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Abstract

This thesis is devoted to the study of a number of properties of graphs. Our first

main result clarifies the relationship between hyperbolicity and non-amenability for plane

graphs of bounded degree. This generalises a known result for Cayley graphs to bounded

degree graphs. The second main result provides a counterexample to a conjecture of

Benjamini asking whether a transient, hyperbolic graph must have a transient subtree.

In Chapter 4 we endow the set of all graphs with two pseudometrics and we compare

metric properties arising from each of them. The two remaining chapters deal with

bi-infinite paths in Z2 and geodetic Cayley graphs.
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Chapter 1

Introduction

In this thesis we study various problems about metric invariants of countable graphs. We

broadly call these invariants metric because they either involve the intrinsic graph metric

or are large-scale properties concerning the geometry of the graph. The extent of the

theory does not allow us to present it in detail, and for each topic we refer to the relevant

sources; we will thus focus only a number of properties, showing their interaction. For

instance, we will discuss different aspects of this theory such as hyperbolicity, non-

amenability, transience, Liouvilleness and geodeticity. The five chapters are therefore

diverse in subjects and methods of proof used, but we ensured to keep them self-contained

so that they can be read independently of each other. In what follows we present them

separately.

1.1 Hyperbolicity vs. Amenability for plane graphs

Hyperbolicity and non-amenability are two fundamental concepts in the study of groups:

hyperbolicity was a property introduced by Gromov in the influential paper [Gromov,

1987] while the (non-)amenability goes back to Neumann [Neumann, 1929] who proposed

it to study the Banach-Tarski paradox. Hyperbolicity for groups is equivalent to satisfy a

linear isoperimetric inequality (see Section 2.2 at page 9 for definitions) [Bowditch, 2006,

(F4) in paragraph 6.11.2] and implies non-amenability unless the group is 2-ended (see

[Benjamini, 2013]). Therefore the interplay between hyperbolicity and non-amenability

for Cayley graphs is well established. On the other hand, although both notions need only

the graph structure of the Cayley graph to be defined, hyperbolicity or non-amenability

are far less studied for graphs than for groups. Only in recent years they emerged in

the field of coarse geometry together with other large-scale properties [Benjamini, 2013].
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Our aim is to establish the relation between the two properties in the case of plane

graphs of bounded degree, thus without assuming that the graph has any symmetry.

Our main result proves that the two properties are equivalent when coupled with other

conditions, and we provide examples showing that all conditions involved are necessary.

The main Theorem is the following:

Theorem 1. Let G be a connected plane graph of bounded degree, with no accumulation

point and no unbounded face. Then G is hyperbolic and uniformly isoperimetric if and

only if it is non-amenable and it has bounded codegree.

For an infinite plane graph G, the condition of having bounded degree (i.e. a finite

upper bound on the degree of its vertices) is very common, and having bounded codegree

means that there is a finite upper bound on the number of edges bounding each face of

G. The conditions of having no accumulation point and no unbounded face are standard

in the setting of plane graphs.

A graph G is uniformly isoperimetric if it satisfies an inequality of the form

|S| ≤ f(|∂S|) for all non-empty finite vertex sets |S|, where f : N → N is a monotone

increasing, diverging function and ∂S is the set of vertices not in S but with a neighbour

in S. A graph is non-amenable if it is uniformly isoperimetric for a linear function f .

A geodetic triangle consists of three vertices x, y, z and three geodesics (recall

that a geodesic is a path of least length between its endvertices), called its sides, joining

them. A geodetic triangle is δ-thin if each of its sides is contained in the δ-neighbourhood

of the union of the other two sides. A graph is hyperbolic if there exists a δ ≥ 0 such

that each geodetic triangle is δ-thin.

It is worth noting that Theorem 1 is related to a conjecture of Northshield

[Northshield, 1993] and a problem from [Georgakopoulos, 2016], see the chapter for

details.

In Section 2.3 we prove the first implication of Theorem 1: a hyperbolic and

uniformly isoperimetric graph has bounded degree. We show that any face in a plane

graph is inside a geodetic cycle (i.e. a cycle where for any two vertices at least one of

the two arcs joining them is a geodesic) and we know that geodetic cycles have bounded

length in hyperbolic graphs. Since the graph is uniformly isoperimetric, we are able to

conclude that there is a uniform bound on the length of the face too.

In Sections 2.4 and 2.5 we prove the remaining two implications (one of the four

is trivial). We use a result by Bowditch [Bowditch, 1991] to prove what can be regarded

as the equivalent statement for general graphs of the linear isoperimetric inequality for

2



Cayley graphs.

Proposition 1. Let G be a plane graph of minimum degree at least 3 and bounded

degree. Then: G has bounded codegree and there exists k such that for all cycles C ⊂ G

the number of faces of G inside C is bounded above by k|C| if and only if G is hyperbolic

and uniformly isoperimetric.

We conclude the chapter with open problems about whether it is possible to

remove in Theorem 1 the assumption of having bounded degree.

1.2 A Liouville hyperbolic souvlaki

In this chapter we provide a counterexample to a conjecture of Benjamini [Benjamini,

2013, Open Problem 1.62] by showing an example of a transient, hyperbolic (bounded-

degree) graph Ψ which has no transient subtree. We also show that Ψ is amenable

and Liouville, thus providing a counterexample to another conjecture by Benjamini and

Schramm [Benjamini and Schramm, 1996, 1.11. Conjecture]. An interesting aspect of Ψ

is that all of its infinite geodesics eventually coincide: in other words, it has a hyperbolic

boundary consisting of just one point. We also construct another graph G which is

transient without any transient subtree, by showing that every transient subgraph of

G contains the complete graph Kn as a minor for all large enough n. This answers a

question of Benjamini (private communication).

In Section 3.3 of this chapter we introduce the ’souvlaki’ Ψ, by first presenting

an informal description and then showing the details. The reason for the name is due

to its structure: on a 1-infinite path S = {s0, s1, . . .} we glue a sequence of finite graphs

Mi of increasing size. The subgraphs Mi should be thought as discrete versions of larger

and larger balls from a 3D hyperbolic space. In order to glue Mi on S we identify a

geodesic of Mi with the subpath {s2i , . . . , s2i+2−1} of S; thus Mi ∩Mj 6= ∅ if and only

if |i − j| ≤ 1 and this intersection is contained in S. This construction allows us to

prove in Section 3.4 that Ψ is hyperbolic and in Section 3.5 the transience was proved

by showing that we can construct a flow of finite energy from s0 to infinity by letting

it carry a current of strength 2−i inside Mi: it brings the current from Mi−1 ∩Mi and

distributes it evenly on Mi ∩Mi+1. The three-dimensionality of Mi was a key factor in

ensuring that the currents avoid each other but do not dissipate too much energy. In

Section 3.6 we prove the Liouvilleness of Ψ by a direct argument on random walks: we

could not prove it by the standard technique that the hyperbolic boundary coincides

with the Martin boundary as this is only true for non-amenable graphs.

3



1.3 The set of all graphs as a pseudometric space

In this chapter we introduce two pseudometrics d0, d1 on the set G′ of all countable,

rooted graphs and discuss the properties of the induced metric space G = G′/ ∼ given by

identifying two graphs G,H ∈ G′ when their pseudodistance is 0. The metric d0([G], [H])

measures the size of the largest connected, induced, rooted subgraph that is not in both

of G andH, while d1 is a refined version of the same idea while giving G a different metric

space structure. The metric d0 has been introduced in [Georgakopoulos and Wagner,

2015] as a way to generalise the metric on which the well-known Benjamini-Schramm

notion of convergence for graphs is based. Our results in Section 4.3 focus again on

hyperbolicity and non-amenability: if [Gn] → [G] is a converging sequence in d1 and Gn

is eventually hyperbolic so is G, and the same holds for non-amenability.

1.4 Geodetic Cayley graphs

In this chapter we aim to establish which Cayley graphs are geodetic graphs, i.e. graphs

with exactly one geodesic joining each pair of points. We conjecture that the only ones

are complete graphs and odd cycles, but we are unable to solve this conjecture. The

literature on the subject shows that this conjecture holds for Cayley graphs of diameter

at most 2 and for planar graphs, and we show an unpublished proof by Georgakopoulos

that it holds for Abelian groups too. We show in Section 5.3 several results on what a

geodetic Cayley graph must satisfy, such as:

• the shortest cycle not spanning a clique is a geodetic cycle (this is true for all

geodetic cycles);

• in a finite geodetic Cayley graph the neighbourhood of a point cannot induce the

disjoint union of two cliques of different sizes.

Then in Section 5.4 we moved to consider the subgroup H of a geodetic Cayley graph

Γ = Cay(G,S) generated by the vertices at distance diam(G) from the identity. We

concluded that either H = G or there is exactly one element s ∈ S such that s2 = 1 and

H ∪ {s} generates G.

Lastly, in Section 5.5 we provide a proof that the Cayley graphs

Cn ⋊ Cm =< x, y | xn = ym = 1, yxy−1 = xk >

of semidirect product of cyclic groups are not geodesic, while also discovering a non-

transitive geodetic graph: the generalized Petersen graph P (9, 2).

4



1.5 Embedding Z in Z2 with large distortion

This chapter originated from a Mathoverflow question and we expand the answer pro-

posed by Boris Bukh, presenting in all details the solution. The question was looking

for a bi-infinite path {xi, i ∈ Z} in Z2 such that for all n the Z2-distance between xi and

xi+n is o(n). We answered the question in the affirmative by showing that a version of

the Peano curve satisfies the requirement with the smallest possible such distance.

5



Chapter 2

Hyperbolicity vs. Amenability for

planar graphs

2.1 Introduction

Hyperbolicity and non-amenability1 are important and well-studied properties for groups

(where the former implies the latter unless the group is 2-ended [Benjamini, 2013]).

They are also fundamental in the emerging field of coarse geometry [Benjamini, 2013].

The aim of this chapter is to clarify their relationship for planar graphs that do not

necessarily have many symmetries: we show that these properties become equivalent

when strengthened by certain additional conditions, but not otherwise.

Let P denote the class of connected plane graphs (aka. planar maps), with no

accumulation point of vertices and with bounded vertex degrees. Let P
′ denote the

subclass of P comprising the graphs with no unbounded face. We prove

Theorem 2. Let G be a graph in P
′. Then G is hyperbolic and uniformly isoperimetric

if and only if it is non-amenable and it has bounded codegree.

Here, the length of a face is the number of edges on its boundary; a bounded

face is a face with finite length; a plane graph has bounded codegree if there is an upper

bound on the length of bounded faces. A graph is uniformly isoperimetric if it satisfies

an isoperimetric inequality of the form |S| ≤ f(|∂S|) for all non-empty finite vertex sets

S, where f : N → N is a monotone increasing, diverging function and ∂S is the set of

vertices not in S but with a neighbour in S.

Theorem 2 is an immediate corollary of the following somewhat finer result

1See Section 2.2 for definitions.
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Theorem 3. Let G be a graph in P. Then the following hold:

1. if G is non-amenable and has bounded codegree then it is hyperbolic;

2. if G is hyperbolic and uniformly isoperimetric then it has bounded codegree;

3. if G is hyperbolic and uniformly isoperimetric and in addition has no unbounded

face then it non-amenable.

In the next section we provide examples showing that none of the conditions

featuring in Theorem 3 can be weakened, and that the no accumulation point condition

is needed.

We expect that Theorem 3 remains true in the class of 1-ended Riemannian

surfaces if we replace the bounded degree condition with the property of having bounded

curvature and the bounded codegree condition with the property of having bounded

length of boundary components.

2.1.1 Tightness of Theorem 3

We remark that having bounded degrees is a standard assumption, and assuming bounded

codegree is not less natural when the graph is planar. Part of the motivation behind

Theorem 3 comes from related recent work of Georgakopoulos [Carmesin and Geor-

gakopoulos, 2015; Georgakopoulos, 2016], especially the following

Theorem 4 ([Georgakopoulos, 2016]). Let G be an infinite, hyperbolic, non-amenable,

1-ended, plane graph with bounded degrees and no infinite faces. Then the following five

boundaries of G (and the corresponding compactifications of G) are canonically homeo-

morphic to each other: the hyperbolic boundary, the Martin boundary, the boundary of

the square tiling, the Northshield circle, and the boundary ∂∼=(G).

In order to show the independence of the hypotheses in Theorem 4, Georgakopou-

los provided a counterexample to a conjecture of Northshield [Northshield, 1993] asking

whether a plane, accumulation-free, non-amenable graph with bounded vertex degrees

must be hyperbolic. That counterexample had unbounded codegree, and so the ques-

tion came up of whether Northshield’s conjecture would be true subject to the additional

condition of bounded codegree. The first part of Theorem 3 says that this is indeed the

case.

A related problem from [Georgakopoulos, 2016] asks whether there is a planar,

hyperbolic graph with bounded degrees, no unbounded faces, and the Liouville property.

7



Combined with a result of [Carmesin and Georgakopoulos, 2015] showing that the Liou-

ville property implies amenability in this context, the third part of Theorem 3 implies

that such a graph would need to have accumulation points or satisfy no isoperimetric

inequality. (Note that such a graph could have bounded codegree.)

The aforementioned example from [Georgakopoulos, 2016] shows that non-amenability

implies neither hyperbolicity nor bounded codegree, and is one of the examples needed

to show that no one of the four properties that show up in Theorem 3 implies any of the

other in P (with the exception of non-amenability implying uniform isoperimetricity).

We now describe other examples showing the independence of those properties.

To prove that bounded codegree does not imply hyperbolicity or that uniform

isoperimetricity does not imply non-amenability it suffices to consider the square grid

Z2.

To prove that hyperbolicity does not imply uniform isoperimetricity nor bounded

codegree, we adopt an example suggested by B. Bowditch (personal communication).

Start with a hyperbolic graph G ∈ P of bounded codegree ∆(G∗) and perform the

following construction on any infinite sequence {Fn} of faces of G. Enumerate the

vertices of Fn as f1, . . . fk in the order they appear along Fn starting with an arbitrary

vertex. Add a new vertex vn inside Fn, and join it to each fi by a path Pi of length

n (i.e. with n edges), so that the Pi’s meet only at vn. Then for every 1 ≤ i ≤ k − 1,

and every 1 < j < n, join the jth vertices of Pi and Pi+1 with an edge. Call G1 the

resulting graph. Then G1 has unbounded codegree, because P1, Pk and one of the edges

of Fn bound a face of length 2n−1. Moreover G1 is not uniformly isoperimetric: the set

of vertices inside Fn is unbounded in n, while its boundary has |Fn| ≤ ∆(G∗) vertices.

Finally, G1 is hyperbolic: it is quasi-isometric to the graph obtained from G by attaching

a path R of length n to each Fn.

To prove that bounded codegree does not imply uniform isoperimetricity, consider

the graph G2 obtained from the same construction as above except that we now also

introduce edges between Pk and P1: now G2 has bounded codegree while still not being

uniformly isoperimetric.2

To prove that hyperbolicity and uniform isoperimetricity together do not imply

non-amenability without the condition of no unbounded face consider the following ex-

ample. Let H be the hyperbolic graph of Figure 3.2 at page 31 constructed as follows.

The vertex set of H is the subset of R2 given by {( i
2n , n) | i ∈ Z, n ∈ N}. Join two

2B. Bowditch (personal communication) noticed that G1 is quasi-isometric to G2, showing that having
bounded codegree is not a quasi-isometric invariant in P, although he proved that having bounded
codegree is a quasi-isometric invariant among uniformly isoperimetric graphs.
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vertices ( i
2n , n), (

j
2m ,m) with an edge whenever either n = m and i = j+1 or n = m+1

and i = 2j. The finite graph H(a) is the subgraph of H induced by those vertices con-

tained inside the square with corners (0, 0), (a, 0), (0, a), (a, a). We construct the graph

G by attaching certain H(n) to H as follows. For every n ∈ N, attach a copy of H(n)

along the path {(n2, 0), . . . , (n2 + n, 0)} of H by identifying the vertex (n2 + k, 0) of H

with the vertex (k, 0) of H(n), k = 0, . . . , n. More explicitly, an embedding of G in the

plane R2 is the following: the vertex (x, y) ∈ V (H) with y ≥ 0 is sent to itself, while

the vertex (x, y) ∈ V (H(n)) is sent to (n2 + x,−y). In particular, H(n) ∩ H is the

path {(n2, 0), . . . , (n2 + n, 0)} of length n. Note that the resulting graph G is planar

because n2+n < (n+1)2, and so the H(n)’s we attached to H do not overlap. It is easy

to prove that G is amenable and uniformly isoperimetric. It is also not hard to check

that G is hyperbolic, by noticing that the ray {(x, 0), x ∈ Z} ⊂ G contains the only

geodesic between any two of its vertices, and using the fact that the H(n) were glued

onto the hyperbolic graph H along that ray; one could for example explicitly check the

thin triangles condition.

To see that Theorem 3 becomes false if we allow accumulation points of vertices,

consider the Cayley graph of the free product Z2 ∗ Z with respect to the natural choice

of generating sets for each of them.3 First of all the graph is non-amenable (because it

contains a copy of the free group on 2 generators) but not hyperbolic (because any copy

of Z2 is non-hyperbolic). This graph cannot be embedded in the plane without accu-

mulation points: any cycle around the origin of one copy of Z2 would contain infinitely

many vertices. Nonetheless, it is still a planar graph (although not a planar complex)

[Arzhantseva et al., 2004], and the embedding provided in the paper is with bounded

codegree.

2.2 Definitions

The degree deg(v) of a vertex v in a graph G is the number of edges incident with v; if

∆(G) := sup
v∈V (G)

deg(v)

is finite we will say that G has bounded degree.

An embedding of a graph G in the plane will always mean a topological embedding

of the corresponding 1-complex in the Euclidean plane R2. A plane graph is a graph

endowed with a fixed embedding. A plane graph is accumulation-free if its set of vertices

3See 5.1 at page 55 for the definitions
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has no accumulation point in the plane.

