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Abstract 

Changing the supporting electrolyte cation from tetrabutylammonium to 1-butyl-3-

methylimidazolium is known to significantly increase the apparent heterogeneous electron 

transfer rate constants (𝑘0 value at the formal reversible potential (𝐸𝐹
0)) associated with the 

[SVW11O40]
3−/4− (VV/IV) and [SVW11O40]

4−/5− (WVI/V) processes in aprotic organic media. In 

this study, supporting electrolytes containing 7 different cations, namely 1-ethyl-3-

methylimidazolium ([EMIM]+), 1-butyl-3-methylimidazolium ([BMIM]+), 1-butyl-1-

methylpyrrolidinium ([Py14]
+), tetraethylammonium ([TEA]+), tetrapropylammonium 

([TPA]+), tetrabutylammonium ([TBA]+) and tetrahexylammonium ([THA]+), have been 

investigated in order provide a systematic account of the influence of electrolyte cations on the 

rate of polyoxometalate (POM) electron transfer at a platinum disk electrode. Fourier 

transformed alternating current (FTAC) voltammetry has been used for the measurement of 

fast kinetics and DC cyclic voltammetry for slow processes. The new data reveal the formal 

reversible potentials and electron-transfer rate constants associated with the VV/IV (𝑘V
0) and 

WVI/V (𝑘W
0 ) processes correlate with the size of the supporting electrolyte cation. 𝑘V

0 and 𝑘W
0  

values decrease in the order, [EMIM]+ > [BMIM]+ > [Py14]
+ ≈ [TEA]+ > [TPA]+ > [TBA]+ > 

[THA]+ for both processes. However, while 𝑘V
0 decreases gently with increasing cation size (k0 

= 0.1 and 0.002 cm s-1 with [EMIM]+ and [THA]+ electrolyte cations, respectively), the 

decrease in 𝑘W
0  is much more drastic (k0 = 0.1 and 2 × 10‒6 cm s-1  for [EMIM]+ and [THA]+, 

respectively). Possible explanations for the observed trends are discussed (e.g., ion-pairing, 

viscosity, adsorption and the double-layer effect), with inhibition of electron-transfer by a 

blocking “film” of electrolyte cations considered likely to be the dominant factor, supported 

by a linear plot of ln(k0) vs. ln(d) (where d is the estimated thickness of the adsorbed layer on 

the electrode surface) for both the VV/IV and WVI/V processes. 
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Introduction 

It is of fundamental importance in electrochemistry to understand the factors that 

govern the rate of heterogeneous electron transfer. For an electrode reaction, this typically 

involves the transfer of charge (electrons) across an interface between a solid electrode and 

liquid electrolyte. It follows that the rate of electron transfer is governed by both the 

physicochemical properties of the electrode/electrolyte interface and the nature of the redox-

active species. For an outer-sphere one electron transfer processes such as the reduction of 

[Ru(NH3)6]
3+ to [Ru(NH3)6]

2+ or the oxidation of ferrocene (Fc) to ferrenium cation (Fc+), very 

similar electrochemical behavior is observed at Pt, Au, and carbon electrodes.[1, 2] However, 

the kinetics of the Fe2+/3+ process, also considered to be an outer-sphere reaction in some 

studies, is much slower and differs markedly at these electrode materials.[3, 4] 

The effects of the nature of the solvent (donor/acceptor or acid/base properties), 

supporting electrolyte and electrode material on electrode kinetics have been studied 

extensively.[5-12] For example, if the outer-shell contribution to the activation energy is the 

major factor governing the rate of electron transfer, the heterogeneous electron-transfer rate 

constant (k0) exhibits a strong dependence on the properties of the solvent (dielectric 

constant).[13, 14] In addition, the rates of electrode reactions can be profoundly affected by 

the identity of the ions present in the supporting electrolyte[15-19]. For example, Peover and 

Davies[20] reported that the highly irreversible (kinetically sluggish) second step for reduction 

of 9,10-anthraquinone in dimethylformamide (DMF) can be made reversible (kinetically 

facile) through the addition of alkali metal ions. This effect was attributed to interactions (ion-

pairing) between the semiquinone anion and the alkali metal cations. 

Polyoxometalates (POMs) are anionic oxoclusters containing early transition metals in 

high oxidation states. They are nano-sized and display a wide variety of compositions and 

structures. They exhibit a wide range of properties, which have led to proposed applications in 
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diverse fields such as medicine, photochromic materials, solar energy, and so forth.[21-23] In 

particular, POMs can undergo fast, reversible and stepwise multielectron-transfer reactions 

without significant structural change, meaning they can be employed as catalysts for many 

redox reactions.[24-27] Furthermore, the properties of a POM, such as solubility, redox 

potential, and acidity can be finely-tuned by varying the constituent elements.[28]  

The thermodynamic properties (formal reversible potentials, 𝐸F
0) of POMs have been 

studied extensively.[28-30] For example, the electrochemical behaviour of [Co2W12O42]
8- was 

found to be highly solvent dependent.[31] The reversible potentials associated with these W-

based redox centres shift negatively in a 50% mixed solvent aqueous electrolyte of 

dimethylformamide/water, acetonitrile/water or acetone/water compared to a pure aqueous 

electrolyte solution, while in dioxane/water mixtures, the processes shifted positively. The 

acidity of the media (proton availability) also influences the thermodynamic properties of 

POMs. Thus, while [PMo12O40]
3- undergoes successive one-electron transfer processes in 

acetonitrile, the addition of acid causes a substantial change in reversible potential, so that 

when a high concentration is present, overall two-electron processes are detected.[32] 

The kinetic properties (standard electron transfer rate constant, k0 at 𝐸𝐹
0, and electron 

transfer coefficient, α) of POMs remain much less explored than the thermodynamic ones. 

