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Abstract

This paper shows that betting or speculative trading between agents with incomplete prefer-

ences is likely to occur if agents have access to convex choice sets. This contrasts sharply with

endowment-economy models where preference incompleteness often hinders either betting,

speculative trading, or mutually beneficial insurance arrangements. Our results imply that

decision-makers with identical tastes and identical feasible sets will potentially gain from

speculative trade for generic status-quo allocations. We also develop a framework for endo-

genizing the status-quo allocations of decision-makers which are treated exogenously in the

existing literature. Finally, we provide a tractable differential representation of status-quo

allocations, equilibria, and conditions where speculative trade may or may not emerge.

Keywords: incomplete preferences, status quo, no-trade price zone



1 Introduction

Knight (2005) famously argued that profit arose as the economic return for bearing uncer-

tainty rather than risk. He distinguished between the two by classifying risk as involving

randomness “susceptible of measurement”by theoretical deduction, observed historical ex-

perience, or statistical calculation. Uncertainty is thus determined residually as randomness

not “susceptible of measurement”. Much later, Ellsberg (1961) introduced the notion of

ambiguity to differentiate different forms of randomness. Ambiguity is defined, somewhat

amorphously, as “...a quality depending upon the amount, type, reliability, and ‘unanim-

ity’ of information ...giving rise to one’s degree of ‘confidence’ in an estimate of relative

likelihoods”(Ellsberg 1961, p. 657).

Knight (2005) clearly believed that individuals made subjective probability judgments.

In fact, he discriminated between three different types of probability assessment: a pri-

ori probability assessment, statistical probability assessment, and estimates (Knight 2005,

pp. 224-5). The first two characterize risk and the last uncertainty. However, Ellsberg’s

(1961) urn examples, and their later empirical validation, showed convincingly that many

individuals prefer gambles with known odds to gambles with unknown odds. Such behav-

ior is inconsistent with Savage’s (1954) axioms and, thus, with judgments based on unique

subjective probabilities.

The recognition that ambiguity concerns can yield preferences not describable by unique

subjective probabilities naturally suggests that ambiguity might play an important role in

market outcomes. A series of papers on equilibrium exchange have studied those potential

effects. These efforts can be naturally segregated into two groups. Each is distinguished

by the modified version of Savage’s axioms it adopts to accommodate the potential effects

of ambiguity. One group follows the trail initially blazed by Schmeidler (1989) and Gilboa

and Schmeidler (1989) and concentrates on the market consequences of relaxing indepen-

dence (Savage’s Sure-thing Principle). The Choquet Expected Utility (CEU) and maximin

Expected Utility (MEU) models have represented a particular focus of attention (Billot,
Chateauneuf, Gilboa, and Tallon 2000; Chateauneuf, Dana, and Tallon 2000; Dana 2004;

Trojani and Vanini 2004; Cao, Wang, and Zhang 2005; Kajii and Ui 2006; Rigotti, Shannon,

and Strzalecki 2008; Easley and O’Hara 2009; Cao, Han, Hirshleifer, and Zhang 2011; Ui

2011; Rigotti and Shannon 2012).
Another follows Aumann (1962) and Bewley (1986, 2002) and studies the market conse-

quences of relaxing complete ordering (Rigotti and Shannon 2005; Easley and O’Hara 2010;

Chambers 2014). Our focus lies in that setting. Decision-makers with incomplete prefer-

ences “may find themselves unable to express preferences for one alternative over another
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or to choose between alternatives in a coherent manner ”(Galaabaatar and Karni, 2013, p.

255). Relaxing complete ordering in a Savage setting yields preference maps characterized

by multiple supporting hyperplanes. When coupled with status-quo maintenance (Bewley,

2002; Mandler, 2005), the resulting “kinks”can result in behavioral inertia that may appear

anomalous.

For example, one naturally expects two individuals with identical expected-utility pref-

erences but asymmetric allocations of state-contingent commodities to engage in betting or

speculative trading, as characterized by trade in state-contingent consumption, as a way of

providing mutual insurance. The intuitive argument is straightforward. Sharing common

preferences but not the same allocation, each individual’s marginal rate of substitution be-

tween state-contingent incomes would differ. Having different marginal rates of substitution,

the individuals could gain by making side bets.

However, as is now well-known, relaxing complete ordering in a Savage setting yields

preferences which can contradict this intuition and result in a situation where no bets would

occur between identical individuals with asymmetric allocations of state-contingent com-

modities (Bewley, 2002; Rigotti and Shannon, 2005). Closely associated with this lack of

betting is the occurrence of equilibrium price indeterminacies in the presence of an Arrow-

Debreu-McKenzie economy with complete contingent markets (Rigotti and Shannon, 2005).

In the main, such “inertial results”have been obtained in an Arrow-Debreu-McKenzie

endowment-economy setting where individual status-quo allocations are determined exoge-

nously in the form of fixed endowments of state-contingent income vectors. Consequently,

the set of autarkic state-contingent income vectors available to each decision-maker, also

called her feasible or budget set, has the shape of a rectangular prism that rules out sub-

stitution between income in different states of nature. Thus, there are no possibilities for

decision-makers to effect substitution between income in different states under autarky.

A number of environments exist, however, where decision-makers may possess a range of

autarkic state-contingent income levels. Consider, for example, the case of isolated farmers all

endowed with an identical natural resource base and who all operate a stochastic technology.

How each marshals his or her productive resources in preparing for different possible states

of nature determines the resulting stochastic product mix. One farmer may use the same

resources to develop irrigation opportunities while another may not. If drought occurs that

differential preparation will lead to differential production outcomes. And thus, it seems

natural to think of these isolated farmers operating under autarky not with singleton bundles

of state-contingent income but with sets of feasible state-contingent income vectors. Where

in that feasible set the farmer chooses to operate will depend critically upon her beliefs about

the relative likelihood of the different states of states of nature and her attitudes towards
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consumption in those states.

As another example, suppose that under autarky decision-makers have access to the

same or different stochastic markets, but that their access is subject to frictions that can

vary across individuals. Their autarkic choices will depend not only on market prices but

also upon the extent of frictions and their preferences toward stochastic incomes.

When it comes to state-contingent exchange, the two decision environments differ impor-

tantly. If endowments are fixed, state-contingent exchange arises as a result of differences

in either fixed endowments or differences in preferences. Kinkiness of the decision-maker’s

preference contour at the autarkic point, which is automatically identified with the endow-

ment point, yields reluctance to bet for a range of priors and can create equilibrium price

indeterminacies in an exchange setting (Rigotti and Shannon 2005; Easley and O’Hara 2010).

When means exist to transform income in one state of nature into income in another,

that preference kinkiness has different implications. It ensures that a continuum of sub-

jective probability structures is consistent with equilibrium for that allocation. When that

continuum of subjective probability structures is confronted by a feasible set that permits

substitution across income in different states, rational behavior requires matching those sub-

jective probability structures with “marginal rates of transformation”. If the feasible set

supporting autarky is strictly convex, each marginal rate of transformation maps into an

unique effi cient point implying that a continuum of rational autarkic choices potentially ex-

ists. Even though these potential choices may be highly disparate, none may be strictly

preferred to the others when preferences are incomplete.

