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Abstract 

Objective – To determine whether tests of cognitive function, and patient reported outcome 

measures of motor function can be used to create a machine learning-based predictive tool for 

falls. 

Design – Prospective cohort study. 

Setting – Tertiary neurological and neurosurgical centre. 

Subjects – 337 in-patients receiving neurosurgical, neurological, or neurorehabilitation-based 

care. 

Main Measures – Binary (Y/N) for falling during the in-patient episode, the Trail Making 

test (a measure of attention and executive function), and the Walk-12 (a patient reported 

measure of physical function). 

Results - The principal outcome was a fall during the in-patient stay (n = 54). The Trail test 

was identified as the best predictor of falls. Moreover, addition of other variables, did not 

improve the prediction (Wilcoxon signed-rank p < 0.001). Classical linear statistical 

modelling methods were then compared with more recent machine learning based strategies, 

e.g. Random forests, neural networks, support vector machines. The random forest was the 

best modelling strategy when utilizing just the Trail Making Test data (Wilcoxon signed-rank 

p < 0.001). with 68% (± 7.7) sensitivity, and 90% (± 2.3) specificity. 

Conclusion – This study identifies a simple yet powerful machine learning (Random Forest) 

based predictive model for an in-patient neurological population, utilizing a single 

neuropsychological test of cognitive function, the Trail Making test.  
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Introduction 

Falls are a serious public health concern with potentially fatal consequences and 

significant financial implications for individuals,1-2 their families,3-4 and the National Health 

Service.5 In the UK, falls account for over 60% of all hospital in-patient related safety 

incidents,6 with the highest risk of falls most commonly associated with neurological 

conditions such as the stroke population, in whom the prevalence of falls can be as a high as 

50%.5,7  The issues of falls-related injury is not restricted to the UK; there were more than 

10,000 fatal falls in the elderly population, and an additional 2.6 million medically treated 

falls-related injuries that were non-fatal in the USA in one year alone, resulting in a direct 

cost of close to US $20 billion.8 Predicting which patients are at high risk of falling is one of 

the first steps towards implementing a system to prevent those falls. 

The current state-of-the-art methods for predicting falls are based on assessing 

patient factors such as age, urinary urgency, or walking impairment.9 By identifying 

additional risk factors it may be possible to improve the prediction.10 Several contemporary 

theories of locomotion have hypothesized the importance of cognitive dysfunction as a risk 

factor for falling.11 Specifically, executive function and attention have been shown to be 

independent falls risk factors.12-16

Whilst there are many neuropsychological tests available whose ability to measure 

executive function is well described in the literature, their relationship to attention is less 

well understood.17 In this study we chose to use the Trail Making test because its two parts 

(A & B) mapped well onto several well accepted theories of attention,18,19 executive 

function,12 and more generally the cognitive control of tasks.20 The Trail Making test in 

combination with other variables has been used to predict risk associated with other tasks 

that rely heavily on executive function and attention, such as driving.21,22 However, we are 
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unaware of any studies that have attempted to use the Trail Making Test to create a model 

for falls prediction in a neurological cohort.  The purpose of this study was to determine 

whether the Trail Making Test, in combination with other risk factor data, is capable of 

accurately predicting falls in the acute neurological in-patient population.
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Methods 

Following discussions with our local ethics review committee it was agreed that 

advice should be sought from the UK statutory regulator, the Health Research Authority, as 

to whether a full ethics review was needed for the study. The Health Research Authority 

determined that the appropriate designation for this study was ‘Service Development’, thus 

waiving the requirement for ethics board review. The rationale provided was that because 

the relationship between executive function and falls is well recognized, and thus the study 

was an application of knowledge, not investigation into an unknown quantity.  The study 

was subsequently vetted and approved by hospital governance. Patient consent was 

recorded in the clinical notes. Data analysis was conducted on a completely anonymised 

dataset. Non-anonymized data was stored securely for use by the patient’s clinical team, 

accessible only through the hospitals secured severs. Because the data was used under the 

service development designation, we are not able to share the raw data. However, if you 

wish to utilize the model for research purposes, please contact the corresponding author. 