A walk in a graph G is a sequence w = x1, e1, x2, e2, . . . , xn where xi ∈ V (G), ei ∈
E(G) for all i = 1, . . . , n and xi, xi+1 are distinct endvertices of the edge ei; the length

|w| of w is n, i.e. the number of edges it traverses counted with multiplicity. The walk

w is called a path if all xi are distinct, and it is called an x-y path if x = x1 and y = xn.

If x, y are distinct vertices of G, an x-y cut in G is a collection A of vertices or edges

such that x, y lie in two different components of G \A.

A face of an embedding σ : G → R2 of a connected graph G is a component

of R2 \ σ(G). The boundary of a face F is the set of vertices and edges of G that are

mapped by σ to the closure of F . The boundary of F is the closed walk and the length

|F | of F is the sum of the lengths of all those closed walks. A face F is bounded if the

length |F | is finite. If
∆(G∗) := sup

F bounded face of G
|F |

is finite we will say that G has bounded codegree.

The Cheeger constant of a graph G is

c(G) := inf
∅6=S⊂G finite

|∂S|
|S| ,

where ∂S = {v ∈ G\S | there exists w ∈ S adjacent to v} is the boundary of S. Graphs

with strictly positive Cheeger constant are called non-amenable graphs. A graph is

uniformly isoperimetric if it satisfies an isoperimetric inequality of the form |S| ≤ f(|∂S|)
for all non-empty finite vertex sets S, where f : N → N is a monotone increasing diverging

function. Notice that since all graphs we consider are connected, the above function f

can be assumed to satisfy f(0) = 0.

A x-y path in a graph G is called a geodesic if its length coincides with the

distance between x and y. A geodetic triangle consists of three vertices x, y, z and three

geodesics, called its sides, joining them. A geodetic triangle is δ-thin if each of its sides

is contained in the δ-neighbourhood of the union of the other two sides. A graph is

δ-hyperbolic if each geodetic triangle is δ-thin. The smallest such δ ≥ 0 will be called the

hyperbolicity constant of G. A graph is hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

A walk x0, e0, . . . , xn is closed if x0 = xn and is a cycle if it is closed and all

xi, i = 0, . . . , n − 1 are distinct. In a closed walk C = x0, . . . , xn = x0, for every i ≤ j

there are two paths joining xi, xj called arcs: xi, ei, . . . , xj and xj , ej , . . . xn, e0, x1, . . . , xi.

If x, y are two vertices of a walk C, we will write xCy and yCx for these two arcs —it

will not matter which is which. Similarly, if P is a path passing through these vertices,
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xPy is the sub-path of P joining them.

Let G =< S|R > be a presented group. A word w in the generators S is freely

reduced if does not present factors of the form a · a−1. A word w is a relation if w = 1

as a product of elements of G. This is equivalent to say that w belongs to the normal

closure of R in the free group over S, i.e.

w =

n
∏

i=1

siris
−1
i

where si ∈ S and r±1
i ∈ R. The area of w is the smallest n such that the above

product holds. An isoperimetric inequality for G is a function f : N → N such that

Area(w) ≤ f(|w|) for all freely reduced words satisfying w = 1. The Dehn function DG

of G is the smallest isoperimetric function, i.e. if f is an isoperimetric function for G

we have DG(n) ≤ f(n). The growth rate (linear, quadratic, exponential etc.) of DG is

a quasi-isometry invariant and a finitely presented group G is hyperbolic if and only if

DG is linear.

2.3 Hyperbolicity and uniform isoperimetricity imply bounded

codegree

In this and the following sections we will prove each of the three implications of Theo-

rem 3 separately.

We will assume throughout the text that G ∈ P, i.e. G is an accumulation-free

plane graph with bounded degrees, fixed for the rest of this chapter. Theorem 3 is trivial

in the case of forests, so from now on we will assume that G has at least a cycle, or in

other words it has a bounded face.

A geodetic cycle C in a graph G is a cycle with the property that for every two

points x, y ∈ C at least one of xCy and yCx (defined in the end of Section 2.2) is a

geodesic in G.

Lemma 1. If G ∈ P is hyperbolic, then the lengths of its geodetic cycles are bounded,

i.e.

sup
C geodetic cycle of G

|C| < ∞.

Proof. Let δ be the hyperbolicity constant of G. We will show that no geodetic cycle

has more than 6δ vertices.
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Let C be a geodetic cycle, say with n vertices, and choose three points a, b, c on

C as equally spaced as possible, i.e. every pair is at least
⌊n

3

⌋

apart along C. Let ab be

the arc of C joining a and b that does not contain c, and define bc and ca similarly. We

want to show that ab, bc and ca form a geodetic triangle.

If x, y, z are distinct points in C then let xzy be the arc in C from x to y that

passes through z. Then we know that one of ab, acb is a geodesic joining a and b, and

|acb| ≥ 2
⌊n

3

⌋

> |ab|, so ab is a geodetic arc. Similarly, bc and ca are geodetic arcs.

Consider now the point p on ab at distance
⌊n

6

⌋

from a along C. Since G is a

δ-hyperbolic graph, we know that there is a vertex q on bc or ca which is at distance at

most δ from p. But as C is a geodetic cycle, the choice of a, b, c implies that

d(p, q) ≥ min{d(p, a), d(p, b)} =
⌊n

6

⌋

,

from which we deduce that n ≤ 6δ.

By the Jordan curve theorem, a closed walk C divides R2 in a number of disjoint

regions: the bounded components of R2 \ C, the unbounded component and C itself.

We call a point of R2 strictly inside (resp. outside) C if it belongs to a bounded (resp.

unbounded) component of R2\C, and a point is inside (resp. outside) if is strictly inside

(resp. outside) or on C. Similarly, we say that a subgraph H ⊂ G is (strictly) inside C

or that C (strictly) contains H if all vertices and open edges4 of H are (strictly) inside

C, and H is outside (resp. strictly outside) C if all its points are not strictly inside (resp.

inside) C.

Recall that we are assuming G to have no accumulation point, so inside each

closed walk we can only have finitely many vertices.

Corollary 1. Suppose G ∈ P is hyperbolic and uniformly isoperimetric. If every face of

G is contained inside a geodetic cycle, then ∆(G∗) < ∞.

Proof. Consider a face F contained inside a geodetic cycle C; by Lemma 1 we know that

|C| ≤ 6δ, where δ is the hyperbolicity constant of G. Let S be the set of all vertices

inside the geodetic cycle C so |S| < ∞ as there is no accumulation point. Then the

vertices of S that have a neighbour in the boundary ∂S belong to C and each vertex of

C has less than ∆(G) neighbours in ∂S, implying that |∂S| < ∆(G)|C|. Let f : N → N

be a monotone increasing diverging function witnessing the uniform isoperimetricity of

4An edge in a plane graph is the image of a continuous map e : [0, 1] → R2; the corresponding open

edge is e((0, 1)).
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G. Then, since F ⊆ S,

|F | ≤ |S| ≤ f(|∂S|) ≤ f(6δ∆(G)),

which is uniformly bounded for every face F of G.

We remark that in the above proof the boundary of the face F does not have to

be a cycle, but this does not affect the proof. Indeed, only the fact that it is inside a

geodetic cycle plays a role.

In what follows we will exhibit a construction showing that for any graph in

P
′ each face is contained inside a geodetic cycle, which allows us to apply Corollary 1

whenever the graph is hyperbolic and uniformly isoperimetric.

We remarked above that by the Jordan curve theorem we can make sense of

the notion of being contained inside a closed walk. Similarly, given three paths P,Q,R

sharing the same endpoints, if P ∪ R is a closed walk and Q lies inside it, we will say

that Q is between P,R.

Now, suppose we are given a cycle C and two points x, y ∈ C such that there

exists a geodesic γ joining x and y lying outside C. Consider the set S = S(x, y) of x-y

geodesics that lie outside C. This set can be divided into two classes:

S1 := {Γ ∈ S | xCy is between yCx,Γ},
S2 := {Γ ∈ S | yCx is between xCy,Γ}.

These two subsets of S cannot be both empty because one of them must contain γ. Let

us assume, without loss of generality, that S1 6= ∅. For the proof of Theorem 3, we will

make use of the notion of ‘the closest geodesic’ to a given cycle; let us make this more

precise. Consider the above cycle C in a plane graph, two points x and y on C and a

choice of an arc on C joining them, say xCy. Let us define a partial order on the set

S1 defined above: for any two geodesics Γ,Γ′ ∈ S1 we declare Γ � Γ′ if Γ is between

xCy,Γ′.

Lemma 2. With notation as above, (S1,�) has a least element.

Proof. The set S1 is a subset of all paths from x to y of length d(x, y). These paths

are contained in the ball of center x and radius d(x, y). As G is locally finite, this ball

is finite and so is S1. Therefore, it suffices to produce for every couple of elements a

(greatest) lower bound.5

5In a similar fashion we can produce a least upper bound, showing that S1 is a finite lattice.
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Pick two geodesics Γ,Γ′ in S1; let P1, . . . , Ph be the collection (ordered from x to

y) of maximal subpaths of Γ lying inside the cycle xCy∪Γ′ and Q1, . . . , Qk the collection

(ordered from x to y) of maximal subpaths of Γ′ lying inside the cycle xCy ∪ Γ (note

that h− k ∈ {−1, 0, 1}). Without loss of generality, we can assume that x belongs to a

path from P1, so h− k ∈ {0, 1}.
Now consider the subgraph

Γ′′ :=







P1 ∪Q1 . . . ∪ Ph ∪Qk, if h = k;

P1 ∪Q1 . . . ∪ Ph−1 ∪Qk ∪ Ph, if h = k + 1.

Note that each Pi shares one endvertex with Qi−1 and the other with Qi, and similarly

Qj shares the endvertices with Pj and Pj−1. We want to prove Γ′′ to be an element of

S1 and specifically the greatest lower bound of Γ and Γ′. Note that Γ and Γ′ intersect

in some points x = x1, x2, . . . , xn = y (the endvertices of all Pi and Qj) and, being

geodesics, xiΓxi+1 is as long as xiΓ
′xi+1. This implies |Γ′′| = |Γ′| = |Γ| = d(x, y), i.e.

Γ′′ is a geodesic (in particular, it is a path). The fact that Γ′′ ∈ S1 follows from having

put together only sub-paths of elements from S1. Lastly, we need to show that both

Γ′′ � Γ and Γ′′ � Γ′ hold. But all paths Pi and Qj are inside both xCy∪Γ and xCy∪Γ′,

therefore so is Γ′′.

Of course, there is nothing special with S1 and thus S2 has a similar partial order

and admits a least element too, provided it is non-empty.

Let us say that in a plane graph a path P crosses a cycle C if the endpoints of

P are outside C but there is at least one open edge of P that lies strictly inside C. In

particular, an edge {x, y} crosses a C if x, y ∈ C but the open edge of {x, y} lies strictly

inside C.

Corollary 2. Let C be a cycle in a plane graph G, and let B be a geodesic between two

points x and y of C such that B lies outside C and xCy lies between yCx and B. Then

there exists an x-y geodesic Γ in G satisfying the following:

(1) xCy lies between yCx and Γ;

(2) there is no geodesic outside C crossing the cycle xCy ∪ Γ.

Proof. Note that the condition (1) is exactly the definition of the set S1 given above,

and B satisfies that condition. By Lemma 2, there exists a least x-y geodesic Γ with

respect to �. Let us show that this is the required geodesic. Suppose there is a geodesic
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Γ′ that crosses the cycle xCy ∪ Γ and lies outside C, so the endpoints of Γ′ are outside

yCx ∪ Γ and Γ′ has an edge e strictly inside xCy ∪ Γ. Let aΓ′b be the longest subpath

of Γ′ containing e and lying inside xCy ∪ Γ. Then a, b are on Γ and the geodesic

Γ′′ := xΓa ∪ aΓ′b ∪ bΓy

satisfies Γ′′ ≺ Γ, contradicting the minimality of Γ. This contradiction proves our

claim.

Note that Corollary 2 does not claim uniqueness for the geodesic: if Γ satisfies

the claim and Γ′ � Γ then Γ′ satisfies it as well. However, the unique least element of

S1 satisfies the statement of Corollary 2 thus such a geodesic will be referred to as the

closest geodesic to the cycle C in S1. We conclude that, if x, y are two points on a cycle

C such that there is no x-y geodesic strictly inside C, then there are exactly one or two

x-y geodesics closest to C, depending on how many of S1, S2 are non-empty. If these two

geodesics both exist, they can intersect but cannot cross each other.

We remark that the boundary of a face F of G ∈ P
′ is in general a disjoint

union of closed walks, not just a single cycle. Nonetheless, there is a unique cycle

C = x0, . . . , xk = x0 such that all vertices of F are inside C. We call C the cyclic

boundary of the face F .

Theorem 5. If G ∈ P is hyperbolic and uniformly isoperimetric then ∆(G∗) < ∞.

Proof. We want to show that if F is a bounded face ofG, then it is contained in a geodetic

cycle and then apply Corollary 1. The idea of the proof is to construct a sequence of

cycles C0, C1, . . . each containing F , with the lengths |Ci| strictly decreasing, so that the

sequence is finite and the last cycle is a geodetic cycle.

Let us start with the cycle C0 given by the cyclic boundary of the face F . If C0 is

geodetic we are done, otherwise there are two points x, y such that both xC0y and yC0x

are not geodesics. Consider a geodesic Γ1 joining them: since F is a face any x-y walk

along its boundary cannot be shorter than both xC0y and yC0x, thus any x-y geodesic

Γ1 must lie outside the cycle C0. Therefore, we have three paths xC0y, yC0x and Γ1

between x and y. Assume without loss of generality that xC0y is between yC0x,Γ1.

Then the union of Γ1 with yC0x yields a new cycle C1 with the following properties:

• |C1| = |yC0x| + |Γ1| < |yC0x| + |xC0y| = |C0|, since xC0y is not a geodesic while

Γ1 is;

• the face F is inside the cycle C1 since it was inside C0 which in turn is inside C1.
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Using Lemma 2 we can require the geodesic Γ1 to be the closest to the cycle C0 with

respect to the arc xC0y. Note that the cycle C1 cannot be crossed by any geodesic: a side

of the cycle is made by a face, which does not contain any strictly inner edge, and the

other side is bounded by the closest geodesic, which cannot be crossed by Corollary 2.

We can iterate this procedure: assume by induction that after n steps, we are

left with a cycle Cn such that the face F is still inside Cn and Cn cannot be crossed by

geodesics. If Cn is a geodetic cycle we are done, otherwise there are two points x, y ∈ Cn

that prevent that, and we can find a closest geodesic Γn+1 as before, creating a new

cycle Cn+1. We conclude that the face F is inside Cn+1 and |Cn+1| < |Cn|. Since these

lengths are strictly decreasing, the process halts after finitely many steps, yielding the

desired geodetic cycle. Note that Cn+1 still has the property that it cannot be crossed

by a geodesic: indeed, if a geodesic crosses Cn+1, then since it cannot cross Cn by

the induction hypothesis, it would have to cross the cycle xCny ∪ Γn+1, which would

contradict condition (2) of Corollary 2.

2.4 Non-amenability and bounded codegree imply hyper-

bolicity

The first assertion of Theorem 3 was proved in [Northshield, 1993] using random walks.

In this section we provide a purely geometric proof of that statement.

Bowditch proved in [Bowditch, 1991] many equivalent conditions for hyperbolicity

of metric spaces, one of which is known as linear isoperimetric inequality. For our

interests, which are planar graphs of bounded degree, that condition has been rephrased

as in Theorem 6 below. Before stating it we need some definitions.

Let us call a finite, connected, plane graph H with minimum degree at least 2 a

combinatorial disk if the unbounded face of H has a boundary that is a cycle; let us call

∂topH that cycle.

Definition 1. A combinatorial disk H satisfies a (k,D)-linear isoperimetric inequality

(LII) if |F | ≤ D for all bounded faces F of H and the number of bounded faces of H is

bounded above by k|∂topH|.

Definition 2. An infinite, connected, plane graph G satisfies a LII if there exist k,D ∈ N

such that the following holds: for every cycle C ⊂ G there is a combinatorial disk H

satisfying a (k,D)-LII and a map ϕ : H → G which is a graph-theoretic isomorphism

onto its image (so that ϕ does not have to respect the embeddings of H,G into the

plane), such that ϕ(∂topH) = C.
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Bowditch’s criterion is the following:

Theorem 6 ([Bowditch, 1991]). A plane graph G of minimum degree at least 3 and

bounded degree is hyperbolic if and only if G satisfies a LII.

Remark: this LII condition translates for Cayley graphs to the usual definition

of linear isoperimetric inequality, i.e. having linear Dehn function (see Section 2.2).

Gromov proved in his monograph [Gromov, 1987] that for a Cayley graph having linear

(equivalently: subquadratic) Dehn function is equivalent to being hyperbolic. It is worth

mentioning that Bowditch [Bowditch, 1995] extended this result to general path-metric

spaces, by proving that having a subquadratic isoperimetric function implies hyperbolic-

ity. Our Theorem 7 shows that for planar graphs, non-amenability and the boundedness

of the codegree together are sufficient to imply a linear isoperimetric inequality.

An immediate corollary is the following:

Corollary 3. Let G be a plane graph of minimum degree at least 3, bounded degree and

codegree. Suppose there exists k such that for all cycles C ⊂ G the number of faces of G

inside C is bounded above by k|C|. Then G is hyperbolic.

Proof. For every cycle C, let H be the subgraph of G induced by all vertices inside C.

Then H is a finite plane graph of codegree bounded above by ∆(G∗). By assumption, the

number of bounded faces of H is bounded above by k|C| = k|∂topH|. Thus G satisfies a

LII, and G is hyperbolic by Theorem 6.

We will see a partial converse of this statement in Lemma 11.

We would like to apply this criterion to our non-amenable, bounded codegree graph

G, but G might have minimum degree less than 3. Therefore, we will perform on G

the following construction in order to obtain a graph G′ of minimum degree 3 without

affecting any of the other properties of G we are interested in.