Recently, we have reported a series of studies on the electrode kinetics of POMs.[33-36] In 

aqueous media, the k0 values of the Keggin-type silicon tungstate POMs, [SiW12O40]
4- and 

[SiW12O40]
5-, were found to be electrode material dependent.[33, 34] Much slower rate 

constants were found with boron-doped diamond (BDD) electrode compared to use of glassy 

carbon (GC) as  the electrode material.[33] The effect of the electrolyte cation (Li+, Na+, K+ 

and NH4
+) on the electrode kinetics of these processes has also been studied[34]. In organic 

media (dimethylformamide) containing supporting electrolyte, the electrode kinetics 

associated with the [SVW11O40]
3−/4−/5− processes are strongly dependent on the electrode 
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material as well as the ionic strength.[35] In our most recent study, we showed that changing 

the electrolyte cation from tetrabutylammonium to 1-butyl-3-methylimidazolium can 

significantly increase the electron-transfer kinetics of the [SVW11O40]
3−/4−/5− processes at Pt, 

Au and BDD electrodes. We attributed this and other trends obvious to double layer effects 

and the nature of the electron-transfer processes (outer-sphere for the VV/IV reaction vs. inner-

sphere for the WVI/V one).[36] 

In the present study, our previous work is expanded systematically to provide a general 

account of the influence of electrolyte cations on the rate of POM electron transfer, using the 

[SVW11O40]
3−/4−/5− reductive reactions as exemplar processes. The structure of [SVW11O40]

3-

[37] shown in Figure 1 shows the location of the V and W metal constituents. [SVW11O40]
3- 

exhibits three well-defined one-electron reduction processes in molecular solvent (electrolyte) 

media.[37] The two initial processes, which are the focus for the current study, correspond to 

the reduction of VV to VIV (eq. 1) and WVI to WV (eq. 2).  

[SVVW11
VIO40]3− + e− ⇌ [SVIVW11

VIO40]4−  (1) 

[SVIVW11
VIO40]4− + e− ⇌ [SVIVWVW10

VIO40]5− (2) 

 

Figure 1. The structure of [SVW11O40]
3-. Color code: S (red), V (orange), W (yellow).[37] 

Seven different electrolyte cations were used in this study, including imidazolium and 

tetraalkylammonium based cations (structures shown in Scheme 1). Salts containing large 

singly-charged cations such as tetraalkylammonium ions are commonly used for investigations 
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in dipolar aprotic solvents due to their relatively high solubility and weak tendency to form ion 

associates with anions in these systems. However, a number of studies has been reported which 

demonstrate that the electrode kinetics of can depend on the nature (size or structural 

symmetry) of the tetraalkylammonium cations.[38-41] For example, the rate constants (k0 

values) of a series of organic molecules have been shown to decrease with increase in the size 

of the alkyl group.[38] The solvent chosen in this study is propylene carbonate (PC), which has 

a high dielectric constant (64.9 at 25℃[42]), reducing the influence of ion pairing effects. 

Supporting electrolytes were added at a concentration of 0.5 M to provide a well-defined 

double layer. As is the case in our previous study, fast electrode kinetics were measured using 

large-amplitude Fourier-transformed alternating current (FTAC) voltammetry, which exhibits 

superior kinetic sensitivity in comparison with the conventional dc voltammetry[43] and slow 

processes were quantified by DC cyclic voltammetry using DigiElch digital simulation 

software package. 
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Scheme 1. Names, abbreviations and structures of the electrolyte cations used in this study.  

 
 

EXPERIMENTAL SECTION 

Chemicals. Propylene carbonate (PC, 99.7%, Sigma-Aldrich),  acetonitrile (CH3CN, 

97%, Sigma-Aldrich), ethanol (96%, Merck), 1-ethyl-3-methylimidazolium tetrafluoroborate 

([EMIM][BF4], 98%, Sigma-Aldrich), 1-butyl-3-methylimidazolium tetrafluoroborate 

([BMIM][BF4], 99%, IoLiTec), 1-butyl-3-methylimidazolium hexafluorophosphate  

([BMIM][PF6], 99%, IoLiTec), 1-butyl-1-methylpyrrolidinium tetrafluoroborate ([Py14][BF4], 

99%, IoLiTec), tetraethylammonium tetrafluoroborate ([TEA][BF4], 99%, Sigma-Aldrich), 

tetrabutylammonium hexafluorophosphate ([TBA][PF6], 99%, Sigma-Aldrich) and 

tetrahexylammonium perchlorate ([THA][ClO4] ], 99%, Sigma-Aldrich) were used as received 

from the manufacturer. Ferrocene (Fc, Sigma-Aldrich, ≥ 98 %) was recrystallized from n-

pentane (Merck) prior to use. Tetrapropylammonium tetrafluoroborate ([TPA][BF4]) was 

prepared by a metathesis reaction between sodium tetrafluoroborate (Na[BF4], Sigma-Aldrich) 

and tetrapropylammonium bromide ([TPA]Br, Sigma-Aldrich) in CH3CN.  

All electrochemical studies were carried out at 22 ± 2 °C using a standard three 

electrode electrochemical cell. Viscosity was measured using the falling ball method with an 



 9 

Anton Paar automated microviscometer (AMVn). The working electrode was platinum (Pt, 

nominal diameter = 1.0 mm) or glassy carbon (GC, nominal diameter = 1.0 mm). Platinum 

wire was used for the auxiliary and reference electrodes. The quasi-reference electrode 

potential was calibrated against the recommended Fc0/+ process.” in the experimental section. 

Other experimental details are as reported elsewhere[36] and are summarized in the Supporting 

Information.  

