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Abstract

Motivation: A drug-drug interaction (DDI) is a situation in which a drug affects the activity of another
drug synergistically or antagonistically when being administered together. The information of DDIs is
crucial for healthcare professionals to prevent adverse drug events. Although some known DDIs can
be found in purposely-built databases such as DrugBank, most information is still buried in scientific
publications. Therefore, automatically extracting DDIs from biomedical texts is sorely needed. In this paper,
we propose a novel position-aware deep multi-task learning approach for extracting DDIs from biomedical
texts. In particular, sentences are represented as a sequence of word embeddings. An attention-based
bidirectional long short-term memory (BiLSTM) network is used to encode each sentence. The relative
position information of words with the target drugs in text is combined with the hidden states of BiLSTM to
generate the position-aware attention weights. Moreover, the tasks of predicting whether or not two drugs
interact with each other and further distinguishing the types of interactions are learned jointly in multi-task
learning framework.
Results: The proposed approach has been evaluated on the DDIExtraction challenge 2013 corpus and the
results show that with the position-aware attention only, our proposed approach outperforms the state-of-
the-art method by 1.16% for binary DDI classification, and with both position-aware attention and multi-task
learning, our approach achieves a micro F-score of 73.14% on interaction type identification, outperforming
the state-of-the-art approach by 1.66%, which demonstrates the effectiveness of the proposed approach.
Availability: The source code of the proposed approach and the dataset used are freely available for
non-commercial purposes at http://cse.seu.edu.cn/people/zhoudeyu/.
Contact: d.zhou@seu.edu.cn

1 Introduction
A drug-drug interaction (DDI) is a situation in which a drug affects
the activity of another drug synergistically or antagonistically when
being administered together. Concomitant medications might alter drug
transportation abruptly in individuals who have previously taken a
particular dose of a drug. Such an abrupt alteration might change the
known safety and efficacy of a drug. For example, terfenadine was a
common antihistamine intended to block the effects of an allergic rhinitis.
Unfortunately several people who took terfenadine concomitantly with
ketoconazole, an antifungal, suffered cardiac problems which often lead

to death (PK et al., 1993). Therefore, it is crucial to extract the information
about DDIs. Although some known DDIs can be found in drug-related
databases such as DrugBank 1, most information is still buried in scientific
articles. Automatic DDI extraction, aiming to automatically discover DDIs
from text with high efficiency and accuracy, is becoming an increasingly
well understood alternative to manual DDI discovery. Without automated
DDI extraction tools, it is hard for doctors, pharmacists and researchers to
keep up with the most recent discoveries described in biomedical literature.

To tackle the DDI extraction problem, several evaluation tasks, such
as DDIExtraction 2011 (Segura Bedmar et al., 2011) and DDIExtraction

1 http://www.drugbank.ca/
© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1
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2013 (Segura Bedmar et al., 2013) shared tasks, have been proposed in
recent years to provide common benchmarking datasets for the evaluation
of DDI detection from biomedical text. An example of a sentence and
its corresponding DDI annotations selected from DDIExtraction 2013 is
presented in Table 1. The sentence contains three drug entities: “neomycin
sulfate”, “coumarin” and “anticoagulants”. The DDI with the interaction
type “effect" exists between neomycin sulfate and coumarin, and also,
neomycin sulfate and anticoagulants. However, for the drug pair coumarin
and anticoagulants, there is no interaction between them. As such, its
interaction type is annotated as “other”. There are two DDI detection
tasks defined, first, given a drug pair, determine whether there exists a
DDI between them; second, determine the type of DDI interaction. The
former task is essentially a binary classification problem while the latter is a
multi-class classification problem since there are more than two interaction
types.

Table 1. An example of one sentence and its corresponding DDI annotations
selected from DDIExtraction 2013.

Sentence Oral neomycin sulfate may enhance the effect of coumarin
in anticoagulants by decreasing vitamin K availability.