Define a decoration of a uniformly isoperimetric graph G to be a finite, connected,

induced subgraph H with at most 2 vertices in the boundary ∂H that is maximal with

respect to the supergraph relation among all subgraphs of G having these properties.

For example, we can create a decoration by attaching a path of length at least 2 joining

two vertices of degree at least 3. Furthermore, we claim that every vertex x of G of

degree at most 2 is in a decoration. Indeed, if {x} =: H0 ( H1 ( H2 ( . . . is a properly

nested sequence of finite, connected, induced subgraphs Hi with |∂Hi| ≤ 2, then by the

uniform isoperimetricity of G the sizes |Hi| are uniformly bounded, so there is a maximal

element Hn to which x belongs.
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Lemma 3. With terminology as above, distinct decorations are disjoint.

Proof. If H,H ′ are decorations with |∂(H ∪H ′)| ≤ 2 then H ∪H ′ is a decoration thus

H = H ′ by maximality.

If |∂(H∪H ′)| > 2 and by contradiction V (H)∩V (H ′) 6= ∅ then since |∂H|, |∂H ′| ≤
2 one of the two decorations, say H, is such that

∂H has (exactly) 2 vertices not in ∂H ′ ∪H ′. (2.1)

Let x belong to nV (H)∩V (H ′) and we can assume x is adjacent to y ∈ (V (H ′)∪∂H ′)\
V (H). But then y ∈ ∂H, contradicting (2.1).

Definition 3. Perform the following procedure on each decoration H of the graph G: if

|∂H| = 1 delete H, while if ∂H = {v, w} delete H and add the edge {v, w} if not already

there. Call G′ the resulting graph.

By Lemma 3, the order of which decorations are affected is irrelevant. Note that

the minimum degree of G′ is at least 3: any vertex of G of degree at most 2 belongs to

a decoration, and if H is a decoration and x ∈ ∂H then by maximality x sends at least

3 edges to G \ (H ∪ ∂H) when |∂H| = 1 and at least 2 edges when |∂H| = 2. Note also

that the maximum degree of G′ is at most ∆(G).

Now assume G is uniformly isoperimetric and let f : N → N witness its uniform

isoperimetricity. Then the size of decorations is bounded above by f(2) and thus the

size of any face of G is reduced by at most f(2) after the procedure of Definition 3, so

∆(G′∗) is finite if ∆(G∗) is. Consider the identity map I : V (G′) →֒ V (G). Then

dG′(x, y) ≤ dG(I(x), I(y)) ≤ f(2)dG′(x, y)

and every vertex inG is within f(2) from a vertex of f(V (G′)), hence I is a quasi-isometry

between G and G′. Thus if G enjoys the stronger property of being non-amenable then

G′ is non-amenable too, since non-amenability is a quasi-isometry invariant for graphs of

bounded degree (see for instance [Drutu and Kapovich, 2013, Theorem 11.10] or [Kanai,

1985, Section 4]). For the same reason, if we know that G is hyperbolic then so is G′.

Theorem 7. If G ∈ P is non-amenable and it has bounded codegree then G is hyperbolic.

Proof. Starting from G, perform the procedure of Definition 3: the resulting graph G′

is non-amenable, has bounded codegree and has minimum degree at least 3.
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Let C be a cycle and S ⊂ G′ the (finite but possibly empty) subset of vertices

lying strictly inside C; by non-amenability we have

|C| ≥ |∂S| ≥ c(G′)|S|.

Let us focus on the finite planar graph G′[C ∪ S] induced by C ∪ S and let F be the

number of faces inside it. Since each vertex is incident with at most ∆(G) faces, we have

|C ∪ S|∆(G) ≥ F . Thus

(1 + c(G′))|C| ≥ c(G′)(|S|+ |C|) ≥ c(G′)
1

∆(G)
F

which is equivalent to F ≤ (1+c(G′))∆(G)
c(G′) |C|. Since ∆(G′∗) is finite, by Corollary 3 G′ is

hyperbolic. By the remark above, G is hyperbolic too.

2.5 Hyperbolicity and uniform isoperimetricity imply non-

amenability

Let us prepare the last step of the proof of Theorem 3 with a Lemma.

Lemma 4. Suppose G has bounded codegree and no unbounded faces. Then for every

finite connected induced subgraph S of G, there exists a closed walk C such that S is

inside C and at least |C|/∆(G∗) vertices of C are in the boundary of S.

Proof. Let H be the subgraph of G spanned by S and all its incident edges. Note that

H contains all vertices in ∂S, but no edges joining two vertices of ∂S. Then H is a finite

plane graph by definition. We let C be the closed walk bounding the unbounded face of

H. We claim that C has the desired properties.

To see this, let x1, . . . , xn be an enumeration of the vertices of ∂S in the order they

are visited by C (thus the same vertex may appear more than once in the enumeration).

Then we claim that the subwalk xiCxi+1 is contained in the boundary of some face of G.

Indeed, all interior vertices of xiCxi+1 lie in S by our definitions, and so all edges of G

incident with those vertices are in H; this means that no vertex of G lying outside C is

adjacent to an inner vertex of xiCxi+1, thus all edges of xiCxi+1 belong to the boundary

of the same face of G. Since G has only bounded faces, we have |xiCxi+1| ≤ ∆(G∗).

Summing over all i we obtain

|C ∩ ∂S| = n ≥
n
∑

i=1

|xiCxi+1|
∆(G∗)

≥ |C|
∆(G∗)

.
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For the rest of this Section, assume G is uniformly isoperimetric, with f : N → N

a monotone increasing, diverging function witnessing its uniform isoperimetricity.

Lemma 5. There is a monotone increasing, diverging function f ′ : [0,∞) → [0,∞) such

that f ′(|S|) ≤ |∂S| for all finite subgraphs S of G.

Proof. Starting with the above function f for the uniform isoperimetricity ofG, construct

f̂ : [0,∞) → [0,∞) such that f̂ |N ≥ f and f̂ is injective; for instance, if f(a) = f(a+1) =

. . . = f(b − 1) < f(b) then define f̂(a + h) := f(a) + hf(b)−f(a)
b−a for all a ∈ N and h ∈

[0, b−a). Then f̂ coincides with f on each n such that f(n) 6= f(n−1) and f̂(n) ≥ f(n)

for all n ∈ N. Moreover f̂ is injective because f is monotone and f̂ is surjective because

it is continuous, f(0) = 0 and f(n) → ∞. Then, let f ′ : [0,∞) → [0,∞) be the inverse

function of f̂ : by the properties of f̂ , we have that f ′ is well defined and for all S ⊂ G

finite,

f̂(f ′(|S|)) = |S| ≤ f(|∂S|) ≤ f̂(|∂S|),

which implies f ′(|S|) ≤ |∂S| by the injectivity of f̂ .

For each r ∈ N and S ⊂ G finite subgraph with a := |S|, define for the rest of

the Section BS(r) := {x ∈ G | d(x, S) ≤ r} and NS(r) := |BS(r)|, where d(x, S) :=

min{d(x, y) | y ∈ S}.

Lemma 6. With notation as above, there is a function g : N → N such that NS(g(a)) ≥
2a for every S ⊂ G.

Proof. Define for i ≥ 0, Si := {x ∈ G | d(x, S) = i}. Then Sk+1 = ∂(S ∪ S1 . . . ∪ Sk)

and moreover all Si are pairwise disjoint. Let f ′ : N → N be as in Lemma 5, then by the

monotonicity of f ′ we have

|S1| ≥ f ′(a),

|S2| ≥ f ′(a+ |S(1)|) ≥ f ′(a+ f ′(a)) and in general

|Sk| ≥ f ′(a+ f ′(. . .+ f ′(a) . . .)),

where the number of f ′ in the last expression is k. Thus

NS(k) =

k
∑

i=0

|Si| ≥ a+ f ′(a) + . . .+ f ′(a+ f ′(. . .+ f ′(a) . . .)) =: F (k, a).

Notice that as a function of k, F (k, a) is a monotone increasing, diverging function.

Let g(n) := min{k | F (k, a) ≥ 2a}: in other words, k is such that F (k, a) ≥ 2a iff
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F (k, a) ≥ g(a); notice also that g depends only on the cardinality of S and not on the

specific subgraph chosen. Thus NS(g(a)) ≥ g(a), which proves the statement.

Lemma 7. For every C > 1 there is a function g′ : N → N such that we have NS(g
′(a)) ≥

Ca for every S ⊂ G.

Proof. Let Si, i ≥ 0 be defined by: S0 := S, Si+1 := BSi(g(|Si|)), i ≥ 0, where g is as in

Lemma 6. In other words, we have that S1 is the neighbourhood BS(g(a)) of S such that

|S1| ≥ 2a; S2 is the neighbourhood BS1(g(|S1|)) of S1 such that |S2| ≥ 2|S1| and so on.

Let k := ⌈log2C⌉ and define g′(a) := |Sk−1| ≥ 2k−1a. Thus NS(g
′(a)) ≥ 2ka ≥ Ca.

Proposition 2. The following are equivalent:

1) G is uniformly isoperimetric;

2) there is a function g : N → N such that NS(g(a)) ≥ 2a for every S ⊂ G;

3) for every C > 1, there is a function g′ : N → N such that NS(g
′(a)) ≥ Ca for every

S ⊂ G.

Proof. We already proved 1) implies 2) implies 3); also 3) implies 2) is trivial. Let us

prove 2) implies 1).

By hypothesis, we have NS(g(a)) ≥ 2a. Since BS(r) = S ∪ B∂S(r − 1) for all r,

we have that

|B∂S(g(a))| ≥ |B∂S(g(a)− 1) \ S| = |BS(g(a))| − a ≥ a,

where a = |S|. Since G has bounded degree, we also have N∂S(r) ≤ ∆(G)r|∂S| for every
r. Thus for every S, a ≤ N∂S(g(a)) ≤ ∆(G)g(a)|∂S|, which by definition means that G

is uniformly isoperimetric.

Starting with G ∈ P
′, perform the procedure of Definition 3

Proposition 3. With notation as above, if G is uniformly isoperimetric, then so is G′.

Proof. Define p : G → G′ as

• p(x) = x if x does not belong to a decoration;

• p(x) = y if x belongs to a decoration H with y ∈ ∂H;
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By definition, p is surjective as V (G′) is the subset of V (G) given by vertices that do not

belong to a decoration of G, thus for each y ∈ V (G′), p(y) = y. Since |H| ≤ f(2) for all

decorations |H| ⊂ G, we have that p is f(2)-Lipschitz, i.e. dG(x, y) ≤ f(2)dG′(p(x), p(y))

for all x, y ∈ G. Let q : G′ → G an arbitrary left inverse given by surjectivity, i.e.

q(p(x)) = x for all x ∈ G. Since G and G′ have bounded degree with ∆(G′) ≤ ∆(G) < ∞
if we let β := ∆(G)f(2), then for every x the preimage p−1(x) cannot have more than β

elements and the same holds for q. Thus we have that |S| ≤ β|p(S)| and |S′| ≤ β|q(S′)|
for all finite S ⊂ G,S′ ⊂ G′. Let α > max{1, β2}; by Lemma 7 there is a function

g′ : N → N such that NS(g
′(a)) ≥ α|S| for all S ⊂ G finite. Take S′ ⊂ G′ and S such

that p(S) = S′ (S exists because p is surjective), then we have:

|S′| ≤ β|S| ≤ β

α
NS(g

′(a)) ≤ β2

α
|p(BS(g

′(a)))|.

Since p is f(2)-Lipschitz and S ≤ β|p(S)| we also have

p(BS(g
′(a))) ⊂ Bp(S)(g

′(β|p(S)|)f(2)) = BS′(g′(β|S′|)f(2)).

Thus, defining g′′(n) := g′(βn)f(2) and C := α
β2 > 1, we have that NS′(g′′(|S′|)) ≥ C|S′|

for all S′ ⊂ G′, which by Lemma 7 proves that G′ is uniformly isoperimetric.

Lemma 8. If A ⊂ G is a subgraph and A′ ⊂ G′ is the result of applying the procedure

of Definition 3 to A, then |A| ≤ |A′|f(2)∆(G).

Proof. Let x be a vertex of A′. If x ∈ A then x is not part of a decoration and is adjacent

in G to at most ∆ decorations, while if x ∈ A′ but not in A then x is the result of deleting

a decoration H ⊂ G with |∂H| = 2 and, thus by maximality of the decorations, x is not

adjacent to other decorations of G. Since G is uniformly isoperimetric, decorations have

at most f(2) vertices, so in total A contains at most |A′|∆(G) decorations, that implies

|A| ≤ |A′|∆(G)f(2)

Lemma 9. With notation as above, If C ⊂ G is a cycle and C ′ is the result of applying

the procedure of Definition 3 to C then C ′ is a (possibly empty) cycle.

Proof. If H ⊂ G is a decoration with H ∩ C 6= ∅ then either C ⊂ H, in which case

|C ′| ≤ 1, or ∂H∩C 6= ∅. Since C is 2-connected, the latter case means that |∂H∩C| = 2

and thus after the procedure of Definition 3 H becomes a vertex of degree 2 in C ′. This

means that C ′ is 2-regular and connected, i.e. a cycle.
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Lemma 10. Let G,G′ be as above, and assume G is uniformly isoperimetric, with

f : N → N witnessing its uniform isoperimetricity. Assume G is hyperbolic and that

there is k′ such that for all cycles C ′ ⊂ G′ we have |{faces inside C ′}| ≤ k′|C ′|. Then

there is k such that for all cycles C ⊂ G we have |{faces inside C}| ≤ k|C|.

Proof. Let C ⊂ G be a cycle, S the set of vertices strictly inside C, F the set of faces

inside C. Moreover, let C ′ ⊂ G′ be the cycle obtained by applying the procedure of

Definition 3 on C (see Lemma 9, and notice that |C ′| ≤ |C|), F ′ be the set of faces inside

C ′ and S′ be the set of vertices strictly inside C ′. We can also interpret S′ as being the

result of applying procedure of Definition 3 to S.

By Theorem 5, we have that G has bounded codegree, and we already commented

that this implies that G′ has bounded codegree too. Recall that we have |F | ≤ ∆(G)|S|
because no vertex is incident with more faces than its degree, and |S′| ≤ ∆(G′∗)|F ′|
because no face is incident with more vertices than its length. By Lemma 8 we then

have:

|F |
|C| ≤

∆(G)|S|
|C ′| ≤ ∆(G)2f(2)|S′|

|C ′| ≤ ∆(G)2f(2)∆(G′∗)|F ′|
|C ′| ≤ ∆(G)2f(2)∆(G′∗)k′,

which proves the statement.

We need a result which is almost a converse of Corollary 3.

Lemma 11. Let G ∈ P be hyperbolic and uniformly isoperimetric. Then there exists k

such that for all cycles C ⊂ G the number of faces of G inside C is bounded above by

k|C|.

Proof. Perform the procedure of Definition 3: we obtain a graph G′ which by Proposition

3 is uniformly isoperimetric, and is hyperbolic and with minimum degree at least 3. Let

C be a cycle of G′. Since G′ is hyperbolic, by Theorem 6 there exists a combinatorial

disk H satisfying a (k′, D)-LII with an isomorphism ϕ from H to a subgraph of G′ such

that ϕ(∂topH) = C. The cyclic boundaries Fi, i ∈ I, of bounded faces of H are sent

by ϕ to cycles Ci := ϕ(Fi) of G′ so that |I| ≤ k′|C|, and the bound D on the length

of bounded faces of H is an upper bound to the length of those cycles Ci. Let Si be

the (finite) set of vertices of G strictly inside Ci, so that ∂Si ⊆ Ci. Let f : N → N be

a monotone increasing diverging function witnessing the uniform isoperimetricity of G′,

i.e. |S| ≤ f(|∂S|) for all finite non-empty S ⊂ G′. Then

|Si| ≤ f(|∂Si|) ≤ f(|Ci|) ≤ f(D),
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for all nonempty Si. Let F (Ci) be the number of faces of G′ inside Ci; then for a

nonempty Si we have F (Ci) ≤ ∆(G′)|Si| because no vertex can meet more than ∆(G′)

faces. In conclusion

|{faces inside C}| =
∑

i∈I

F (Ci) ≤
∑

i : Si=∅

1 +
∑

i : Si 6=∅

∆(G′)|Si| ≤ |I|+∆(G)f(D)|I|,

from which by setting a := k′ +∆(G′)f(D)k′ we obtain that in G′ all cycles C contain

no more than a|C| faces. The proof is then complete by applying Lemma 10.

Note that in order to prove the non-amenability of a graph G it suffices to check

that |∂S| ≥ c|S| for some constant c > 0 and all finite induced connected subgraphs S,

instead of all finite subsets. Indeed, if we assume so and if S is a finite induced subgraph

with components S1, . . . , Sn, then

|∂S| =
∣

∣

∣

∣

∣

n
⋃

i=1

∂Si

∣

∣

∣

∣

∣

≥ 1

∆(G)

n
∑

i=1

|∂Si| ≥
c

∆(G)

n
∑

i=1

|Si| =
c

∆(G)
|S|,

where the first equality follows from ∂Si∩Sj = ∅ for all i 6= j (S is induced) and the first

inequality holds because the boundaries ∂Si can overlap, but no vertex of ∂S belongs to

more than ∆(G) of them.

Theorem 8. If G ∈ P is hyperbolic and uniformly isoperimetric then G is non-amenable.

Proof. By the above consideration it is enough to check the non-amenability only on

connected induced subgraphs of G. Let S be such a subgraph and C as in Lemma 4.

By Theorem 5 we know that G has bounded codegree. Then

|∂S| ≥ |∂S ∩ C| ≥ |C|
∆(G∗)

and thus
|∂S|
|S| ≥ 1

∆(G∗)

|C|
|S| .

