pr of the group G (with 

respect to the wlp-ordering <), and let y : C* —► G be the natural homomorphism. Then 

r y(C)(G) is almost convex.
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P roof:

Let us begin by restating some of the definitions and terminology of pp 17-20 and, 

hopefully, in so doing, restate the suppositions in a more manageable form.

We defined the relation — on the words of C* by iv — v  if w& pSs and v s  pas 

for some ( S , a )e Then we write — for the reflexive, transitive closure of . If 

■w — v , then v is an ^.-descendant of w. A word is said to be ^.-irreducible if it has no 

^.-descendants other than itself.

The set of rules, "K., will, by definition, be normalized, i.e., whenever ( i , a ) e 5t ,  then 

S> a. Whence u > - * £ v ^  u /t  v, also:-

(1)  (.6 , a ) e H * \ 6\ 2\a\,

because ( 6 , a ) e ^ . ^ 6 > a  and thus, as < is wlp, we could not have Ia|>l6 |.

By being complete we mean that each word, «/, of C* has a unique irreducible 

descendant, called its ^.-representative and denoted by rep(«/), which is the < least word in 

its ( ) congruence class. Thus, any irreducible word, u>, will be a word of minimal length

in its < > congruence class (because if there were a strictly shorter word, then, as < is wlp,

this word would be < «/(which would contradict ^.being complete)). We may interpret this 

geometrically as follows: any path of Ty(q (G) labelled by an irreducible word will be a 
geodesic path. This, together with (1), is the crux of the supposition that < is wlp.

If ‘Se(C*)(2P+1)(for some pe IN), then (l£i£ 2p+l) is the i 1,1 component of « . We 
defined B(0) to be the word

«1 «3  «5 ... ®(2p+i).

and, if n=(nj,n2 ,...,np)e INP, ®(n) is the word

® l(«2)nl ®j(* 4)n2 *5 - ®(2p-l)( V " P  ®(2P+D- 

If p >0, then we refer to the words «4,.. .,«2p as the repeating factors of S. We adopted 

the convention that IKJ°= {0} so, if Be  (C*)° and ne IN0, then «(n) is always the single word

By being of type Pn we mean that can be partitioned as a finite number of
subsets, of the form:

(2) { ( ®(n), A(n) ) I ne INP } with 0<p<r and B , A e (C*)(2 P+1>.
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We stressed that the p of (1) need not be the same for the different subsets of the partition, 

but r, being a bound on the p's, is a bound on the number of repeating factors allowed for 

the different A's and ©s. Also, note that the subsets of type Pq will just be the finite 

subsets (of C*xC*).

Now let us suppose that some some © of (2) has a repeating factor, ©2K say, which is 

the empty word. Then A2K must also be the empty word (otherwise I J  >0 =*

I ©j® *© 5 • • • ®(2 k- 1) W "  ®(2k+1)®(2k+3) • ■ • ®(2p+l)l <

I * 1 * 3 * 5  ••• * (2 ic - l)(* ic )n * (2 k + 1 )*(2 k +3) • • • * (2 p + l.j • 

for some sufficiently large n -  contradicting (1)). So, we could replace ©by

( © j, © 2,.. - .«(2K-1). ® (2k+1)- • -® (2 p + l) )• *  b y  ( *1* * 2 .......■ (̂2k -1)’ * (2 k +1)’ -• •• ^ 2 p + l)) and

p by p-1 (without changing the rules of (2)). Thus, repeating, if necessary, we may as well 

assume that © has no empty repeating factors. Henceforth we shall assume the A's and ©s 

of (2 ) to be fixed.

We hope that the theory summarized hitherto will now be familiar to the reader, it will 

be referred to (mostly implicitly) throughout the (short) proof proper.

Now let { ( ©(n), A(n) ) I ne IMP } be as in (2). If p>0 then, as © has no empty repeating 

factors, we may define n(a) to be the least integer such that n(a)min(|©2il >2 |©(0 )l.

We would then put L(a)=n(li)max(l«2il )i< i<p + l©(0)l. and m(2l)=max( 6l©(0)l, 2L ). If p=0, 
then we would put m(a)=6l©(0)l. Finally, we define M=max(m(2))2as jn

By theorem 5.1.2, we know that F^(q (G) will be almost convex if we can prove that it 

is ac(2) (we refer the reader to definition 5.1.1). We can be precise, we shall prove that, for 
any ge G and c0,Cj e C:

0) whenever llgll = NgY(c0)ll, then g join(2Kr|M) 81f(co). 

and

0 0  whenever llgll -  Ilg-rtCuC!)». then g gTCCoP,).

The body of the proof is the following lemma.

5.2.2Lemma.

Let ge G and ce Cufe} be such that gY(c)*l, so that g=g(g,c)e G can be defined by 

rcp(g)c-rcp(gY(c)> for some 2e C, then g joinflaM) §•
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Before proving 5.2.2, though, let us demonstrate how 5.2.2 implies (i) and (ii).

5.2.3 Corollary.

Let ge G, Cq.CjE Cvj{£} and suppose llgll = IlgYiCoC!)!!, then g join(2|ciM) SYiCoCj). 
(Note that (i) would follow by taking Cj=£, and so F ^ q (G) would be ac(2).)

Proof:

We can certainly assume that llgy(c0)ll £1 (otherwise gy(c0)=l and, trivially, 

g join(2 ) gTfccfl))- Thus’ we may d' flnc Se °  by:
rep (g )c  ■ rcp(gY(c0)) .  repCfgYiCocpiyO:,-1))  (> e) 

fo r so m e c s  C. so that, by  5 .2 .2 , g  jomMM ) g and  gy(c0ct) join(iaM) g- A s M  -HgYtCoCi11 ■ 

so g  join(2|clM) gY(cc)-

m u

Proof o f  5.2.2:

We will construct, inductively, a finite sequence 

(gi ,Cj)
where (gQ,CQ)=(g,c), and, if te l:

( ( g i , C j ) e G x C ,

rcP(g(i-l))c(i- i)—► rep(gj)Cj and rep(g(i_1))c(i_1)> r e p ig ^ j , 

8  join(iM) 8  i •

So we assume ( g j, Cj) has been defined for 0<j£i. If rep(gi)ci is irreducible, we stop. If 

rep ig^ i is not irreducible, then as rep(gj) is irreducible, c^ E  and we may choose 

(®(n), .3(n))e K_, for some A e  (C*)(2P+1) and ne IKIP as in (2), so that:

(3)  rep(gj)Cj = pQ(n)

for some proper prefix p of rep(gj). We then define C(i+1)€ C by:

(4) PA(n) a />c(i+1)
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(with ~p being the largest proper prefix of pAi,n)), and put g(j+i)*Y(p)- Whence:-

(5) rep(gj)Cj * p3(n) pX(n) * pc(i+1) rep(g(i+1))c(i+1),

and so, as ®(n)>^(n),

reP(gi>Ci a p^n)>pA(n) a pc(i+1)^rep(g(i+1))c(i+1).

So we now have to prove that g join((i+i)M) g(i+l)»but* bYthe inductive hypothesis, we 

already have g jo^M ) g j, thus it suffices to prove that gj join(M) g(i+i)- We will, for the 

most part, demonstrate this pictorially.

Let us first suppose that ^(n)sE. Then, by (5), 

g,Y(Ci)=Y(p).

whence: -

llgiY(Ci)ll £\p\.

Thus, as p is a proper prefix of rep(g,),

||giY(ci)ll< lpl<llg1ll,

but, also by (5), we have giY(Ci)=g(i+i)Y(C(i+i)). so. trivially, gi j0 in(2) g(i+l)-

We may now assume -3(n)#e so that, by (3) and (4) respectively, Cj is the last character 

of the word S(n), and c(i+1) is the last character of the word ^(n). Let us illustrate the 

reductions (5) as part of the Cayley graph r Y(C>(°>-

figure 1 .
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5.2.4 Lemma.

With reference to figure 1, all points within the shaded area can be supposed to lie 

within the ball BClIgjll).

Proof:

By (3) we have rep(gj)Cj * pBin), thus the path between the basepoint, (pi) and g j, 

labelled by the irreducible word rep(gj)» p (®(n)(l, l'B(n)l-l)), is a geodesic path and so 

(most certainly) stays within BClIgJI). Also, by (4), pB(n) > pA(n), thus \pBin)\ > \pA(n)\ , 

and so IlgJI = l/r®(n)l -1> \pA(n)\-\. Whence the path between the basepoint, (pi) and g(j+i), 

labelled by p(^(n)(l,l^(n)l-l)) (and of length lp^(n)|-l), could not possibly go outside the 

ball BClIgJI).

5.2.5 Corollary.

If I®(n)l S 313(0), then g, join(M) g(i*,).

Proof:

By 5.2.4, the path between g; , (pi) and g(j+i). labelled by

( H(n)(l ,l«(n)l - 1 )) (ntnX 1 ,U(n)l-1 ) ) - 1

stays within BOIg.il). Also, this path has length < l£(n)l+U(n)l. but U(n)J < l-5 (n)l, so 

l«(n)l+ln(n)l £2l«(n)li6l3(0)<M, 

whence gi g(i+1) (as required).

tu g
We can now assume that l3(n)l > 3|®(0)|, and so, with B, (C*)*2̂ 1* and neHJP as in 

(2), it must be that p>l (because p=0 => n=0 by convention). Let n=(n1,n2, . . .,np), then: 

•B{n) » ^ ( ^ i  ®3(«4 )n2 ®5 ... ®(2 p .jjiV °P  ®(2p+l) •
and

®(0 ) * ' W BS — ®(2p-l)®(2p+l>-
As l«(n)| > 3l«(0)l, we see that l(«2)ni (04)”2 • • («p)npl > 21*3(0)1, whence we may 

choose l£s<p and then (Kns so that:
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(S2s)fls ®(2 s+ 1 / ®(2(s+ 1 )))n(s+1) ®(2s+3) •• ®(2 p-l)(®p)nP ®(2p+l) 
is the shortest such suffix of ®(n) to have length > 213(0)1. Thus, because l.<?(n)l < l'3(n)l, we 

will have:-

(6) l(«2s)S. *(2„ , )(®(2s*2,)"(.*1) ®(2s+3) ®(3p-l)< V "  % ^1> ' > W0)l +I;W)I'
Also, (with the abbreviation O(s-l) for s-1 0's), the rule

(7) ( 3 ((Ks-l), ns, n(s+i), n(s+2 ),- • - ,np) , jq(0(s-l), fis, n(s+i), n(s+2 ),.. .,np) ) 

belongs to R, (because all rules of { ( ®(n), .fl(n) ) I ne IKJP } belong to R). Let us see how 

rule (7) fits into our picture (figure 1) of r * o < G >-

figure 2 .

5.2.6 Lemma.

With reference to figure 2, all points within the shaded area can be supposed to lie 
within the ball BOIg l̂).

By lemma 5.2.4, we know that all points within the shaded area except, conceivably, 
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those of the path between (p2) and (p3) labelled by

m  ( a ,« 3®5 ... V i ) * W  •••
belong to B(llg|ii)), but this path (trivially) stays within Billg,!!) (as we now demonstrate).

As, the path between the basepoint, (pi), (p2) and gj labelled by rep(g,)» 

p(i8 (n)(l,l®(n)l-l)) ), is a geodesic path, so the point (p2 ) is at a distance no more than 

llg,ll ®(2s+1 )(®(2(s+1 )))n(*+l) ®(2s+3) •" ®(2p-l/®p^nP '^(2p+l) '+ 1

from the basepoint. Thus, by (6 ), we see that the point (p2 ) lies at a distance of at most 

IlgJI -|'8(0)| -U(0)l from the basepoint. Whence the path beginning at (p2) and labelled by 

(8 ) could not possibly go outside the ball BdlgJI) (as required).

i ^ l

5.2.7 Corollary.

If l®(n)l> 31-3(0), then gi g(i,,).

Proof:

With reference to figure 2 and lemma 5.2.6, we see that the bold path between gj and 

g î+1) stays within B(llgJI ) and has length <

I '5 (0 (s-l), ns, n(s+i), n(s+2 )..... np)l +1 ̂ (0 (s-l), ns> n(s+i), n(s+2),.. .,np)l

(which, by (7))
£ 21 «(0 (s-l), ns, n(s+i), n(s+2 )..... np) |.

Also, we remind the reader that we chose s and ns so that:

(®2s)B* ®(2s+l)(®(2s+2pn(,+1) ®(2s+3) • • • ®(2p-l)< V p ®(2p+l) 
was the shortest such suffix of '8 (n) to have length > 21:8(0)1. As n ^  was defined to be 

least such that n^m inO ^J )i<lsp >2I'8(0)I, we must have:- 

fis+n(s+l)+n(s+l)+- • +np< "(*) •
Whence:-

21 '/<0(s-l)f ns, n(s+i), n(s+2)..... np)l £ 2(B(0)+n(.i)max(l:82ll )i<j<p)

(which, by the definition of m(<i) and M)

-  mw iM ,

and so we have shown that gj g(i+i) (as required).

r * * 7 i
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S o  w e  h a v e  c o n s t r u c t e d  a  s e q u e n c e

where (gQ.Co)=(g.c), and, if te l:

/

\
rcP(g(i-l))C(i-i) —* rep(gi)Cj and rep(g(M))c(M )> rep C g ^ ,  

6  join(iM) g i •

(gi.Ci)e GxC,

As rep(gj)cj > rep(g2)c2  > . . . .  so the sequence is finite. Actually, we stopped when 

rep(gr)cr was found to be irreducible, i.e., when gr = g(g,c) (we refer the reader to the 

statement of lemma 5.2.2). We require g joinOciM) which is a trivial corollary of the next 

lemma together with the fact that g joi„(rM) gr (i.e. g j0 i„(,M) g).

5.2.8 Lemma.

Suppose not, then there would be some i,j with 0<i<j<r and q a c j . As 

reP(gi)ci rep(gj) c j, so gj Y(Cj)= gj Y(Cj). and thus % = gj (because 7 <C{)-Y(Cj)). So we 
would have repig^arepigj), whence repig^Cjarepigpcj (because CjECj), but, anyway, we 

have rep(gj)C| > rep(gi+1)ci+1 >... > rep(gj)Cj (which is clearly a contradiction).

|5.2,8, 5.2.2 and 5.2.1 [

We will now prove the analog of proposition 5.2.1 for the automatic groups.

5.2.9 Theorem (CEHPT).

If (G,C) is lib-automatic with word acceptor W, then TC(G) is almost convex.

Let W accept the language LXH_, then, as (G.C) is lib-automatic, there will be a b such

P roof:
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that, for all Ce LXf(_, lfl-llY(Ollc ^b- Also, by corollary 2.1.4, we know that there is a A 

with the property that: whenever Cq , Ĉ e LXX_ with Hy( ^ " 1)H c  ̂  2b+2, then any two paths 

of r c (G), beginning at the same point, and labelled by Cq  and respectively, do not 

diverge by more than a distance A.