RESULTS AND DISCUSSION 

DC Cyclic Voltammetric Characterization of the VV/IV and WVI/V Processes. The 

[SVW11O40]
3−/4− (VV/IV) and [SVW11O40]

4−/5− (WVI/V) processes were initially characterized by 

DC cyclic voltammetry at a Pt electrode. Verification of the first process as reduction of VV to 

VIV and the second more negative one to reduction of WVI to WV is given in reference.[37] 

Figure 2 shows a comparison of the DC cyclic voltammograms obtained from 1.0 mM 

[SVW11O40]
3- in PC containing 0.5 M electrolytes outlined in Scheme 1, at a scan rate (ν) of 

0.1 V s-1. Clearly, the formal reversible potentials (𝐸F
0) of the VV/IV and WVI/V processes, 𝐸V

0 

and 𝐸W
0 , are dependent upon the nature of the electrolyte. Slightly more positive 𝐸V

0 and 𝐸W
0  

values are observed from [EMIM][BF4] (0.316 V and -1.085 V, respectively) compared to 

[BMIM][BF4] (0.306 V and -1.093 V, respectively). A larger variation is observed when using 

tetraalkylammonium cation as the cation constituent of the supporting electrolyte, with 𝐸V
0 and 

𝐸W
0  shifting towards more negative potentials in the order of [Py14]

+ ≈ [TEA]+ > [TPA]+ > 

[TBA]+ > [THA]+. The negative shift in the 𝐸F
0 values, as well as the increased potential gap 

separating the VV/IV and WVI/V processes (∆𝐸F
0) is attributed to increasingly strong interactions 

between the electrolyte cation and the reduced form of the POM (e.g., [SVW11O40]
4-) compared 

to the oxidized form of the POM (e.g., [SVW11O40]
3-). It should be noted that because 

[SVW11O40]
3−/4−/5− are all highly negatively charged species, the identity of the anion (e.g., 

[BF4]
− vs. [PF6]

− vs. [ClO4]
−) is not expected to influence electrochemical behavior as 
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confirmed by the fact that negligible differences in both reversible potentials and peak-to-peak 

separations was detected when using either [BMIM][BF4] or [BMIM][PF6] as the supporting 

electrolyte. 

 

Table 1. DC cyclic voltammetric data derived at 22 ± 2 °C from the reduction of 1.0 mM 

[SVW11O40]
3- in PC (0.5 M electrolyte) at a Pt macrodisk (diameter = 1.0 mm) electrode with 

a scan rate of 0.1 V s-1. 

Electrolyte 𝐸V
0(V) (ΔEp)V(V) 𝐸W

0 (V) (ΔEp)W(V) ∆𝐸F
0(V) 

[EMIM][BF4] 0.316 63 -1.085 65 1.400 

[BMIM][BF4] 0.306 67 -1.093 66 1.399 

[BMIM][PF6] 0.303 66 -1.090 68 1.393 

[Py14][BF4] 0.333 76 -1.079 75 1.412 

[TEA][BF4] 0.342 79 -1.079 67 1.421 

[TPA][BF4] 0.309 82 -1.182 303 1.491 

[TBA][PF6] 0.254 88 -1.260 520 1.514 

[THA][ClO4] 0.214 110 -1.355 745 1.569 

 

Another clearly evident feature is the electrolyte dependence of the DC voltammetric 

peak-to-peak separations, ∆Ep (= Ep
Ox - Ep

Red). Both VV/IV and WVI/V processes display similar 

trends in ∆Ep in the order [EMIM]+ ≈ [BMIM]+ > [Py14]
+ ≈ [TEA]+ > [TPA]+ > [TBA]+ > 

[THA]+. Notable, ∆Ep values associated with the VV/IV process changes gradually, with the 

lowest and highest values being 63 and 110 mV for [EMIM]+ and [THA]+, respectively, 

whereas, in the case of the WVI/V process, ∆Ep changes significantly when changing the 

electrolyte cation from [TEA]+ to [TPA]+, [TBA]+ and [THA]+, with values of 67, 303, 520 

and 745 mV, respectively. Even after considering differences in the uncompensated resistance 

(Ru) (e.g., Ru = 415 and 1153 Ω with [EMIM]+ and [THA]+, respectively), a smaller ∆Ep reflects 

a larger k0 value, as described in the classical theoretical treatment of dc cyclic voltammetric 

I-E curves by Nicholson and Shain.[44] This indicates that the kinetics of the VV/IV and WVI/V 

processes are electrolyte cation dependent in PC, as noted in other media.[36] Moreover, the 
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kinetics of the WVI/V process appear to be more sensitive to the nature of electrolyte compared 

to the VV/IV one.  

Full details of the 𝐸F
0 and ∆Ep values associated with the VV/IV and WVI/V processes in 

the different electrolyte media at a Pt electrode, along with the separation between the 𝐸F
0 

values associated with the two processes (∆𝐸F
0) are provided in Table 1. Finally, diffusion 

coefficients (D) calculated from the Randles-Sevcik relationship[35] based on the peak current 

associated with the reversible VV/IV process at a GC macrodisk electrode,[36] are included in 

Table 2. Interestingly, the value of D decreases by about 70% when changing the electrolyte 

cation from [EMIM]+ to [THA]+. The diffusion coefficient is governed by the Stokes-Einstein 

relationship[45], 

𝐷 =  
𝑘𝐵𝑇

6π𝜂𝑎
                                                              (8) 

where kB is the Boltzmann constant, η is the viscosity of the medium and 𝑎 is the hydrodynamic 

radius of the diffusing particle. Clearly, according to this equation, the value of D depends on 

the viscosity of the media as well as the size of the ion paired [SVW11O40]
3-. If it is assumed 

that the size term (𝑎) is independent on the nature of electrolyte, the D value of each electrolyte 

medium is expected to be inversely proportional to η values of corresponding media and the 

produced [D·η] is expected to be constant. However, there is no such relationship between D 

and η values as shown in Table 2. On this basis, both the size of the ion paired [SVW11O40]
3- 

and viscosity are believed to contribute to difference in D values.  
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Figure 2. Dc cyclic voltammograms obtained at a Pt macrodisk electrode (ν = 0.1 V s-1) from 

the reduction of [SVW11O40]
3- in PC containing 0.5 M electrolyte with constituent cations 

(from top to bottom) [EMIM]+, [BMIM]+, [Py14]
+, [TEA]+,  [TPA]+, [TBA]+ and [THA]+. 
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Table 2. Summary of the D values for the reduction of 1.0 mM [SVW11O40]
3- in PC (0.5 M 

electrolyte) at a Pt macrodisk (diameter = 1.0 mm) electrode.  