Let k > 0 be as in Lemma 11; if T denotes the set of all vertices inside C and F

the set of all faces inside C, we have

|C|
|T | =

|C|
|F | ·

|F |
|T | ≥

1

k

1

∆(G∗)
,

since each face is incident with at most ∆(G∗) vertices. Combining the last two inequal-
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ities, we have
|∂S|
|S| ≥ 1

∆(G∗)

|C|
|S| ≥

1

∆(G∗)

|C|
|T | ≥

1

k(∆(G∗))2
.

2.6 Graphs with unbounded degrees

We provided enough examples to show that Theorem 3 is best possible, except that we

do not yet know to what extent the bounded degree condition is necessary. Solutions to

the following problems would clarify this. Let now P
∗ denote the class of plane graphs

with no accumulation point of vertices; so that P is the subclass of bounded degree

graphs in P
∗.

Problem 1. Is there a hyperbolic, amenable, uniformly isoperimetric plane graph of

bounded codegree and no unbounded face in P
∗?

Problem 2. Is every non-amenable bounded codegree graph in P
∗ hyperbolic?
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Chapter 3

A Liouville hyperbolic souvlaki

3.1 Introduction

A well-known result of Benjamini & Schramm [Benjamini and Schramm, 1997] states

that every non-amenable graph contains a non-amenable tree. This naturally motivates

seeking for other properties that imply a subtree with the same property. However, there

is a simple example of a transient graph that does not contain a transient tree [Benjamini

and Schramm, 1997] (such a graph had previously also been obtained by McGuinness

[McGuinness, 1988]). We improve this by constructing —in Section 3.8— a transient

bounded-degree graph no transient subgraph of which embeds in any surface of finite

genus (even worse, every transient subgraph has the complete graph Kr as a minor for

every r). This answers a question of I. Benjamini (private communication).

Given these examples, it is natural to ask for conditions on a transient graph that

would imply a transient subtree. In this spirit, Benjamini [Benjamini, 2013, Open Prob-

lem 1.62] asks whether hyperbolicity is such a condition. We answer this in the negative

by constructing —in Section 3.7— a transient hyperbolic (bounded-degree) graph that

has no transient subtree. While preparing this manuscript, T. Hutchcroft and A. Nach-

mias (private communication) provided a simpler example with these properties, which

we sketch in Section 3.7.1.

A related result of Thomassen states that if a graph satisfies a certain isoperi-

metric inequality, then it must have a transient subtree [Thomassen, 1992].

The starting point for this chapter was the following problem of Benjamini and

Schramm

Conjecture 3.1.1 ([Benjamini and Schramm, 1996, 1.11. Conjecture]). Let M be a

connected, transient, hyperbolic, Riemannian manifold with bounded local geometry, with
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the property that the union of all bi-infinite geodesics meets every ball of sufficiently

large radius. Then M admits non constant bounded harmonic functions. Similarly, a

hyperbolic bounded valence, transient graph, with C-dense bi-infinite geodesics has non

constant bounded harmonic functions.

The term C-dense here means that every vertex of the graph is at distance at

most some constant C from a bi-infinite geodesic. We remark that in order to disprove —

the second assertion of— this, it suffices to find a transient, hyperbolic bounded valence

(aka. degree) graph with the Liouville property (see Section 3.2 for the definition) ; for

given such a graph G, one can attach a disjoint 1-way infinite path to each vertex of G, to

obtain a graph having 1-dense bi-infinite geodesics while preserving all other properties.

As pointed out by I. Benjamini (private communication), it is not hard to prove that any

‘lattice’ in a horoball in 4-dimensional hyperbolic space has these properties. We prove

that our example also has these properties, thus providing a further counterexample to

Conjecture 3.1.1. A perhaps surprising aspect of our example is that all of its geodesics

eventually coincide despite its transience; see Section 3.3.

In Section 3.3.1 we provide a sketch of this construction, from which the expert

reader might be able to deduce the details.

Although we do not formally provide a counterexample to the first assertion of

Conjecture 3.1.1, we believe it is easy to obtain one by blowing up the edges of our graph

into tubes.

3.2 Definitions and basic facts

We recall here standard definitions of potential theory on graphs, see for instance

[Carmesin and Georgakopoulos, 2015] or [Lyons and Peres, 2016].

A simple random walk (SRW) starting at v on a graph G is an infinite walk

v = x0, e0, x1, e1, . . . obtained by choosing xi, i > 0 uniformly at random among the

neighbours of xi−1. Chosen v, we denote by Xn the random variable on V (G) that

equals x ∈ V (G) with probability P(the SRW starting at v has x as its n-th vertex); if

we want to emphasize the choice of the starting vertex v we use the notation Pv for the

probability measure. A graph G is recurrent if with probability 1 a SRW on G visits

every vertex infinitely many times, and transient otherwise. We indicate by p(x, y) the

transition probability of passing in one step from x to y; the SRW is then a reversible

Markov chain, meaning that there exists a positive function π : V (G) → R such that

for all x, y ∈ G there holds π(x)p(x, y) = π(y)p(y, x). Let us call the common value
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c(x, y) := π(x)p(x, y) > 0 the conductance of the edge {x, y} ∈ E(G). Usually all edge

conductances are set to be equal to 1, or equivalently (as p(x, y) = 0 if x, y are not

adjacent) we can put π(x) = deg x for all x.

Given a graph G, it is convenient for the following definitions to consider the set

Ē of directed edges, where (x, y) ∈ Ē iff {x, y} ∈ E(G), and to write the directed edge

(x, y) more concisely as xy.

A function φ : V (G) → R is harmonic if for every x ∈ V (G), there holds

φ(x) = 1
deg(x)

∑

xy∈E(G) c(xy)φ(y). The Dirichlet energy of φ is defined by E(φ) :=
∑

xy∈E(G) c(xy)(φ(x)− φ(y))2.

A function f : Ē → R is antisymmetric if f(xy) = −f(yx). A flow on G from

o ∈ V (G) (to infinity) is an antisymmetric function f : Ē → R that satisfies Kirchhoff’s

node law : for every vertex x 6= o,
∑

xy∈Ē f(xy) = 0 where the sum runs over the

neighbours y of x. The intensity of the flow f is
∑

ox∈Ē f(ox) and it is required to be

positive. We similarly define the flow from a finite set A if f satisfies Kirchhoff’s node

law everywhere except for vertices in A.

We now prefer to consider the inverse of the conductance of an edge, called the

resistance r(x, y) := c(x, y)−1. Suppose that i : Ē → R and u : V (G) → R satisfy Ohm’s

law : c(xy)i(xy) = u(x)− u(y) for all xy ∈ Ē. If this is the case then we call i a current

and u a potential on G. Then it is easy to see that u is harmonic at x ∈ V (G) if and only

if i satisfies Kirchhoff’s node law at x. Moreover, we say that i satisfies Kirchhoff’s cycle

law if for every closed walk x0, e0, . . . xn = x0 we have
∑n−1

i=0 r(xixi+1)i(xixi+1) = 0.

Then i satisfies Kirchhoff’s cycle law if and only if there exists u : V (G) → R such that

i, u satisfy Ohm’s law.

Let Z ⊂ G be any collection of vertices and start a SRW on a ∈ V (G). Assume

u is harmonic at every vertex of V (G) \ ({a} ∪Z) and i : Ē → R is such that i, u satisfy

Ohm’s law. If we denote by Pa(a → Z) the probability that the SRW hits Z before

returning to a it is easy to show that if we impose the potential u(·) equal to 1 on a and

to 0 on Z then

Pa(a → Z) =

∑

x i(ax)

π(a)
.

In other words, the network between a and Z behaves as a single edge of conduc-

tance Ceff (a, Z) := Pa(a → Z)π(a); define the effective resistance between a and Z as

Reff (a, Z) := (Pa(a → Z)π(a))−1, or Reff (a, Z) := 0 if a ∈ Z.

If G is an infinite graph, we extend the previous concept by means of a limit

process as follow. Consider an exhaustion of G: a sequence {Gn} of finite graphs such

that Gn ⊆ Gn+1 and G =
⋃

nGn. Let G
W
n be the graph obtained from G by identifying
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all vertices outsideGn ⊂ G to a single vertex zn, and removing loops but keeping multiple

edges. If a ∈ G is the starting vertex of a SRW, we define Reff (a,∞) := limnReff (a, zn)

as the effective resistance between a and ∞, where Reff (a, zn) is the effective resistance

calculated in the graph GW
n .

If a graph G is transient, we can construct a flow i from a vertex o to infinity as

follows: let h(v) := Po(Xn eventually visits o). Then h(o) = 1 and h is easily seen (by

Markov’s property) to be harmonic everywhere except o. If we define i(xy) := h(x)−h(y)

then i is a flow from o to infinity. The main link between SRW and electric networks is

Theorem 3.5.1 from [Lyons, 1983]: a connected graph is transient if and only if it has

finite effective resistance between any vertex and infinity.

A graph G is Liouville if all bounded harmonic functions on V (G) are constant.

3.3 The hyperbolic Souvlaki

In this section we construct a bounded-degree graph Ψ with the following properties

1. it is hyperbolic, and its hyperbolic boundary consists of a single point;

2. for every vertex x of Ψ, there is a unique infinite geodesic starting at x, and any

two 1-way infinite geodesics of Ψ eventually coincide;

3. it is transient;

4. every subtree of Ψ is recurrent;

5. it has the Liouville property.

This graph thus yields a counterexample to [Benjamini, 2013, Open Problem 1.62]

and Conjecture 3.1.1 as mentioned in the Introduction.

3.3.1 Sketch of construction

Let us sketch the construction of this graph Ψ, and outline the reasons why it has the

above properties. It consists of an 1-way infinite path S = s0s1 . . . , on which we glue

a sequence Mi of finite increasing subgraphs of an infinite ‘3-dimensional’ hyperbolic

graph H3. For example, H3 could be the 1-skeleton of a regular tiling of 3-dimensional

hyperbolic space, and the Mi could be taken to be copies of balls of increasing radii

around some origin in H3, although it was more convenient for our proofs to construct

different H3 and Mi.
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In order to glue Mi on S, we identify the subpath s2i . . . s2i+2−1 with a geodesic

of the same length in Mi. Thus Mi intersects Mi−1 and Mi+1 but no other Mj , and

this intersection is a subpath of S; see Figure 3.4. (Our graph can be quasi-isometrically

embedded in H5, but probably not in H4.) We call this graph a hyperbolic souvlaki , with

skewer S and meatballs Mi. We detail its construction in Section 3.3.

To prove that this graph is transient, we construct a flow of finite energy from

s0 to infinity (Section 3.5). This flow carries a current of strength 2−i inside Mi out of

each vertex in s2i . . . s2i+1−1, and distributes it evenly to the vertices in s2i+1 . . . s2i+2 for

every i. These currents can be thought of as flowing on spheres of varying radii inside

Mi, avoiding each other, and it was important to have at least three dimensions for this

to be possible while keeping the energy dissipated under control.

To prove that our graph has the Liouville property, we observe that a random

walk has to visit S infinitely often, and has enough time to ‘mix’ inside the Mi between

subsequent visits to S (Section 3.6).

3.3.2 Formal construction

We now explain our precise construction, which is similar but not identical to the above

sketch. We start by constructing a hyperbolic graph H3 which we will use as a model

for the ‘meatballs’ Mi; more precisely, the Mi will be chosen to be increasing subgraphs

of H3.

Let T3 denote the infinite tree with one vertex r, which we call the root , of degree

3 and all other vertices of degree 4. For n = 1, 2, . . . , we put a cycle —of length 3n—

on the vertices of T3 that are at distance n from r in such a way that the resulting

graph is planar1; see Figure 3.1. We denote this graph by H2. It is not hard to see that

H2 is hyperbolic, for instance by checking that any two infinite geodesics starting at r

either stay at bounded distance or diverge exponentially, and using [Alonso et al., 1990,

Section 2.20] (see Section 3.4 for further details).

Recall that a ray is a 1-way infinite path. We will now turn H2 into a ‘3-

dimensional’ hyperbolic graph H3, in such a way that each ray inside T3 (or H2) starting

at r gives rise to a subgraph of H3 isomorphic to the graph W of Figure 3.2, which

is a subgraph of the Cayley graph of the Baumslag-Solitar group BS(1, 2). Formally,

we construct W from infinitely many vertex disjoint double rays2 D0, D1, D2, .., where

1Formally, we pick a cyclic ordering on the neighbours of r and a linear ordering on the outer
neighbours of every other vertex of T3. Given a cyclic ordering on the vertices at level n of T3, we get
a cyclic ordering at level n + 1 by replacing each vertex by the linear ordering on its outer neighbours.
Now we add edges between any two vertices that are adjacent in any of these cyclic orderings.

2A double ray is a 2-way infinite path.
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Figure 3.1: The ball of radius 3 around the root of H2.

Di = ...r−2
i r−1

i r0i r
1
i r

2
i .... Then we add all edges of the form rki r

2k
i+1.

Figure 3.2: The graph W : a subgraph of the standard Cayley graph of the Baumslag-
Solitar group BS(1, 2). It is a plane hyperbolic graph.

To define H3, we let the height h(t) of a vertex t ∈ V (H2) be its distance d(r, t)

from the root r. For a vertex w of W , we say that its height h(w) is n if w lies in Dn,

the nth horizontal double ray in Figure 3.2.

We define the vertex set of H3 to consist of all ordered pairs (t, w) where t is a

vertex of H2 and w is a vertex of W and h(w) = h(t). The edge set of H3 consists of all

pairs of pairs (t, w)(t′, w′) such that either
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• tt′ ∈ E(H2) and ww′ ∈ E(W ), or

• tt′ ∈ E(H2) and w = w′, or

• t = t′ and ww′ ∈ E(W ).

Figure 3.3: A subgraph of H3. Edges of the form (t, w)(t′, w′) with t = t′ and ww′ ∈
E(W ) are missing from the figure: these are all the edges joining corresponding vertices
in consecutive components of the figure.

Thus every vertex t of H2 gives rise to a double ray in H3, which consists of

those vertices of H3 that have t as their first coordinate. Similarly, every vertex w of W

gives rise to a cycle in H3, the length of which depends on h(w). We call two vertices

(t, w), (t′, w′) with w = w′ cocircular . Every ray of T3 starting at r gives rise to a copy

of W , and if two such paths share their first k vertices, then the corresponding copies of

W share their first k levels of h. It is not hard to prove that H3 is a hyperbolic graph,

but we will omit the proof as we will not use this fact.

We next construct Ψ by glueing a sequence of finite subgraphs Mn of H3 along

a ray S. We could choose the subgraph Mn to be a ball in H3, but we found it more

convenient to work with somewhat different subgraphs of H3: we let Mn be the finite

subgraph of H3 spanned by those vertices (t, w) such that w lies in a certain box Bn ⊆ W

of W defined as follows. Consider a subpath Pn of the bottom double-ray of W of length

3·2n, and let Bn consist of those vertices w that lie in or above Pn (as drawn in Figure 3.2)

and satisfy h(w) ≤ 2n+1.

This completes the definition ofMn as a set of pairs (t, w) with t ∈ H2 and w ∈ W .

We let Sn denote the vertices of Mn corresponding to Pn, and we index the vertices of
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Sn as {r(x), 0 ≤ x ≤ 3 · 2n}. Note that Sn is a geodesic of Mn. We subdivide Sn into

three parts: Ln := {r(x), 0 ≤ x < 2n},mn := r(2n) and Rn := {r(x), 2n < x ≤ 3 · 2n}.
We define the ceiling Fn of Mn to be its vertices of maximum height, i.e. the vertices

(t, w) ∈ V (Mn) with h(w) = n.

Finally, it remains to describe how to glue the Mn together to form Ψ. We start

with a ray S, the first vertex of which we denote by o and call the root of Ψ. We glue M1

on S by identifying S1 with the initial subpath of S of length |S1|. Then, for n = 2, 3, . . .,

we glue Mn on S in such a way that Ln is identified with Rn−1 (where we used the fact

that |Ln| = |Rn−1| = 2n by construction), mn is identified with the following vertex of

S, and Rn is identified with the subpath of S following that vertex and having length

|Rn| = 2n+1. Of course, we perform this identification in such a way that the linear

orderings of Ln and Rn are given by the induced linear ordering of S. We let Ψ denote

the resulting graph. We think of Mn as a subgraph of Ψ.

3.3.3 Properties of Ψ

By construction, for j > i we have Mi ∩ Mj = ∅ unless j = i + 1, in which case

Mi ∩Mj = Ri = Lj ⊂ S. The following fact is easy to see.

For every n, Rn separates Ln (and o) from infinity, i.e. Ln belongs to a bounded

component of Ψ \Rn.
(3.1)

The following assertion will be important for the proof of the Liouville property.

There is a uniform lower bound p > 0 for the probability Pv [τFn
< τSn

] that a

random walk in Ψ from any vertex of Ln will visit the ceiling Fn before returning

to Sn.

(3.2)

Indeed, we can let p be the probability for a random walk on H2 starting at the

root o to never visit o again; this is positive because H2 is transient. Then (3.2) holds

because in a random walk from Sn on Mn, any steps inside the copies of H2 behave like

a random walk on H2 until hitting Fn, and the steps ‘parallel’ to Sn do not have any

influence.

3.4 Hyperbolicity

In this section we prove that Ψ is hyperbolic.
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Lemma 3.4.1. The graph Ψ is hyperbolic, and has a one-point hyperbolic boundary.

Proof. We claim that for every vertex x ∈ V (Ψ), there is a unique 1-way infinite geodesic

starting at x. Indeed, this geodesic x0x1 . . ., takes a step from xi towards the root of T3

inside the copy of H2 corresponding xi whenever such an edge exists in Ψ, and it takes

a horizontal step in the direction of infinity whenever such an edge does not exist. To

see that γ is the unique infinite geodesic starting at x, suppose there is a second such

geodesic δ. Clearly, δ has infinitely many vertices on the skewer S as all components of

Ψ \ S are finite. In fact, it is not hard to see that δ eventually coincides with S as the

latter contains the unique geodesic between any two of its vertices. Thus γ and δ meet,

and we can let y be their first common vertex. Now consider their subpaths xγy and

xδy from x to y. Note that Ψ has two types of edges: those that lie in a copy of H2, and

horizontal ones. It is easy to see that any x-y path must have at least as many edges of

each type as xγy. Moreover, by considering the first edge e at which xδy deviates from

xγy, it is not hard to check that xδy has more edges of the same type as e as xγy, which

leads to a contradiction.