By theorem 5.1.2, we need only prove that TC(G) is ac(2). So let us take any n€ N and 

suppose go-gi^ S(n) to be such that d(g,h)<2. Now choose go^G so that go is at a distance 

b along some geodesic path between go and the basepoint. Then, trivially:- 

(V  SO join(b) 8 0  and Soe S(n-b).
Also, we choose g^e G with gj being at a distance b along some geodesic path between gj 

and the basepoint, so that:-

CO g l join(b) l l  and S ls  S(n-b).

We shall prove that gojoin(b+4 A) l l  (because go join<b) SO’ S0 join(b+4 4 ) Si. Si jom(b) Si 
and II goll=ll gill ■> So join(3b+4A) Si. 5 0  r c (G) would be ac(2 )). Note that we lose no 
generality by assuming n>2b+A.

Let Cq , tJV^with Y i ^ l o  3,1(1 Y(^)=gl- Because d(g,h)<2 and g0  and gj were 
chosen with d(gQ,go)=b and d(gi,gi)=b, so we have d(gQ,gi)^2 b+2 , i.e., llgogi'Ml<2 b+2 , 

or |lY(lo)Y(ib"1^^2t,+2- Thus, with p0  and pj being, respectively, the paths beginning at the 

basepoint and labelled by Cq  and Ĉ, we know that p0  and p j do not diverge by more than a 

distance A. Also, because Cq& LXH.and Y(̂ o)=gO* we have l^-Hgoll ^b, i.e. IĈ  <b+llgoll, and 
so, by(l):-

(3) \Q <n.

Thus the path pQ, which begins at the basepoint and has length 1/^, does not go outside the 

ball B(n). Similarly, pj has length <n and so does not go outside B(n).

5.2.10 Lemma.

If p is the point on po at a distance r along po‘‘ from go (respectively, if p is the point on 

pi at a distance r along p i ' 1 from gi). ihen n -b -r^ d (lG ,p )^ n -r .

Proof:

We chose go so that d(lG , go)=n-b, but p is at a distance r from go along a geodesic 

path between go and the basepoint, so d(lG , p) t  d(lG , g0 )-r=(n-b)-r.
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Also, we traverse a distance r along po'1 (respectively pj'1) to get to the point p. If p was 

still more than a distance n -r from the basepoint, then the length of Pq, i.e 1^1 .(respectively 

the length of pj) would certainly need to be > r+(n-r), i.e, >n; but l^l>n would contradict

(3). So p could not be more than a distance n-r from the basepoint, i.e. d (lG , p) < n-r.

1 5 2 1 0 1

Now, we wish to prove that go is joined to gj by a path of length at most b+4A which 

stays within the ball B(n). We begin at go and traverse po' 1 (within B(n)> for a distance A to 

arrive at the point pq, say. Then, by lemma 5.2.10,

(4) n -b -A < d(lG ,p 0 )£n-A .

As Po and pj do not diverge by more than a distance A, we may now a traverse a path, 

of length no more than A, to arrive at some point, p lt say, on pj. By (4), we see that this 

path will not go outside B(n), and that:—

(5) n-b -2A < d(lG , Pl).

So far we have traversed, within B(n), a path of length at most 2A to arrive at the point 

Pl on the path pi. We now traverse Pi ' 1 (within B(n)> between pt and gj, noting that this 

subpath could not have length > b+2A (without, by 5.2.10, d (lG , pi) < n-(b+2A), which 
would have contradicted (5)).



5.3

The Group U(3,Z) and Almost Convexity

In section 5.2 we proved that the parameterized complete groups (with word length 

preserving orderings) and the (least length bounded) automatic groups were subclasses of 

the groups possessing almost convex Cayley graphs. We believe these are strict subclasses, 

and this the subject of this section.

The group U(3,Z) is the group of 3 by 3 (lower) unitriangular matrices over Z. We will 

be working with the group G, isomorphic to U(3,Z), which we define as the group Z3 with 

multiplication

(1) (a,c,b) (S.6,6) = ( a+S, c+bS+£ , b+6 ).

(A trivial calculation will confirm that the map between the groups G and U(3,Z) defined

by (a,c,b) t—»
1 0 0 1
alO
c b l j

is an isomorphism.)

We now put x* (1,0,0), y=(0,0,l) and C={ x , x '1 , y , y~* }. Then, with G being 

isomorphic to U(3,Z), the following facts will probably be familiar to the reader. The set C 

is a (minimal) generating set of G, which is a non-abelian, torsion free, nilpotent group of 

class 2 .

By Theorem 18.1 of (CHEPT), we know that non-abelian, torsion free, nilpotent 

groups are not automatic, and, we conjecture, G has no complete presentation of type Pr 

with respect to ShortLex orderings. We will, for the remainder of this section, be wholly 

concerned with the proof of the following theorem.

5.3.1 Theorem.

Tc(G) is almost convex.

We begin the proof with some terminology. We put z=(0,1,0), and note that z generates 

the centre of G. If ge G, then (g)j will denote the i,h component of the triple g. If p is a 

product of generators in C and ce C, then occ(c.p) will denote the number of occurrences of
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c in p. Recall that, if ge G, then II g lie is the norm of g with respect to C, i.e., II g lie is the 

minimal number of generators needed to express g as a product of generators in C. 

Henceforth we will write II g II for II g lie . the latter will only be needed towards the end of 

this section (in corollary 5.3.19).

Pivotal to our proof of theorem 5.3.1 is a method of calculating II g II for arbitrary ge G. 

The method we use is easily derived from lemmas 5.3.7 and 5.3.11 and is described 

immediately after the statement of lemma 5.3.11. To prove these lemmas, however, we will 

need to make a number of calculations, concerning products in the generators C, and prove 

some preliminary lemmas.

After proving lemmas 5.3.7 and 5.3.11, the proof of theorem 5.3.1 is purely 

mechanical. Basically, in propositions 5.3.16 and 5.3.18, we will exhibit a number of paths 

in Tc(G) and then, by referring to these lemmas, confirm that these paths stay within 

specific n-balls. We begin with some simple calculations.

5.3.2 Lemma.

Let p = ybi xaiyb2 x*2 ... ybn x3" , with all the a j, tye 2, then: 

i=n
p=( aj+a2 +...+an , ^  a^( b i+ b ^ .+ b j )  , bj+b2+---+bn ). 

i=l

The proof is a trivial inductive argument which refers to (1) and the definition of x and y.

G E M I

5.3.3 Corollary.

Suppose p is given as a product of the generators in C, then:

(0  (p)l= occ(x,p)-occ(x~l,p),

(ii) (p)3 =occ(y,p)-occ(y-1,p),

Suppose p to be as in lemma 5.3.2 and note that:

P roof:
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a j+a2+...+an= OCC(x,p)-OCC(x_1,p)

and

b1+b2+...+bn= occ(y,p)-occ(y1,p).

Then the result is an immediate corollary of lemma 5.3.2.

m s

5.3.4 Corollary.

If ge G, then the difference between II g II and (g)i+(g) 3 is even.

Proof:

By expressing g as any product, p, of generators in C, we would have:- 

occ(x,p)-occ(x- 1,p) = (p)i ,by 5.3.3(i),

and

-  <g)i.

occ(y.p)-occ(y- 1 ,p) = (p)3  , by 5.3.3(ii),

Whence:-
-  (g>3 ■

and

OCc(x,p)-OCC(x-',p)+(g)l ,

occ(y,p)-occ(y->,p)+(g)3 .

Now, we may choose p so as to contain precisely II g II generators of C, 

occ(x,p)+occ(x_1,p)+occ(y,p)+occ(y-1 ,p) = II g II. 

Substituting for occ(x,p) and occ(y,p) in the latter expression yields:- 

2  occfx-i.p) + (g)j + 2  occfy-i.p) + (g) 3 = II g II

(as required). 

5.3.5 Corollary.
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If pG G is a product involving just the generators x and y, then: 

II p II = occ(x.p) + occ(y.p).

Proof:

By expressing p as any product, p, of generators in C, we would have:- 

occ(x,£)-occ(x_1,£) ■ (£)i, by 5.3.3(i),

= (P>1

■ occ(x,p)-occ(x_1 .p), by 5.3.3(i),

= occ(x.p).

occ(y,£)-occ(y_1,£) = (£>3 , by 5.3.3(ii),

= (P>3
= occ(y,p)-occ(y- 1 ,p), by 5.3.3(ii),

= occ(y,p).

Whence:-

occ(x,£) > occ(x,p) and occ(y,£) £ occ(y.p).

So, whenever p is expressed as a product of generators in C, the product in question 

must contain a minimum of occ(x,p)+occ(y,p) generators. As p is a product containing 

precisely occ(x,p)+occ(y,p) generators, so occ(x,p)+occ(y,p) is the minimal number of 

generators needed to express p as a product of generators in C, i.e.,

II p II = occ(x,p)+occ(y,p).

5.3.6 Lemma.

Suppose we are given peG  as a product of generators in C. If (p )j, (p>3 >0, then 

(p) 2  ̂  occ(x.p) occ(y.p).

We take p to be the product:
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Then we have:-
occ(x,p)= X  ai • 

all aĵ O

p  =  y b l x a i y b 2 x a 2 . . .  y b "  x a n ,  w i th  a l l  t h e  a ; , b , e  1 .

OCC(x'1,p )=  - X  ai .
a ll a ,  SO

occ(y.p) = X  bi * 
a l l  b j 20

occ(y‘\p ) =  bi •
a l ib i  SO

and, by lemma 5.3.2,

(P)2= X  a i(  b l+b2t - +bi)-

Thus, we have to prove:

i=n
^  aj ( bi+b2*-. • -+bj )

We start by defining:

I+={ i I l<i<n,0<aj and 0 <bi+b2+...+bi }, 

I- = { i I l£i£n, a,<0 and bi+b2+...+bj< 0  },

b max= m a x ^b l + b 2+ - • -+bi)ie 1+ •

and

b min= m in ^b l + b 2 +  - +bi)iel- •

By 5.3.3(ii),

(p)3= occ(y,p)-occ(y-1 ,p), 

but we are assuming 0 <(p) 3 , whence:-
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o c c (y  '.p i^occiy- x,p).

i.c.,

(2) - X  b i s  X  b i '
all b ,  SO a ll b ,20

By 5.3.3(i),

(p)l = occCx.pJ-occix'î.p), 

but we are assuming 0 < (p )i, whence:-

occix'^pi^occfx-Vp),

i.e.,

- X  * i s  X
all a ,<0 a ll a ;>0

and from which we derive:-

X
all a j £0 I

X  a,
a ll a i >0

Now, we have:-

X a i ( b l+ b zK " + b |) S  X  a ì ( b 1+b2+ ...+ b i)+  X  a i (  b j+ b ^ .- .+ b
i=l iel+ ie l-

by the definition o f 1+ and I-,

sb~ | ^ ,)tbi V i)'
by the definition o f bmax and bmin ,

because a^O  if ie I+, and a^O if ie I -,
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by (3). Whence

^ b max[ X  a i \ - b m in( X  a i \  
I all ajàO |  ^ a l la j> 0  J

(3) X  aj( bi+b2+.--+bi) ^ (bmax-bmin) X a,
all a^SO

We need to prove the inequality:

x ..y x b,\
a lla ,> 0  l l a l l b ,> 0  I

and so it will now suffice to prove:
< /  £

b max- b min ^  I au ^ 2 0

By the definition of bmax and bmin, we have:-

bmax=b1+b2+. • +br , for some re I+, 

and

b m in = b l + b 2+ - • + b s » fo r  s o m e  s e  l ~-

X  ai(b l+ b 2+ - +bi) ^

There are two possibilities, 

r ^ s :  then:-

b m a x - b m in  =  b ( s + l ) +  • • + b r ^  |  all^ > 0

(as required). 

r£ s:  then:-

b m a x - b m in  =  - ( b ( r + l ) +  • • •+ b s)-

However:
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thus:-

b (r+ l)+ . . . + b s * X  b i,
a llb ,< 0

Then, as (2) states that:
-X bjS X bi,

all b |< 0  all b j> 0

so we have:-

bm a«-bm in  "  - ( b ( „ l ) + . . .+ b s)  S  ^  X ^ b i

(as required).

With a,be N, we now define six products.

P l(b )  =  y  b-

p2(a,b,r,s) = x(a_r_1)y sxy (b-s>xr,

for all 0^r,s such that r<a and s<b.

p3(a,b,r.s) =  x ' ( r+ 1 )ySx y ( b -s ) x (a+  r)

for all 0<r and 0<s such that a+r<b and s<b.

p 4 ( a .b , r . s )  -  y ( b « ) x ( a - s ) y x s y - ( r+ l ) ,

for all 0<r and 0<s such that b+r<a and s^a.

p 5( a ,b , r , s )  -  x - d H t - a ) y ! x y ( l> « - s ) x ( b + r - l ) y - r -

for all 0<r,s such that a<b+r and s<b+r.

p 6 ( a ,b , r , s )  -  x -(b+ r+ >  -a )y < x y (b » r-« )x (b * i) y - r >

for all 0<r,s such that a<b+r and s<b+r.
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We first prove that II p,(a,b,r,s)ll = number of generators occurring in Pi(a,b,r,s), 

or, to be more formal:

5.3.7 Lemma.

(i) II pjCb)!! = b.

(ii) II P2 (a,b,r,s)ll = a+b.

(iii) II P3 (a,b,r,s)ll = 2(r+l)+a+b.

(iv) II p4(a,b,r,s)ll = 2(r+l)+a+b.

(v) II p5(a,b,r,s)ll = 4r+3b-a.

(vi) II p6(a,b,r,s)ll = 4r+2+3b-a.

Proof:

The proofs of (i) and (ii) are trivial corollaries of lemma 5.3.5 (i.e., if a product, p, 

involves just the generators x and y, then the number of these generators involved in p is 

the norm of p).

Proof o f (iii):

We defined

p3(a,b,r,s) -  x ^ r+»y!xy(t> s>x<a+

for all 0<r and 0<s such that a+r<b and s<b. By lemma 5.3.2, we calculate that 

(1) p3(a,b,r,s) = (a , s+b(a+r) , b).

We aim to prove II p3(a,b,r,s)l| = 2(r+l)+a+b. Note, however, that p3(a,b,r,s) is already 

defined as a product of 2(r+l)+a+b generators, thus II p3(a,b,r,s)ll £2(r+l)+a+b.

So, we may assume, for a contradiction, that II p3(a,b,r,s)ll < 2(r+l)+a+b. It would 

follow that there is a product p, say, (in the generators of C) such that p=p3(a,b,r,s), but 

containing strictly fewer than 2(r+l)+a+b generators. Whence:-

(2) occ(x,p) + occ(x_1,p) + occ(y.p) + occ(y-1,p) < 2(r+l)+a+b.

Also, by (1) and lemma 5.3.3(i), we would have:-

(p)j= a = occfx.pj-occfx'^p),
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and, by (1) and lemma 5.3.3(ii), we have:-

(p)3= b -  occ(y,p)-occ(y'1,p).