Data was collected between the 17th November 2014 and 17th December 2014 at the 

National Hospital for Neurology & Neurosurgery, Queen Square, UK, a tertiary neuroscience 

centre, from 3 neurosurgical, 3 neurological, and 2 neuro-rehabilitation wards. 

All patients present on the wards at the beginning of the study, and those admitted 

over the course of the recruitment period, were informed of the project and verbally 

consented by a trained researcher (Author BAM). Everyone, including those unable to 

complete the test battery, was included in the study except those patients who did not 

consent. Contraindications to test administration included: lack of fluency in English; severe 

cognitive impairment, communication difficulties, or severe mood/behavioral problems 

where sufficient support could not be clinically provided to allow for fair administration of 
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the tests; and/or, agreeing to their demographic data being utilized, but declining to 

complete the test battery. 

The test battery (see appendix table S1 for detailed description of tests used) 

consisted of the Trail Making tests23,24, a PROM (Patient Reported Outcome Measure) of 

motor function (Walk-12),25 and three binary (yes/no) questions relating to the past 1 

month’s medical history (whether the patient had: undergone surgery; experienced a 

change in physical function; and/or, fallen), and demographic information (diagnosis, age, 

sex, ethnicity, & years of education) collected at admission. Testing was carried out by a 

trained researcher (Author – BAM), under the supervision of a consultant neuropsychologist 

(Author – DW). 

The principal outcome in the prospective study was whether a patient fell or not 

during their in-patient stay. A fall was defined as an incident, which consisted of 

unintentional contact with the ground (or intermediary object, which halted their 

progression to the floor, e.g. a wall), by any part of the body, except the feet. The additional 

distinction of recurrent falling has been disregarded in this study as a single fall is sufficient 

to cause injury. Falls are considered serious incidents, and are recorded on a computer-

based registry. We used this registry to identify retrospectively which patients recruited into 

the study fell during their in-patient stay, and matched this information to the prospectively 

collected data generated by the test battery.  

The summary statistics for each test in the battery, in the form of 6 number 

summaries (minimum, 1st and 3rd quartile, median, mean, and maximum values), are 

available in the appendix. The mean score for the faller and non-faller populations were 

then compared using two-tailed t-tests, and the corresponding p-value for significance is 

reported in the tables.  
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Next, a series of predictive models were generated to determine which combination 

of data and statistical model most reliably predicts whether a patient is likely to fall. The 

modelling was performed using the R (v 3.2.0) statistical software suite and the mlr (v 2.7)

machine learning library.26,27 Table S2 contains an overview over the different statistical 

models used. The models considered may be roughly divided into “classical” models such as 

logistic regression, and “machine learning” methods such as random forests.28 A random 

forest can be thought of as a group of slightly different classification trees that are learnt 

based on the data provided. When new data is then presented to this group of classification 

trees, each tree uses the new information to arrive at a prediction, in this case, fall or not 

fall. Each tree’s prediction is considered a vote, and the result that the random forest 

algorithm presents to the user is the class (fall or not fall) that the majority of the trees 

selected.  

The quantitative measures of how reliable each prediction strategy is in predicting 

new data, is described using the mean misclassification error, sensitivity (= True Positive 

Rate), specificity (= True Negative Rate), precision (= Positive Predictive Value), and the F1 

score (a classical measure of the trade-off between sensitivity and specificity). Using 

measures of accuracy in isolation, such as sensitivity, can be misleading if a model ‘cheats’ 

