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Summary

This thesis is meant as a contribution to the theory of three classes of groups, those
classes being the groups defined by complete parameterized presentations, automatic
groups, and groups with almost convex Cayley graphs.

Chapter 1 is basically definitions and terminology. Chapter 2 is a short exposition of the
theory of automatic groups; we prove only one major result in this chapter (due to
(CHEPT)), i.e., that the abelian groups are automatic.

In chapter 3 we study presentations of groups and monoids which are complete (with
respect to certain orderings of the words in their generators). Such presentations define
monoids with fast solutions to their word problems. We define aclass of (possibly infinite)
presentations which we call r-porameterized, or of type Pr ; these presentations are the
central theme of this thesis. With the help of the computer program described in chapter 4,
we demonstrate that there are group presentations which have infinite r-parameterized
completions (i.e. complete supersets), but which have no finite completion with respect to
any ShortLex ordering. The 1-parameterized presentations are, arguably, the simplest non
finite presentations we can define (at least as far as groups are concerned), but we prove
that completeness of such presentations is not in general decidable.

Chapter 4 is the description of a (short) program which attempts to complete
1-parameterized group presentations by the Knuth-Bendix method. We conclude the
chapter with a short report on its implementation.

In chapter 5 we study groups with almost convex Cayley graphs. Such graphs are
recursive, but the property of being almost convex does tend to be hard to prove or
disprove in practice. We prove that the wordlength preserving complete groups and the
least length bounded automatic groups have almost convex Cayley graphs. We believe that
these are strict subclasses because (we shall prove) the group U(3,Z) is almost convex, but
is already known not to be automatic and, we conjecture, it has no r-parameterized
complete (ShortLex) presentation. We conclude chapter 5 with a slightly generalized,
arguably simpler, algebraic proof of J.W. Cannon's theorem that the abelian by finite
groups are almost convex.
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50
Introduction

This thesis is meant as a modest contribution to the theory of two classes of groups,
those classes being the groups with complete presentations, with respect to a finite
semigroup generating set, and the groups with almost convex Cayley graphs, with respect
to a finite semigroup generating set. The study of these groups, primarily the complete
groups, overlaps with a third class of groups, the automatic groups, but it is the groups
defined by complete presentations which the author considers to be the focal point of this
work and this is reflected in the layout of this thesis.

Chapter 1is basically terminology, but we also quote some results on, and examples of,
regular languages to which we will refer in the subsequent chapters.

Chapter 2 is meant as a short exposition of the theory of automatic groups and none of
the work in this chapter is original.

A group G with finite semigroup generating set C may be automatic with respecttoa
finite state automaton called the word acceptor. The language of the word acceptor would
be a subset of C*. the free monoid on C, and the restriction, to this regular language, of the
natural homomorphism from C* to G would be surjective. If (G,C) were automatic then
(basically) there would be an interpretation, defined by the word acceptor, of the
multiplication in the group G in terms of regular languages over the alphabet CxC.

Automatic groups are currently the subjectof much research (primarily because of their
applications to certain topological problems). There is a substantial paper entitled “Word
Processing and Group Theory’ (CEHPT), acollaboration of five authors closely concerned
with the development of automatic groups, which details most of the current work in
automatic groups. We will be referring to this paper frequently.

The emphasis of the work in chapter 2 issquarely on results which are referred to in
chapters 3and 5 and the only major result which is proved in this chapter is that the abelian
groups are automatic. We believed this proofreally should be included because itisa
prerequisite of a proof in chapter 5 (abelian by finite groups are almost convex).

In chapters 3,4 and 5 we will be working with groups and monoids defined by



complete presentations. If<Cl H)isamonoid presentation then the membersof  .taken
as ordered pairs of words in C*. may be thought of as rewrite rules for the words in C* (if
a word has a subword swith (s, r) in X. then that word can be rewritten with the
subword sreplaced by r). The presentation ( C 1X ) would then be complete, with respect
to some total ordering on the words of C*, if, using the the rewrite rules of ~repeatedly,
all words can be rewritten as the least word in their ( X ) congruence class.

So, if <CI X.>were complete, and X.at least recursive, then the least words in the
( x.)equivalence classes (called the representatives) will be a tractable normal form for the
elements of the monoid M= C*/( X.>in terms of the generators C. If M isa group and X
finite, then the set of representatives is a regular subset of C*, and thus a possible candidate
for the language of a word acceptor of an automatic structure for (M,C). However, we give
an example of a group (3.1.4) which is not automatic with the word acceptor accepting the
setof representatives (although it is true that a group defined by a complete presentation
where rewriting words involves no backtracking is automatic with word acceptor
accepting the set of representatives).

Complete presentations are a small part of the more general theory of rewriting
techniques which has a long history in theoretical computer science. So, not surprisingly,
computers are apt tools for the (more recent) study of complete group and monoid
presentations. In his paper ‘Presentations of Groups and Monoids’ (Gilman 79) R. Gilman
describes an implementation of the Knuth-Bendix procedure for computing finite complete
presentations. In his follow-up paper ‘Enumerating Infinitely Many Cosets’ (Gilman 84),
Gilman notes that the success of this procedure is rather sensitive to the well ordering of the
words and suggests that the procedure might be improved if it were to look for certain
classes of infinite presentations which we will be calling 1-parameterized.

Chapter 3 has two sections; section 3.1 is part expository, part original; section 3.2 is
original. In this chapter we define r-parameterized presentations (which have been referred
to by several authors) and look at some examples. Using the computer program, described
in chapter 4, we are able to give an example of a group presentation with a 1-parameterized

completion (i.e. complete supersetof the defining relations), but no finite completion
whatever the choice of ShortLex ordering on the words of C*.

The 1-parameterized presentations are, arguably, the simplest infinite presentations



which we could hope to define, but, nevertheless, there would still appear to be significant
problems in the study of such presentations. Whereas completeness is decidable for finite
presentations, it is not always decidable for 1-parameterized monoid presentations. We
prove this by reducing the halting problem of a Turing machine to the problem of deciding
the completeness of a 1-parameterized monoid presentation (although the monoid
presentation in question may not be that of a group). Moreover, C.C. Squier in his paper
‘Word problems and homological finiteness conditions’ (Squier) cites an example of a
monoid defined by a 1-parameterized presentation which suggests that the existing
structure theorems for finite complete groups are perhaps unlikely to be extended to groups
defined by 1-parameterized complete presentations.

In the first four sections of chapter 4 we describe acomputer program (written in
pseudo ‘C”) which attempts to complete (ShortLex) 1-parameterized group presentations.
Such programs (of Knuth-Bendix completion) can be kept rather simple, but we do
employ some non-standard techniques to speed up the completion process. The program
appears to be reasonably successful and we used it to compute some of the presentations of
chapter 3. We conclude chapter 4 with a short report on its implementation (i.e. section4.5).

Almost convex groups, or to precise, groups with almost convex Cayley graphs are a
large class of groups defined by J.W. Cannon in his preprint ‘Almost Convex Groups’
(81). This class of groups is of interest because their Cayley graphs are (in theory at least)
recursive, in fact there is an efficient algorithm for constructing such graphs. There are
several problems in this subject, notably that the property of a Cayley graph being almost
convex does tend to be rather difficult to prove or disprove in practice.

We begin chapter 5 by proving that the groups defined by complete parameterized
presentations with word length preserving orderings and the least length bounded
automatic groups have almost convex Cayley graphs. We believe these classes to be strict
inclusions. In 5.3 we prove that the (nilpotent, non abelian) group of 3 by 3unitriangular
matrices over Z has an almost convex Cayley graph (with respect to a certain setof
generators). This group has no automatic structure, that much is known, and, we
conjecture, that it has nocomplete, parameterized presentation with respect to a Shortlex
ordering. We conclude chapter 5 with an alternative (and slightly generalized) algebraic
proofof Cannon's theorem that the abelian by finite groups are almost convex.
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Definitions and Terminology

Words and Monoids.

Formal word manipulation plays a large part in this thesis. If S is a set of symbols then
we write S* for the the free monoid of formal words in S, i.e., the monoid consisting of the
words of S* with multiplication being concatenation and the identity element being the
empty word. The set of symbols S may then be referred to as the as the alphabet of S*.
The symbol £ is reserved throughout the thesis for the empty word.

If v and u>are words of S* then we write vs w when v and iv are identical words. We
write\w\ for the number of symbols occurring in the word v>and, if s is a symbol of S,
thenno. s(zv) is the number of occurrences of the symbol s in the word =

If w is a word of S* and is N with I<i£|«/|,then we write wi]for be i* symbol of w.
If ijeN withij™I, then we define zt<i,j ) to be the word w[ A\ 1n/[i+] ]... n/[j] with the
conventions zx(i,j )s£ ifi>j,and w(i,j )* n/(i,\u/\) ifj>In/|. We referto a/(i,j ) as
being a subword of ui. It is aproper subword of w if la'l>] and I<i orj<l«/|. Itisa
prefixof w=ifi~1.it is asuffix of w if j~lu/].

Let

(1) A:Su{f}—»D

be a map satisfying

(2) AE)=0.
Then we define the map A* : S*—»N by:

i«K
A*x(iisz.. sk) = X A(i),

where every 5 belongs to S. We will refer to the :;Iap A* as being a lengthfunction (on the
words of S*¥). When A (j)=1, for all seS, then A*=l land, unless explicitly stated to the
contrary, all future references to ‘word length” are assumed to refer to this length function.

Let A be a map satisfying (1) and (2), and let > be an ordering of the symbol set S, then
we define the (total) ordering >Aon the words of S* by: u/>Av if A*(a/)>A*(i/), or if



A*(«/)=A*(r) and i ]>v[i]where i is the first position in which the words differ. We
referto >Aas a shortest word/ lexicographical ordering (of S*) (and we write w>Av
when u» Av or u>mv). If A*=I |, then >Ais called a ShortLex ordering (of S*).

Presentations o f Monoids and Groups.

If Cis a set of symbols and H is a subset of C*xC*. then we write () for the
congruence generated by &. Also, we will write left("_) = {left components of the ordered
pairs in HQ and right(30 = {right components of the ordered pairs in 1Q. We refer to
( C 130 as being apresentation of the monoid M = C*/( %) (or any monoid which is
isomorphic to M). We refer to C as a set of generators of M, and refer to %ls a set of
defining relations of M. The natural homorphism, y : C*—»M, is defined by
Y(c)=c<HI), for all ce C, where c( 30 denotes the <*-congruence class of c. We wish to
stress that, with this terminology, a group presentation, (Cl %), must be a presentation as
asemigroup, i.e., whenever ce C, then there is a ¢ ‘e C with both (cc’.E) and (¢ 'c.E)
belonging to

All groups and monoids will be finitely generated (although not necessarily finitely
presented). If G is a group and C is a generating set of G, then, unless explicitly stated to
the contrary, C will be assumed inverse closed, i.e, ce C e 'e C (so that C generates G as
asemigroup). If ge G, then we define liglic, the norm of g, to be the minimum number of
generators needed to express g as a product in the generators of C.

If (C1 30 isapresentation of the monoid Mand  ” )rv, then the relation (rv, v) of
M may sometimes be written as v=Mu=We wish to stress the distinction between v=Mux
which means v(” )Ju> as opposed to (the much stronger) v~u>. which means that v and iv
are identical words (of C*).

Cayley Graphs.

Let G be agroup with (inverse closed) generating set C. Then r c=rc(G) will denote
the Cayley graph of G with respect to the generators C, i.e., TC(G) is the directed, labelled
graph with vertex set G, and adirected edge from g to h, labelled by ce C, if and only if
gc=h. We may refer to the vertex 1G of TC(G) as being the basepoint of the Cayley graph.



We define a metric, d*, on the whole of TC(G) as follows. If g and h are two vertices
of r ¢(G), then dc(g,h) is the minimum number of edges needed to connect g to h. We then
defined” on each edge joining distinct vertices by making that edge isometric to the unit
interval, and for each edge with the same endpoints, we divide the edge midway and make
each half interval isometric to the half unit interval. Whence dc extends uniquely to the
(standard) path metric on the whole TC(G). We will usually drop the subscript ‘C” from
rc(G), t”, etal., when there is no risk of ambiguity (as now).

We wish to stress that we are thinking of the whole of TC(G) as a connected (path)
metric space. We allow retracing of paths, and a path is said to be a geodesic path if itisa
shortest path between its endpoints. We note the following facts. If geG, then d (1G,g)=ligll
and, if g,he G, then d(g,h)=ilgh_1Il. The vertices are distinguished by the fact that they are
precisely those points of T at integer distances from the basepoint, actually, if ne I then
S(n) consists precisely of those ge G with norm n. When we refer to an edge or path
staying within a ball B(r) (re IR), we mean that all points of the edge or path lie in B(r).
Whence, an edge stays within B(r) if and only if at least one of its endpoints is in B(r-1), a
path connecting two vertices stays within B(n) (ne IN) if and only if at least one of the end
points of every edge that it traverses belongs to S(n-I).

If p is a path of KG(G), then its length is denoted by Ipl and the path which traverses p
in the opposite direction is denoted by p'1 We say that paths p0 and plt with a common
basepoint, do not diverge by more than a distance Ae IRif (i) and (ii) hold as follows.

(i) the lengths of p0 and pj do not differ by more than A. (ii) for all 0<r< lengths of p0, pt:
if Pgand pj are the points at distances of r along p0 and pj, respectively, then d(pQ,pj)"A.

We refer the interested reader to the comprehensive study of Cayley graphs (and several
other subjects mentioned in this thesis) in (Lyndon,Schupp).

Finite State Automata.

We shall abbreviate finite state automata(automaton) to fsa, and adopt some of the
finite state automata terminology of (CHEPT).

11 Definition.

A (partial) deterministic finite state automaton is a quintuple A=(C,S,s,H,x) where:



C is afinite set called the alphabet.

S is the finite set of states.

se S is the start state.

H subset of S consisting of the halt (sometimessuccess ) states.

artial function, SXC —»-S, called the transitionfunction.

The partial transition function is extended to a partial function x : SXC* — »§
ﬁ]dﬁ;tively) as follows. We define x(p,£)"p, then, for we C*, ce C, and provided x(p, w)
is defined, we define x(p, we ) = x(x(p, w) , ¢ ). When p=s, we abbreviate x(s, w) to x(w),
wethep g #he language of A to be {we C* IX{w)e H }, which is written as lan(A).

A (partial) non-deterministic finite state automaton is a quintuple A=(C,S,s,H,.imrttS)
where:

C is a finite set called the alphabet.
S is the finite set of states.
se S is the start state.
H is a subset of S consisting of the halt (or success ) states.

XX&PWS is a subset of SXCxS consisiting of the set of arrows.

Let (s0,c,Sj) be an arrow; then the state s0 is the source of the arrow, the symbol ¢ is
the label of the arrow, and the state st is the targetof the arrow. A path of arrows is a
finite, non empty, sequence of arrows aj,a2a3,...,an with, forall I<i<n, the target of the
arrow aj being the source of the arrow a(j+i). The source of the path is the source of the
arrow alt the targetof the path is the target of the arrow an, and the label of the path is the



word ... cnwhere, for all I"i*n, § is the label of the arrow af We can now define
the language of A to be {we C* Iw is the label of a path of arrows with source s, and
with target belonging to H }. The language of A is written lan(A).

nn

Deterministic and non-deterministic fsa can be (helpfully) realised as finite directed
graphs called state diagrams. Let A=(C,S,s,H,x) be a deterministic fsa, then A's state
diagramis the directed, labelled graph defined as follows. The vertices of the state diagram
are the states of A, and there is adirected aedge from state sqto state Sj, labelled by ce C,
if and only ift(s0,c) is defined and equal to Sj. With this, more natural realization of A, we
can define the language of A as being the labels of all those paths beginning at the start state
and ending at a halt state.

Let A=(C,S,s,H, xxxpH's) be a non-deterministic fsa, then A's state diagram is the
directed, labelled graph defined as follows. The vertices of the state diagram are the states
of A, and there is a directed a edge from state sqto state Sj, labelled by ce C, if and only if
(Sa.c.§j) is an arrow. We could then define the language of A as being the labels of all those
paths beginning at the start state and ending at a halt state. Also, we see that the
deterministic fsa are special non-deterministic fsa which have state diagrams with at most
one directed edge labelled by each ce C starting from each vertex.

We do not assume familiarity with regular languages, but all of the following facts will
be implicitly referred to at one point or another of the thesis. We refer the reader to
(Salomaa) for proofs of the (mostly) standard results, and to (Rayward Smith) for an
introduction to finite state automata.

A subset of C* is the language of a deterministic fsa (with alphabet C) if and only if itis
the language of a non-deterministic fsa (with alphabet C). If LXH. is the language of a fsa
with alphabet C, then is said to be a regular (sometimes recognizable) subset (or
language) of C*. If is a regular subset of C*, then so is its complement, i.e., C'-u&i.
The class of regular subsets of C* is also closed under unions, intersections and
concatenation (i.e., if u tVj and 1xh2 are regular, then so is consisting of all
those words where Ce and [¢e

All finite subsets of C* are regular; if S is aregular subset of C*, then the set of words

in C* which do not contain words of S as subwords is also a regular subset. We shall refer



to the following definition and example in both theorem 2.1.5 (abelian groups are

automatic) and (implicitly) intheorem 5.4 (abelian by finite groups are almost convex).

1.3Definition.

If LX)iEis a regular subset, then 1x*Lis said to be prefix closed if, whenever Ce
then, also, pe LXf_for all prefixes p of t.

oD

14Lemma.

Let (cj ,c2,...,ck) be asubsetof C, and let n1,n2,...,nk€ W Then the subset of C*
consisting of all those words of the form (Cj)* (c2)*... (ck)* which do not contain more
than nj Cj's (for I<i<k) is a prefix closed regular subset.

QU
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Automatic Groups
2.0

The concept of automatic groups, originally suggested by W.P. Thurston, is
relatively new (85), but there is already much research in the topic (primarily because of
itsapplications to certain topological problems).

This chapter is meant as a concise introduction to the theory of automatic groups,
stating the basic properties and including a short summary. The emphasis is squarely on
results which will be referred to later and there is only one major theorem proved, i.e,
that the abelian groups are automatic (a prerequisite of theorem 5.4.1, i.e. abelian by
finite groups are almost convex). There is acomprehensive paper “Word Processing and
Group Theory’, (CEHPT), a collaboration of five authors, which details most of the
current work in automatic groups and to which we refer the interested reader. We will be
referring to this paper frequently. This chapter includes no original work.

2.1

2.1.1 Definition (CEHPT).

Let G be a group, C be afinite (semigroup) generating set of G, and fix a symbol, 1,
which is notinC. Let y : (Cut 1))* —»G be the natural homomorphism which maps 1
to the identity elementof G. We say that (G,C) is an automatic group if there are automata
W and {M(c)}ceC\ i{ i }so that:

(i) W has alphabet C, and the restriction of the map y to lan(W) —»& is surjective.
WithceCXj{ 1 }
(ii) M(c) has alphabet (CXj { 1})*(Cu( 1)).

(i) lan(M(c)) = {(w,u2) | iand u”are words of the regular language lan(W) 1%



If (G,C) is automatic (with (i),(h) and (iii) holding) then W is called the word acceptor
(of (G,C)), and the M(c>are called the multiplication automata (of (G,C)).

There is amore accessible characterization of the automatic groups which we will be
referring to, but we need first to introduce the concept of word differences.

2.1.2 Definition (CEHPT).

Let G be a group and C be a finite semigroup generating setof G, let y :C* —»G
be the natural homomorphism. Let W be an automaton with alphabet C, with the restriction
of the map y to lan(W) —»G being suijective. Then we define the set of word
differences, of (any) ce C, to be:

aljil.r))-1 Y («~(l,r)) I forall re IN and all u>\, u”e lan(W)
satisfyingy i“c) =y(n")}

W c then have the following, oftreferred to, theorem:

2.1.3 Theorem (CEHPT).

Let (G,C), y and W be as in definition 2.1.2. Then (G,C) will be automatic, with word
acceptor W, ifand only if the set of word differences of each ce C is finite (see (CEHPT)).
nm

We should note the (rather nice) geometrical interpretation of 2.1.3, i.e.: (G,C) is
automatic, with word acceptor W, if and only if there is a number k with the property that,
if ,u2e lan(W),ceC and a*c =q . then the paths of Tc(G), beginning at the
basepoint, and labelledby v and u> respectively, do notdiverge by more than adistance k.

‘We can now prove:

2.1.4  Corollary.



Let (G,C) be an automatic group with word acceptor W, and take any ge G. Then there
is a number A with the property that, if e lan(W), and y( uM)g= Y(W"), then the paths
of Tc(G) beginning at the basepoint and labelled by nand |, respectively, do not
diverge by more than adistance A

Proof:

Let g =cj & ... cn(as a product in the generators of C). Then, with  a A and
P+l s »2»choose r e lan (W) so that, for I<ifn, pxq =q pl+l By theorem 2.1.3, the
paths beginning at the basepoint and labelled by pxand pxA (I£i<n) do not diverge by more
than adistance k. Thus the paths beginning at the basepoint and labelled  and  do not

diverge by more than adistance A=nk.

This is a summary of some of the major results on automatic groups. The reader will
find proofs of all these results in (CEHPT).

The property of a group being automatic is independent of the choice of generators
and all automatic groups are finitely presented with solvable word problem. Computers are
apt tools for the study of (and, in particular, the construction of) automatic groups, but this
is not surprising for they were defined with this in mind. There are procedures which
terminate if a (finitely presented) group isautomatic (the development of such procedures
is, naturally, of particularconcern to researchers).

The class of automatic groups is closed under direct products, extensions by finite
groups, free products with finite amalgamated subgroups and HNN extensions over finite
subgroups. The finite, free and abelian groups are all automatic. More recently it has been
proved that the braid groups are automatic. Torsion free, non abelian nilpotent groups are
not automatic.

We will prove only one major result in this chapter, i.e., that the abelian groups are
automatic. This proofis included because it is a prerequisite of theorem 5.4.1 (abelian by
finite groups are almost convex).

2.1.5 Theorem (CEHPT).

12



Let G be an abelian group with C={Cj, c2,..., ck}afinite set of (semigroup)
generatorsof G (i.e., if ce C then c_le C). Let >be an (arbitrary) ordering of C, and let A*
be an (arbitrary) length function on the words of C*. Let vex be the subset of C*
consisting of the >A least words corresponding toeach group element. Then (G,C) is
automatic with 1ex being the (prefix closed) language of the word acceptor (we refer the
reader todefinition 1.3 of a prefix closed language).

Proof:

If zvis a word of C*. we will write rep(«/) for the >Aleast word with zv=G rep(zv)
(so that vex-{ rcp(zv) | zve C*}).

We may as well assume Cj<c2<-..<ck . We will also suppose all words to be words of
the regular expression:

a) (cIr(c2),...(ckr.
and redefine concatenation of words to be the product of those words in the free abelian
monoid on the generators C expressed in the normal form of (1).
If rand zvare words, then we say that vdivides zv, and write v | zv, if every generator
which occurs in r also occurs in zvto at least the same degree. If
vs (c)nl(c2n2... (ck)nk , ZV3 (c)nl(c)n2... (ck)nk
(withnl,...,nk,ril ...,n keN), and v lzv, then zv/ v isdefined to be the word:

(it I"nP(c2)A 242\ ..(cK)i"k"nk\

Note that, with these conventions, if v 1zv, then zva v( zv/ v ).

(2) Claim.

If zve vex, then se 1ex wheneversdivides zv(so, in particular 1ex is prefix closed).

Proof:

Suppose, for a contradiction, that this claim is false. Then we may define sto be the
least non-empty word which divides zv but which is nota member of vex.
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We will have w *s(w /s), and so,if A*(i)>A*(rep(s)), then
A*(«l)= A*(s(w/s))> A*(rep(s) (a//i)) while w=Grep(i)(w /s) - which would
contradict the fact that we Iex.

So it must be that Angs) =A*(rep(i)), and thus i[l]>rep(.i)[l] (because we took * to be
the least non-empty word which divides zt/but which is not in vex).

Let p, possibly empty, be the largest prefix of a;with no generators in common with s
(we refer to the definition of prefix given on page 4, i.e., with noreordering of generators).
Then the generator w[\p\+\] mustoccur in * and so: -

() w[\p\+\]Si[l]1>rep(i)[l).
Since pand sboth divide w and have no generators in common, so ps Iw, and
therefore w =ps (w / (ps)). Whence:-
w=q ps(w/(ps)) =G prep(s)(,w/ (ps)),
and
) A*w) = A*(ps(w/ (ps)))> A*(prep(s)(w/ (ps))).

As pis a prefix of w. so, by (3) and (4), a/>A prep(s) (w/ (ps)) - while
w =g prep(i)(w/ (ps)) - which (again) contradicts the fact that we vex.

m

We say that a relation of G, (w, v), is minimal if w>A v and there is no other relation,
(»",a),with w>\ vand w\ wand v | v. Let iwbe the set of minimal relations.

(5) Claim.

we vex if and only if «;has a subword belonging to left( M).

Proof:

If «/had a subword belonging to left( M), then this subword could not belong to vex
and so, by (2), a/could not belong to vex. Conversely, if a/did not belong to vexr, then we
could define sto be the least subword of w not belonging to vex. Then every subword of s

would belong to vex, and so (s, rep(i) ) would be a minimal relation, in particular,
ie left( M).



If n and fi are K-tuples of non-negative integers, then we will write n < fiif n(j)<n(j)
forall I<j*K (where n(j) is the j#.component of n, and n(j) is the j* component of A).

(6) Claim.

If nt, n2,n3, ... is an infinite sequence of K-tuples of non-negative integers, then

nr<ns for some r<s.

Proof:

By induction on K If K=1 then the problem is trivial. So suppose that, for every i>l,
nj i nd Then, forevery i>l, thereis an s, depending on i, with n¢(s)<nj(s). So (for some
s (1<s<k)) there must be an infinite subsequence,n n n .. say, with any two of

these K-tuples having equal s components. We now apply the inductive hypothesis to this
subsequence tocomplete the proof.

(7) Claim.
The set of minimal relations, M, is finite.

Proof:

If not, then  consists of an infinite set of relations:
(@il (c2)niz ... (cknik, (Cjni.(kH) (c2ni,(kt2)...(cknizk),
say, with the n*e Wfor all i>] and I1£j<2k.

By (6), there would exist rand s so that:-

(nr,l....ork»nr, (k) »»nr2k ) A (ns,] »»nsk ¢ ns,(k+)»—ens 2k )
Whence:-

©€y'rl (€@nt2... (ck)nrjc 1 (Cj)"sl (c”"s2... (Knsk,

and
(Cj)nr.(kH) @)nr,K+) ... (ck)nr.2k 1 (Cj)0s,(kH) (c2)n»(k+D) ... (ck)" sk,
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and so the relation

((CInsl (€2)".2 ... ([@)* .k, (ct)" *(kH) (@ s.(k+2).. (Ct)" >K)

would not be minimal.

m

By (2) and (7), we 1ex ifandonly if w belongs to the regular language (1) and is not
divisible by any word in (finite) left( M ). So, by lemma 1.4, 1ex isalso a (prefix closed)
regular language. Thus, to complete the proof of theorem 2.1.5, we need only prove that,
for any ce C, the setof word differences of c,

@) {y(«M1,n)*1y( ac(l,r)) I forallre N, and all u\, zt"e lan(W)
satisfying Y (tic) = Y(“M) J»
isfinite.

So take any v, we lex satisfying wc =q v. We may as well assume that rdoes not
contain the generator ¢ (otherwise w= v/ c, because both words belong to 1ex and
correspond to the same group element ). We cancel the common generators of wand. v\o
derive the relation w\c =q W with w*\w, v*\vand cand zj having no common
generators. Itis easy to see that (8) will be finite if we can prove the following:

(9) Claim.
The relation (a™c, ) isoneof the (finite number of) minimal relations.

Proof:

Suppose ( , b2) isarelation with zt">A *2» *1lw\c,and | W The word w"is
not a member of 1ex and so it cannot be a subword of w. Thus ~ must contain the
generator ¢, and we have ( (ztc)/ w”)\ u\. So the words (zt/ic) / w*and v\/ xiboth
belong to 1ex and correspond to the same group element, i.e.. (zzZc)/ w*a i/

As w\ c and 2i have no generators in common, so it must be that u\csw i and ,ie,
(zz", )istherelation (zt"c, ).

19 and 2.1.5+
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83

Monoids with Complete and
Parameterized Presentations

3.0

Complete presentations are a small part of the computer theoretical study of rewriting
techniques, which is afar reaching and, potentially, powerful theory with notable
applications in proof verification ofalgebraic theories.

We will be restricting our study to that of monoids with complete presentations (which
have simple, and fast, solutions to their word problems). Inthis chapter we will define a
class of infinite (complete) presentations, which have been referred to by several authors,
but which we will be calling r-parameterized. As far as group presentations are concerned,
the (I-)parameterized presentations are, arguably, the simplest non-finite presentations we
could hope to define, but we will be proving that completeness is not, in general, decidable
for parameterized monoid presentations. In subsequent chapters (4 and 5 respectively) we
describe a computer program for completing 1-parameterized group presentations, and
prove that the class of the groups defined by r-parameterized complete presentations (with
word length preserving orderings) have almost convex Cayley graphs.

We recommend the comprehensive account of the history, and major theorems of,
rewriting techniques in the expository paper ‘History and basic features of the
critical-pair/completionprocedure’ (Buchberger). Also, we believe (Book), (Jantzen), and
(2Kapur,Narendon) may be of interest to the reader.

3.1

Let C be a(fixed) finite set and let ©be a (fixed) subset of C*xC* . Let > and > denote
a (fixed) well ordering of C* so that, for all u, v, rueC*:
uv™ u; iiuMu; io>v”™ wu > vu and uw> uv.
Such orderings are sometimes referred to as Knuth-Bendix orderings, and we will adopt
this terminology.
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and
right( %) = { right components of the ordered pairsin  }

Wessay that  is normalized if, whenever (6, a)e  then 6> a. If g.is normalized,
then the ordered pairs of words in g, are called rewrite rules. If (6, a)e g.and | 61=1 a\,
then (6, a) is said to be a length preserving rule of g..

We say that (C | g.) is a normalizedpresentation of the monoid M if itis a
presentation of M and g. is normalized. If(C 1 ) isapresentation of M, then we can
always find a normalized presentation of M by discarding all those ( 6, a)e  with
6s a,and swapping (i, a) for(a, 6) if 6< a (because this would not change the
congruence( g.)).

If isnormalizedthen v=>—v implies w>v and tv-S v implies uf>v, soevery
word would have at least one irreducible descendant (because > is a well ordering).

We say that  is complete if it is normalized and every word, uxin C* has aunique
irreducible descendant (called the R-representative of tvand denoted by rep ~( u/)). We
say that is Incomplete if it is complete and ( g,)=( D ). We say that <Cl ~.>isa
completepresentation of the monoid M if it is a presentation of M and  iscomplete.

It is easy to prove that, if «g is ©-complete and *</(©) v then rep( n/)=rep( v) (s
least word in the ( © >congruence classof v and tv). Sothen the representatives would be

normal forms for the elements of M= C*/ ( © ) in the generators C (and, being the

18



irreducible words, being the words with no subword in left( R.), constitute a regular subset
of C* if and only if left(R ) is a regular subset of C*).

If R is complete and recursive (as a subset of C*xC*) then the representative of a word,
w, is computable. We look for subwords, s, of wior which there isarule (s, r)
belonging to R. There may be no such no subwords, but, if one exists, then the subword s
is replaced by r,and the process repeated until no more substitutions can be made. The
resulting (*-irreducible) word will be the representative of w. In particular, the word

problem for (M,C) will be solvable.

Let J( ©) be the set of words which are not least in their ( ©) congruence class, but for
which all proper subwords are least in their ( ©) congruence classes. Then it is reasonably
easy to prove:

3.1.1 Proposition.

If (C1~.)isnormalized then itis ©-complete if and only if left( R )2 J(© ). (We refer
the reader to (Hayashi) for a proof of this (standard) result.)

We say that R is a minimal complete subset (of C*xC*) if it is complete and
left( R )=J(R ), (CI R )is said to be aminimal complete presentation of the monoid M if
itis a presentation of M and ~.is minimal complete. We say that R is aminimal
CD-complete subset (of C**C*) if it is ©-complete and left(R )=J(© ).

It is notdifficult to prove that there is a unique minimal ©-complete subset of C*xC*
with respect to the fixed well ordering > (although, clearly, it may not computable), and
that, if R is known to be ©-complete, then we can find the minimal ©-complete subset by
discarding all those ( 6, a)e Rwhere 6has a proper subword in left(R,).

It is unlikely that an arbitrary presentation will be complete, but there is a practical
criterion for telling us when this is so - but to describe this we need first to define critical
pairs.
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Suppose X is normalized and take ( ( 6\, a ), (62, X)) to be an ordered pair of rules
in X- Then the critical pairsof ((~ ,a\), (62, ))are all those pairs of words:
(i) (aj,ptQs)with  kpi*s, for some words p and s.
(ii) (a\s,pa2 ) with S\s=p(", forsomewords£ # pt 6\and£ # s# " .
A criticalpairof Stisacritical pair of some ordered pair in X- We say that a critical
pair, (w, v),of X is resolved if the words n"and vhave acommon descendant. Then we
have the following, well known, result.