The hyperbolicity of Ψ now follows from a well-known fact saying that a space

is hyperbolic if and only if any two geodesics with a common starting point are either

at bounded distance or diverge exponentially in a certain sense; see [Alonso et al., 1990,

Section 2.20]. We skip the details about what is exactly meant for two geodesics to

diverge exponentially as in our case the condition is trivially satisfied due to the above

claim —namely, any two geodesics from a given point are at bounded distance since they

coincide.

As all infinite geodesics eventually coincide with S, we also immediately have

that the hyperbolic boundary of G consists of just one point.

3.5 Transience

In this section we prove that Ψ is transient. We do so by displaying a flow from o to

infinity having finite Dirichlet energy; transience then follows from Lyons’ criterion:

Theorem 3.5.1 (T. Lyons’ criterion (see [Lyons, 1983] or [Lyons and Peres, 2016])).

A graph G is transient, if and only if G admits a flow of finite energy from a vertex to

infinity.

To construct this flow f , we start with the flow t on the tree T3 ⊂ H2 which sends

the amount 3−n through each directed edge of T3 from a vertex of distance n − 1 from

the root to a vertex of distance n from the root. Note that t has finite Dirichlet energy.

34



Figure 3.4: The structure of the graph Ψ, with the ‘balls’ intersecting along the ray and
the flow inside the ball.

Our flow f will be as described in the introduction, that is, it is composed of

flows g(n) in Mn. These flows flow from Ln to Rn. The flow g(n) in turn is composed of

‘atomic’ flows, one for each v ∈ Ln. Roughly, these atomic flows imitate t from above

for some levels, then use the edges parallel to Sn to bring it ‘above’ Rn, and then collect

it back to (two vertices of) Sn imitating t in the inverse direction. A key idea here is

that although the energy dissipated along the long paths parallel to Sn is proportional

to their length, by going up enough levels with the t-part of these flows, we can ensure

that the flow i carried by each such path is very small compared to its length ℓ. Thus its

contribution i2ℓ to the Dirichlet energy can be controlled: although going up one level

doubles ℓ, and triples the number of long paths we have, each of them now carries 1/3

of the flow, and so its contribution to the energy is multiplied by a factor of 1/9. Thus

all in all, we save a factor of 6/9 by going up one more level – and we have made the Mi

high enough that we can go up enough levels.

We now describe g(n) precisely. For every n ∈ N, let us first enumerate the

vertices of Ln as lj = ljn, with j ranging from 1 to |Ln| = 2n, in the order they appear

on Sn as we move from the midpoint mn towards the root o. Likewise, we enumerate
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the vertices of Rn as rj = rjn, with j ranging from 1 to |Rn| = 2|Ln|, in the order they

appear on Sn as we move from the midpoint mn towards infinity. Thus r1, l1 are the two

neighbours of mn on S. We will let g(n) be the union of |Ln| subflows gj = gjn, where gj

flows from lj into r2j and r2j−1. More precisely, gj sends 1/|Ln| = 2−n units of current

out of lj , and half as many units of current into each of r2j and r2j−1.

We define gj as follows. In the copy of H2 containing the source lj of gj , we

multiply the flow t from above by the factor 2−n, and truncate it after j layers; we call

this the out-part of gj . Then, from each endpoint x of that flow, we send the amount of

flow that x receives from lj , which equals 2−n3−j , along the horizontal path Px joining

x to the copy C1 of H2 containing r2j−1. We let half of that flow continue horizontally

to reach the copy C2 of H2 containing r2j ; call this the middle-part of gj . Finally, inside

each of C1, C2, we put a copy of the out-part of gj multiplied by 1/2 and with directions

inverted; this is called the in-part of gj . Note that the union of these three parts is a

flow of intensity 2−n from lj to r2j and r2j−1, each of the latter receiving 2−n−1 units of

current.

Let us calculate the energy E(gj). The contribution to E(gj) by its out-part is

bounded above by 2−2nE(t) because that part is contained in the flow 2−nt. Similarly,

the contribution of the in-part is half of the contribution of the out-part. The contribu-

tion of the middle-part is 3j · (2j + 1)2j · (2−n3−j)2: the factor 3j counts the number of

horizontal paths used by the flow, each of which has length (2j+1)2j , and carries 2−n3−j

units of current (except for its last 2j edges, from C1 to C2, which carry half as much,

but we can afford to be generous). Note that this expression equals 2−2n(2j + 1)(6/9)j ,

which is upper bounded by k2−2n for some constant k.

Adding up these contributions, we see that E(gj) ≤ K2−2n for some constant K

(which depends on neither n nor j).

Now let g(n) be the union of the 2n flows gj . Note that gj , gi are disjoint for

i 6= j, and therefore the energy E(g(n)) of g is just the sum
∑

j<2n E(gj). By the above

bound, this yields E(g(n)) ≤ K2−n.

Now let f =
⋃

n∈N g(n) be the union of all the flows g(n). Then g(n), g(m) are

disjoint for n 6= m, because they are in different M ′
is. Thus E(f) =

∑

nE(g(n)) ≤ K is

finite. Since g(n) removes as much current from each vertex of Ln as g(n− 1) inputs, f

is a flow from o to infinity. Hence Ψ is transient by Lyons’ criterion (Theorem 3.5.1).

3.6 Liouville property

In this section we prove that Ψ is Liouville.
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We remark that a well-known theorem of Ancona [Ancona, 1987] states that in

any non-amenable hyperbolic graph the hyperbolic boundary coincides with the Martin

boundary. We cannot apply this fact to our case in order to deduce the Liouville property

from the fact that our hyperbolic boundary is trivial, because our graph turns out to be

amenable.

We will use some elementary facts about harmonic functions that can be found

e.g. in [Georgakopoulos, 2016].

Let h be a bounded non-constant harmonic functions on a graph G. We may

assume that the range of h is contained in [0, 1]. Recall that, by the bounded martingale

convergence theorem, if (Xn)n∈N is a simple random walk on G, then h(Xn) converges

almost surely. We call such a function h sharp, if this limit limn h(Xn) is either 0

or 1 almost surely. It is well-known that if a graph admits a bounded non-constant

harmonic function, then it admits a sharp harmonic function, see [Georgakopoulos, 2016,

Section 4].

So let us assume by contradiction from now on that h : V (Ψ) → [0, 1] is a sharp

bounded harmonic function on Ψ.

We first recall some basic facts from [Georgakopoulos, 2016, Section 7]; we repeat

some of the proofs for the convenience of the reader.

Lemma 3.6.1. If h is a sharp harmonic function, then h(z) = Pz [limh(Zn) = 1] for

every vertex z, where Zn denotes a random walk from z.

Lemma 3.6.2. If h is a sharp harmonic function that is not constant, then for every

ǫ > 0 there are a, z ∈ V with h(a) < ǫ and h(z) > 1− ǫ.

Let A be a shift-invariant event of our random walk, i.e. an event not depending

on the first n steps for every n. (The probability space we work with here is the space of

1-way infinite walks, endowed with the natural probability measure induced by a simple

random walk. The only kind of event we will later consider is the event 1s that s(Zn)

converges to 1, where s is our fixed sharp harmonic function.) By an event here we mean

a measurable subset of the space of 1-way infinite walks in our fixed graph; the starting

vertex of the walks is not fixed, it can be an arbitrary vertex of our graph. As usual, we

consider the σ-algebra generated by sets of walks that start with a fixed finite sequence

of steps and are arbitrary after those steps.

For r ∈ (0, 1/2], let

Ar := {v ∈ V | Pv [A] > 1− r} and

Zr := {v ∈ V | Pv [A] < r},
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where Pv [·] denotes the law of a random walk from a vertex v. Note that Ar ∩ Zr = ∅
for every such r.

By Lemma 3.6.1, if we let A := 1s then we have Ar = {v ∈ V | s(v) > 1− r} and

Zr = {v ∈ V | s(v) < r}.

Lemma 3.6.3. For every ǫ, δ ∈ (0, 1/2], and every v ∈ Aǫ, we have

Pv [visit V \Aδ] < ǫ/δ. Similarly, for every v ∈ Zǫ, we have

Pv [visit V \ Zδ] < ǫ/δ.

Proof. Start a random walk (Zn) at v, and consider a stopping time τ at the first visit

to V \ Aδ. If τ is finite, let z = Zτ be the first vertex of a random walk outside Aδ.

Since z 6∈ Aδ, the probability that s(Xn) converges to 1 for a random walk (Xn) starting

from z is at least δ by the definition of Aδ. Thus, conditioning on ever visiting V \ Aδ,

the event A fails with probability at least δ since A is a shift-invariant event and our

random walk has the Markov property. But A fails with probability less than ǫ because

v ∈ Aǫ, and so Pv [visit V \Aδ] < ǫ/δ as claimed.

The second assertion follows by the same arguments applied to the complement

of A.

Corollary 3.6.4. If a random walk from v ∈ Aǫ (respectively, v ∈ Zǫ) visits a set

W ⊂ V with probability at least κ, then there is a v–W path all vertices of which lie in

Aǫ/κ (resp. Zǫ/κ).

Proof. Apply Lemma 3.6.3 with δ = ǫ/κ. Then the probability that a random walk

always stays within Aǫ/κ is larger than 1− κ. Hence there is a nonzero probability that

a random walk meets W and along its trace only has vertices from Aǫ/κ.

Easily, h is uniquely determined by its values on the skewer S. Indeed, for every

other vertex v, note that a random walk Xn from v visits S almost surely, and so

h(v) = Eh(Xτ(R)), where τ(S) denotes the first hitting time of S by Xn. The same

argument implies that

h is radially symmetric, i.e. for every two cocircular vertices v, w, we have

h(v) = h(w).
(3.3)

Indeed, this follows from the fact that cocircular vertices have the same hitting

distribution to S, which is easy to see (for any vertex on a circle, a random walk has the

same probability to move to some other circle).
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We claim that, given any 0 < ǫ < 1, all but finitely many of the Ln contain a

vertex in Aǫ.

Indeed if not, then since a random walk from o has to visit all Ln by transience and

(3.1) (where we use the fact that Ln = Rn−1), we would have P [limh(Xn) = 1] = 0 for

a random walk Xn from o by Lemma 3.6.1, because if our random walk visits infinitely

many vertices y such that h(y) < 1 − ǫ then h(Xn) cannot converge to 1. But that

probability is equal to h(o) by Lemma 3.6.1, and if it is zero, then using Lemma 3.6.1

again easily implies that h is identically zero, contrary to our assumption that it is not

constant.

Similarly, all but finitely many of the Ln contain a vertex in Zǫ, because as h is

sharp, h(Xn) must converge to either 0 or 1. Thus we can find a late enough Mn such

that Ln contains a vertex a ∈ Aǫ as well as a vertex z ∈ Zǫ. We assume that a and z

are the last vertices of Ln (in the ordering of Ln induced by the well-ordering of S) that

are in Aǫ and Zǫ respectively. Assume without loss of generality that a appears before

z in the ordering of Ln.

Note that, since Rn separates a from infinity (3.1), a random walk from a visits

Rn almost surely. Thus we can apply Corollary 3.6.4 with W := Rn and κ = 1 to obtain

an a–Rn path Pa with all its vertices in Aǫ, see Figure 3.5.

We may assume that Pa ⊂ Mn by taking a subpath contained in Mn if needed.

Indeed, Pa can meet Ln only in vertices that are not past a in the linear ordering of Ln.

LetOa denote the set of vertices {x = (t, w) ∈ Mn | there is (t′, w′) ∈ V (Pa) with w′ =

w} obtained by ‘rotating’ Pa around S. By (3.3), we have Oa ⊂ Aǫ since Pa ⊂ Aǫ. Note

that Oa separates z from the ceiling Fn of Mn. But as a random walk from z ∈ Zǫ visits

Fn before returning to S with probability uniformly bounded below by (3.2), we obtain a

contradiction to Lemma 3.6.3 with δ = 1/2 for ǫ small enough compared to that bound.

3.7 A transient hyperbolic graph with no transient subtree

In this section we explain how our souvlaki construction can be slightly modified so

that it does not contain any transient subtrees but remains transient and hyperbolic

(and Liouville). This answers a question of I. Benjamini (private communication). The

question is motivated by the fact that it is not too easy to come up with transient graphs

that do not have transient subtrees [Benjamini and Schramm, 1997].

We start with a very fast growing function f : N → N, whose precise definition

we reveal at the end of the proof. Roughly speaking, we will attach a sequence of finite

graphs (Mf(n))n∈N similar to the ‘meatballs’ from above to a ray S (the ‘skewer’) in
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Figure 3.5: The path Pα in the proof of the Liouville property.

such a way that most of the intersection of S with a fixed meatball is not contained

in any other meatball. Formally, we let Pm be the ‘bottom path’ of Mm as defined in

Section 3.3, and we tripartition Pf(n) as follows: Let Ln consist of the first 2n vertices

on Pf(n), and Rn consist of its last 2n+1 vertices. The set of the remaining vertices of

Pf(n) we denote by Zn, which by our choice of f will be much larger than Rn. As before,

we glue the Mf(n) on S by identifying Pf(n) with a subpath of S. We start by glueing

Mf(1) on the initial segment of S of the appropriate length. Then we recursively glue

the other Mf(n) in such a way that Ln is identified with Rn−1. We call the resulting

graph Ψ̄.

Theorem 3.7.1. Ψ̄ is a bounded degree transient hyperbolic graph that does not contain

a transient subtree.

Proof. The hyperbolicity of Ψ̄ can be proved by the arguments we used for the original

souvlaki Ψ. Also Ψ̄ is transient by an argument analogue given to the one for Ψ: the

obvious analogue of the flow f described in Section 3.5 is in Mf(n) a flow of intensity one

from Ln to Rn of energy at most constant times 2−n. The computation is analogous to
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the one given above.3 So it remains to show that Ψ̄ does not have a transient subtree.

Let T be any subtree of Ψ̄. We want to prove that T is not transient. Easily, we

may assume that T does not have any degree 1 vertices. We will show that the following

quotient Q of T is not transient: for each n, we identify all vertices in Ln to a new vertex

vn.

Note that the vertices vn and vn+1 are cut-vertices of Q; let Qn be the union of

those components of Q − vn − vn+1 that send edges to both vertices vn and vn+1. We

will show that in Qn the effective resistance from vn to vn+1 is bounded away from 0,

from which the recurrence of T will follow using Lyons’ criterion.

Let d = |Ln+1|. We claim that there is some constant c = c(d) only depending

on d such that there are at most c vertices of Qn with a degree greater than 2: indeed,

Qn \ {vn, vn+1} is a forest with at most d(vn) + d(vn+1) leaves. Since these degrees are

bounded also the number of leaves is bounded. Hence all but boundedly many vertices

of Qn have degree two.

Next, we observe that Qn has maximum degree at most d. Furthermore, the

distance between vn and vn+1 in Qn is at least Zn, which —by the choice of f— is huge

compared to d and so also compared to c. Hence it remains to prove the following:

Lemma 3.7.2. For every constant C and every m there is some s = s(m,C), such

that for every finite graph K with maximum degree at most C and at most C vertices

of degree greater than 2, and for any two vertices x, y of K with distance at least s, the

effective resistance between x and y in K is at least m.

Proof. We start with a large natural number R the value of which we reveal later, and

set s = R · C.

Let K ′ be the graph obtained from K by suppressing all vertices of degree 2;

suppressing a vertex x of degree 2 means replacing x and its two incident edges with

a single edge between the neighbours of x. The length of an edge of K ′ is the number

of times it is subdivided in K. Let N ′ be the electrical network with underlying graph

K ′, where the resistance of an edge of K ′ is its length. Clearly, the effective resistance

between x and y in the graph K is equal to the effective resistance between x and y in

the network K ′. Hence it suffices to show that the effective resistance between x and y

in K ′ is at least m.

3Although Zn gets larger if f(n) increases, the flow f then branches more before ‘traversing’ Zn.
Since the increase of Zn has an additive effect on the energy while the branching has a multiplicative
effect, the effect due to branching dominates, hence the energy remains bounded.
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We colour an edge of K ′ black if it has length at least R. Note that K ′ has at

most C vertices. Thus every x-y-path in K ′ has length at most C, but in K any such

path has length at least s. Therefore each x-y-path in K ′ contains a black edge. Hence

in K ′ there is an x-y-cut consisting of black edges only. This cut has at most C2 edges.

Thus by Rayleigh’s monotonicity law [Lyons and Peres, 2016] the effective resistance in

K ′ between x and y is at least the one of that cut, which is as large as we want: indeed,

we can pick R so large that the latter resistance exceeds m.

Now we reveal how large we have picked f(n): recall that d = 2n+1 and that

|Zn| = f(n)− 3 · 2n. We pick f(n) large enough that |Zn| ≥ s(1,max(c(d), d)), where s

is as given by the last lemma. With these choices the effective resistance between vn and

vn+1 in Qn is at least 1. So Q cannot be transient by Lyons’ criterion (Theorem 3.5.1) as

the Qn are disjoint and any flow to infinity has to traverse all but finitely many of them

with a constant intensity. By Rayleigh’s monotonicity law [Lyons and Peres, 2016], T is

recurrent too.

3.7.1 Another transient hyperbolic graph with no transient subtree

We now sketch another construction of a transient hyperbolic graph with no transient

subtree, provided by Tom Hutchcroft and Asaf Nachmias (private communication).