 

Electrolyte η (cP) D (×106 cm2 s-1) [D·η] (×1013 m kg s-2) 

[EMIM][BF4] 3.07 1.3 4.0 

[BMIM][BF4] 3.21 1.1 3.5 

[Py14][BF4] 3.44 0.93 3.2 

[TEA][BF4] 3.12 0.93 2.9 

[TPA][BF4] 3.58 0.77 2.8 

[TBA][PF6] 3.90 0.60 2.3 

[THA][ClO4] 4.98 0.42 2.1 

 

 Determination of k0 for fast processes by FTAC Voltammetry and slow ones by 

DC cyclic voltammetry. The k0 values associated with the VV/IV (𝑘V
0 ) and WVI/V (𝑘W

0 ) 

processes in PC containing 0.5 M electrolyte were determined at a Pt macrodisk electrode by 

FTAC voltammetry using a sine wave perturbation (ΔE = 80 mV and f = 9.02 Hz or 27.01 Hz) 

and scanning the DC potential over the range where both the VV/IV and WVI/V reduction 

processes are present in the voltammogram. The parameters used in the simulations to define 

the electron transfer process, E0, k0, α, electrode area (A), Ru and double-layer capactitance 

(Cdl), were derived using the Bulter-Volmer model of electron transfer as described in the 

Supporting Information and are provided in Table 1 and 3. Since the electrode kinetics of the 

VV/IV and WVI/V processes in PC containing [EMIM][BF4] and [BMIM][BF4] are essentially 

reversible with a frequency of 9.02 Hz, a higher frequency (f = 27.01 Hz) AC perturbation was 

used to shorten the time scale of the measurement so that adequate kinetic sensitivity was 

available. A representative FTAC voltammogram (f = 27.01 Hz) obtained in PC containing 

[EMIM][BF4] as the supporting electrolyte is shown in Figure 3. For the other four electrolytes 

(see Table 1), the VV/IV and WVI/V processes were found to be far from reversible allowing the 

lower frequency of 9 Hz to be used to quantify the electrode kinetics. A representative FTAC 
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voltammogram (f = 9.02 Hz) obtained in PC containing [TPA][BF4] as the supporting 

electrolyte is shown in Figure 4. 

 

Figure 3. Comparison of simulated (—) and experimental (—) FTAC voltammetric data 

obtained for the VIV/V and WVI/V processes in PC containing 1.0 mM [SVW11O40]
3− and 0.5 M 

[EMIM][BF4] at a 1 mm diameter Pt macrodisk electrode with T = 295 K, ΔE = 80 mV, f = 

27.01 Hz and ν = 0.137 V s−1. (a) aperiodic DC component, (b–g) 1st to 6th AC harmonic 

components, and (h) simulated 6th harmonic component for the reversible case (—). Simulated 

kinetic data was obtained with 𝑘V
0 = 0.10 cm s-1, αV = 0.50, 𝑘W

0  = 0.10 cm s-1 and αW = 0.50. 

Other parameters are defined in the text.  
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Figure 4. Comparison of simulated (—) and experimental (—) FTAC voltammetric data 

obtained for the VIV/V process in PC containing 1.0 mM [SVW11O40]
3− and 0.5 M [TPA][BF4] 

at a 1 mm diameter Pt electrode with T = 295 K, ΔE = 80 mV, f = 9.02 Hz and ν = 0.089 V s−1. 

(a) aperiodic DC component, (b–g) 1st to 6th AC harmonic components. Simulated kinetic data 

was obtained with 𝑘V
0 = 0.0075 cm s-1, αV = 0.5 were used. Other parameters are defined in the 

text. 
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Figure 3 provides a simulation-experiment comparison for the VV/IV and WVI/V 

processes in PC containing 0.5 M [EMIM][BF4]. In the 6th harmonic component, both 

processes can be treated as quasi-reversible rather than reversible on this timescale (see Figure 

3h), since the current magnitude for this harmonic is significantly smaller than predicted for a 

reversible process (blue curve). Excellent agreement between the simulated and experimental 

data was achieved for all harmonic components with 𝑘V
0 and 𝑘W

0  both estimated to be 0.10 cm 

s-1. α was reasonally assumed to be 0.50 in all simulations in accordance with the highly 

symmetric shapes of all AC harmonics.  