3.1.2 Lemma (The Knuth-Bendix lemma).

Let X be anormalized subset of C**C*, then (C| X >is complete if and only if all the
critical pairs of X areresolved.

We refer the reader to the original 1967 paper of (Knuth.Bendix), for historical interest;
to (Huet) for a, reputably, good presentation of the Knuth-Bendix procedure; but, for a
proof more suited to our (restricted) study, we recommend the proof of Gilman in
(Gilman79).

So, forexample, checking the completeness of finite presentations is purely mechanical.
By far the most commonly used Knuth-Bendix orderings are the shortest word/
lexicalgraphic orderings. We will be using these orderings almost invariably in theory and
in practice. Inall the examples the Knuth-Bendix ordering is the ShortLex ordering
defined by the stated lexicalgraphical ordering on the generators.

We shall refer to the next two examples, 3.1.3 and 3.1.4, of finite complete
presentations.

3.1.3 Example.

The free abelian group of rank 2 with generators {a< a-1 < b< } has a finite
(minimal) complete presentation:

(a.0-i.i.f-*1

(6a-1.a-H). (6 'a,air» ), (i »a»,a»6 ») >
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I1f <Cl 'K>is afinite complete presentation then the set of representatives will be a
regular subset of C* . So it was suggested that the groups defined by finite, complete
presentations might be automatic with word acceptor accepting the set of representatives -

but this is not always true, 3.1.4 isacounterexample.
3.1.4 Lemma (CEHPT).

Let G be the wreath product of the infinite cyclic group with the cyclic group of order 2,
then G has a finite complete presentation, but is not automatic with the word acceptor

accepting the set of representatives.
Proof:

The group G has presentation:
(a 6,cla=1,cS=Sc, 6a=ac ),
and is an automatic group (being the extension of a free abelian group of rank 2 by the
cyclic group of order 2).

With semigroup generators C={ a< 6< 6“1<c< c_1 }, it is easy to confirm that G has

a finite complete (semigroup) presentation, (C1 30, with:
«.-{ (o»,e).(ii-",e). (i-'i.eM «-1,e). (t->c,e),(ii,6¢c).
(ci"1,6_1c) , (c 16, 6¢“1), (c"17"1,i“17 1), ( Sa, ac), ( ca, aS) ,
(6“lc,ac"1l),(cla,a6"1),(c16-1,6_1c 1) J.

After a few trivial reductions, we see that, for allne IK, a( 6)n(c)nand (6)n(c)nare

A.-irreducible and:-
a(6)n(c)na —>* (6)n(c)n.
So, with y : C* —»G being the natural homorphism, we have:-
y(a(6)n(c)na) =Y ((i)n(c)n).

and, for all re N, the group elements y( a( 6)r)_1y( (6)(r+1) ) belong to the set of word
differences of a (cf. definition 2.1.2).

A few more (trivial) reductions yield:-

rep( («(6)r)-* (6)<+1>) a «( b)r+1>( c"1)r,
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whence the setof word differences of ais infinite. By theorem 2.1.3, G cannot be automatic

with the word acceptor accepting the set of representatives.

HE9

Comment If<C | ) isa finite complete group presentation then  issometimes said
to admit no backtracking if, whenever a word c6w is such that ce C, bw is
A.-irreducibleand (¢S, a)e  for some word a, then awis ~-irreducible.

If the Knuth-Bendix ordering is ShortLex, then the property of  admitting no
backtracking can be formulated intermsof  alone and, if K admits no backtracking, then
it is reasonably easy to prove that the group G = C*/ ( D ) is automatic with the word
acceptor accepting the language of the ”.-representatives (the norm of all the word
differences being no more than max(\b\ )ge ief* jq).

Actually, no backtracking, as we have defined it, is stronger than is needed to ensure
that G be automatic. Nevertheless, such nice group presentations are not the norm and it is
an interesting open problem as to whether an arbitrary finite complete group presentation,
with respect to some ShortLex ordering, necessarily defines an automatic group.

Rewriting words with no backtracking is particularly fast, but we will not bother to
comment any further on this subject (cf. (Le Chenadec) where examples are cited of such
group presentations (the 2-dimensional surface groups)).

We will now formalize a class of monoid presentations which have been referred to by
several authors (by Le Chenadec and Gilman (84), to name but two).

Let 3e (C*)(2p+1) (for some pe IN), then we write 3- (I<if 2p+I) for the i thcomponent
of 3. We define 3(0) to be the word

Bl ®5 e ®(2p+l)>
and, if n=(n1,n2,...,np)e INP, we define 3(n) to be the word

*1(®2)nl ®@3(*4>n2 ®5 - *(2p-1)(V nP®(2p+D-
Provided p >0, we may refer to the words «j, ®4.....3 " as the repeating factors of 3.
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We will adopt the convention that N°={0}, and note that, with this convention, if

3 e (C*)° and ne W, then 3(n) is always the single word
We say that a subset, Ji, of C**C* is r-parameterized, or oftype Pr (re Id) if can
be partitioned as a finite number of subsets of the form:
(©) {( $(n), j*(n) ) I nelKIP} with O<p<rand ® " e

(We stress that we are not insisting the p of (1) to be the same for the different subsets of
the partition, butr, being a bound on the p's, is a bound on the number of repeating factors
allowed for the different As and #s.)

Note that, with the convention that N°={0}, the subsets of type Pqare just the finite
subsets (of C*xC*).

Infinite monoid presentations have been studied by numerous authors. We shall refer to
C. 6 "Dunlaing's work on infinite regular Thue systems (6 Dunlaing) and C. Hayashi's
work on semi-confluent presentations (Hayashi) - but the (I-)parameterized
presentations are, arguably, the simplest non-finite group presentations we could hope to

define. Let us look at a (trivial) example of acomplete group presentation of type Pj.
3.1.5 Example.

The free abelian group of rank 2 with generators {a< 6<a-| < 6_1}has a (minimal)
complete presentation of type P
<a,a"*, 6,6-1 1 (o-1fl,e),(6-16,e),(6fl,a6),
(6-1fl, 26~1) , ( fl-I/>, 6fI-1), ( 6-IfI- , 0-17-1') ,
(o(6)nfl-1, (6)n) (ne N), ( 6(0-Nn6 1, (a-1)") (ne N) >.

However, 3.1.5 is not really of much interest because, with a reordering of the
generators, there is the finite complete presentation ofexample 3.1.3. Actually, it is not that
unusual for a group presentation, (C1 ), to be such that there are no finite ©-complete
subsets with respect to some ShortLex ordering, but to possess finite ©-complete subsets
after some ShortLex reordering of C (the Dyck groups and surface groups (of 4.5) to name
but two). We will now demonstrate (with the help of the computer program described in

chapter 4) that such beneficial reorderings are not always possible (also, cf (Bauer,Otto)).
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3.1.6Lemma.

Let G be the group defined by the (semigroup) presentation (C 1 © ) where:
C={a,al,b, , ¢, }
and
©={(ofl-i,e),(o-ifl.e),(bb-i ,e),( f-tf.e),
(orl,E),(c”c,£), (ba,ab), (ca, be)ld
Then there are (infinite) incomplete subsets of type Pj but no finite ©-complete subsets
whatever the ShortLex ordering on C* .

Proof:

It is clear from the definition of ©that it suffices to prove that there is no finite

©-complete subset with a ShonLex ordering <on C* for which a<b.

Case 1 Let < be any ShortLex ordering on C* for which
a<6and a<c'l,
and let  be any ©-complete subset with respect to <.
The subset, » , (of C**C*), listed below, was generated by the computer program

described in chapter 4. It is a (minimal) ©-complete subset of type Pj with respect to the

ShortLex ordering <j definedby aCja-1 b c<j
*.,={ (ao-l M> E),(
(«->,£),( e>eE), (6a. at) ,( «w>,r't).
( b~*a, ). (¢ra-l, ).,(ca.Sc),(orl,b-c),

(c1(a)nb, «url(a)n) (ne IX)

(c~i (<rnb, ac~l (a~I)n) (ne IM),
(c,(fhn . o0'lcl (a)n) (ne IN),
(c1iTYnb , <ric-1(<r)n) (ne N }.

(1) Claim.
(o)ni and c 1(a)nare ~.-irreducible words for all neN.
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Proof:

Let zvbe the  representative of the word (a)nb (any ne IN). Then
(2 tvA~(a)nb,
because (a)ni is R1-irreducible(andla’l=1(a)n£l).

Whenever c, respectively ~ appears in the left component of a length preserving
rewrite rule of then c. respectively ¢ 1.is in the right component of that rewrite rule.
Also, whenever a-1 or appears in the left component of a length preserving rewrite rule
of then a"1or /r1is in the right component of that rewrite rule.

So, by (2), only a's and b'scould appear in zv. As, there must be at leastone b in zv
(because if zv consisted only of a's it would be  -irreducible, contradicting (2)), and
a<b, whence zv=(a)n6 (is irreducible).

Now let zv be the ~.-representative of the word ¢ 1(a)n (for any ne IN. The word
c1(a)nis  -irreducible,and so iv —  c¢-1(a)n. Because has no length preserving
rewrite rule inwhich c~1 is the first generator of the right component, so it must be that
iv[11 a c. Thus w[ 2 \iv\ 1 is the ~.-representative of (a)n which (we have already
proved) is ~.-irreducible, whence zvm c-1(a)n (is ~.-irreducible).

m

We have, for all ne IN ¢ 1(a)n6( ©) ac-l (a)n, while a<c 1 So, by (1) and 3.1.1,
c A(fl)nfie J(© )c left( for all nelN.
Case 2. Let< to be any ShortLex ordering on C* for which
a<band c-1<a,
let be any ©-complete subset with respect to <.
The subset, H2. (of C**C*), listed below, was generated by the computer program
described in chapter 4. It isa (minimal) ©-complete subset of type Pj with respect to the

ShortLex ordering <j defined by c<2cl1<2a<2art<2b<2b'1.
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(©)

Proof:

Claim.

3t2«{( aa-l ;e ) .( ir<a.e ).(<«-> ,£),(/>-"«,£),

(cc"*,£),(c*,£),(6a, af ), (A<l trin),
(E-1la,airl ), (£l<rl, ). (ficel, e"ni),
(anc'l, ¢1/»1),(& ,«),( 61c, cal),

( £c_1(a)nE, aPc 1(a)n) (ne IN),

( 5c_1(<r)ni , aic-I(<r)n) (ne IN),

( 5'1c_1(a)n6 , fi6_1c_1(fln) (ne IN),

( le-1(<~1)n~ ) (ne IN),
(ic-lI(a)n~-1, fl-I5c-1(a)n) (ne N),

( , <rlfc 1(<r)n) (ne IN),
(i-1c'i(n)n” 1. <r16'lc_1(*)n) (neW),

(i_lc 1(fl_1)ni'1. <rl£'1c 1(<rhn) (ne IN)
(i-1c_1(fl-1)nA"1, ertirrtr® (a-1)11) (ne IK),

( be~"(@)naca, a6e~l (a)nac) (ne IN),

( 6c~la~I(a~I)nca, a6c~"ar*(ar*)nc) (ne IN),

( 6_1c*la(a)nca, a6_V "aV 'c) (ne IN),

( b~\c-Itrl(,irl)nca, a- I<:~I<rl(a-)ne ) (ne IN),

( 6c~la(@)nctrl , <rlie"lii(flne) (ne IN),

( £<rla"1(a-1)nca-l , <rlic_1<ri(a-I)nc) (ne IN),

( tf*l«,fl(@nar 1, trhi*rc~"a(a)ne) (ne IN),
(i-1c',<r, («-1)n«rl,a-1 6 1c-1fl-1(fl-Ync) (ne IN) }.

c-1(a)ni and 6¢c_i(a)nare ~.-irreducible for all ne IN

Let w be the ~.-representative of the word c_1(a)ni (any ne IN).Then:-

“4) w cl(a)n6
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because c~*(a)nb is j*-irreducible.

Whenever one of the generators a *or £-1 appears in the right component of a length
preserving rule of %2, then <rior  appears in the left component of that rule. So neither
a1 nor Brl appear in the *"descendants °f uf-Whenever c appears in the right
componentof a length preservingrule of  , then it also appears in the left component of
that rule. So c cannot appear in the j*-descendants °fwm

Thus only a, b or c 1 appear in u= By (3), ¢ 1 can appear only once in tv because,
whenever it appears in a length preserving rule of iKz - appears precisely once in both
components of that rule. Because c/<a<b (and the words c~(a)* are j*-irreducible),
whence tv* c'i(a)n£ (is j*-irreducible).

Now let tv be the j”.-representative of the word £c_I(a)n (for any ne IN). The word
5c 1(a)nis j~-irreducible, a°d so w 6C_i(a)n. Because .2 “as no length
preserving rewrite rule in which b is the first generator of the right component, so it must
bethat 2v[1]a b. Thus zvl 2,1iv 1] is the j*.-representative of c¢_1(fl)n, which (we have

already proved) is j".-irreducible, whence tvs B~"(a)n (is j"-irreducible).

a

We have, for all ne N, £c~I(a)n£ ( iD) abc~"(a)n, while a<h So, by (3) and 3.1.1,
6c~Ha)n6e J(<D)c left( )forall neN.

As a final example, 3.1.7 isa complete, 2-parameterized presentation of the 2-braid
group (we computed this by running a Knuth-Bendix finite-completion program,
guessing the necessary parameterized relations, and then confirming the completeness by
hand).

We believe (but have not proved) there is no finite ShortLex completion for the 2-braid
group (but the reader may be interested to know that there isa finite completion of the
monoid presentation (a, 61( bab, aba) ) (see (*Kapur,Narendon) and cf (Bauer.Otto)).

3.1.7Example.
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The 2-braid group with generators {a<i<fl-1< i-1} has a minimal complete

presentation of type P2 as follows.

<a,al,B,i-11 (aal,£), (tru ,£), (BB' ,£),
(B~"B,£), (B~"a~B~", ar"B~"ar" ) ,

( Ba-Htr')nB-' ,trU -H "~a ) (ne N).

( Baaa(,2)nBa, aBaaB(B)nB) (neW),

(¢-lo-Vv " ) (ne N),
(i-Ifl-1fI-1f1-I(a-Dn/i-1f-1, a ) (neN),
(i-If1-2(f-1)n(5-1)m/i-1f1, fli-1(i-1)n(a_,)mf*2~ 1) (new, mew),
( Baa(a)n(.BynBarl, a-16(6)n(a)maa6 ) (ne W, me W) ).

There are several examples which could be cited of (sub)classes of groups which may
possess parametrized, but not finite, complete presentations. Le Chenadec has described
(possibly infinite) complete presentations of the Coxeter groups and has observed that,
whereas some of these groups (with partial commutivity of the generators) may not possess
finite complete presentations, they do have complete parameterized presentations (cf.

(Le Chenadec) and the report of 4.5).

In some programs (beyond the scope of the authors work) currently being written in the
research of automatic groups, the word differences are computed by attempting to find
complete setsof relations, and it seems that, in practice, these relations are often
r-parameterized (see (Epstein, Holt, Rees)).

The structure of groups and monoids defined by finite complete presentations has been
studied by C.C. Squier (Squier), and by J.R.J. Groves and G.C. Smith in (Groves,Smith).
In his paper ‘“Word problems and homological finiteness conditions’, Squier proves that
monoids defined by finite complete presentations have a certain homologicalfiniteness
condition (called (FP)3) and cites an example of amonoid defined by a complete

1-parameterized presentation which does not have this condition (see Squier). So there are



monoids which have parameterized complete presentations but which are not defined by
any finite complete presentation.

In (Hayashi), C. Hayashi works with semi-confluentpresentations® monoids M with
generators C, say). Basically, by adjoining adummy generator to C, Hayashi was able to
write a program which attempts completions of presentations considered as (possibly
infinite) regular languages over CxC. If the presentation is successfully completed then, by
adjoining the rule which maps the dummy generator to £, it yields acomplete presentation
of M which Hayashi calls a semi-confluentpresentation of M. The program is an
improvement on finite completion programs, but the undecidability of completeness of such
presentations is, apparently, not raised.

C. 6' Dunlaing has studied infinite regular thue systems. These are monoid (but not
group) presentations, (C1 >, where left(”.) is a regular subset of C*. & Dunlaing has
proved that the completeness of such apresentation is decidable if it is monadic (i.e., all
words inright( ) have lengtho or 1), but that completeness is not necessarily decidable
otherwise (see (s *Dunlaing)). In the next section we will prove that completeness of the

Pj presentations is not necessarily decidable.
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3.2

Completeness ofamonoid presentation
o f type Pr=Qcan be undecidable.

In (6 *Dunlaing) C.s *Dunlaing proves that there are infinite regular monoid
presentations for which completeness is undecidable. In theorem 3.2.2 we focus on the

o presentations and prove that there are monoid presentations of type Pj for which
completeness is undecidable (which provides some excuse for omitting, from our program
of chapter 4, amethod for deciding the completeness of the group presentations of type Pj).

The proof of theorem 3.2.2 depends on the theory of Turing machines and, with prior
agreement on semantics and suitable notation, is easy and concise. So, we will begin with a

briefrssums of Turing machines.
TuringMachines.

There is a plethora of similar, but equivalent, models of Turing machines. The model
we describe is probably the simplest, and the one best suited to our needs.

Informally, a Turing machine, T, consists of a finite state control device coupled to a
primitive data storage device via a scan/print head. This ‘datastorage device’ may be
thought of as a (variable) finite paper tape partitioned into arow of squares. In each of these
squares we can printasingle symbol from T's finite tape alphabet, A, which has the
reserved symbol ‘ ®’ (for blank) as a member. The paper tape will always be finite but,
when necessary, it can be extended at either end by splicing on an extra square preprinted
with the single symbol ‘ ®”.

In each of its possible discrete configurations the machine T will be scanning, by way
of its scan/print head, a single square of the paper tape, and a single state of T's finite state
set, S, will be entered in the state control device.

Machine T's deterministic processing technique is, ostensibly, rather primitive and
completely controlled by a finite setofcommands called the transitions of T. The
transitions determine the machines consecutive configurations.
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The state set of T has two reserved states called the start state and the halt state.
Whenever T's configuration is such that there is a state of S-{halt state) entered in the state
control device, then, depending solely on the current entry of the state control device and
the symbol on the square currently being read by the scan/print head, the machine is
commanded by atransition to, in one go:

(1) enter a single state of S-{start state) in the state control device,

(2) overprint the symbol on the scanned square by a single symbol from A,

(3) shift the scan/print head one square to the left, or one square to the right.
If, during the process of (3), the scan/print head attempts to move off one end of the paper
tape, then one exta square, preprinted with the single symbol “ «B’, is spliced onto that end
of the tape.

As both S and Aare finite, we see that the transitions of T can be defined by a finite set
of quintuples of the form:

(current state , symbol being scanned , new state , symbol printed , (L)eft or
(R)ight motion of scan/print head ).

The machine is said to be stable, i.e., there is no subsequent processing, when and
only when the halt state is entered in the state control device. When we refer to Cg, Cj as
being consecutiveconfigurationso f T, we mean that the machine T is not stable in the
configuration Cg, but changes its configuration to Cj (without there being an intermediate
configuration). We will, for the sake ofclarity, abbreviate the phrase consecutive
configurationsofTtoc.c.T.

Machine T's startconfigurations are configurations of the machine with the start state
entered in the state control device, and T's haltconfigurations are configurations of the
machine with the halt state entered in the state control device. If T is set up in a start
configuration then the subsequent computation of the machine need not stop, but if it does
stop, then it must stop in the first halt configuration of that computation.

The halting problem of machine T, set up in some start configuration, is the problem of
being able to decide whether the subsequent computation of T stops. The traditional notion
ofdecidability guarantees Turing machines with undecidable halting problems (cf
(Kfoury.Moll.Arbib)).



With this model of T in mind, we give the formal definition of a Turing machine.
3.2.1 Definition.

A (deterministic) Turing machine, T, is defined by a quintuple
(S,.1,po ,PH.T),

where:

S is thefiniteilare set.
A is the finite tape alphabet , and the symbol * ®’isin A.
POin S is the start state.

pHin S is the halt state.

( T:S-(ph)xA— S-(pgJxAx(L.R) is the transitionfunction .

3.2.2 Theorem.

Completeness of a monoid presentation of type Pj can be undecidable.
Proof:

We fix a Turing machine, T, with an undecidable halting problem, and suppose T to be

defined by the quintuple:
(S,.fl,Po,pH.t )}

We may as well assume that S and .flare disjoint.

Let **and ‘#  be four (dummy) symbols not of S»A , and then put:

5=ruSu{f£j,/,#}.
We fix any shortest ShortLex ordering, £ say, of S* with the proviso:
#>/,

We will begin by confecting a subset of S *, ccn&iQ, corresponding to the
configurations of T.and a monoid presentation, (S I 0lxSQi. ), so that the
cttiofffE-reductions of words in ccrffftg mimic the processing of machine T.
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We define COXJi¢ to be the set of words {
fI|/fI2~~rIfI(s'I)#2n p~r Y%trDmmme *
| I<s<K, all the aj belong to jA ne N, and pe S J.
We define the correspondence
C: coSjig—nset of configurations of machine T
as follows. We let
- g (_D#2np ™ Vil)... °*s '
be the configuration of machine T with the state p entered in the state control device and

currently scanning the sr1square of the paper tape

a\  v2 | | | aK]|e

If Ce co*Cng, then we write no.#( C) for the number of “# * symbols
which occurin C.

We wish to mimic T's processing by defining CHXXgt so that the following holds.
v
(0 Qeccmig and Gg Ccy&xgtC\~ C | m*cxixXgTOh
ifand only if
(ii) Co,C\,..., Cne COXJIQ with no.#(Cj )=no.#(Qj+1))+2, for 0<i<n,
and C(i*), C(Ci)..... ¢(Cn) being c.c.T.

Before commencing with the construction of oixHgz, we should, informally, motivate
the definition of co"CFig &nd the statement of (1).

Let us suppose the halting problem of T, set up in configuration Cq, say, is
undecidable. The gist of (1) is as follows. Subject to (arbitrary) C-,(CO0) being such
that no.#(t<))£2n, there is a halt-reduction (i) if and only if there are at least nc.c.T,
beginning with T set up in configuration Co . Also, up to no.#(q) ), the n words of

reduction (i) correspond to the first n c.c.T of the computation of Cq(so, the more # 's in
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Q), the longer the reduction (i), the longer we mimic the computation of T).

Suppose we define STAXJto be all those words of C 1(C0) which have at least two # 's.
We will see that cHxHgz is (trivially) complete. As each CHXXgTreduction decreases the
number of # 's by two, whence the computation of T does not stop if and only if every
word of STXRJhas cMia™x-representative corresponding to a non-halt, non-start
configuration, and containing zero # 's. We can then append to CHXsIgT, to derive
(complete) tiAUT, three rewrite rules so that precisely the latter words +dd.T-reduce to the
empty word. Whence (lemma 3.2.4), the computation of T does not stop if and only if
every word of SIAXJhas the empty word as ?£*£T-representative. We finish by appending
to Wujtthe (1-parameterized) set of rules which reduce every word of staajto the empty
word. By sodoing, we define a 1-parameterized presentation with undecidable
completeness (lemma 3.2.5).

Let us now consider a computation of T. We have already mentioned that T's
transitions can be defined by a subset of

(S-{pH>) x Ax (S-ipo» xAx {LR}.
So let us suppose, during this computation, T's current configuration is:
J(E 1o, «2 - I<m(,_,) #(2"+2>pas ari),
with s>, and that there is a transition:

Then p would beentered in the state control device, the symbol in the slh square, as.would
be overprinted by the symbol o, and the scan/print head would shift one square to the left.
So the machines configuration changes to:-

Tomimic this transition, cxxs(gz must have the rewrite rule:-
@
Supposing T's current configuration is:
GU#(2n+2>pai &... a’s),
and there is a transition:

(p.flj.JJ.o.L).

34



Then p would be entered in the state control device, the symbol in the first square, a
would be overprinted by symbol o,and the scan/print head begins to scan an extra square,
preprinted with the single symbol ‘®”, spliced onto the left end of the tape. So the
machines configuration changes to:-

CU#2np voa2.. anS).
To mimic this transition, cHxKgz must have the rewrite rule:-

(3) (E#(2#2)p  ,£#2np 'Bo).

We define Mcnlxtyr to be the set of all the rewrite rules (2) and (3) for all ne N.
Suppose T's current configuration is:
( -l«(s-1) #<2n+2)P°shs+l) - kS ),
with s<k, and that there is a transition:
(p.0s.".0.R).
Then p would beentered in the state control device, the symbol in the slh square, %. would

be overprinted by the symbol o, and the scan/print head would shift one square to the right.

So the machines configuration changes to:-
( /»#2ni O+ \S )m
To mimic this transition, cHxXg% must have the rewrite rule:-

@ ( H#2' P «(sH) )*

Supposing T's current configuration is:

G(E/fli 2. . . | #2m2>p\ $),

and there is atransition:

Then p would be entered in the state control device, the symbol in the tclh square, aK. is
overprinted by symbol o, and the scan/print head begins to scan an extra square, preprinted
with the single symbol * B spliced onto the rightend of the tape . So the machines
configuration changes to:-
y *l«,/l«,..#nM> m
To mimic this transition, cHxXffzmust have the rewrite rule:-
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(5) (#22>p a*$/0# 2'pV $)

(recall the proviso that # >/).

We define movixjqk« to be the set of all the rewrite rules (4) and (5) for all ne IN

We have, movittte =j
(/fl#(2nt2) ps,#2mpao) , (E#2n+2>p i, £ #2np ®0)

1(p, ,0,L) is a transition of T, < ,3and n€ IN

Also, MOVZRIQXT= |
(#(2n+2)p, a,/0#2npa), (#(enk)ps$,/o#2n0 ®*)

1 (p,s,p,o, R)isatransition of T, ae .3and ne IN

Whence, with:
cxxxgT. = McrVEHjgtfT,
i.e., crtwigr. consisting of the rewrite rules (2)-(5) for all ne IN we have the following.
C]
0) Ggs QCHHQ and Gy (%
ifand only if
(ii) Co,C\eccn&rg with no.#(qs)=no.#(£7)+2,
and (Cq) , C(Ci) being c.c.T.

We iterate (¢ ) to derive:-
9
0) Cge cot&ig and Co-*CHKxg,LC\ €2 eoe ~*COWGT.
if and only if
(ii) Gq,C\..... e co'Crrg with no.#(q)=no.#(C(i+1))+2, forO<i<n,
and C(Cb>. C (fi)......E(Cn) being c.c.T.
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‘We now put
Xaui=

CXxHS'LKj { (/ap ,p) ,(Ep a,£p) ,(Ep $ ,£)| peS-{p0,Ph>and ae”}.

Note that ( S 1 iHAUr) is of type Pj and, trivially, is complete (because for j1tto
conceivably have a critical pair, it would be necessary for T to have transitions
(p,s,p,o,L)and (p,s,p,o0,R)- which isnot possible because the transition function of
T would not be well defined).

We now fix a start configuration, Co say, so that the halting problem of machine T, set
up in configuration CO , is undecidable. Let us suppose:

C_(Co)-{ E£/.. /v (,_,)#2"P0oS~t)-" \ t 1neN}
(for some O, 1<s<k, belonging to A).

We then put:

(7) STXXX={ £ /&j/flz. . . | #22)po Gfis+l) e » ~ | ne K}

3.2.3Lemma.

The (start state) symbol po cannot appear in proper iHsusr-descendants of words
belonging to stxx;j.

Proof:

By the definition of the transition function of T, there are no transitions of the form

(P.s.Po»°eL)or (P»seP0»° R ) Thus, we can see, from the definitions of cXxHgi. and
Ma1t, that the symbol po does not appear in any word of right( MAcr). The result is then a
trivial consequence of the formats of staxJ and left( 9iAur).

3.2.4Lemma.

Let machine T be set up in configuration CO, then the subsequent computation does not
stop if and only if the PilCT-representative of every word in STAXJis the empty word.
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Proof:

( Ifthe subsequent computation did not stop, then there would be an infinite
sequence of c.c.T, say Cg,Cj,Cz .eeee
Then, with arbitrary
@. £/« 102 #@2™*2)PoS “(sHl) “ki
belonging to SIAXJ, we define { }i®jSn+i S COtyiQby:
no.#(Cj)»2(n+lI-j) and Cje £-1(Cj).
By (5), we would then have:-
A) ~*0ixHgt <1 (2 "cHxKS'L"n+l)
As no.#(t"n+1))=0 and C(C(n+i)) cannot be a halt configuration, so it must be that:-
£n+l)a M 22— Mt-1)P *t*(1+1) —Elif
for some aj, I<j<p, belonging to A and pe S-{ pg, ph)- Whence:-
E/<illd2 A 1(t-1)P 1t «t+1
fOUIT £ PEIE(t+])" £p

because (/ap , p )e Malt for all pe S-{pg,Ph)and all ae A,

“Wr*
because (Epa,£p )eXALT forall pe S-{po ,pH}and all ae A,

because (£ p $ , £ )e MAtr for all pe S-{pg,Ph) and all ae A.

Whence rep? LT(Co)a £, asrequired.

(*) Conversely, if T's subsequent computation does stop, then there must be a finite
sequence ofc.c.T,Cg,Cj,Cz..... Chsay, with Chbeinga halt configuration. We could
then define {¢j ) 1Sjsh Q ccrtylQ by:

no.#(Cj)-2(h+I-j) and Ge C'Cj).
so that, by (5 ):-
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Go~*cn*Kgt G\ ~*cXXKIffL c2 «m ~*cMxXgz <h m
As no.#(Q,)=2 and £(£},) is a halt configuration, so it must be that:-
Qn+i)s  dl/ 2wy (t-ly#2 Ph ot "(t+]) e ;n $
for some &j, I<j<|o, belonging to A . We can see, by the definition of X-iLT, that this word

is ?Eu.T-irreducible, so CQeSTAXj, while repy”q-iCo) # £.

m s

We can now define a 1-parameterized presentation, T =( S| -u), of which
completenessisundecidable.
Recall that MOVZL'ZTT= j
(/f1#(2n+2)p, ,#2n0a0) , (£ #(2+2) p, £ #2n£ B0)

I (p.,i,p,0,L)isa transition of T, ae A and ne Wu.

Also, MOVEfyGHT= 1
(#(2n+2)p, fl,/0#2nfia) , (#(2+2)ps$ so#2np3 $ )

I (p,s,p,% R)isatransition of T, ae Aand ne dJ.
Then we defined ?&ct=

MOVELxrrv MOVEWCMTV{ (/ap,p).(E£pa,£p),(£pS$ .£)|

peS-ipo.Pn) and ae a }.

We put:-
(8) U={(c,£)| CeSTAX?}0 9IAL1,
where, we remind the reader,

(7) SIXKT- { (1 /01/a2...Ja(s, ) #<2n+2)po0sns+1)... A~ f ) I nelKI}

Then 2*=(S1 ) will be a normalized monoid presentation of type Pj, with respect to
any shortlex ordering, >, with the the proviso that # >/. Also, it is easy to prove that the
completeness of T isundecidable.
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325 Lemma.
The completeness of T isundecidable.

Proof:

Let us suppose, by way of example, that (pg, as,f>, o, L) is a transition of T. Then, for
all ne IK, the rewrite rule

CIACs-1) #(2n+2) Po °s «#2n > “(s-1) »)
belongs to MafPe1ttt. We then note that T will be complete if and only if, for all ne N, the

criticalpairs
(El«l/™ N i2) #ind E)
areresolved, i.e, if and only, for all ne Ol
(9; £/, I« . I*(,_) #2n2)P 0 SV I)"" AMMLTTT
i il it -V ) #, H o -i) Vi)t fk* e-

We know by, 3.2.3, that the (start state) symbol, p0, cannot appear in proper
i6iCT-descendants of words in STXJtJ. Thus, by (7), the rules of
{(C,£) I Cesrxicj ) play nopart in the reduction (9). It follows, from (s ), that T will be
complete if and only if, for all ne H,

£/« /%m A s-1>H#2H2>PoS V > - “K* “W r” e’
i.e., if and only if the "ACT-representative of each word in S'IXRj'xs the empty word. So,
by 3.2.4, T will be complete if and only if the computation of T, set up in configuration Cq,
does not stop (which is undecidable).
13.25and 3i2T|

The 1-parameterized presentations, such as T of 3.2.1, are the simplest examples of
r-parameterized presentations withr>1 (r-1 repeating factors being the empty word).
Although the author would not necessarily agree, it may still seem, perfectly reasonably, to
some readers to be ‘cheating” to claim that 3.2.1 demonstrates the undecidability of

completeness of a general r-parameterized presentation. However, not surprisingly, itis
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easy to redefine MoV11.ZTT, McnKKjgtfr, #X_T. et al. of theorem 3.2.1, so as to exhibit a
more ‘realistic’ r-parameterized presentation, with r>1 and no empty repeating factors, of
which completeness is undecidable. We will not bother, however, to pursue this topic any
further.
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T

Programming the Knuth-Bendix
Completion of (ShortLex)
1-Parameterized Group Presentations

4.0

Suppose ( Cl ©) is a normalized monoid presentation. Then there is a corollary of the
Knuth-Bendix lemma (probably familiar to the reader), called the Knuth-Bendix
completion procedure, which attempts to complete ©, i.e., find a ©-complete subset of
C*xC*.