So, the autarkic situations differ. In an endowment setting, the autarkic allocation is

trivially determinant, but equilibrium supporting prices (priors) may not be. In the case of

a feasible set, the autarkic choice may be indeterminant, but when the feasible set is strictly

convex each potential autarkic allocation now has an unique supporting prior.

This difference creates opportunities for mutually beneficial exchange of state-contingent

securities that would not exist in an endowment economy setting. This leads to a number of

different results about the nature of the resulting state-contingent equilibrium. Particularly

notable is the result that individuals with identical feasible sets and identical binary prefer-

ence orders can potentially gain from betting. This contrasts strongly with standing results

that emerge from state-contingent exchange in the presence of either complete preferences

(for example, Magill and Quinzii 1996) or incomplete preferences. This finding cannot be

generated by general equilibrium models where preferences are incomplete and endowments

are fixed (for example, Rigotti and Shannon 2005).

The rest of the paper is organized as follows. We specify an economy where N individuals

have identical incomplete preferences over state-contingent income and general convex fea-
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sible sets. We then turn to defining the set of a decision-maker’s status quo allocations and

providing its differential characterization. It is shown that under relatively weak conditions

the set is a continuum, in contrast to a singleton in an endowment economy framework. We

subsequently characterize the equilibria under state-contingent exchange and compare how

the addition of substitution possibilities affects Pareto optimality of the no-betting equilib-

rium, juxtaposing our framework to the corresponding endowment economy setup.

2 The Model

There are N individuals. Uncertainty is represented by a finite state space, S, and states are

indexed with a slight abuse of notation by (1, 2, ..., S) . ∆ ⊂ RS+ represents the unit simplex.
X ⊂ RS denotes the constant acts (elements of RS taking the same value in each state), and
we write x ∈ X to denote the constant act taking the same real value, x, in each state of

Nature.

2.1 Preference Axioms and a Cardinal Representation

To focus the analysis, we assume that all N individuals share common preferences that can

be represented by a binary relation defined on RS and denoted by � where y � q is to be

read as y ∈ RS is strictly preferred to q ∈ RS. The extension of our analysis to the case of
non-identical individuals is straightforward, but only serves to complicate the notation. The

preference correspondence P : RS ⇒ RS, associated with the upper contour set of �, also
called the strictly better than set, is defined as:

P (q) =
{
y ∈ RS : y � q

}
.

The closure of P (q) in the Euclidean metric is denoted by P̄ (q) .

We impose the following axioms on �:

(A.1) (Irreflexivity): @q ∈ RS such that q � q.

(A.2) (Transitivity): For all p, q, r ∈ RS, p � q and q � r implies p � r.

(A.3) (Continuity): For all q ∈ RS, P (q) is open.

(A.4) (Monotonicity): For all q ∈ RS and all r ∈ RS+\ {0} , q + r � q.1

(A.5) (Independence): p � q ⇐⇒ αp + (1− α) r � αq + (1− α) r for all α ∈ (0, 1] and all

r ∈ RS.
1Note that monotonicity of preferences implies completeness over constant acts.
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Bewley (2002) provides an axiomatization of the incomplete expected utility model using

these conditions.2 Instead of relying on Bewley’s representation, we analyze decision-maker

behavior using a cardinal preference representation (in units of the riskless asset) traceable

to Blackorby and Donaldson (1980). The use of this cardinalization, and the analogous

shortage function developed below, is motivated by the fact that it permits the use of simple

variational, and in particular differential, concepts in characterizing our various equilibria.

The translation function for �, T : RS × RS → R̄, is defined:

T (q; r) ≡ sup {x ∈ R : q − x � r, x ∈ X} ,

if there exists constant act x ∈ X such that q−x � r and −∞ otherwise.3 T (q; r) represents

the largest translation of q in the direction −1 ∈ X (the riskless asset) that remains strictly

preferred to r. Intuitively, it can be thought of as an an individual’s willingness to pay,

as measured in the units of 1 ∈ X, to move from r to q. For T (q; r) concave in q, its

subdifferential with respect to q at (q; r) ∈ RS ×RS is defined by the compact, convex set:4

∂̄T (q; r) ≡
{
π ∈ RS : π′ (h− q) ≥ T (h; r)− T (q; r) for all h ∈ RS

}
.

Figure 1 illustrates. The strictly better than set for r, P (r) , is given by the area above

the kinked indifference curve KK ′. The value of the translation function T (q; r) is given by

the length of the segment connecting points A and q, and ∂̄T (r; r) can be visualized as the

continuum of normals to the hyperplanes supporting P (r) at r.

A preliminary lemma establishes useful properties of T (q; r):

Lemma 1 If � satisfies (A.1)-(A.5), then:
1. T (q; r) > 0⇔ q ∈ P (r) ; T (q; q) = 0 for all q ∈ RS;

2. T (q + x; r) = T (q; r) + x for all x ∈ X (translatability);

3. T (q; r) is nondecreasing concave in q;

4. if ∂̄T (q; r) 6= ∅, ∂̄T (q; r) ⊂ ∆ for all q, r ∈ RS;
5. T (αq + y;αr + y) = αT (q − r; 0) for all α > 0 and all q, y, r ∈ RS; and
6. ∂̄T (q; q) = ∂̄T (0; 0) for all q ∈ RS.
2Ghirardato et al. (2003) provide an axiomatization of Bewley’s model in a Savage setting. See also

Galaabaatar and Karni (2013).
3The first x in the definition of Tn (q; r) stands for a scalar while the other two x’s stand for constant acts

assuming that same x value in all states. The same applies to the definitions of σn (z) and Σ (z) introduced

later in the paper.
4Here and in the rest of the paper, x′y denotes

∑
s∈S

xsys.
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Proof. Proofs are in an appendix.
By Lemma 1.1, T (q; r) characterizes � and P (r). Indeed, because it is a real-valued

function of the “random variables” q and r, it has a natural interpretation as a “suffi cient

statistic”for P (r) . Together the definition of ∂̄T (q; r) and Lemma 1 give

∂̄T (q; q) =
{
π ∈ ∆ : π′ (h− q) ≥ T (h; q)− T (q; q) for all h ∈ RS

}
(1)

=
{
π ∈ ∆ : π′ (h− q − T (h− q; 0)) ≥ 0 for all h− q − T (h− q; 0) ∈ RS

}
= {π ∈ ∆ : π′ (h− q) ≥ 0 for all h− q ∈ P (0)} .