So, we may substitute 

and

(3) occ(x,p) = occ(x_1,p )+a

in (2) to derive:-

(4) occ(y,p) = occ(y_1,p )+b

2occ(x_1,p) + 2occ(y_1,p) + a + b < 2(r+l ) + a + b.

i.e..

(5) occ(x"*,p) + occ(y _',p) < r.

As (5) includes occ(x"1 ,p) < r, and we are assuming 0<r<b-a, so:-

(6) occ(x'*,p) + a<b.

By lemma 5.3.6, we know that, provided (p>3 , (p)j ^0, then (p) 2  ̂  occ(y,p) occ(x,p). We 

have (p)3= b ̂  0 and (p)j = a £ 0, therefore: -

by 5.3.6,

(p)2 = occ(y.p) occ(x.p),

by (3) and (4),

= (occ(y“1,p)+b)(occ(x'1,p)t-a).

= occ(y ' 1 ,p)(occ(x 1 ,p )+a) + b(occ(x'1 ,p)+a)

by (6),

<occ(y -1,p)b + b(occ(x-1,p)+a),

= b( occiy'^.pj+occfx'^.pj+a).

So, by (5), we have (p)2̂ b(a+r). This is the required contradiction because we were 

assuming p = p3(a,b,r,s), while, by (1), (p3(a,b,r,s))2 = s+b(a+r) with s>0.

|5.3.7(iii)|

The proof of (iv), being similar, is omitted.

Proof o f (v):
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Recall that we defined
p5(a,b,r,s).  x-(l>tr.a)ysxy(b*r-s)x(b+r-l)y-r 

for all 0<r,s such that a<b+r and s<b+r. By lemma 5.3.2, we can calculate

(7) p5(a,b,r,s) = (a , s+(b+r)(b+r-l) , b).

We aim to prove II p3(a,b,r,s)ll = 4r+3b-a. We note, however, that pjfa.b.r.s) is already 

defined as a product of 4r+3b-a generators, thus II p5(a,b,r,s)ll < 4r+3b-a.

So, we assume, for a contradiction, that II p5(a,b,r,s)ll < 4r+3b-a. It follows that there is 

a product p, say, (in the generators of C) such that p=p5(a,b,r,s), but containing strictly 

fewer than 4r+3b-a generators. Whence:-

(8) occ(x.p) + occ(x-1,p) + occ(y.p) + occ(y_1,p) < 4r+3b-a.

Also, by (7) and lemma 5.3.3(i), we would have:-

(p)j= a = occ(x,p)-occ(x~^,p), 

and, by (1) and lemma 5.3.3(ii), we have:-

(p)3= b = occ(y,p)-occ(y'1,p).

So we may substitute

occ(x_1,p) = occ(x,p )-a 

and

occ(y_1,p) = occ(,p )-b

in (8) to derive:-

2occ(x,p) + 2occ(y,p) - a - b < 4r+3b-a,

and thus:-

0 £ occ(x,p) + occ(y,p) < 2r+2b.

By a simple calculation, the latter inequality yields:—

occ(x,p)occ(y,p) ^ (b+r)(b+r-l).

We have (p)3= b > 0 and (p)| = a £ 0, so, by lemma 5.3.6,

(p)2 ^  occ(y,p) occ(x.p),

whence

(p)2 ^ (b+r)(b+r-l).

This is the contradiction because we were assuming p = p5(a,b,r,s), while, by (7),
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(p5(a,b,r,s))2 = s+(b+r)(b+r-l) with s>0.

The proof of (vi), being similar, is omitted.

|5.3.7(v)andT3T]

We believe the reader may find the following table helpful. In the first column we have 

calculated the products Pj(a,b,r,s) (a.be DJ and 2<i<6), in the second column are the 

restrictions on r and s (of these products), and in the third column are the norms (of these 

products).

5.3.8 Table

restrictions on r and s______ norm
P2(a,b,r,s)= ( a, s+br, b) 0<r,s; r<a; s<b a+b

P3(a,b,r,s)= ( a, s+b(a+r), b) 0<r; 0<s; a+r<b; s<b 2(r+l)+a+b

P4(a,b,r,s)= ( a, s+a(b+r) , b) 0<r; 0<s; b+r<a; s<a 2(r+l)+a+b

p5(a,b,r,s)= ( a, s+(b+r)(b+r-l), b) 0<r,s; a<b+r; s<b+r 4r+3b-a

P6(a,b,r,s)= ( a, s+(b+r)2 , b) 0<r,s; a<b+r; s<b+r 4r+2+3b-a

We now introduce the maps Oj (l<j£8) in the context of:

5.3.9 Lemma.

The following maps, <Jj: C —► C (l£j<8), extend to automorphisms of G which 

preserve the norms of the elements of G, i.e., for all ge G, II g II = II O j(g ) II.

Oj being the identity map on G; a 2 : xi—>x'
a 3 : xt-*x, yt—>y-1 ; a 4 : xi—» x 1, yt-+y_
Os : x i—> y, y h-» x ; °6  • xi-»y"1, y»—* x ;
o 7 : xt—>y, y»—»x_1 ; a 8 : x»—» y-1, y»—♦ x~

HH]
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Recall that the multiplication in G is defined by

(a,c,b) (á,é,6) = ( a+á, c+bá+é , b+6).

Also, we defined x=(l,0,0), y=(0,0,l) and z=(0,l,0).

We do not assume that the reader is adept at calculating products in the x^ 's , y ^ 's  and 

z ^ ’s, but hope that the next lemma will be found adequate to confirm any relation we may 

state during the course of the proof.

5.3.10 Lemma.

(i) If p = ybi xaiyb2 xa2 ... yb" x3" , with all the a¡, bt<e Z, then 

i=n
p=( ai+a2+...+an , ^  a¡( b i+ b ^K .+ b j) , bj+b2+...+bn ).

(This is lemma 5.3.1, it may seem rather daunting but, in practice, we will only need to 

calculate such products for n up to 4.)

(ii) Let p be a product in terms of x ^ .y 11 and z11. If occ(x,p)=occ(x-1,p) then p 

commutes with y, if occ(y,p)=occ(y_1,p) then p commutes with x.

(Hi) z generates the centre of G and z=yxy'1x_1=xy'1x"1y = y 1x*1yx=x-1yxy_1.

(iv) With a,c,b,de Z:

(a,c,b)=xayb/.c=ybxaz(c-ab>.

(a,c,b)xd= (a+d,c+bd,b).

(a,c,b)yd= (a,c,b+d).

(a,c,b)zd= (a,c+d,b). 
o 2((a,c,b)) = (-a,-c,b).
^((a .b .c)) = (a,-c,-b). 
o4((a,b,c)> = (-a,c,-b). 

o5((a,b,c)) = (b,-c+ab,a). 

o6((a,b,c)) = (-b,c-ab,a). 

a 7((a,b,c)) = (b,c-ab,-a).

CT8((a,b,c)) ■ (-b,-c+ab,-a).
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1 »-IQ I
We justify the introduction of the maps Oj (l<j£8) by the next lemma.

5.3.11 Lemma.

(i) If (a,c,b)e G with a,c,be W, then g can be expressed as pj(b), or as p^a.b.r.s) (2<i<6) 

for some r,se W.
(ii) If geG, then g can be expressed as Ojip^b)), or as OjCp^a.b.r.s)) (l<j<8 and 2£i<6) 

for some a,b,r,se IKI.

This lemma will provide us with the following method of calculating II g II, for arbitrary 

geG. By (ii) we can express g in the form OjCpjib)) or Oj(pi(a,b,r,s)). Then, by 5.3.9, we 

will have II g II = II p^b)! or II p^a.b.r.s)!!, respectively, which can then be read off table 

5.3.8.

Proof o f (i):

We choose (arbitrary) a,c,be W and exhibit (a,c,b) as a product pjib), or as a product 

P2(a,b,r,s) (depending on one of six possible situations).

0<c<ab and 0=a.

Then c=0, and we may put (0,0,b)=p1(b)=yb.

0<c<ab and 0<a.

Then c=s+br for some (Ks<b and 0<r<a. So (cf. 5.3.8), we may put:- 

(a,c,b)=p2 (a,b,r,s).

a<b and ab<c<b(b+l).

Let n be maximum so that nb<c. Then a<n<b, and so we can write c=s+bn for some 

0<s£b. We then define r by n=a+r, so that c=s+b(a+r). Note that 0<r, 0<s<b and 

a+r=n<b, so (cf. 5.3.8) we may put:-
(a,c,b)=p3(a,b,r,s).

a<b and b(b+l)<c.
Let n (necessarily >b) be maximum so that l+n(n-l)£c. Note that (by the choice of n)
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c<l+n(n+l), so we may assume either l+n(n-l)£c<l+n2, or l+n2^c<l+n(n+l).

Supposing l+n(n-l)£c<l+n2. We would then have c=s+n(n-l) for some l<s<n. By 

defining r so that b+r=n, we have: c=s+(b+r)(b+r-l) with l<s<b+r, 0<r (because n>b) 

and a<b+r (because a£b). So (cf. 5.3.8), we may put:- 
(a,c,b)=p5(a,b,r,s).

Supposing l+n2£c<l+n(n+l). We would then have c=s+n2 for some l<s<n. By 

defining r so that b+r=n, we have: c=s+(b+r)2 with l<s<b+r, 0<r (because n>b) and 

a<b+r (because a£b). So (cf. 5.3.8), we may put:-

(a,c,b)=p6(a,b,r,s).

b<a and ab<c<a(a+l).
Let n be maximum so that na<c. Then b<n<a, and we may write c=s+an for some 

0<s^a. We then define r by n=b+r, so that c=s+a(b+r). Note that 0<r, 0<s<a and b+r=n£a, 

so (cf. 5.3.8) we may put:-
(a,c,b)=p4(a,b,r,s).

b<a and a(a+l)<c.

Let n (necessarily >a) be maximum so that l+n(n-l)£c. Note that (by the choice of n) 

c<l+n(n+l), so we may assume either l+n(n-l)£c<l+n2, or l+n2^c<l+n(n+l).
Supposing l+n(n-l):£c<l+n2. We would then have c=s+n(n-l) for some l^s<n. By 

defining r so that b+r=n, we have: c=s+(b+r)(b+r-l) with l<s<b+r, 0<r (because n>a>b) 

and a<b+r (because b+r=n>a). So (cf. 5.3.8), we may put:- 

(a,c,b)=p5(a,b,r,s).

Supposing l+n2^c<l+n(n+l). We would then have c=s+n2 for some l£s<n. By 

defining r so that b+r=n, we have: c=s+(b+r)2 with l^s^b+r, 0<r (because n>a>b) and 

a^b+r (because b+r=n>a). So (cf. 5.3.8), we may put:- 

(a,c,b)=p6(a,b,r,s).

15-3.11(01

Proof o f (ii):

Let a,c,be DJ, then, by (i), we need only exhibit (±a,±c,±b) as Oj((S,6,6)) for some 

l£j£8 and &,6,Be IKI. The required expressions are easily derived provided we bear in mind
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t h e  d e f i n i t i o n s  o f  t h e  m a p s  O j ( d e f i n e d  o n  p a g e  1 2 4 ) ,  a n d  th e  r e l a t i o n s  o f  l e m m a  5 .3 .1 0 .

(a,c,b) = CT1((a,c,b)).

(-a,-c,b) = x~aybz_c

= x 'ayb(y_1xyx_1)c = 0 2(xayb(y_1x-1yx)c)

= o 2(xaybzc) = o 2((a,c,b)).

(a,-c,-b) = xay"bz_c

= x ^ 'hC y ixyx '1)0 = <T3(xayb(yxy-1x_1)c)

= cx3(xaybzc) = a 3((a,c,b)).

(-a,c,-b) = x_ay"bzc

= x ay 'b(yxy_1x_1)c = o4(xayb( y 1x -1yx)c)

= a 4(xaybzc) = a 4((a,c,b)>.

(a,-c,b) = xaybz 'c = ybxaz_(c+ab)

= ybxa(xyx_1y-l)<c+ab) = <J5(xbya(yxy-1x-1)(c+ab))

= 0 5(xbyaz(c+ab)) = o 5((b,c+ab,a)).

(a,c,-b) = xay~bzc = y-bxaz<c+ab)

= y_bxa(xy“^x_^y)(c+ab) = <J6(xbya(yxy~lx_i)(c+ab))

= a 6(xbyaz(c+ab)) = a 6((b,c+ab,a)).

(-a,c,b) = x_aybzc = ybx_az(c+ab)

= ybx-a(xy_^x_^y)(c+ab) = CJ7(xbya(yxy~lx'l)(c+ab))

= 0 7(xbyaz(c+ab>) = o7((b,c+ab,a)).

(-a.-c .-b) = x-ay~bz~c = y-bx-az-(c+ab)

= y"bx_a(x- ly- lxy)(c+ab) = ag(xbya(yxy_lx_l)(c+ab))

= a 8(xbyaz(c+ab>) = a g((b,c+ab,a)).

| 5.3.1100 and 5.3.11 1
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Before going any further with the proof of 5.3.1, it is worthwhile restating some 

terminology and elementary facts concerning the paths of the Cayley graph T=I~C(G).

If re [R, then B(r)={ pe T I d(l,p)<r } is the r ball of T, and S(r)={ peT  I d(l,p)=r } 

is the r shell of T. We remind the reader that d is a metric on the whole o fT , so an edge 

stays within B(n) (ne N) if and only if at least one of its end points lies in B(n-l).

In all the subsequent proofs we will be referring to ‘paths’ strictly within the context of 

‘paths from (a specified vertex)’. So we may as well define a path simply by stating the 

unique finite sequence of labels of the (directed) edges which it traverses. Also (bar such 

assertions being trivial consequences of preceding statements), whenever we assert that 

some geG lies in a ball B(n), then g will be expressed as a product in the x ^ 's  and y^'s. 

The assertion may then be checked by counting the number of x^ 's  and y ^ 's  in this 

product (and noting that the sum is no more than n). Whenever we assert some ge G lies in 

a shell S(n), then g will be expressed as Oj(pj(a,b,r,s)) (l<j<8 and 2<i<6) for some 

a,b,r,se W. We may then check, by table 5.3.8, that II pi(a,b,r,s)ll = n (and, by table 5.3.8 and 

lemma 5.3.10(iv), we may calculate aj(pi(a,b,r,s)) ).

Recall that, for each L e  Dsl, we defined the relation join(L), on the points of V, by 

Pj join(L) p2 if and only if p j  is joined to p2 by at least one path which stays within 

B(l| pt II) and has length no more than L. The relation join(L) is neither symmetric nor 

transitive (unless L=0), but we do know that:

Pi join(L) P2 an<* II PlU =H P2 H ^  P2  join(L) Pi »

Pi joinCL^ P2 anil P2 join(L2) P3 *  Pi joiniLj+L )̂ P3 •

Finally, supposing g j,g 2 eG , we shall write g=gi°g2 whenever g=gjg2 with 

11 g,ii -  n g2ii.