In his paper ‘Presentations of Groups and Monoids’ (Gilman 79), R. Gilman
(comprehensively) describes the Knuth-Bendix procedure for attempting to compute finite
©-complete subsets of group presentations. In ‘Enumererating Infinitely Many Cosets’
(Gilman 84) he notes that the success of this procedure is susceptible to small changes in
the Knuth-Bendix ordering (in fact he cites examples 3.1.3 and 3.1.5). Gilman then
suggests that the program might be improved if it were to attempt to compute
1-parameterized, rather than just finite, ©-complete subsets. This is the subject of this
chapter.

In the first four sections of this chapter we will be describing acomputer program
(written in pseudo ‘C’) which attempts to compute 1-parameterized ©-complete group
presentations. We do notclaim that this short program is particularly sophisticated (the
Knuth-Bendix procedure in this restricted setting is anyway not complicated), but it is
reasonably successful, and we conclude the chapter with a brief report on its
implementation (i.e. section 4.5). It would be flippant to infer from this that writing a
program to complete the more general r-parameterized group presentations would be easy.
Nevertheless, there would probably not be many theoretical difficulties involved in sucha
project, and we believe it to be worth consideration.
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41

Preliminaries

Throughout this chapter ( C1 'D) will be a (semigroup) presentation of a group, G, with
D being a normalized subset (of C*xC*) of type Pj with respect to a (fixed) ShortLex
ordering >.

Recall that, if Te (C*)K(k=1or 3), then Tj (I<i<K) is the i* component of T. If ne W
then it will be convenient to write T(n) for the word Tj, if K=I, or the word Tx(T2)n Tz, if
k=3.

If

(1) is asubset of (C*XC*)u((C*)3x(C*)3),

then we write # N>for the set {( ®(n),Xn) )1 (S,A)e ,ne K}. Then V being of type
Pj just means that D=" N>for some subset,  of (C*xC*)u((C*)3x(C*)3}. We will
assume to be variable throughout this chapter, but it will always have the form (z).
Recall that the critical pairs of ~ N>are all those pairs of words:
(2) (flj, po2$) with b\=pfys, for some wordsp and s,
3) with b\sapbi, for some words £ &p£ and £ *s# ",
where (S\, a\)and (" , «2 ) areany two rules of u>

A critical pair isresolved if the words in that pair have acommon ~ N)-descendant,

then the Knuth-Bendix lemma states that:
(4) <CI*">>
iscomplete if and only if all the critical pairs of areresolved.

So, whilst #* w>is not complete there will be critical pairsof ~ N) with distinct
J&N)-irreducible descendants. Suppose ( to, v) is one such pair with a and ¢.respectively,
beingdistinct s<NMrreducible descendants of to and v. Then a new rule (for example;
(a,s),ifo> ¢;or( s,a), if 6> a) may be adjoined to fid\>sothat( to, v) is resolved (in

the augmented 2* w)> By doing this we resolve the critical pair( to, v), and the
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Knuth-Bendix procedure, which we program, is the resolving of all the critical pairs of
(variable) 3i N)whilst  u >is not complete.

There are problems, foremost is that the completeness of (4) may not be decidable. We
have only proved this for monoid presentations of type Pj, which does not mean that the
completeness of group presentations of type Pj is not always decidable - but this is not
probable (we did try to prove that completeness was decidable for a few restricted classes
of group presentations of type Pj but without success). Nevertheless, in practice, with
non-contrived presentations, areasonable attempt can be made to resolve the
1- parameterizedcritical pairs.

The second problem is that there may be critical pairs which can only be described by
2- parameterized sets, but we are only attempting to find acomplete 1-parameterized set.
Sothese (unavoidable) 2-parameterized critical pairs are supposed disjoint from ~ wx
stored appropriately, and thereafter ignored until the (probable) completion of the
1-parameterized sets stops (if ever). Then, to prove that the resultant ~ w)is complete, we
must go back and prove that all the 2 -parameterized critical pairs are resolved, i.e., that the
words in each pair have common ~ N”-descendants.

We will be referring to the members of (C*)s as triples If TVand V are triples, we
will write TVa 1/ whenever a 'kjTj and El We then have:
411 Lemma.

If 'Wand V aretriples, then "Ws ifand only if :\Mi(Mg,)n — a Pj(17)n'lA for all
ne IN (The proof is trivial string manipulation and we omit it.)

4.1.2 Definition.
We say that a triple T is right sided if Tj is a suffix of |4.1.2
Let us motivate this terminology. If T is right sided, then we may write 7 ~ a pTj for

some word p. Whence #i(2%n7a (p)jn7”7~forallne INie, Ta (e ,p,77").
We have:



413 Lemma.

Let T be atriple, then the following are equivalent (i) T is right sided, (i) 7 » isa
proper suffix of a word of the form TMT)* 7/(l,r) (0 <r<171).(The proof is reasonably
simple string manipulation, we will omit it.)

4.1.4  Definition.

We say that atriple T is left sided if 7j is a prefix of 727/, 14,1,4 |

If T is left sided, then * 77 s for some word s, whence Tj(7*)n7z a7  (;)nfor

all neW, i.e., 7% (7°77,r,E).

415 Lemma.

Let 3 be atriple which is not right sided. Then, without altering the set of words
{$(n) I neW}, we may redefine B so that B\[ iBjl ] # 3$.\&$).

Proof:

Recall that 3 isright sided if  isa suffix of , so neither 3j nor -Bjis the empty
word. Solet3=(ac, bc,d ) for some words a, b,tf andce C . Then, by lemma 4.1.1, we
may redefine B to be (a,ch,cet). Note that ( a, cb, cd) could not be right sided (without
a being a suffix of ach = ac isa suffix of acbc ,i.e., 3 being right sided - not so).

Whence, we may repeat if necessary.

E m

Let us illustrate lemma 4.1.5 with a simple example (which may well occur in practice
as the left component of arule in acompletion of the surface group of a torus with 2 holes).
LetC=(a, b,c,d a1, , c1,cP*}andput B=(b'Mir*ba, ch**irfar*ba,  ).We,
note that B is not right sided. Also:-
B(0)m (6ria-Iba)(<t-I)m(brl)(a-Ibad-I),

and:-
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®(1)* (6~ 6a)(c6~"a~"ar6a)(,d~")*(6~")(,a~6act~"ar"){ar"6act").
Whence, by lemma4.1.1, we may redefine B to be the triple:
®=( 6~1, cr6ac6~"cr* , cr\bad~"),
without altering {®(n) | ne IKI}, sothat ®YI®)l ] # ®[I@l1

Let (B,A)e with ®and A being triples. In corollaries 4.3.4 and 4.3.6, we shall see
that B need never, indeed, should never, be left or right sided. By 4.1.5, this fact allows us

to propose the following (useful property of ~ which we rely on in the next section).
4.1.6  Proposition.

Whenever ($, A)e  with B and A being triples, then "Bis stored so that

S,113,11#  1711.14X6]

There are numerous practical methods by which the Knuth-Bendix completion of * w>
may be speeded up. We will not bother to discuss many of these methods but, instead, refer
the interested reader to the papers (Bachmair, Dershowitz), (Book, & Dunlaing), and
(Winkler,Buchberger).

We should just mention the criterion of prime critical pairs. A critical pair (2) isprime
if ~2 is » N>-irreducible, a critical pair (3) isprime if 6\{ \p\+ 116\ )is  N~-irreducible.
When attempting finite completions, non-prime critical pairs need not be resolved. This
criterion is probably common knowledge (cf. (Gilman79)), but, interestingly, by attempting
infinite completions, we cannot use it so freely. Let us defer further discussion on this topic
until a more appropriate point (i.e. page 76).

The pseudo ‘C’ listings in the subsequent sections of this chapter comprise a short, and
relatively simple, program for attempting a Pj completion of @' N> We hope tojustify our
believe that, without difficulty, the Knuth-Bendix completion procedure may be applied to
a program of Pj completions, and that (by the report of 4.5) such a program is worthwhile.
We would like to recommend the book ‘The C programming language’ by (Kemighan,
Ritchie) to the reader (unfamiliar with C) who wishes to implement this program.

We believe it would be helpful to the reader to conclude this section with the pseudo
code for the main body of the completion program.

46



QG 9

11 Attempts to complete the 1-parameterized presentation (C 1 w >) (with respect to the
/1 ShortLex ordering <) by the Knuth-Bendix method. We assume that, if (VJA )e  then ® is not
11 leftor right sided (cf ‘page 75), and that  1®jl 14 1(cf 15).
S«{0}cXT; s-0; x(p.c)»c for all pe S and ce C; f(p)»0 for all pe S;
modify(((C.5.,5,0.T).f).®) as each (3,4 ) of A.is input;
11 ((C.5,5,0,1),0 isareduclorof ' (cfpp49-53).)
for(i-1;iSK ;i-i+1)
for(j-izjSI*.Iij«j+1)
{
(®j317)-ilh memberof C m e m b e r of
if (®), Ay ®2and =2~ topics)
{
CritPairl((®1,.11),(®2722)); CritPairl((®2..42).(«1.A 1));
11 (are described on page 88.)
CritPair2(®1,41),(«2" 2)):CritPair2(®27 2),(®1,71);

11 (are described on page 92, and may store 2-param etcrized critical pairs disjoint form %_)

else {
CritPair((®].A A X A3 7)) CritPairffar.A) (®],A%);

11 (arc described on pp 80-82.)

The procedures CritPair, CritPaiTj and CritPair2, collectively described in section 4.4,

compute and resolve the critical pairs by calling the following predefined procedures of

/ sections4.2 and 4.3. reduce(word) (page 55); rcduce(lriplc) (page56);sccurc(word,word)
11 (page 60); resolvc(word.word) (page 63); modify(rcductor.word) (page 51);
11 resolve(triple,triple) (page 69); and modify(rcductor.triple) (page 52).
for (each set, {((S(n).A(n)) | ne IN2 }, of 2-paramctcri/cd critical pairs (found by CrilPair2))
if (resolved?(®4)==0 )
writcIn('cannot prove', { ((*,* ,'(n),"» ,'(n)) Ine N2 }arc resolved’);
Iircsolved?(®A?), described on page 77, attempts to prove that the critical pairs of {(('S(n)~(n)) Ine IN2 }

/1 are resolved. If resolved?(® j?)« -1 for all the quintuples (8,4 ), then (C | w)) is complete.
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4.2

Computing the functions
reduce(word)
and
reduce(triple)

Whilst 3*N>is notcomplete it is possible for a word to have distinct  NMrreducible
descendants. So we should agree on one method of computing an (invariant)
ii NMrreducible descendant, reduce( to), for each word to(as a by-product, reduce() is,
of course, the function rep() provided » N>is successfully completed).

We define reduce( word to) as follows. Search for the first subword, s, of to for
which there is some (B, A) in  and ne N with sa ®(n). There may be no such pair but, if
itexists, then replace the subword s by fl(n). Repeat this process until no more substitutions

can be made. The resulting  N”-irreducible) word is defined to be reduce( to).

We will need an analog of reduce(word) which, for a triple T, computes a triple,
reduce( T ), so that the words { T(n) | ne Ik} are simultaneously 7*wMeduced to the
words { (reduce( T ))(n) | ne IKI}. This is a problem because there is no reason why we
should be able to define reduce( T ) so that every word in {(reduce( T ))(n) | ne W}is
7&n)-irreducible. We really cannot hope to define reduce(triple T ) much better than as
follows.

1fTs (a, 6, c)witha (respectively b, c)being » wMeducible, then redefine T to be
(reduce(a) , b, c) (respectively ( a, reduce(6), c), ( a, b, reduce(c) ) ).

Suppose there isa pair of triples (®, A)e 7,words p. s and tc,re N such that
*7(0)s p~K)s and *7(1) = p'Bi K+r)s. Then, by lemma 4.1.1, *7(n) = p&(K+nr)s for all ne IN
and we redefine T to be ( p?Y"2)Ce

Repeat while such (a, b,c)'sor (B,A)'s exist.

The program frequently calls a procedure which we have named securefword, word).
We may only call secure( to, v) when to> v, then the reduction to— v would be
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secured (by allocating at most one new rewrite rule to if. N>).

We can suggest a way of considerably speeding up the search for possible subwords
belonging to Icft(if w>). The method is for the program to maintain a rcductor of i f N>

4.2.1 Definition.

We say that the pair ((C,S,s,0,T),f) isarednctor (of if Ny if (i) and (ii) hold as
follows, (i) (C,S,s,0,T) is a deterministic fsa called the reduction automaton of the
reductor (we refer the reader to definition 1.1 of adeterministic fsa). (ii) f is amap,

f : S—ppower set of 1", such that, if pis any word, then re f(t(p)) if and only if phasa
suffix 5(n), where 5 is the left component of the i#tmember of i f,and ne K

Em

Let us describe the part a reductor plays in the program. If u>is any word, then we will
know that iv is if N~-reducible if and only if u/has a prefix p with f(t(p))j£0. Also, if p
were such a prefix and re f(t(p)), then, by the definition of T, we know that p has a suffix,
5(n), with S being the left component of the r* member of if, but, as yet, we do not know
the value of n. This is the subject of the next lemma.j

(i) IfSisword, then, by convention, n=0.
(ii) 1fS=(acq, 6¢cj, c) is atriple (with GG CC), then n is the least integer such that:
p[ Ipl-I cl-n(| 6]+1) 1a cO .

Proofof (ii):

Let pos(r)=| p|-| cl—+| 61+1), then, provided r*O and Ip\-\ c|-r(| 61+1) £0, we note
that p[pos(r)) is the generator in position Icl + r(| 61+1) + 1 of pfrom the right. As the
word aco (6cj)nc is known to be a prefix of p, it is notdifficult to see that, for each r in the

range 0<r<n: /»(pos(r)l a cq; and,forr=n: p[pos(r)l a cj. Ascg"C} (cf proposition 4.1.6),
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the result follows.

EH]

Although the reductor is a powerful tool, allowing us to describe fast procedures for
reducing words and triples, it does have a drawback, i.e., it must be modified whenever
new rules are adjoined to * N>We must deal with this problem by suggesting procedures
for the modification of the reductor. Although short and fast, these procedures,
theoretically, may require substantial memory with which to store the transition function (as
a ISl by ICl array, where S is the state set); but, in practice, memory is rarely a problem and
we will not bore the reader with theoretical memory estimates (which are, anyway,
difficult).

The formal proofs of correctness of the procedures we are about to describe require
numerous inductive arguments, and are not trivial. We have decided to forgo all formal
proofs of correctness, as we believe they would simply belie the simplicity of this program
without adding anything to the theory.

We begin by describing a subprocedure, suffix, which is called by both of the
modification procedures.

suffix( ((C.S.s.0.r) ,0. 6, P0))

{
/1 P~ isasubsetof S. Letsuff be the set of words with the following property. If w is any word,
/1 then x(«))e if and only if w> has a suffix belonging to suff
/1 We will redefine S.T and f as follows. ((C.S,5,0,x).f) will remain a reductor for \ buts
11 will have a subset, with the following property. If iv is any word, then x(u/)e if and only

11 if w has a suffix of the form s6 where s belongs to suff.
/1 We note that, if P A =S, then, as x(E)=s (i.e. the start state), and s belongs S, so £ has a suffix
/1 belonging to suff, i.e., £e suff. Asall words have the empty word as a suffix, so P*1*will be
/1 such thatx(w)e PALif and only if u has 6 as a suffix,
for (i-1; i£1£1; i-i+l)
{
pW-o ;
cr Mil;

partition P~ as prCj w prejU ... u pren so thatx is constant on each prej * (Cj);



the result follows.

Although the reductor is a powerful tool, allowing us to describe fast procedures for
reducing words and triples, it does have a drawback, i.e., it must be modified whenever
new rules are adjoined to % w=>We must deal with this problem by suggesting procedures
for the modification of the reductor. Although short and fast, these procedures,
theoretically, may require substantial memory with which to store the transition function (as
a Sl by IO array, where S is the state set); but, in practice, memory is rarely a problem and
we will not bore the reader with theoretical memory estimates (which are, anyway,
difficult).

The formal proofs of correctness of the procedures we are about to describe require
numerous inductive arguments, and are not trivial. We have decided to forgo all formal
proofs of correctness, as we believe they would simply belie the simplicity of this program
without adding anything to the theory.

We begin by describing a subprocedure, suffix, which is called by both of the
modification procedures.

suffixf ((C,S.5,0.t) ,0. 6. F*>)
[
i isasubsetof S. Letsuff be the set of words with the following property. If v is any word,
11 then t(al)e if and only if w has a suffix belonging to suff
/1 We will redefine S.t and f as follows. ((C,5,5,0,T),f) will remain a reductor for  **), but S
/1 will have a subset, with the following property. If w is any word, then x(@>)e  if and only
/1 if w has a suffix of the form s6 where s belongs to suff.
/1 We note that, if P***=S, then, as x(E)»s (i.e. the start state), and s belongs S, so £ has a suffix
/1 belonging to suff, i.e., Ee suff. Asall words have the empty word as a suffix, so P*) will be
11 such that x(w/)e P*1*if and only if w has 6 as a suffix,
for (i—d; is 111 i-i+1)
{
pr-0;
cr Mil;

partition P<®)as prcj ejp re” ... u pren so that x is constant on each prej » (Cj);
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for (j-1; jen; j-j+l)
{
im-x(p.ci) where p is any state of prej;
if (im-«x(p,c) for some pe P***or ce C-{Cj} )
{
let ns be a state notalready in S;
f(ns)-f(im):
S-s<-i{ns};
p().p(H~.{ns}:
x(p.ci)»ns for all pe prej;
T(ns,c)=x(im c ) forall ce C;
}

else
p(1) .pd)u {im};
}
for (j-Lij<nij-j+1)
{
letpeprej;

t(x(p.ci).ci)-x(im,Ci )forall peprej;

)
pe)=();
}

/'l We will need to return P A\

return P*1%

suffix( )

modify( ((C,S,5,0,r),0. word6)
/1 The parameters are as follows: ((C,S,5,0,x).f) is a rcductor for ~ w>and 6 is @ non-empty
/1 word. If (6,a) is a rule, then we modify ((C,S,5,0,x).f) to thatof a rcductor for
Il We first put:-
P(1)-suffix( (C,$,5,0,x),S,6);

11 Then, with reference to the description of procedure suffix, P~ sS will be such that
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}

/1 ((C.5,5.0,T).0 is a reductor for A A >with the additional property that t(u)€  if and only if w
/1 has 6 as a suffix. Whence, cf definition 4.2.1, we need only redefine
for (all pe P*1))

£(P)-f(pM I 30+1);

modify( reductor , word )

modify( ((C,S,s,0,r)f). triple ®)

{

/1 The parameters are as follows: ((C.S$,5,0,T),f) is a reductor for » N)and ®isa triple which is
/1 neither left nor right sided. If A is a triple, then we modify ((C,S.s,0,1),0 to thatof a reductor for
11 *<N>u{ (®(n).~(n)) Ine D }.

/1 Note that, by definition 4.1.2 and 4.1.4, none of the components or  of ®are empty.
/1 We begin by putting:-

P(l)-suffix( (C,S,s,0.1). .S):

/1 so that P(1)CS will be such that ((C.S,5.0,T).f) remains a reductor for 3(i N> but with the

/1 additional property that i(u>)e P*1}if and only if w has FHa suffix

/1 The following while-loop further redefines t and S so that ((C.S,s,0,x).f) remains a reductor
/1 for Siw), but so thatthere is a subset P*270f S with the property that x(w)e P~ if and only if u
11 has a suffix of the form

a=identity map on S;

po*p<ly
while (Pj-0)
W 0
c(i+D" ®2l(imod  )+1L;
partition P(j+i) as prcj i >prCju ... (3 pren so thatt is constant on each prej x {'):
for (j-1; j<n; j-j+l)
im-tip.Cj) where p is any state ol prCj;

if (o(im)--o(p) for some  PKwith Ogic<i and i+1-K mod iBjl )

T(P-c(i+1))-P for 3.1 P«Prej :
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else

let ns be a state not already in S;
f(ns)=f(im);

a(ns)=a(im);

S=Su{ns};
P(i+)=P(i+1)°*ns*
x(ns.c)=o(x(im,c)) forall ceC;

t(p.c(i+lp»ns forall pe prej;

}

< W 0 >
i-i+1;

}
pe>uiraxiidai. o pi;
/1 We now pul-
P(3)=suffix( ((C,S,5,0,x),0 . «3,P<2) )Z
/1 Then ((C,S,s,0,T).f) remains a reductor for N\ but will be a subset of S with the property
11 thatt(u/)ep(3) if and only if w has a suffix of the form ®3- Whence, cf definition
/1 4.2.1, by redefining
for (all pe PA3%

f(p)-f(PM I 3U+1);
11 ((C,S,5,0,x),0 will be a reductor for ~ NVj {(cfi(n),~(n)) [n"1 }.We wanta rcductor for
1 B\l (®(n),~(n)) Ine IN}, so, to finish, we need only call:

modify( ((C,$,5,0,x),0 .®j@3);

modify( reductor , triple )
We are almost ready to describe the pseudo code for the functions reduce(word),

reduce(triple) and for the procedure secure(word, word). Let us begin, however, with two

short, but labour saving, procedures, and with the procedures for adjoining rules to ~ w\
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shifUeft ( triple -I;

/1 Without altering the set of words { -7(n) IneN }, we redefine Tso that ITjl is maximal. By
/1 lemma 4.1.1, we may achieve this by the following while-loop,
while (1TjI1>0and Til1Tji1-  151])
{
chr» TiLITjI)
Ti*Too *ITjl-1);
T2-chr (A (1, 171-1));

chr5

}

shiftleft( triple T )

shiftright ( triple T)

{
/1 Without altering the set of words { Tfn) Ine IN}. we redefine Tso that I Tjl is maximal. By
/1 lemma 4.1.1, we may achieve this by the following while-loop,
while ( 1T311> 0 and T3(U - T2(1])
{
chr - 1jlll;
Tj- Tichr
T2-T 2 (2.1>51)chr;
T3-T3 (2,151);
>
}

shifright( triple T )

adjoinfrule ((b),(a)))

{

/1 Adjoins the rule ((b).(a)) to Hwhere 6and aare words.

modify( ((C.S,5,0,t) ,0.b);
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>

adjoin( )

adjoinfrule ((B).(A)))
/1 Adjoins the rule ((B).(A ) to where B and A are triples. Recall that, by proposition 4.1.6, we
/1 want 8 to be such that ®j[ 1®jl A *iatwe may aPPty lemma 4.2.2), but we can achieve
11 this by calling shiftfeft.
shiftleft( )\

modify( ((C,$,:5,0.).f), B );

}

adjoin()

We now describe the pseudo code for the functions reduce( word), reduce(triple),
and for the procedure secure( word, word) (all of which refer to lemma 4.2.2)). These
procedures are actually faster than those we used in practice, this is because, in practice, we
referred to aless powerful tool (but still akin) to the reductor.

reduce (word w)

{

/1 We define s~ to be the start state, s, of the reduction automaton.
5(0)-s;
K-0;
/1 By definition, s°G=x(it<1,0)); we proceed to compute SKj-X(b<LK)), for all 1<kS |w 1.
while (k< lw |)
t
k- ket

/1 By definition 1.1, x(b<1,k))-x(b<lk-1)), «iicD -xis"«, *{k1), so wc put

if(f(s(kpr0 )
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/1 then, by definition 4.2.1, if:
re f(s(K)):
Iland:
p- us<lK);
/1 we know thatp will have a suffix s m -Sin) where
(«.A)-rlhpairoff;
/1 and ne N.
if («anda are words )
/1 then, by convention:-
n-0;
else
/1 « and A are triples and we must calculate n by the method described in 4.2.2, i.e.,
for (n«O; /{te- 1«3 1- n1«j 11 «Bjil «111); n=n+1);
/1 We now know thats m «(n),and therefore wm p(l, k- | «(n)l) «(n) a< k+1,1 w\). We put:-
al-p (LK -l«(n))A(n)«<K +1,[*H);
11 and note that, for all I<i*»c- 19(n)1, T(it<1,i))-s"Kj. Thus we need only calculate s*, anew
11 beginning ati=tc- 1«(n)l, so we put:-

te-K- 1«(0)1;
/1 We now have k=| w land, for all I<iEK-Iw I, f(s(K))* 0. Thus, by the definition of t and f, we
/1 know that w willbe  N'-reduced, and sowe may return w.

return w;

reduce(word xu)

reduce (triple T)

11 Store acopy of T(for future comparison).

Teopy m 7 ;






/1 Wc begin by searching for triples (a, 6, ¢c) where 7 m (a, b,c), and a, respectively borc,
/1 is™ N*reducible. For each such triple, we redefine 7 to be (reducc(a), b, c), respectively
/1 (a,reduce(E), c)or(a, b, reduce(c)), and continue if possible.

11 We first need to redefine Tj, T2 and T3, without altering { Tj( T2)" T3 Ine W}, so that Tj
/1 is of minimal length. We do this calling shifticft( 7)

shiftleft( 7);

« (T)isi- (M2;¢c- (M3 ;

11 In each pass of the following do-loop, we will attempt one of (i) or (ii) as follows, (i), if
11 possible, strictly reduce at least one of 7's components, then further redefine 7 so that the Tj
/1 component is of minimal length, (ii), provided (i) was not possible, then, if possible, redefine
/1 Tsoastoincrease 17~ | by 1and decrease 17s | by 1. If neither (i) nor (ii) was possible, then
/1 we exit the do-loop. It is not difficult to see that the do-loop must stop, and that, when it
11 stops, 7 could not be further redefined (withoutaltering {7~( 72 )n 7s Ine (KJ}) so that one of

/1 its components is reducible (as required),

continued;
T-(a, be);
a=rcduce(a);
b =rcducc(f);
¢ =reduce(t);
Sf((T)>aor(T)2>6 or (17 =c)
{
/1 Wc may be able to achieve (i) by redefining a, b and c, without altering
/1 {a(b)nclneIN}, so that a is of minimal length. By lemma 4.1.1, we may do this
11 by the following while-loop, i.e., shiftlcfl((a, b, c))
while (lal]>0and a[[al)» b[\b\\)
1
chr-oilall;
a-a(l.lal-1);
th=chr(6(1,1b\-1));
e=chrc;
/1 We have achieved (i), and so will need to make at least one more pass of the

/1 do-loop, i.e..



@tinet

>
T-(a.i.t);
}
if (continue-0 and Ic1>0andc[t]- ill))
<
/1 We may still be able to achieve (ii) by redefining a, 6 and c, without altering
/1 {a(6)nclneW }, soastoincrease lal by 1and decrease Ic| by 1. By lemma 4.1.1
/1 we may do this as follows,
chr- ell];
a=achr;
6- 6(2,161)chr;
c- e(2lcl);
continue-1;
}

}

while (continue-=1);

/1 We now search for possible triples ( 3, 1a) of 5(with Tj( T2 )nT3 m p 'Bl(«2)™r+K"®1i
11 forsome words p ,s and K je W, and, for each such (B, A ), replace T by

/1(PA 3.

11 By lemma4.1.1, we know that (3, .3) is such a triple if and only if

11 (1) 1(0) mpb(x)s and 7(1) a p3 (K+r)i.

11 Note that r must be divisible by 1771, actually r=| /| ®21 So, let us begin by putting:
to= 7(0);

i1- 7(1);

/1 and then setting equal to the start state of the reduction automaton, i.e.,

sQO)-s;

11 We proceed to compute all s(i)=T(t°(1,i)), for I<is 11°|
i=0;
while (i< 11° |)
{
i-it1;
/1 By definition 1.1, T(1°(1,i))-T(T(1°(L,i-1)). t°[il), so we put:-

s<i>-
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it (f(S@)"0)
/1 then, by definition 4.2.1, we know that:
forfall jef(s(ip)
if ((®.a J-j0*pair of ~.with 3 and £ being triples and 1271 divisible by I&21 ));
{
/1 then t°(1]) has a suffix s m 3(k) for some tee U. Actually, we need to know
/1 the words p and s and ve N where t°(l,i)« jrs(k) and t0« We begin
/1 by calculating k by the method described in 4.2.2, i.e.,
for (k-0; (t°(Li)X i- 1®jI-nl 114 )ik- k+1);
/1 We now know that t°(l,i) has suffix b (k), and we need to define p and s so
11 that:
11 2(0)m p 3(*0)r , i.e., we need:-
2-t0(14-13(K)1);
s-to(i+ljtel);
/1 We then define:-
r-| A ®2!.
/land check
if(2(1)-pa(K +1)r)
{
/1 Then (1) does hold, so we may redefine:-
T- (pA1r2sk. (A2 *3);
/1 and reset: -
i-0;
1°- 70);
i1-HD;

/1 Wc now break the for-loop,
break;

}

11 As a last refinement, wc wish to search for all possible suffixes, s of T, so that:

" C «»i-VOT ,«.
/1 and all possible prefixes, p of Tj so that:



1 (3) t2p -+3Un )P ro-
11 With (2), we could define p by T*m p s. and so replace *Tby (p . T2 s T$). With (3),we could
/1 define sby 7"« p s, and so replace T by ( Tjp,T2,s). In practice, though, neither is really
/1 feasible. It is feasible, however, to check whether Tj has a suffix s, satisfying (2), and, in
/1 addition, with s'1being a prefix of T2. Also, we could feasibly check whether T3 has a prefix
11 p, satisfying (3), and with p 1 being a suffix of 7j. We have found that both situations occur,
/1 not infrequently, in practice, so it would be worthwhile implementing both checks.

}

whi,c <“opya “m

return T;

>

rcduce( triple T)

secure (wordw ,word u)

{
/1 The parameters, a/and u , must be such that w> v, and, by adjoining at most a single rewrite
/1 rule to vi;w\ we aim to secure the reduction w wy* u. We begin by defining S(0j to be the
11 start state, s, of the reduction automaton.
s(0)"s:
tc=0;
/1 By definition, s'0j» (" 1,0>) and we proceed to compute, in the following while-loop, all
11 S(K=t(b<1,K)), ISkS I b/| . We may strip common prefixes of w and u, and replace a<l,tc) by
/1 words t/wiih a<l,K) —»"(N) v« but the (inductive) hypotheses will always be (i) and (ii) as
11 follows, (i), that w and «do not have a non-trivial common prefix or suffix, and, (ii), we do not
11 have b<l,k-1) v with i/b<k] w \)> u.
/1 Note that, when k=l w |,then u=and u will have no common suffixes or prefixes, and we will
/1 nothave u/—> 3*N) v with i/2r u. We will then check to see whether w can be writtenas p s
I/ withp> us'1 (respectively s5 p _u). If so, then we will replace w with p ,and uwith iu 1
11 (respectively a/ with s ,and u with p _u). We will then be in the agreeable situation of being
11 absolutely sure that the reduction 10_>" n)* “ could not be secured more cheaply than by
11 adjoining the rule (a>.u) to *6W).
while (k<M )
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n 1.1, ¢(*<1,k))-t(u<l,k-1)). € k))-t(s(k_jj, i"k)), so we put:
oK) -t<Sk-d-"W):

if(f(s().10 )

{

Pm tt(1K);
for (all re f(s(K)) );
<
/1 we know that p will have a suffix s m $(n) where:
(mB.A )=rlh pairof 3;
/1 and ne IN
if (3 and A are words )
/1 then, by convention:-
n=0;
else
/1 3 and A are triples and we calculate n by the method described in 4.2.1, i.e.,
for(n=0; pi K- 1«31- n1®21 1* ®i(l«i11); n=n+l);
/1 We now know thats - 9(n).and thus */« p(l, k- 1«(n)1) 9(n) a< K+, Iw \). So,
with:-
vm p(\, k- le(n)l)*n) u( K+1,1 u-|);
/1 we will have w _» ~ N)v.
(V2 u)
{

/1 we put:-

11 noting that, forall !<&*- 1S(n)|. x(a<l,i))=s(I(). Whence, if we now:-
strip w and u of their largest common prefix and largest common suffix;
11 then, with:-

te=K- I®(n) 1;

/1 are inductive hypothesis, trivially, still holds, and we break the for-loop.
break;






4.3

Resolving the Critical Pairs

In this section we describe the procedures for resolving the critical pairs of 2" w>We
note that there is no problem indeciding, for a single critical relation (u/,v), whetheror
not the words a;and rhave acommon  N”-descendant; also there is a more or less
standard way of resolving these single critical pairs. However, resolving a 1-parameterized
set of critical pairs, {( Tt{n), 'Hn)) Ine N }, say, is not so straightforward because we do
not have a method of deciding whether or not, for all ne N, the words 'M{n) and Mn) have
common £ N>-descendants. Actually, we believe that this may be an undecidable problem
ingeneral (cf. theorem 3.2.2). Nevertheless, we can still describe a procedure, admittedly
composed of basic techniques, which makes a sensible attempt at resolving these critical
pairs, and which seems to work reasonably well in practice. Before this though, we will
describe, so as to provide acomplete pseudo program, the (probably) familiar code for
resolving a single critical pair (w, v).

resolve( word w , word v )
1
/1 Wec resolve die critical pair (w, v)
reduce ();
reducc(v);
if (Vi ni)

return;

swap w and v ;
strip w and v of their largest common prefix and largest common suffix;
let p-largest prefix of u> so that aXIpl+l ,M ) >/»-1*;
of(P*t)
{

«l- ufIpl+ 1u )i



let s=largest suffix of iv so that u<1, Itt'l-h I )>
if(sit)

{
w- 1, lwikil);

}
adjoin((«/),(7));

return;

resolve(word z?, word v)

So, for the remainder of this section we are free to study the problem of resolving the

1-parameterized critical pairs
{(Tt{n), I<n)) Ine K}
for (variable) triples TWe(C*)3.