Lemma 1.3 and 1.5 imply that T (q − y; 0) is superlinear (positively homogeneous and con-

cave) in q− y. Hence, it is the (lower) support function for the compact, convex set ∂̄T (0; 0)

(see, for example, Rockafellar 1970, Corollary 13.2.1 or Hiriart-Urruty and LeMarechal 2001,

Remark D.1.2.3) and thus

T (q − y; 0) = inf
{
π′ (q − y) : π ∈ ∂̄T (0; 0)

}
. (2)

Upon noting that ∂̄T (0; 0) ⊂ ∆, the preference representation in (2) is easily recognized as

corresponding to Bewley’s Theorem 1 (also see Rigotti and Shannon 2005, Corollary 1). In

words, q � y if and only if π′ (q − y) > 0 for all π ∈ ∂̄T (0; 0) , and ∂̄T (0; 0) is naturally

interpretable as a set of “subjective beliefs”(Rigotti, Shannon, and Strzalecki 2008). In the

following, ∂̄T (0; 0) will be referred to as the subjective beliefs structure or set. When the

subjective beliefs constitute a singleton set, � is a complete order (Rigotti and Shannon

2005). And P (r) corresponds to an open half space falling above the affi ne hyperplane

passing through r with normal given by the singleton prior
{
∂̄T (0; 0)

}
∈ ∆. We refer to

singleton subjective beliefs as the risk case.

The concave conjugate of T (q; r) , T ∗ : ∆ × RS → R, gives the lowest expected value,
using prior π ∈ ∆, of any act q � r :

T ∗ (π; r) = inf
q
{π′q − T (q; r)}

= inf
q

{
π′q − inf

π

{
π̂′ (q − r) : π̂ ∈ ∂̄T (0; 0)

}}
= inf

q

{
π′r − inf

π

{
(π̂ − π)′ (q − r) : π̂ ∈ ∂̄T (0; 0)

}}
=

{
π′r π ∈ ∂̄T (0; 0)

−∞ otherwise
.

2.2 The Feasible Sets and a Cardinal Representation

The set of state-contingent income combinations available to individual n is represented by

a closed, nonempty, convex set, Zn ⊂ RS satisfying z ∈ Zn ⇒ z′ ∈ Zn for all z′ ≤ z (free
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disposability). Some obvious special cases of the feasible set are the endowment economy

where Zn = {ẑ : ẑ ≤ zn} for all n; an Arrow-Debreu-McKenzie complete market where for

all z

Zn = {ẑ : π′ẑ ≤ π′zn} for π ∈ ∆;

and strictly convex state-contingent production-possibility sets.

We use a construct similar to the translation function to characterize the set of feasible

state-contingent income combinations Zn. Luenberger (1994) defines the shortage function,

σn : RS → R̄, by:
σn (z) ≡ min {x ∈ R : (z − x) ∈ Zn, x ∈ X} ,

if there exists x ∈ X such that z − x ∈ Zn and ∞ otherwise. σn (z) represents the smallest

translation of z in the direction −1 ∈ X such that (z − x) remains feasible. For σn convex

in z, its subdifferential5 at z is defined as

∂σn (z) ≡
{
π ∈ RS : π′ (h− z) ≤ σn (h)− σn (z) for all h ∈ RS

}
.

Because ∂σn (z) is derived from the physical opportunities to transform income in one state

of nature into income in another as summarized by Zn, we shall refer to ∂σn (z) as n’s

marginal rates of transformation of state-contingent income at z.6

Parallel to Lemma 1, we have:

Lemma 2 σn (z) satisfies:

1. σn is nondecreasing in z;

2. z ∈ Zn ⇔ σn (z) ≤ 0;

3. for x ∈ X, σn (z + x) = σn (z) + x (translatability); and

4. σn is convex in z, and ∂σn (z) ⊂ ∆ if ∂σn (z) 6= ∅.

The convex conjugate of σn (z) for prior π ∈ ∆ gives maximal expected value attainable

with feasible set Zn :

σn∗ (π) = sup
z
{π′z − σn (z)} ,

5Because σn (z) is convex, its subdifferential is defined by reversing the inequality used to define the

subdifferential for concave Tn (h; q) . Some authors refer to the latter as the superdifferential for Tn (h; q) .

We follow the terminology established in Rockafellar (1970).
6In previous versions, we used the terminology risk-neutral probabilities in place of the marginal rate of

transformation. This was intended to be evocative of Knight’s distinction between uncertainty and risk. As

a reviewer points out, other notions of risk-neutral probabilities already exist and we changed terminology

to avoid unnecessary confusion.
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2.3 The Choice Correspondence

We begin with some definitions and behavioral assumptions. We follow Masatlioglu and Ok

(2005) and utilize choice correspondences to discuss the generic choice problems decision-

makers face. Following their terminology, the pair (A, x) is called a choice problem with

feasible set A and status quo x ∈ A. The symbol � is used to denote the absence of a
status quo. Thus, a choice problem without a status quo is denoted as (A, �). A choice

correspondence c (A, x) ⊆ A denotes the set of alternatives that a decision-maker with status-

quo x may choose from the set A.

In the presence of a status quo, we require

c (A, x) =

{
{q ∈ A : q � x and P (q) ∩ A = ∅} , if P (x) ∩ A 6= ∅

x, otherwise
, (3)

which is the set of alternatives that are strictly preferred to the status quo and not strictly

worse than any alternative in A if there are alternatives preferred to x. However, if there is

no element of A that � dominates x, the choice remains x. Specification (3) is a behavioral
assumption that encapsulates both Bewley’s (2002) Maximality Assumption that a decision

maker’s actions be described by an undominated program and Inertia Assumption (or status-

quo maintenance) that starting from a status-quo point x a decision-maker only moves from

x if the move strictly dominates x.7 ,8

3 The Analysis

Although our model is formally timeless, our equilibrium analysis proceeds in two stages. In

the first stage, isolated agents respond to their feasible sets Zn to determine their individual

autarkic or individual status quo outcomes. These individual status quo outcomes are then

treated as exogenous data to the equilibrium exchange problem that permits individuals

to engage in exchange with others. This is equivalent to assuming that individuals derive

their status quo outcomes naively without anticipating the possibility of trading with other

individuals. The myopia assumption seems rather fitting for an interpretation of our model

as a situation where the agents respond to the imperfections of existing markets by creating a

7Mandler (2005) demonstrates that status quo maintenance in “simple”choice environments, which in-

clude the setup considered in the present paper, is outcome rational in the sense that sequences of choices

don’t lead to dominated outcomes.
8Masatlioglu and Ok (2005), using a revealed-preference approach provide an axiomatic framework for

characterizing rational choice with a status-quo bias. Ortoleva (2010) axiomatizes multi-prior preferences

with a status quo bias taking as a primitive the preferences of an agent.
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new one. In this case, it seems reasonable for agents to contemplate a “status quo”allocation

that is independent of the new market.9

3.1 The Individual Status Quo

In an endowment (pure exchange) economy, where singleton endowments are treated as

primitive, each individual’s endowment is naturally interpreted as the individual’s autarkic

position. In our model, feasible sets, Zn, are treated as primitives. As such that often leaves

the individual’s autarkic position undefined. We partially resolve that indeterminacy by

assuming that the autarkic position will be determined endogenously according to c (Zn, �) .
More formally, we define the individual status quo (or interchangeably the status quo or

autarkic position), in terms of the correspondence for Zn in the absence of a status quo.

Thus, the individual status quo must belong to

c (Zn, �) = {qn ∈ Zn : Zn ∩ P (qn) = ∅} ,

which corresponds to the set of undominated elements of Zn.