The next lemma is merely a formulation of a simple technique which we will use 

frequently to simplify the search for paths.

5.3.12 Lemma.

Suppose gi, g2 , h e G and integer L are such that g=gj°g2 and g2 join(L) g2 h > *hen 
8 join(L) S*1 ■

The proof is trivial and we omit it.
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I 5.3.12 I

The next lemma and its corollary will conclude the preliminaries, they will be referred 

to, mostly implicitly, to shorten (somewhat) the proof of theorem 5.3.1.

5.3.13 Lemma.

Let g=Pi(a,b,r,s) (for some 2<i£6). If II g II £ II gz_1ll, then g join(iO) gz_1- 

Proof:

Suppose g = p2(a,b,r,s)
= x(a-r-l)ysxy(b-s)xr (with r<a, 0<s<b and II g ll=a+b).

If b=0 then s= 0 and we have:-

ge S(a), but gz_1 = o 5(p3(0,a,0,l))e S(a+2).

If r=s=0 and a>b, then we have:-

ge S(a+b), but gz_1=a5(p3(b,a,0,l))e S(a+b+2 ).

If r=s=0 and a<b, then we have:-
ge S(a+b), but gz "^O jip^b.a.O .l^e S(a+b+2).

If s=0 and b,r>0, then we have

g= x ^ '^ y ^ e  S(a+b).

So, if r>l then:-

gx_1= x(a-Oybx(r-l)e B(a+b-l), gx-1x-1e B(a+b-2),

and therefore,

gx_1x-1y_1eB (a+ b-l) and gx_1x_1y_1x e  B(a+b).

Also:-

gx_1x_1y_1xy = gz_,x_1 = x(a_r)y(b_1)xyx(r_2)e B(a+b-l), 

thus we may traverse x_^,x“*,y _*,x,y,x.

If r= 1 then:-

g=x(a- )̂ybx e B(a+b),
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and so we may traverse x-1,y"*,x,y.

We are left with s>0.

If 3<r then x"3^ “1̂ " 1^ 2 may be traversed.

If 3£r>0 then x"(r+1\y _1,x,y,xr may be traversed.

If r=0 and b>s then y-1,x_1,y-1,x,y,y may be traversed. 

If r=0 and b=s then x-1,y _1,x,y may be traversed.

Suppose g=P3(a,bj,s)
_  x - ( r + l ) y S Xy ( b - s ) x (a+ r) (wjth 0<r, a+r<b, 0<s<b and II gll=2(r+l)+a+b).

If s=l then we would have:-
g= x- ry (b-l)x-^yx(a+r+l)e S(2(r+l)+a+b),

and therefore, 

Also:-
gx_1e B(2r+l+a+b) and gx_1y‘ le  B(2(r+l)+a+b).

gx^y'^x« x ' ry bx(a+r)y_1eB(2r+l+a+b), 

thus x '^y '^x .y  may be traversed.

If s>l then we would have:-

g= x~(r+1) o p2(a+r+l,b,a+r,s).

Also:-

p2(a+r+l,b,a+r,s)e S(r+l+a+b), 

p2(a+r+1 ,b,a+r,s)z" 1 = p2(a+r+1 ,b,a+r,s-1) e  S(r+1+a+b), 

and we have just proved that in this situation:-

p2(a+r+l,b,a+r,s) jOm(l0) P2(a+ r+ l,b ,a+ r,s-l). 

Therefore, by lemma 5.3.12,

g join(10) 8Z_1-

Suppose g = p4(a,b,r,s)
=  y (b + r)x ( a - s ) y XS y - ( r + i )  (with (K r, b f  r<a, 0<s<a and II g ll=2(r+l)+a+b). 

Provided r>0, we can easily see that:-

gye B(2r+l+a+b), gyy e S(2r+a+b),
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gyyx_1e  B(2r+l+a+b), gyyx_1y~l e  B(2(r+l)+a+b).

Also:-

gyyx~*y "*x = gz"*y = yO^ r)x(a+l ‘s)yx(s_1)y_re B(2r+l+a+b), 

so we may traverse y,y,x_1,y_1,x,y_1.

If r=0 then:-

g  =  y b x ( a - s ) y XS y - l  e  S(2+a+b), 

and we can see that y,x_1,y_1,x may be traversed.

w h e n c e : -

Suppose g = p5(a,b,r,s)
=  x - (b + r - a ) y S x y ( b + r - s ) x ( b + r - l ) y - r

(with 0<r, a<b+r, 0<s£b+r and II g ll=4r+3b-a).

If s= 1 then we may write g as:-
g  =  x - ( b + r - a - l ) y ( b + r ) x ( b + r - l ) y - ( r - l ) x y - l x - l

As this product contains precisely II g II generators, so we may traverse x,y,x-1,y_*. 

If s>l then we have:-

g = x-O’+f*3) o p4(b+r,b,r-l,s).

Also:-

p4(b+r,b,r-1 ,s) e S(3r+2b), 

p4(b+r,b,r-l,s)z_1 = p4(b+r,b,r-l,s-l) e S(3r+2b), 

and we have already proved that in this situation:-

p4(b+r,b,r-l,s) join(lO) p4(b+r,b,r-1 ,s) z"1. 

Therefore, by lemma 5.3.12,

6 jo i n ( 1 0 ) S z

Suppose g = p6(a,b,r,s)
_  x - ( b + r + l - a ) y s x y ( b + r - s ) x (b + r ) y - r

(with 0<r, a^b+r, 0<s<b+r and II g ll=4r+2+3b-a). 

If s= 1 then we may write g as:-
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5.3.14 Corollary.

Let gz=Pi(a,b,r,s) (for some 2£i£6). If II g II = II gz II, then g jOin(l0) 8Z- 

Proof:

We have gz of the form p^a.b.r.s), and II (gz)z-1ll = II g II = II gz II. So, by 5.3.9, 

gz join(10) g. whence g jain(10) gz (because II g II = II gz II).

I M g  I

We are now ready to prove theorem 5.3.1, i.e., with C={ x , x~*, y , y~*}, IV(G) is 
almost convex. By theorem 5.1.2, it will suffice to prove that TC(G) has the property ac(2), 

i.e., there is an ice N such that, for any ge G and c,£ e C:

0 )  whenever II g II = II gc II, then g join(K) gc,

0 0  whenever II g II = II gc£ II, then g join(K) gc6.

We immediately prove:

5.3.15 Lemma.

(i) cannot occur.

133



Proof:

The relations (m.n.pix11 = (m il,nip,p) and (m.n.pty11 = (m.n.pil) hold for all 

m,n,pe Z. We can easily see from these relations that, for any g=(m,n,p)e G and ce C, 

(g)l+(g)3 and (gc)i+(gc>3 must differ by precisely 1. By corollary 5.3.4, however, we 

know that the difference between (g)i+(g>3 and II g II is even, and that the difference 

between (gc)j+(gc)3  and II gc II is even. So it is not possible for ge G and ce C to be such 

that II g II = II gc II.

r»^~i

So we are left with the task of finding some k with the property that, for any ge G and 

c,6 e  C:
(ii) whenever II g II = II gc6 II, then g j0in(K) get.

We will prove that tc=84 is a (rather generous) bound. The proof is laborious; we will 

catalogue all the possibilities of (ii) as follows.
We first prove (ii) for all g=pj(b). Then, in proposition 5.3.16, we will prove (ii) for all 

g= Pj(a,b,r,s) (2<i£6), and all c6 e { xy, x_1y, xx, yx_1, yx, yy }. In proposition 5.3.18 we 

will prove (ii) for all g= p^a.b.r.s) (2£i^6), and all c6 e { y_1x_1, y_1x, x_1x_1, xy_1, 
x"" 1 y—1, y-ly-I }. We conclude the proof of theorem 5.3.1 by describing how 5.3.16 and 

5.3.18 imply (ii) for an arbitrary geG and all ceC.

So let us prove (ii) for all g=p1(b)=yb (be N), and all c ,te  C (with c6£l). This is 

absolutely trivial. If b=0 then g=l, so II g 11=0 while II gc6 II =2. If b>0 and c=y-1, then 

II g ll=b, II gc ll=b-l and so, trivially, g join(2) Sc6- b > 0  and c^y_1. then is easy (but we 
do not bother) to prove that II g ll=b while II gc6 II =b+2.

Before beginning propositions 5.3.16 and 5.3.18, we should mention the possibilities of 

(ii) which are omitted from the cataloging.

We may omit g=pi(a,b,r,s) post multiplied by c6 whenever the defining product (page 

120) o f pj(a,b,r,s) ends with c_1. This is because the defining product of Pj(a,b,r,s) is a 

product o f  precisely II p^a.b.r.s)!! generators of (x,y). Thus, if Pj(a,b,r,s) ends with c"1, then 

II Pj(a,b,r,s)cll = II Pi(a,b,r,s)ll-1 and, trivially, we have Pi(a,b,r,s) j0in(2) Pj(a,b,r,s)c6.

We may omit g=p2(a,b,r,s) post multiplied by c6= xy, xx, yx or yy. This is because the
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defining product of p2(a,b,r,s), i.e., x(a- r“1>ysxy(b*s>xr with 0<r<a and 0<s<b, is a product 

of a+b of the generators of {x,y}. Thus p2(a,b,r,s) is a product of a+b+2 of the generators 

of {x,y} and so, by 5.3.3, we would have II gll=a+b while II gc6 II =a+b+2.

Proposition 5.3.16.

With g=pi(a,b,r,s) (2£i<6) and c ie tx y .x ^ y .  xx, yx*1, yx, yy}, 

whenever II g II = II get II, then g j0in(36) Sc£-

Proof:

Let c£=xy.

Suppose g=p3(a,bj,s)

= x"(r+1)ysxy(b‘ ŝ x̂ a+r) (with 0<r, a+r<b, 0<s<b and n=ll g ll=2(r+l)+a+b).

If s>a+r+l then we would have:-

gxy = p3(a+ l,b+ l,r,s-a-r-l) e  S(n+2).

So we may now assume s^a+r+1. We will then have:-

gz‘ 1 -  x"<r+1>y<»-1>xy<b* 1-*>x<a+r> e  B(n),

and, if l<a+r,

gz_1y -  x ' rŷ ,+b_a"r>xŷ a+r+1_s^ a+r' 1̂  e B (n -l),

or, if 0=a+r,

g z - l y  =  y ( b + l ) e B ( n - l ) .

Therefore (when s<a+r+l):-

gz_1e B(n), gz-1y e B(n-l) and gz-1y x = gxy e  B(n), 

and so (by 5.3.13) we may traverse z-1,y,x.

Suppose g = p4(a,b,r,s)
= y (b + r)x ( a - s ) y XS y - ( r + l )  ( w j t h  0< r, b+r^a, 0<s<a and n=ll g  ll=2(r+l)+a+b).

We have:-
g z - l  =  y (b + r)x ( a + l - s ) y X( s - l ) y - ( r + l )  €  B ( n ) ,

and thus
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Suppose g = p2(a,b,r,s)
_ x(a-r-l)ySXy(b-s)xr (w,th (K r<a. (Ks<b and n=ll g ll=a+b). 

Clearly we may assume that r=0.

If b=s then g=x(a_1)ybxe S(a+b), and therefore gx_1 e S(a+b-l).

If s<b and b+ l<a-l then:-
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ge S(a+b), but gx"*y = <J5(p3(b+l,a-l,0,b-s))e S(a+b+2).

If s<band b+l^a-1 then:-

ge S(a+b), but gx_1y =O5(p4(b+l,a-l,0,b-s)) e  S(a+b+2).

Suppose g = p4(a,bj,s)
_ y(b+r)x(a-s)yXSy-(r+l) (with 0< r, b+r^a, 0<s<a and n=ll g ll=2(r+l)+a+b). 

Note that n^a+a+2(a+l)=4a+2, so we may as well assume a>2 (if a<2 then n<6 

and the distance between any two points of B(n) would be at most 12).

If s+l^a then we would have:-

gz =p4(a,b,r,s+l) =y(b+r)x(a_s_% x(s+% ‘(r+1) e S(n),

and thus

gzy g  B(n-l), gzyx-1 =gx*y eB(n).

So, when s+l^a, we may traverse z,y,x_1.

If s=a and r£l then:-
g =y (b*r+l)xay- (r+1) 6 S(2(r+1 )+a+b), 

and so we may traverse y,x_1,y,x_l,y,x,y~2.

If s=a and r=0 then:-

g =y(b+l)xay -leS(2+a+b). 

and so we may traverse y,x-2,y,x,y_1.

Suppose g = p5(a,b,r,s)
_  x - ( b + r - a ) y S Xy ( b + r - s ) x ( b + r - l ) y - r

(with 0<r, a<b+r, 0<s^b+r and n=ll g ll=4r+3b-a).

If s<b+r then we would have:-

gz=p5(a,b,r,s+l) e S(n),

also

gzy-x-0>*,-,>y<,+1>«y(b*r-*-, >x<b*, -,)y-<r", ) €B (n-l), 

and so we may traverse z,y,x- l.
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I f  s = b + r  a n d  r =  1 t h e n : -

g= € S(n) (n=3s+l -a).

gye B(n-l), gyx-i e B(n-2), g y x 'ly 1 e B(n-l), gyx-ly-**"1 e B<n)-

Also

gyX-ly - lx _1y =gx_1yx_1 = x (s-*)y(*-l)x- lyx(s"DeB(n-l), 

so, when s=b+r and r= l, we may traverse y,x-1,y-1,x '1,y,x.

If s=b+r and r > l  then we have:-

g = x~(s_a) o p4(s,s-r,r-l,s),

also
p4(s,s-r,r-l,s)e  S(2s-r),

p4(s,s-r,r-l,s)x_1y = p5(s-l,s -r+ l,r- l,r)e  S(2s+r), 

We have just proved that in this situation:-

P4( s , s - r , r - l , s )  join(i2) p 4( s , s - r , r - l , s )  x'>y. 

therefore, by lemma 5.3.12,

6jo in (12)Sz

Suppose g = p6(a,b,r,s)
=  x - ( b + r + l - a ) y s x y ( b + r - s ) x (b + r ) y - r

(with 0<r, a<b+r, 0<s<b+r and n=ll g ll=4r+2+3b-a).

If s<b+r then we have:-

gz =P 6(a ,b ,r ,s+ l)  6 S(n),

g z y  = x-<bw '1-|V s+1) x / b+r-, -1)x<b+r)y-fr-1)6 B(n-l), 

thus, we may traverse z,y,x_1.

If s=b+r and r= 1 then:-
g =  x -(s-a+ l)ysx(s+1)y-l e  S(n) (n= 3 s+ 3 -a ) ,

and so

gy e B(n-l), gyx-1 e B(n-2), gyx-ly*1 € B(n-l), gyx-ly_ix_1 e B(n).