(i.e. does not use the data to predict outcome, but instead in classification tasks such as this 

repeatedly guesses the majority class (no fall) to maximize its score on one measure of 

accuracy – also known as an idiot or uninformed classifier). To prevent a model being 

selected that does this, the F1 statistics is utilized. A non-zero f1 statistic would suggest that 

the classifier is not attempting to cheat, and the higher the f1 statistic, the better the 

classifier. 
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For each prediction strategy, the quantitative measures of predictive strength were 

estimated by repeatedly splitting the data into a training sample on which the model is 

fitted and a test sample, which mimics “new” data, on which the model is tested by 

comparing the predictions to the true labels (faller vs non-faller), this is called cross-

validation. We utilized a 10-fold cross-validation procedure. Therefore, the data was split 

into 10 parts, with 9 parts being used to train the model, and the 10th portion being treated 

as new data. An algorithm, known as the Jackknife estimator of variance, was applied to the 

results from that 10th portion to produce error estimates for each quantitative measure of 

predictive strength. The process of training on 9 sets, and testing on the 10th was repeated 

so that all 10 parts play the role of new data once. The 10 different results are then 

combined to produce a single estimate for the overall predicted model performance, and 

the associated error statistic. The performance of a strategy was considered better than 

another if the difference was significant at 5% significance level of a Wilcoxon signed-rank 

test. 

Three Receiver Operator Characteristics (ROC) curves were generated to illustrate 

the benefit of using the most informative sub-set of data, and secondly, the best modelling 

strategy for this scenario, compared to the other methods and data available.   

 Finally, the above analysis was carried out on restricted datasets, utilizing only the 

subset of individuals without any missing values to allow comparison between subsets of 

the data, and modelling strategies. Given that the ability to complete all tests is not 

reflective of the total sample, it needs to be determined whether the chosen predictive 

approach generalizes to the whole population. To illustrate that the best method we 

identified can still accurately predict falls after accounting for missing data, we devised the 



Predicting Neurological In-patient Falls

9

following experiment. For patients with sufficient data to make predictions the 

aforementioned model was used, and where individuals were missing the necessary data 

the majority prediction (no fall) was utilized instead, given that in reality, the vast majority 

of patients do not fall. The quantitative measures of predictive strength detailed above 

were also reported for this final model. 
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Results 

339 patients were approached to participate in this study, of whom 54 fell during 

their in-patient stay. The demographics features for those two sub-groups (Fallers vs. Non-

fallers) is described in Table 1. Figure 1 describes the reduction in sample size due to the 

relevant constraints (i.e. refusal to consent, inability to compete any tests, and specific 

contraindications for the Trail Making test). After accounting for all of the constraints, 211 

individuals with demographic, patient reported outcome measure and Trail Making data 

remained. Five of the 211 individuals undertaking the Trail Making test had incomplete 

dataset due to administrator error in recording the resultant variables (Table 2).  

The median time from admission to testing was 2 days (Range: 1 - 30). 71% (n = 229) 

of the population had all of the tests administered within 2 days of admission. There was no 

significant difference between the time from admission to testing when fallers and non-

fallers were compared (p = 0.27). Age, number of years of formal education and ethnicity 

did not significantly differ between the faller and non-faller cohorts (Table 1). However, 

there were significantly more men (p<0.05) in the non-faller cohort and the vast majority of 

both groups identified as ethnically white (Table 1). 

The primary raw scores for the Trail Making Test, time on part A and B, both 

demonstrated significant differences between the fallers and non-fallers, at the 0.01% 

significance levels (Table 2). The Trail Making error scores were significantly different for 

part B, but not part A (Table 2). The Trail Making composite score did not differ between the 

two groups (Table 2). Furthermore, of the three binary questions, only ‘having undergone 

surgery in the last month’ was not significantly associated with falling (Table 3). All 12 

questions of the Walk-12 questionnaire differed significantly (p < 0.01) between fallers and 

non-fallers (Table 2). 
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The dataset was then restricted so that only individuals with data for all of the tests 

were included (i.e. restricting the dataset to those with complete Trails datasets, n = 206) to 

allow for fair and formal comparison between different models and sub-sets of the data. The 

modelling data (Table 3) suggests that the Trail Making test produces the best predictions 

(Wilcoxon signed-rank p < .001). Moreover, adding any of the other variables: demographic 

features, the binary questions, or physical function-related, did not significantly improve the 

models prediction capabilities (Wilcoxon signed-rank p < .001).  