Our definition of individual status quo has two motivations. First, it is consistent with

Bewley’s (2002) Maximality Assumption that the decision-maker’s actions are determined

by an undominated program. Second, as in many trade and bargaining models,10 each

individual’s fallback option is given by what she can achieve on her own, that is, in autarky.

In what follows, we frequently use the notational short-hand, Qn ≡ c (Zn, �) .
This definition does not always identify an unique individual status quo. Sometimes, it

may. For example, if Zn equals the singleton set {zn} ,

Qn = {zn} .

More generally, because subjective beliefs and objective beliefs can both encompass a range

of priors, a range of status-quo points may exist. The convexity of Zn and P (q) and our de-

finition, however, ensure that any potential Qn satisfy standard separation theorems. These

separation results, in turn, have particularly convenient manifestations in terms of those sets

of subjective beliefs and marginal rates of transformation. We have as our first representation

result:
9Although there are many additional environments where the myopia assumption makes sense, there are

some where it is not realistic. An interesting and natural extension of the present analysis is a dynamic

model wherein decision-makers choose their status quos in anticipation of exchange opportunities at a later

period. We leave this as an important line of research to the future.
10These include trade models with ambiguity-sensitive decision-makers. These status-quo allocations can

be rationalized within many environments. An example is a two-period model.
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Proposition 3 qn ∈ Qn if and only if

qn ∈ arg max
r
{T (r, qn)− σn (r)} ,

and

T (qn, qn)− σn (qn) = 0.

At an operational level, Proposition 3 requires:

Corollary 4 qn ∈ Qn with qn > 0 if and only if

σn (qn) = 0,

∂̄T (0; 0) ∩ ∂σn (qn) 6= ∅.

Corollary 4 establishes two important characteristics of a status quo. First, a status quo

can exist only when the individual operates on the boundary of Zn. This simply ensures

that individuals never locate in autarky at outcomes that are dominated by other feasible

outcomes.

Second, the existence of a status quo establishes an objective “bound”on the range of

subjective beliefs that are consistent with status-quo behavior. And that objective bound

is given by the requirement that subjective beliefs and marginal rates of substitution are

consistent for qn in the sense that

π ∈ ∂̄T (0; 0) ∩ ∂σn (qn) , (4)

so that there exists at least one π that is common to both. Room exists for disagreement

between subjective beliefs and marginal rates of transformation, but a status quo cannot be

maintained if disagreement is complete between the two sets. Subjective beliefs and marginal

rates of transformation must overlap.

In this context, it is important to recognize that subjective belief formation as encap-

sulated in A.1-A.5 is modelled as distinct from Zn. This is consistent with the tradition

in the decision-theoretic literature. Hence, both subjective beliefs and Zn are treated as

independent primitives in our model. It is only at the stage of forming the individual status

quo that subjective belief and marginal rates of transformation interact. One might usefully

compare this interaction with the alternative axiomatic approach of de Finetti (1974) and

later Walley (1990) where the notions of prevision and coherence are used to incorporate

gamble-based information in the belief formation process. In our format, the formulation of

the individual status quo serves a closely similar purpose, it confronts the individual with
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information on the states of the world as encapsulated in the feasible gambles Zn, and it

ensures that their subjective beliefs cohere with that objective information.

The consistency requirement, (4), can be usefully visualized with the aid of Figure 2.

Suppose that Zn is strictly convex and that preferences are represented by the kinked in-

difference curve. That kinked indifference curve remains tangent to Zn for the range of

marginal rates of transformation (visualized as the slope of the Zn curve) falling between

the normals to the indifference-curve’s “legs”. One thus visualizes Qn as the continuum of

points where the kinked indifference curve is tangent to Zn’s outer boundary. The segment of

Zn’s boundary joining points A and B in Figure 2 illustrates. In that continuum, subjective

beliefs and marginal rates of transformation overlap satisfying (4). But also note that the

marginal rates of transformation at A and B are different, so that from an operational per-

spective an individual locating at point A would appear distinct from an individual locating

at point B even if they shared a common � and a common Zn.

This visual intuition suggests that Qn may be a continuum, and not a singleton set,

when preferences are incomplete. Thus, a priori, individual status quos need not be unique.

And, in particular, if an individual with incomplete preferences is confronted with a strictly

convex choice set, one expects to find a continuum of qn each of which is consistent with a

unique, but distinct, marginal rate of transformation captured by ∂σn (qn) . This discussion

is formalized as:

Proposition 5 If Qn is a non-singleton set with {q′, q′′} ∈ Qn, then qα − σn (qα) ∈ Qn for

all α ∈ (0, 1) where

qα = αq′ + (1− α) q′′.

Expanding upon Figure 2 helps illustrate the role that uncertainty plays in determining

an individual status quo in different choice settings. Figure 3 distinguishes between two

individual choice settings: a pure endowment associated with the rectangle 0ECE ′ and a

strictly convex feasible set whose outer boundary is given by the smooth curve ZZ ′. It also

distinguishes between two preference classes. The risk class where the better than set for

point C, P (C) , is the open half space above RR′. The uncertainty class applies when P (C)

is the area above the kinked indifference curve KK ′.

Knight’s essential argument was that economic profit was a reward for coping with uncer-

tainty. Knight argues that if a probability can be determined by “...a priori calculation...”

or “...by the empirical method of applying statistics to actual instances” markets should

operate to eliminate profit (Knight 2005, pp. 214-215). But if those conditions are not

met, uncertainty arises and with it the possibility of profit as a reward for coping with that

uncertainty.
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Although Knight’s (2005) formal structure and terminology differ from ours, a similar

intuition applies here. So, for example, suppose RR′ in Figure 3 could be associated with

an objectively determined probability. In that case, which Knight would classify as risk,

individuals with preferences matching RR′ strictly prefer points lying above RR′ to C.

Now suppose that objective probabilities do not exist, and individuals operate with a

fixed endowment associated with the rectangle 0ECE ′ in Figure 3. Then an individual with

a singleton subjective beliefs captured by RR′ would establish an individual status quo at

C and would accept gambles at odds favorable to those reflected by RR′. An individual

with preferences reflected in KK ′ establishes the same individual status quo, but he or she

will avoid gambles that RR′ would accept. That no-gamble range of odds is determined by

the individual’s subjective belief structure as encapsulated in ∂̄T (0; 0) . In both cases, the

status-quo choice is the same. The point C is the unique individual status quo, but for RR′

only one prior supports that status quo while for KK ′ a continuum of priors supports it.

The individual status quo for KK ′ is characterized by prior or price indeterminacy. And

that price indeterminacy translates behaviorally into hesitancy to gamble or make state-

contingent trades.

Now consider a decision setting characterized by a strictly convex feasible set as illustrated

by ZZ ′. When contrasted with 0ECE ′, one can envision 0ECE ′ as corresponding to a

situation where ∂σn (C) = ∆. And while ZZ ′ may not communicate information about the

relative likelihood of the various states of Nature, it does convey objective knowledge about

the rate at which income in one state of Nature can be transformed into income in other

states. A rational individual will always use that objective knowledge in the decision process.

Individual RR′ again locates at C. She chooses C by identifying a point in the feasible

set where her subjective beliefs match a “marginal rate of transformation”dictated by ZZ ′.