We will frequently refer to the terminology and results of the preliminarysection(4.1),
and to the procedure secure(word u» word v) (specified in section 4.2). Recall that the
arguments, wand v, must be such that uf®. v, and by calling secure ( w, v), we would
secure the reduction ’>—* v (by adjoining at mostone new rewrite rule to ~ w>).

Now, for many triples, TVand V, the critical pairs ( ( Tt<n), T-fn) ) 1ne Ihl}can be
resolved by adjoiningjust a finite number of new relationsto ~ N). Such methods are the

subjects of the nextthree (trivial) lemmasand their corollaries.

4.3A Lemma.
(i) Suppose there is a me INsuch that:
(1) n\(it2m—* a'l(V2)mi'l-1T™
and

2) (V2)nvs yit'j . forall n<m.
Then TV(n)~ *Kn) for all ne IN
(H) Suppose there is a me INsuch that:
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(W2)mWE -»* MBV3 1(V2)m*3
and

A(N2n'MBv3 1w .forall n<m.

Then 'W(n)~ -Kn) forall ne IN

Proofof (i):
We should first note that the relations:
7i\W3 =G fj'ls and Wi(H2)T\3=G
yield:-

W j(W 2)m - G V‘(V2m(V3 -3|) =6

So, both relation:
=Gvi(vay"(i't-IMI),
andrelation:
Y(We)n'Hs'ls 1 =g n<m,
are consequences of the relations itfn) =G 'Kn ), for all ne IN

We would have, for all re INand n<m.

(T2)We _>* (U2 (F2)mVi- 1 M) (Ha)((- Omen)He

> (MV M 1) (M(M2)mV Fa' A )Mz )«r-2’min) Ms

eee >* (Vi(T2)mi™ 1)rR1(M2)nHz , applying (1) r times,
Ni(f2)mrte_1 Hi(Hz)n'Wh,

v Vi(V2)mr("2)n\s by (2).

14.31Q) 1
The proof of 4.3.1(ii) is similar.

Em
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4.3.2 Corollary.

If In'2>1 V21, then the critical pairs {( 7i{n), 1<n) ) Ine W} may be resolved by the
followingprocedure.

{
for( m-0; 'Mi(H2)m<'t1(a2)m and (W2)m sB<H3U} 1('y2)m 1'3 ; mem+1 );
if (IVI(H2)m S muicu2)m )
{
sccure( L'T1(V2),n vx~IrH )\ );
for(n-1;n<m;n»n+l)
resolve( V1 151(IV2N G, (V2)nV3 );
}
else
{
secure( (‘(H2)m 1\8 , iVB't3°1(V2)m V3 );
for(n-1;n<m;n-n+1)
resolve( H'1(H2)n'H3t3'1 . VI(1n);
}
return;
}
1*n1
4.3.3Lemma.

Suppose W is right sided so, cf. definition 4.1.2, we may define the word p by:
(1) WXW2's pWx.

(@) _>* Vxr3t
as well as:

(3) PVX_»* VXV2
or

(4) pVx s«_

®






4.3.4 Corollary.

If W is right sided and M;j 'Hj then the critical pairs {( H{n), I*n )) Ine W}
may be resolved by the following procedure.

D (HT*y<L*y);
secure( 'HjM , 0" M );
if (pve1\V2)
secure(pv*, )
else
secure( ViV ,pVj);
return;

}
EMI
4.3.5Lemma.

Suppose TVis left sided so, cf. definition 4.1.4, we may define sby 1175 If:
-** Vi1t
as well as either:
§ ->* or ~35 *<_ V2¥3,

then, for all ne N, *Wn)~  1{n).

4.3.6 Corollary.

If -»Ms left sided and , then the critical pairs {( W), *Kn) ) Ine W}
may be resolved by the following procedure.

JeoHj "Hi XINS 1+, PWGWAL;
sceurc( VT
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if( > ra2r3)

secure( V~s > VjOj );

else
secure< »

return;
}
mu
4.3.7 Lemma.

Suppose , 'HN =H'i71 0, and define the integer mas follows. If
'wijl , then let m be least so that \n\\ ~ 1~ +m['17]; if [o/1 , then let m be least so

that 11'j1 LTVII+m|'HAL. It would follow that, if 'Kn)>'M{n) for some n, then 'Kn)>'M{n)

for some n<m+l.

The proof is trivial string manipulation, and we omit it.

We can now describe the procedure for resolving the critical pairs:
{(*va), T<n)) Ine @}
for (variable) triples 'H'Ve (C*)3.

resolve(triple 1V, triple V )

{
/1 We shall resolve the critical pairs { ( -H<n), V{n)) In€ OJ}.
if (+HCO-KO)and ¢ 1)-K1))
return;
*H”reducc('W);
1"*=reducc(1);
if (*M0)-'K 0) and <H{1)B<K1) )
return;
if (wamizme )

{
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resolve( 7t{0),'1{0) );
return;
}
shiftlefl(V);
shifUeftiH);
11 Recall that shiftleft( triple T) redefines the components of T, without altering { Tin) I ne I},
/1 so that T3 is maximal.
strip W4 and 13 of their largest common suffix;
shiftrighti-V);
shiftright(W);
11 Recall that shiftright( triple T) redefines the components of T, without altering
/1 {1(n) Ine N }, so that Tj is maximal,
strip TVj and Vj of their largest common prefix;
if(lwavx V21 )
{
if (\Wwa<itvy >
swap IVand -u,
/1 We now have ["WN> 11"1> 0, so we may apply the method of corollary 4.3.2 to
11 resolve all the critical pairs {( *H(n), 7{n)) Ine IN}.
for(m-0; 1Vi( Vj(v2)mV ji and (H>2)m w 3<H>3'1'3* (V2)mV3; m-m+1 );
if (iview2)m* ri(r2)m Vj'w )
{
securc( 7t1(IV2)m, 1'1(-v2)m w1);
for(n-1;n<m;n-n+t)

resolvef 74 mMi(1t2)n7t'3 , );

else

for(n-1;n<m;n-n+1)
resolve( w i (H2)nw3ws |, 7/4(7'2)n);
>
return;

70



/1 We now have [1\2] « w 21>0.
shiftiest);
shifUeft(T4~;
let m be maximal so that has (\2)m as prefix, and 1i'3 has (1t2)m as prefix,
if m>0
{
5\4-"I's(ml"2l+1,IVal);
AcoNmI'H"| +1, 1H]l);

if ( reduce('V'j51*)sreduce('H j51t))

{
/1 Then a simple (inductive) argument yields "Vj(T'2n5a"( IR(w *) 1»'j(7t2)n5y for all n.
11 Also, as P3-(V'2m5 A, so {*Kn) Ine N }g{ Ine IN}and as 1t3«('H'2m5 1~
11 so { "H<n) Ine N }£{ In€w }. Thus, we may as well put:
w3
}

>
shiftrighiit):
shiftright('K);
let m be maximal so that *Vj has (V2)m as suffix, and 71j has (H2)m as suffix,
if m>0
{
ALA(A-m I
- WL yMA-mIwA;
if (reduceid*AVv3)=reducc(i, v H ty )
{
/1 A simple (inductive) argument yields i ™ (V 2nV3( R (u >3+ (1t2n'H3 for all n. Also,
/1 as 11" Ty (w2)m, so { *Kn) Ine IN}${iv"",DnVv3|ne IN}and as H1»2>M(H'2)n, so
/1 { H<n) Ine IN}${ 1Pw A(W2nH3 Ine N )» Thus, we may as well put:

Vj-5V;
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flad

}
if itfOk'HO)
swap Tvand V,

/1 We now have I'HY - V>0, MO0)>1<0) and H<0) and 1{0) have no non-empty common

11 prefixes and no non-empty common suffixes.

shiftrightfH";

if ( Hj can be written as ps so that the triple (t,

{
Hj-r,

*WV,!

else

shiftleftflt);
if ("Hj can be written as ps so that (‘Wj,

if ( IVis not already left or right sided )
{
shiftright(W);

.n'j ) is left or right sided and SWAZp'V*)

.p)isleftor right sided and

let s be of minimal length so that iVj can be witten as ps with

{
Wj-r,
Vrp\;



shiftlefICH);

let p be of minimal length so that H-j can be written as ps with "Mjp >1" 7 )

{

11

V,.Vy',

Note that we still have *MD)>K0).

pmreduce(H \ it 2mH4.);

i (

else

>PWj)

secure( ItjIt'2.pH\ );

/1 We now have H'1'U2 —* A N)* p'Hj, whence 'HI1(H2)n'H3 -» ~ m)* (A"iV jIt] , for
/1 all n€ K. Whence (>nIvi-Hj~ 1{n) (forall ne N)* mHf)~ 1{n) (for all ne U). Thus,
/1 we may put:-

W Me.p.H H )

/1 so that iV is now right sided and 'Mj O~ (cf corollary-4.3.4).

screduce(itA 12it);
if (Hjttj 2ify )

{
secure( MM , mHji);
/1 We now have 'Wj-Kj -¢ A m)* 1V3), whence it'jfw j/'It'j * )% oH1H3(i)n . for
/1 all ne M. Whence A l<n) (forall ne N) -» It<n)  I<n) (for all ne U).

/IThus, we may put:-
(WM *£);
11 sothat IVis now left sided and iVjIt™V]Vj (cf corollary 4.36).



/1 Note that we still have 'H(0)>1f0) and that H<0) and 1<0) have no non-empty common
11 prefixes and no non-empty common suffixes,
if (*His left sided )
{
/1 We may apply the method of corollary’ 4.3.6 to resolve all the critical pairs
/1 {(-Mn), -Jfn)) Ine N}
sm (n2i t3XiTijkl, \w2w}1):
secure( 1tj1t3,1°~ ),
if (v3i> m)
securef 1'35>V2V3);
else
secure( Lvas);
retum;
}
if (W is right sided )
{
/1 \We may apply the method of corollary 4.34-to resolve all the critical pairs
/1 {(iKn),-Kn)) Ineli }
I*y>:
sceure( );
if )
securef "MVf ),
else
securef ViQ . pVj );
retum;
}
/1" We know that 'M0)>1{0), *MD) and 1{0) have no non-empty common prefixes and no
/1 non-empty common suffixes, and that W is not left or right sided. e now need to know
/1 whether -Hn)<a<n) for some ne fij. By lemma 4.3.7, we know that 'Kn)>H{n) for some n if and
/1 only if skn)>H<) for some nSm+1 where mis defined as follows. If NI~ 1, then miis least
11 so that I'Hjl <iva\ if [Vj| 20 Hjl, then mis least so that I\Vj 1G-MI +nP*H].
if(IWI~ 1)
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ot NI\ )
else
for(m»0; IVjl >livjl +mIW jl;m-m+1);
m-m+1;
for(n«l; n<m; n»n*-1)
if (Hn)>H{n))
{
/IA's 1<0)Sn<0) and 1ij is not empty (because it'is not right sided), so it has to be that 1j«E
for(i=0; i<n; i-i+1)

{i));

resolve( n {i)

/1 We are now left with the problem of resolving all {( n{i), 1<i)) | i>n}j.e, with:
V-(e. 2 (V)"Vi);
S'-(Hj. W2 (W2n'Hi >
/1 we wantto resolve all {( n{i), *I{i)) Ine N }. However, we now have *Uright sided and
/1 with 1<0)-(a'2nV3 > M (W2)nn'3-'n<0). So, with reference to corollary 4.3.4, we may
11 resolve the remaining critical pairs, { ( -W{i), 1{i)) lie DJ}, as follows.
sccure( (Vj)"-1*, ivI(1t2)nn'3);
it (ViTVi» n'jlitj )
securc( 12'H1L, It'j1\V2);
else
securc( mHjivj , )
return;
>
/1 We now know that W<n)>'Kn) and (amongst other things) that Tt'is neither left or right sided,
11 so we resolve the critical pairs { (1t<i), -Ki) ) I ie fcl} simply by putting:-

adjoinfCHOX'V);1
resolve( triple TV, triple V)

1We note that, a pair (W, V) (W and V being triples) is adjoined to  only if W is
not left or right sided. Also, suppose we wish to input a set rules {( Tifn), ‘Kn) ) Ine IK}
as data to the program. Let us suppose TVis right sided, then, by corollary 4.3.4, we should
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do as follows. Define p by 'HJ'M-,* Pxi- ~ cn input (‘Mj'H", VjV3) together with

(pVj, 170N). if frtj» or with oFri)« *f 2 ri- Also*b> corollary 4.3.6.
if it’were left sided, then we should define iby its*and input (Tf'™Mj .1\ 1)
together with (L3 i.V2V3), if V3ai>VaV3 or with (1213.135), if s. In shon,

we havejustified proposition 4.1.6, i.e., that left( JO should never contain left or right sided
triples.

Comment Whenever the procedure secure( word, word) is called it might adjoin to
s\ N) arewrite rule, (b, a), say. with b being J; ™ ~reducible. Although such rules do not
belong to the minimal i t w”-complete presentation (because, cf. theorem 3.1.1, 6« JC/ 1)
it must still be checked against other rules for possible critical superpositions. This is
certainly a hindrance, but preferable to adjoining an infinite 1 -parameterized set of rules to
J&N)when a finite number of rules would suffice.

We hoped that this setback would be somewhat offset by testing for prime critical pairs
before resolution (we refer the reader to the definition of a prime critical pair on page 46).
The fact that non-prime critical pairs may be ignored is acommonplace labour saving test
in finite completion programs, and the fact that it works for such programs is easy to
prove. We point out that the test works because, when attempting finite completions,
whenever a rule, (b, a), say, is adjoined J; **', it is adjoined with the aim of guaranteeing
that b and a have acommon J&" ~-descendant, namely a. In our program, however, the
procedure secure might adjoin arule, (6, a), to » w)with the aim of guaranteeing that
6— u> a(which is a stronger requirement than that a and b simply have acommon
descendant). It is because of this phenomena that we cannot, so freely, rely on the prime
critical pair test. Nevertheless, it is not difficult to prove that, by marking the rules which
are adjoined by secure, we may ignore the non-prime critical pairs of two unmarked sets
of rules (cf. (Kapur,Musser,Narendon)).

Recall that the program makes no attempt to resolve the 2-parameterized critical pairs.
The (unavoidable) 2 -parameterized pairs computed during the completion process are
supposed disjoint from J;, N\ stored appropriately, and thereafter ignored until, if ever, the

(probable) completion of the (1 -parameterized) set 2w*stops (cf pages 44 and 92). When
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this happens we must, to prove that » ~ >is complete, confirm that all the 2 -parameterized
critical pairs are resolved, i.e., have common 3*” ’-descendants. This will most probably
be true, indeed for most of the examples cited in section 4.5, it was easily confirmed by
inspection. We infer from this that attempts to prove that a 2-parameterized set of critical
pairs, {( HCn), Mn )) Ine N2 }, say, are resolved need not be very sophisticated in order

to be reasonably successful. Basically, by calling reducef ,itj )and
reduce( n 5), respectively, we reduce the words of { Ti\(H2nW3 Ine N }and
of { Ine N }as far as possible. We repeat the process with the quintuple V,

and then compare the resulting sets of strings.

reducefquintuple QJ
{
do
{
Ttmp-( Q.!.Q2+0-3+Ci4.25)
shift! eftifQj.Q.j.Q.j));
(03.04 .05 )-reduce(( €3 .<4.0.5)));
shiftrighi((Qs.o4,0.5));
(Q-i.0-2+£3 )-reduce(( 0j.0-2.Clz));
}
while ( 0[0.0"7Vmp(0.0) or Qo.1)*T«n,«).I) or Q[l,0)*T<p(o, 1) or <XLI)*r«f<M))
/1 ie., while {d n) Ine N2 }*{ Timp(n) Ine Uz }
retum Q;
}
reducef quintuple )

resolved?( quintuple W . quintuples V)

{
11 We make an attempt to prove that the the critical pairs{ (~ n ), 1{n)) Ine U2 } are resolved.
"V-reducef V);
reducef TV);



if ('MO0,0)#K0.0) or *MO0.1)#K0.1) or or 'M1.1)#KU))
/1 i.e., while {O<n) Ine N2 }{ Ha) Inek2}
/1 we have not confirmed that the critical pairs are resolved, so:
retum O;
else
/1 thecritical pairsarc resolved, and we:

retuml;

resolved?( quintuple.quintuple)



4.4

Computing the Critical Pairs

In this section we will describe the highest level of the completion program, i.e., the
procedure which computes and then, by calling the predefined procedures of sections 4.2
and 4.3, resolves all the critical pairs of 9tw

Recall that the critical pairs of (~ ,” )and (» , <2),in Itu >areall those pairs of
words:

(V (a\,pais)with ~ mpfys, for some words pands
(2) (a\s,pi*2)with iji* pSz, for somewords£# p# and£# s# ¢2-

So the program has to compute all the pairs of the form (1) and (2) forall ( , 0j ) and
(¢2.<2)in  N=When Itu>isfinite this poses no problems, but with ~ N>possibly
containing (infinite) 1 -parameterized sets, it is not acompletely trivial matter to prove that
all the pairs (1) and (2) are resolved. Anyway, it is natural to split this procedure into four
parts as follows.

(i) We resolve all the pairs (1) and (2) for a (fixed) ordered pair, ( , aj)and (62 *a2)
in 1 tw>In sodoing we might adjoin 1-parameterized rules to f t N* not that this is
necessary (toresolve a finite number of critical pairs), but because we are attempting to
predict an infinite sequence of rules which would normally be computed and which could
be 1-parameterized. The method was suggested by practising on some of the examples of
section 4.5 (the Dyck and surface groups) and is really quite a natural method of predicting
the necessary 1-parameterized rules. We will not comment any further on the method other
than to say that, although it may not be foolproof, it appears to work just as well as the
method suggested by Gilman in (Gilman84), but without wasting much time in testing for
reasonable candidates for the 1-parameterized rules.

(ii) We resolve all the pairs (1) and (2) for (fixed) (ij , 0 )in and all
(52,2 )e ((®n)+A(n)) I ne B} where (3 ,A)are (fixed) triples of <t

(iii) We resolve all the pairs (1) and (2) for all ( £, aj )e {(-3(n),~(n) ) | ne O},
where (®, A) are (fixed) triplesof ~ and (fixed) ( )initu>

(iv) Weresolve all the pairs (1) and (2) for all the (, a\) and (2 , <€) belonging to
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(fixed) 1-parameterized sets. This is the only procedure whose correctness we shall bother
to prove (i.e. corollary 4.4.3).
Comment. We do not test, in any of the pseudo code of this section, for prime critical

pairs (cf pages 46 and 76), although it is advisable that some such test be made.

CnlPairfwords ( 6 aj). words ( &]2)

{
/1 Computes and resolves the critical pairs of (( A @) ) where 6\a\.b2 and e are
/1 words.
for (all words p, ssuch that £<p< ,£<t <62 and pe«6"S)
{
K-lijl-Ipl;
if

ajorl+l .1ajD-ijd.K),
pisnota suffix of p~(17* 1).
and Q) are * *~reduced for all refw

)
/1 Then we note that, with n-1, p(a,Ma< |~ (L.«)»/*~ J4)ijd,K)
11 Jj| >0 Ptta lojl )p&i-

11 Also, it is not difficult to prove, b> induction on n, that, if /<a(Lr Ij/~d.ic) and
/1 belongto  w*),and Oj(f)nand a2 are least words in their (3* w-congruence class, then
11 (piojOdil A"~ ijO . *) . «|(f/n+I) will be acritical pair of an 3{u~complete
/1 presentation (cf section 3.1, page 19). We also know that the triple (p, «*(ljs 1), ~(1.K)
/1 will not be left or right sided, that the words pand &'s have no common prefixes, that the
/1 words 62(1 k) and Gjj have no common suffixes, etc. In short, we prejudge the natural
/1 completion process and resolve the (probable) critical pairs (" (s j/20 .K). G(e)n)
/1 by putting:
adjoin(((p, ~(xish). ~(1.K) . (a .t, E)));

else if (

ajd.Kj-ijd.x),
sisnot a prefix of s G(k+1 Jajl),
2> and, if 11 - w2142, then Gll)*> G
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q-(llwej(’cﬂval))'yadp)na" are £ * "fﬂiﬁdhdl an

/1 Then we note that, with n-1, ajd.tcXajiK-dJajl ))ns mo's. Also, it is not difficult to
/1 prove, by induction on n, that, if OJCL.KX"K+.Ia\ ))nj and ij belong to J(tfk 'j.
/1 and(p)n*2  aj are least words in their (j{ w*-congruence class, then
11 (0j(1 kXaj (ke 1 3djl ))(nrha)i ,0 )(n*1)a2)  be acritical pair of an A w'-complete
/1 presentation. We will also know that the triple ( aj(1.K), §Qct1Jojl), s) is not left
/1 or right sided, that the words a”l.K) and pa* have no common prefixes, that the
/1 words sand po™ have no common suffixes, etc. So, we prejudge the natural
/1 completion process and resolve the (probable) critical pairs
11 (Ojd.KX"iK+Jojl))"/, (p)naj ) by putting:
adjoin( ((Q(1.tc), Nictllujl). s), (E.p,@)) );
else
/1 wesimply:
resolve( 0"s, pal*);
for (all words p, ssuch that ij«pe2)
resolve( ", pa’'s);

CritPair( words , words )

CritPair( words (6, a) , triples (B, A))

{

/1 Computes and resolves the critical pairsof ( (i ,a),(3(n), (n))) forall ne INwhere 6and a
/1 are words and Band A are triples.
for( all words p. sand all re fd such that pB(r)s m6)
resolve(p\(r)j, a);
for (all words p, sand all re Msuch that £< p<6, £< t < Ss and ?B(r)m6s)
resolvt(pAis). &%);
for (all words p, sand all re N'such that E< p <6, £< s< 83 and jfB()me&s)
resolve( (pA(r+n), as(ij)"% ) forall ne M);
for (all words pand s such that £< p< 6,E< s<  and pB"mbs)
resolve( (pA(n) , as(32)nB ) forall ne N);
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CniPair( words . triples )

CritPair( triples (B.A), words (b, a))
<

/1 Computes and resolves the critical pairs of (( 3(n), .afn)). (i, a)) forall ne N, where B and #

/1 are triples and ¢ and aare words.

for( all words p, r such that pbs mSj )
resolve( (pes (B2'Bj *-<n)) for al ne N );

for(all wordsp.sandre Nsuch that p<B*,s< and  ®m®Ri(&3>)
resolve((par(, .~r+n)) forall ne fcj);

for( all words p, sand re N'such that p, s<B"and pts )
resolve( (BAB~X (pesyl(B 1 B, A(nj+nj+nr)) for all ne Nand nj.njcr);

for( all words p, sand re N'such that p<Bj , s <Bs and pbs «®(r))
resolve( pas, AfT) );

forf all words p, sand re Msuch that p< Bj , s < Ss and pbs m(B2/-B3)
resolvef ( #8(32n pas, ./fr+n)) for all ne ©);

for( all words pand ssuch that p< B$,s <Bs and ps*Bs )
resolvef (- (ij)" par, <(n)) for all ne ftJ);

for(all wordsp, rand reU such that £<p< B" ,£< s< band pb m3 (r)r)
resolvef pa, Afr)s);

forf all words p..rand re N such that £<p< B" £< s<band pb miBjfB"s)
resolvef ( BABAf' pa, Mr~n)r ) for all ne M);

forf all words p, rand rekl such that £< p< 3-j, £<r < andpb*B"s)
resolvef ( Bx(B2)npa, An)r) for all ne N);

JCritPairf triples , words )

Let ( )and (@2 *n2 )" (fixed) triples of ~ We are left with the problem of
computing all those (critical) pairs:

(3) (AN(r), pA2(s)s), whenever:
®j(r) * p&2(s)s.
(4) ("j(r)s , pA2<s) ), whenever:
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20j(r)im” (s),0d*"WAjir)! and Odskl”s)!.
We will write £5for @¢j (fori=1,2 andj=1,2,3). We recall (proposition 4.1.6) that
neither  nor 3" would be left or right sided. In particular, /21 JA221 > and so we may

define:
L=lem( lijM. Y2 »
and then put:
Lj-L/1”2land U =L /I 21«
Since (3) and (4) cannot occur simultaneously, it is natural to describe separate
procedures for resolving the critical pairs (3) and (4) respectively. We will only be proving

the correctness of the former, which is the more difficult, but still a straightforward
corollary of the next lemma.

441 lema

Suppose ®j(r) a j/3”s)s, and define:
f(pS):max(Ql>l+l&l—linl I-miniOjirl-1M-U 1 )e

(i) Suppose:
sl1(sj2)Li *sa prefix of aword of the form

or
is a prefix of a word of the form ~h (Mii)1i(Ni2)*
Then, provided pe INis such that r-pLj £f(p,s)/\" «

mBjir-pLj+nLj) a pACs-pLMnLN)* , forall ne N.
(ii) TeiUp,s)\S\* +Lj ~ the supposition of (i).

(iii) Suppose pm 5n(£i2)a/’ for some a<r, then:-

®j(r-a+m)a i("i2)mP ®@2(s)i for all me IN,

and
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m-a< (L+Ip kIAil-miniOjijA-171-U 1) )/ADNS .

(iv) Suppose s*s (&B*JSfor some y<i, then:-
®j(r-Y +n) * pBjis)* (ij2)n¢13 f°r  ne N,

and

r-y < (L+max(o J>+gil-IEn ) Vianl e

(v)  Supposing both (i) and (ii) hold, then, for all m,n€IN
mBjir-a-Y+m+n) h ¢11(612)"* p 32(s)5(¢12)"¢13 «
and

r-a-Y < (L+lpl+ril+tan+Gl .

The proofs of (i) and (ii) are a little tricky but, nevertheless, are no more than basic

string manipulation. They would be of little or no interest and so we omit them.
Proofo f (in):

Substituting pa ;11(¢12)°? inthe identity:

(11712 )ry13 3 P®2(s)-f.
we derive:-

JM(M12)rM3 3 (l(Niz)a P@2(s)i -
Then, because a<r. we may cancel the common prefix ¢11(s12)° to derive:-
(6,2)(r-°)6i33 P«2(sk.

Whence, for all me IN

(e»(¢12>m)(il2>("an 3 3 (¢lI(*12)m>P*2i*)s.
(5) *BO-a+m) a (n(siz)mpa2(s)j

(which is the first part of (iii)).

We can easily complete the proof of (iii) by proving the following:
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(6) Claim.
Ifr £Up,s)/\b\$ +Lj, in addition to (iii), then the triple ~ isright sided.

Proof:

1frAUp ,s)/\b\A +Lj, then (ii) would imply (i), i.e..
(7) provided r-pLj >Up,s)/\" ,then

ijir-pLj+nLj) * p~s-pLA+nL™).*, for all ne N.

So we may substitute m=a+Lj in (5), and p=0, n=I in (7), to derive two expressions
for the word ~(r+Lj), namely:-
®2(sy>mP2l(*22)G 1 2>h i’ m
We can then cancel the common suffix {2 )%.lslo obtain
Bu(Si2)"L0'p  =pfar(f22)” «
Whence, by comparing the suffixes of the latter identity, 51 is a suffix of %21 ("22)"»
which, by lemma4.1.3, is a criterion of the triple * being right sided.

m

Now, we arc assuming (iii), and so, by (s ) and the proviso that neither of the triples
nor 2«2 was left or right sided, we must have:-
8) r<f(p,s)/\6tf\ +Lj.
We are assuming ps b\\(b\2)°/". therefore: -
Up,s )=max(o ,Ipl+I"211-1i11l)-min(Ojiisl-lizal-Ul)
=al S\2+p [+172il-min(0,15j31-1i23I-Ir I').
Substituting for Up,s) in (8):-
r < ( A b\2HA> HEzil-min(o asjsl-lszal-Lil) )/|*j2l +Lj «
but L AL /1i~ 1. whence:-
(9) r-a < (L+p+12il-min(0,15i3I-1i231-Ul) )/\b\$
(which is the second part of (iii)).
[4.4.1(ii)|
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Proofof (v):

By (iii), we have:-
(5) ®(r-a+m)*s1i(”2)m/>®(s)i, for all meN,
and, by (iv),
(10) ~(r-y+nisp”is) 5(6\2)n ;13 »for all n€ K
Applying (5) and (10) concurrently we obtain, for all m, ne W
A(r-a-y+m+n) * £n(Ei2)m (6i2)n"Ni3
(which is the first part of (v)).
By (iii), we have (9). Also, as we are assuming s*~s ¢13 . therefore:-
—in(o ,Ms23 L1 )= YN2MA | +123] «
Substituting the latter expression in (9) and rearranging we obtain:-
r-Ct~Y < ( L+l p A+ S K230 ) /17 in
(which is the second pan of (v)).
|4.4.1(v) and 4.4.11

4.4.2 Corollary.

Suppose 'BL(r)sp®2(s)i, p*b\{p, where p is aproper prefix of ii2 or°f ¢13.and
s=sf>\3 , where s is a proper suffix of 2 or °f ~1-Then, for all m,ne W
(]]) (4j(r#m+n ) i, (i12)>p~2(s);(i12)»i13)
are critical pairs which can be resolved (without resorting to 2 -parameterized rules) by the
following procedure.

{
if (6 ~pU(s)s>pA2As6l2)
{
seeure( i, 2p*2(s)’s. pJA(s)si, 2);
resolve( (Nj(r+x),  p"2(s)j(ilK ) forall iceM)
)

else



secureip.Ms)*c12 ,  pfysfs);
resolve( (.j(r-»K). i 11(i12)Kp-"is) Jij3) forall ve k )
}

Proof:

By lemma 4.4.1(v), we know that, for all m.ne 4

12) A(r+m+n)* £ii(ii2)mP®2(s)*(*12)n*13 .
so the pairs of (11) will be critical pairs (as claimed). Also, substituting first n=I,m=0 in
(11), and then n=o, m=1 in (11), yields two expressions for the word ~ (r+ 1), namely:-

MIM2 P Niza MIP @(s)5M2M3 «
By cancelling the common prefix, ijj, and the common suffix, * 3, we have:-
S\ip”(s)} * p«(5)5.2
and sothe relation:
¢12? =GP NM2e
is a consequence of the rules (12).
So, supposing:
(13)  b\2PA2(s)i -»* pA (s)Mr12 »
and

(14) ijip~2(s)i(si2)Kiz J?j(r+K), for all tee W

We would then have, for all m.ne IN--

il(il2)n272<sd <12nil3 ill«l2)(m,)5%2<s)] (i 12)(n*,) 43

> fiuad jl2(s)i(ii,2) (mt")<13 .
applying (13) m times,

Aj(r+m+n),

by (14).



applying (15) n times,

yy -3i(r+m+n),
by (16).

Em

We can now describe the procedure for resolving the critical pairs:
(3) (Jij(r), pA2(s)s), whenever:
®l(r)ap®2(s)i.