The three receiver operating characteristics curves (Fig. 2) demonstrate that the Trails 

data is the best predictor, and that the Random Forest is the best accompanying modelling 

method (Fig. 2). [Please insert figure 2]. The logistic regression method combined with the 

demographic data and the binary questions produces a reasonably good predictive model. 

However, when the Trails data is used instead of the demographic and binary data, but still 

using logistic regression method, the predictive power of the resulting model is significantly 

improved (Wilcoxon signed-rank on residuals p < .001). The result of the model can again be 

significantly improved (Wilcoxon signed-rank on residuals p < .001), by replacing the logistic 

regression method with the Random Forest (in combination with the trail making data). Thus, 

the combination of the Trail Making variables and the Random Forest appears to produce the 

best predictive model based on the available data. The best version of the model generated 

was capable of predicting with 68% (± 7.7) sensitivity, 90% (± 2.3) specificity, 0.600 (± 7.6) 

precision, and 0.630 (± 0.063) F1-score, in a population where the Trail Making data is 

available.  

Finally, the unrestricted dataset with all individuals, including those without Trail 

Making data was utilized. After applying the majority classifier to all individuals without the 

Trail data, and employing the Random Forest and Trail Making for everyone else, the 
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predicted sensitivity was 51% and specificity was 94% (See Appendix Table S3). 
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Discussion 

In this study we have used the Trail Making test in combination with the Random 

Forest to produce a falls prediction model. This model accurately identifies which tertiary 

neuroscience centre in-patients are at high risk of falling (sensitivity of 68% ± 7.7, and 

specificity of 90% ± 2.3). In our data set, neurological in-patients that fall are more likely to 

have impaired cognitive, and reduced self-reported physical function compared to those 

individuals that do not fall. To our knowledge this is the first study which demonstrates the 

applicability of machine learning methods when combined with cognitive data. However, 

external validation in a new sample is required before we can be certain of the veracity of 

these results, and therefore recommend it for use in clinical practice.  

In a previous study, Kabeshova and colleagues demonstrated the superiority of 

machine learning predictive methods to classical predictive models in the falls prediction 

setting.30 However, they used demographic and risk factor data, but not cognitive data. Our 

results suggest that the Trail Making test results are sufficient to predict falls risk in this 

sample, as the addition of demographic or physical function related variables did not 

improve predictive accuracy. Moreover, the Random Forest model appears to be these best 

statistical model to use in combination with the Trail Making test, similarly demonstrating 

the superiority of machine learning methods. Unfortunately, machine learning methods 

such as the Random Forest are characterized by their black-box nature, meaning that it is 

impossible to ascertain how and why they reach individual decisions. Consequently, we are 

unable to provide simple cut-off scores for different categories of risk as one might do if 

they were to create a simpler linear model.  

As we alluded to in the introduction, previous studies have described the importance 

of several cognitive substrates to locomotion,11,31 including processing speed (using the Digit 
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Symbol Substitution Test);32 attention (based on dual task measurements);33 and executive 

function.12 Here we have utilized a single cognitive test, the Trail Making test, that some 

believe spans all of these areas of cognition (processing speed, attention, and executive 

function). The Trail Making test is widely accepted to be a test of executive function,17

however its role as a test of attention and the speed of processing is less clear.