Also
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g y x -ly -V iy -g x -ty x -1 -  x-<, -*+l>y<s- ,)x-lyx*€ B(n-l). 

so, when s=b+r and r-1 , we may traverse y .x^.y-'.x^.y.x.

If s=b+r and r>l then we have:-
g= x_(s_a+1)op4(s+ l,s-rj- l,s+ l) ,

also
p4(s+ l,s-rj- l,s+ l)  e S(2s+r+l), 

p4(s+l ,s-r,r- l ,s + l)x 'y  »p6(s,s-r+ l,r-l,r)e  S(2s+r+l ).

We have already proved that in this situation:-

p4(s+ l,s-rj- l,s+ l)  join(i2) P4(s+l,s-r,r-l,s+l)x"*y'

therefore, by lemma 5.3.12,

6 join(12)8z

c6=x_1y

The maximal path length so far is 12, we now post multiply by c6=xx.

Suppose g=p3(a,b,r,s)
_  x - ( r + l ) y S Xy ( b - s ) x (a + r)  ( w j t h  0<r, a+r<b, 0<s^b and n=ll g  ll=2(r+l)+a+b). 

If b^a+r+2 then we have

gxx =p3(a+2,b,r,s) e S(n+2).

Also, if b<a+r+2 and r=0, then we would have

gxx =p4(a+2,b,0,s) e S(n+2).

So we may assume b<a+r+2 and r>0, but, as b>a+r anyway, so we arc left with 

(b=a+r+l and r>0) or (b=a+r and r>0).

If b=a+r+l and r>0, then gxx=p5(a+2,b,l,s) e S(n+2).

If b=a+r, r>0 and s>l, then gxx=p6(a+2,b,l,s-l) e S(n+2).

If b=a+r, r>0 and s=l, then we have:-

g - x-<r+1>yxy^-l)xb e S(2b+r+2), 

g z 1 -x ‘rybxb e B(2b+r),
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and thus

Also:-

gz-1x e B(2b+r+l), gz_1xy e B(2b+r+2).

gz-1xyx =x-(r' 1>y(b+1>x(b+l) e B(2b+r+l),

therefore

gz^xyxy'1 =gxx e B(2b+r+2),

and so we may traverse z_1,x,y,x,y *.

Suppose g = p4(a,b,r,s)
-  y ( b + r) x ( a - s ) y XS y - ( r+ l )  ( w i th  0< r, b+r<a, 0<s<a and n=|| g  

If s<r then we have:-

gx =y(b+r)xay-(r-s>xy-s e S(n-l),

so we may traverse x,x.

If s>2r then gxx =p4(a+2,b,r,s-2r) e S(n+2).

So we may assume r<s£2r, and thus r^ l, s^2. We would have:- 

gz"1 =p4(a,b,r,s-l) e S(n), 

gz-1z-1 =y(b+Ox(a+2-s)yX(s-2>y-(r+1> e B(n).

and thus

gz-1z-1y eB (n-l), gz_1z_1yx e B(n).

Also

gz-1z-1yxx»y<’,+r-1)x<2r-s)yx<ats+2' 2,>y", 6B(n-l),

and thus

gxx =gz_1z_1yxxy“1 € B(n ),

So, when r<s£2r, we may traverse (the rather long route of) z_1,z_1,y,x,x,;

Suppose g = p5(a,b,r,s)
■  x - ( b + r - a ) y sXy ( b + r - s ) x ( b + r - l ) y - r

(with 0<r, a<b+r, Cks^b+r and n=l| g ll=4r+3b-a).

Il=2(r+l)+a+b).
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If s>2r and a+l<b+r, then gxx =p5(a+2,bj+l,s-2r)e S(n+2).

If s>2r and a+1 =b+r, then gxx =p4(a+2,b,r,s-2r) e S(n+2).

If r^s then we would have:-

g x = x * (b+r_a' 1)y(s+b)xy(r‘ s)x(b+r' 1)y ' r e S (n - l ) , 

and so we may traverse x,x.

We are left with the possibility of r<s£2r, but then we would have:- 

gz '1 =p5(a,b,r,s-l)eS(n),

also

gz-’z '1 =x-<b+r-a>y(s-2>xy(b+r+2-s)x(b+r-1>y-rG B(n),

and thus

gz_1z_1y eB (n -l) , gz_1z_,yx g  B(n).

As
g z ' z ' y x x  =x-0 >+r-a-l)y(s+b-r)xy(2r-s)x(b+r)y-(r-l) e B(n-1), 

so we may traverse ^.y.x.x.y-1.

Suppose g = p6(a,b,r,s)
_ x-(b+r+l-a)ysxy(b+r-s)x(b+r)y-r

(with 0<r, a^b+r, 0<s<tH-r and n=II g ll=4r+2+3b-a).

If s>2r+l and a+l^b+r, then gxx =p6(a+2,b,r+l,s-2r-l)e S(n+2).

If s>2r+l and a+l=b+r, then gxx =p4(a+2,b,r+l,s-2r-l) e S(n+2).

If r^s then we would have:-

gx=x-<b"  a>y<b+r>x<b+r)y <r' s>e S(n-l), 

and so we may traverse x,x.

So we may now assume r<s^2r+l.

If a=b+r and s=2r+l, then:-

gxx  =p4(a+2,b,r,s-2r) g S(n+2),

and so, as a£b+r anyway, we can also assume either a<b+r or (a=b+r and s<2r+l). 

If a<b+r then:-

gz"*z"*yxx =x-(b4r-a , )y(s+b-r)xy<2r+1-s)x(btr)y-r G B(n-l),
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or, if a=b+r and s<2r+l, then:-

gz-1z-1yxx =y^b+r-1)x(2r' s)yx(s+b+2' r)y-<r-1)e  B(n-l).

Whichever, we also have:-

gz_1 =p6(a,b,r,s-l) e S(n),
g z - l z - l  = x - ( b + r + l - a ) y ( s -2 ) Xy ( b + r+ 2 -s ) x ( t> + r)y -rg  B ( n )

and therefore

g join(20) g*"1* '1. g z '’z ' 'y  e B(n-l), g z- 'z - 'y x  E  B(n).

As gz'lz~*yxxe B(n-l), so we may traverse z"^,z'^,y,x,x,y" V

| c£=xx~~|

The maximal path length so far is 24, we now post multiply by c6=yx_1.

Suppose g = p2(a,b,r,s)

= x̂ a' r-1Vsxy^b-s^ r (with (K r<a, 0<s<b and n=ll g ll=a+b).

If s+br<b+l and a-l<b+ l then:-

gyx-1 =o4(p4(b+l,a-l,0,b+l-s-br)) e  S(a+b+2).

If s+br<b+l and a-12:b+l thcn:-

gyx-1 =a5(p3(b+l,a-l,0,b+l-s-br)) e  S(a+b+2).

So we can now assume s+br^b+1, and therefore, as 0<s<b anyway, b>0 and r>0.

If s=0 then r>l and we would have:-
gz"1 .x (» -O y(b -l)x yx(r- l ) € B(a+b),

or, if s>0 then we would have:-
gZ-l =x(a_r_1)y(s' 1)xy ̂ b+1‘ sV eB (a+ b).

Whichever, we can see that:-

gz_1 e B(a+b), g z ^ x ^ g y x ^ y -1 e  B(a+b-l), 

and so we may traverse z_1,x_1,y.

Suppose g=p3(a,b,r,s)

= x' r̂+*)ysxyib-s)x(a+r) (with 0<r, a+r^b, 0<s<b and n=ll g ll=2(r+l)+a+b).
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W e  h a v e : -

g Z- l  _ x - r y ( b + l - s ) x - l y ( s - l ) x (a + r + l)  e  B ( n ) ,

and thus

gz-1x_1 e B(n-l), g z '1x‘ 1y-gyx '1y"1 * * € B(n). 

So we may traverse z_1,x ,y .

c£=yx_1

The maximal path length so far is 24, we now post multiply by c£=yx.

Suppose g=p3(a,b,r,s)
_ x-(r+l)ysXy(b-s)x(a+r) (with o<r, a+r<b, 0<s<b and n=ll g II 

Ifa+r<s then gyx =p3(a+l,b+l,r,s-a-r)eS(n+2).

If a+r^s then we would have:-

gy =x"rybx̂ a+r_s)yxs 6 B(n-l),

and so we may traverse y,x.

I c t-y x  |

The maximal path length so far is 24, we now post multiply by c6=yy.

Suppose g=p3(a,b,r,s)
a  x - ( r + l ) y sx y ( b - s ) x (a+ r) ( w j t h  0<r, a+r^b, 0<s<b and n=|| g

If s<a+r then:-

gy -x -rybx<a+r-s>yx5e B(n-l),

and so we could traverse y,y.

If 0=a+r then gy y =p3(0,b+2,0,s) e S(n+2).

So we can now assume 0<a+r<s.

If a>0 then we would have:-

geS(a+b+2(r+l)),

and

gy x '1 =p3(a-l,b+l,r,s-a-r)eS(a+b+2(r+l)).

=2(r+l)+a+b).

|=2(r+l)+a+b).
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Also, we can certainly assume, without loss of generality, that 

gy x_1(xy) =gy y e S(a+b+2(r+l)).

Thus, we would already have proved

g  join(24) g y  ’i "1. g y  x"1 jo m u 2) g y  y .

and so (when a=0)

8  join(36) 8y y-

If a=0 and 2r<s, then we would have gyy =p3(0,b+2,r,s-2r)e S(n+2).

If a=0 and 2r£s, then r>0 (because a+r>0) and so, also, 2r £ s. We would now have:- 

g = x*r op3(r,b,0,s).

Also

p3(r,b,0,s) e S(r+a+b),

p3(r,b,0,s)yy =p2(r,b+2,r-l,b+s-2r+2) e  S(r+2+b) 

and we have just proved that in this situation

p3(r,b ,0 ,s) join(36) P2(r,l>+2,r-1 ,b + s-2 r+ 2 ).

Therefore, by lemma 5.3.8,

8 join(36) gyy-

| ct=yy and 5 .3 .1 6  |

Corollary 5.3.17

Suppose g e  G, e t  e {y-1x-1 , y_1x, x_1x-1, xy-1, x 'V " 1, y“1y"1 ) and II g II = Il gcé II 

with gc6=(a ,d ,b ) for some a ,b ,d e  N, then g  j0in(36) 8C^-

Proof:

By 5.3.11 (i), we may write gc6 = Pj(b) or Pj(a,b,r,s ) (2^i^6) for some r,se IKI. Also, 

Il (gc6)(c'c)_1 II = II getII (=11 g II ) with (e'e)"1 e {xy, x -!y , xx,yx-1,yx, yy }, thus, by 

proposition 5.3.16, get jo in(3 6 )  8 -  As II g II = II get II, so we have g j 0 in (36 ) 8 c 6 -

r w i
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Proposition 5.3.18.

With g=Pj(a,bj,s) (2SiS6) and c6 e { y_1x -1, y_1x, x_1x_1, xy_1, x_1y-1, y  i y 1},

(ii) whenever II g II = II get II, then g join(8 4 ) get.

Proof:

We note that, by corollary 5.3.17, (ii) would already have been proved if gct=(a,d,b) 
for some a,b,de N.

Let c£=y _1 x *!.

Suppose g = p2(a,b,r,s)

= x(a"r_l)ysxy(h-s)xr (with OS r<a, OSsSb and n=ll g ll=a+b).

If s<b and r=0 then:-

gy -1 «x(a“r"1)ysxy(b~s~1) e  B(n-l), 

and so we may traverse y, x_1.

If s<b and r>0 then:-

gz =p2(a,b,r,s+l) e  S(n), 

g z x -1 = x(a-r - 1)y(s+,)x y C '-s- l)x(r- l ) e B ( n - l )  

and so we may traverse z,x_l ,y l .

If s=b then gy - ^ -^ (a - l .b r+ l .b - l)  with a-l,br+l>0. So, by 5.3.17, we may as 

well assume b=0, but then g = xa 6 S(a) and gy - Jx~ 1 e  S(a+2).

Suppose g=p3 (a,b,r,s)

-  x-(r+1>ysxy(b*s)x(a+r) (with OSr, a+rSb, 0<sSb and n=|| g ll=2(r+l)+a+b). 

If s<b then we have:-

gz = p3 (a,b,r,s+l) e S(n),

and so, by corollary 5.3.13,

8  join(lO) 8 Z-

Also

g z x 1 -g y ^ x ^ y  - x -,y b-*-1)x"1y(s+1M a+r)eB (n -l),
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and so we may traverse z,x_1,y 'V

If s=b then gy-lx- 1«(a-l,b-l,b(a+r)+l) with b-l,b(a+r)+l>0. So, by 5.3.17, we 

can assume a=0. If r=0 then we may traverse x ^ .y î.x .y ^ .x ^ .y . If r= l then we may 

traverse x_1, y  ̂ y ^ x '^ y .x . If r>l then we may traverse x“1,y- 1 ,x_1 ,y“1,x-1 ,y,x,x.

Suppose g = p4 (a,b,r,s)
=  y (b + r)x ( a - s ) y XS y - ( r+ l )  (with 0^ r, b+r^a, 0<s<a and n=ll g l|=2(r+l)+a+b). 

Note that n<2(a+l)+a+a=4a+2, and so we may as well assume a>2 (if a<2 then n<10 

and the distance between any two points of B(n) would be at most 20).
Also, gy_1 x_1 =(a-l,s+a(b+r)-b+l),b-l) with a-l>0. So by 5.3.17, we may as well 

assume b=0 or s+a(b+r)<b-l. As s+a(b+r)<b-l =» b+r=0, so we can restrict to b=0. 
Thus, we are assuming a>2 and b=0.

If r+ l< a-2  and a<s+r+2 then gy_1 x_1 =o6 (p3(l,a-l,r+l,s+r+2-a)> e S(n+2).

If r+ l< a-2  and a>s+r+2, we would have:-

gz =p4 (0 ,aj,s+l),

and thus, by 5.3.14,

S join(10) 8 Z-

Also,

gzx- 1=gy- 1x_1y =yrx̂ a_s-r_2Vx^s+r+1V"^r+1  ̂e B(n-l), 

so we may traverse z,x- 1,y_1.

We are left with r+l>a-2, but as r<a-b anyway, and we are assuming b=0, so we 

hâve r= a, a - 1  or a -2 .

If r=a then we have:-

geS(3a+2), but gy_1x_1 =a6 (p5 ( l,a -l,2 ,s) )eS(3a+4).

If r=a-l then we have:-

geS(3a), but gy- 1x_1 =o6 (p6 (l,a-l,l,s))eS(3a+2).

If r=a-2 then we have:-

geS(3a-2), but gy_1x_1 =o6 (p5 (l,a -l,l,s))eS (3a).

Suppose g = p5(a,b,r,s)
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_  x - ( b + r - a ) y s x y ( b + r - s ) x ( b + r - l ) y - r

(with 0<r, a<b+r, 0<s<b+r and n=II g ||=4r+3b-a).