CritPairj( triples (S j,~ ), triples (®2,A2))

{

/1 Computes and resolves the critical pair(s)
" @) ( .pA2(s)i). whenever:

11 BOMPV(S)S.

fij* (*0)j for >-1.2 aiul - 1,2.3;
L-lem (1121 1ijjl):
Lj-L/Ifjjl;



Lj-LAijjt ;
#definef m a x (0, Ip~Ajl - lijil )-min( 0, U13I - \fos 1);
for( all proper prefixes, p, of ij2 or ij3 )
for( all proper suffixes, s, of ~3 )
for(r-0; r<(L+ I1pAjl-mini 0, 16131 - N1 )) A~ sr»r+l)
if ( AI(M2)rA13811 PA2ICh. 27 h3s)
resolve( ( J~(r+m), ) for ail me OJ);
for( all proper prefixes, p, of ijj )
for( all proper suffixes, j, of éj2 or 6jj )
for(r-0;r<(L+max(0 ,Ip~1 " 170D+ 234 VIIN T r-r+l)
if (i11(M2/713"7 *21(*22)5%23%13 )
resolve( (7~ (r+n), p~2(s)Xii2)nii3 ) forail me (3);
for( all proper prefixes, p, of éj2or 3)
for( all proper suffixes, s, of ¢12or ijj )
for(r-0;r<(L+1/»%l+ 1% il )/li12l ;r-r+1)

if (F11(*12)f*13" * 1] P*21(*22)S*23**13 )

{
if (i12M 2(s)i > PA2(s)jE12)
{
secure( 612P*2<.s)s, pXI <Ys6x2 )T
resolve( (Nj(r+n), ¢iipA~s); (612)nil3) ferallne N ):
}
else
secure( p~(s)s6n . B\Tjpfyd* );
resolve( (Nj(r+n),iu (i12npX~s)*  3) for ail ne H);
}
}

for( all proper prefixes, p, of 6XX)
for( all proper suffixes, s, of i13)
for(r-0; r<f(p,7)/17,21 +Lj; r-r+1)
if (in (ii2)ril3*P *21(*22)*%* )
{
if (
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r>f0>,,)/lij2l.
and cither:
A1(M2)~ isaPref'xof aword of the form rn2
or

Pr21(¢22)12 s a Prefi* of awerd °f ihc form 611(ij2)Li(ii2)*

resolve( (A (r+nLj),~"(s+nLj)s) forallneN);
else

resolve(” (r),ptys)r);

CritPairi( triples |, triples )

4.43 Corollary.

The preKsfof correctness of CritPairjC), i.e., the (critical) pair

(3) ("i(r), pA2(s)s)
isresolved if and only if

(17) «t(r> m p&2(s)s.
Proof:

The proof that we resolve only the critical pairs is a special case of lemma 4.4.1 (i), (iii),
(iv), or of corollary 4.4.2 - none of which we bother to restate.

Conversely, we suppose (17) holds. Then, the proof that the critical pair (3) will be
resolved is basically a restatement of lemma4.4.1. We suppose (for example):

IsI<lilsl and Ipl il -

Then s would be a proper suffix of 13 and we could write p mé\\(6\2f*p where a<r andp
is proper prefixof ~ or°f ;13 ¢

By lemma 4.4.1 (iii), we would have:-

®j(r-a+m) m ;n(Mi2)m/»-A(s)*, for all me IN

and
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r-a < ( L+lp kt*2il-inin(o 1 * 3l-1fa\-\s\) )/\b\A .
With 3j(r-a)«ij|p 31(s)s, and s being a proper suffix of ~3 , so the pairs:
(~(r-a+m ), 6\{62)m? ~ s))
would be resolved for all m€ H (which includes (3)).
Similarly, by lemma 4.4.1 (iv), we could confirm that the pair (3) is resolved when:
Ul >1Ma3land \p\ <lsiil,
and, by lemma4.4.1(v), when:
Ul MMastand \p\ >I/>il.
S0, we may now assume:
Ul <t™sland \p\ <l 11,
i.e., s will be a proper suffix of ;13 and p will be a proper prefix of ¢ji-
If, in addition:
r<f(p,s)/\B" +Li.
then the pair (3) is easily seen to be resolved. So we will also assume:
r>f(p.s)/\" +Li-
Then, by lemma 4.4.1 (ii) and (i),
slI(il2)Lt is a prefix of a word of the form p>2[(~22)L2("22)* «
or
PA21("22)L 2 is a prefix of a word of the form £ii(En)LI(Ei2)* ¢
and, provided peN is such that r-pLj > f(p,s)/\6\i\, then:-
A(r-pLj+nLj) a p&fo-'pl*+nL”s , forall ne N
So, by choosing pe IN maximal so that:
r-pLj ef(p,s)/\Sn\,
we will have:-
f(p,s)/\&\Ji +Li > r_PLi " f(p )17zl «
Then, with '3j(r-pLj)a /<s-pLz2)i, p being a proper prefix of j and s being a proper
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suffix of ~ 3 , so the pairs:
(ijir-pLj +nLj), s-pl* +nL2)i)
would be resolved for all n€ IN(which includes (3)).

Em

We conclude this section by describing the procedure which resolves the pairs

(4) ( flic)$, ptyis) ). whenever:
A(r)* »p&iis) with o < Ipl< I"O0I and o <U < I"*Cs)!.

We omit the proof of correctness (being a restatement of the proof of corollary 4.4.3).
Note that it may be necessary for this procedure to store 2-parameterized critical pairs
which we must (later) prove to be resolved for ~ N>to be complete (cf procedure
resolved?() defined on page 77). Such pairs will be computed if there are instances of (4)

with both p and s are relatively large, i.e., \p\ >1~1 and UI>I/>13l.

CritPair2( triples( ) , triples (3" ,~ ))

{

/1 Computes and resolves the critical pair(s)

11 (4) (J4j(r)r,pX£s)), whenever:
1 ®i(s

£,j-(®j)j fori-U andj-1.2,3;
L-lem(li, 2, lijjl);
L,-L/li12l;
Lj-i./ijjr:
# define f0>, t)~ max(0,1|>i211 - 16n 1)-min(0.1%* I- 171);
for( all proper prefixes, p, of £120r i13)
for( all proper suffixes, s, of ¢i3 )
for(r-0;r<(L+ Ip~AJ-minfo, IE13j1- 1623) )/17j21 ;rer+1)
of (M1(*12) A 13* - iii phi(hi>sh 3)

resolve (( A(r+m)r, *n(*i2>nV*2(s>) for all me N );
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for( all proper prefixes, p,of in )
for( all proper suffixes, s, of ij2 or ¢21)
for(r-0; r< (L+max(0, - lini))/lit2l;r-r+1 )
if ((¢11712)71373mP *21(*22)S%23 )
resolve ((.A(rM ~)" (23 «P-"2(s+n) ) f°rall me N ):
for( all proper prefixes, p, of 6120r 3)
for( all proper suffixes, s, of ;22 or ;21 )
for(r-0;r<(L+y+1i2il )/1i12l;r>r+1)
if (¢11(M2)*'413*"23"¢11 P (21("22)S:23 )
slore( (Aj(r+m)i (122)n 113 , ;1i(ii2)m P-~(s+n)) for all ne OD);
/1 We store these 2-parameterized critical pairs disjoint from 3*N). When, if
11 ever, the completion procedure stops, then, to prove that  NJis complete,
/1 we must confirm that all the words of these 2-parametcrizcd critical pairs
/1 have common ~ w”-descendants (cf. procedure resolved?0 (page 77)).
for( all proper prefixes, p,of in )
for( all proper suffixes, s, of ;23 )
for(r-0; r< f(p. s)/1i,2l + LAr-r+1)

if ((11712)M3*% * Pe21ig22)5:23)

andcither:
d7¢12)L1 s a prefix of a word of the form pb2i(i22)L2(i 22)*
or

~g21(~22)n is a prefix of a word of the form ¢11(612)"1(612)*

resolve( ("Nj(r+nLj)r, pj~fs+nLj) ) forallne IN) ;
else

resolve( J?j(r)r, pv2(s) );

CritPair2( triples , triples )
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4.5

Program Report

This is a brief report on the implementation of the program described in the first four
sections of this chapter. The program was written in C++ on a Sun 1/130.

The complete presentation of the free abelian group of rank 2 of example 3.1.5 took
about a second to complete.

Recall the abelian by cyclic group, of lemma 3.1.6, with (semigroup) presentation:

<a,<n, BB* Gc'l (aa1. ey (Oraey, (B ¢y, «1BE),
(ce“l ,£),(c*c,£), (Ba aB), (ca, Be)).

With the SortLex ordering <j defined by a<j <ri  B<j (r1 <j c<j c 1, the completion,
listed on page 24, took 2 seconds. With the SortLex ordering <2 defined by
C<2 C1<2@<2 @1<2 ;<2 the completion, listed on page 26, took about 70 seconds
and the resolution of some of the 2 -parameterized critical pairs had to be confirmed by
hand.

The surface group of a torus with p holes has group presentation:

(<1.02...%pl (°2pflep - | ') *filaz - fp)>

With the ShortLex ordering defined by <a2<a?2~"<-m<azp<a2p~*we computed
minimal complete Pj presentations for p=2,3 and 4. The completion of the p=2
presentation took s seconds; the completion of the p=3 presentation took 33 seconds; and
the completion of the p=4 presentation took 118 seconds.

It would not be difficult to work out the complete Pj presentation for general p, but
Le Chenadec has already catalogued finite complete presentations with respect to the
ShortLex ordering defined by:

((2p-1)"1<fl(2p-1)< - <fI3"1<fI3<flr 1<al< fl2"1<a2<- -<fl(2p-2)",<fl(2p-2)<a2p”,<a2p
(see (Le Chenadec)).

The Coxeter group with presentation:

{aBcdl (aa,E),(BB,E),(«,£),(dd £),(dada, adad),
(dBdB. BdBd), ( dcd,cdc) >

took 31 seconds to complete. We believe, but have not proved, that it has no finite.
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complete (ShortLex) presentation.

In (Le Chenadec) Le Chenadec describes (not necessarily finite) complete presentations
for the Coxeter groups with no two generators commuting - there are difficulties with
partial commutivity of the generators. We were able, however, tocompute acomplete Pj
presentation for the coxeter group:

(aBcd\ (aa.E) (BB.£) (cc,E) (dd E), (ea,ac).(cB. Be),
( dad, ada), (dBd, BdB), ( dcd, cdc) ),
in 15 seconds. We believe, but have not proved, that there is no finite complete (ShortLex)
presentation.

With the input of both these Coxeter group presentations the program was unable to
compute all the necessary 1-parameterized rules. In both cases we had to run the program
for a about 30 seconds, guess some of the 1- parameterized rules which the program was
unable to predetermine, and then include these rules as additional data in a (successful)
rerun of the program.

The completion of the (2,3,8) group, (& 61((a)8 £), ((E)3,£), (aBaB £)),
suggested by Gilman(84) took s seconds.

The Dyck groups have presentations:

D(nt,n2.. ,nk)= ( 0j, ai....a" I ((ai)ni, £).....((fiknk-e ). ( - E)>
We tried numerous Dyck group presentations and ShortLex orderings, all the presentations
had either finiteor (infinite) Pj presentations. With the ShortLex ordering defined by
4l <fll - 1<@2<<k"1<---<flk<flk"1  there was a Pj completion of D(6,5,5,5) which took 69
seconds.

It is interesting to note that with respect to the ShortLex ordering defined by:

A<.<ap<flj_l<oz_,<..<ap_i<
a(I>H)< °(p+2)"-m<2p< °(p+1)'1< V 2)"I<-
all our examples of Dyck groups on a even number of generators (i.e. k=2p) had finite
complete presentations. We infer from this that there might well be a better ordering than

that suggested by Le Chenadec where only confluence is proved (Le Chenadec).



85
Almost Convex Cayley Graphs

5.0

The concept of almost convex groups or, more precisely, groups with almost convex
Cayley graphs, is due to J.W. Cannon and is first defined in Cannon's 1984 preprint of that
title. The class of almost convex groups is large, and of interest because the (geometrical)
property of a Cayley graph being almost convex means that it is (in theory at least)
recursive, in fact there is an efficient method for constructing such graphs (theorem 5.1.3).
In Cannon's preprint the interested reader will find proofs that the following classes of
groups are almost convex: the groups satisfying the small cancellation hypothesis, HNN
extensions of finite groups, free products with amalgamation of two finite groups, and
discrete groups of Euclidean isometries (the latter groups being free abelian by finite).

There are, however, numerous problems in the subject of almost convexity, notably that
the property of a Cayley graph being almost convex does tend to be difficult to prove or
disprove in practice. Also (unlike the automatic groups), it is not known whether a group
being almostconvex is independent of the choice of (inverse closed) generators (although
we can prove apartial result on the independence of generators, i.e., proposition 5.1.4).

We will begin this chapter with a summary of Cannon's (defining) work which
appeared in his preprint, notably what is meant by a Cayley graph being almost convex and
adescription of the procedure which constructs almost convex Cayley graphs. Then, in
section 5.2 we will prove that the class of word length preserving, complete, Pr groups are
almost convex (i.e. proposition 5.2.1) and, the analog for automatic groups (i.e. theorem
5.2.10), that the class of leastlength bounded automatic groups are almost convex (the
latter is due to (CEHPT)). We believe these subclasses are strict: in section 5.3 we prove
that the matrix group U(3,Z) is almost convex, but this group is known not to be automatic,
and, we conjecture, ithas no ShortLex,complete, parameterized presentation.

We conclude the chapter with an alternative, generalized, proofof Cannon's theorem
that the free abelian by finite groups are almost convex (theorem 5.4.1). The proof, by
reference t0 5.2.10, is algebraic, as opposed to Cannon's geometric proof, and is, arguably,
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the simpler proof.

5.1

At this point we recommend that the subsection Cayley Graphs (page 5), of (the
definition and terminology) chapter 1 be reread, but we make no apologies for repeating the
following fundamental definitions and facts. We think of the whole of T=rc (G) as a
connected (path) metric space with metric d=dc ; we allow retracing of paths; a geodesic
path is a shortest path between its endpoints. If geG, thend(IG,g)=llgll and, if g.heG, then
d(g,h)=Illgh*11l. We then defined (for all re IR) the r-ball of T to be {p€ T 1d(IG,p)<r},
and the r-shell to be {pe TI d(IG,p)=r }. The vertices of T are distinguished by the fact
that they are precisely those points of T at integer distances from the basepoint; if ne IN
then S(n) consists precisely of those ge G with norm n. When we refer to an edge or path
staying within a ball B(r) (re IR), we mean that all points of that edge or path lie in B(r).
Whence, an edge stays within B(r) if and only if at least one of its endpoints is in B(r-1), a
path connecting two vertices stays within B(n) (ne IN) if and only if at least one of the end
points of every edge that it traverses belongs to S(n-I).

We now define, for all Ke IN the relation join(K), on the points of r ¢(G), by: p join(K p
if and only if p isjoined to p by at least one path which stays within B(llpll) and has length
no more than tc. These relations were introduced as abbreviations and are used frequently
throughout this chapter (note that, apart from the trivial cases, join(tc) is neither symmetric
nor transitive).

We can now define the geometrical property of almostconvexity.
5.1.1 Definition (Cannon).
Let G be a group generated by C, then:

(i) If Kisa positive number then Tc (G) is said to be almost convexf k),which may be
written as ac(x), if there is an integer b(ic) with the property that, whenever g,ge G are such
that llg t=llg l with d(g,g)£K, then g g. (ii) The Cayley graph Tc (G) is said to be

almost convex,which may be written as ac, if it is almost convex(tc) for all Ke IN



5.1.2 Theorem (Cannon).

I1f G is generated by C and Tc (G) is almost convex(2), then Tc (G) is almost convex.
Proof:

We take arbitrary Kand prove that Tc (G) is almost convex(x). So let us suppose that,
for some ne OJ g.ge S(n) with d(g,g )<tc. Let p be a geodesic path between g and g, and
then define me N to be maximal so that p does not stay completely within B(m). We note
that:-

(1) IplStc,
and so we may as well assume that p does not stay within B(m). Whence, m < n+lIpl, and
we have:-

(2) n-1 <m<n+lpl.

Now, whilst m>n there will be subpaths of p with just their endpoints belonging to
S(m), we argue that all such subpaths have length at most 2. This is because no edge of
such a subpath could have both its endpoints outside of B(m) (without all intermediate
points on the edge lying outside of B(m) (which would contradict the choice of m)).
Whence, such subpaths must be a single edge joining the same vertex of S(m), or else a
path of length 2 which joins two vertices in S(m). Whichever, we see that the subpaths of
p, with just their endpoints belonging to S(m), will have length at most 2. Whence, by the
fact that Tc (G) is ac(2), we may replace each of these paths by paths which stay within
B(m) and have length bounded by b(2). As there are at most Ipl such subpaths of p, so, at
the cost of increasing the length of p by a factor of at most b(2 ), we may push p inside the
ball B(m). By (2), we see that this process need be repeated at most Ipl+1 times before p is
pushed completely within B(n). Thus g and g are joined by a path lying within B(n) and of
length at most Iplb(2 )(\WA1), which, by (1), s lidb(2)(K+1).

[5X2]

5.1.3 Theorem (Cannon).

If r ¢ (G) is almost convex, then Tc (G) is recursive, i.e., there is a finite procedure for
constructing B(n) for all ne N.
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Proof:

We will describe the procedure without proof of correctness (which may be found in
(Cannon)).

Let R be the set of all those relators of G which have length at most b(2) (where b(2) is
as indefinition 5.1.1. Now remove all the trivial relators from R, also all the relators of R
which have other relators of R as subwords; we continue to call the resultant set R.

We note that B(0) is just the singleton {1G}. Let us now suppose that B(n-I) has been
constructed, we then proceed, to construct B(n) from B(n-1), as follows:-

Step 1. Foreach vertex, g, of B(n-I), and for each ce C, if there is not already a
directed edge labelled by ¢ between gand gc in B(n-1), then add one.

Step 2. If pisapath labelled by arelator of R then identify its endpoints.

Step 3. For each pair of vertices g and g, and for each label c, identify all the edges
between g and g which are labelled by c.

The resultant graph is B(n).

Comment As the set R is finite, so it may be included as a Finite set of data in the
method of constructing Tc (G). However, Cannon mentions, in his preprint, that it is an
open problem as to whether, knowing that r ¢ (G) is almost convex, the finite set R can be
computed (although it is difficult to believe that this would not, in practice, always be
possible).

It is another, more interesting, but perhaps more difficult, open problem as to whether
or not the property of almost convexity is dependant of the generating set. We do, however,
have the following partial result.

5.1.4 Proposition

LetCj and C2 be generating sets of G and suppose that, for all ge G, the difference
between llg11” and llg 11~ is bounded. Then, if r* (G ) is almost convex, so also is

r CXx°)
Proof:
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Let us suppose that:
(1) 1Uglier Hgllc2* *s bounded by k for all geG.

By theorem 5.1.2, we need only prove that Tc (G) is almost convex(2). So suppose go
and gj both lie in some n shell of r Cj(G) with:
(2) dCz(go,g1)<2.
There will be no loss of generality inassuming n > 4tc+2.
We now choose g0e G so as to lie on a geodesic path of TA(G) between ggand the
basepoint and so that:
(3) dCx(go ,go )=2K+2,
then we will also have:-
(4)  dc2(IG.go)-n-(2K+2).
515 Lemma.
I1f ge G with liglt ligyllg , then n-(4ic+2) <d"~0Q.g).

Proof:

If llg ICj= ligyll Gj* we would have:-

IHgo” C2" Hg HC2* | “golic 2" «oH ¢ j + I HBHC ,* Hglic j »

which, by (1),
<2t
Whence:-
dC27G*8) = Hy'IC2" Hpll C2-2k
=dc20G.go)-2,c
which, by (4),
=n-(2K+2)-2tc
ie.

dCAG-g) n"(4K+2)
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By lemma 5.1.5, if g is any element of G satisfying llg llc = ligolICj» then we must also
have dUOQ.g) £ n-(4tc+2). As we are, anyway, assuming n>(4ic+2), so it is possible to
choose gj so that IlgiHc*Hi”cy and with Si “ying at a distance from gj along
a geodesic path of r* (G ) between gj and the basepoint. We would have:-

(6) dC2(g1,91)s4K+2,
(7) HgjUcj“ UlonCj”
We now have:-
dc/SO'SI) * dCais 0% 05K,C2s 0**I>HIC2 («Fil)»
which, by (3), (2) and (s ),

£ (2K+2)+2+ @Kk +2),

Whence:-
dc,<W i)-|leoi r |lcT
which, by (1),
s'M r'lc,«
£ (stcts )He.

We are assuming r™ (G ) to be almost convex, so, with (7) and d*(gQ,gj) * 7k+6, we
see that go and gj arejoined by a path, p say, (of r c(G)) of bounded length which stays
within the llgollcj“ball of r ¢ /(G). As each vertex on p belongs to the (ligollC2+K)-ball of
r c2(G), so each pair of adjacent vertices on p may be joined by a path (of Tc ~(G)), of
length no more than tc+1, which must stay within the (ligo llc2+2K+1)-ball of r c(G). By
@), g llc2+ 2K +1=n-1 , whence, we have found a path of r*(G ), which stays
within the n ball of r*(G ), has length no more than Ipl(ic+l) (which is bounded), and
which joins go to gj. By the choice of go and gj, we have shown that there is a (composite)
path joining gg to gj, which stays within the n-ball of r c(G), and has length at most
(25c+2)+p I(k+1)+(4k+2).
ms
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5.2

wlp-complete groups oftype Pr and
lib-automatic groups are almost convex.

Let C be any alphabet, then we say that a total ordering, <, of C* isa wordlength
preserving ordering (or wip ordering) if, for all o ve C* \io\>M ~ w>v. If (CIHQisa
complete presentation with respect to some wlp ordering, then it said to be a
wlp-complete presentation.

The most familiar wlp orderings must surely be the ShortLex orderings, but there are
others. As an example, suppose < is any ShortLex ordering of C and ce C. We then define
the ordering< by: v< to if W\<\iv\. or 1/ = U™ and v< o where v and to are,respectively,
the words v and o after all occurrences of ¢ have been replaced by £. Then < is a
(non-ShortLex) wlp Knuth-Bendix ordering which (despite appearances) is notjust of
theoretical interest (similar orderings are used in the computer program of (Hayashi)).

Let (G,C) be an automatic group with word acceptor W, and let y : C*—»G be the
natural homomorphism. Then we say that (G,C) is leastlength bounded automatic (or
lib-automatic) with respect to W, if Ifl-lly(f)llc is bounded (independently of t) for all
Celan(W). We stress that the property of a group being lib-automatic is usually
dependanton the generating set (while the property of a group being automatic is an
invariant of the generating set).

In this section we will prove that the groups defined by parameterized wip-complete
presentations are almost convex (i.e. proposition 5.2.1), and that the lib-automatic groups
are almost convex (i.e. theorem 5.2.9). Theorem 5.2.9 is due to (CHEPT) and is included,
notjust because it is the analog of 5.2.1 for automatic groups, but also because it is pivotal
to our proof of theorem 5.4.1, i.e., that abelian by finite groups are almost convex.

5.2.1 Proposition.

Let T= ( CI H)be a wip-complete presentation of type Pr of the group G (with
respect to the wip-ordering <), and lety : C* —»G be the natural homomorphism. Then
r yY(C)(G) is almost convex.
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Proof:

Let us begin by restating some of the definitions and terminology of pp 17-20 and,
hopefully, in sodoing, restate the suppositions in a more manageable form.

We defined the relation — on the words of C* by iv— v if w& pSs and vs pas
forsome (S,a)e  Then we write —  for the reflexive, transitive closure of I
mv— v, then v isan ".-descendant of w. A word is said to be ~.-irreducible if it has no
.-descendants other than itself.

The set of rules, 'K, will, by definition, be normalized, i.e., whenever (i,a ) e ¢, then
S>a. Whence u>-*£v~ u/tyv,also:-

(1) (.6,a)eH™*\6\2\a\,
because (6 ,a)e”.~e>a and thus, as < is wip, we could not have la|>ls |.

By being complete we mean that each word, «/, 0f C* has a unique irreducible
descendant, called its ~.-representative and denoted by rep(«/), which is the < least word in
its () congruence class. Thus, any irreducible word, u> will be a word of minimal length
inits< >congruence class (because if there were a strictly shorter word, then, as < is wip,
this word would be < «/(which would contradict ~.being complete)). We may interpret this
geometrically as follows: any path of Ty(q (G) labelled by an irreducible word will be a
geodesic path. This, together with (1), is the crux of the supposition that < is wip.

If Se(C*)(2P+1)(for some pe IN), then  (I£i£ 2p+l) is the i 11.component of «. We
defined B(0) to be the word

« «3 <5 ... ®p+i).
and, if n=(nj,nz,...,np)e INP, ®&(n) is the word

®1(«2)nl ®j(*4)n2 *5 - @2p-1)(V "P ®@P+D-
I1f p >0, then we refer to the words ~ «4,...,«2p as the repeating factors of S. We adopted
the convention that IKFP={0} so, if Be (C*)°and ne IND, then «(n) is always the single word

By beingof type Pn we mean that can be partitioned as a finite number of
subsets, of the form:

() {(®(n), A(n) ) I ne IN°} with O<p<r and B, Ae (C*)(2P+1>
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We stressed that the p of (1) need notbe the same for the different subsets of the partition,
butr, being a bound on the p's, is a bound on the number of repeating factors allowed for
the different A's and ©s. Also, note that the subsets of type Pqwill just be the finite
subsets (of C*xC*).

Now let us suppose that some some ©of (2) has a repeating factor, €Ksay, which is
the empty word. Then A2Kmust also be the empty word (otherwise I J >0 =*

1Qje*os5 e ®RR2k-1)W " ®2k+1)®(2k+3) «m @2p+)l <
[%1%3%5 ew*(2ic-)(*ic)n *(2 k+ 1)*(2k+3) === *2p+Lj =

for some sufficiently large n - contradicting (1)). So, we could replace ©by
(©], ©2,.-«(2K-1). ®2k+1)- =-®(2p+1))e * by (*1**2 ... W2k -1) *(2 k+1) ~==~ 2 p + ) and
p by p-1 (without changing the rules of (2)). Thus, repeating, if necessary, we may as well
assume that ©has no empty repeating factors. Henceforth we shall assume the A's and ©s
of (2) to be fixed.

We hope that the theory summarized hitherto will now be familiar to the reader, it will

be referred to (mostly implicitly) throughout the (short) proof proper.

Now let {( ©(n), A(n) ) | ne IMP} be as in (2). If p>0 then, as ©has no empty repeating
factors, we may define n(a) to be the least integer such that n@min(/©zil >2|€(0)1.
We would then put L(@)=n(lijmax(l«zil)i<i<p +1©(0)l. and m(2ll=max( 61©(0)I, 2L ). If p=0
then we would put m(a)=61©(0)I. Finally, we define M=max(m(2))2as jn

By theorem 5.1.2, we know that F~(q (G) will be almost convex if we can prove that it

isac(2) (we refer the reader to definition 5.1.1). We can be precise, we shall prove that, for
anyge G and c0CjeC:
0) whenever ligh = NgY(@)Il, then g join(2Kr|M) 81f(co).
and
00 whenever ligll - llg-tCuCl)». then g gTCCoP,).
The body of the proof is the following lemma.

5.2.2Lemma.

Let ge G and ce Cufe} be such that gY(c)*I, so that g=g(g,c)e G can be defined by
rep(g)c-rep(gY(c)> for some 2e C, then gjoinflaM) &
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Before proving 5.2.2, though, let us demonstrate how 5.2.2 implies (i) and (ii).

5.2.3 Corollary.

Let ge G, GGGE Cvij{£} and suppose ligll = 1lgYiCoC!)!!, then g join(2ciM) SYiCoCj).
(Note that (i) would follow by taking Cj=£, and so F"q (G) would be ac(2).)

Proof:

We can certainly assume that ligy(cO)lll £1 (otherwise gy(c0)=I and, trivially,
gjoin(2) gTfccfl))- Thus’ we may d' finc Se ° by:
rep(g)c mrcp(gY(c0)) . repCfgYiCocpiyO:,-1)) (>e)
for some cs C. so that, by 5.2.2, g jomMM) g and gy(cOct) join(iaM) g- As M -HgYtCoCilm
50 g join(2|cIM) g¥(cc)-

mu

Proofof5.2.2:

We will construct, inductively, a finite sequence
(9i .G)
where (gQ,CQ)=(g,c), and, if tel:

( (gi.Cj)eGxC,

rcP(g(i-1))c(i-i)—» rep(gj)Cj and rep(g(i_1))c(i_1)>repig”j,

8 join(iM)s i

So we assume (gj, Cj) has been defined for O<jEi. If rep(gi)ci is irreducible, we stop. If
repig”i is notirreducible, then as rep(gj) is irreducible, c*E and we may choose
(®(n), .3(n))e K, forsome  Ae (C*)(2P+1) and ne IKPas in (2), so that:
(3) rep(gi)Ci = pQ(n)
for some proper prefix  pof rep(gj). We then define Qi+1)€C by:
(4) PA(n) a />c(i+1)



(with -pbeing the largest proper prefix of pAi,n)), and put g(j+i)*Y(p)- Whence:-
(5)  rep(a)Cj * p3(n)  pX(n) * pc(i+l) rep(g(i+1))c(i+1),
and so, as ®(n)>"(n),
reP(gi>Cia p*n)>pA(n) a pc(i+1) rep(g(i+1))c(i+l).

So we now have to prove that g join((i+i)M) g(i+l)»but*bYthe inductive hypothesis, we
already have gjo~M) gj, thus it suffices to prove that gj join(M) g(i+i)- We will, for the
most part, demonstrate this pictorially.

Let us first suppose that ~(n)sE. Then, by (5),

9 Y(C)=Y(p).
whence: -
lgiY(O)Il £\p\.
Thus, as p is a proper prefix of rep(g,),
llgiY(ci)li<lpl<lig1l,
but, also by (5), we have giY(Ci)=g(i+i)Y(C(i+i)). so. trivially, gi join(2) g(i+l)-

We may now assume -3(n)#e so that, by (3) and (4) respectively, Gis the last character
of the word S(n), and c(i+1) is the last character of the word ~(n). Let us illustrate the
reductions (5) as part of the Cayley graph r Y(C{(*>

figure 1.
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524 Lemma.

With reference to figure 1, all points within the shaded area can be supposed to lie
within the ball BCligjll).

Proof:

By (3) we have rep(gj)Cj * pBin), thus the path between the basepoint, (pi) and gj,
labelled by the irreducible word rep(gj)» p (®(n)(l, I'B(n)I-1)), is a geodesic path and so
(most certainly) stays within BCligll). Also, by (4), pB(n) >pA(n), thus \pBin)\ > \pA(n)\ ,
and so ligll = I/r@n)l -1> \pA(n)\-\. Whence the path between the basepoint, (pi) and g(j+i),
labelled by p(~(n)(1,1*(n)I-1)) (and of length Ip~(n)|-1), could not possibly go outside the
ball BClgdl).

5.2.5 Corollary.
If I®(n)l S 313(0), then g, join(M) g(i*,).

Proof:

By 5.2.4, the path between g;, (pi) and g(j+i). labelled by
(HM)( l«(n)l-1)) (ntnX1,U(n)l-1))-1
stays within BOlg.il). Also, this path has length <I£(n)I+U(n)l. but U(n)J <Is (n)l, so
l<(n)I+In(n)l £21«(n)li613(0)<M,
whence gi g(i+1) (as required).

tug

We can now assume that 13(n)l> 3|®(0)|, and so, with B, ~ (C**2* I*and neHJP as in
(2), it must be that p>1 (because p=0=>n=0 by convention). Letn=(ni,n2,...,np), then:
Bn)» N (N i ®(«s)n2es ... zp.jjiV P @2ptl) e
and
®0)*'W BS—@Qp-l)®(pH>
As l«(n)] > 31«(0)1, we see that I(«2)ni (04)”2 = («p)npl > 21*3(0)1, whence we may
choose I£s<p and then (Knsso that:



(S29)fis ®2s+1/ @2(s+1)))N(s+L) R(25+3) * ®(2p-1)(®p)nP@(2p+)
is the shortest such suffix of ®n) to have length > 213(0)1. Thus, because <A < I'3(n)l, we
will have:-

(6) 1(«29)S *(2,, , )(®2s*2,)"(*1) ®(2s+3) ®@BpN<V " % 1>'>WO)l +1;W)I'
Also, (with the abbreviation O(s-I) for s-1 0's), the rule
(7) (3 ((Ks-l), ns, n(s+i), n(s+2),- *-,np) , ja(0(s-1), fis, n(s+i), n(s+2),...,np) )
belongs to R, (because all rules of { ( ®(n), fl(n) ) I ne IKP} belong to R). Let us see how

rule (7) fits into our picture (figure 1) of r *o< G >

figurez.

52.6 Lemma.

With reference to figure 2, all points within the shaded area can be supposed to lie
within the ball BOIg).

Proof:
By lemma 5.2.4, we know that all points within the shaded area except, conceivably,
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those of the path between (p2) and (p3) labelled by
m (a,«®&..V i)* W e

belong to B(llg|ii)), but this path (trivially) stays within Billg,!!) (as we now demonstrate).

As, the path between the basepoint, (pi), (p2) and gj labelled by rep(g,)»
p(is(n)(1,I®(n)I-1)) ), is a geodesic path, so the point (p2) is at a distance no more than

ligll ®(2s+1)(@2(s+D)))n(<H) B(2s+3) »"* ®(2p-1/®p" P (2p+ly+1

from the basepoint. Thus, by (s), we see that the point (p2) lies at a distance of at most
1lgdl -|'8(0)| -U(0)I from the basepoint. Whence the path beginning at (p2) and labelled by
(8) could not possibly go outside the ball BdlgJl) (as required).
irl
5.2.7 Corollary.