For individual KK ′, C again represents an individual status quo. At C, the individual’s

preferences and feasible set agree on an unique assessment of the relative likelihood of the

two states as given by RR′. But that unique assessment is made by ZZ ′ and only applies

locally. It is only one of many which the individual might consider. As KK ′ is slid around

ZZ ′, it remains tangent to it for a continuum of points whose endpoints are illustrated by A

and B in the figure. Each represents a potential individual status quo, each with unique odds

determined by ZZ ′. Thus, when compared to decision situation 0ECE ′, a different result

emerges. Instead of an unique quantity with indeterminate odds, a continuum of quantity

individual status quos emerges, each with unique odds. And the individual uses ZZ ′ to

process his or her disparate beliefs about the true state of Nature.
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3.2 Exchange Equilibrium with Feasible Sets

The individual status quo identifies the individual’s equilibrium behavior when the only op-

portunities for adjusting state-contingent consumption fall within Zn. To determine how the

possibility of speculative exchange alters individual behavior, we now allow individuals to

make state-contingent trades with one another and then characterize the associated Paretian

equilibrium. As we have noted in the very beginning of this section, we assume that indi-

viduals behave myopically when they choose qn ∈ Qn and they treat qn as the status quo

when contemplating the possibility of mutually beneficial exchanges.

In that setting, the aggregate state-contingent income allocation across individuals must

fall within the Minkowski sum of the individuals’endowed feasible sets

Z ≡ Z1 + Z2 + ...+ ZN =

{
N∑
n=1

zn : zn ∈ Zn, n = 1, 2, ..., N

}
.

Because each Zn is convex, so too is Z. The individual status quos qn ∈ Qn obviously satisfy:

N∑
n=1

qn ∈ Z.

3.2.1 Equilibrium Identification

The following definitions are standard:

Definition 6 An allocation vector (y1, y2, ..., yN) is feasible relative to Z if
∑N

n=1 y
n ∈ Z.

Definition 7 A feasible allocation vector (y1, y2, ..., yN) is Pareto optimal relative to Z if

there is no other feasible allocation vector (y01, y02, ..., y0N), such that y0n � yn for all n.

The definition of the exchange equilibrium is also standard. Let qn denote individual n’s

status-quo position. Starting from her status quo qn, individual n chooses her intermediate

allocation zn from the set of her feasible allocations Zn and trades with other n−1 individuals

to arrive at her final consumption, which is denoted by cn. We envision a pseudo-dynamic

model with two periods. In the first period, the individuals cannot trade with each other.

However, they have access to their respective Zn. The positions qn (n = 1, .., N) taken by

these agents in the first period serve as status quos for the choices made in the second period

which now involves possibilities of trade between all of these individuals. In the second

period, individual n chooses zn and cn.

Returning to the two examples in the introduction, first, consider the case of n farmers

each having access to stochastic technologies. Under this scenario, the intermediate alloca-

tions correspond to the farmers’production choices zn from their production sets Zn. After

13



they have made these choices, the farmers get an opportunity to trade with each other in

the second period which leads to their final consumption vectors cn.

For our second example of autarkic market(s) with frictions, the intermediate allocations

correspond to the individuals positions in these markets. After these choices have been

made, these n individuals realize an opportunity for mutually beneficial trades and create

new markets11 to take advantage of this opportunity.

The individual n’s choice correspondence under exchange can be written as

c (F n (π) , qn) ,

where F n (π) ≡ {c : π′cn ≤ σn∗ (π)} .

Definition 8 An exchange equilibrium, where individual n’s status quo is given by initial
portfolio qn ∈ Zn, a probability vector π ∈ ∆, a final-consumption vector

(
c1, c2, ..., cN

)
, and

an intermediate allocation vector
(
z1, z2, ..., zN

)
such that

cn ∈ c (F n (π) , qn) for all n,

zn ∈ ∂σn∗ (π) for all n, and
N∑
n=1

cn ≤
N∑
n=1

zn.

Adopting the equilibrium identification strategy of Luenberger (1994) as extended by

Chambers (2014) to incomplete preference structures, we have:

Proposition 9 An allocation vector
(
y1, ...., yN

)
is Pareto optimal relative to Z if and only

if
(
y1, ...., yN

)
is zero maximal for

max

{∑
n

T (qn; yn)−
∑
n

σn (ẑn) :
∑
n

qn −
∑
n

ẑn = 0

}
.

Operationally, Proposition 9 translates the requirement for Pareto optimality into another

overlapping belief criterion:12

11Although we assume that the new markets are frictionless, our findings hold for various scenarios where

these markets have frictions.
12Bonnisseau (2003) proves existence and characterizes equilibria of exchange economies where preferences

may be incomplete or intransitive. Rigotti and Shannon (2005) establish the following result, in a different

notation, for the case of Bewley incomplete preferences and an endowment economy (where Z is a prism).

Chambers (2014) extends that result to convex incomplete preference structures with a convex feasible set.

The result in the present paper extends Chambers (2014) to the case of multiple feasible sets.
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Corollary 10 An interior allocation vector
(
y1, ...., yN

)
is Pareto optimal relative to Z if

and only if {
∩Nn=1∂σ

n (yn)
}
∩ ∂̄T (0; 0) 6= ∅

Proposition 9, the convex structure of our problem, Fenchel’s duality theorem (Rockafellar

1970, Theorem 30.1) and Luenberger (1994) then ensure that a dual representation of a

Pareto optimal allocation
(
y1, ...., yN

)
requires π to be zero minimal for

max
p̂∈∆

{∑
n

σn
∗

(p̂)−
∑
n

T ∗ (p̂; yn (π))

}
,

where

yn (π) ∈ ∂̄T ∗ (π; yn (π)) .

It follows immediately from our assumptions on better-than sets and feasible sets that the

first welfare and the second welfare theorems are satisfied. Thus, the conditions in Propo-

sition 9 and Corollary 10 also characterize competitive equilibria for appropriately chosen

prices.

3.2.2 Equilibrium with Identical Feasible Sets

The presence of ambiguity is a common explanation for a number of “inertial”market anom-

alies including among others inertia in trading, refusals to provide mutual insurance, bid-ask

spreads, the status-quo bias, and the home-country bias (see, for example, Bewley 1986,

2002; Dow and Werlang 1992; Epstein and Wang 1994; Billot et al. 2000; Chateauneuf et

al. 2000; Mandler 2004; Trojani and Vanini 2004; Cao, Wang, and Zhang 2005; Rigotti and

Shannon 2005; Rigotti et al. 2008; Easley and O’Hara 2009; Bossaerts, Ghirardato, Guar-

naschelli, and Zame 2010; Cao, Han, Hirshleifer, and Zhang 2011; Ui 2011). In the current

setting, these inertial market anomalies translate into a failure to execute state-contingent

exchanges in the form of speculative trades, “betting”, or insurance.