According to one theory of attention, by Zomeren & Spikman,18 part A of the Trail 

Making test is a measure of the speed of processing, which they argue is a form of 

attentional processing, whereas part B is a measure of the tactical level of attention. As 

predicted by the theory, the primary variables (time taken to complete part A and time 

taken to complete B) differed significantly between fallers and non-fallers. Moreover, 

Zomeren & Spikman argue that errors on measures of the operational level of attention (i.e. 

Trail Making Part A) are not relevant to processing speed, and therefore should not differ 

between the two groups. Whereas, errors on tests of the tactical level of attention (i.e. Trail 

Making Part B) are relevant to the measurement of attention, and so should differ between 

the two groups.18 The pattern of significant and non-significant error results in our data is 

consistent with these postulates. 

The concordance of the results and theoretical postulates lends credibility to the 

suggestion that the Trail Making test may capture information from across both important 

cognitive substrates: attention (including speed of processing), and executive function.  The 

implication for clinical practice is that collecting the Trail Making test alone may be sufficient 

for predicting falls, and the collecting of a comprehensive battery of tests is unnecessary. 

However, definitive evidence for this claim requires an additional study to demonstrate that 

adding the purpose built measures of attention and processing speed to the Trail Making 

data does not improve fall-related predictions. 
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Lack of methodological robustness has become one of the central criticism of 

medical prediction/prognostic research over the last decade.34 A recent systematic review 

found that the falls prediction tool recommended by the UK’s relevant statutory body is 

substantially less accurate than the original validation study suggested.35,36 As such, the 

main strength of this study is the use of the gold standard statistical techniques, such as: 

cross validation to mimic new, unseen, data; and estimation of the errors associated with 

each prediction statistic,37 to prevent overestimation of the generated models’ predictive 

capabilities. For example, by removing the cross-validation stage in our model development 

method, instead of identifying one model, we find several combination of model type and 

data which each had sensitivity and specificity in excess of 90%, and utilize a variety of 

physical and demographic variables in addition to the Trail Making test. The result of 

omitting these methods is that spurious correlations specific only to the initially measured 

population are more likely to be retained by a model, and thus, the model becomes over-

fitted, and over-fitted models are very unlikely to replicate their exceptional initial 

performance in subsequent replication/validation studies.   

One of the main limitations of this study is a result of the data being collected in a 

single tertiary centre that covered acute neurological, neurosurgical, and 

neurorehabilitation care, suggesting that the generalization of these results should be 

considered carefully. Furthermore, the time to testing represents another potential 

limitation. In the 2 days (median) from admission to testing it is possible that the patients 

may have become cognitively fatigued, undergone procedures, or received medication that 

increased their risk of falling. Unfortunately, little can be done to mitigate this limitation in 

this study, as a reasonable period of time needs to be allowed for the patients to complete 

the outcome measures. Given that the validity of the model has been demonstrated in this 
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preliminary study, future attempts to use the model should be done at the time of 

admission, which would illustrate the effect, if any, the time to testing has on predicting the 

outcome. The other limitations of the study are those specific to our choice of outcome 

measures. The trail making test is known to suffer from practice effects, and the effects of 

previous testing with this particular measure were not corrected for in our analysis.38

Moreover, the use of the Walk-12, instead of an objective measure of physical function, 

such as the 10m walk test, could also be seen as a limitation of the study, especially in light 

of recent evidence suggesting that the latter is more predictive of falls than the former.39 As 

such, additional investigation into the combination of an objective physical function 

measure and a practice effect resistant cognitive test is required.    

Clinical Messages 

- Neurological inpatients that fall are more likely to have impaired cognitive and 

physical function compared to non-fallers.  