Annotation Drug1: neomycin sulfate, Drug2: coumarin, Type: effect
Drug1: neomycin sulfate, Drug2: anticoagulants, Type: effect
Drug1: coumarin, Drug2: anticoagulants, Type: other

Early approaches to automatic extraction of DDIs are mostly based on
hand-crafted rules due to the lack of annotated datasets (Segura-Bedmar
et al., 2011a). With the introduction of DDIExtraction challenges in
2011 (Segura Bedmar et al., 2011) and 2013 (Segura Bedmar et al., 2013)
and the availability of annotated DDI datasets, more and more machine
learning based methods have been proposed (Bui et al., 2014). These
approaches typically rely on a set of carefully designed features to train
supervised classifiers such as support vector machine (SVM). The results
of DDI extraction largely depend on the quality of the features used, as
evidenced by the submitted systems to the DDIExtraction 2013 challenge.
To avoid the tedious process for feature design, in recent years, deep
learning techniques have been proposed to automatically learn feature
representations from abundant unannotated data (Bengio et al., 2013).
Different neural network based methods, such as Convolutional Neural
Networks (CNNs) (Liu et al., 2016b) and Recurrent Neural Networks
(RNNs) (Sahu and Anand, 2017), have been proposed to automatically
extract feature vectors from sentences for DDI extraction.

Nevertheless, we argue that the position that a drug occurs in a sentence
could be important for DDI extraction since drug pairs occur in different
positions could capture syntactic information to a certain extend and hence
gives indications of DDIs. Also, binary (classify whether DDI exists
within the given drugs) or not) and multi-class (classify the interaction
of a drug pair into one of the DDI types) DDI classifications are related
tasks. Hence, by learning the two tasks jointly, we can capture the shared
features effectively which might benefit to each other. In this paper, we
propose a novel position-aware deep multi-task learning approach which
is built upon bidirectional long short-term memory networks, called PM-
BLSTM, for extracting DDIs from biomedical texts. Our contributions
are summarized below: (1) We incorporate the position-aware attention
mechanism by combining position embeddings with the hidden states of
BiLSTM to generate the position-aware attention weights. Moreover, the
position embedding is employed repeatedly when generating the attention
weights to make the attention mechanism more flexible and potent; (2)
We propose a multi-task learning framework to tackle jointly the tasks of
predicting whether or not two drugs interact with each other and further
distinguishing the types of interactions. Jointly learning both tasks allows

the capture of shared features more effectively which could benefit both
tasks; (3) The proposed approach has been evaluated on the DDIExtraction
challenge 2013 corpus and the results show that with the position-aware
attention only, our proposed approach outperforms the state-of-the-art
method by 1.16% for binary DDI classification, and with both position-
aware attention and multi-task learning, our approach achieves a micro
F-score of 73.14% on interaction type identification, outperforming the
state-of-the-art approach by 1.66%, which demonstrates the effectiveness
of the proposed approach.

The rest of the paper is organized as follows. Section 2 surveys existing
approaches for DDI extraction. Section 3 describes the proposed method,
which consists of four components: the embedding layer, the BiLSTM
layer, the position-aware attention layer and the multi-task output layer.
Section 4 presents experimental setup and results. Finally, Section 5
concludes the paper and outlines future research directions.