Perhaps the clearest way to appreciate the import of Propositions 5 and 9 and Corollary

10 is to consider the polar case where all N individuals share a common Zn. The case of N

farmers possessing the same stochastic technology and natural resource endowments facing

a common uncertain decision setting is one possible example. If we maintain our assumption

of identical � over these individuals, intuition might suggest that the status quo allocations
would be Pareto optimal. After all, if identical farmers facing identical technologies accept

trades away from their status-quo outcomes, it seemingly signals that individuals are willing

to bet against themselves. In a pure exchange (endowment) economy, that is Zn = {z} for
all n, this would never happen. In our setting, however, a different result can emerge.
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More formally, we have:

Definition 11 A no-betting outcome consists of a final-consumption vector
(
c1, ..., cN

)
and

an intermediate allocation vector
(
z1, ..., zN

)
such that cn = zn for all n ∈ {1, ..., N} .

Using this definition, we have:

Proposition 12 Suppose that all N individuals share a common Z. Then

1. interior status quos
(
q1, ..., qN

)
are Pareto optimal if and only if(

∩Nn=1∂σ (qn)
)
∩ ∂̄T (0; 0) 6= ∅.

2. if the set ∂̄T (0; 0) ∩ (∪z∈B∂σ (z)) , where B = {z : σn (z) = 0} , contains at least two
elements, the set of possible status quo points has positive measure, but the subset for which

no trade is Pareto optimal has measure zero.

The second part of Proposition 12 establishes a reasonable expectation that N farmers

with identical technologies and identical � would benefit from state-contingent trades, pos-

sibly in the form of options or futures contracts, away from their Qn. By Corollary 10, an

interior no-betting outcome (c1, ..., cN) is Pareto optimal if and only if

∩Nn=1

{
∂̄T (0; 0) ∩ ∂σ (cn)

}
6= ∅.

In the status quo, each individual’s (common) preference structure and feasible set contain

“overlapping” subjective beliefs and objective beliefs. Moreover, the overlap occurs for at

least one prior common to all individuals. The convexity of Z ensures, however, that objective

belief structures are cyclically monotone in the sense that for all πn ∈ ∂σ (qn) ,(
π2 − π1

)′ (
q2 − q1

)
+
(
π3 − π2

)′ (
q3 − q2

)
+ · · ·+

(
π1 − πK

)′ (
q1 − qK

)
≤ 0,

with a strict inequality for Z strictly convex (Rockafellar 1970). So, for example, when Z

is strictly convex, objective beliefs at qn are singleton sets, and their cyclically monotone

structure ensures that

∂σ (qn) = ∂σ
(
qn
′
)
,

if and only if qn = qn
′
. Thus, if all farmers share a common � and a common strictly convex

Z, the individual autarkic choices are Pareto optimal if and only if all autarkic choices are

identical. (Formally, the condition in Proposition 12.2 that ∂̄T (0; 0)∩ (∪z∈B∂σ (z)) contains

at least two elements ensures that Q is now a continuum rather than a singleton set.) But,
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unless serendipity or some force outside our model drives all farmers to make the same choice,

potential benefits from speculative exchange exist at those individual status quos. It also

follows from Proposition 12 and the ensuing arguments that the set of no-betting outcomes

in which agents do not consume at their status quos has measure zero in the set of all Pareto

optimal outcomes.

Figure 2 again demonstrates. Suppose that there are two identical individuals and one

of them chooses point A as her status quo while the other chooses point B. Because the

marginal rates of substitution at A and B differ, the autarky positions cannot be Pareto

optimal. Hence, if the individuals are given the opportunity to trade, they will depart from

their autarkic positions and choose a common intermediate allocation vector (and common

objective beliefs) as illustrated by E in Figure 2. The first decision-maker can now make the

state-contingent trade from point E to point AT while the second will trade from point E

to point BT . As a result, both decision-makers are made strictly better off than in autarky.

But in the absence of the ability to trade, individuals located at either A or B would have

no incentive to reallocate their choice from Z to point E.13

These results appear paradoxical when viewed through the lens of an Arrow-Debreu-

McKenzie economy derived in the presence of complete preferences and smooth feasible sets.

In that familiar case, identical agents facing a common preference structure and common

feasible sets would choose intermediate-production and final-consumption vectors identical

to their individual status quos. And those status quos would typically offer no apparent

gains from speculative exchange. As we have already noted, the same result emerges in an

endowment economy setting.

Here a different dynamic emerges. First, identical agents can identify different individual

status quos. And those individual status quo can admit the possibilities of gains from state-

contingent exchange or betting. In short, the presence of preference incompleteness that is

induced by the presence of uncertainty introduces the potential for behavioral heterogeneity

across otherwise seemingly identical agents in their individual status-quo behavior. This

behavioral heterogeneity takes the form of multiple singleton marginal rates of substitution

supporting the common non-singleton subjective belief structure. It opens the potential

for gains from betting or speculative trading that are then realized by the forces of trade

homogenizing the behavioral heterogeneity by requiring a common singleton marginal rate

of transformation to support the common non-singleton subjective probability structure.

13In the unlikely case when the boundaries of the set Z and the strictly better than set P (·) are linear
and parallel to each other, the two individuals may engage in betting but end up consuming at their status

quos.
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3.2.3 General Feasible Sets

Proposition 9 and Corollary 10 together imply conditions under which the individual status

quos are Pareto optimal:

Proposition 13 Interior individual status quos
(
q1, q2, ..., qN

)
, where qn ∈ Qn for all n, are

Pareto optimal relative to Z if and only if

∩Nn=1

{
∂σn (qn) ∩ ∂̄T (0; 0)

}
6= ∅. (5)

As already discussed unless Zn is a rectangular prism, Qn is typically a continuum. This

surely happens when Zn is strictly convex. In that case, each element of Qn possesses an

unique objective probability that also falls in the individual’s subjective belief set. In the

general case, presumably each n will have different Qn. Thus, for individual status quos to

be Pareto optimal, each individual, acting in isolation, must choose from their continuum

Qn a particular qn supported by objective belief that is shared by all others. Even in simple

cases where strict convexity of Zn is violated, the criteria in Proposition 13 seem unlikely to

be satisfied. Thus, starting from
(
q1, q2, ..., qN

)
, it appears likely that possibilities may exist

for mutually beneficial exchange even if beliefs overlap and Zn is not strictly convex. This

can easily be confirmed by the construction of simple parametric specifications (see Example

14 in the Appendix).

Proposition 13 relates to several issues raised in the literature on ambiguity and exchange.

One such issue is whether in the presence of Knightian uncertainty insurance markets, which

are predicated on the ability to price actuarially fair insurance contracts, might break down.

Another is whether exchange economies whose aggregate endowments exhibit no uncertainty

may have Pareto-optimal allocations that do not exhibit full insurance (Billot et al. 2000;

Rigotti and Shannon 2005; Rigotti et al. 2008).

When allowing for non-identical Zn, no reason exists to suggest the existence of
(
z1, ..., zN

)
such that

∩Nn=1∂σ
n (zn) 6= ∅ and

N∑
n=1

zn ∈ X,

which is required if aggregate intermediate allocation is to be nonstochastic. And even if that

were to occur, full-insurance equilibria would then only be Pareto optimal if the additional

criterion is satisfied

∩Nn=1

{
∂σn (qn) ∩ ∂̄T (0; 0)

}
6= ∅.