Let [0, 1]3 be the unit cube. For each n ≥ 0, let Dn be the set of closed dyadic

subcubes of length 2−n. For each n ≥ 0, let Gn be the graph with vertex set
⋃n

i=0Di,

and where two cubes x and y are adjacent if and only if

• x ⊃ y, x ∈ Di and y ∈ Di+1 for some i ∈ {0, . . . n− 1},

• y ⊃ x, y ∈ Di and x ∈ Di+1 for some i ∈ {0, . . . n− 1}, or

• x, y ∈ Di for some i ∈ {0, . . . , n} and x ∩ y is a square.

Then the graphs Gn are uniformly hyperbolic and, since the subgraph of Gn induced by

Dn is a cube in Z3 (of size 4n), the effective resistance between two corners this cube

are bounded above uniformly in n. Moreover, the distance between these two points in

Gn is at least n.

Let T be a binary tree, and let G be the graph formed by replacing each edge of

T at height k from the root with a copy of G3k , so that the endpoints of each edge of T

are identified with opposite corners in the corresponding copy of D3k . Since the graphs

Gn are uniformly hyperbolic and T is a tree, it is easily verified that G is also hyperbolic.
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The effective resistance from the root to infinity in G is at most a constant multiple of

the effective resistance to infinity of the root in T , so that G is transient. However,

G does not contain a transient tree, since every tree contained in G is isomorphic to a

binary tree in which each edge at height k from the root has been stretched by at least

3k, plus some finite bushes.

3.8 A transient graph with no embeddable transient sub-

graph

We say that a graph H has a graph K as a minor , if K can be obtained from H by

deleting vertices and edges and by contracting edges. Let Kr denote the complete graph

on r vertices.

Proposition 3.8.1. There is a transient bounded degree graph G such that every tran-

sient subgraph of G has a Kr minor for every r ∈ N.

In particular, G has no transient subgraph that embeds in any surface of finite

genus.

We now construct this graph G. We will start with the infinite binary tree

with root o, and replace each edge at distance r from o with a gadget D2r which we

now define. Given n (= 2r), the vertices of Dn are organized in 2n+ 1 levels numbered

−n, . . . ,−1, 0, 1, . . . , n. Each level i has 2n−|i| vertices, and two levels i, j form a complete

bipartite graph whenever |i− j| = 1; otherwise there is no edge between levels i, j. Any

edge of Dn from level i ≥ 0 to level i + 1 or from level −i to level −(i + 1) is given a

resistance equal to 2n−|i| (we will later subdivide such edges into paths of that many

edges each having resistance 1). With this choice, the effective resistance Ri between

levels i and i+1 of Dn is 2n−|i| divided by the number of edges between those two levels,

that is, Ri =
2n−|i|

2n−|i|2n−|i|−1 = 2−n+|i|+1, and so the effective resistance in Dn between its

two vertices at levels n and −n is O(1)

Let G′ be the graph obtained from the infinite binary tree with root o by replacing

each edge e at distance n from o with a disjoint copy of Dn, attaching the two vertices

at levels n and −n of Dn to the two end-vertices of e. We will later modify G′ to obtain

a bounded degree G with similar properties satisfying Proposition 3.8.1.

Note that as Dn has effective resistance O(1), the graph G′ is transient by Lyons’

criterion.

We are claiming that if H is a transient subgraph of G′, then H has a Kr minor

for every r ∈ N.
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This will follow from the following basic fact of finite extremal graph theory

[Mader, 1967; Kostochka, 1984; Diestel, 2005]

Theorem 3.8.2. For every r ∈ N there is a constant cr such that every graph of average

degree at least cr has a Kr minor.

Lemma 3.8.3. If H is a transient subgraph of G′, then H has a Kr minor for every

r ∈ N.

Proof. Suppose that H has no Kr minor for some r, and fix any m ∈ N. For every copy

C of the gadget Dn in G′ where n > m, consider the bipartite subgraph Gm = Gm(C)

of H spanned by levels m and m+1 of C ∩H. By Theorem 3.8.2, the average degree of

Gm is at most cr. Thus, if we identify each of the partition classes of Gm into one vertex,

we obtain a graph with 2 vertices and at most 3
22

n−mcr parallel edges, each of resistance

2n−m, so that the effective resistance of the contracted graph is at least 2
3cr

=: Cr.

Now repeating this argument for m + 1,m + 2, . . ., we see that the effective

resistance between the two partition classes of Gm+k (which is edge-disjoint to Gm)

is also at least the same constant Cr. This easily implies that the effective resistance

between the two endvertices of C ∩ H for any copy C of Dn is Ω(n). Since G′ has 2r

copies of D2r at each ‘level’ r, we obtain that the effective resistance from o (which

we may assume without loss of generality to be contained in H) to infinity in H is

Ω(
∑

r 2
r/2r) = ∞.

Thus H can have no electrical flow from a vertex to infinity, and by Lyons’

criterion (Theorem 3.5.1) it is not transient.

Recall that the edges of G′ had resistances greater than 1. By replacing each edge

of resistance k by a path of length k with edges having resistance 1, we do not affect the

transience of G′. We now modify G′ further into a graph G of bounded degree, which

will retain the desired property.

Let x be a vertex of some copy C of Dn, at some level j 6= n,−n of C. Then x

sends edges to the two neighbouring levels j ± 1. Each of those levels L,L′, sends 2k±1

edges to x for some k. Now disconnect all the edges from L to x, attach a binary tree

TL of depth k ± 1 to x, and then reconnect those edges, one at each leaf of TL.

Do the same for the other level L′, attaching a new tree TL′ of appropriate depth

to x.

Note that this operation affects the edges incident with x only, and every other

vertex of G′, even those adjacent with x, retains its vertex degree. Thus we can perform

this operation on every such vertex x simultaneously, with the understanding that if
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e = xx′ is an edge of G′, and both x, x′ are replaced by trees T, T ′ respectively by the

above operation, then e becomes an edge joining a leaf of T to a leaf of T ′; see Figure 3.6.

There are many ways to match the leaves of the trees coming from vertices in one layer of

Dn to the leaves of the trees coming from vertices in a subsequent layers, and so we have

not uniquely identified the resulting graph, but what matters is that such a matching is

possible because we have the same number of leaves on each side.

Figure 3.6: The tree TL we replaced x with in order to turn G′ into a bounded degree
graph G, and a few similar trees for other vertices in the level of x and the level L above.

Let G denote a graph obtained by performing this operation to every vertex x as

above. Note that G has maximum degree 6 (we did not need to modify the vertices at

levels n,−n in C, as they already had degree 6.

Now let’s check thatG is still transient, by considering the obvious flow to infinity:

we start from the canonical flow f of strength 1 from o to infinity in G′. Recall that every

edge e = xx′ of G′ of resistance k was subdivided into a path Pe of length k consisting

of edges of resistance 1, then x, x′ where replaced by trees T, T ′, and now Pe joins a leaf

of T to a leaf of T ′ in G. Note that there is a unique path Qe ⊃ Pe in T ∪ Pe ∪ T ′ from

the root of T to the root of T ′. For each edge e of G′, we send a flow of intensity f(e)

along that path Qe; easily, this induces a flow j on G from o to infinity.

We claim that the energy of j is finite, which means that G is transient by Lyons’

criterion. Indeed, the contribution of the path Pe to the energy of j coincides with the

contribution of e to the energy of f , and so their total contribution is finite. Let us now

bound the contributions of the trees we introduced when defining G from G′. For this,
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we will use the following basic observation about flows on binary trees

Let T be a binary tree of depth k, and let j be a flow from the root of T to

its leaves such that every two edges at the same layer carry the same flow.

Then the energy dissipated by j in all of T equals (2k+1 − 1) times the energy

dissipated by j in the last layer of T .

(3.4)

Indeed, it is straightforward to check that the energy dissipated in each layer equals

twice the energy dissipated in the next layer, and so the energy dissipated by j in all of

T equals (1 + 2 + . . .+ 2k) times the energy dissipated by j in the last layer.

Consider now two consequent levels L,M in a copy of some gadget Dn in G′,

and suppose L has 2k vertices and M has 2k+1 vertices. Recall that each L-M edge had

resistance 2k in G′. Furthermore, the f value is the same for all these edges; let b denote

that common value. Thus, letting E denote the number of L-M edges, the total energy

dissipated by f on L-M edges is E2kb2.

Note that for each tree T we introduced in the definition of G, each leaf of T

was joined with exactly one edge of G′. It follows that for each such tree T between

the layers L and M , the value of j at any edge in the last layer of T is b. Since each

L-M edge of G′ gave rise to exactly two such last-layer edges, namely one in the tree

substituting each of its end-vertices, the total energy dissipated by j in all last-layer

edges of G between the layers L and M is 2Eb2. By (3.4), the total energy dissipated

by j in all layers of all trees we introduced between layers L and M , equals that amount

multiplied by a constant smaller than 2k+1. Recalling that the total energy dissipated

by f on L-M edges was E2kb2, we see that the energy dissipated by j between layers L

and M is less than 5 times that dissipated by f . Since this holds for each copy of each

Dn, we deduce that j has finite energy since f does, proving that G is transient too.

Note that G′ can be obtained from G by contracting edges. Thus any transient

H ⊆ G has a transient minor H ′ ⊆ G′, because contracting edges preserves transience

by Lyons’ criterion. As we have proved that H ′ has a Kr minor (Lemma 3.8.3), so does

H as any minor of H ′ is a minor of H.

Despite Proposition 3.8.1, the following remains open

Question 3.8.4 (I. Benjamini (private communication)). Does every bounded-degree

transient graph have a transient subgraph which is sphere-packable in R3?
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3.9 Problems

It is not hard to see that our hyperbolic souvlaki Ψ is amenable. We do not know if this

is an essential feature:

Problem 3. Is there a non-amenable counterexample to Conjecture 3.1.1?

Similarly, one can ask

Problem 4. Is there a non-amenable, hyperbolic graph with bounded-degrees, C-dense

infinite geodesics, and the Liouville property, the hyperbolic boundary of which consists

of a single point?

Here we did not ask for transience as it is implied by non-amenability [Benjamini

and Schramm, 1997].

We conclude with further questions asked by I. Benjamini (private communica-

tion)

Problem 5. Is there a uniformly transient counterexample to Conjecture 3.1.1? Is there

an 1-ended uniformly transient counterexample?

Here uniformly transient means that there is an upper bound on the effective

resistance between any vertex of the graph and infinity.
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Chapter 4

The set of all graphs as a

pseudometric space

4.1 Introduction

In this chapter we study two pseudometrics, called d0 and d1, on the set of all countable

infinite rooted graphs G′ (for the definitions see Section 4.2). For i = 0, 1, define (Gi, di)

to be the metric space given by Gi := G′/ ∼di and the equivalence relation is G ∼di H

in G′ iff di(G,H) = 0.1

The metric d0 was introduced in [Georgakopoulos and Wagner, 2015]: it is proved

there that Gd0 is a compact ultrametric space and that {Gn} converges with respect to

d0 if it converges to the same limit in the neighbourhood metric, which is the metric

on which the Benjamini-Schramm convergence [Benjamini and Schramm, 2001] is based

(see (4.1).

The metric properties of G1 proved to be the right tool to study some graph-

theoretic properties. In Section 4.3 we prove the following result that show how a

sequence of graphs converging in d1 carries some properties over its limit, while this is

not true in general for d0:

Theorem 9. Let Gn → G be a sequence converging in G1. Then

• lim r(Gn) = r(G) where r(·) is the radius of its argument;

• lim inf h(Gn) ≥ h(G) where h(·) is the hyperbolicity constant of its argument;

1In order to simplify notations we denote by di both the pseudometric on G′ and the induced metric
on G′/ ∼di

, i = 0, 1. Moreover we shall write G for the equivalence class [G] ∈ Gi, i = 0, 1, because the
exact choice of the representative will not matter.
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• if {Gn} is mildly amenable (see Proposition 4 for the definition) then lim sup c(Gn) ≤
c(G) where c(·) is the Cheeger constant of its argument.

We will provide counterexamples showing that those implications fail if we replace

d1 by d0.

4.2 Definitions

Definition 4. A rooted graph is a pair (G, x) where x (the root) is a vertex of G. A

rooted subgraph of (G, x) is a rooted graph (H,x) where H is a subgraph of G containing

x. If f : (G, x) → (H, y) is a map between rooted graphs, we will always assume that

f(x) = y.

We usually drop the dependency on the root if it is understood and write “a

rooted graph G”.

Definition 5. For a rooted graph G we will say that S ⊂ G is a k-RCIS if it is a

connected, induced, rooted subgraph of G on k vertices.

Definition 6. If G,H are two rooted graphs and S ⊂ G is an induced subgraph we say

that a map f : V (S) → V (H) is an induced embedding if it is injective and maps edges

to edges and non-edges to non-edges.

Our distances will only take values from a countable set of real numbers {rn}.
The specific numbers will not matter but we require that rn is a strictly decreasing

sequence of real numbers such that lim rn = 0.

Definition 7. Let G,H ∈ G′ be two graphs. Then we define r(G,H) := inf{rk | for
each k-RCIS S ⊆ G, there is an induced embedding f : S → H} and then d0(G,H) :=

max{r(G,H), r(H,G)}.

In other words, if d0(G,H) ≤ rk it means that if S ⊂ G is a k-RCIS then there is

a k-RCIS T ⊂ H isomorphic to S, and the same with the roles of G and H interchanged.

It is easy to prove then that d0 is a pseudometric for G′: d0 is clearly symmetric

and let a ≤ b ≤ ∞ be such that d0(G,H) = ra, d0(H,K) = rb, where we set r∞ := 0.

It follows from the definition of d0 that G,H have the same a-RCIS’s and H,K have

the same b-RCIS’s. In particular H,K have the same a-RCIS’s so G,K have the same

a-RCIS and thus d0(G,K) ≤ ra. This proves even more than the triangle inequality: G0

is an ultrametric space, i.e. d0(G,K) ≤ max{d0(G,H), d0(H,K)}.
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Let Gn → G be a converging sequence in the metric used to define the Benjamini-

Schramm convergence, i.e.

lim
n→∞

sup{k | Bk(G) ∼= Bk(Gn)} = ∞, (4.1)

where Bk(G), Bk(Gn) are the balls of radius k around the roots of G,Gn respectively

and ∼= denotes the isomorphism relation between rooted graphs. Then G and Gn share

all rooted induced subgraphs contained in those balls and thus Gn converges to G in d0

too (see [Georgakopoulos and Wagner, 2015]). That said, although d0 may look natural,

it turns out not to work well with graph-theoretic properties and this is the reason we

introduce the refinement d1 of d0.

Definition 8. If A,B are induced subgraphs of G with A ⊂ B and |B| ≤ 2|A| then B

is called an extension of A.

Definition 9. Let f : S ⊂ G → H be an induced embedding. We say that g is an

extended inverse of f if g : T ⊂ H → G is an induced embedding with T an extension of

H[f(S)] and g(f(x)) = x for all x ∈ S.

Definition 10. Given two graphs G,H and an induced subgraph S0 ⊂ G, we say that

S0 is extendible for (G,H) if there exists an induced embedding f0 : S0 → H such that

for all extensions S1 of H[f0(S0)] there exists an extended inverse f1 : S1 → G of f0.

Definition 11. Given two graphs G,H, we say that all k-RCIS of G and H are ex-

tendible if all k-RCIS S ⊂ G are extendible for (G,H) and all k-RCIS T ⊂ H are

extendible for (H,G).

Definition 12. We define d1(G,H) := inf{rk | all k-RCIS of G and H are extendible}.

It is easy to see that G1 is an ultrametric space by an argument analogous to the

one provided for G0.

Let us recall the definition of the radius r(G) of a rooted graph G as sup |γ| where
the supremum runs over all geodesics γ having the root as an endvertex and |γ| is the

number of edges in γ.

4.3 Hyperbolicity and non-amenability of limits in d0 and

d1

We want to prove that graphs which are close enough in d1 share some distance-related

properties, while the same is not true in d0. Since we are dealing with rooted graphs, we
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will need to embed connected subgraphs (which might not contain the root) into rooted

connected subgraphs and so we will often consider the smallest k-RCIS containing a

given subgraph.

Lemma 12. Let G,H be two rooted graphs and γ ⊆ G a finite geodesic; assume k is the

smallest integer such that there is a k-RCIS of G containing γ. If d1(G,H) ≤ rk then

H has a geodesic γ′ of the same length as γ. Moreover, γ′ is contained in a k-RCIS of

H.

Proof. Let S be a k-RCIS of G containing γ. By the definition of d1 we can find an

induced embedding f sending S to a k-RCIS of H and set γ′ := f(γ). Thus γ′ is a

path of H on the same number as vertices of γ. If by contradiction γ′ is not a geodesic

then there is a shortcut η between two vertices x, y of γ′, so |η| < |xγ′y| ≤ k, where the

middle term is the subpath of γ′ between x and y (and | · | counts the number of edges

of its argument). Since |η ∪ f(S)| ≤ 2f(S), we have that η ∪ f(S) is an extension of

f(S) and since d1(G,H) ≤ rk we can isomorphically map the subgraph of H spanned by

γ′ ∪ η back to G with an induced embedding g finding a subgraph spanned by γ ∪ g(η),

where g(η) is a path between the two vertices g(x) and g(y) of γ. Since

|g(η)| = |η| < |xγ′y| = |g(x)γg(y)|

there is a shortcut joining two vertices of γ, which contradicts the fact that γ is a

geodesic.

In particular, Lemma 12 applies to the case when an endvertex of the geodesic γ

is the root of G: thus, if γ is a rooted geodesic of G of length k then γ is also a k-RCIS

and so H has a rooted geodesic of length k. Let us show an application of that to the

radius of a graph.

Corollary 4. If Gn → G is a d1-converging sequence then lim r(Gn) = r(G).

Proof. Let us first prove that lim inf r(Gn) = r(G).