Since the electrode kinetics of the WVI/V process when using [TPA][BF4], [TBA][PF4] 

and [THA][ClO4] as the electrolyte are so slow, higher order harmonic components are almost 

absent, only the narrowed potential range associated with the VV/IV process was quantified by 

FTACV under these conditions. The FTAC voltammogram (f = 9.02 Hz) obtained for the VV/IV 

process in PC containing 0.5 M [TPA][BF4] is shown in Figure 4.  Excellent agreement 

between the simulated and experimental data was achieved using the measured A, D, C and Ru 

values to give a 𝑘V
0 value of 0.0075 cm s‒1. For the WVI/V process, it should be noted that when 

using [TPA][BF4], [TBA][PF4] and [THA][ClO4] as the electrolyte, the DC cyclic 

voltammograms obtained from the first cycling scan give larger peak-to-peak separations than 

those obtained from the following ones. Furthermore, the shapes of the reduction and oxidation 

peaks are not fitted perfectly with simulated ones obtained based on Butler-Volmer theory 

(Figure S1(a)). For slow electrode kinetics such as the WVI/V process, the differences between 

Butler-Volmer theory and Marcus-Hush theory in simulation are expected to be 

distinguishable. Better fitting was found when comparing the experimental data and simulated 

one based on Marcus-Hush theory (Figure S1(b)). However, a large deviation between 

experimental and simulated data still exists. All the discussions above indicate there are 

complexities associated with the WVI/V process when using [TPA][BF4], [TBA][PF4] and 
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[THA][ClO4] as the electrolyte. Therefore, in this study the electrode kinetics of this process 

were estimated by comparing the peak-to-peak separations of the experimental DC cyclic 

voltammograms obtained from the first cycling scan with those obtained by DigiElch digital 

simulation based on Butler-Volmer theory, taking into account the effect of uncompensated 

resistance (Ru). A 𝑘W
0  value of 1.2×10-4 

cm s-1 was estimated when using [THA][ClO4] as the 

electrolyte. The heterogeneous electron transfer kinetics of the VV/IV and WVI/V processes were 

measured in PC with the 7 different electrolytes outlined in Scheme 1; the FTAC voltammetric 

data obtained for [BMIM]+, [Py14]
+, [TEA]+, [TBA]+ and [THA]+ are included in the 

Supporting Information (see Figures S2 to S6) and the measured k0 values are summarized in 

Table 3. 

FTAC voltammetric data were also acquired with a lower bulk concentration of 0.20 

mM [SVW11O40]
3- in order to lessen the influence of the IRu drop. The results obtained at a Pt 

macrodisk electrode in PC (0.5 M electrolyte) at this lower bulk concentration are also 

summarized in Table 3. Comparisons of experimental and simulated data are presented in 

Figures S7 to S13 in the Supporting Information. As expected, since the IRu drop has been 

correctly accommodated for in all simulations, the determined 𝑘0  values are essentially 

independent of the [SVW11O40]
3- concentration. This concentration independence also implies 

that the contribution from specific adsorption is not significant. 

The data summarized in Table 3 reveal that 𝑘V
0 and 𝑘W

0  are both affected by the nature 

of the supporting electrolyte, with increasing size of the electrolyte cation causing a decrease 

in the measured value. For example,  for the VV/IV process, 𝑘0 decreases by approximately 

three orders of magnitude when the electrolyte cation is changed from [EMIM]+ to [THA]+. As 

discussed previously,[36] the length of the imidazolium based cations ([EMIM]+ and 

[BMIM]+) are similar to the diameter of ammonium based cations ([TPA]+ or [TBA]+). 

However, the planar structure of imidazolium based-cation is thought to cause its preferred 
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orientation to be parallel rather than perpendicular to the electrode surface. With this in mind, 

we can conclude that the 𝑘V
0  values are dependent on the size of the electrolyte cation, 

decreasing in the order; [EMIM]+ > [BMIM]+ > [Py14]
+ ≈ [TEA]+ > [TPA]+ > [TBA]+ > 

[THA]+. The same trend in k0 is also observed for the WVI/V process, however with a more 

significant decrease (approximately two orders of magnitude) from [TEA]+ to [TPA]+, namely, 

[EMIM]+ > [BMIM]+ > [Py14]
+ ≈ [TEA]+ >> [TPA]+ > [TBA]+ > [THA]+. It should be noted 

that the impact of the thermodynamically favourable cross redox reaction between 

[SVW11O40]
3- and [SVW11O40]

5- on the voltammetric characteristics is insignificant, as 

demonstrated in a previous study.[35] 

Table 3. Electrode kinetic parameters derived at a 1 mm dimeter Pt macrodisk electrode for 

the [SVW11O40]
3-/4-/5- processes in PC (0.5 M electrolyte). 

Electrolyte 

 

C 

(mM) 

Ru
a 

(Ω) 

Cdl
a (c0, c1, c 2, c 3, c 4) 

(μF cm-2) 

𝐸V
0 

(V) 

𝑘V
0 

(cm s-1) 

𝐸W
0  

(V) 

𝑘W
0  

(cm s-1) 

[EMIM][BF4] 1.0 415 16.1, -2.1, -5.3, -4.9, -1.1 
0.316 

0.10 
-1.085 

0.10 

 0.20 430 13.2, 1.5, 6.1, 4.8, 1.4 0.10 0.10 

[BMIM][BF4] 1.0 535 20.9, 0.2, -4.0, -4.3, -1.2 
0.306 

0.040 
-1.093 

0.038 

 0.20 515 14.6, 1.0, -1.5, -3.6, -1.3 0.050 0.045 

[Py14][BF4] 1.0 470 28.5, 0.5, -4.5,-3.7, -0.9 
0.333 

0.016 
-1.079 

0.016 

 0.20 502 14.3, 0.7, 0.2, -0.1, -0.1 0.018 0.017 

[TEA][BF4] 1.0 550 31.2, -2.8, -16.9, -14.6, -3.9 
0.342 

0.015 
-1.079 

0.020 

 0.20 543 16.0, 1.11, -2.9, -4.3,  -1.4 0.012 0.020 

[TPA][BF4] 1.0 530 21.5, -0.6, 8.2, 28.8, 24.5 
0.309 

0.0075 
-1.182 

1.2×10-4 b 

 0.20 630 13.4, 0.6, -0.2, 8.0, 12.3 0.0085 c 

[TBA][PF6] 1.0 730 22.0, -0.5, 10.1, 7.3, -12.4 

0.254 

0.0040 

-1.260 

1.2×10-5 b 

 0.20 750 12.4, 1.1, -4.1, 7.0, 19.5 0.0033 c 

[THA][ClO4] 1.0 1330 12.0, -0.5, 10.1, 7.2, -12.4  
0.214 

0.0018  
-1.355 

1.7×10-6 b 

 0.20 1270 13.9, 2.4, 0.6, -3.1, -1.1 0.0016 c 

a See supporting information for detailed measurement. 
b Estimated from ΔEp values obtained from DC cyclic voltammetry. 
c No well-defined process observed at this lower concentration. 
d FTACV simulations were obtained assuming α = 0.50. 
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The solvent chosen in this study, PC, has a relatively high dielectric constant (64.9 at 