- The Trail Making test is capable of accurately predicting falls in an in-patient 

neurological population. 
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Table 1 – Cohort Demographics  

Demographic Data 
Fallers 
N = 54 

Non-Fallers 
N = 283 

Sex

Male 25 (46.3%) 169 (59.7 %) 

Female 29 (53.7%) 114 (40.3 %) 

Ethnicity* 

White 42 (77.8%) 219 (77.4%) 

Asian/Asian British 5 (9.26%) 40 (14.2%) 

Black/African/Caribbean/Black British 6 (11.1%) 13 (6.71%) 

Other/Mixed 1 (1.85%) 5 (1.77%) 

Age 

<19 0 (0.00%) 1 (0.35%)

19 - 29 6 (11.1%) 24 (8.48%) 

29 - 39 3 (5.56%) 44 (15.5%) 

39 - 49 10 (18.5%) 42 (14.8%) 

49 - 59 14 (25.9%) 58 (20.5%) 

59 - 69 10 (18.5%) 49 (17.3%) 

69 - 79 6 (11.1%) 46 (16.3%) 

79 - 89 5 (9.26%) 18 (6.36%) 

89 – 99 0 (0.00%) 1 (0.35%) 

Mean [95% Confidence Interval] 55.4 [50.7, 60.2] 54.7 [52.5, 56.9] 

Primary Diagnosis 

Space Occupying Lesion 10 38 

Under investigation / No known diagnosis 0 45 

Spinal Cord Pathology 5 39 

Stroke 15 24 

Cephalgia (incl. migraine) 0 16 

Intracranial Hypertension & Hydrocephalus 4 24 

Disc-related Pathology 1 29 

Extra-axial Haemorrhage 2 16 

Cerebrovascular Malformation 3 9 

Parkinsonism  2 9 

Rapid Cognitive Decline 4 0 

Myasthenia Gravis 1 3 

CNS Vasculitis 2 2 

Multiple Sclerosis 1 0 

Inflammatory Encephalopathy  1 0 

Gullian Barre Syndrome 1 0 

Dropped Head Syndrome 1 0 

Bilateral Progressive Optic Neuropathy 1 0 
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Conditions with 5 or less diagnosed individuals and no falls: Autonomic failure (5), Epilepsy (4), 
Cushing’s Disease (3), Functional Motor Disorder (2), Tuberculosis (2), Motor Neuron Disease (1), Foot 
drop (1), Progressive Sensory Neuropathy (1), Polymyositis (1), Pneumocephalus (1), Phenylketonuria 

(1), Optic Neuritis (1), Neuromyelitis Optica (1), GAD-positive Ataxia Syndrome (1), Dystonic tremor (1), 
Dural Fistula (1), Chronic fatigue syndrome (1), Back and leg pain (1). 

Years of Education^ 

Mean [95% Confidence Interval] 13.1 [12.1, 14.1] 13.4 [12.9, 14.0] 

*Ethnicity reported in line with the standardized classification used by the office for national 
statistics.29  ^ Total number of years in primary, secondary, further &/or higher education. # - Significant 
difference (P <0.01) 
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Table 2 -Non-Faller and Faller Summary Statistics for the Trail Making Test Variables  

Test Population 
Sample Size 

(Participants) 
Minimum 1st Quartile Median 

Mean
3rd Quartile Maximum 

Fallers vs. 
Non-fallers 
Significance 

(t-test p value) 

Time to Complete Part A 
(Seconds) 

Faller 39 15.0 49.0 76.0 80.43 90.5 300.0 
3.0 x 10-5 

Non-Faller 172 14.0 26.0 34.0 42.51 48.0 131.0 

Number of Errors - Part A 
Faller 38 0.0 0.0 0.0 1.10 1.0 3.0 

1.2 x 10-2 

Non-Faller 172 0.0 0.0 0.0 0.93 0.0 2.0 

Time to complete Part B 
(Seconds) 

Faller 39 42.0 176.0 253.0 200.71 294.5 300.0 
3.9 x 10-8 

Non-Faller 171 32.0 84.0 131.0 121.57 191.0 300.0 

Number of Errors - Part B 
Faller 38 0.0 0.3 2.0 1.27 3.0 8.0 

2.0 x 10-4 

Non-Faller 168 0.0 0.0 0.0 0.80 1.0 7.0 

Time to Complete Part B / 
Time to Complete Part A 

Faller 38 1.0 2.4 2.8 2.79 4.2 10.5 
4.3 x 10-1 

Non-Faller 171 1.6 2.5 3.6 2.97 4.6 7.9 
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Table 3 – Non-Faller and Faller Summary for the Walk-12 Questions  