2 Related Work
Most existing approaches to DDI extraction are based on machine
learning. In order to predict the relation between a given pair of drugs,
classifiers are typically trained on lexical, syntactic and semantic features
extracted from manually labelled corpora. Based on the way of feature
construction, approaches can be roughly divided into two categories,
feature-based and kernel-based methods (Bui et al., 2014). Feature-
based approaches focus on finding potentially discriminative features to
represent data characteristics. Apart from the basic bag-of-words features,
researchers have explored the use of various types of features including
context features (Segura-Bedmar et al., 2011b), a combination of lexical,
semantic and domain features (He et al., 2013), and heterogeneous
features consisting of lexical, syntactic, semantic and negation features
derived from parse trees (Chowdhury and Lavelli, 2013a). Kernel-based
approaches employ different kernels to calculate the similarity between
two instances by exploiting the structural representations of data instances
such as syntactic parse trees or dependency graphs (Tikk et al., 2013). In the
past DDIextraction challenges, the most commonly used kernels are all-
paths graph kernel (Airola et al., 2008), shallow linguistic kernel (Giuliano
et al., 2006) and path-enclose tree kernel (Moschitti, 2004). It is also
possible to combine multiple kernels in order to compensate the weakness
of each individual kernel. For example, in the work of Faisal et al. (2013),
three different kernels were combined to form a hybrid kernel which gives
a better performance compared to those using a single kernel. However,
these approaches typically rely on feature engineering to generate a list
of discriminative features for training supervised classifiers. As observed
in DDIExtraction 2013 challenge, different approaches adopted different
feature engineering techniques and there is no standard way in generating
features. Moreover, features often need to be redesigned when previously
developed systems are adapted for the task of DDI extraction. For example,
UTurku, a system originally developed for biomedical event extraction was
adapted for DDI extraction by redesigning the features specifically for DDI
extraction (Jari Björne and Salakoski, 2013).

In recent years, deep learning techniques have been proposed to
automatically learn feature representations from abundant unannotated
data (Bengio et al., 2013). Features for DDI extractor can be learned
automatically using deep neural networks without expensive manual
feature engineering. Based on the structure of neural network, these
methods can be roughly classified into two categories: CNN based models
and RNN based models. Liu et al. (2016b) attempted to use CNN for DDIs
extraction. They adopted a shallow CNN and combined word embeddings
with position embeddings in the CNN model. Liu et al. (2016a) introduced
the structure information of sentences with dependency-based CNN for
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DDI extraction. Quan et al. (2016) incorporated semantic information of
multiple word embeddings with multichannel CNNs. Zhao et al. (2016)
combined CNN with some traditional features. Apart from CNNs, RNNs
have also been used for biomedical relation classification. Sahu and Anand
(2017) used LSTMs for DDI extraction and Yi et al. (2017) extracted DDI
at the corpus level via gated recurrent unit networks (GRUs). In both
approaches, the attention mechanism was incorporated.

3 Method
In this section, we present the proposed position-aware multi-task deep
learning method built on bidirectional LSTMs (PM-BLSTM), which is
illustrated in Figure 3, for DDI extraction. It can be observed that PM-
BLSTM is based on a BiLSTM by incorporating position-aware attentions.
Different from previous attention-based LSTM based approaches (Zhou
et al., 2016), PM-BLSTM utilizes the position information to enhance the
effectiveness of the attention mechanism. Moreover, the tasks of predicting
whether or not two drugs interact with each other and further distinguishing
the types of interactions are tackled jointly in output layer. The proposed
approach consists of four main components: the embedding layer, the
BiLSTM layer, the position-aware attention layer and the multi-task output
layer. In the following, we first discuss how we pre-process the data and
then describe each of the four components of PM-BLSTM in details.

3.1 Preprocessing

As the proposed approach is to predict whether there exists an interaction
between two drugs and identify the interaction type, the sentence with
more than two drug entities needs to be processed to make sure only
one drug pair remains in each instance. For the sentence containing
more than two drug entities, C2

n instances are generated. Following
the previous method (Kim et al., 2015), we replace the two target drug
entities with symbols “DRUG1” and “DRUG2” respectively, and represent
other drug entities as “DRUG0”. The drug pairs with interactions are
considered as positive training instances and the others are considered as
negative training instances. However, such preprocessing might generate
some redundant and ambiguous training instances. For example, for
the sentence “drug1/drug2: drug3 inhibits the enzymatic oxidation
of drug4 and drug5 to drug6.”, it contains two positive DDIs
〈drug3, drug4〉 and 〈drug3, drug5〉 while the other 13 drug pairs such
as 〈drug1, drug2〉, 〈drug1, drug3〉, 〈drug1, drug4〉 are all negative
instances. The number of negative instances is significantly more than that
of positive instances. Therefore, we defined two rules below for filtering
the generated noisy training instances:

• Rule 1: Instances with two target drugs referring to the same drug
should be removed.