Thus, questioning whether full insurance allocations are Pareto-optimal may have little prac-

tical relevance in our setting because intermediate allocations exhibiting no aggregate un-

certainty seem unlikely to occur.

18



The overarching message is clear. If the feasible choice setting communicates no infor-

mation about possible exchange between income in different states, the only way to resolve

uncertainty is through exchange. However, if all share a common nonsingleton subjective be-

lief structure that exchange will not be Pareto optimal. In that case, equilibrium allocations

are not associated with unique supporting probabilities. On the other hand, if objective

information in the form of ZN exists about how to transform income in one state of nature

into income in another, economic effi ciency requires that information be incorporated both

in individual status-quo formulation and in exchange. And if physical information permits

one to make smooth (unique) probabilistic assessments of states, the resulting uniqueness

will be communicated throughout the market.

Our findings in this and the preceding section have another interesting implication. The

analysis of Figure 2 demonstrated that the two individuals with identical preferences choose

safe intermediate allocations and then use them to speculate away from full insurance (cer-

tainty line). This tendency to bet rather than insure doesn’t require identical preferences or

identical feasible sets. As a result of incomplete preferences and convex feasible sets, there

are generally gains from trade from betting (moving away from the certainty line).

4 Concluding Remarks

This paper shows that betting or speculative trading between agents with incomplete pref-

erences is likely to occur if agents have access to convex choice sets. This contrasts sharply

with endowment-economy models where preference incompleteness often hinders either bet-

ting, speculative trading, or mutually beneficial insurance arrangements. Our results imply

that individuals with identical but incomplete � and identical feasible sets can potentially
gain from speculative trade. Were the preferences complete in this environment the identical

individuals would never gain from speculative trade.

As a reviewer points out, the reason that this occurs in our setting is that preference

completeness resolves an important analytic ambiguity that arises in the case of preference

incompleteness. In the complete preference setting, the individual’s� and Z and the assump-
tion of rationality require an individual’s behavior to be characterized by the maximization

postulate. The behavioral mapping describing rational behavior can be a correspondence,

but the individual would remain indifferent among all those options. Incompleteness, on

the other hand, invalidates the use of the maximization postulate and requires that we rely

upon the more general, but weaker, choice correspondence used here. It is the possibility of

a continuum of undominated choices, consistent with rationality, that is the analytic key-

stone of our results. If, for example, one strengthened our behavioral axiom to include a
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specific criterion for selection among those undominated choices, our results may disappear.

Needless to say, however, different criteria for selecting among undominated choices would

result in different resolutions, and how those differences compare can only be determined by

further research.

One also may wonder whether our main result would hold were we to consider an alterna-

tive to incomplete preferences that remained consistent with a multiple-prior representation.

If the agents had a preference structure obtained by relaxing Savage’s sure-thing principle

(for example, maximin expected utility (Gilboa and Schmeidler 1989), Choquet expected

utility (Schmeidler 1989), variational preferences (Maccheroni, Marinacci, Rustichini 2006),

or smooth ambiguity (Klibanoff, Marinacci, and Mukerji 2005)) rather than the complete-

ness axiom, the bet-creating effect would not materialize. In those cases, decision-makers

with identical preferences and feasible sets would have identical status-quo points and would

not benefit from speculative trade. In fact, Rigotti and Shannon (2012) have shown that

variational preferences displaying ambiguity aversion generate equilibria in an endowment

setting that cannot be distinguished from those that would arise in a subjective expected

utility model. One expects similar results to emerge in the current setting. On the other

hand, our results will hold for preferences which allow for kinks off the certainty line. An

example is the set of reference dependent ambiguity sensitive preferences (Mihm 2014).

En route to characterizing equilibria of the economies considered in the paper and study-

ing their properties, we have made two additional contributions. First, we have developed

a framework to endogenize the status-quo allocations of decisionmakers. Our approach of

identifying a status quo is very different from the standard treatment where an exogenously

given status quo is the norm. Second, we have provided a tractable differential representa-

tion of status-quo allocations, equilibria, and conditions where speculative trade may or may

not emerge.
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5 Appendix : Proofs

Proof of Lemma 1: The demonstration for 1 through 4 is similar to Chambers (2014) and
is presented here for completeness. 1) ⇒ For q ∈ P (y) , (A.3) requires that there exists an

ε > 0 such that q+ εB ⊂ P (y) where B is the Euclidean unit ball, and hence q− ε ∈ P (y).

⇐ If T (q; y) > 0, ∃ε ∈ (0, T (q; y)) such that q − ε � y. By monotonicity and transitivity,

q � y. This establishes the first part. For the second part, (A.4) requires y − ε ∈ P (y) for

all ε < 0, but irreflexivity implies y − 0 /∈ P (y) .

2) For v ∈ X, note

T (q + v; y) = sup {x ∈ R : q + v − x � y}
= sup {x+ v − v ∈ R : q + v − x � y}
= sup {x− v : q + v − x � y}+ v

= T (q; y) + v.

3) For q′ ∈ q + RS+\ {0} , (A.4) requires

q′ − T (q; y) � q − T (q; y) ∈ P (y) ,

which establishes the desired monotonicity. (A.5) requires

p � q ⇐⇒ αp+ (1− α) r � αq + (1− α) r for all α ∈ (0, 1] and all r ∈ RS.

Take arbitrary p, q, y ∈ RS such that p, q ∈ P (y) . By (A.5)

αp+ (1− α) q ∈ P (αr + (1− α) q) for all α ∈ (0, 1] ,

(1− α) q + αr ∈ P ((1− α) y + αy) = P (y) for all α ∈ [0, 1) .

But then, by transitivity, αp+(1− α) q ∈ P (y) for all α ∈ (0, 1) , which implies that P (y) is

a convex set for all y ∈ RS. By the definition of T, q−T (q; y) ∈ P (y) and h−T (h; y) ∈ P (y).

Convexity of P (y) implies convexity of P (y) , and thus λ (q − T (q; y))+(1− λ) (h− T (h; y))

= λq + (1− λ)h− (λT (q; y) + (1− λ)T (h; y)) ∈ P (y), λ ∈ [0, 1] which implies concavity.

4) p ∈ ∂̄T (q; y) with ∂̄T (q; y) nonempty requires

p′ (h− q) ≥ T (h; y)− T (q; y) , ∀h ∈ RS.

Taking h = q + 1 with 1 ∈ X, translatability implies

p′1 ≥ T (q + 1; y)− T (q; y) = 1.
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Symmetrically, taking h = q − 1, yields p′1 ≤ 1. It remains to show that ∂̄T (q; y) ⊂ RS+.
Take h = q + δ, with δ ∈ RS+\ {0} , then if p ∈ ∂̄T (q; y) , p′δ ≥ T (q + δ; y) − T (q; y) ≥ 0

by the monotonicity established above. Because δ is arbitrary, ∂̄T (q; y) ⊂ RS+. And thus,
because p′1 = 1 and ∂̄T (q; y) ⊂ RS+, ∂̄T (q; y) ⊂ ∆.

5) A.5 requires

p � q ⇐⇒ αp+ (1− α) r � αq + (1− α) r for all α ∈ (0, 1] and all r ∈ RS.