For all k there is an Nk such that d1(G,Gn) ≤ rk if n ≥ Nk. Therefore, if G

has a rooted geodesic of length at least k then by Lemma 12 the graph Gn has a rooted

geodesic of length k too for n ≥ Nk, i.e.

r(Gn) ≥ k for n ≥ Nk. (4.2)

If r(G) is infinite then (4.2) holds for all k, thus lim inf r(Gn) = ∞ = r(G). If r(G)

is finite (4.2) implies lim inf r(Gn) ≥ r(G) and the other inequality is proved by the
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following: if for infinitely many n the graphs Gn have a rooted geodesic longer than

r(G) then this contradicts Lemma 12 when d1(G,Gn) is small enough.

Now, to get the result in the statement it suffices to apply the above proof to a

subsequence {Gnk
} such that lim r(Gnk

) = lim inf r(Gn).

Let us now discuss hyperbolicity. Recall that we denote the hyperbolicity con-

stant of a graph G by h(G).

Corollary 5. If Gn → G is a converging sequence in d1 then lim inf h(Gn) ≥ h(G).

Proof. Let us first prove that lim suph(Gn) ≥ h(G).

Let T ⊂ G be a geodetic triangle, and let S ⊆ G be the smallest k-RCIS that

contains T . If n is large enough, say so that d1(G,Gn) ≤ r3k, then there is a k-RCIS

f(S) ⊂ Gn isomorphic to S. Moreover, f(S) contains an isomorphic copy T ′ of T that is

actually a geodetic triangle of Gn: this can be seen by applying Lemma 12 to each of the

three geodesics of T . Furthermore, we have dG(x, y) = dGn
(f(x), f(y)) for all x, y ∈ T :

by definition of d1 we can consider an extension S′ := f(S) ∪ γ of S, where γ is any

geodesic in H joining f(x), f(y) ∈ T ′, and find an induced embedding g : S′ → G; by

mimicking again the proof of Lemma 12 applied to γ we obtain that g(γ) is a geodesic

between x and y.

Thus, since T is isometric to T ′ and T ′ is a geodetic triangle in Gn which is

h(Gn)-hyperbolic, we conclude that a geodetic triangle T on at most k vertices is an

h(Gn)-thin triangle for n large enough, say n ≥ Nk. Therefore any geodetic triangle in

G is (lim suph(Gn))-thin. This proves that lim suph(Gn) ≥ h(G).

Now, to get the result in the statement it suffices to apply the above proof to a

subsequence {Gnk
} such that limh(Gnk

) = lim inf h(Gn).

Notice that the reverse inequality in Corollary 5 does not hold as the sequence

of cycles Cn converges in d1 to the bi-infinite line Z.

Finally, we show a similar result about non-amenability. For the relevant defini-

tions, see Section 2.2 at page 9. In this case we need that the sequence {Gn} is mildly

amenable, meaning that there exists a function p : N → N such that if K is a finite subset

of Gn then |∂K| ≤ p(|K|) uniformly on n. For instance if the maximum degrees ∆(Gn)

form a sequence bounded above by ∆ and K ⊂ Gn is finite then |∂K| ≤ ∆|K|.

Proposition 4. Let Gn → G be a converging sequence in d1. If {Gn} is mildly amenable

and G is infinite then lim sup c(Gn) ≤ c(G).
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Proof. Let us first prove that lim inf c(Gn) ≤ c(G).

Let p : N → N be a function witnessing the mild amenability of {Gn}. Consider

a k-RCIS S ⊂ G. Then there exists Nk such that if n ≥ Nk we have d1(Gn, G) ≤
rmax{k,p(k)}. Thus we can map S isomorphically to a k-RCIS f(S) ⊂ Gn and we have

|∂f(S)| ≤ p(k) by mild amenability. Thus ∂f(S) ∪ f(S) has at most k + p(k) ≤
2max{k, p(k)} vertices and can be mapped back with an induced embedding g into

G. But g(∂f(S)) ⊆ ∂S because g preserves adjacencies, therefore |∂S| ≥ |∂g(f(S))| ≥
|∂f(S)| ≥ c(Gn)|f(S)| = c(Gn)|S|. Thus we have proved that for an RCIS S we have

|∂S|
|S| ≥ c(Gn), for all n ≥ Nk and |S| ≤ k

that is, |∂S|
|S| ≥ lim inf c(Gn) and thus c(G) ≥ lim inf c(Gn).

Now, to get the result in the statement it suffices to apply the above proof to a

subsequence {Gnk
} such that lim c(Gnk

) = lim sup c(Gn).

We now want to stress the fact that both Corollary 4 and 5 become false if we

replace the distance d1 with d0. We shall show this by using pairs of d0-equivalent graphs

G,G′ ∈ G′ (i.e. such that d0(G,G′) = 0), which can trivially make for a converging

sequence by taking the constant sequence G,G, . . . that converges to G′.

Proposition 5. There are d0-equivalent graphs with distinct radii.

Proof. Consider the following graph G: start with a 1-way infinite path on vertex set

{vn, n ∈ N}, join each vn to vertex wn and join each wn to a single vertex x. Now

consider G′: it is obtained from G by attaching an extra 1-way infinite path to x. In

both cases the root is x. Clearly r(G) = 2 while r(G′) = ∞. Since there is an induced

embedding G → G′ given by the inclusion, G′ contains all the k-RCIS of G for all

k. Moreover, given any finite nonempty subset S ⊂ G not containing x it is easy to

find a rooted induced 1-way infinite path P inside G that does not intersect S or its

neighbourhood: set N := 1 + max({n | vn ∈ S} ∪ {m | wm ∈ S}), we have that P is

the path x,wN+1, vN+1, vN+2, vN+3 . . .. Thus we can isomorphically embed any n-RCIS

H ⊂ G′ into G, which proves that d0(G,G′) = 0.

The following proof employs the same ideas as above.

Proposition 6. There is a hyperbolic graph which is d0-equivalent to a non-hyperbolic

graph.
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Proof. Let G and x be as in Proposition 5, and let G′ be obtained from G by attaching

to the root x of G infinitely many cycles, one for each length at least 5 (which are all

the lengths of cycles in G passing through x). Clearly G has bounded diameter and thus

is hyperbolic, while G′ has geodetic cycles of unbounded lengths, which witness that G′

is not hyperbolic. By definition, there is an induced embedding G → G′. Moreover, if

S is a finite subset of G \ {x} and N := 1 + max({n | vn ∈ S} ∪ {m | wm ∈ S}) then

G\{vn, wm | n,m ≤ N} is isomorphic to G and thus contains an induced subgraph with

all cycles of length at least 5. Therefore we can isomorphically embed any finite induced

subgraph H ⊂ G′ into G.

Proposition 7. There is a non-amenable graph which is d0-equivalent to an amenable

graph.

Proof. Let G be the wedge of infinitely many rooted non-amenable trees (e.g. infinitely

many copies of the full binary tree) and let G′ be the wedge of G and a 1-way infinite

path. Then G is non-amenable (and there are finite sets with infinite boundary) while

G′ is not. Similarly to Proposition 6, it is possible to embed any finite rooted induced

subgraph of G′ inside G, thus proving the claim.
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Chapter 5

Geodetic Cayley graphs

5.1 Introduction

A graph is called geodetic if for any two vertices there is exactly one geodesic (i.e. path

of minimum length) joining them. Given a group G, a generating set S satisfying 1 /∈ S

and s ∈ S iff s−1 ∈ S is called a Cayley subset of G. Given a Cayley subset S of G, the

Cayley graph of G with generating set S is the graph Γ := Cay(G,S) where V (Γ) = G

and {x, y} ∈ E(Γ) iff there exists an s ∈ S such that y = xs.

We have two conjectures about geodetic Cayley graphs:

Conjecture 6. Every finite geodetic Cayley graph is a complete graph or an odd cycles.

There is also a conjecture by Shapiro about infinite geodetic Cayley graphs:

Conjecture 7 (Shapiro [1997]). If Γ = Cay(G,S) is a geodetic Cayley graph then the

group G is a free product G1 ∗ . . . ∗Gn with each Gi is a finite group or Z.

In Shapiro [1997], Shapiro proved Conjecture 7 for infinite virtually cyclic groups,

showing that the only two cases are Z and Z2 ∗ Z2. We do not prove either of the two

conjectures in full generality, but we shall address various aspect of the problem of

classifying geodetic Cayley graphs. In the following we shall focus on Conjecture 6 only.

5.2 Known results

The topic of geodetic graphs has been studied since the 60s; this is a survey on the

state-of-art that focuses on regular geodetic graphs. The following is an easy exercise:

Proposition 8. For a graph G the following are equivalent:
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(1) G is geodetic;

(2) for every choice of a root o the following holds: let Nk(o) := {x ∈ G | d(o, x) = k}.
Then every x ∈ Nk(o) has exactly one neighbour in Nk−1(o);

(3) every block of G is geodetic (a block is a maximal 2-connected induced subgraph);

(4) for every choice of a root o the following holds: deleting every edge vw with

d(o, v) = d(o, w) turns the graph into a tree.

In particular, (2) implies that the neighbourhood of a vertex x ∈ Nk has 1 element

in Nk−1 and all the other elements in Nk ∪Nk+1.

The statement (3) of Proposition 8 lets us reduce the problem of studying geodetic

graph to that of studying their blocks, so in the following we will assume that every

geodetic graph is 2-connected.

Theorem 10 (Stemple and Watkins [1968]). A (2-connected) planar graph is geodetic

if and only if it is K2, or an odd cycle or a geodetic graph which is a subdivision K4.

Therefore Conjecture 6 holds for planar graphs, because the only regular graphs

among the above options are complete graphs or odd cycles.

It seems that the problem of classifying geodetic graphs G can be tackled by looking at

the diameter diam(G).

Definition 13. Let Γ(d) be the class of 2-connected geodetic graphs of diameter d.

A Moore graph is a graph G with girth equal to 2 diam(G) + 1. A Moore graph

is thus a geodetic graph, because all geodesics have length at most diam(G) and if

two geodesic shared the same endvertices they would create a cycle of length at most

2 diam(G), contradicting the condition on the girth.

Theorem 11 (Holton and Sheehan [1993]). The only regular graphs in Γ(2) are Moore

graphs of diameter 2.

Moore graphs of diameter 2 were completely classified in Hoffman and Singleton

[1960] and none of them is a Cayley graph. It is well known that the Petersen graph

is not a Cayley graph; see McKay et al. [1998] for the case of the Hoffman-Singleton

graph and Cameron [1983] for the proof of Higman about the hypothetical graph on

3250 vertices. So the only remaining Moore graph of diameter 2 is the 5 cycle, and thus

Conjecture 6 holds for diameter 2 graphs. One could hope to find more insight about

geodetic Cayley graphs in Moore graphs of larger diameter, but they have been classified
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as well: in Hoffman and Singleton [1960] it is proved that the only Moore graph with

diameter 3 is C7. There are no Moore graphs of diameter at least 3 other than odd

cycles, see Damerell [1973].

In the following, we digress a little to include a survey of what is known about

Γ(d). In Parthasarathy and Srinivasan [1984a] there are a number of results concerning

graphs in Γ(3), together with some conjectures on whether those theorems hold for higher

diameters.

Theorem 12 (Parthasarathy and Srinivasan [1984a]). Every graph in Γ(3) is self-

centred.

The eccentricity e(v) of a vertex v ∈ G is maxw d(v, w) and the radius r(G)

is minv e(v), while the diameter diam(G) is maxv e(v). A graph is self-centred if the

diameter is equal to the radius i.e. every vertex v has the same eccentricity. All graphs

in Γ(2) are self-centred, see Stemple [1974].1

Theorem 13 (Parthasarathy and Srinivasan [1984a]). Every vertex of a graph in Γ(3)

lies on an induced 7-cycle.

Conjecture 8 (Parthasarathy and Srinivasan [1984a]). Every vertex in a self-centred

geodetic graph G ∈ Γ(d) lies on an induced (2d+ 1)-cycle.

Next, we present two Theorems about criticality: for any property P , a graph

is said to be lower P critical (resp. upper P critical) if for any xy ∈ E(G) (resp.

xy /∈ E(G)) the graph G \ xy (resp. G ∪ xy) fails to have the property P .

Theorem 14 (Parthasarathy and Srinivasan [1984a]). A graph in Γ(3) different from

C7 is both upper and lower geodetic critical.

It is conjectured in [Parthasarathy and Srinivasan [1984a]] that this holds more

generally for every geodetic graph which is not an odd cycle.

Theorem 15 (Parthasarathy and Srinivasan [1984a]). A graph in Γ(3) is lower critical

with respect to the property of having diameter 3.

Note that the upper criticality is not true in this case.

1In Parthasarathy and Srinivasan [1982] it is shown that there exist both self-centred and non-self-
centred geodetic graphs; however the constructive proof yields a non-regular graph, so it is beyond our
interests.
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We conclude with some general properties about geodetic graphs.

An easy property is the following: if for any x, y ∈ G the smallest cycle passing through

them is odd then G is geodetic.

For a vertex v ∈ G we call Ni(v) := {w ∈ G | d(v, w) = i} the i-neighbourhood

of v, and G[Ni(v)] is the graph spanned by Ni(v). When the reference to v is clear, we

just write Ni.

Proposition 9 (Parthasarathy and Srinivasan [1984b]). Let G be in Γ(d) with diameter

d ≥ 2, and let v ∈ G. Then the following hold:

• G[N1] is a disjoint union of at least 2 cliques;

• every vertex of N1 is adjacent to at least one of N2, and thus |N1| ≤ |N2|;

• if G is not an odd cycle, there exist 4 vertices x, y, u, v such that xy, uv ∈ E(G)

and d(x, u) = d(x, v) = d(y, u) = d(y, v) = d;

• if G is not an odd cycle, for all values ⌊12(d + 2)⌋ ≤ k ≤ d there exist 4 points in

G of eccentricity k.

For an estimate on |E(G)| in terms of |V (G)| and d, see Parthasarathy and

Srinivasan [1984b].

5.3 New results

The following result proved by Agelos Georgakopoulos (personal communication) shows

that both Conjectures 6 and 7 are true for Abelian groups.

Proposition 10 (Georgakopoulos, unpublished). Let G be an Abelian group and S a

Cayley subset. Then Γ = Cay(G,S) is geodetic iff one of the following holds:

1) G = {1} with S = ∅;

2) G ∼= Z with |S| = 2;

3) G ∼= Z2k+1 with |S| = 2;

4) S = G \ {1}.

Proof. If S is an empty generating set then G = {1} (case 1). If S is a non-empty

generating set, let s be an element of S: if S = {s, s−1} then G is cyclic. In this case, if

|G| is infinite then G ∼= Z (case 2); if |G| is finite and s = s−1 then G = {1, s} (case 4));
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if s 6= s−1 then Γ is a cycle and so |G| = |V (Γ)| cannot be equal to 2k, otherwise sk and

(s−1)k are two distinct geodesics of length k joining the identity and sk = s−k, thus G

is an odd cyclic group (case 3).

Suppose now that there is t ∈ S \{s, s−1}. We claim that for all x, y ∈ S we have

xy ∈ S∪{1}. Indeed, if t 6= s, s−1 then ts and st are two path of length 2 between 1 and

ts = st in Γ because G is Abelian, and they are distinct geodesics unless ts is also in S.

It remains to prove that s2 ∈ S for all s ∈ S. If t 6= s, s−1 then st−1 and ts are in S for

the previous observation. Thus ss and (st−1)(ts) are two paths of length 2 between 1

and s2 and since t 6= 1 they are distinct, thus they are geodesics unless s2 ∈ S.

Therefore for all x, y ∈ S we have xy−1 ∈ S ∪ {1} so S ∪ {1} is a subgroup of G,

but since < S >= G this means that S = G \ {1} (case 4).

Note that this proof cannot be extended to a larger family of groups since a group

is Abelian if and only if there is a generating set S such that st = ts for all s, t ∈ S.

In the next lemma we find geodetic cycles in a geodetic graph. Recall that a cycle

is geodetic if it contains a geodesic between any two of its vertices.

Lemma 13. In a geodetic graph, the shortest cycle not spanning a clique is a geodetic

cycle. In particular, its length is odd.

Proof. Let C be a shortest cycle not spanning a clique, and by contradiction assume there

is a shortcut P between x, y ∈ C, i.e. if xCy, yCx are the two subpaths of C joining x

and y then |P | < |xCy|, |yCx| (and both subpaths have at least 3 vertices). Let C1, C2 be

the two cycles given by xCy∪P, yCx∪P respectively. Since |C1|, |C2| < |C| we have that
C1 and C2 span a clique each, say K1,K2 respectively. Notice that x, y ∈ K1∩K2. If all

vertices of K1 are adjacent to all vertices of K2 then K1 ∪K2 is a clique, contradicting

the hypothesis. So there are two non-adjacent vertices u ∈ K1 and v ∈ K2. But then

uxv and uyv are two geodesics between the same endpoints, contradicting the geodeticity

of G.

As the proof of Lemma 13 shows, in a geodetic graph Γ an edge cannot be shared

by two distinct cliques, so if K1,K2 are two maximal cliques of Γ then |K1 ∩K2| ≤ 1.2

Denote with Ni(x) the set of vertices at distance i from x ∈ Γ and with Γ[Ni(x)] the

graph Ni(x) spans. We know from Parthasarathy and Srinivasan [1984b] that in a

geodetic graph for any vertex x we have that Γ[N1(x)] is a disjoint union of cliques, say

K1(x), . . . ,Kn(x). Assume from now on that Γ is a geodetic Cayley graph so that by

2More generally, if u, v ∈ Γ are two non-adjacent vertices, their neighbourhoods N1(u), N1(v) intersect
on at most one vertex.
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transitivity the neighbourhood of every vertex spans the same collection of cliques.

Now we want to consider the simpler case where K1(x), . . . ,Kn(x) have different

cardinalities, say |K1(x)| < . . . < |Kn(x)|. Consider any isomorphism mapping x to y;

since Γ[N1(x)] is isomorphic to Γ[N1(y)], the isomorphism must map each Ki(x) to the

uniqueKj(y) of the same cardinality: call it Ki(y). With this indexation, the cardinality

of Ki(x) does not depend on x but only on i, and there is exactly one such clique for

each x. In this way, for instance, we have that if x, y are adjacent then y ∈ Ki(x) iff

x ∈ Ki(y).