• Rule 2: Instances with two target drugs being in coordinate position
should be removed.

3.2 Embedding Layer

The input to the embedding layer is DDI instances. Given a sentence
S = {w1, w2, ..., wT } in which wu =“DRUG1” and wv =“DRUG2”,
two position measures pi1 and pi2 are defined for each word wi. Here,
Pi1 = i− u and Pi2 = i− v, representing the relative distance between
wi and the target drug wu and wv respectively. In this layer, each word
wi is represented by a dw-dimensional vector ewi , by looking up a word
embedding dictionary which can be initialized randomly or uses the pre-
trained vectors. Position measures are embedded in the dp-dimensional
space which are initialized randomly. The whole process can be described

as follows:

ewi = LTw(wi), epi1 = LTp(pi1 ), epi2 = LTp(pi2 ), (1)

where LT denotes a look-up operation. After that, the word embedding
ewi and the two position embeddings epi1 and epi2 are concatenated
to generate the final embedding xi for the word wi. Hence, xi ∈
R(dw+2dp):

xi = ewi ⊕ epi1 ⊕ epi2 , (2)

where ⊕ denotes a concatenation operation. Finally, a sentence with T
words is represented by {x1, x2, ...xT }, which forms the input to the
BiLSTM Layer.

3.3 Bidirectional LSTM Layer

Recurrent neural network (RNN) is a powerful model for processing
serialized input with arbitrary length. As a special RNN structure,
LSTM was proposed to address the problem of exploding or vanishing
gradients (Hochreiter and Schmidhuber, 1997). In general, LSTM
possesses a memory cell which is able to store the previous information
over long periods of time. An adaptive gating mechanism is utilized for
restricting the previous state and the current input information.

The LSTM unit at each time step shares the same structure and
parameters. For example, at time t, an LSTM unit receives the previous
hidden state ht−1 and the current input vector xt. Based on ht−1 and xt,
the input gate it, the forget gate ft and the output gate ot are calculated
accordingly. The memory cell ct absorbs both the current and previous
information restricted by it, ft. The complete neural network can be
calculated by the following formulae:

it = σ(Wixt + Uiht−1 + bi), (3)

ft = σ(Wfxt + Ufht−1 + bf ), (4)

ot = σ(Woxt + Uoht−1 + bo), (5)

gt = tanh(Wcxt + Ucht−1 + bc), (6)

ct = it � gt + ft � ct−1, (7)

ht = ot � tanh(ct), (8)

where σ is the logistic sigmoid function and � denotes element wise
multiplication. All of the vectors in the Left-Hand Side of the equations
(3) − (8) are in Rd.

To consider both directional information of an input sentence, we adopt
the bidirectional LSTM (BiLSTM) network with two LSTM layers to
process the sequence in forward and backward directions respectively.
The hidden states of the ith step are are concatenated as hi = [

−→
hi ⊕

←−
hi ].

Thus, we get a 2d-dimensional vector at each time step.

3.4 Position-Aware Attention Layer

Attention-based models have demonstrated success in a wide range of NLP
tasks (Zhou et al., 2016; Bahdanau et al., 2014). The basic idea of the
attention mechanism is to assign a weight to each hidden unit in the lower-
level of the neural network when computing an upper-level representation.
However, for DDI extraction, the biomedical sentences are always long-
winded and often contain more than one drug pair. Therefore, we propose a
position-aware attention mechanism which considers not only the semantic
information of words but also the global position information.