If 1®(n)I> 31-3(0), then gi g(i,,)-

Proof:

With reference to figure 2 and lemma 5.2.6, we see that the bold path between gj and
g"i+1) stays within B(llgdl ) and has length <
150 (s-1), ns, n(s+i), n(s+2).....np)l+1 ~(o (s-1), ns>n(s+i), n(s+2),...,np)l
(which, by (7))
£ 21«(0(s-1), ns, n(s+), n(s+2).....np)|.
Also, we remind the reader that we chose s and ns so that:
(®25)B*®(2s+)(®(2s+2pn(+1) ®(25+3) *e« ®(2p-)<V  p®(2p+)
was the shortest such suffix of 5 (n) to have length > 21:8(0)1. As n was defined to be
least such that n*minO"J )i<ig >2I'8(0)1, we must have:-
fistn(s+l)+n(sH)+-+ +np< "(*) «
Whence:-
21'/<0(s-1)f ns, n(s+i), n(s+2)..... np)l £ 2(B(0)+n(i) max(1:821l )i<j<p)
(which, by the definition of m(d)and M)
-mwiM,
and so we have shown that gj g(i+i) (as required).
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Sowe have constructed a sequence

where (gQ.Co)=(g.c), and, if tel:
(gi.Ci)e GxC,

reP(g(i-1))C(i-i) —* rep(gi)Cj and rep(g(M))c(M)>repCg”,

6 join(iM)gie

As rep(gj)cj > rep(g2)cz2 > ... so the sequence is finite. Actually, we stopped when
rep(gr)cr was found to be irreducible, i.e., when gr=g(g,c) (we refer the reader to the
statement of lemma 5.2.2). We require g joinOciM) ~ which is a trivial corollary of the next
lemma together with the fact that gjoi,,(rM) gr (i.e. gjoi,.(,M) g).

528 Lemma.
rdCl.

Proof.

Suppose not, then there would be some i,j with O<i<j<randqacj. As
reP(gi)ci rep(gj) cj, so gj Y(G)= gj Y(Cj). and thus %= gj (because 7 <C{)-Y(Cj)). So we
would have repig”arepigj), whence repig”Cjarepigpcj (because CJEC;)), but, anyway, we
have rep(gj)C| > rep(gi+t)ci+1 >... > rep(gj)Cj (which is clearly a contradiction).
[5.2,8,5.2.2and 5.2.1[

‘We will now prove the analog of proposition 5.2.1 for the automatic groups.
5.2.9 Theorem (CEHPT).

If (G,C) is lib-automatic with word acceptor W, then TC(G) is almost convex.
Proof:

Let W accept the language LXH,, then, as (G.C) is lib-automatic, there will be a b such
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that, for all Ce LXf(, Ifl-II'Y(Ollc ~b- Also, by corollary 2.1.4, we know that there is a A
with the property that: whenever &, CeLxx_with H/(~ " IHc ~ 2b+2, then any two paths
of r ¢ (G), beginning at the same point, and labelled by @ and  respectively, do not
diverge by more than adistance A

By theorem 5.1.2, we need only prove that TC(G) is ac(2). So let us take any n€ N and
suppose go-gi”* S(n) to be such that d(g,h)<2. Now choose go”G so that go is at a distance
b along some geodesic path between go and the basepoint. Then, trivially:-

(V SOjoin(b) 80 and Soe S(n-b).
Also, we choose g”e G with gj being at adistance b along some geodesic path between gj
and the basepoint, so that:-

CO gl join(b) Il and Sls S(n-b).

We shall prove that gojoin(b+s A) Il (because go join<b) SO’ So join(b+44) Si. Si jom(b) Si
and Il goll=ll gill =>So join(3b+4A) Si. so r ¢ (G) would be ac(2)). Note that we lose no
generality by assuming n>2b+A.

Letg, tIVAwithY i*lo s1a Y(*)=gl- Because d(g,h)<2 and go and gj were
chosen with d(gQ,go)=b and d(gi,gi)=b, so we have d(gQ,gi)*2b+2, i.e., ligogi'MI<zb+2,
or |IY(lo)Y(ib"1~"2t,+2- Thus, with po and pj being, respectively, the paths beginning at the
basepoint and labelled by & and C} we know that po and pj do notdiverge by more than a
distance A Also, because G&LXH.and Y("0)=gO*we have I*-Hgoll *b, i.e. IC*<b+lIgoll, and
so, by(l):-

(3) \Q<n
Thus the path pQ which begins at the basepoint and has length 1/*, does not go outside the
ball B(n). Similarly, pj has length <n and so does not go outside B(n).

5210 Lemma.

If p is the point on po at a distance r along po“ from go (respectively, if p is the point on

pi atadistance r along pi'1from gi). ihen n-b-r~d (1G,p)*n-r.
Proof:

We chose goso that d(IG, go)=n-b, but p is at adistance r from go along a geodesic
path between go and the basepoint, sod(IG,p)t d(IG, go)-r=(n-b)-r.
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Also, we traverse a distance r along po'1 (respectively pj'l) to get to the point p. If p was
still more than adistance n-r from the basepoint, then the length of Pq, i.e 171 .(respectively
the length of pj) would certainly need to be > r+(n-r), i.e, >n; but 1*I>n would contradict
(3). So p could not be more than a distance n-r from the basepoint, i.e. d(IG, p) <n-r.

152101

Now, we wish to prove that gois joined to gj by a path of length at most b+4A which
stays within the ball B(n). We begin at go and traverse po'1(within B(n)> for a distance Ato
arrive at the point pq, say. Then, by lemma 5.2.10,

(4) n-b-A<d(IG,po)En-A.

As Po and pj do not diverge by more than a distance A, we may now a traverse a path,
of length no more than A, to arrive at some point, plt say, on pj. By (4), we see that this
path will not go outside B(n), and that:—

(5) n-b-2A<d(IG,Pl).

So far we have traversed, within B(n), a path of length at most 2A to arrive at the point
Pl on the path pi. We now traverse Pi'1 (within B(n)>between pt and gj, noting that this
subpath could not have length > b+2A (without, by 5.2.10,d (IG, pi) <n-(b+2A), which
would have contradicted (5)).



5.3
The Group U(3,Z) and Almost Convexity

In section 5.2 we proved that the parameterized complete groups (with word length
preserving orderings) and the (least length bounded) automatic groups were subclasses of
the groups possessing almost convex Cayley graphs. We believe these are strict subclasses,
and this the subject of this section.

The group U(3,Z) is the group of 3 by 3 (lower) unitriangular matrices over Z. We will
be working with the group G, isomorphic to U(3,Z), which we define as the group Z3 with
multiplication

(1) (ac,b)(S.6,6) = (a+S,c+bS+£,b+6).
(A trivial calculation will confirm that the map between the groups G and U(3,Z) defined
1

100
by (acb) £» alO isanisomorphism.)
C

blj

We now put x*(1,0,0), y=(0,0,1) and C={ x,x'1,y,y~* }. Then, with G being
isomorphic to U(3,Z), the following facts will probably be familiar to the reader. The set C
is a (minimal) generating set of G, which is a non-abelian, torsion free, nilpotent group of
class 2.

By Theorem 18.10f (CHEPT), we know that non-abelian, torsion free, nilpotent
groups are not automatic, and, we conjecture, G has nocomplete presentation of type Pr
with respect to ShortLex orderings. We will, for the remainder of this section, be wholly
concerned with the proof of the following theorem.

5.3.1 Theorem.

Tc(G) is almost convex.

We begin the proof with some terminology. We put z=(0,1,0), and note that z generates
the centre of G. If ge G, then (g)j will denote the i,h component of the triple g. If pisa
product of generators in C and ce C, then occ(c.p) will denote the numberofoccurrences of
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c inp. Recall that, if ge G, then liglie is the norm of g with respect to C, i.e., Il g lie is the
minimal number of generators needed to express g as a product of generators in C.

Henceforth we will write llg Il for Il g lie . the latter will only be needed towards the end of
this section (in corollary 5.3.19).

Pivotal to our proof of theorem 5.3.1 is a method of calculating Il g Il for arbitrary ge G.
The method we use is easily derived from lemmas 5.3.7 and 5.3.11 and is described
immediately after the statement of lemma 5.3.11. To prove these lemmas, however, we will
need to make a number of calculations, concerning products in the generators C, and prove
some preliminary lemmas.

After proving lemmas 5.3.7 and 5.3.11, the proof of theorem 5.3.1 is purely
mechanical. Basically, in propositions 5.3.16 and 5.3.18, we will exhibit a number of paths
in Tc(G) and then, by referring to these lemmas, confirm that these paths stay within

specific n-balls. We begin with some simple calculations.

532 Lemma.

Let p = ybi xaiyb2x*2 ... ybnx3", with all the aj, tye 2, then:

i=n
p=(aj+az+...+an, ™ ar(bi+b”".+bj), bj+bo+---+bn).
i=l

The proof is a trivial inductive argument which refers to (1) and the definition of xand y.
GEMI
5.3.3 Corollary.

Suppose p is given as a product of the generators in C, then:

(0 (p)l=occ(x,p)-occ(x~l,p),
(if)  (p)s=occ(y,p)-occ(y-1,p),

Proof:
Suppose p to be as in lemma 5.3.2 and note that:
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aj+a2+...+an= OCC(x,p)-OCC(x_1,p)
and
bi+b2+...+bn=o0cc(y,p)-occ(y1,p).

Then the result is an immediate corollary of lemma 5.3.2.
ms
5.3.4 Corollary.
I1f ge G, then the difference between llg lland (g)i+(g)3 is even.
Proof:

By expressing g as any product, p, of generators in C, we would have:-

occ(x,p)-occ(x-1,p) = (p)i ,by 5.3.3(i),

- <Q)i.
and
occ(y.p)-occ(y-1,p) = (s , by 5.3.3(ii),
- (3m
Whence:-
OCc(x,p)-OCC(x-',p)+()! ,
and

occ(y,p)-occ(y->,p)+(g)3.

Now, we may choose p so as to contain precisely Il g lgenerators of C,
occ(x,p)+occ(x_1,p)+occ(y,p)+occ(y-1,p) = Igll.
Substituting for occ(x,p) and occ(y,p) in the latter expression yields:-
2 occfx-i.p) +(g)j +2 occfy-i.p) +(gys =gl

(asrequired).

5.3.5 Corollary.
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If pGG is a product involving just the generators x and y, then:

lIp I=0cc(x.p) +occ(y.p).
Proof:

By expressing p as any product, p, of generators in C, we would have:-

occ(x,£)-occ(x_1,E) m(£)i, by 5.3.3(i),
=Pt
mocc(x,p)-occ(x_1.p), by 5.3.3(i),
=occ(X.p).

occ(y,£)-occ(y_1,E) =(e>3, by 5.3.3(ii),
=P8
=occ(y,p)-occ(y-1,p), by 5.3.3(ii),
=occ(y,p).

Whence:-

occ(x,E) >occ(x,p) and occ(y,£) £ occ(y.p).

So, whenever p is expressed as a product of generators in C, the product in question
must contain aminimum of occ(x,p)+occ(y,p) generators. As p is a product containing
precisely occ(x,p)+occ(y,p) generators, so occ(x,p)+occ(y,p) is the minimal number of
generators needed to express p as a product of generators inC, i.e.,

IIp I=occ(x,p)+occ(y,p).

5.3.6Lemma.

Suppose we are given peG as a product of generators in C. If (p)j, (p>3 >0, then

(p2 " occ(x.p) occ(y.p).
Proof:
We take p to be the product:
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p = ybl xaiyb2xa2... yb" xan, with all the a;, b.e 1.

Then we have:-

occ(x,p)= X aie
0oP) all "0

oCC(X1,p)= -X ai.
all a, SO

occ(y.p)= X bi*
allbj20

occ(y‘\p)= bi e
alibi SO

and, by lemma5.3.2,

(P)2= X ai( bl+b2t - +bi)-

Thus, we have to prove:

N aj (bitba* «-+bj)

We start by defining:
1+={ i ll<i<n,0<aj ando<bi+b2+...+bi },
I-={i I l£i£n, a,<0 and bi+b2+...+bj<o },
bmax=maxb | +b2+-+=+bi)ie 1+ «
and

bmin=min®b I +b2+ - +bi)iel- «

By 5.3.3(i),
(p)3=occ(y,p)-occ(y-1,p),

but we are assuming o <(py3 , whence:-
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occ(y ".pitocciy-xp).

(2) -X bis X _ bi
all b, SO all b,20

By 5.3.3(i),
(p)I=o0ccCx.pl-occixi.p),
but we are assuming 0<(p)i, whence:-

occix"pi*occfx-Vp),
-X  *is X
all a,<0 alla;>0

and from which we derive:-

X X a,
all aj£0 1 all ai>0

Now, we have:-
X ai(bl+bzK"+b|[)S X ai(b+b2+...+bi)+ X ai( bj+b”.-.+b
i=l iel+ iel-
by the definition of 1+and I-,

sb~ |~ )thi Vi)

by the definition of bmax and bmin,

because a*O if ie I+, and a*O if ie |-,



Ab max[ X ai\- bmin( X ail
I all aja0 | Aallaj>0 3

by (3). Whence

(3) X aj(bi+b2+.--+bi) ~ (bmex-bmin) a”)agsoa'

We need to prove the inequality:
X .y X b\
X ai(bl+b2+ - +bi) A alla,>0 ¥a|lb,>0bl

and so it will now suffice to prove:

</ £

bmax-bmin~ | au”20

By the definition of bmax and bmin, we have:-

bmax=b1+b2+. « +br, for some re I+,
and

bmin=bl+b2+ -+ +bs»for some se 1 -

There are two possibilities,
r’s: then:-
bmax-bmin = b(s+1)+ e+ +brA | al®>0
(asrequired).
res: then:-

bmax-bmin = -(b(r+1)+ seetbs)-
However:
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b(r+ly+ -+ bS *all>l(),<0 bi,
thus:-
Then, as (2) states that:
X bjS X b,
all b|<0 all bj>0

so we have:-
bmac-bmin " -(b(,1)+...+bs) S A X A bi

(asrequired).

With a,be N, we now define six products.

PI(b) =y b-
p2(a,b,r,s) = x(@ r_1)y sxy (b-s>x,

forall 07r,s such that r<a and s<b.
p3(a,b,r.8) = x '(r+1)ySxy(b-s)x(a+ I)

for all O<r and 0<s such that a+r<b and s<b.
pa(a.b.rs) - y(b«)x(a-s)yxsy-(r+l),

for all 0<r and 0<s such that b+r<a and s"a.
p5(a,b,r,s) - x-dHt-a)y!xy(I>«-s)x(b+r-1)y-r-

for all O<r,s such that a<b+r and s<b+r.
p6(a,b,rs) - x-(b+r+>-a)y<xy(b»r-«)x(b*i)y-r>

for all 0<r,s such that a<b+r and s<b+r.
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We first prove that ll p,(a,b,r,s)ll = number of generators occurring in Pi(a,b,r,s),

or, to be more formal:

53.7 Lemma.

(i) IpiCh)!t =h.

(ii) WP2(a,b,rs)ll =a+h.

(iii) WP3(ab,rs)ll =2(r+l)+a+b.
(iv) p4(a,b,r,9)ll = 2(r+l)+a+b.
(v) Wp5(@a,b,rs)ll = 4r+3b-a.
(vi) Ip6(a,b,r,9)ll =4r+2+3b-a.

Proof:

The proofs of (i) and (ii) are trivial corollaries of lemma 5.3.5 (i.e., if a product, p,
involves just the generators x and y, then the number of these generators involved in p is
the norm of p).

Proofof (iii):

We defined
p3(ab,rs) - X ri»ylx(t> sxat
for all 0<r and 0<s such that a+r<b and s<b. By lemma 5.3.2, we calculate that

(1) p3(a,b,r,s) = (a, sth(atr),b).

We aim to prove lp3(a,b,r,s)l| = 2(r+1)+a+b. Note, however, that p3(a,b,r,s) is already
defined as a product of 2(r+1)+a+b generators, thus lp3(a,b,r,s)ll £2(r+1)+a+b.

So, we may assume, for a contradiction, that lp3(a,b,r,s)ll <2(r+l)+a+b. It would
follow that there is a product p, say, (in the generators of C) such that p=p3(a,b,r,s), but
containing strictly fewer than 2(r+1)+a+b generators. Whence:-

(2) occ(x,p) + occ(x_1,p) + occ(y.p) +occ(y-1,p) < 2(r+l)+a+b.
Also, by (1) and lemma 5.3.3(i), we would have:-
(p)j= a =occfx.pj-occfx'*p),
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and, by (1) and lemma 5.3.3(ii), we have:-
(p)3=b - occ(y,p)-occ(y'Lp).
So, we may substitute
(3) oce(x,p) = occ(x_Lp )+a
and
(4) occ(y,p) =occ(y_1,p)+b
in (2) toderive:-

2oce(x_1,p) +2occ(y_lp)+a+b<2(r+l)+a+bh.

(5) occ(x"*,p) +occ(y _',p) <r.
As (5) includes occ(x"1,p) <r, and we are assuming 0<r<b-a, so:-
(6) occ(x™,p)+a<b.
By lemma 5.3.6, we know that, provided (p>3, (p)j ~0, then (p)2 * occ(y,p) occ(x,p). We
have (p)3=b” 0 and (p)j=a£ 0, therefore: -
()2 = occ(y.p) oce(x.p),

by 5.3.6,

= (occ(y“Lp)+b)(occ(x'1,p)t-a).
by (3) and (4),

=occ(y' Lp)(oce(x Lp)+a) +b(occ(x'1p)+a)

<occ(y -1,p)b+b(oce(x-1,p)+a),
by (6).

=b(occiy”.pj+occfx*.pj+a).

So, by (5), we have (p)2*b(a+r). This is the required contradiction because we were
assuming p =p3(a,b,r,s), while, by (1), (p3(a,b,r,s))2 =s+b(a+r) with s>0.
[5.3.7(iii)|

The proof of (iv), being similar, is omitted.

Proofof (v):
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Recall that we defined
p5(a,b,r,s). x-(I>tr.a)ysxy(b*r-s)x(b+r-l)y-r
for all 0<r,s such that a<b+r and s<b+r. By lemma 5.3.2, we can calculate
(7) p5@b,r.s) =(a,s+(b+r)(b+r-l) ,b).

We aim to prove IIp3(ab,r,s)ll = 4r+3b-a. We note, however, that pjfa.b.r.s) is already
defined as a product of 4r+3b-a generators, thus llp5(a,b,r,s)ll < 4r+3b-a.

So, we assume, for a contradiction, that l p5(a,b,r,s)ll <4r+3b-a. It follows that there is
aproduct p, say, (in the generators of C) such that p=p5(a,b,r,s), but containing strictly
fewer than 4r+3b-a generators. Whence:-

(8) occ(x.p) +occ(x-1,p) +occ(y.p) +occ(y_1,p) < 4r+3b-a.
Also, by (7) and lemma 5.3.3(i), we would have:-
()i= a = oce(x,p)-oce(x~",p),
and, by (1) and lemma 5.3.3(ii), we have:-
(p)3=b = occ(y,p)-occ(y'Lp).
So we may substitute
occ(x_1,p) = occ(x,p )-a
and
occ(y_1,p) =occ(,p)-b
in (8) to derive:-
2occ(x,p) + 2o0cc(y,p) - a - b<4r+3b-a,
and thus:-
0 £ occ(x,p) +occ(y,p) < 2r+2b.
By a simple calculation, the latter inequality yields:—
occ(x,p)occ(y,p) A (b+r)(b+r-1).
We have (p)3=b>0 and (p)|=a£ 0, so, by lemma5.3.6,
()2 occ(y,p) occ(x.p),
whence
(P)27 (b+r)(b+r-1).
This is the contradiction because we were assuming p = p5(a,b,r,s), while, by (7),
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(p5(a,b,r,s))2 = s+(b+r)(b+r-1) with s>0.

The proof of (vi), being similar, is omitted.
|5.3.7(v)andT3T]

We believe the reader may find the following table helpful. In the first column we have
calculated the products Pj(a,b,r,s) (a.be Dand 2<i<6), in the second column are the

restrictions on r and s (of these products), and in the third column are the norms (of these

products).
5.3.8 Table

restrictionsonrands___ norm
P2(a,b,r,s)= (a,s+br,b) 0<r,s; r<a; s<b ath
P3(a,b,r,s)= (a,s+b(a+r),b) 0<r; 0<s; a+r<b; s<b 2(r+l)+a+b
P4(a,b,r,s)= (a, sta(b+r),b) 0<r; 0<s; b+r<a; s<a 2(r+l)+a+b
p5(ab,rs)= (a,s+(b+r)(b+r-1),b) 0<rs; a<b+r; s<b+r 4r+3b-a
P6(a,b,r.s)= (a,s+(b+r)2,b) 0<rs; a<b+r; s<b+r 4r+2+3b-a

We now introduce the maps Oj (I<j£8) in the context of:
5.3.9 Lemma.

The following maps, <Jj: C—»C (I£j<8), extend to automorphisms of G which

preserve the norms of the elements of G, i.e., forall ge G, llg I=1oj(g) Il

Oj being the identity maponG; a2 :xi—Xx'
a3 xt-*x, yt—=>y-1; ad:xi—»x 1, yt-+y_
Os i XY, Yh-»X | °6 exi-ny"1 y»—¥x ;

07 :Xt=>y, y—»X_1; a8:x»—»y-1, yr—4x=-

HH]
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Recall that the multiplication in G is defined by
(ac,b) (4,6,6) = (a+a,c+ba+é ,b+6).
Also, we defined x=(1,0,0), y=(0,0,1) and z=(0,1,0).
We do not assume that the reader is adept at calculating products in the x's, y~'s and
z s, but hope that the next lemma will be found adequate to confirm any relation we may

state during the course of the proof.

5.3.10 Lemma.

(i) If p=ybixaiyb2xa2... yb'x3", with all the aj, bteZ, then

p=(ai+az+...+an, aj( bi+b”K.+bj), bj+bz2+...+bn).

(This islemma 5.3.1, it may seem rather daunting but, in practice, we will only need to

calculate such products for nup to4.)

(ii) Let p be aproduct in terms of x .y 11 and z11. Ifocc(x,p)=occ(x-1,p) then p
commutes with y, if occ(y,p)=occ(y_1,p) then pcommutes with x.

(Hi) z generates the centre of G and z=yxy'Ix_1=xy'Ix"1ly = y Ix*lyx=x-1yxy_1.

(iv) With a,c,b,de Z:

(a,c,b)=xayb/c=ybxaz(c-ab>
(a,c,b)xd= (a+d,c+bd,b).
(a,c,b)yd= (a,c,b+d).
(a,c,b)zd= (a,c+d,b).
02((a,c,b)) = (-a,-c,b).
~((a.b.c)) = (a,-c,-b).
04((a,b,c)> = (-a,c,-b).
05((a,b,c)) = (b,-c+ab,a).
06((a,b,c)) = (-b,c-ab,a).
a7((a,b,c)) = (b,c-ab,-a).
@B((a,b,c)) m (-b,-c+ab,-a).
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QI
We justify the introduction of the maps Oj (I<j£8) by the next lemma.

5311 Lemma.

(i) If (a,c,b)e G with a,c,be W then g can be expressed as pj(b), or as p~a.b.r.s) (2<i<6)
for some r,se W

(ii) If geG, then g can be expressed as Ojip”b)), or as OjCp~a.b.r.s)) (I<j<8 and 2£i<6)
for some a,b,r,se K

This lemma will provide us with the following method of calculating I g I, for arbitrary
geG. By (ii) we can express g in the form OjCpjib)) or Oj(pi(a,b,r,s)). Then, by 5.3.9, we
will have llg Il = llp~b)! or lip~a.b.r.s)!!, respectively, which can then be read off table
538.

Proofof (i):

We choose (arbitrary) a,c,be Wand exhibit (a,c,b) as a product pjib), or as a product

P2(a,b,r,s) (depending on one Of six possible situations).

O<c<aband 0=a.
Then c¢=0, and we may put (0,0,b)=p1(b)=yb.
O<c<aband O<a.
Then c=s+br for some (Ks<b and O<r<a. So (cf. 5.3.8), we may put:-
(a,c,b)=pz2(a,b,r,s).
a<bandab<c<b(b+l).

Let n be maximum so that nb<c. Then a<n<b, and so we can write c=s+bn for some
0<s£b. We then define r by n=a+r, so that c=s+b(a+r). Note that 0<r, 0<s<b and
a+r=n<b, so (cf. 5.3.8) we may put:-

(a,c,b)=p3(ab,rs).
a<band b(b+l)<c.

Let n (necessarily >b) be maximum so that I+n(n-I)£c. Note that (by the choice of n)
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c<l+n(n+l), so we may assume either I+n(n-1)Ec<I+n2 or I+n2*c<l+n(n+l).

Supposing I+n(n-1)Ec<I+n2. We would then have c=s+n(n-I) for some I<s<n. By
defining r so that b+r=n, we have: c=s+(b+r)(b+r-I) with I<s<b+r, 0<r (because n>b)
and a<b+r (because a£b). So (cf. 5.3.8), we may put:-

(a,c,b)=p5a,b,r,s).

Supposing I1+n2£c<l+n(n+l). We would then have c=s+n2 for some I<s<n. By
defining r so that b+r=n, we have: c=s+(b+r)2with I<s<b+r, 0<r (because n>b) and
a<b+r (because a£b). So (cf. 5.3.8), we may put:-

(a,c,b)=p6(a,b,r,s).
b<aand ab<c<a(a+l).

Let n be maximum so that na<c. Then b<n<a, and we may write c=s+an for some
0<s™a. We then define r by n=b+r, so that c=s+a(b+r). Note that 0<r, 0<s<a and b+r=nfa,
so (cf. 5.3.8) we may put:-

(a,c,.b)=p4(a,br,s).
b<aanda(a+l)<c.

Let n (necessarily >a) be maximum so that I+n(n-1)£c. Note that (by the choice of n)
c<l+n(n+l), so we may assume either I+n(n-1)Ec<l+n2, or I+n2*c<l+n(n+l).

Supposing I+n(n-I):£c<l+n2. We would then have c=s+n(n-I) for some I"s<n. By
defining r so that b+r=n, we have: c=s+(b+r)(b+r-1) with I<s<b+r, 0<r (because n>a>b)
and a<b+r (because b+r=n>a). So (cf. 5.3.8), we may put:-

(a,c,b)=p5a,b,r,s).

Supposing 1+n2*c<l+n(n+l). We would then have c=s+n2 for some I£s<n. By
defining r so that b+r=n, we have: c=s+(b+r)2 with 1"s"b+r, 0<r (because n>a>b) and
a’b+r (because b+r=n>a). So (cf. 5.3.8), we may put:-

(a,c,b)=p6(a,b,r,s).

15-3.11(01
Proofof (ii):

Let a,c,be DJ then, by (i), we need only exhibit (+a,+c,+b) as Oj((S,6,6)) for some
I£j£8 and &6,Be I The required expressions are easily derived provided we bear in mind
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the definitions ofthe maps Oj (defined on page 124), and the relations of lemma 5.3.10

(a,c,b) = Cll((a,c,b)).

(-a,-c,b) = x~aybz_c
= x"ayb(y_Ixyx_1)c = o 2(xayb(y_Ix-1yx)c)
= 0 2(xaybzc) = 02((a,c,b)).
(a,-c,-b) = xay"bz_c
= x"hCyixyx'1)0 = <B(xayb(yxy-1x_1)c)
= cG(xaybzc) =a 3((a,c,b)).
(-a,c,-b) = x_ay"bzc

= x ay 'b(yxy_Ix_1)c = o4(xayb(y 1x-1yx)c)

= a4(xaybzc) = a4((a,c,b)>.
(a,-c,b) = xaybz'c = ybxaz_(c+ah)

= ybxa(xyx_1y-l)<c+ab) = <B(xbya(yxy-1x-1)(c+ah))
=0 5(xbyaz(c+ab)) = 05((b,c+ab,a)).
(a,c,-b) = xay~bzc = y-bxaz<c+ah)
= y_bxa(xy*""x_"y)(c+ab) = <b(xbya(yxy~Ix_i)(c+ab))
= a6(xbyaz(ct+ab)) = a6((b,c+ab,a)).
(-a,c,b) = x_ayhzc = ybx_az(c+ah)
= ybx-a(xy_"x_"y)(c+ah) = Q7 (xbya(yxy~Ix'l)(c+ab))
=0 7(xbyaz(c+ab>) = 07((b,c+ab,a)).

(-a.-c.-b) = x-ay~bz~c = y-bx-az-(c+ab)

= y"bx_a(x- ly-Ixy)(c+ab) = ag(xbya(yxy_Ix_I)(ctab))

= a 8(xbyaz(c+ab>) = ag((b,c+ab,a))
|5.3.1100 and 5.3.11 1
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Before going any further with the proof of 5.3.1, it is worthwhile restating some
terminology and elementary facts concerning the paths of the Cayley graph T=1~C(G).

Ifre [R then B(r)={ pe T 1 d(l,p)<r }is the r ball of T, and S(r)={ peT I d(l,p)=r}
isthe r shell of T. We remind the reader thatd is a metric on the whole ofT, so an edge
stays within B(n) (ne N) if and only if at least one of its end points lies in B(n-1).

In all the subsequent proofs we will be referring to ‘paths’ strictly within the context of
‘paths from (a specified vertex)’. So we may as well define a path simply by stating the
unique finite sequence of labels of the (directed) edges which it traverses. Also (bar such
assertions being trivial consequences of preceding statements), whenever we assert that
some geG lies inaball B(n), then g will be expressed as a product in the x*'s and y~'s.
The assertion may then be checked by counting the number of x~'s and y's in this
product (and noting that the sum is no more than n). Whenever we assert some ge G liesin
a shell S(n), then g will be expressed as Oj(pj(a,b,r,s)) (I<j<8 and 2<i<6) for some
a,b,r,se WWe may then check, by table 5.3.8, that llpi(a,b,r,s)ll = n (and, by table 5.3.8 and
lemma 5.3.10(iv), we may calculate aj(pi(a,b,r,s)) ).

Recall that, for each L e B, we defined the relation join(L), on the points of V, by
Pj join(L) p2 if and only if pj isjoined to p2by at least one path which stays within
B(l| pt ) and has length no more than L. The relation join(L) is neither symmetric nor
transitive (unless L=0), but we do know that:

Pi join(L) P2 ax* IPIU=HP2H~A P2 join(L) Pi »
Pi joinCL™ P2 anil P2join(L2) Ps * Pi joiniLj+L") Ps «

Finally, supposing gj,g2eG, we shall write g=gi°g2 whenever g=gjg2 with

ng,ii - ng2ii.
The next lemma is merely a formulation of a simple technique which we will use
frequently to simplify the search for paths.

53.12 Lemma.

Suppose gi, g2, he G and integer L are such that g=gj°g2and g2join(L) g2h >*hen
8join(L) S1m

The proof is trivial and we omit it.
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The next lemma and its corollary will conclude the preliminaries, they will be referred
to, mostly implicitly, to shorten (somewhat) the proof of theorem 5.3.1.

53.13 Lemma.
Let g=Pi(a,b,r,s) (for some 2<i£6). If gl £ llgz_1ll, then g join(iO) gz_1-
Proof:

Suppose g =p2(a,b,r,s)
=x(a-r-)ysxy(b-s)xr (with  r<a, O<s<band Il g ll=a+h).
If b=0 then s= 0 and we have:-
ge S(a), but gz_1=05(p3(0,a,0,1))e S(a+2).
If r=s=0 and a>b, then we have:-
ge S(at+b), but gz_1=a5p3(b,a,0,l))e S(a+b+2).
If r=s=0 and a<b, then we have:-

ge S(a+b), but gz "Ojip~b.a.0.1"e S(a+b+2).

I1f s=0 and b,r>0, then we have
g=x"'Ny~ e S(ath).
So, if r>1 then:-

gx_1=x(a-Oybx(r-l)e B(a+b-I), gx-1x-1e B(a+b-2),

and therefore,
gx_Ix-ly leB(a+b-I) and gx_1x_ly_1xe B(at+b).
Also:-
gx_Ix_ly_Ixy =gz_,x_1= x(ary(b_l)xyx(r_2)e B(a+b-I),

thus we may traverse X_"X“*y_*X,y,X.

If r=1then:-

g=x(a-")ybxe B(atb),



and so we may traverse x-1,y"*x,y.
We are left with s>0.
If 3<r then x"3" “1""1~ 2 may be traversed.
If 3£r>0 then x"(r+1\y _1,x,y,xr may be traversed.
I1f r=0 and b>s then y-1,x_1,y-1,x,y,y may be traversed.
1f r=0 and b=s then x-1,y _1,x,y may be traversed.

Suppose g=Ps(a,bj,s)
_ x-(r+1)ySXy(b-s)x(a+r) (wjth O<r, a+r<b, 0<s<b and Il gll=2(r+l)+a+b).
If s=I then we would have:-
g= x- ry (b-I)x-"yx(a+r+)e S(2(r+1)+a+b),
and therefore,

gx_le B(2r+l+a+b) and gx_1y‘le B(2(r+l)+a+b).
Also:-

gx YA x« X' rybx(atr)y_1eB(2r+l+a+b),

thus x'*y'~Ax.y may be traversed.