25 ℃[42]), which is expected to minimise the extent of ion pairing. For example, a measurable  

amount of ion pairing between the electrolyte cation and nitromesitylene radicals has been 

reported in acetonitrile and dimethylformamide[46] (with dielectric constants of 36 and 36.7, 

respectively), while negligible ion pairing between the same anion radical and the electrolyte 

cation has been suggested in PC.[47] Nevertheless, owing to the high negative charge of POM 

anions, the occurrence of electrolyte cation-POM ion pairing in the present study is expected 

(the electrolyte cation dependence of the 𝐸0 values (see Table 3) implies that ion pairing is 

significant). In this case, the electrode kinetics have been measured at apparent formal 

potentials ( 𝐸app
0 ) rather than formal potential 𝐸F

0 , so 𝑘0  should be more appropriately 

considered as an apparent rate constant (𝑘app
0 ). In this situation, the kinetics of the overall 

electron transfer reaction scheme can be described by the square reaction given in Eq. 3, 

                                         A    +    e-                          B        (E1
0, 𝑘1

0
)                          

 

                                  𝐾1         X  +                               X+          𝐾2 

 

                                     XA+    +    e-                         XB+        (E2
0, 𝑘2

0
)                        (3) 

In this scheme, the symbols A and B are used to represent [SVW11O40]
3- and [SVW11O40]

4-, 

respectively so that 𝐾1 =  
[X+][A]

[XA+]
 and 𝐾2 =  

[X+][B]

[XB+]
 are the equilibrium constants for the ion-

pairing reactions involving either the oxidised or the reduced forms, E1
0 and E2

0 are the relevant 

formal potentials and; 𝑘1
0
 and 𝑘2

0
are the formal electron transfer rate constants at E1

0 and E2
0, 

respectively. It can be shown that the voltammetric responses associated with this process are 
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identical to a simple one-electron transfer process in Eq. 4 if the ion pairing reactions are 

reversible on the voltammetric timescale.  

A'    +    e-                            B'    (kapp
0, αapp, Eapp

0)                                 (4) 

where   

𝑘app
0 =

𝑘1
0(𝐾2 𝐾1⁄ )𝛼𝑎𝑝𝑝 + 𝑘2

0([X+] 𝐾1⁄ )

[1 + ([X+] 𝐾1⁄ )]1−𝛼app[(𝐾2 𝐾1⁄ ) + ([X+] 𝐾1⁄ )]𝛼app
            (5) 

 

Since a higher charge density is associated with the species B, K2 is expected to be smaller than 

K1. It is also reasonable to assume that both K1 and K2 are smaller than unity due to relatively 

strong association between highly charged POMs and electrolyte cations. Consequently, the 

relationships 𝐾2/𝐾1 ≪ [𝑋+]/𝐾1  and 𝑘1
0(𝐾2/𝐾1)1/2 ≪ 𝑘2

0([𝑋+]/𝐾1)  are expected to be 

valid under the experimental conditions employed as noted in other studies.[48, 49] On this 

basis, Eq. 5 can be simplified to give Eq. 6 with αapp taken to be 0.5, 

𝑘app
0 =

𝑘1
0(𝐾2 𝐾1⁄ )1/2 + 𝑘2

0([X+] 𝐾1⁄ )

[1 + ([X+] 𝐾1⁄ )]1/2[(𝐾2 𝐾1⁄ ) + ([X+] 𝐾1⁄ )]1/2
≈

𝑘2
0([X+] 𝐾1)⁄

1/2

[1 + ([X+] 𝐾1⁄ )]1/2

=
𝑘2

0

[1 + (𝐾1/[𝑋+])]1/2
                                                       (6) 

As the size of the cation increase ([TEA]+ > [TPA]+ > [TBA]+ > [THA]+), the ion pairs 

formation become weaker and K1 is expected to increase. Assuming 𝑘2
0
 is insensitive to the 

identity of the electrolyte cation, kapp
0 is therefore predicted to decrease in the order of [TEA]+ 

> [TPA]+ > [TBA]+ > [THA]+. 

The apparent formal potentials 𝐸𝑎𝑝𝑝
0  is also a function of 𝐸1

0, 𝐾1, 𝐾2 and [X+] [49] 

(𝐹/𝑅𝑇)(𝐸app
0 − 𝐸1

0) = ln [
1 + ([X+] 𝐾1)⁄

1 + ([X+] 𝐾2⁄ )
]               (7)  

Rearrangement gives 

(𝐹/𝑅𝑇)(𝐸app
0 − 𝐸1

0) = ln(
𝐾2 + [X+]

𝐾1 + [X+]
 ∙

𝐾1

𝐾2
)          (8) 
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As 𝐾1 and 𝐾2 are much smaller than 1, it is reasonable to assume 
𝐾2+[X+]

𝐾1+[X+]
≈ 1. Therefore,  

(𝐹/𝑅𝑇)(𝐸app
0 − 𝐸1

0) ≈ ln(
𝐾1

𝐾2
)                       (9)       