Let H ∈ R2d×T be a matrix consisting of the hidden states
[h1, h2, ..., hT ] produced by the BiLSTM layer. Let E ∈ R2dp×T

be a matrix consisting of the position vectors [e1, e2, ..., eT ], where
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Fig. 1. The architecture of the position-aware multi-task bidirectional LSTM (PM-BLSTM).

ei = [epi1
ᵀ, epi2

ᵀ]ᵀ. The attention weight α and the weighted hidden
representation r are calculated based on the following formulae:

M = tanh(

[
WhH

WpE

]
), (9)

α = softmax(wTM), (10)

r = HαT , (11)

where M ∈ R2d+2dp×T , α ∈ RT , r ∈ R2d. Wh ∈ R2d×2d, Wp ∈
R2dp×2dp and w ∈ R2d+2dp are all transformation matrices need to be
learned.

In order to increase the diversity, the last hidden state of BiLSTM is also
used. Let

−→
hT ∈ Rd be the last hidden state of the forward LSTM, and

←−
h1 ∈

Rd be the last hidden state of the backward LSTM corresponding to the first
word. hl ∈ R2d is the concatenation of hT and h1 which represents the
output of the BiLSTM layer. The final sentence representation is calculated
by:

hl = [
−→
hT ⊕

←−
h1], (12)

h∗ = tanh(Wpr +Wxhl), (13)

where h∗ ∈ R2d, Wp ∈ R2d×2d and Wx ∈ R2d×2d are both affine
transformation matrices.

3.5 Multi-Task Learning

In DDI extraction, there are two subtasks. Task-1 is a binary classification
problem which aims to predict whether or not two drugs interact with
each other. Task-2 is a multi-class or more fine-grained classification
problem, which aims to further distinguish the types of interactions.
In the DDI extraction 2013 challenge, four types of DDIs are defined
including “advice”, “effect”, “mechanism” and “intact”. Previously, the

two subtasks are learned separately. However, the two subtasks are closely
related. As such, we explore the use of multi-task learning here. Multi-
task learning is an approach to improve generalization by using the domain
information contained in the training signals of related tasks as an inductive
bias. It achieves this by learning tasks in parallel while using a shared
representation; what is learned for each task can help other tasks be learned
better (Caruana, 1997).

In the multi-task output layer, two softmax based classifiers, yc and
yf , are used for coarse-grained (or binary) classification and fine-grained
(or multi-class) classification tasks respectively. The dimensions of yc and
yf correspond to the number of the classes in the two classification tasks.

yc = softmax(Wsch
∗ + bsc), (14)

yf = softmax(Wsfh
∗ + bsf ), (15)

whereWsc, bsc,Wsf , bsf are all the parameters of softmax functions.
The objective function is the negative log-likelihood of predicted

results y:

loss = −
m∑
i=1

tilog(yi) + λ‖θ‖2, (16)

where t ∈ Rm is one-hot vector (m is the number of classes), λ is an L2
regularization parameter and θ is the parameter set.

4 Experiments
In this section, we present the experimental setup and results for the
evaluation of the effectiveness of the proposed approach.

4.1 Experimental Setup

We use the datasets provided by the DDI extraction 2013 challenge to
evaluate the proposed approach. There are two datasets constructed. One
is from the DrugBank database (DB-2013) and the other is from MedLine
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abstracts (ML-2013). DB-2013 and ML-2013 are combined together and
the training/testing split follows the same experimental setup in most neural
network based approaches (Liu et al., 2016b). The statistics of the datasets
are shown in Table 2. The pre-processing rules mentioned in Section 3 are
applied on the training and testing data to remove ambiguous or misleading
instances. It can be observed from the lower part of Table 2 that more than
35% of negative instances are filtered.

Table 2. Statistics of the datasets used in the experiments.