Note that n<4(b+r), so we can assume b+r>3.
Also, we have gy^x-* = ( a - l , s+(b+r)(b+r-l)-b+l), b-1) with s+(b+r)(b+r-l)>b+l. 

So, by corollary 5.3.17, we can assume a=0 or b=0.

If a=0 and s<b+r then we would have:-

gz= p5(a,b,r,s+l),

and so, by corollary 5.3.14,

g join(10) i z -

Also (as b+r>3),

gzx' 1 = gy '1x - , y ■ y-rx"(b+r)y(,+l)xy(b+r-s- 1)x(b+r-2)€ B(n-l). 

so we may traverse z,x_1 ,y_1.

If a=0 and s=b+r, then we may traverse x"1 ,y_1,x- 1,y“1,x- 1 ,y,x,x.

If b=0 and a+s>r then g y '1x“1=a6 (p6 (l,a -l,r+ l-a,a+ s-r))e S(n+2).

If b=0 and a+s<r then we would have:-
g y - l « y ( r - l ^ ( » ^ y . , x ( r - a - l ) y - ( r - 1)x - f r - a)6 B ( n . l ) i

and so we could simply traverse y_1, x '1.

Suppose g = p6 (a,b,r,s)
_  x - ( b + r + l - a ) y S Xy (tH T -s)x ( b + r ) y - r

(with 0<r, a<b+r, (ks<b+r and n=II g||=4r+2+3b-a).

Note that n^4(b+r)+2, so we can assume b+r>3 (if b+r<3 then n^lO and the distance 

between any two points o f  B(n) would be at most 20).

Also gy_1x_1 = (a - l  , s+(b+r)2 -b+l , b - l ) with s+(b+r)2> b-l. So, by corollary 

5.3.17, we may as well assume a=0 or b=0.

If a=0 and s<b+r then we would have:-

gz =p6 (a,b,r,s+l),

and so, by corollary 5.3.14,

g join(10) g z -
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Also (as b+r>3),

gzx' 1 =gy_1x '1y =y-rx-(b+r+1 -a)y(s+1*xy(b+r~s-1)x(b+r-1)e  B(n-l), 

so we may traverse z.x '^ .y '1.

If a=0 and s=b+r, then we may traverse x‘ 1,y '1 ,x_1,y '1,x '1,y,x,x- 

If b=0 and a+s>r, then gy^x " 1 = o 6 (p5(l,a-l,r+2-a,a+s-r)) e  S(n+2).

If b=0 and a+s<r, then we would have:-
g y _ l  = y r x ( a + s ) y - l x ( r - a - s ) y - r x - ( r - a )  g B ( n - l ) ,

and so we could simply traverse y"1, x"1. 

c6 = y '1x_1

The maximal path length so far is 36, we now post multiply by c£=y- 1x.

Suppose g = P2 (a,b,r,s)
_  x ( a - r - l ) y S Xy ( b - s ) x r  ( w i t h  0^ r<a, 0<s<b and n=ll g  ll=a+b).

We have gy_1x =( a+1 , s+br+b-1 , b-1 ). So, by corollary 5.3.17, we can assume 

b=0, but then s=0, g= xa 6  S(a) and gy_1x e S(a+2).

Suppose g=p3(a,b,r,s)

_  x - ( r + l ) y S Xy ( b - s ) x ( a + r )  Q<r, a+r<b, 0<s<b and n=ll g ll=2(r+l)+a+b).

We have gy_1x =( a+1, s+b(a+r) , b -1 ). So, by corollary 5.3.17, we can assume 

b=0, but then a=r=0, n=2 and the distance between any two points of B(n) is at most 4.

Suppose g = p4 (a,b,r,s)

= y(*>+r)x ( a - s ) y XS y - ( r + l )  (with 0^ r, b+r<a, 0<s<a and n=ll g ll=2(r+l)+a+b). 

We have gy_1x =( a+1 ,s+a(b+r)+ b-l, b -1 ), and so, by corollary 5.3.17, we may as 

well assume b= 0  .

If s>r+l then gy_Ix = 0 3 ^ 3( 1 ,a+ l,r,s-r-l))eS(n+2).

If s^r+1, then we would have:-
g Z- l  _ y r x a y - ( r + l - s ) x y - ( s - l ) x - l  G B ( n ) ,
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Suppose g = p6 (a,b,r,s)
=  x - ( b + r + l - a ) y sXy (b + r- s )x ( b + r ) y - r

(with 0<r, a^b+r, 0<s<b+r and n=ll g ||=4r+2+3b-a).

We have gy_1x =(a+l , s+a(b+r)2+ b - l , b -1  ), and so, by corollary 5.3.17, we may as 

well assume b=0. We would then have:-

gZ- l=x-(r-a)y(s-1)Xy(r+l-s)xry-rx~1eB(n),

and thus

so we could traverse z-*.

gz_1x = gy~1xy g  B(n-l),

y - ' .

c6 =y_1x

The maximal path length so far is 36, we now post multiply by c6 =x- 1x_i.

Suppose g = p2(a,b,r,s)

-  x(a_r-1)ysxy(b~s)xr (with r<a, 0 £s£b and n=ll g ll=a+b). 

Clearly we can assume r=0, but then:-
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g . x<*-'>y5xy(b",) 6  S(a+b), 
and so we can also assume b>s.

If a= l, then gx- 1x- 1  = a 2(p3(l,b,0 ,b-s)) e S(n+2), 

so we may assume a>l.

Supposing a+s<2b+2.

If b<a-2, then gx- 1x-1  = a5 (p3(b,a-2,l,2b+2-a-s)) e S(n+2).

If b=a-2, then gx_1x*l= o 5 (p5(b,a-2,l,b-s>) € S(n+2).

If b>a-2, then gx- 1x- 1  = a 5 (p4 (b,a-2,l,b-s)) e S(n+2).

So we are left with a>l and a+s>2b+2, we would have:-
g x ' 1 x " 1 -  x ( a + s - 2 b - 2 ) y - 1 x (2 b -s ) y ( b + l) e  B ( a + b ) .

If b=l we would have s=0, because we are, anyway, assuming b>s. Thus a>2b+2=4, 

g =xay and we could traverse y_1,x'4 ,y_1 ,x2 ,y2.

If b>l, then we could traverse y '1 ,x_1 ,y '1,x '1,y,x~1,y '1,x_1 ,y~1,x2 ,y3.

Suppose g=p3(a,b,r,s)

= x-<r+1>ysxy<b-s>x(a+r> (with 0 <r, a+r^b, 0 <s<b and n=ll g ll=2 (r+l)+a+b). 

Apparently the only non trivial situation is a+r=0, but then 

gX- l=y(b-s)x-lySe S(n-l), 

and so we could still traverse x_1,x_1.

Suppose g = p4 (a,bj,s)

= ŷ l>+r)Xia_s)yXSy'(r+l) (with (K r, b+r<a, 0 <s<a and n=ll g ll=2 (r+l)+a+b). 

We have gx-lx - 1  =( a-2 , s+b(a-2)+ar, b ). So by corollary 5.3.17, we may as well 

assume a<2, but then n= 2r+2+a+b £ 3a+2 ̂ 5 (and so the distance between any two points 

of B(n) would be at most 10).

Suppose g = p5(a,b,r,s)
■ x - (b+r-a)y sXy(b+r- s)x(b+r- l)y - r

(with 0<r, a<b+r, 0<s£b+r and n=ll g ll=4r+3b-a).

If a=0, we would have:-
g x - 1  = y - r x - ( b + r - l ) y ( b + r - s ) x - l ySx( b 4 r - l )  6
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If a>0 and b>s, we would have:-

8X-> .x-n>*'-l-»)y(l’-s>x-1y(s<r,xft>4r' 1)r r s  B(n-l). 

If a>0 and txs, we would have:-

geS(n),

g x 'V  =p5(a-l,b+l,r-l,s-b)eS(n).

Also, there is certainly no loss of generality in assuming

gx- ly  (y - l x - l )  z r g x - V 1 e  S(n), 

and so we would already have proved:-

8 join(12) 8 * -’ y join{36)

Therefore

8join(48)Sx *x

Suppose g = p6(a,b,r,s)
_  x -(b+r+l-a)ysxy(b+r-s)x(b+r)y-r

(with 0<r, a<b+r, 0<s<b+r and n=ll g ll=4r+2+3b-a). 

If a=0, we would have:-
g x - 1  = y - r x _( b + r+ l) y s Xy ( b + r - s ) x ( b + r - l )  e  B ( n - 1 ) .

If a>0 and b>s, we would have:-

gx-l .x-Cb+r-aiyCh-sIx-lyis+r^OHOy-rg B (n-l). 

If a>0 and b<s, we would have:-

geS(n),

gx-ly =p6(a-l,b+l,r-l,s-b)e S(n).

Also, there is no loss of generality in assuming

gx_1y (y-lx- l) =gx-1x '1 g S(n), 

and so we would already have proved:-

8  join(12) 8 * - 'y .  g t  ' y  join(36) g * ' 1» -1 -

Therefore

S jo in (4 8 )S x *x *•
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cC=x*1x_1

The maximal path length so far is 48, we now post multiply by c£=xy *.

Suppose g = p2(a,bj,s)

= x(a“r_*)ysxy^-s)xr (with r<a, 0<s£b and n=|| g ll=a+b).

We have that g x y  * =( a+1, s+br+b ,b - l ). So, by corollary 5.3.17, we can assume that 

b=0, but then , as s<b anyway, so s=0 and we would have:-

g =xa e S(a) while gxy* =x(a+1)y-l e S(a+2).

Suppose g=p3(a,b,r,s)

= x"<r+1 )ysxy(b_sM a+r) (with 0<r, a+r^b, 0<s<b and n=ll g ll = 2(r+l)+a+b). 

We have gxy* =( a+1, s+b(a+r) ,b -l ). So, by corollary 5.3.17, we may as well 

assume b=0 -  but b>0 anyway.

Suppose g = p4(a,b,r,s)

= y(b+r)x(a-s)yxsy~(r+1) (with 0< r, b+r<a, 0<s<a and n=ll g ll=2(r+l)+a+b). 

We have g x y 1 =( a+1, s+b(a+r)+b,b-l ), so, by corollary 5.3.17, we can assume that 

b=0. Then, if s<r, we would have gx =yrxay'(r_s>xy"se B(n-l). If s>r, we would have 
gxy-1 = cy6(p3(l,a+l,r,s-r))eS(n+2).

Suppose g = p5(a,b,r,s)

= x“(b+r_a)ysxyib+r-s)x(b+r_1)y-r

(with 0<r, a<b+r, 0<s<b+r and n=|| g ll=4r+3b-a).

We have gxy-  ̂=( a+1, s+(b+r)(b+r-l)+b ,b -l ). So, by corollary 5.3.17, we can 

assume that b=0, but then gx =x'^>+r_a_1̂ ysxy^)+r_s)x^>+r_̂ y r e B(n-l).

Suppose g = p6(a,b,r,s)

= x-(b+r+l-a)ysxy(b+r-s)x(b+r)y-r

(with 0<r, a<b+r, 0<s<b+r and n=l| g l|=4r+2+3b-a).

We have gxy* «( a+1, s+(b+r)2+ b ,b -l ). So, by corollary 5.3.17, we can assume that
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b = 0 ,  b u t  t h e n  g x  = x " ^ r ' a ) y s x y ( b + r" s M b + r) y - r  €  B ( n - l ) .

c£=xy_1

The maximal path length so far is 48, we now post multiply by c6=>x_1y_1.

Suppose g = p2(a,bj,s)

_  x ( a - r - l ) y S Xy ( b - s ) x r  ( w i th  0 <  r < a ,  0 < s < b  and n=ll g  ||=a+b).

Clearly we may assume r=0.

If s>0, we would have:-

gz"1 =p2(a,b,r,s-l) e S(n), 

also there is no loss of generality in assuming

g z - '( y - > x - l )  = g x -> y -<  e  S (n ) .

So we would already have already proved:-

«  jo in(10) 8 Z" ‘ “ d  8Z‘ ‘  join(36) S ^ V 1.

thus

8  join(46) g x - 'y - ' .

We are left with s=0, but then g =xayb e S(a+b), so we also assume b>0.
If a>b=l, then we may traverse y_1,x-2,y~1̂ c,y.

If a>b>l, then we may traverse y 1,x-1,y l,x~1, y 1,x,y 2.

If a<b then n^2b so we may as well assume b>2. Then, if a<b, 

gx-ly-1 =o5(p4(b -l,a -1,1,1 )>€S(a+b+2). If a=b, then 

g x - ly  1 =o5(p5(b- l,b—1,1,1 ))e S(2b+2).

Suppose g=p3(a,b,r,s)

■  x - (r+ D y S x y ( b - s ) x (a+ r)  (with (Kr, a+r<b, 0<s<b and n=|| g ||=2(r+l)+a+b). 

Clearly, we may assume a+r=0. Then we will have:-

g e  S(b+2), gz '1 =x-1y(s' ,)xy<b+i-s)e B(b+2),

and thus

gz-ly-1 e B(b+1).

So we may traverse z-1,y- i ,x-1.
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Suppose g = p4(a,b,r,s)

= ytf>+r)x(a-s)yxsy"(r+1) (with 0< r, b+r^a, Ocs^a and n=II g ll=2(r+l)+a+b). 

If s-1, then:-

gz-1 «y(b+r)xay-re B(2r+a+b), 

and so we may traverse z_1,y_1,x _1.

If s>l, then we would have:-

gz_1 =p4(a,b,r,s-l)eS(n), 

and, as there is no loss of generality in assuming

gz'H y-ix”1) =gx-1y~1 e S(n),

so, we have already proved

8 jo in  (10)« i o i n , . , , ,8* ' 1 a " d  S z j oi n E x ~^y~^

Thus

6 J ° ,n  (4 6 )  6

Suppose g = p5(a,b,r,s)

= X"Cb+r' a)ysxyilH'r_s)x(b+r"1)y_r

(with 0<r, a<b+r, 0<s<b+r and n=l| g ll=4r+3b-a). 

If s= 1, then we would have:-

gz-1 ■x-ib+r-a_1)yib+r)xib+r' 1̂ y're  B(4r+3b-a-2), 

and so we may traverse z-1,y-1,x-1.

If s>l, then we would have:-

g z '1 =p5(a,b,r,s-l)eS(n), 

and, as there is no loss of generality in assuming

gz-1(y-1x_1) =gx-!y_1 e S(n),

so we have already proved

8  join (10) 8Z 1 8n<  ̂ EZ‘ , JO'n (3 « )8 X ' ’ y ‘ 1-
Thus
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Suppose g = p6(a,b,r,s)
_ x-(b+r+l-a)ysXyOKr-s)x(tH-r)y-r

(with 0<r, a£b+r, 0<s<b+r and n=ll g ll=4r+2+3b-a). 