When the electrolyte cation is small, ion pair formation is stronger, and the difference between 

𝐾1 and 𝐾2 is larger than that when using a larger cation. Since 𝐾1 is expected to be larger than 

𝐾2 as explained above, the values of ln(
𝐾1

𝐾2
) are predicted to increase with the size of electrolyte 

cation which decrease in the order  [THA]+ < [TBA]+ < [TPA]+ < [TEA]+. Consequently, on 

the basis of Eq. (9), we can deduce that 𝐸𝑎𝑝𝑝
0  values are expected to follow the order [THA]+ 

< [TBA]+ < [TPA]+ < [TEA]+. Figure 5 provides a plot of 𝑘app
0  values associated with the VV/IV 

and WVI/V processes as a function of their formal reversible potential, which indeed confirms 

𝑘V
0 and 𝑘W

0  values decrease, and the 𝐸𝑉
0 and 𝐸𝑊

0  shift towards more negative potentials as the 

size of electrolyte cations increase as predicted. However, ion pairing cannot be the sole reason 

for the electrolyte cation dependence of the 𝑘0  values, as this does not account for the 

dramatically different 𝑘V
0 and 𝑘W

0  dependence on supporting electrolyte. 
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Figure 5. Plots of the logarithm of 𝑘0 for the (a) VV/IV and (b) WVI/V processes vs. formal 

reversible potential in PC containing 0.5 M electrolyte. 

 

In the Marcus Theory of electron transfer, the heterogeneous rate constant associated 

with a simple outer sphere electrode process is inverse proportional to the activation Gibbs 

energy, 𝛥𝐺∗.[14] The total activation energy 𝛥𝐺∗ can be divided into inner 𝛥𝐺𝑖
∗ and outer 𝛥𝐺𝑜

∗ 

components of the reorganization energies. The inner component of reorganization energy 

reflects the bonds between the centered metal and the ligands. The outer component of 

reorganization energy corresponds to the interaction of the complex with the molecules or ions 

in the medium. Considering the structure of the POM remains similar after electron transfer, it 
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is reasonable to assume that Δ𝐺o
∗ makes a dominanth contribution. On this basis, the 𝑘0 values 

are expected to descrease with increase in the viscosity of the solvent (electrolyte), which is 

the case for both 𝑘V
0 and 𝑘W

0  when the electrolyte cation is changed from [TEA]+ to [THA]+. 

However, the viscosity of PC containing 0.5 M [TEA][BF4] is only 1.5 times smaller than that 

containing 0.5 M [THA][ClO4], while the 𝑘V
0 values decrease approximately by a factor of 10 

and 𝑘W
0  values decrease more significantly (approximately four orders of magnitude). 

Therefore, the contribution from media change in viscosity are not the major factor. 

Significant electrolyte cation dependence of the 𝑘0 values also may arise from specific 

adsorption of [SVW11O40]
3-, [SVW11O40]

4- and/or [SVW11O40]
5-. However, since the 𝑘V

0 and 

𝑘W
0  values found at the two [SVW11O40]

3- concentrations (1 mM and 0.2 mM) are almost 

identical, a specific adsorption effect is unlikely, as this is expected to give rise to concentration 

dependence. 

In general, if it is assumed that the reaction plane is coincident with the outer Helmholtz 

plane, the electrolyte cation dependence of 𝑘0  may be consequence of the double layer 

effect.[50] However, as highlighted in previous studies, it appears that the double layer effect 

alone cannot account for the magnitude of the electrolyte cation size effect observed herein. 

Gamber, et al.[51] found that at negative potentials, tetraalkylammonium cations are adsorbed 

at a mercury electrode/electrolyte interface in acetonitrile, with the extent of adsorption 

becoming more extensive with increasing length of the constituent alkyl chain of the cation. 

Evans, et al.[52] studied the inhibiting effect of large tetraalkylammonium cations on the 

electrode kinetics for a wide variety of electrode reactions. In their study, these authors showed 

that the k0 values became smaller when [THA]+ replaced [TEA]+ as the electrolyte cation. This 

suggested that at negative potentials, the electrode is extensively covered with adsorbed 

tetraalkylammonium cations and therefore 𝑘0 electrolyte dependence was explained in terms 

of blockage of electron transfer by the concentrated “film” of tetraalkylammonium cations. 
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Simply, it can be assumed that 𝑑 = 2𝑟+ (𝑑 is the thickness of the “film” and 𝑟+ is the diameter 

of the electrolyte cation). However, since the alkyl arms of the larger tetraalkylammonium 

cations (n ≥ 3) can bend under the influence of an electric field, the charge center at the nitrogen 

atom is able to approach the surface at a distance of 0.37 nm.[47] This necessitate the 

introduction of correction factor to the thickness of the “film” for the larger 

tetraalkylammonium cations:[47] 

                                         𝑑 = 2𝑟+             𝑛 ≤ 3                                          (10) 

                                         𝑑 = 𝑟+ + 0.37       𝑛 ≤ 3                                        (11) 

Table 4 shows the crystallographic radius (𝑟+ ) and the calculated thickness of the 

coverage (𝑑) for each of the tetraalkylammonium cations. A plot of ln 𝑘0 measured in PC 

solutions containing the range tetraalkylammonium cations used versus 𝑑 (calculated using 

Eqs. 10 and 11) is shown in Figure 6. Reasonable linear correlations (r2 = 0.99 and 0.98 for 

VV/IV and WVI/V processes, respectively) between are obtained for both the VV/IV and WVI/V 

processes. 