Training Testing
DB-2013 ML-2013 ALL DB-2013 ML-2013 ALL

Negative 22118 1547 23665 4367 345 4712
Positive 3788 232 4020 884 95 979
Effect 1535 152 1687 298 62 360
Mechanism 1257 62 1319 278 24 302
Advice 818 8 826 214 7 221
Intact 178 10 188 94 2 96

After preprocessing
Negative 14208 1181 15389 2732 243 2975
Positive 3750 231 3981 884 91 979
Effect 1510 152 1662 298 61 359
Mechanism 1250 62 1312 278 21 299
Advice 813 7 820 214 7 221
Intact 177 10 187 94 2 96

In our experiments, position embeddings are initialized randomly. The
dimension of position embeddings is set to 10. Word embeddings are pre-
trained using unlabeled biomedical texts we crawled from PubMed using
Word2vec (Mikolov et al., 2013). The dimension of word embeddings is
set to 300. The dimension of the BiLSTM hidden layer is set to 150. All
models are trained with a batch size of 5 instances and the neural networks
are optimized with AdaMax. To overcome the overfitting problem, the
L2 regularization weight is set to 10−4 in the BiLSTM layer. Dropout is
used in the embedding layer, the BiLSTM layer and the output layer.

To evaluate the performance of the propose approach, we use Precision
(P), Recall (R) and F-score (F) which are commonly used for the
evaluation of classification results. For Task-2, we calculate the overall
micro precision (pmicro-P ), recall (micro-R) and F-score (micro-F )
defined as follows, which are the standard evaluation metrics used in
the DDIExtraction 2013 challenge. micro-P = TP/(TP + FP ),
micro-R = TP/(TP + FN), micro-F = 2 × micro-P ×
micro-R/(micro-P +micro-R), where − denotes the average value
calculated across different classes, TP is the number of true positives,FP
is the number of false positives and FN is the number of false negatives.

4.2 Overall Comparison

We compare our approach with the baseline models in two categories:
traditional methods and neural network based approaches. Traditional
methods utilize manually designed features to train supervised classifiers
for DDI extraction:

• UTurku (Björne et al., 2013) was adapted from the Turku Event
Extraction System (TEES), which used features from dependency
parsing and domain dependent resources.

• WBI (Thomas et al., 2013) combined features of a number of DDI
approaches.

• FBK-irst (Chowdhury and Lavelli, 2013b) used linear features, path-
enclosed tree kernels and shallow linguistic features.

• Kim (Kim et al., 2015) used contextual, lexical, semantic and tree
structured features.

Neural network based approaches learn feature representations of
instances automatically based on different neural network structures.

• CNN (Liu et al., 2016b) is a shallow convolutional neural network
with both word and position embeddings.

• SCNN (Zhao et al., 2016) is an CNN with manually designed features.
• MCNN (Quan et al., 2016), semantic information is introduced as

multichannel word embedding for CNN.
• DCNN (Liu et al., 2016a), a dependency-based CNN for DDI

extraction.
• Joint AB-LSTM (Sahu and Anand, 2017), the outputs of a classical

LSTM and an attention-based LSTM is jointly learned.

As our approach consists of two key components, position-aware
attention mechanism and multi-task learning, we have also implemented
two variants of our model, one with only position-aware attention
mechanism (called P-BLSTM) and another with only multi-task learning
(called M-BLSTM).

Table 3 shows the results of the proposed approach in comparison with
the baselines for Task-1 and Task-2. It can be observed that for Task-1,
the feature-based approach FBK-irst gives balanced precision and recall
values and achieves the F-score of 80%. The recent NN-based approach
Joint AB-LSTM improves upon the precision significantly but with worse
recall in comparison to FBK-irst, which gives marginally better F-score.
Our proposed PM-BLSTM performs slightly better in recall, but worse
in precision compared to Joint AB-LSTM, and gives the F-score which is
1.24% lower. However, a variant of our model P-BLSTM without multi-
task learning outperforms PM-BLSTM in recall and achieves the best
F-score of 81.48% overall, outperforming the state-of-the-art approach
Joint AB-LSTM by 1.16%.