Lemma 14. With notation as above, if K1(1), . . . ,Kn(1) have all different cardinalities

then each Ki(1) ∪ {1} forms a subgroup of G.

Proof. Let x, y ∈ Ki(1) ∪ {1}, and let s := xy−1 be the generator labelling the edge

between x and y. Since s is a generator, it is adjacent to 1 so s ∈ Kj(1) for some j.

The graph automorphism g 7→ gy sends s ∈ Kj(1) to x ∈ Ki(y), but by the observation

above we know that isomorphisms preserve superscripts of these cliques so Kj(1) is sent

to Kj(y) and thus i = j. Therefore Ki(1)∪{1} contains s = xy−1 and thus is a subgroup

of G.

As a corollary, we conclude each Ki(g) is in fact the coset Ki(1)g of Ki(1), and

in particular that a generator s appears as the label of an edge in Ki(1) iff it appears

as the label of an edge in Ki(g) for some g. In other words, each edge {x, xs} (together

with its label s) uniquely identifies the index i of the maximal clique Ki(x) it belongs

to.

Lemma 15. If Γ is a finite geodetic Cayley graph then the neighbourhood of a point

cannot induce the disjoint union of two cliques of different sizes.

Proof. Assume by contradiction that the neighbourhood of the identity 1 is the disjoint

union of the cliques K1 and K2 of distinct sizes. Let s ∈ K1 and t ∈ K2 be two

generators. Note that st is at distance 2 from 1 since t never appears as the label of an

edge of K1 (so st ∈ K2(s)). Similarly, sts is at distance 2 from s for the same reason,

and so on. Choose s ∈ K1, t ∈ K2 such that min{o(st), o(ts)} is minimized, where o(g)

is the order of the element g: without loss of generality we can say that n = o(st) is

this minimum. Therefore the vertices 1, s, st, sts, . . . , (st)n−1, (st)n−1s induce a cycle,

because any three vertices appearing consecutively induce a path of length 2 and having

minimized n there is no other shortcut. Thus the cycle must be odd by Lemma 13,

which contradicts the fact that it has 2n vertices.
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Consider now a geodetic cycle C ⊂ Γ, for instance the one provided by Lemma

13. Say it passes through 1 and it has length 2k + 1. Let x, y the vertices along C at

distance k from 1, and let K be the unique clique containing the edge {x, y}.

Lemma 16. With notation as before, all vertices of K are at distance k from 1.

Proof. Let z be a vertex of K \ {x, y}. By using twice the triangle inequality we know

that the distance between 1 and z can only be k− 1, k or k+1. If d(1, z) was k− 1 then

there would be two geodesics between 1 and x, one given by 1Cx (the shorter subpath

of C between 1 and x) and the other by a geodesic from 1 to z followed by the edge

{z, x}. If d(1, z) was k + 1 then there would be two geodesics between 1 and z, namely

1Cy followed by {y, z} and 1Cx followed by {x, z}.

Proposition 11. Suppose the neighbourhood of each vertex spans n cliques K1, . . . ,Kn

and that the smallest cycle not contained in a clique has length 2d(G)+1, d := diam(G).

Then there is an i such that |Ki| ≤ n

Proof. Suppose by contradiction that for all i we have Ki ≥ n + 1. Choose an edge

{v1, v2} with d(1, v1) = d(1, v2) = d and consider the unique clique K it belongs to:

by the assumption, |K| ≥ n + 1. Consider γ1, γ2 the unique geodesics joining 1 to

v1, v2 respectively and let x be in γ1 ∩ γ2 with maximum distance from 1. If x 6= 1

then γ1, γ2, {v1, v2} together form a cycle of length less than 2d + 1, so we conclude

γ1 ∩ γ2 = {1}. For i = 1, 2, let xi ∈ γi be at distance 1 from 1 and let K(vi) be the

clique in the neighbourhood of 1 containing xi. Again K(v1) 6= K(v2) otherwise there

would be a cycle with less than 2d + 1 vertices. Therefore we have an injective map

K → {maximal cliques in the neighbourhood of 1}, given by v 7→ K(v), contradicting

the fact that |K| > n.

We suspect that the previous statement holds for all i.

5.4 Geodetic reach

In order to attack Conjectures 6 and 7 we started a line of research by asking: what is

the subset of vertices of a Cayley graph Γ = Cay(G,S) that can be reached from the

identity by only making steps of length d := diam(G)? For instance, for the known

geodetic Cayley graphs C2n+1 and Kn this is the full vertex set. In other words, we

are asking whether the subgroup H generated by the vertices Nd at distance d from the

identity is the full group G.

61



Proposition 12. Let Γ = Cay(G,S) be a geodetic Cayley graph and H ⊆ G the subgroup

generated by Nd, the set of elements at distance d from 1. If H 6= G then there exists

exactly one element s ∈ S such that H ∪ {s} generates G. Moreover, s2 = 1 and thus G

has an even number of elements.

Proof. If S ⊆ H then H = G. So suppose there are s, t ∈ S \ H. Let x, y ∈ Nd ⊆ H;

since x−1y is also in H, if {x, y} is an edge then it is not labelled by s or t. Thus

y 6= xs, xt and so xs, xt /∈ Nd and they must then belong to Nd−1. Therefore x has

two neighbours in Nd−1, contradicting Proposition 8, unless s = t. Since both S and H

are closed under taking inverse so is S \H, thus the only element s in S \H is its own

inverse, i.e. s2 = 1 and we conclude that G cannot have odd order as the order of the

subgroup {1, s} divides |G|.

We tried to derive further conclusion under the assumption that the subgroup H

is not G. Observe that in every Cayley graph Nk is closed under inverse for every k, as

the inverse of a word of length k representing g is a word of the same length representing

g−1. Also, by the proof of the previous proposition, all edges joining Nd and Nd−1 are

labelled with the special generator s, and thus Nd−1 = {gs, g ∈ Nd} does not contain any

element from H. We observed that the map f : G → G, f(g) = sg is an automorphism

of the graph of order 2, and this produces the following structure: the vertex set of Γ is

partitioned in subsets according to the distances from 1 and s. If Mk denotes the set of

vertices at distance k from s then we can ask which of the classes Nj∩Mk are non-empty

and which are joined by edges. The hope is to prove that Nj ∩Mj is empty for all j’s.

Easily N1 ∩ M1 is empty because if a vertex a is adjacent to both s and the identity

then s is the product of two generators distinct from s, so those generators would be in

H, contradicting the fact that s /∈ H. Moreover, again by Proposition 8, every vertex in

Nj ∩Mk sends exactly one edge to each of Nj−1 and Mk−1. Thus a vertex in Nj ∩Mj

sends either exactly one edge to Nj−1 ∩ Mj−1 or it sends exactly one edge to each of

Nj−1 ∩Mj and Nj ∩Mj−1. Moreover a vertex x ∈ Nj ∩Mk with j > k sends an edge to

Nj−1 ∩Mk−1 by definition and must send one edge to each of Nj−1,Mk−1 so all those

three edges are the same.

5.5 Semidirect product of cyclic groups

In this section we show our attempt to find an example of a geodetic Cayley graph with

the help of a computer search. We did not succeed, but we discovered a non-transitive
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regular geodetic graph, that was not known in literature to our knowledge. I thank Alex

Wendland for his help in writing the code and for the helpful discussions.

Consider the usual presentation of a semidirect product of two cyclic groups:

Cn ⋊ Cm =< x, y | xn = ym = 1, yxy−1 = xk >

for some (k, n) = 1 with km ≡ 1 mod φ(n) and km ≡ 1 mod n. We studied the Cayley

graphs on those groups with the set of generators {x±1, y±1} and proved that they too

are not geodetic. First consider the case where m = 2 (we shall keep the notation with

y−1 in order to use it unchanged further on). We can show by computer search that

for small n the corresponding groups are not geodesic. For large n, eventually all those

groups contain two geodesic with the same endpoints, which are given by the following

equalities (derived from the last relation of the presentation):

yx2y−1 = x4 if k = 2, n > 5

yxy−1 = x3 if k = 3, n > 5

yx2y−1 · x = x · yx2y−1 if k = 4, n > 10

yxy−1 · x = x · yxy−1 if k > 4, n > 17.

The fact that all the words in the previous equations are geodesics in the corresponding

group follows from the fact that in each group the shortest cycles passing through the

identity have length min{n, 3+k} and are given by the words yxy−1x−k and its inverse.

The same conclusion for generic m ≥ 3 now follows by noticing that the same

equations hold and they still represent geodesics, where now the smallest cycle has length

min{n,m, 3 + k}.
As a side note, our computer program actually checked for geodesicity all gener-

alized Petersen graphs P (n, k), which are graphs with vertex set {v1, . . . , vn, w1, . . . , wn}
and edges {vi, vi+1}, {vi, wi} and {wi, wi+k} where the sums are modulo n and i =

1, . . . , n. So for instance the Petersen graph is P (5, 2) and our presentation of Cn ⋊ C2

gives the graph P (n, k) (it is known that P (n, k) is a Cayley graph only when k2 ≡ 1

mod n). Among all these graphs, only the Petersen graph and P (9, 4) are geodetic,3

and the proof is the same as before using the group notation: in a word xa1ya2 . . . a

right multiplication by x corresponds to the edge {vi, vi+1} or {wi, wi+k} and a right

multiplication by y corresponds to the edge {vi, wi} (the empty word 1 is the vertex

3It is worth noting that P (9, 4) ∼= P (9, 2) is one of the few graphs known to have a unique 3-edge
colouring, see Bollobás [1978] p. 233.
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v1). Notice that P (9, 4) is not transitive as P (n, k) is transitive if and only if it is the

Petersen graph or k2 ≡ ±1 mod n.
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Chapter 6

Embedding Z in Z2 with large

distortion

This chapter answers a question posed on Mathoverflow:1

Theorem 16. There is a 2-way infinite (self-avoiding) path {xi}i∈Z in Z2, a number M

and a function f : N → N such that for every i and every n > M , we have d(xi, xi+n) <

f(n) where f(n) = o(n).

Every graph in what follows is a subgraph of Z2, so unless otherwise stated d is

always the graph-theoretical distance function for Z2.

Here we follow and expand the answer proposed by Boris Bukh on that post.

The construction is best possible, meaning that f(n) = Θ(
√
n) for an optimal f and we

shall provide explicit bounds for M .

The construction is based on the Peano curve P : N → Z2. In Figure 6.1 the

first 32, (32)2 and (33)2 vertices of P are showed, from which one can derive the gen-

eral pattern by a recursive procedure: each iteration embeds in the following one as

the bottom-left ninth. This defines a 1-way (Hamiltonian) path in N2. Assuming that

P (0) = (0, 0) we can then reflect P around the origin and join the two copies, obtaining

a 2-infinite path P ′ : Z → Z2 as requested.

We shall show that P satisfies the 1-way version of Theorem 16, meaning that

for each n,m the distance d(P (n), P (m)) is at most C
√

|n−m| for some constant C.

1http://mathoverflow.net/questions/219410/embedding-z-into-z2-with-large-distortion
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Figure 6.1: The first three iterations of the Peano curve. Image is from Wikipedia, made
by user Tó campos1.

Once this is proved, we have for all non-negative n,m:

d(P ′(−n), P ′(m)) = d(P ′(−n), P ′(0)) + d(P ′(0), P ′(m)) ≤ C(
√
n+

√
m) = o(n+m),

which is the conclusion of Theorem 16.

Thus we now focus on P only. Given two vertices x, y on P , we consider the subpath

xPy of P between x and y; let |xPy| be the length of the path, i.e. the number of edges.

Our aim is to prove that the distance between x and y is at most C
√

|xPy| for some

constant C.

Definition 14. A k-box B is a subgraph of Z2 such that there exists an isometry

ϕ : Z2 → Z2 with ϕ(B) given by the subpath of P between P (0) and P (32k). The

number k is the size of the box.

For instance, Figure 6.1 shows a 1-, 2- and 3-box; moreover, each k-box contains

9 distinct (k − 1)-boxes joined by 8 edges. Vice versa, if the subgraph of the k-box B

spanned by the (k− 1)-boxes B1, . . . , B9 is B itself then B1, . . . , B9 are said to complete

B.

Let B1, . . . , Bl be the maximal boxes among the subgraphs of xPy in the order

they appear in P from x to y, meaning that all the following hold:

1) there is a sequence x = x1, y1, . . . , xl, yl = y of vertices of xPy such that xiPyi is

the box Bi;

2) the vertex yi is adjacent to xi+1 for all i and the path xPy is the concatenation of

the subpaths x1Py1, x2Py2, . . . , xlPyl via those edges;
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3) the boxes are maximal, i.e. if Bi is contained in a larger box B ⊆ xPy then

Bi = B.

Lemma 17. No more than 16 consecutive boxes among B1, . . . , Bl can have the same

size.

Proof. Let by contradiction Bi . . . , Bi+16 be 17 boxes of the same size k and recall

they are consecutive subpaths of P from (2) above so they lie inside the union of 3

consecutive (k + 1)-boxes A1, A2, A3 ⊆ P , which contain 27 consecutive k-boxes (by (3)

Ai, i = 1, 2, 3, are maximal and thus disjoint). However, as the Bi . . . , Bi+16 are placed

inside A1 ∪ A2 ∪ A3 and they are consecutive, there is a j ∈ {i, . . . , i + 8} such that

Bj , . . . , Bj+8 complete one of A1, A2, A3, contradicting (3) above where we require that

no box is contained in a larger box. Figure 6.2 shows that the bound is tight.

Figure 6.2: Extremal case of 16 boxes of the same size appearing consecutively along P .

Let ki be the size of the box Bi.

Lemma 18. If ki > ki+1 and j is the largest such that ki+1 = ki+2 = . . . ki+j then j ≤ 8

and ki+j > ki+j+1.

Proof. If ki > ki+1 it means that Bi+1 starts a (ki+1 + 1)-box, i.e. that if B2, . . . , B9 ⊆
P are the ki-boxes that follow Bi+1 along P then Bi+1 ∪ B2 ∪ . . . ∪ B9 complete a

(ki+1 + 1)-box. Then if B2, . . . , B9 are all boxes of xPy this contradicts (3) above, so

the 8 boxes Bi+2, . . . , Bi+9 cannot all have the same cardinality as Bi+1, thus proving
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the first conclusion of the statement.

Since Bi+1 starts a (ki+1+1)-box B and Bi+1∪ . . .∪Bi+j do not complete B, let us call

B′ the next ki+1-box of P following Bi+j inside B. We claim that Bi+j+1 ⊂ B′ (they

cannot be equal as per the first part of the statement). Indeed, if a box of P is not

completed then the following one of the same size cannot start, which means that after

the last vertex of Bi+j (contained in B) there cannot be a box of size ki+1 + 1 because

the previous one, i.e. B, is not complete. Thus the size of Bi+j+1 is strictly less then

the size of Bi+j , which proves the second part of the statement.

Lemma 19. The sequence of sizes is unimodal, i.e. there is an i0 such that k1 ≤ . . . ≤
ki0 ≥ . . . ≥ kl.

Proof. This is just an immediate corollary of Lemma 18 as if ki1 > ki2 6= ki3 then

ki2 > ki3 , which is equivalent to the statement of this Lemma.

Corollary 6. The number of vertices in xPy is a sum of powers of 9 with bounded

coefficients, i.e.

|xPy|+ 1 =

ki0
∑

k=0

ak3
2k,

where ak := |{Bi : Bi has size k}| is at most 32 and ki0 is as in Lemma 19.

Proof. Consider the sequence of sizes of the boxes: by Lemma 19 it is of the form k1 ≤
. . . ≤ ki0 ≥ . . . ≥ kl. By Lemma 17 no number can appear more than 16 times among

k1 ≤ . . . ≤ ki0 , and no number can appear more than 16 times among ki0 ≥ . . . ≥ kl,

thus if ak is the number of boxes in B1, . . . , Bl of size k then ak ≤ 32 for all k. Since

xPy is the disjoint union of the boxes B1, . . . Bl then it has
∑l

i=1 3
2ki vertices and thus

by being a path it has 1 edge less than the number of vertices, i.e.

|xPy|+ 1 =

ki0
∑

k=0

|{Bi : Bi has size k}| · 32k =

ki0
∑

k=0

ak3
2k,

and the sum stops at ki0 because of Lemma 19.

Let us recap a bit of notation: given 2 vertices x, y on P we considered the

subpath xPy which is then split in subpaths xiPyi, each of which forms a box. There

are l of those boxes and the box of the largest size has been denoted with the special

index i0.
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Now, given a k-box, consider any geodesic in Z2 between its endvertices: it has

length 2(3k − 1). By the triangle inequality and Corollary 6 we thus obtain:

d(x, y) + 1 ≤ 1 + d(xl, yl) +

l−1
∑

i=1

d(xi, xi+1) = 1 + d(xl, yl) +

l−1
∑

i=1

(d(xi, yi) + 1) =

= l +
l

∑

i=1

(2(3ki − 1) =
l

∑

i=1

2 · 3ki =

=

ki0
∑

k=0

ak · 2 · 3k ≤ 32 · 2
ki0
∑

k=0

3k = 64
3ki0+1 − 1

3− 1
≤

≤ 96 · 3ki0 = 96
√

32ki0 ≤ 96
√

|xPy|.

The numbers ak are defined as in Corollary 6 and the only nontrival inequality is the

last one, which says that xPy contains a box of size ki0 .

The result d(x, y) ≤ 96
√

|xPy| is thus proving that d(P (n), P (m)) ≤ C
√

|n−m| for
C = 96. Note that we can set M = 0 in Theorem 16 because for d(x, y) ≤ 6 we have

that xPy can be a geodesic, and in this case the previous inequality holds, while for

larger value of d(x, y) the situation can only get better.
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