If s>I then we would have:-

g=x~(r+l) op2(a+r+l,b,a+r,s).
Also:-
p2(a+r+l,b,a+r,s)e S(r+l+a+h),
p2(a+r+lb,atrs)z 1= p2(a+r+l,b,a+rs-1) e S(r+l+a+h),
and we have just proved that in this situation:-
p2(atr+l,b,a+r,s) jOm(10) P2(a+r+l.b,a+r,s-I).
Therefore, by lemma5.3.12,
g join(10) 8Z_1-
Suppose g =p4(a,b,r,s)
= y(b+nx(a-s)yxsy-(r+i) (with (K, bfr<a, O<s<aand llg lI=2(r+l)+a+b).
Provided r>0, we can easily see that:-
gye B(2r+l+a+b), gyye S(2r+a+b),
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whence:-
gyyx_1le B(2r+l+a+b), gyyx_ly~le B(2(r+l)+a+b).
Also:-
gyyx~*y "*x = gz"*y = yO~ )x(aH ‘ yx(s_1)y_re B(2r+l+a+b),
S0 we may traversey,y,x_1y_1xy 1
1f r=0 then:-
g = ybx(a-s)yxsy-l e S(2+a+h),

and we can see that y,x_1,y_1,x may be traversed.

Suppose g =p5(a,b,r,s)
= x-(b+r-a)ySxy (b+r-s)x(b+r-1)y-r
(with O<r, a<b+r, 0<sEb+r and Il gll1=4r+3b-a).
If s=1 then we may write g as:-
g = x-(b+r-a-1y(b+r)x(b+r-1)y-(r-1)xy -1x-1
As this product contains precisely llg Il generators, so we may traverse x,y,x-1,y_*
If s>1 then we have:-
g =x-0+*3) op4(b+r,b,r-1,s).
Also:-
pd(b+r,b,r-1,s)e S(3r+2b),
pa(b+r,b,r-1,s)z_1=p4(b+r,b,r-1,s-1) e S(3r+2b),
and we have already proved that in this situation:-
p4(b+r,b,r-1,s) join(I0) p4(b+r,b,r-1,s) "1
Therefore, by lemma5.3.12,

6join(10)Sz

Suppose g =p6(a,b,r.s)

_ x-(b+r+l-a)ysxy(b+r-s)x(b+r)y-r

(with 0<r, a"b+r, O<s<b+r and Il g ll=4r+2+3b-a).
If s=1 then we may write g as:-
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5.3.14 Corollary.

Let gz=Pi(a,b,r,s) (for some 2£i£6). If g =MW gz I, then g jdn(l0) 8Z-
Proof:

We have gz of the form pta.b.r.s), and II(gz)z-1l = lig I =ligz Il. So, by 5.3.9,
gz join(10) g. whence gjain(10) gz (because llg Il =ligz I1).
I'M g |

We are now ready to prove theorem 5.3.1, i.e., with C={x,x~*,y,y~*}, IV(G) is
almost convex. By theorem 5.1.2, it will suffice to prove that TC(G) has the property ac(2),
i.e., there is an ice N such that, foranyge G andc,£e C:

0) whenever ligll=1ligc II, then gjoin(K) gc,
00 whenever lig Il = lgcE 11, then g join(K) gc6.

We immediately prove:
5.3.15Lemma.

(i) cannot occur.
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Proof:

The relations (m.n.pix11 = (mil,nip,p) and (m.n.pty1l = (m.n.pil) hold for all
m,n,pe Z. We can easily see from these relations that, for any g=(m,n,p)e G and ce C,
(9)I+(g)3and (gc)i+(ge-3 must differ by precisely 1. By corollary 5.3.4, however, we
know that the difference between (g)i+(g>3 and llg llis even, and that the difference
between (gc)j+(gcys and lige llis even. So it is not possible for ge G and ce C to be such

that lgli=lige II.

r»N~i

So we are left with the task of finding some k with the property that, for any ge G and
c6eC:

(ii) whenever llg Il = Il gc6 11, then g jOin(K) get.

We will prove that tc=84 is a (rather generous) bound. The proof is laborious; we will
catalogue all the possibilities of (ii) as follows.

We first prove (ii) for all g=pj(b). Then, in proposition 5.3.16, we will prove (ii) for all

9= Pj(a,b,r,s) (2<i£6), and all c6 e {xy, x_1y, xx, yx_1, yx, yy }. In proposition 5.3.18 we
will prove (ii) for all g= pfa.b.r.s) (2£i76), andallc6e {y_Ix_1,y_Ix,x_Ix_1,xy_1,
X"ly-%y-ly-1 }. We conclude the proof of theorem 5.3.1 by describing how 5.3.16 and
5.3.18 imply (ii) for an arbitrary geG and all ceC.

So let us prove (ii) for all g=p1(b)=yb (be N), and all c¢,te C (with c6£l). This is
absolutely trivial. 1f b=0 then g=1, so Ilg 11=0while llgc6 I1=2. If b>0 and c=y-1, then
g l1=b, Fgc lI=b-I and so, trivially, gjoin(2) Sc6-b > 0 and c*y_1. then is easy (but we
do not bother) to prove that llg lI=b while Il gc6 1=b+2.

Before beginning propositions 5.3.16 and 5.3.18, we should mention the possibilities of
(ii) which are omitted from the cataloging.

We may omit g=pi(a,b,r,s) post multiplied by c6 whenever the defining product (page
120) of pj(a,b,r,s) ends with c_1. This is because the defining product of Pj(a,b,r,s) is a
product of precisely llpa.b.r.s)!! generators of (x,y). Thus, if Pj(a,b,r,s) ends with c**1, then
IPj(a,b,r,s)cll = IPi(a,b,r,s)ll-1 and, trivially, we have Pi(a,b,r,s) join(2) Pj(a,b,r,s)c6.

We may omit g=p2(a,b,r,s) post multiplied by c6= xy, xx, yx or yy. This is because the
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defining product of p2(a,b,r,s), i.e., x(a-r“I>sxy(b*s>x with 0<r<a and 0<s<b, is a product
of a+b of the generators of {x,y}. Thus p2(a,b,r,s) is a product of a+b+2 of the generators

of {xy} and so, by 5.3.3, we would have Ilgll=a+b while Il gc6 Il =a+b+2.

Proposition 5.3.16.

With g=pi(a,b,r,s) (2£i<6) and cietxy.x"y. xx, yx*1,yx,yy},
whenever lig ll = liget 11, then gj0in(36) Sc£-

Proof:

Let cE=xy.

Suppose g=p3(a,bj,s)
= X"(r+1)ysxy(b* %'a+r) (with 0<r, a+r<b, 0<s<b and n=Il g lI=2(r+l)+a+b).
If s>a+r+| then we would have:-
gxy = p3(a+l,b+l,rs-a-r-1) e S(n+2).
So we may now assume s™a+r+1. We will then have:-
gz' 1~ X'<r+1>y<»-1>xy<b* 1->x<at+r>e B(n),
and, if I<a+r,
gz_ly - x'ryN+b_a"mxytatr+l_sN a+r' 1%e B(n-l),
or, if 0=a+r,
gz-ly =y (b+l)e B(n-1).
Therefore (when s<a+r+l):-
gz_le B(n), gz-lye B(n-l) and gz-1y x = gxy e B(n),
and so (by 5.3.13) we may traverse z-1,y,x.

Suppose g = p4(ab,r.s)
=y(b+r)x(a-s)yXsy-(r+1) (wjth 0<r, b+ra, 0<s<a and n=ll ¢ 1=2(r+l)+a+b).
We have:-
gz-1 = y(b+r)x(a+l-s)yX(s-1)y-(r+1) € B(n),

and thus



Suppose g =p2(a,b,r,s)
_ X(a-r-)ySxy(b-s)xr (w,th (K r<a.(Ks<b and n=lIl g ll=a+b).

Clearly we may assume that r=0.
If b=s then g=x(a_1)ybxe S(a+b), and therefore gx_1e S(a+b-I).

If s<b and b+I<a-I then:-
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ge S(a+b), but gx"*y =<J5(p3(b+l,a-1,0,b-s))e S(a+b+2).
If s<band b+I"a-1 then:-

ge S(a+b), but gx_1y =O5(p4(b+1,a-1,0,b-s)) e S(a+b+2).

Suppose g =p4(a,bj,s)
_ y(bHn)x(a-s)y>XSy-(r+l) (with 0<r, b+r"a, 0<s<a and n=Il g l1=2(r+l)+a+b).
Note that n*a+a+2(a+l)=4a+2, so we may as well assume a>2 (if a<2 then n<6
and the distance between any two points of B(n) would be at most 12).
If s+1”a then we would have:-
gz =p4(a,b,r,s+l) =y(b+)x(@_s % x(s+% “(r+1)e S(n),
and thus
gzy o B(n-1), gzyx-1 =gx*y eB(n).
So, when s+17a, we may traverse z,y,x_1.
If s=aand rEl then:-
g =y (b*r+l)xay- (r+1) 6 S(2(r+1)+a+b),
and so we may traverse y,x_1y,x_lLy,x,y~2.
If s=a and r=0 then:-
g =y(b+l)xay-leS(2+a+b).

and so we may traverse y,x-2,y,x,y_1.

Suppose g = p5(a,b,r,s)
_ x-(b+r-a)ySXy(b+r-s)x(b+r-1)y-r
(with 0<r, a<b+r, 0<s"b+r and n=Il g lI=4r+3b-a).
If s<b+r then we would have:-
gz=p5(a,b,r,s+l) e S(n),
also
gzy-X-0>%, - < >y (b*r-*-, B, -, )y-<", ) €B (n-1),

and so we may traverse z,y x-1.
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If s=b+rand r=1then:-

g= € 5(n) (n=3s+l-a).

gye B(n-I), gyx-i e B(n-2), gy x'ly 1e B(n-1), gyx-ly-**"1e B<n)-
Also
gyXly-Ix_1y =gx_1yx_1=x (s-*)y(*-l)x-lyx(s"DeB(n-I),
so0, when s=b+r and r=1, we may traverse y,x-1,y-1,x'1y,x.
Ifs=b+rand r>1 then we have:-

g = x~(s_a) op4(s,s-r,r-1,s),

also
p4(s,s-r,r-1,s)e S(2s-r),
pa(s,s-r,r-1,s)x_1y =p5(s-I,s-r+l,r-l,r)e S(2s+r),
We have just proved that in this situation:-
P45‘s—r,rrl,s) join(i2) p45,s'v‘r—l‘s) X'>y.

therefore, by lemma5.3.12,

6join(12)Sz

Suppose g = p6(a,b,r,s)
= x-(b+r+l-a)ysxy(b+r-s)x(b+r)y-r
(with 0<r, a<b+r, 0<s<b+r and n=Il g lI=4r+2+3b-a).
If s<b+r then we have:-
gz =P6(a,b,r,s+l1) 6 S(n),
gzy = x<bw'l-|V s+l) x/b+-,-Ix<bH)y-fr-16 B(n-1),
thus, we may traverse z,y,x_1.
If s=b+rand r=1then:-
g= x-(s-a+l)ysx(s+1)y-le S(n) (n=3s+3-a),
and so
gy e B(n-1), gyx-1e B(n-2), gyx-ly*1€B(n-l), gyx-ly_ix_1e B(n).
Also
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gyx-ly-Viy-gx-tyx-1- x-<-*+I>s-,)x-lyx*€ B(n-1).
so, when s=b+r and r-1, we may traverse y.x".y-".xX".y.x.
If s=b+r and r>| then we have:-
g=x_(s_at+l)op4(s+l,s-rj-l,s+1),
also
pA(s+1,s-rj-1,5+1) e S(2s+r+l),
pa(s+l,s-r,r-1,s+1)x'y »p6(s,s-r+l,r-1,r)e S(2s+r+l).
We have already proved that in this situation:-
pa(s+1,s-rj-1,s+1) join(i2) P4(s+l,s-r,r-1,s+1)x"*y"
therefore, by lemma 5.3.12,

6 join(12)8z
c6=x_ly

The maximal path length so far is 12, we now post multiply by c6=xx.

Suppose g=p3a,b,r,s)
_ x-(r+1)ySXy(b-s)x(a+r) (wjth O<r, a+r<b, 0<s™b and n=ll g 1I=2(r+l)+a+b).
If ba+r+2 then we have
gxx =p3(a+2,b,r,s) e S(n+2).
Also, if b<a+r+2 and r=0, then we would have
gxx =p4(a+2,b,0,s) e S(n+2).
So we may assume b<a+r+2 and r>0, but, as b>a+r anyway, so we arc left with
(b=a+r+l and r>0) or (b=a+r and r>0).
If b=a+r+| and r>0, then gxx=p5(a+2,b,l,s) e S(n+2).
If b=a+r, r>0 and s>I, then gxx=p6(a+2,b,l,s-1) e S(n+2).
If b=a+r, r>0 and s=I, then we have:-
g - X-<r+1>yxy”-l)xbe S(2b+r+2),
gz1-x‘rybxbe B(2b+r),
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and thus
gz-1x e B(2b+r+l), gz_1xy e B(2b+r+2).
Also:-
gz-1xyx =x-(r' Zyb+1>x(b+) e B(2b+r+l),

therefore

gz xyxy'l=gxx e B(2b+r+2),

and so we may traverse z_1,X,y,x,y *

Suppose g =p4(a,b,r,s)
- y(b+nx(a-s)yXsy-(r+1) (with 0<T, b+r<a, 0<s<aand n=|| g lI=2(r+l)+a+b).
If s<r then we have:-
gx =y(b+)xay-(r-s>xy-se S(n-1),
SO We may traverse X,X.
If s>2r then gxx =p4(a+2,b,r,s-2r) e S(n+2).
So we may assume r<s£2r, and thus r”I, s"2. We would have:-
gz"1=p4(a,b,r;s-1) e S(n),
gz-1z-1 =y(b+Ox(a+2-s)yXs- 2>y-(r+1>e B(n).

and thus
gz-1z-1y eB(n-1), gz_1z_lyxe B(n).
Also
gz-1z- Lyxx»y<’ +1- Dx<2r-syx<ats+2' 2,>y", 6B (n-I),
and thus

gxx =gz_1z_lyxxy“1€ B(n),

So, when r<s£2r, we may traverse (the rather long route of) z_1,z_1y,xx,;

Suppose g = p5(a,b,r,s)

m x-(b+r-a)ysXy(b+r-s)x(b+r-l)y-r

(with 0<r, a<b+r, Cks”b+r and n=I| g l1=4r+3b-a).
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If s>2r and a+I<b+r, then gxx =p5(a+2,bj+1,s-2r)e S(n+2).
If s>2r and a+1=b+r, then gxx =p4(a+2,b,r,s-2r) e S(n+2).
If rs then we would have:-
gx=x*(b+r_a"' 1)y(s+b)xy(r s)x(b+r' 1)y ‘re S(n-1),
and so we may traverse X,X.
We are left with the possibility of r<s£2r, but then we would have:-

gz'l=p5(a,b,rs-1)eS(n),

also
gz-"2 "' 1=x-<btr-a>y(s- 2>xy(b+r+2-s)x(b+r- 1>y-r GB(n),
and thus
gz_1z_lyeB(n-l), gz_1z_,yxg B(n).
As
gz'z'yxx =x-0>+r-a-l)y(sth-r)xy(er-s)x(b+)y-(r-1) e B(n-1),
SO we may traverse Ay.xxy-1.

Suppose g =p6(a,b,r,s)
_ X-(btr+l-a)ysxy(b+r-s)x(b+r)y-r
(with 0<r, a™b+r, O<s<tH-r and n=IIg lI=4r+2+3b-a).

If s>2r+| and a+I"b+r, then gxx =p6(a+2,b,r+l,s-2r-1)e S(n+2).

If s>2r+1 and a+l=b+r, then gxx =p4(a+2,b,r+l,s-2r-1) e S(n+2).

I1f r~s then we would have:-

gx=x-<b" axb+rxb+r)y <" seS(n-1),

and so we may traverse X,X.

S0 we may now assume r<s"2r+|.

If a=b+r and s=2r+l, then:-

gxx =p4(a+2,b,r,s-2r) g S(n+2),

and so, as aEb+r anyway, we can also assume either a<b+r or (a=b+r and s<2r+l).

If a<b+r then:-

gz"*z"*yxx =x-(b4r-a ,)y(s+b-r)xy<2r+l-s)x(btr)y-r GB(n-I),
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or, if a=b+r and s<2r+l, then:-
gz-1z-1yxx =y"b+r-1)X(2r s)yx(s+b+2 r)y-<r-1)e B(n-I).
Whichever, we also have:-
gz_1=p6(a,b,r,s-1) e S(n),
gz-1z-1 =x-(b+r+l-a)y(s-2)Xy(b+r+2-s)x (t>+r)y-rg B (n)
and therefore
gjoin(20) g*"1*'1. gz"’z"y e B(n-l), gz-'z-'yx e B(n).

As gz'lz~*yxxe B(n-I), so we may traverse z",z'Ay,x,x,y"V
| e

The maximal path length so far is 24, we now post multiply by c6=yx_1.

Suppose g =p2(a,b,r,s)
=x"a'r-1V sxy"b-s r (with (K r<a, 0<s<b and n=lIl g ll=a+b).
If s+br<b+l and a-1<b+I then:-
gyx-1=04(p4(b+l,a-1,0,b+I-s-br)) e S(a+b+2).
If s+br<b+l and a-12:b+I then:-
gyx-1 =a5(p3(b+l,a-1,0,b+I-s-br)) e S(a+b+2).
So we can now assume s+brb+1, and therefore, as 0<s<b anyway, b>0 and r>0.
If s=0 then r>1 and we would have:-
gz"1.x(»-0y(b-l)xyx(r- 1) € B(a+b),
or, if s>0 then we would have:-
9Z-1 =x(a_r_1)y(s' )xy’b+1‘ sVeB(a+b).
Whichever, we can see that:-
gz_le B(ath), gz~ x"gyx”"y-le B(atb-lI),
and so we may traverse z_1,x_1y.

Suppose g=p3(a,br,s)
= X' Y+¥ysxyib-s)x(a+r) (with 0<r, a+r b, 0<s<b and n=Il g lI=2(r+l)+a+b).
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We have:-

gZ-1 _x-ry(b+1-s)x-ly (s-1)x(a+r+l) e B(n),
and thus
gz-1x_le B(n-l), gz'Ix‘ ly-gyx'ly" € B(n).

So we may traverse z_1,x ,y.

cE=yx 1
The maximal path length so far is 24, we now post multiply by cE=yx.

Suppose g=p3(a,b,r,s)
_ X-(r+1)ysXy(b-s)x(atr) (with o<r, a+r<b, 0<s<b and n=ll g I=2(r+I)+a+b).
Ifatr<s then gyx =p3(a+l,b+l,r,s-a-r)eS(n+2).
If a+r”'s then we would have:-
gy =x"rybx'a+r_s)yxs 6 B(n-1),

and so we may traverse y,X.

I ct-yx |

The maximal path length so far is 24, we now post multiply by c6=yy.

Suppose g=p3(a,b,r,s)
a x-(r+1)y sxy(b-s)x(a+r) (wjth O<r, a+r'b, 0<s<b and n=|| g |=2(r+l)+a+b).
If s<atr then:-
gy -X - rybx<atr-s>yx5e B(n-1),

and sowe could traverse y,y.

If 0=a+r then gyy =p3(0,b+2,0,s)e S(n+2).
So we can now assume 0<a+r<s.

If a>0 then we would have:-

geS(a+b+2(r+l)),

and

gy x '1=p3(a-1,b+l,r,s-a-r)eS(a+b+2(r+l)).
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Also, we can certainly assume, without loss of generality, that
gy x_1(xy) =gy y e S(a+b+2(r+l)).
Thus, we would already have proved
g join(24) gy 'i"1. gy x"1jomud gy y.
and so (when a=0)
8 join(36) 8y y-
I1f a=0 and 2r<s, then we would have gyy =p3(0,b+2,rs-2r)e S(n+2).
I1f a=0 and 2r£s, then r>0 (because a+r>0) and so, also, 2r £ s. We would now have:-
g=x*rop3(r,b,0,s).
Also
p3(r,b,0,s) e S(r+a+b),
p3(r,b,0,8)yy =p2(r,b+2,r-1,b+s-2r+2) e S(r+2+b)
and we have just proved that in this situation
p3(r,b,0,s) join(36) P2(r,I>+2,r-1,b+s-2r+2).
Therefore, by lemma 5.3.8,

8 join(36) gyy-

| ct=yy and 5.3.16 |

Corollary 5.3.17

Suppose ge G, ete {y-1x-1,y_1x,x_1x-1, xy-1,x 'V "1, y“ly"1) and lg Il = llgcé Il
with gc6=(a,d,b) for somea,b,de N, then g j0in(36) 8C"-
Proof:

By 5.3.11(i), we may write gc6 = Pj(b) or Pj(a,b,r,s ) (27i76) for some r,se K Also,
I(gc6)(c'c)_ 1= Ngetll (=11g ) with (e'e)"Lle {xy, x-ly, xx,yx-1,yx, yy }, thus, by
proposition 5.3.16, getjoin(3e) 8- As llg l =llget II, so we have gjoin(36) 8c6-

rw i
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Proposition 5.3.18.

With g=Pj(a,bj,s) (2SiS6) and c6 e {y_1x-1,y_1x,x_1x_1,xy_1,x_1ly-1,y iy 1},
(ii) whenever llg I = liget Il,then gjoin(e4) get.

Proof:

We note that, by corollary 5.3.17, (ii) would already have been proved if gct=(a,d,b)
for some a,b,de N.

LetcE=y _1x*.

Suppose g =p2(a,b,r,s)
=x(@"r_l)ysxy(h-s)xr (with OSr<a, OSsSb and n=II g ll=a+b).
If s<b and r=0 then:-
gy -1 «x@“r"1ysxy(b~s~1)e B(n-l),

and so we may traverse y, x_1.

If s<b and r>0 then:-

9z =p2(a,b,r,s+l) e S(n),
gzx-1=x(@-r-1)y(s+,)xyC'-s-)x(r-1)e B (n-I)

and so we may traverse z,x_I,y|.

I1f s=b then gy -~-~(a-l.br+1.b-1) with a-1,br+1>0. So, by 5.3.17, we may as
well assume b=0, but then g =xa6 S(a) and gy -Jx~1e S(a+2).

Suppose g=ps(a,b,r,s)
- X-(r+1>ysxy(b*s)x(a+r) (with OSr, a+rSh, 0<sSb and n=|| g lI=2(r+1)+a+b).
If s<b then we have:-
gz=ps3(a,b,r,s+l)e S(n),
and so, by corollary 5.3.13,

8 join(l0) 8Z-
Also

gzXx1-gy~"x"y -x-y b-*-1)x"1y(sttMatr)eB (n-1),

145



and so we may traverse z,x_1y'V
If s=b then gy-Ix-1«(a-1,b-1,b(a+r)+I) with b-1,b(a+r)+I>0. So, by 5.3.17, we
can assume a=0. Ifr=0 then we may traverse x*.yT.x.y*.x".y. Ifr=1 then we may

traverse x_1,y ~y”~x'My.x. If r>| then we may traverse x“1,y-1,X_1,y“1,X-1,Y,X,X.

Suppose g =p4(a,b,r,s)
= y(b+nx(a-s)yxsy-(r+1) (with 0" r, b+r*a, 0<s<aand n=ll g [|=2(r+1)+a+b).
Note that n<2(a+l)+a+a=4a+2, and so we may as well assume a>2 (if a<2 then n<10
and the distance between any two points of B(n) would be at most 20).

Also, gy_i1x_1 =(a-l,s+a(b+r)-b+l),b-I) with a-1>0. So by 5.3.17, we may as well
assume b=0 or s+a(b+r)<b-l. As s+a(b+r)<b-I =>b+r=0, so we can restrict to b=0.
Thus, we are assuming a>2 and b=0.

Ifr+l<a-2 and a<s+r+2 then gy_1x_1 =oe(p3(l,a-l,r+l,s+r+2-a)> e S(n+2).
Ifr+l<a-2 and a>s+r+2, we would have:-
9z =p4 (0 ,aj,s+l),
and thus, by 5.3.14,
S join(10) 82-
Also,
gzx-1=gy-1x_ly =yn'a_s-r_2Vx"str+1V"r+1%e B(n-l),

S0 we may traverse z,x-1,y_1.

We are left withr+1>a-2, but as r<a-b anyway, and we are assuming b=0, so we
haver=a,a-1 ora-2.
If r=a then we have:-
geS(3a+2), but gy_1x_1 =as(ps(l,a-1,2,s))eS(3a+4).
If r=a-1 then we have:-
geS(3a), but gy-1x_1 =os(ps(l,a-1,1,s))eS(3a+2).
If r=a-2 then we have:-

geS(3a-2), but gy_1x_1 =os(ps(l,a-1,1,s))eS(3a).
Suppose g =ps(ab,r,s)
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_ x=(b+r-a)y sxy(b+r-s)x(b+r-l)y-r
(with 0<r, a<b+r, 0<s<b+r and n=Ilg||=4r+3b-a).
Note that n<4(b+r), so we can assume b+r>3.
Also, we have gy”x-*=(a-I,s+(b+r)(b+r-1)-b+1), b-1) with s+(b+r)(b+r-1)>b+l.
So, by corollary 5.3.17, we can assume a=0 or b=0.
I1f a=0 and s<b+r then we would have:-
gz=ps(a,b,r,s+l),
and so, by corollary 5.3.14,
gjoin(10) i z-
Also (as b+r>3),
gzx 1 =gy'1x -,y my-rx"(bH)y(,+1)xy(b+r-s-1)x(b+r-2)€ B(n-I).
S0 we may traverse z,x_1,y_1.
I1f a=0 and s=b+r, then we may traverse x"1,y_1,X-1,y“1,X-1,y,X,X.
Ifb=0 and a+s>r then gy'ix“1=as(ps(l,a-I,r+1-a,a+s-r))e S(n+2).
If b=0 and a+s<r then we would have:-
gy-ley (r-1"(» "y, x(r-a-l)y-(r-1)x-fr-a)6 B (n .1)i

and so we could simply traverse y_1,x'1

Suppose g =ps(a,b,r,s)
_ x-(b+r+l-a)ySXy(tHT-s)x (b+r)y-r
(with 0<r, a<b+r, (ks<b+r and n=Ilg||=4r+2+3b-a).

Note that n”4(b+r)+2, so we can assume b+r>3 (if b+r<3 then n”lO and the distance
between any two points of B(n) would be at most 20).

Also gy_1x_1 =(a-1, s+(b+r)2-b+I ,b - 1) with s+(b+r)2>b-I. So, by corollary
5.3.17, we may as well assume a=0 or b=0.

If a=0 and s<b+r then we would have:-

gz =ps(a,b,r,s+l),

and so, by corollary 5.3.14,

g join(10) gz-
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Also (as b+r>3),
gzx' 1 =gy_1X '1y =y-rx-(b+r+1-a)y(st1*xy(b+r~s-1)x(b+r-1)e B(n-1),
S0 we may traverse z.x'A.y'L
If a=0 and s=b+r, then we may traverse X‘1,y'1,X_1,y'1,X '1,y,X,X-
If b=0 and a+s>r, then gy”x~1 =06(ps(l,a-1,r+2-a,a+s-r)) e S(n+2).
1f b=0 and a+s<r, then we would have:-
gy _l =yrx(a+s)y-Ix(r-a-s)y-rx-(r-a) g8 (n-1),

and so we could simply traverse y*1, x"1.
Co=y'1X_1
The maximal path length so far is 36, we now post multiply by cE=y-1x.

Suppose g =P2(a,b,r,s)
_ x(a-r-ysXxy(b-s)xr (with 0" r<a, 0<s<band n=ll g ll=a+b).
We have gy_1x =(a+l ,s+br+b-1,b-1). So, by corollary 5.3.17, we can assume
b=0, but then s=0, g= xas S(a) and gy_1xe S(a+2).

Suppose g=ps(a,b,r,s)
_ x-(r+1)ySXy(b-s)x (a+r) Q<r, a+r<b, 0<s<b and n=ll g lI=2(r+l)+a+b).
We have gy_1x=(a+1,s+b(a+r) ,b-1). So, by corollary 5.3.17, we can assume
b=0, but then a=r=0, n=2 and the distance between any two points of B(n) is at most 4.

Suppose g =p4(a,b,r,s)
= y(>+nx (a-s)yXsy-(r+1) (with 07 r, b+r<a, O<s<a and n=Il g lI=2(r+l)+a+b).
We have gy_Ix =(a+l1 ,s+a(b+r)+b-I,b-1), and so, by corollary 5.3.17, we may as
well assume b=o .
If s>r+l then gy_Ix=03" 3(1,a+l,r,s-r-1))eS(n+2).
If s"r+1, then we would have:-

gZ-1 _yrxay-(r+1-s)xy-(s-1)x-1 G B(n),
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Suppose g =ps(a,b,r,s)
= x-(b+r+l-a)ysXy(b+r-s)x(b+r)y-r
(with 0<r, a"b+r, 0<s<b+r and n=ll g ||=4r+2+3b-a).

We have gy_Ix=(a+l ,s+a(b+r)2+b-I,b-1 ), and so, by corollary 5.3.17, we may as
well assume b=0. We would then have:-

9Z- 1=x-(r-a)y(s- DXy (r+I-s)xry-rx~1e B (n),
and thus

9z_Ix=gy~1xy g B(n-I),
so we could traverse z-*. .

ce=y_Ix

The maximal path length so far is 36, we now post multiply by c6 =x-1x_i.
Suppose g =pz(a,b,r,s)

- X(@_r-1)ysxy(b~9)xr (with

r<a, o£s£b and n=lIl g ll=a+h).
Clearly we can assume r=0, but then:-
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g. x<=>yiey(b",) 6 S(ath),
and so we can also assume b>s.

If a=I, then gx-1x-1 =az(p3(l,b,0,b-s)) e S(n+2),
so we may assume a>l.

Supposing a+s<2b+2.
If b<a-2, then gx-ix-1 =as(p3(b,a-2,l,2b+2-a-s)) e S(n+2).
If b=a-2, then gx_ix*I= os(ps(b,a-2,l,b-s>) € S(n+2).
If b>a-2, then gx-1x-1 =as(ps(b,a-2,1,b-s)) e S(n+2).

So we are left with a>I and a+s>2b+2, we would have:-

g x'1x"1- x(a+s-2b-2)y-1x(2b-s)y(b+l)e B (a+b)

If b=I we would have s=0, because we are, anyway, assuming b>s. Thus a>2b+2=4,

g =xay and we could traverse y_1,x's,y_1,X2,y2.

If b>1, then we could traverse y '1,X_1,y'1,X'1,y,X~1,y '1,X_1,y~1,X2,y3.

Suppose g=ps(a,b,r,s)
= X=<r+13ysxy<b-s>xatr>(with o <r, a+r*b, o<s<b and n=ll g lI=2 (r+l)+a+b).
Apparently the only non trivial situation is a+r=0, but then
g% I=y(b-s)x-lySe S(n-1),
and so we could still traverse x_1,x_1.

Suppose g =p4(a,bj,s)
=y>H)Xa s)y>XSy'(rH) (with (K r, b+r<a, o<s<a and n=Il g ll=2 (r+1)+a+b).
We have gx-Ix-1 =(a-2 ,s+b(a-2)+ar, b). So by corollary 5.3.17, we may as well

assume a<2, but then n= 2r+2+a+b £ 3a+2 "5 (and so the distance between any two points
of B(n) would be at most 10).

Suppose g =ps(a,b,r,s)
m x-(b+r-a)ysXy(b+r-s)x(b+r-1)y -r

(with O<r, a<b+r, 0<s£b+r and n=Il g l1=4r+3b-a).
If a=0, we would have:-

gx-1 =y-rx-(b+r-1)y(b+r-s)x - 1ySx(bar-1) 6
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If a>0 and b>s, we would have:-
8X-> X-n>*"-1-»)y(I’-s>X-1y(s<rxf>4r Dr rs B(n-I).
If a>0 and txs, we would have:-
gesS(n),
gx'V =p5(a-1,b+l,r-1,s-b)eS(n).
Also, there is certainly no loss of generality in assuming
gx-ly v-1x-1) zrgx-v Ie squ),

and so we would already have proved:-

8 join(12) 8*-"y join{36)
Therefore

8join(48)Sx *x

Suppose g = p6(a,b,r,s)
_ x-(b+r+l-a)ysxy(b+r-s)x(b+r)y-r
(with O<r, a<b+r, 0<s<b+r and n=Il g lI=4r+2+3b-a).
If a=0, we would have:-
gx-1 =y-rx_(b+r+l)ysXy(b+r-s)x(b+r-1)e B(n-1)
If a>0 and b>s, we would have:-
gx-| x-Cb+r-aiyCh-sIx-lyis+r*"OHOy-rg B(n-I).
If a>0 and b<s, we would have:-
ges(n),
gx-ly =p6(a-1,b+1,r-1,s-b)e S(n).
Also, there is no loss of generality in assuming
gx_ly (y-Ix-1) =gx-1x '1g S(n),
and so we would already have proved:-

8 join(12) 8*-'y. gt 'y join(36) g * ‘1»-1-
Therefore

Sjoin(48)Sx *x *

15/



cC=x*1x_1
The maximal path length so far is 48, we now post multiply by cE=xy *.