For Task-2 which is a more difficult multi-class classification problem,
we notice that NN-based approaches in general outperform feature-based
approaches. We also observe that among all NN-based approaches, our
PM-BLSTM achieves the best micro-recall value and comparable micro-
precision value. Overall, PM-BLSTM outperforms the state-of-the-art
approach, Joint AB-LSTM, by 1.66% in micro-F-score.

4.3 The Impact of Multi-Task Learning

To further investigate the effectiveness of incorporating multi-task
learning, we compare P-BLSTM without multi-task learning with PM-
BLSTM in more details in Table 4. It can be observed that the micro
F-score of DDI extraction on Task 2 is improved by over 0.7% with multi-
task learning. However, for Task 1, incorporating multi-task learning leads
to slight degradation of F-score. One possible reason is that multi-task
learning can get relevant inductive bias by sharing the related information
of different tasks. For Task-2, the number of positive instances for each
interaction type is much lower than the negative instances. Learning both
Task-1 and Task-2 jointly allows the sharing of low-level features and
hence alleviate the imbalanced data problem. However, the class imbalance
problem is less severe for Task-1 compared to Task-2. Hence, leveraging
features learned in Task-2 for classification in Task-2 does not give any
performance gains. As such, we can conclude that multi-task learning
helps in the more difficult multi-class classification problem (Task-2), but
appears to be less effective for the binary classification Task-1.

4.4 The Impact of Position-Aware Attention

We also compare M-BLSTM with PM-BLSTM in more details in Table 5
to further investigate the effectiveness of incorporating position-aware
attention. It can be observed that the position-aware attention mechanism
appears to be very important as it improves the F-score for Task-1 by over
0.4% and the micro F-score For Task-2 by over 1.2%. We also observe
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Table 3. Performance comparison of DDI extraction with other baselines.

Category Methods
Task-1 Task-2

P R F micro-P micro-R micro-F

Traditional Methods

UTurku 85.80 58.50 69.60 73.20 49.90 59.40
WBI 80.10 72.20 75.90 64.20 57.90 60.90
FBK-irst 79.40 80.60 80.00 64.60 65.60 65.10
Kim - - 77.50 - - 67.00

Neural Network

CNN - - - 75.70 64.60 69.75
SCNN 77.50 76.90 77.20 72.50 65.10 68.60
MCCNN - - - 75.99 65.25 70.21
DCNN - - - 78.24 64.66 70.81
Joint AB-LSTM 86.36 75.07 80.32 73.41 69.66 71.48

Our approach
PM-BLSTM 82.90 75.59 79.08 75.80 70.67 73.14
P-BLSTM 82.68 80.31 81.48 74.57 70.36 72.40
M-BLSTM 83.78 74.15 78.67 71.90 71.90 71.90

Table 4. DDI extraction results with or without multi-task learning.

P-BLSTM PM-BLSTM
P R F P R F

Task-1 Positive 82.68 80.31 81.48 82.90 75.59 79.08
Effect 69.60 72.70 71.12 69.58 73.26 71.37
Mechanism 76.92 66.89 71.56 80.93 69.57 74.82

Task-2 Advice 79.57 84.62 82.02 80.00 83.26 81.60
Intact 76.00 39.58 52.05 77.27 35.42 48.57
Overall (micro) 74.57 70.36 72.40 75.80 70.67 73.14

consistently better results for all interaction types. The results demonstrate
the effectiveness of using position-aware attention for DDI extraction.

Table 5. DDI extraction results with or without position-aware attention.