Test Population 
Sample Size 

(Participants)
Minimum 1st Quartile Median Mean 3rd Quartile Maximum 

Fallers vs 
Non-Fallers 
Significance 

(t-test p value)

Question 1 
Faller 50 0.0 2.3 4.0 3.88 5.0 5.0 

9.5 x 10-3 

Non-Faller 204 0.0 1.0 3.0 2.91 4.0 5.0 

Question 2 
Faller 50 0.0 2.0 5.0 4.28 5.0 5.0 

1.8 x 10-1 

Non-Faller 204 0.0 1.0 4.0 3.34 5.0 5.0 

Question 3 
Faller 50 0.0 2.0 4.0 3.81 5.0 5.0 

2.3 x 10-2 

Non-Faller 204 0.0 1.0 3.0 2.89 4.0 5.0 

Question 4 
Faller 50 0.0 2.0 4.0 3.53 5.0 5.0 

1.2 x 10-1 

Non-Faller 204 0.0 1.0 3.0 2.95 4.0 5.0 

Question 5 
Faller 50 0.0 2.0 3.5 3.53 5.0 5.0 

2.6 x 10-1 

Non-Faller 204 0.0 1.8 3.0 2.87 4.0 5.0 

Question 6 
Faller 50 0.0 3.0 4.5 4.19 5.0 5.0 

6.7 x 10-2 

Non-Faller 204 0.0 2.0 3.0 3.29 5.0 5.0 

Question 7 
Faller 50 0.0 2.3 4.5 4.13 5.0 5.0 

4.9 x 10-2 

Non-Faller 204 0.0 2.0 3.0 3.17 4.0 5.0 

Question 8 
Faller 50 0.0 1.0 4.0 3.72 5.0 5.0 

1.8 x 10-1 

Non-Faller 204 0.0 1.0 3.0 2.83 5.0 5.0 

Question 9 
Faller 50 0.0 1.0 4.0 3.91 5.0 5.0 

6.1 x 10-2 

Non-Faller 204 0.0 1.0 2.0 2.68 5.0 5.0 

Question 10 
Faller 50 0.0 3.0 5.0 4.13 5.0 5.0 

6.5 x 10-2 

Non-Faller 204 0.0 2.0 3.0 3.27 5.0 5.0 

Question 11 
Faller 50 0.0 3.0 4.0 4.09 5.0 5.0 

6.7 x 10-2 

Non-Faller 204 0.0 1.0 3.0 3.14 5.0 5.0 

Question 12 
Faller 50 0.0 4.0 5.0 4.44 5.0 5.0 

8.7 x 10-3 

Non-Faller 204 0.0 1.0 4.0 3.25 5.0 5.0 
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Table 4 – Non-Faller and Faller Summary Statistics for the Three Binary Questions

Test Population 
Sample Size 

(Participants) 
Yes No 

Fallers vs. Non-Fallers 
Significance 

(Chi-squared test p 
value) 

Undergone neurosurgery in the last month?
Faller 54 31 23 

4.6 x 10-1 

Non-Faller 283 144 139 

Fallen in the last month? 
Faller 54 29 25 

4.6 x 10-4 

Non-Faller 283 80 203 

Experienced a change in physical function 
change in the last month? 

Faller 54 43 11 
1.8 x 10-3 

Non-Faller 283 158 125 
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Table 5: Best possible prediction from the five different variable sets.  

The data set upon which the following table is based was the restricted data set consisting of those with trail data (excluding  

those for which the trail data was missing), i.e. n = 206, of the total 337.