If s= 1, then we would have:-

gz-1 » x-<b*r-a)y<b+r)x(b+r)y-r e B(4r+3b-a), 

and so we may traverse

If s>l, then we would have:-

gz_1 =p6(a,b,r,s-l) e S(n), 

and, as there is no loss of generality in assuming

gz_1(y-1x_1) =gx"1y '1 e S(n),

so we have already proved

g i ° in (1 0 )EZ 1 a " d  g ^ 1 io i" (3 6 )SX" l y ‘ ’ -

Thus

c6=x-1y-1

The maximal path length so far is 48, we now post multiply by c6=yly~l.

Suppose g = p2(a,b,r,s)

_ x(a-r-l)ysXy(b-s)xr (with r<a, 0£s<b and n=ll g ||=a+b).

We have gy_1y = (a , s+br,b-2), so by 5.3.17, we may as well assume b=0 or b=l. 

If b=l then geS(a+l)but gy-1y-1 =a6(p2(l,a,0,s+r))eS(a+3).

If b=0 then, as s£b anyway, s=0, so g =xa e  S(a) and gy_1y_1 e  S(a+2).

Suppose g=p3(a,b,r,s)

-  x"ir+1)ysxyib-s)x<a+r> (with 0<r, a+r<b, 0<s<b and n=|| g l|=2(r+l)+a+b). 

We have gy-ly-1 = (a , s+b(a+r), b-2). So by, 5.3.17, we may as well assume b<l, 

but then n =2(r+l)+a+b £ 3b+2 £5 (so the distance between any two points of B(n) would 
be at most 10).
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Suppose g = p4(a,b,r,s)

= y<b+r)x(a-sfyxsy~*r+1* (with 0£ r, b+r<a, 0<s<a and n=|| g l|=2(r+l)+a+b). 

Note that n S2(a+l)+a+a =4a+2, so we can assume a>2. Also 

gy-ly-1 =( a t s+a(b+r), b -2 ), so, by 5.3.17, we may as well assume a>2 and bSl.

If b=0 and a>r+2, then gy_1y-1 =a6(p3(2,a,r,s)) e S(n+2).

If b=0 and a<r+2, then, as b+r<a anyway, we must have r=a-l or r=a.

If r= a-l, then gy"1y_1 =a6(p5(2,a,l,s)) e S(n+2).

If r=a and s>l, then g y ^ y 1 =^6(P6(2,a,l,s-l)) e S(n+2).

If r=a and s=l, then we would have:-

g  = y a x ( a - l ) y Xsy - ( a + l )  e S(3a+2), 

g y - l y - l = y ( a - l ) x ( a 4 n y - ( a + l ) x - l  e S(3a+2), 

and we could traverse y,x-^,y'^,x,y- ^,x,y"^,x"^.

If b=l and a>r+l, then gy"1y"1 =a6(p3(l,a,r+l,s)) e  S(n+2).

If b=l and a=r+l, then gy-1y_1 =o6(p5(l,a,l,s)) e  S(n+2).

Suppose g = p5(a,b,r,s)
=  x  - ( b + r - a ) y  sXy ( b + r-  s)x (b + r -  l ) y  - r

(with 0<r, a<b+r, 0<s<b+r and n=II g ll=4r+3b-a).

We have gy-ly-1 =( a , s+(b+r)(b+r-l) , b-2 ). So by, 5.3.17, we may as well assume 
b£l.

If b=0 and a+s<r, then we have:-
gy-1 ■y0 ,-l)x(a+s)y-lx(r-«-*)y-(r-l)x-(r-a)e 3 (n_j)>

If b=0, a+s>r and 2r<s+2a, then we have

gy-ly-1 =a6(p5(2,a,r+l-a,s+2a-2r)) e  S(n+2).
If b=0, a+s>r and 2r£s+2a, so (as a+s>r and r=b+r>s anyway) s>2. We would then 

have:-

gz-1 =p5(a,0,r,s-l) e S(4r-a),

and

gz-1z_1 = y(*-2)xy(r+2-s)x(r-1 )y-rx-(r_ a) e  B(4r-a),
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therefore, by 5.3.13,

s  jo inO O ) Sz_1 a n d  8 z ' ' j o i n ( 1 0 ) S z ' , z ‘ '-

Also, we can see that,

gz_1z_1x € B(4r-a-l), and so g z 'iz^ x y -1 e  B(4r-a).

So, as

gz"lz_lxy"ly- l =gy_1y ~*x
=  y ( r - l ) x ( s + 2 » - r)y - l x ( 2 r - s - 2 a ) y . r x - ( r - a - l ) € B ( 4 r _ a _ 1 ) > 

we may traverse (the lengthy route of) z_1,z“l,x,y“1,y“i ,x_1.

If b= 1 then we would have:-

g e S(4r+3-a),

and, if a<r,

gy_1x =p5(a+l,0,r+l,s)e S(4r+3-a).

or, if a=r,

gy_1x =p4(a+l,0,r,s) e S(4r+3-a).

Whichever, there is no loss of generality in assuming

g y - lx ix 'V 1) - g y 'V 1 e  S(4r+3-a), 

so we would have already proved

S join(36) Sy_*x and gy -k  join(48) g y ‘y

therefore

Sjoin(84)Sy

Suppose g = p6(a,b,r,s)
= x -(b+r+l-a)ysxy(b+r-s)x(b+r)y-r

(with 0<r, a^b+r, 0<s<b+r and n=l| g ll=4r+2+3b-a).

We have gy-ly-1 =( a , s+(b+r)2 , b -2 ). So by, 5.3.17, we may as well assume b<l. 

If b=0 and a+s<r, then we have
gy-1 =y(r)x(a+s)y- l x(r-a-s)y-rx-(r-a)G B (n_1)

If b=0, a+s>r and 2r+l<s+2a, then we have

gy-ly-1 =o6(p6(2,a,r+l-a,s+2a-2r-l)> e  S(n+2).
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If b=0, a+s>r, 2r+l£s+2a and s=l (then a+s>r and r+l^a), so a=r. We would have 

ge S(3r+2),

and

gy-lx =o6(p5(l,r+ 1,0,1) e S(3r+2).

Also, as there is no loss of generality in assuming

gy-lx(x-'y) - g y - V  s  S(3r+2), 

so we would have already proved

£ join(36) S y an d  gy ‘ > x**„(48) gy V 1-

Therefore

8 join(84) &y V

If b=0, a+s>r, 2r+l>s+2a and s>l, then we would have:- 

gz’1 =p6(a,0 j,s-l)€  S(4r+2-a), 

gz-lz-1 =y(s-2)xy(r+2"s)xr"1y-rx"(r+1-a)e  B(4r+2-a), 

and so, by 5.3.13,

£ join(10) £Z_I and gz-> join(10) gz

Also, we can see that,

gz_lz 'lX e B(4r+l-a), and so gz-lz-lxy-1 e B(4r+2-a ).

So, as

gz~1z-1xy~1y-1 =gy-1y _1x

= y(r-l)x(s+2a-r)y- ix(2r+l-s-2a)y-rx-(r-a) e  B(4r+l-a), 

we may traverse z 'l,z_l,x,y- l,y_l,x~l.

If b= 1 then we would have:-

geS(4r+5-a),

and, if a<r,

gy-1 x = p5(a+1,0,r+l,s) e S(4r+3-a).
or, if a=r+l,

gy-!x =p4(a+l,0,r+l,s) e S(4r+3-a). 

Whichever, there is no loss of generality in assuming
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gy_1x(x-1y-1) ■ gy ty ”1 e  S(4r+3-a), 

so we would have already proved

ejoin(36)Sy"'x and g y , ’‘ jo in(48)gy '1y ‘ '-

therefore

«join(84)iy_1y _1-

cfi=y-ly-l and 5.3.18

We need to prove (for Tc(G) to be almost convex) that, for any ge G and c,é e C: 

00  whenever II g II = Il gcé II, then g j0m(84) get.
By propositions 5.3.16 and 5.3.18, we know that (ii) holds provided g=Pj(b) or 

g= Pjia.b.r.s) (for some 2<i£6 and a,b,r,se IN).

We now take any ge G and c,é e C with II g II = Il gcé II, and prove that g join(8 4 ) gcé. 
By lemma 5.4.11 (ii), we know that

g = aj(pj(b)) or Ojip^a.b.r.s)) (for some l<j<8, 2<i<6 and a,b,r,se IN).

As the automorphism Oj simply permutes the generators of C, so Oj and its inverse are 
norm preserving, and we have:-

II Oj_1(g)H = Il g II 
= Il gcé II 

= Il CTj'1(gCé)ll.
Whence:-

Il Oj_1(g)H = H Oj_,(g) Oj_1(c) Oj_1(é)ll, 
with

Oj_1(g) -  Pi(b) or pjfa.b.r.s), 
and

O j 1(c),o j' ' ( i ) e C .

So, by propositions 5.3.16 and 5.3.18, we will have:-

join(84) a j_1(6) CTj-'(c) <Tj-'(t),
whence

8 join(84) 8Ĉ>
because O) is norm preserving.
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m o
5.3.19 Corollary.

With A={ x , x '1 ,y  , y_1, z , z_1}, TA(G) is almost convex.

Proof:

We know that zecentrc(G), but, also, z20-y 5x4y - V 4. Thus, whenever (arbitrary) 

ge G is expressed as a product, p, in a minimal (i.e. II gllA) number of the generators of A, 

then there cannot be more than 19 z's or 19 z_1's occuring in p. So, by replacing every z or 

z 1 of p by, respectively, yxy-V * or x y x 'V 1. we may express g as a product of at most 
II gllA+19x4 of the generators from C. Whence II gHA £ II g|lc  £ || gllA+76, and so, by 

proposition 5.1.4, TA(G) will be almost convex.

I 5.3.19 I
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5 .4

Abelian by finite groups are almost convex.

In this section we will give an alternative, and slightly generalized, proof of Cannon's 

theorem that free abelian by finite groups are almost convex (Cannon).

A discrete group of euclidean isometries (acting on some euclidean space T say) is free 

abelian by finite. This is the gist of Cannon's (geometrical) proof that these groups are 

almost convex. The map 4*: TC(G) —* T is defined by mapping g to g(0), if ge G, and, by 

mapping the edge beginning at ge G, and labelled by ce C, to the euclidean segment 

between g(0) and gc(0). By referring to Benson's ‘factorization lemma’ (cf (Benson) or 

lemma 5.4.3 of this thesis), the following ‘quasi isometry lemma’ can be proved. There are 

integers N(l) and N(2) so that, if p is a path of T, then l4/(p)I^N(l)lp| •, also, if x,ye T, 

then there is a path p, of T, which joins x to y, has length £ N(2)(l+d(4/(x),4/(y)), and 

which stays (pointwise) within the N(2) neighborhood of the geodesic segment between 

M'(x) and T'iy). (The latter is probably the hardest part of the proof.) Then, with reference 

to Benson's lemma (again), Cannon is able to define convex euclidean polyhedra, P(n), for 

all ne N, so as to prove the following ‘convexity lemma’. The polyhedra are good 

approximations to the n-balls of T; good approximations in the sense that there is a 
number N(3), independent of n, so that T'iBOi)) lies (pointwise) within the N(3) 

neighborhood of 4/(I~)nP(n), and P(n) lies (pointwise) within the N(3) neighborhood of 

H^Bin)). By referring to the ‘quasi isometry’ and ‘convexity’ lemmas, we can , after about 

two pages of calculations, prove that TC(G) is almost convex (with respect to any (inverse 
closed) generating set).

As opposed to Cannon's geometric proof, our proof is basically algebraic. We believe it 
to be the simpler proof, although it does rely on theorem 2.1.5 (finitely generated abelian 

groups are automatic) and theorem 5.2.9 (lib-automatic groups are almost convex).

5.4.1 Theorem.

Let G be an an extension of an abelian group, A, by a finite group, F, of order f. If C is 
any finite generating set of G, then TC(G) is almost convex.

Proof:
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Comment To avoid some rather clumsy notation, we will be constructing free 

monoids on several subsets of the underlying set of G. It should be clear from the context 

when we are taking a product, p, (in the set G) to be a product in the group G, or as a 

product in a free monoid, but, for emphasis, we may sometimes write y(p) to mean that the 
product is being taken as a group product .

Basically, we prove 5.4.1 by using theorem 2.1.5 to derive an automatic structure for 

(G,C) with word acceptor W satisfying the hypothesis of theorem 5.2.9 (i.e., we shall 

prove that (G,C) is lib-automatic).

We let C* denote the free monoid on the generators C, and assume throughout the proof 

that the words of C* are ordered first by the length function I I, and then lexicalgraphically 

(i.e., by a ShortLex ordering). If geG, then we define rep(g) to be the least word, u>, of C* 

such that y(u/)=g.

We fix a set of right coset representatives of A in G, say {ri}1<i<f (with rj = l). Note 

that:

(V  ifg i..... gne  G with n>f, then gj g(i+1) • • • gj e A for some l<i<j<n.

Then, as a trivial consequence of (1), we can see that every word in the set:

5={ shortest words s e C* I y(s)e A but y(a)e A whenever a is a proper subword of s } 

will have length at most f. Thus:-

S=y(S) and B={ r4 s r j '1 1 l<i<f and se S } 

are both finite generating sets of A.

We let B* denote the free monoid on the generators B. Also, for each be B, we define: 

(u(b) ={ the least word ¿e 5 such that b=riy(i)ri-1 for some l<i^f },

and then

A(b) =lto(b)l,

i(b) = { smallest i such that b = r} y(co(b))ri“1}.

Now we fix any ordering £ of B with the proviso:

(2) b<b whenever t(b)<t(b).

We remind the reader that <A denotes the ordering of the words of B* first by the length 

function A*, and then lexicalgraphically according to the ordering <.
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By theorem 2.1.5, we know that (A,B) will be automatic with a word acceptor, W(A) 

say, accepting the (prefix closed) language of the <Aleast words. Moreover, the proviso (2) 

on the ordering < guarantees that each word (e  lan(W(A)) can be uniquely factorized as 

follows:

(3) f*(b(U)b(ji2).• b(lini))(b(2>1,b(2t2)-• b(2.n2))-• (b(f.i)b(f.2)-• b(fj>f))

with, for all l<i<f and l<j<n4, b ^ e  B and t(b(i j))=i.

Whence, we may define the map p: lan(W(A)) —> C* by:

(4) p (0 *  rep(r1)(o(b(U))(i)(b(li2))...(o(ba>ni))rep(r1-1)

rep(r2) <o(b(21)) <o(b(22)) .. .(o(b(2jl2)) rep(r2_1)...

.. -rep(rf) co(b(fl)) to(b(f 2)) .. .<o(b(fnf)) rep irf1).

Also, we note that, as l(b(jj))«i (for l<i<f and l^j^n^, so, by the definitions of co(b(i jj) 

and i(b(i j)),

and therefore, by (3) and (4),

(5) Y(0= Y(P(0) for all words (e  lan(W(A)).