Take r = 0 and observe that for all α ∈ (0, 1]

p

α
� q

α
⇐⇒ p � q ⇐⇒ αp � αq,

which, recognizing that r is arbitrary, allows us to rewrite independence as

p � q ⇐⇒ αp+ r � αq + r for all α > 0 and all r. (6)

By (6), for all α > 0

T (αq + r;αy) = sup {x : αq + r − x � αy + r}
= sup {x : α (q − y)− x � 0}
= α sup

{x
α

: (q − y)− x
a
� 0
}

= αT (q − y; 0) .

6) Using this last result implies

∂̄T (q; q) =
{
π ∈ RS : π′ (h− q) ≥ T (h, q)− T (q, q) for all h ∈ RS

}
=

{
π ∈ RS : π′ (h− q) ≥ T (h− q, 0)− T (0, 0) for all h− q ∈ RS

}
= ∂̄T (0; 0) .

. �
Proof of Lemma 2: Closely follows the proof of Lemma 1. �
Proof of Proposition 3: Our proof is similar to Luenberger (1994) and Chambers

(2014). ⇒ qn ∈ Zn requires σn (qn) ≤ 0. Suppose σn (qn) < 0, then qn−σn (qn) ∈ Zn∩P (qn)

by the definition of the shortage function and monotonicity of � implying that qn is not a
status quo. Hence, σn (qn) = 0 for a status quo. Lemma 1 then ensures T (qn; qn) = 0 so that

σn (qn) − T (qn; qn) = 0 for the status quo. To prove zero maximality suppose that there

exists some other r such that

T (r; qn)− σn (r) > 0.

22



Lemma 1 then ensures T (r − σn (r) ; qn) > 0, but that contradicts the assumption that qn

is status-quo because r − σn (r) ∈ Zn ∩ P (qn) .

⇐ To prove suffi ciency suppose that

0 = T (qn; qn)− σn (qn) = max {T (r; qn)− σn (r)} ,

but that qn is not a status quo. By Lemma 1, T (qn; qn) = 0, and thus σn (qn) = 0. Because

qn is not a status quo, there must exist some r such that σn (r) ≤ 0 and T (r; qn) > 0. If

σn (r) = 0, we contradict zero-maximality, and the desired result follows. That leaves the case

where σn (r) < 0. In this case, r− σn (r) ∈ Zn and by monotonicity r < r− σn (r) ∈ P (qn) .

Hence, by Lemma 1, T (r − σn (r) ; qn) = T (r; qn) − σn (r) > 0, which contradicts zero-

maximality. �
Proof of Corollary 4: The curvature properties of T (·, qn) and σn (·) ensure that the

maximization program in Proposition 3 is concave. It then follows from the standard results

of convex analysis (Rockafellar 1970, Section 27) that

0 ∈ ∂̄T (qn, qn)− ∂σn (qn)

= ∂̄T (0, 0)− ∂σn (qn)

and σn (qn) must be equal to 0 for qn to be a status quo. �
Proof of Proposition 5: Because q′, q′′ ∈ Qn requires σn (q′) = σn (q′′) = 0 and Zn is

convex, we have for all α ∈ (0, 1)

qα ≡ αq
′
+ (1− α) q′′ ∈ Zn,

σn (qα) ≤ 0, σn (qα − σn (qα)) = 0, and ∂σn (qα − σn (qα)) = ∂σn (qα) (this last equality

follows from the translation property). By definition

∂σn (q′) =
{
π ∈ ∆ : π′ (h− q′) ≤ σn (h)− σn (q′) for all h ∈ RS

}
,

∂σn (q′′) =
{
π ∈ ∆ : π′ (h− q′′) ≤ σn (h)− σn (q′′) for all h ∈ RS

}
, (7)

and

∂σn (qα) =
{
π ∈ ∆ : π′

(
h− αq′ − (1− α) q′′

)
≤ σn (h)− σn (qα) for all h ∈ RS

}
.

By (7), π ∈ (α∂σn (q′) + (1− α) ∂σn (q′′)) must satisfy

π′ (h− q′) ≤ σn (h)− ασn (q′)− (1− α)σn (q′′)

≤ σn (h)− σn (qα) for all h ∈ RS
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where the second inequality follows from the convexity of σ (z) , which requires for all α ∈
(0, 1)

σn (qα) ≤ ασn (q′) + (1− α)σn (q′′) .

This establishes that (α∂σn (q′) + (1− α) ∂σn (q′′)) ⊂ ∂σn (qα) = ∂σn (qα − σn (qα)) for all

α ∈ (0, 1) . �
Proof of Proposition 9: See Luenberger (1994, 1995) and Chambers (2014). �
Proof of Proposition 12: The first part of the proposition follows immediately from

Corollary 4. Consider now the second part of the proposition. Under the condition that

∂̄T (0; 0) ∩ (∪z∈B∂σ (z)) contains at least two points, there at least two hyperplanes that

separate the boundary B = {z : σn (z) = 0} of the set Z and the better than set of the

decision-maker. By strict convexity of the set Z, these two hyperplanes separate the two

sets at two different points on the boundary B. Both of these points belong to the set

of status quos Qn. By Proposition 5, the continuum of points qα − σn (qα) ∈ Qn where

qα = αq′ + (1− α) q′′ (for all α ∈ (0, 1)) also belongs to Qn. Since the individuals choose

their status quos independently, the probability that all of them will choose the the same

point on the continuum is equal to zero. Otherwise, which has probability 1, they will choose

different points and there will exist gains from speculative trade. �

Example 14 Consider the two-person, two-state case where each individual is endowed with
(z̄1, z̄2) > 0 where

b2

1− b2
<
z̄1

z̄2

<
b1

1− b1

and bn ∈ (0, 1) for n = 1, 2. For individual n = 1, 2

σn (z1, z2) = z1 + bn (z2 − z̄2 + z̄1 − z1)

Preferences are given by

T (q; r) = min
π
{(1− π) (q1 − r1) + π (q2 − r2) : π ∈ [a, 1] ⊂ [0, 1]} .

Assume that
bn

1− bn ∈ [a, 1] .

for both n. In this instance, (z̄1, z̄2) ∈ Qn for both n. And for each n, so too is any (qn1 , q
n
2 )

lying on the hyperplane passing through (z̄1, z̄2) with normal (1− bn, bn) . The no-betting

outcome associated with qn = (z̄1, z̄2) , however, is not Pareto optimal. For although,

∑
n

min
π
{(1− π) (z̄1 − z̄1) + π (z̄1 − z̄2) : π ∈ [a, 1] ⊂ [0, 1]}−max

n

{
bn1

(∑
n

z̄1 − z̄1

)
+ bn2 (z̄1 − z̄2)

}
= 0,
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it is also true that the allocation,

yn1 =
z̄1 (1− b1) + b1z̄2

2 (1− b1)
> z̄1,

yn2 =
b2z̄2 + (1− b2) z̄1

2b2
> z̄2,

which corresponds to individual 2 specializing in state 2 income and individual 1 specializing

in state income, dominates qn = (z̄1, z̄2) and is feasible.
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