Data Utilized Best Method 
Mean 

Misclassification 
Error (MMCE) 

Sensitivity Specificity Precision F1 - Score 

Trail  
Random 
Forest 

0.117 (± .022) 0.550 (± .083) 0.958 (± .015) 0.758 (± .085) 0.619 (± .071) 

Walk-12 
Linear 

Discriminant 
Analysis 

0.169 (±0.024) 0.100 (±0.045) 0.990 (±0.007) 0.700 (±0.230) 0.153 (±0.074) 

Demographics SVM (Gauss) 0.139 (±0.019) 0.153 (±0.049) 0.996 (±0.004) 0.833 (±0.118) 0.231 (±0.075) 

Trail + Walk-12 
Random 
Forest 

0.143 (±0.027) 0.450 (±0.089) 0.955 (±0.018) 0.722 (±0.103) 0.516 (±0.084) 

Trail + 
Demographics 

avNNet 0.132 (±0.025) 0.575 (±0.081) 0.928 (±0.020) 0.671 (±0.082) 0.553 (±0.067) 
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Figure 1(A) -  

339 patients were approached 
between November 17th and 

December 17th 2014 

337 patients remaining 

2 patients excludedExclude all patients who declined to consent 

254 patients remaining 

83 patients excluded: 29 patients were not fluent in 
English and therefore testing was deemed 

inappropriate given the lack of language proficient 
administrators, and valid translations of the tools. The 

medical teams of 37 patients deemed testing 
inappropriate due to severe cognitive impairment, 

communication difficulties, or severe mood/behavioral 
problems. Seventeen patients agreed to their data 
being collected by the researchers but declined to 

Exclude all patients who not complete the test 
battery, but consented for their medical notes to be 

read to answer the three binary questions and 
identify the relevant demographic data 

254 patients remaining 

43 patients excluded 

Exclude all patients who were unable to complete 
the Patient Reported Outcome Measure

211 patients remaining 

0 patients excluded: all 254 patients completed 
the patient reported outcome measure, as it 

was the least onerous of the tasks 

Exclude all patients that fall into the exclusion 
criteria for the Trails test (specific contra-

indication for each test that have been highlighted 
in appendix Table 1) 

5 patients excluded (Missing Trail 
Making Data due to administrator 

error.

Exclude all patients with any missing data 

206 patients remaining 
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Figure 1 – A Flowchart to illustrate Sample Size Constraints

The diagram describes the number of individuals that were excluded from the 

analysis due to the different constraints surrounding consent, data collection and 

appropriateness of the tests in the context of the individual’s diagnosis and/or deficits. In 

total 339 patients were approached, which resulted in a final sample of 211 cases after 

accounting for the aforementioned constraints. The initial modelling was conducted on this 

sample of 206 individuals. An additional set of experiments was conducted to demonstrate 

how the final model would perform in the real world (on all 337 consenting participants), as 

exclusion is not a viable solution in the clinical context, but was deemed acceptable for 

creating the model. 
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Figure 2 
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Figure 2 – The Receiver Operating Characteristics (ROC) for Random Forest and Logistic 

Regression based classifiers

The data upon which the following ROCs are based is the restricted data set 

consisting of those individuals with trail data (i.e. excluding those for which the trail data 

was missing). The figure illustrates the conclusion that the random forest (RF) based 

predictor appears to be superior to that of logistic regression (LogReg) when both utilize 

only the Trails data (p <0.001). Moreover, both of these models are superior to the baseline 

model of demographic (Demog +Binary) data (p <0.001), consisting of common risk factors 

for falls) and the logistic regression model, which suggests that using a test of cognitive 

function (i.e. the Trail Making Test) appears to improve predictive capabilities, at least in our 

dataset. The Area under the ROCs (AUROCs) are LogReg on Demog + Binary (0.65), LogReg 

on Trail (0.78), and RF on Trail (0.87). 