If fe  lan(W(A)) is defined as in (3), then p(f) cannot be expressed as a shorter word,

(6) u '-rep (r ,)^u ) iiU )...^ 1j li)rcp(r1- ')

reP(r2 > J(2.1) 5(2,2)- rep(r2~])...

• • reP<rf) ‘u.n- ■ •*<«,) reP(rf~')
with all the belonging to 5.

Proof:

Suppose we have (6) with y(P(0)=YM- We define, for each l£i£f and ,

b (i.j)e B b y:

P >  b(ij) “  ri VĈ iLJ)) ri-1 -

We will then have:-
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A(b,y,) « lo>̂ (ij,)l.

by ihe definition of A(b(ij)). Whence:-

(8) A(b(ij))£ l^y )|.

because b(ij) ■ r4 Y( î.j)) ri_1 • while, by definition, a>(b(i,j)) is the least word, s, of S such that 

b(i j)=rKY(-«)rK~1 for some l<K£f.

Also, we will have:- 

Y(0 = Y(P(0). 

by (5),

= y m .

and thus

(9) Y(0 = ( b (lil)b(i i2) • • •bd .B j)) ( b (2.i)b(2.2) • • b(2,ft2) )• • •( b(f,i)b(ft2).. .b(f,af)). 

by (6) and (7).

As fe lan(W(A)), so, by definition, C is a least word of B’.with respect to the length 

function A*. Therefore, by (9), we must have:- 

U f
(10) A *(O ^X  L  A(b(iJ)).

i=l j=l

We now have:-

I  I l “ (b«J) ) l - X  I  A(b(lj)), 
¡=1 j-1 i-1 j-1

by definition of the A(b(i j)), 

by definition (3) (of 0 .

=A*(0.

i=f i-nj
s i  I  A(B0Jp,

¡-1 j-1

by (10),
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i - f j - n i

i-1 J-l

by (8).

Then, by comparing (4) and (6), we can see that the length of (3(0 is no more than the 

length of the word it>(as required).

[MU
Let us now define:

(11) awc= { (3(f)rep(rl) I (e lan(W(A)) and l^t<f }.

Then, as y(lan(W(A))) =A and is a set of right coset representatives of A in G, so

Y(£j*V>G.
Actually, LXH. will be our candidate for the regular language of the word acceptor of 

(G,C). We will need to prove that, for any we a v(, I tt'l-ll y(«,)ll q is bounded. This is a 

corollary of the next lemma which is due to Benson and appears, in a slightly weaker 

version, in (Cannon) where it is referred to as the ‘factorization lemma’.

5.4.3 Lemma. (Benson)

Each ge G can be written as a product

(r l s(U )s(1.2)- • s(l.n1)r r 1) (r2s(2,l)s(2,2)- • s(2.n2)r2_1>- • (rfs(f.l)s(f,2)- • s(f,nf)r f~1)rt

i-f J=ni
with all the s ^  in S, and with the difference between II gl!c  and £  ^  II being

i= l j= l

bounded.

Proof:

A product p=gjg2 • • • gn (with the g^e G) is said to be a geodesic product if

i-1

Let

(12) g=c1c2. . cn
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Recall that (1) stated that, if g j .....gn e G with n>f, then g4 g(j+1) ... gj e A for some

l<i<j^n. Also, we defined

5={ shortest words s e C* I y(s)e A but y(a)e A whenever a is a proper subword of s), 

and

S=Y(5).

We may as well assume that g has norm >f so that, by (1), the Cj of (12) can be 

grouped together to derive a geodesic factorization of g of the form:

(13) PiW,p2w2 ...p KwK

with all the p4 being products in terms of S, and with at least one p; of norm >0.
Supposing to f  then, by (1), there would be some i<j<K with 

PiwiP(i+i)w(i+D - P j wj s A -
Then this product would commute with P(j+1) . and so we could consolidate pj with P(j+i) 

and wj with to derive a factorization of the form (13), but with k reduced by one. 

Repeating this process, if necessary, we can reduce K to no more than f. In short, given any 

product of the form (13) we can assume, solely by rearranging terms, that K<f.

So let us begin with a geodesic factorization of g of the form (13). Then, if one of the wj 
has norm >f, we replace this w4 with a product of the form (13). The composite 

factorization of g would again be of the form (13), but with the sum of the norms of the 

abelian factors, Pj, strictly increased. We then rearrange the terms of this factorization so 

that K<f. Clearly, by repeating this process a finite number of times, we will derive a 
geodesic factorization of gof the following form.

(14) g = P l w iP2w 2 - P (f_i)W f

where, for all l^i^f:

b e  a  g e o d e s i c  p r o d u c t  w i t h  a l l  t h e  c 4 b e l o n g i n g  to  ( t h e  g e n e r a t i n g  s e t )  C  ( s o  n = llg l lc ).

P' = s(i.l)s( i .2 ) - s(i.ni)

is a geodesic product in the generators of S, and

Thus,

llw.ll c  <5.

(15) llw1W2...w(llc ^ f 2, 

and, as (14) is a geodesic factorization of g, so we have:-
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i-f j - ni(16) llg llc and ^  ^  II s (, do  not d iffe r  by m ore than
i-1 j-1

If we now now define o(i). l< i< f-l, by Ar0(j) = A w jw 2 . ..w j, then a simple 

calculation yields: -

PowiPiw2• • • P(f-1 )wf = P0(ro(l) Pi ro(l)~1 >• • • (ro(f-1) P(f-1) ro(f-1)”1)wjw2...wf .
By consolidating the like factors of, and then rearranging the terms of the latter 

factorization, we derive a factorization of g of the following form.

(17) g = ( r t s(U)s(1 2). • . s , , ^ ) ^ '1) ( r2s(2a)s(2 2).. .s( 2 r2_1)...

. . . ( rf s(fl)s(f2). . .s(f nj) rf-1 )wjw2.. ,wf

where the are now the (possibly) reindexed s^ j of the factorization (14).
As the Tj are right coset representatives of A in G, and A is finitely generated by S, we 

may choose r, and Sj, s2, .... sne S so that:-

(18) s1s2...snrt =w1w2...w f

with n as small as possible. By choosing n as small as possible we guarantee 

n ^|w jw 2...Wfll A + II rjl A ,

so, by (15), n is bounded. Then n being bounded (certainly) =*

(19) II Sjllc  +  II s2llc +  • • •+ II snllc  is  bounded.

So, by (17) and (18), we have:-

(20) g= ( .  sn s(1 ,)S(1 2).• -s(1 ni)rj 1 ) ( r 2 s(i l )S(22)...S(2jl2)r2 "1)...

...(  rf s(f j)S(f 2). • s(f np rf_1) rt

with all the s4 and (being the reindexed s(i jj of (14)) belonging to S. Also, by (16) and

(19), we see that the difference between

llg llc and  | l l s 1llc + l l s :llc + . . .+  HsJlc + £  X  II'Oj A:

is bounded (so (20) is the required factorization).

5.4.4 Corollary.
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If w&LXH., then I w\ -II Y(**')i C *s hounded.

Proof:

By the definition of LXK., u/«P(Orep(rt) for some fe lan(W(A)) and l<t<f. Then, by 

lemma 5.4.2, |K0 will be the shortest word corresponding to y(0 of the form:

(6) rcp(r1)<(u ) i(U ) ...»,1J,l) rep(r1- 1)rep(r2)<<u ) i(2i2)...JiU 2)rep(r2- 1)...

.. ,rep(rf) j<U) j<U). .. rep(rf‘1)

with all the jj belonging to S.

However, by lemma 5.4.3, we can find a word, C say, of the form (6), with 

Y(?)=y(0  and Ul-ll y(OHc being bounded. So it must be that I?l ^1 fl > H Y(Ollc • anc* so 

I C\ -II Y(Ollcis 3,50 bounded. Whence I u>\ -II y(ŵ)Hc is bounded (as required).

I 5 4 4 )

We will now begin the task of proving that (G,C) is automatic with a word acceptor 

accepting lxH.. To start with we must prove that LXH. is actually a regular subset of C*.

5.4.5 Lemma.

LXH_= { (5(0 rep(rt) I Ce. lan(W(A)) and l<t<f } is a regular subset of C*.

Proof:

It will suffice to prove that P(lan(W(A))) is a regular subset of C*. We suppose W(A) 

has transition function T.
Recall that (the coset representative) rj =1. Thus rep(rj) a repOj"1) a £ , and, by 

defining r̂ f+1̂ =l (so that rep(r^f+1)-1)a 6), we can easily see, from definition (4), that a 

word is a prefix of a word in p(lan(W(A))) if and only if it can be factorized (not 

necessarily uniquely) as follows.

(21) rep(rj) w(b(U)) to(b(, 2))...<o(b(lni)) rep(rt -1)

rep(r2) <o(b(2fl)) w(b(2 2)) .. .w(b(2 „2)) rep(r2_1) ...

.. .rep(rj) co(b(U)) <o(b(i>2)) .. .w(b(ini)) p
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W  b<U)b(1.2)- • b(l.n i)X b (2.1)b (2.2)- • b(2ji2)) - * '^ ( U ) b (U )' • b (i.nj)) )=h 

is a halt state of W(A); and p is a proper prefix of some w(b) (be B), or a proper prefix of 

rep(ri_1)rep(r(i+1)).

We will use W(A) to construct a (partial) non-deterministic automaton, W, which has 

language (5(lan(W(A))) (we refer the reader to the definition and terminology of a non- 

deterministic finite state automaton on page 7).

The states of W will consist of all those triples 

(i.q.p)

1 1 <i<f.

q is a state of W(A).

p is a proper prefix of some s e 5  or a proper prefix of rep(n ')rep(r(i+i)).

We wish to define W so as to satisfy the following hypothesis.

(22) u/e C* can be factorized as (21) if and only if W has a path of arrows with 

label w  and target (i,h,p).

This is the description of W. We let W have start state (1 ,q0,E ) where q0 is the start 

state of W(A). Then, for all 1 £i<f, all ce C, and all states q of W(A):

W has arrow:

( (i,q,p) , c , (i,q,pc) )
if and only if pc is a proper prefix of some se S  or a proper prefix of rep(rj_1)rep(r^+1)). 

W has arrow:

( (i,q,p), c , (i+1 ,q,£) ) 
if and only if pc ■rep(ri"1)rep(r^i+1j).

W has arrow:

( (¡,q,p), c , (i,q,E) )
if and only if pc» seS, and there is a transition t(q,b)=q with co(b)» s and t(b)=i.

We will want the halt states of W to be all those states (f+1 ,h,£) where h is a halt state 
ofW(A).

w h e r e ,  f o r  a l l  l £ i £ f  a n d  a l l  l ^ j ^ n ^  t h e  b (i j)  b e l o n g  t o  B ;
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The construction of W is reasonably self-explanatory. A rigorous proof of hypothesis 

(22) (by induction on the length of us) is straightforward, but would be a laborious 

formality and is best omitted.

5.4.6 Lemma.

(G,C) is automatic with word acceptor W (accepting LXsi).

Proof:

Let c be an arbitrary generator of C and recall that we defined the set of word 

differences of c to be:

{ y(w^i(l j) )  I for all wq,us\  elan(W) satisfying

y(i<t)C)=Y(a'i), and all re IN j.

Also, by theorem 2.1.3, to prove that (G,C) is automatic with word acceptor W, it suffices 

to prove that the set of word differences of (all such) c is finite, i.e., we want to prove that, 
whenever

(23) tuq , u'j e lxH_, y(u\)C)=y(u>i) and 0<re DJ, 

then II yCtt^il,!-))*1 y(*‘/iU»r))llc >s bounded (independently of uq, uy or r).

So let us suppose (23) holds, and note that there is no loss of generality in assuming 

that la^l ̂ \usy\ , r.

By the definition of LXK, we will have =(5(/fr Jrepir^) and u\ s p ^ re p ir^ )  for 

some to-Cie lan(W(A)), and l^tQ.t^f. Also, recall that the alphabet of W(A) is B, and, by 

definition (3), any word, (, of (prefix closed) lan(W(A)) can be uniquely factorized as 

(b(l,l)b(l,2)- • b(l.n1)Xb(2,l)b(2.2)- • b(2,n2))- ••(b(f.1)b(f 2). • b(f.nf)) 
for some b^j^e B with Ub(ij))=i for all l<i<f and l<j<n^. Thus, we were able to define the 
map P: lan(W(A)) —* C* by:

P(0 ■ rep(rj)co(b(11})m(h(, 2))...<o(b(liIll))rep(r1_1)

rep(r2) to(b(2fl)) to(b(2 2)).. .w(b(2n2)) rep(r2-1) ...

• • reP(rf) w(b(fil)) w(b(f2)) .. .co(b(fnf)) rep frf1).
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By (23) we have:-

Y(P(*o )rep(r,0)c)=Y(P(/i )rep(rtl)),

i.e.,

Y(P(fe)ri0crtl" 1)=Y(P(/i)).

whence:-

(26) YOWr^cr^-l-Yfij), 

because, by (5), Y(0= Y(P(0) for all words Ce lan(W(A)).

As, A is automatic with word acceptor W(A), so, by (26) and corollary 2.1.4, we know 

that II Y(fc(l,K))-1 y( î (1 »k))Hb wtH be bounded (independently of /q. (\ or Ke IN). Because 

Y(^(l.K))-Y(P(fea.K))) and Y(^(l.K))-Y(P(^a.K))), so II Y(P('bU.K)))-1Y(P('i(l.K)))llB 

is bounded, whence:-

(27) UyM « ! .* » ) - 1 Y([i«'t(l,K)))llc  is bounded 

(independently of Iq, or Ke IN).

Now, by the definition of P, we can see that Ke IN can be chosen so that I P(/q(1 ,k))| and 

r differ by at most:
i=f

(28) max(|co(b)l)beB+5](lrep(ri)l+|rep(ri-,) | . 
i=l

However, for (27) to hold, we must have the difference between I P(/q(1 ,k))I and 

I P((j(l,K))| bounded.So, also, the difference between I P(/i(l ,k))I and r will be bounded.

We finish by noting that, by the definition of p, P(/^(1,k)) and u-̂  sPfi^Jrepfr^) have a 

common prefix of length bounded to I P(/q(1 ,k))| by at most (28). Thus, as the difference 

between P(/q(1,k)) and r is, anyway, bounded, so P(/q(1,k)) and (P(/q JrepO’̂ X l.r )  have a 

common prefix of length bounded to I P(/q(1,k))I . Similarly, P(/^(1,k)) and 

(P(fl )rep(r, ))(l,r) have a common prefix of length bounded to I P((j(l,K))|. Whence, by 

(27), II y((P(6  )rep(r,o))(l,r))_1 y((P(^i )rep(rti))(l,r))llc is bounded (as required).

[5A6]

By 5.4.4 and 5.4.6, (G,C) is lib-automatic (with word acceptor W), so, by theorem 
5.2.9, we know that TC(G) is almost convex.

IMU
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