Suppose g =p2(a,bj,s)
= x(@“r_*)ysxy~-s)xr (with  r<a, 0<s£b and n=|| g ll=a+bh).
We have that gxy *=(a+1,s+br+b,b-1). So, by corollary 5.3.17, we can assume that
b=0, but then , as s<b anyway, so s=0 and we would have:-
g =xae S(a) while gxy* =x(a+1)y-l e S(a+2).

Suppose g=p3(a,b,r,s)
= X'<r+1)ysxy(b_sM a+r) (with O<r, a+r b, 0<s<b and n=ll g I=2(r+I)+a+b).
We have gxy* =(a+1,s+b(a+r),b-1). So, by corollary 5.3.17, we may as well
assume b=0 - but b>0 anyway.

Suppose g =p4(a,b,r,s)
=y(b+)x(@-s)yxsy~<(r+1) (with 0<r, b+r<a, 0<s<a and n=ll g ll=2(r+l)+a+b).
We have gxy1=(a+1,s+b(a+r)+b,b-1), so, by corollary 5.3.17, we can assume that
b=0. Then, if s<r, we would have gx =yrxay'(r_s>xy"se B(n-I). If s>r, we would have
gxy-1 = ob(p3(l,a+l,r,s-r))eS(n+2).

Suppose g =p5(a,b,r,s)
= x“(b+r_a)ysxyib+r-s)x(b+r_1)y-r
(with 0<r, a<b+r, 0<s<b+r and n=|| g lI=4r+3b-a).
We have gxy-"=(a+1,s+(b+r)(b+r-1)+b,b-1). So, by corollary 5.3.17, we can

assume that b=0, but then gx =x"">+_a 1Ysxy")+H_s)x">H "y re B(n-1).

Suppose g =p6(a,b,r,s)
=X-(b+r+l-a)ysxy(b+r-s)x(b+)y-r
(with 0<r, a<b+r, 0<s<b+r and n=l| g l|=4r+2+3b-a).
We have gxy* «(a+1,s+(b+r)2+b,b-1). So, by corollary 5.3.17, we can assume that
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b=0,butthen gx = x "~ r'a)ysxy(b+r'sM b+r)y-r€ B (n-1).
cE=xy_1

The maximal path length so far is 48, we now post multiply by c6=>x 1y 1.

Suppose g =p2(a,bj,s)
_ x(a-r-1)ySXy(b-s)xr (with 0< r<a, 0<s<b and n=ll ¢ ||=a+b).
Clearly we may assume r=0.
1f >0, we would have:-
gz"1=p2(a,b,r,s-1) e S(n),
also there is no loss of generality in assuming
gz-'(y->x-1) =gx->y-< e S(n).
So we would already have already proved:-
« join(10) 8Z"* * d 8Z‘* join(36) S A V 1.
thus
8 join(46) gx-'y -'
We are left with s=0, but then g =xaybe S(a+b), so we also assume b>0.
If a>b=I, then we may traversey_1,x-2,y~1'cy.
If a>b>1, then we may traverse y 1x-Lyl,x~1y 1xy2.
I1f a<b then n2b so we may as well assume b>2. Then, if a<h,
gx-ly-1 =o5(p4(b-1,a-1,1,1)>€S(a+b+2). If a=b, then
gx-ly 1=05(p5(b-1,b—%,1,1))e S(2b+2).

Suppose g=p3(a,b,r,s)
m x-(r+DySxy (b-s)x(a+r) (With (Kr, a+r<b, 0<s<b and n=|| g ||=2(r+l)+a+b).
Clearly, we may assume a+r=0. Then we will have:-
ge S(b+2), gz'1=x-1y(s' ,)xy<b+i-s)e B(b+2),
and thus
gz-ly-1e B(b+1).

So we may traverse z-1,y-i,x-1.
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Suppose g =p4(a,b,r,s)
= yf>H)x(a-s)yxsy"(r+1) (with 0<r, b+rra, Ocs”a and n=Ilgl1=2(r+l)+a+b).
If s-1, then:-
gz-1 «y(b+r)xay-re B(2r+a+b),
and so we may traverse z_1y 1x_1.
If s>1, then we would have:-
gz_1=p4(a,b,r,s-1)eS(n),
and, as there is no loss of generality in assuming
gz'Hy-ix"1) =gx-ly~1le S(n),
so, we have already proved
8ijgi (108* 'La"d sz join  Ex-ny-n

Thus

63°,n (46) 6

Suppose g =p5(a,b,r,s)
= X+ a)ysxyilHr_s)x(b+r"1)y_r
(with 0<r, a<b+r, 0<s<b+r and n=l| g ll=4r+3b-a).
If s=1, then we would have:-
gz-1 mx-ib+r-a_1)yib+r)xib+' 1y're B(4r+3b-a-2),
and so we may traverse z-1,y-1,x-1.
If s>1, then we would have:-
gz'l=p5(a,b,r,s-1)eS(n),
and, as there is no loss of generality in assuming
gz-1(y-1x_1) =gx-ly_1le S(n),
so we have already proved

8 join (10) 8Z 18n<~ EZ*, JON (3«)8X' "y " 1-
Thus
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Suppose g =p6(a,b,rs)
_ X-(b+r+l-a)ysXyOKr-s)x(tH-r)y-r
(with O<r, aEb+r, 0<s<b+r and n=Il g ll=4r+2+3b-a).
If s=1, then we would have:-
gz-1 » x-<b*r-a)yd+)x(b+r)y-re B(4r+3b-a),

and so we may traverse

If s>1, then we would have:-

gz_1=p6(a,b,r,s-I) e S(n),
and, as there is no loss of generality in assuming
gz_1(y-1x_1) =gx"1y 'le S(n),

so we have already proved

gi®in (10)EZ 1a"d g/ 1i0i"(36)SX"ly*’-
Thus

c6=x-1y-1
The maximal path length so far is 48, we now post multiply by c6=yly~I.

Suppose g =p2(a,b,r.s)
_ X(a-r-l)ys¥y(b-s)xr (with  r<a, Of£s<b and n=ll g ||=a+b).
We have gy_ly =(a,s+br,b-2),soby 5.3.17, we may as well assume b=0 or b=I.
If b=1 then geS(a+l)but gy-1y-1=a6(p2(l,a,0,s+r))eS(a+3).
If b=0 then, as sEb anyway, s=0, so g=xae S(a) and gy_ly le S(a+2).

Suppose g=p3(a,b,r,s)
- X"irtl)ysxyib-s)x<at+r>(with 0<r, a+r<b, 0<s<b and n=|| g I|=2(r+l)+a+b).
We have gy-ly-1 =(a,s+b(a+r),b-2). So by, 5.3.17, we may as well assume b<I,
but then n=2(r+l)+a+b £ 3b+2 £5 (so the distance between any two points of B(n) would
be at most 10).
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Suppose g =p4(a,b,r,s)
= yb+r)x(a-sfyxsy=*r+1* (with OF r, b+r<a, 0<s<a and n=|| g l|=2(r+l)+a+b).
Note that nS2(a+l)+a+a =4a+2, so we can assume a>2. Also
gy-ly-1 =(ats+a(b+r),b-2), so, by 5.3.17, we may as well assume a>2 and bSI.
I1f b=0 and a>r+2, then gy_ly-1 =a6(p3(2,a,r,s)) e S(n+2).
I1f b=0 and a<r+2, then, as b+r<a anyway, we must have r=a-| or r=a.
Ifr=a-I, then gy"ly_1=a6(p5(2,a,l,s)) e S(n+2).
If r=a and s>, then gy "y 1="6(P6(2,a,l,s-1)) e S(n+2).
Ifr=a and s=I, then we would have:-
g =yax(a-hyXsy-(a+1) € S(3a+2),
gy-ly-l=y(a-x(adny-(a+Dx-1 & S(3a+2),
and we could traverse y,x-"y" X,y- " X,y" " X",
If b=I and a>r+1, then gy"ly"1=a6(p3(l,a,r+l,s)) e S(n+2).
If b=I and a=r+I, then gy-ly_1=06(p5(l,a,l,s)) e S(n+2).

Suppose g =p5(ab,r.s)
= x-(b+r-a)ysXy(b+r-s)x (b+r-1)y -r
(with O<r, a<b+r, 0<s<b+r and n=Ilg lI=4r+3b-a).

We have gy-ly-1 =(a,s+(b+r)(b+r-l) ,b-2). So by, 5.3.17, we may as well assume
bEl.

If b=0 and a+s<r, then we have:-

gy-1 myo -1)x(a+s)y-Ix(r-«<-*)y-(r-)x-(r-a)e 3 (n_j)>
If b=0, a+s>r and 2r<s+2a, then we have
gy-ly-1 =a6(p5(2,a,r+l-a,s+2a-2r)) e S(n+2).

1f b=0, a+s>r and 2r£s+2a, so (as a+s>r and r=b+r>s anyway) s>2. We would then

have:-
gz-1 =p5(a,0,r,s-1) e S(4r-a),

and

9z-1z_1 =y(*-2)xy(r+2-s)x(r-1)y-rx-(r_a) e B(4r-a),
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therefore, by 5.3.13,
s join00) Sz_1 and 8z"join(10)Sz " ,z*'-
Also, we can see that,
gz_1z_1x €B(4r-a-1), and so gz'iz~xy-1 e B(4r-a).
So, as
gz"lz_Ixy"ly-1 =gy_ly ~*x
= y(r-l)x(s+2»-n)y- 1x(2r-s-2a)y .rx-(r-a-1)€ B (4r_a_1)>
we may traverse (the lengthy route of) z_1,z“l,x,y“1,y*i x_1.
If b=1then we would have:-
ge S(4r+3-a),
and, if a<r,
gy_1x=p5(a+1,0,r+l,s)e S(4r+3-a).
or, ifa=r,
gy_1x =p4(a+1,0,r,s) e S(4r+3-a).
Whichever, there is no loss of generality in assuming
gy-Ixix'V1)-gy'V le S(4r+3-a),
so we would have already proved
Sjoin(36) Sy_*x and gy-k join(48) gy ‘y

therefore

Sjoin(84)Sy

Suppose g = p6(a,b,r,s)
= x-(b+r+l-a)ysxy(b+r-s)x(b+r)y-r
(with O<r, a”b+r, 0<s<b+r and n=I| g lI=4r+2+3b-a).
We have gy-ly-1 =(a,s+(b+r)2,b-2). Soby, 5.3.17, we may as well assume b<lI.
1f b=0 and a+s<r, then we have
gy-1 =y(r)x(at+s)y- I x(r-a-s)y-rx-(r-a)GB(n_1)
1f b=0, a+s>r and 2r+I<s+2a, then we have

gy-ly-1 =06(p6(2,a,r+l-a,s+2a-2r-1)>e S(n+2).
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I1f b=0, a+s>r, 2r+|£s+2a and s=1 (then a+s>r and r+1”a), so a=r. We would have
ge S(3r+2),
and
gy-Ix=06(p5(l,r+1,0,1) e S(3r+2).
Also, as there is no loss of generality in assuming
gy-Ix(x-'y) -gy -V s S(3r+2),
so we would have already proved
£join(36)S y and gy‘>x**,48)gy Vv 1-
Therefore
8 join(84) & Vv
If b=0, at+s>r, 2r+I>s+2a and s>1, then we would have:-
gz’1=p6(a,0j,s-1)€ S(4r+2-a),
gz-1z-1 =y(s-2)xy(r+2"s)xr"ly-rx"(r+1-a)e B(4r+2-a),
and so, by 5.3.13,
£join(10) £Z_| and gz-> join(10) gz
Also, we can see that,
gz_lz'IXe B(4r+l-a), and so gz-lz-Ixy-1 e B(4r+2-a).
So, as
gz~1z-Ixy~1y-1=gy-1y _Ix
=y(r-l)x(s+2a-r)y- i x(2r+l-s-2a)y-rx-(r-a) e B(4r+l-a),
we may traverse z'l,z_Ix,y-1,y_I,x~1.
If b=1then we would have:-
geS(4r+5-a),
and, if a<r,
gy-1x=p5(a+1,0,r+l,s) e S(4r+3-a).
or, ifa=r+l,
gy-!x =p4(a+1,0,r+l,s) e S(4r+3-a).
Whichever, there is no loss of generality in assuming
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gy_Ix(x-1ly-1) mgyty”le S(4r+3-a),
so we would have already proved

ejoin(36)Sy™x and gy, *join(48)gy'ly ‘'
therefore

«join(84)iy_1ly 1-
cfi=y-ly-1 and 5.3.18

We need to prove (for Tc(G) to be almost convex) that, forany ge G and c,é e C:
00 whenever Ilg Il = lgcé 11, then g jOm(s4) get.
By propositions 5.3.16 and 5.3.18, we know that (ii) holds provided g=Pj(b) or
g= Pjia.b.r.s) (for some 2<i£6 and a,b,r,se IN.
We now take any ge G and c,é e C with llg Il =Ilgcé II, and prove that g join(s4) gcé.
By lemma 5.4.11 (ii), we know that
g =aj(pj(b)) or Ojipta.b.r.s)) (for some I<j<8, 2<i<6and a,b,r,se IN.
As the automorphism Oj simply permutes the generators of C, so § and its inverse are
norm preserving, and we have:-
10j_1@H=1lgl
=lgcéll
= I CTjL(gCé)ll.
Whence:-
10j_1(gH = Hoj_.(g) 0j_1(c) Oj_L(&)Il,
with
Oj_1(g) - Pi(b) or pjfa.b.r.s),
and
O jl(c),0j"(i)eC.
So, by propositions 5.3.16 and 5.3.18, we will have:-
join(84) aj _1(6) CTj-'(c) <Tj-'(V),
whence
8 join(84) 8C>
because O) is norm preserving.
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mo
5.3.19 Corollary.

With A={x,x'l,y,y_1,z,z_1}, TA(G) is almost convex.
Proof:

We know that zecentrc(G), but, also, z20-y 5x4y - V 4. Thus, whenever (arbitrary)
ge G is expressed as a product, p, in aminimal (i.e. IgllA) number of the generators of A,
then there cannot be more than 19 z's or 19 z_1's occuring in p. So, by replacing every z or
z 1of p by, respectively, yxy-V* or xy x'V 1. we may express g as a product of at most
I gllA+19x4 of the generators from C. Whence IgHAE liglic £ gllA+76, and so, by
proposition 5.1.4, TA(G) will be almost convex.
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5.4

Abelian by finite groups are almost convex.

In this section we will give an alternative, and slightly generalized, proof of Cannon's
theorem that free abelian by finite groups are almost convex (Cannon).

A discrete group of euclidean isometries (acting on some euclidean space T say) is free
abelian by finite. This is the gist of Cannon's (geometrical) proof that these groups are
almost convex. The map 4*: TC(G) —*T is defined by mapping g to g(0), if ge G, and, by
mapping the edge beginning at ge G, and labelled by ce C, to the euclidean segment
between g(0) and gc(0). By referring to Benson's “factorization lemma’ (cf (Benson) or
lemma 5.4.3 of this thesis), the following ‘quasi isometry lemma’ can be proved. There are
integers N (1) and N(2) so that, if p is a path of T, then 14/(p)I*N()Ip| ¢ also, if x,ye T,
then there is a path p, of T, which joins x toy, has length £ N(2)(I+d(4/(x),4/(y)), and
which stays (pointwise) within the N(2) neighborhood of the geodesic segment between
M(x) and T'iy). (The latter is probably the hardest part of the proof.) Then, with reference
to Benson's lemma (again), Cannon is able to define convex euclidean polyhedra, P(n), for
all ne N, so as to prove the following ‘convexity lemma’. The polyhedra are good
approximations to the n-balls of T; good approximations in the sense that there is a
number N(3), independent of n, so that T'iBOi)) lies (pointwise) within the N(3)
neighborhood of 4/(1~)nP(n), and P(n) lies (pointwise) within the N(3) neighborhood of
H”Bin)). By referring to the ‘quasiisometry’ and ‘convexity” lemmas, we can , after about
two pages of calculations, prove that TC(G) is almost convex (with respect to any (inverse
closed) generating set).

As opposed to Cannon's geometric proof, our proof is basically algebraic. We believe it
to be the simpler proof, although it does rely on theorem 2.1.5 (finitely generated abelian

groups are automatic) and theorem 5.2.9 (lib-automatic groups are almost convex).
5.4.1 Theorem.

Let G be an an extension of an abelian group, A, by a finite group, F, of order f. If C is
any finite generating set of G, then TC(G) is almost convex.

Proof:



Comment To avoid some rather clumsy notation, we will be constructing free
monoids on several subsets of the underlying set of G. It should be clear from the context
when we are taking a product, p, (in the set G) to be a product in the group G, or as a
product in a free monoid, but, foremphasis, we may sometimes write y(p) to mean that the
product is being taken as a group product .

Basically, we prove 5.4.1 by using theorem 2.1.5 to derive an automatic structure for
(G,C) with word acceptor W satisfying the hypothesis of theorem 5.2.9 (i.e., we shall
prove that (G,C) is lib-automatic).

We let C* denote the free monoid on the generators C, and assume throughout the proof
that the words of C* are ordered first by the length function I I, and thenlexicalgraphically
(i.e., by a ShortLex ordering). If geG, then we define rep(g) to be the least word, u> of C*
such that y(u/)=g.

We fix a set of right coset representatives of A in G, say {ri}1<i<f(with rj =I). Note
that:

(V ifgi....gre G with n>f, then gj g(i+1) *=egje A for some I<i<j<n.
Then, as a trivial consequence of (1), we can see that every word in the set:
5={ shortest words se C* | y(s)e A but y(a)e A whenever a is a proper subword of s}
will have length at most f. Thus:-
S=y(S) and B={r4srj'lll<i<fandse S}

are both finite generating setsof A

We let B* denote the free monoid on the generators B. Also, foreach be B, we define:

(u(b) ={ the least word ¢e 5 such that b=riy(i)ri-1 for some I<i*f},
and then
A(b) =lto(b)l,
i(b) = { smallest i such that b =r}y(co(b))ri“1}.
Now we fix any ordering £ of B with the proviso:
(2) b<b whenever t(b)<t(b).

We remind the reader that <Adenotes the ordering of the words of B* first by the length

function A*, and then lexicalgraphically according to the ordering <.



By theorem 2.1.5, we know that (A,B) will be automatic with a word acceptor, W(A)
say, accepting the (prefix closed) language of the <Aleast words. Moreover, the proviso (2)
on the ordering < guarantees that each word (e lan(W(A)) can be uniquely factorized as
follows:

(3) *(b(U)b(iid).~ blini))(b@Lb(22)-+ b2n2)-+ (b(f.Db(f.2)-+ b))
with, for all I<i<fand I<j<n4, b~ e Band t(b(ij))=i.
Whence, we may define the map p: lan(W(A)) —>C* by:
(4) p(0* rep(r)(o(b(U))()(b(1i2))...(o(ba>ni)rep(r1-1)
rep(r2) <of(21)) <ob(22))...(o(b(2j12)) rep(r2_1)...
.. -rep(rf) co(b(fl)) to(b(f 2)) ...<o(b(fnf)) repirf1).

Also, we note that, as I(b(jj))«i (for I<i<fand I*j*n”, so, by the definitions of co(b(ijj)
and i(b(ij)).

and therefore, by (3) and (4),
(5)  Y(0=Y(P(0) for all words (e lan(W(A)).

If fe lan(W(A)) is defined as in (3), then p(f) cannot be expressed as a shorter word,
(6) u'-rep(r,)?u)iiv)..Ali)rep(rl-')
reP(r2>J(.1) 52.2) rep(r2~])...
oo reP<f) ‘u.n- w<«) reP(rf~")
with all the belonging to 5.

Proof:

Suppose we have (6) with y(P(0)=YM- We define, for each I£i£fand ,
b(ijeB by:
P> b(ij)* riVCNLY)ri-1-

We will then have:-
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A(by,) « loij,)I.
by ihe definition of A(b(ij)). Whence:-
(8)  A®G)EINY).

because b(jj) m r4Y("i.j)) ri_lewhile, by definition, a>(ij)) is the least word, s, of S such that
b(ij)=rKM<rk~1for some I<KEf.

Also, we will have:-

Y(0 = Y(P(0).
by (5),
=ym.
and thus
9) Y( = (b(lilb(ii2) »++bd.Bj)) (b(2i)b(2.2) ** b(2,ft2) )* *( b(f,i)b(ft2).. .b(faf)).

by (6) and (7).

As fe lan(W(A)), so, by definition, Cis a least word of B”.with respect to the length
function A* Therefore, by (9), we must have:-

uf
(10) A*(O2X. L Ab()
=

We now have:-

1)) -X 1 Ab),
i=1j1 i-1

by definition of the A(b(i j)),

=A*(0.
by definition (3) (of 0.
i=f i-nj

si 1 A®BOIp,
i'lj'lA( g

by (10),
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i-fj-ni
i-1J-1
by (8).
Then, by comparing (4) and (6), we can see that the length of (3(0 is no more than the
length of the word it>(as required).

MU

Let us now define:
(11) awe= {(3(Hrep(rl) I (e lan(W(A)) and I"t<f}.
Then, as y(lan(W(A))) =A and is a set of right coset representatives of A in G, so
Y(E*V>G.

Actually, LXH.will be our candidate for the regular language of the word acceptor of
(G,C). We will need to prove that, for any we av(, Itt'l-Il y(«,)llq is bounded. This isa
corollary of the next lemma which is due to Benson and appears, in a slightly weaker
version, in (Cannon) where itis referred to as the ‘factorization lemma’.

5.4.3 Lemma. (Benson)
Each ge G can be written as a product

(rls(U)s(1.2)-« s(l.nl)rr 1) (r2s(2,1)s(2,2)-+ s(2n2)r2_1>-« (rfs(f.1)s(f2)-+ s(fnf)rf~1)rt

i-f J=ni
with all the s~ in S, and with the difference between ligllc and £ ~ I being
i=l j=1
bounded.
Proof:

A product p=gjg2 **=gn (with the g"e G) is said to be a geodesic product if

i-1
Let

(12) g=cl2..cn
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be a geodesic product with all the c4belonging to (the generating set) C (so n=liglic).

Recall that (1) stated that, if g j.....gne G with n>f, then g4g(j+1) ... gje A forsome
I<i<j™n. Also, we defined

5={ shortest words se C* | y(s)e A but y(a)e A whenever ais a proper subword of s),
and
S=Y(5).

We may as well assume that g has norm >f so that, by (1), the §of (12) can be

grouped together to derive a geodesic factorization of g of the form:
(13) PiW,p2w2...p KwK

with all the p4being products in terms of S, and with at least one p; of norm >0.

Supposing to f then, by (1), there would be some i<j<K with

PiwiP(i+i)w(i+D-PjwjsA -

Then this product would commute with P(j+1) . and so we could consolidate pj with P(j+i)
and wj with to derive a factorization of the form (13), but with k reduced by one.
Repeating this process, if necessary, we can reduce K to no more than f. In short, given any
product of the form (13) we can assume, solely by rearranging terms, that K<f.

So let us begin with a geodesic factorization of g of the form (13). Then, if one of the wj
has norm >f, we replace this w4with a product of the form (13). The composite
factorization of g would again be of the form (13), but with the sum of the norms of the
abelian factors, Pj, strictly increased. We then rearrange the terms of this factorization so
that K<f. Clearly, by repeating this process a finite number of times, we will derive a
geodesic factorization of gof the following form.

(14) g=PiwiP2w2 - P(f_WF
where, for all 1"irMf:
P' = s(i.l)s(i.2)-s(ini)
is a geodesic product in the generators of S, and
liwllc <5
Thus,

(15) lwiw2..w(lc ~f2,

and, as (14) isa geodesic factorization of g, so we have:-
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i-f j-ni
(1@ ligllc and ~  ~ s, do notdiffer by more than
i-1 j-1

If we now now define o(i). I<i<f-1, by Ar0()=Awjw2...wj, then a simple
calculation yields: -
PowiP iw2eesP (f-Dwf = PO(ro (1) Pi ro(l)~1>e«(ro(f-1) P(f-1) ro(f-1)")wjw2...wf .
By consolidating the like factors of, and then rearranging the terms of the latter
factorization, we derive a factorization of g of the following form.
(17) g = (rts(U)s@2).e.s,,")"'1) (r2s(2a)s(22)...s( 2 r2_1)...

L (rfs(fl)s(f2). . .s(fnj) rf-1 )wjw2.. ,wf

where the are now the (possibly) reindexed s/ j of the factorization (14).
As the Tjare right coset representatives of Ain G, and A is finitely generated by S, we
may choose r, and Sj, s2, .... sne S so that:-
(].a s1s2...snrt=wiw2...wf
with n as small as possible. By choosing n as small as possible we guarantee
nAwjw2.. Wil A+ IIrjl A,
s0, by (15), n is bounded. Then n being bounded (certainly) =
( ISjlic + lis2llc + sss+ lisnllc is bounded.
So, by (17) and (18), we have:-
(20) g= ( . osns(l,)s(2).e-s(Lni)rj 1)(r2s(i!)922)..S(2jl2)r2"1)...
L (rfs(fj)S(F2).e s(fnp rf_1)rt
with all the s4and (being the reindexed s(ijj of (14)) belonging to S. Also, by (16) and
(19), we see that the difference between

liglic and [lIsdlc +1Is:llc +...+ Hsllc+ £ X II'GjA:

is bounded (so (20) is the required factorization).

5.4.4 Corollary.



If W&LXH., then 1w\ -1 Y(**)i C *s hounded.
Proof:

By the definition of LXK, u/«P(Orep(rt) for some fe lan(W(A)) and I<t<f. Then, by
lemma 5.4.2, |KO will be the shortest word corresponding to y (0 of the form:
(6) rep(ry)<(u ) i(U)...»,13,1)rep(rl- Yrep(r2)<<u ) i(2i2)...JiU2)rep(r2-1)...
...rep(rf) jU) jU). .. rep(rf*1)
with all the  jjbelonging to S.
However, by lemma 5.4.3, we can find a word, Csay, of the form (6), with
Y(?)=y(0 and Ul-Il y(OHc being bounded. So it must be that 1?1 ~1 fl > HY(Ollc » anc*so
1Q-11'Y(Ollcis 3,50 bounded. Whence IR -Il y{wilt is bounded (as required).

1544)

We will now begin the task of proving that (G,C) is automatic with a word acceptor

accepting IxH. To start with we must prove that LXH. is actually a regular subset of C*.

545 Lemma.

LXH ={ (5(0rep(rt) I G lan(W(A)) and I<t<f }is a regular subset of C*.

Proof:

1t will suffice to prove that P(lan(W(A))) is a regular subset of C*. We suppose W(A)
has transition function T.

Recall that (the coset representative) rj =1. Thus rep(rj) a repOj“1) a £ , and, by
defining rf+17=I (so that rep(r*f+1)-1)a 6), we can easily see, from definition (4), thata
word is a prefix of a word in p(lan(W(A))) if and only if it can be factorized (not
necessarily uniquely) as follows.

(21)  rep(rj) w(b(U)) to(b(; 2))....<ofo(Ini)) rep(rt-1)
rep(r2) <o(fl)) w(b(22)) .. . w(b(2,,2) rep(r2_1). ..
-...rep(rj) cofb(U)) <o) ...w(b(ini)) p



where, for all 1I£i£fand all I"jAnA the b(ij)belong to B;

W b<U)b(L2)-+ b(l.ni)Xb(2.1)b(2.2)-+ b(2ji2))-*'~ (U)b(U)" b (i.nj)) )=h
is a halt state of W(A); and p is a proper prefix of some w(b) (be B), or a proper prefix of
rep(ri_L)rep(r(i+1)).

We will use W(A) to construct a (partial) non-deterministic automaton, W, which has
language (5(lan(W(A))) (we refer the reader to the definition and terminology of a non-
deterministic finite state automaton on page 7).

The states of W will consist of all those triples

(i.q.p)

1 1<i<f.
q is a state of W(A).

pis aproper prefix of some se 5 or a proper prefix of rep(n ")rep(r(i+i)).

We wish to define W so as to satisfy the following hypothesis.

(22) u/e C* can be factorized as (21) if and only if W has a path of arrows with
label w and target (i,h,p).

This is the description of W. We let W have start state (1,q0,E) where q0 is the start
state of W(A). Then, for all 1£i<f, all ce C, and all states q of W(A):
W has arrow:
(G.a.p).c,(apc))
ifandonly if pc is a proper prefix of some seS ora proper prefix of rep(rj_L)rep(r"+1)).
W has arrow:
( (i,a.p).c,(i+1,0.£))
ifand only if pc mrep(ri")rep(rhi+lj).
W has arrow:
(G,a.p).c,(,a.E))
if and only if pc» seS, and there is a transition t(q,b)=q with co(b)» sand t(b)=i.
We will want the halt states of W to be all those states (f+1,h,£) where h is a halt state
of W(A).
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The construction of W is reasonably self-explanatory. A rigorous proof of hypothesis
(22) (by induction on the length of ) is straightforward, but would be a laborious
formality and is best omitted.

54.6 Lemma.
(G,C) is automatic with word acceptor W (accepting LXsi).

Proof:

Let c be an arbitrary generator of C and recall that we defined the set of word
differences of ¢ to be:
{ y(w?i(lj)) | for all wa,we elan(W) satisfying
y(i<t)C)=Y(a'i), and all re INj.
Also, by theorem 2.1.3, to prove that (G,C) is automatic with word acceptor W, it suffices

to prove that the set of word differences of (all such) c is finite, i.e., we want to prove that,
whenever

(23) g, U e I1xH, y(u\)C)=y(u>i) and O<re O,
then lyCttril,!-))*1y(*%iUxr))llc > bounded (independently of ug, uy orr).
So let us suppose (23) holds, and note that there is no loss of generality in assuming
that [a ~ \usy\, 1.

By the definition of LXK, we will have =(5(/frJrepir™) and u\ sp~repir”) for
some to-Cie lan(W(A)), and I"tQ.t . Also, recall that the alphabet of W(A) is B, and, by
definition (3), any word, (, of (prefix closed) lan(W(A)) can be uniquely factorized as

(b(L,hb(1,2)- * b(L.n)Xb(2,))b(2.2)- * b(2n2))- *++(b(F.Jb(F2). * b(f.nf))
for some b*j~e B with Ub(ij))=i for all I<i<fand I<j<n™. Thus, we were able to define the
map P: lan(W(A)) —*C* by:
P (0 m rep(rj)co(b(1m(h(, 2))...<o(b(lilll))rep(r1 1)
rep(r2) to(b(2fl)) to(b22)) .. .w(b(2n2)) rep(r2-1)...
o« reP(rf) wib(fil)) w(b(f2)) ...co(b(fnf)) rep frf1).



By (23) we have:-
Y(P(*o)rep(r,0)c)=Y (P(/i )rep(rtl)),
ie.,
Y(P(fe)riocrtl" )=Y (P(/i)).
whence:-
(26) YOWrAcrA-I-Yfij),
because, by (5), Y (0= Y(P(0) for all words Ce lan(W(A)).
As, A is automatic with word acceptor W(A), so, by (26) and corollary 2.1.4, we know
that 'Y (fc(l,K))-1 y("i (1>k))Hb wtH be bounded (independently of /q. (\ or Ke IN). Because
Y (M(1LK))-Y (P(fea.K))) and Y (*(1.K))-Y (P(*a.K))), so IY(P('bU.K)))-1Y (P(i(l.K))IIB
is bounded, whence:-
(27) UM «1.*»)-1Y([it(l,K))llc is bounded
(independently of b, or KeIN.
Now, by the definition of P, we can see that Ke INcan be chosen so that IP(/g(1,k))| and
r differ by at most:

(28) max(\co(b)l)beBi:g](Irep(rD|+|rep(ri-,)|.
i=l

However, for (27) to hold, we must have the difference between I P(/(1,k))I and

IP((j(1,K))| bounded.So, also, the difference between IP(/i(l ,k))l and r will be bounded.
We finish by noting that, by the definition of p, P(/*(1,k)) and u"sPfi*Jrepfr*) have a

common prefix of length bounded to IP(/q(1,k))| by at most (28). Thus, as the difference

between P(/q(1,k)) and r is, anyway, bounded, so P(/q(1,k)) and (P(/qJrepO™ X I.r) have a

common prefix of length bounded to IP(/q(1,k))I . Similarly, P(/(1,k)) and

(P(fl Yrep(r, ))(l,r) have acommon prefix of length bounded to IP((j(1,K))|. Whence, by

(27), Ny ((P(6 )rep(r,0))(1,r))_Ly((P("i Yrep(rti))(l,r))llc is bounded (as required).

[5A6]

By 5.4.4 and 5.4.6, (G,C) is lib-automatic (with word acceptor W), so, by theorem
5.2.9, we know that TC(G) is almost convex.

IMU
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