In our previous studies,[35,36] the electrode kinetics of VV/IV and WVI/V processes were 

found to be dependent on the electrode material, which is consistent with the prediction of 

Marcus theory. In Marcus theory, the adsorbed layers on the electrode/electrolyte interface can 

impede electron transfer.[50, 53-55] When electron tunneling occurs from an electrode which 

is covered by an adsorbed layer to a redox active species in the solution phase, the standard 

rate constant is proportional to thickness of adsorbed layer:[47] 

                                    𝑘0  = 𝑘0′𝑒−𝛽𝑑                                              (12) 

where k0’ is the standard rate constant for the uncovered electrode and 𝛽 is the tunneling 

parameter. Reasonable linear correlations between  ln 𝑘0 and 𝑑 were obtained for both VV/IV 

and WVI/V processes, which is consistent with that predicted by Marcus theory. The slopes of 

the plots, which are equivalent to 𝛽 (see Eq. 12), are found to be 13.3 nm-1 for the VV/IV process 
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and 58.9 nm-1 for the WVI/V process, which suggests the latter has a higher barrier height. 

Lipkowski et al.,[53] who studied the electrode kinetics of redox processes at mercury 

electrodes coated with monolayers of quinolone, iso-quinoline and 3-methyl-iso-quinoline 

found that the monolayers existed as concentrated liquid-like films or compact solid-like films 

depending on the magnitude of the electrode potential. While the former has a significant 

inhibitive effect, the latter can decelerate the electrode reaction much more effectively, by up 

to 6-7 orders of magnitude. On this basis, the results in our study can be attribute in part to 

inhibiting effect of adsorbed tetraalkylammonium cations on the electrode surface that form a 

blocking layer which reduces the probability of electron transfer through the layer; the 

thickness of the layer increases with the size of electrolyte cation. In the potential region where 

the VV/IV process occurs (close to the potential of zero charge, pzc), the monolayer acts as a 

liquid-like film, and as a result, the 𝑘V
0 values decrease gently with an increase in the electrolyte 

cation size. For the WVI/V process, which appears in a much more negative potential region 

(significantly negative of the pzc), the monolayer becomes more compact and acts as a solid-

like film, particularly when using the larger tetraalkylammonium cations. Consequently, a 

more significant drop in 𝑘W
0  is observed when changing the electrolyte cation from [TEA]+ to 

[TPA]+, [TBA]+ and [THA]+.  

Although the dimensions of [EMIM]+ and [BMIM]+ are known, it is problematic to 

estimate the thickness of the layer for these two cations, since these center of charge is able to 

approach the electrode surface at a closer distance than spherical ammonium cations, due to 

their planar structure. For this reason, 𝑘0 data for these two cations are not included in the plot 

shown in Figure 6. However, it is important to note that comparison of these 𝑘0 values also 

reveals a decrease with increase in the length of the alkyl chain (see Table 3). Furthermore, 

given that the structure of [Py14]
+ is similar to that of [TEA]+, in terms of the length of the alkyl 

groups, comparable 𝑘0  values are expected when using these two cations, as observed 
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experimentally (𝑘V
0 = 0.016 cm s-1, 𝑘W

0  = 0.016 cm s-1 with [Py14]
+ and 𝑘V

0 = 0.015 cm s-1, 𝑘W
0  

= 0.02 cm s-1 with [Py14]
+). On the basis of the above analysis, the observed cation dependent  

𝑘V
0 and 𝑘W

0  (Figure 6) is consistent with the prediction based on the Marcus theory. 

  

Figure 6. Plot of the natural logarithm of k0 for the VV/IV () and WVI/V () processes 

measured at a Pt electrode in the presence of designated tetraalkylammonium cations versus 

the thickness of the coverage (d), calculated from the crystallographic radius of the relative 

cations (see Eqs. 11 and 12). 

 

Table 4. Cation Crystallographic radii (r+) and calculated thickness of the coverage (d) of the 

tetraalkylammonium cations employed in this study. 

Electrolyte 
Cation crystallographic radius 

𝑟+ (nm)[56] 

Thickness of the coverage  

𝑑 (nm) 

[TEA][BF4] 0.337 0.674 

[TPA][BF4] 0.372 0.744 

[TBA][PF6] 0.413 0.783 
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[THA][ClO4] 0.469 0.839 

Conclusions 

The heterogeneous electron transfer kinetics associated with the [SVW11O40]
3−/4−/5− 

processes at a platinum electrode have been investigated in PC containing seven different 

supporting electrolyte cations using large amplitude FTAC voltammetry to quantify very fast 

kinetics and DC cyclic voltammetry for slow kinetics. The formal reversible potentials and 

electron-transfer rate constants associated with the VV/IV and WVI/V processes were found to 

correlate with the size of the supporting electrolyte cation. k0 values decrease in the order, 

[EMIM]+ > [BMIM]+ > [Py14]
+ ≈ [TEA]+ > [TPA]+ > [TBA]+ > [THA]+ for both processes 

even though they occur at very different potentials, and while 𝑘V
0 decreases more gently with 

increasing cation size, changing by approximately three orders of magnitude, the decrease in 

𝑘W
0  is more drastic, changing by approximately five orders of magnitude from [EMIM]+ to 

[THA]+. Possible explanations for the electrolyte cation depedence were considered (e.g., ion-

pairing, viscosity, adsorption and the double-layer effect), with inhibition of electron-transfer 

by a blocking “film” of electrolyte cations being proposed as the dominant factor, supported 

by the linear plot of ln(k0) vs. ln(d) for both the VV/IV and WVI/V electron transfer processes. 

The nature of the cation “film” is thought to change from liquid-like (moderately inhibiting) in 

the potential region where the VV/IV process occurs, to solid-like (strongly inhibiting) in the 

potential region where the WVI/V process occurs, thereby explaining the different sensitivities 

of the respective processes to the nature of the supporting electrolyte cations. 
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