M-BLSTM PM-BLSTM
P R F P R F

Task-1 Positive 83.78 74.15 78.67 82.90 75.59 79.08
Effect 67.43 73.82 70.48 69.58 73.26 71.37
Mechanism 72.55 74.25 73.39 80.93 69.57 74.82

Task-2 Advice 79.20 81.00 80.09 80.00 83.26 81.60
Intact 70.00 36.46 47.95 77.27 35.42 48.57
Overall (micro) 71.90 71.90 71.90 75.80 70.67 73.14

An example of two instances are presented in Figure 2 to illustrate
the effect of using position-aware attention comparing with the normal
attention mechanism. Here, one word’s attention weight is represented
by the intensity of the red color. Darker color denotes higher attention
weights while lighter color represents lower attention weights. It can be
observed that the proposed position-aware attention can successfully locate
the keywords in sentences which indicate the interaction on the specific
drug-drug pairs. Compared with the normal attention mechanism, the
proposed position-aware attention can identify the location of keywords
more accurately by making full use of words’ relative distance with the
target drug entities. For example, in the first sentence, the relation between
DRUG1 and DRUG2 is expressed in the first clause. The normal attention
mechanism generates the largest attention weights on “metabolism" and
the second largest weight on “concentration" in the second clause which
is irrelevant. But the position-aware attention focuses correctly on the
keyword “reduces” which is the key indicator of the DDI.

4.5 The Impact of Preprocessing

The ratio of positive to negative classes in the original training set is
1:5.9. The highly imbalance nature of the corpus makes it difficult to learn
classifier for DDI extraction. The problem can be partially alleviated by
filtering out some ambiguous negative instances before training. But the
preprocessing method would also lose some potentially useful information
in the filtered instances. Therefore, the filtering rules should strike a
balance between the two factors. Table 6 shows the performance of PM-
BLSTM with or without negative instance filtering. It can be observed that
preprocessing gives better results on both Task-1 and Task-2. As such,
negative instance filtering appears to be useful for DDI classifier learning.

Table 6. DDI extraction results with or without preprocessing.

Task-1 Task-2
P R F micro-P micro-R micro-F

without preprocessing 82.41 75.82 78.98 72.98 70.29 71.61
with preprocessing 82.90 75.59 79.08 75.80 70.67 73.14

4.6 Error Analysis

We conduct error analysis to gain a better insight of our proposed approach.
We have identified three factors which might lead to classification errors.
(1) data imbalance: as shown in Table 4, the proposed approach achieves
the worst performance on the interaction type “intact” as there are only
187 training instances in such a category. Instances with “intact” are often
misclassified as “effect”. (2) complex sentence structures: long sentences
and implicit descriptions always make classification hard. For example, for
the sentence ”...therefore, do not administer DRUG1 with DRUG0 or other
agents that may interfere with enterohepatic recirculation or drugs that
may bind bile acids, for example, bile acid sequestrates or oral DRUG2,
because of the potential to reduce the efficacy of DRUG0.”, the relation
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Fig. 2. Comparison of normal attention (normal Att) and the proposed position-aware attention (P Att).

between DRUG1 and DRUG2 is described implicitly. Here, “DRUG2” is
the appositive of “other agents” which has been directly expressed to have
an interaction with “DRUG1”. But there is an attributive clause between
“other agents” and “DRUG2”. which makes the detection of DDI between
DRUG1 and DRUG2 difficult. (3) lack of training data: it is well known
that deep neural network based methods need abundant training instances.
The data in the DDIExtraction 2013 challenge is not large enough which
makes it difficult to improve the performance of NN-based approaches.

5 Conclusion
In this paper, we have proposed a novel multi-task recurrent neural
network architecture with position-aware attentions (PM-LSTM) for DDI
extraction. To improve the efficiency of the attention mechanism, PM-
LSTM utilizes an additional position embedding to generate the attention
weights. Besides, the model takes the advantage of multi-task learning by
predicting whether or not two drugs interact with each other and further
distinguishing the types of interactions jointly. Experimental results on
DDIExtraction 2013 corpus show that with the position-aware attention
only, our proposed approach outperforms the state-of-the-art method
by 1.16% for binary DDI classification, and with both position-aware
attention and multi-task learning, our approach achieves a micro F-score
of 73.14% on distinguishing the types of interactions, outperforming the
state-of-the-art approach by 1.66%. In the future, we will explore other
structures of neural networks for multi-task learning so as to improve the
DDI extraction performance of both tasks simultaneously.
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