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Abstract

This thesis is on the study of sheaves of O-modules and D-modules on pro-

jective stacks. In chapter 1, a historical perspective is given on the main

findings that have shaped and influenced the study carried out and exposed

in this thesis. In chapter 2, the principal definitions and results used in

the forthcoming sections are recalled. An appendix is added at the end of

this chapter exposing self-containedly why quotient singularities and orbi-

folds are two equivalent notions. In chapter 3, the property of ampleness of

vector bundles on projective stacks is generalised and studied. Basic prop-

erties are given; in particular it is proved that weighted projective stacks

have ample tangent vector bundle. In chapter 4, D-modules on projective

stacks are studied. General conditions on the weights and the shift guaran-

teeing a weighted projective stack to be D-affine are given. Thus, proving

a version of the Beilinson-Bernstein Localisation Theorem. In particular, a

weighted projective stack is D-affine if and only if the greatest common di-

visor of its weights is one. A theorem of Kashiwara is extended to smooth

projective stacks, it is shown that the category of D-modules on a smooth

closed projective substack [X] is equivalent to the category of D-modules on

the ambient smooth projective stack [Y ] supported on [X].
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Chapter 1

Introduction

Numerous classes of projective varieties can be studied in terms of graded

rings [Rei02]. In algebraic geometry, projective varieties often appear as hav-

ing a weighted projective space as their ambient space. It is known that all

weighted projective spaces are projective varieties, and hence, we could study

them within a regular projective space. However this is not advisable as it

loses information on orbifold singularities and it generally leads to a lot of

confusion [Rei02]. Using the general machinery developed by Grothendieck

and others [Gro61] through the Proj construction, weighted varieties were

thoroughly examined by many mathematicians including Dolgachev [Dol82],

Beltrametti and Robbiano [BR86]. It helps in studying nonsingular varieties

as a hypersurface in a weighted projective space. This approach was gen-

eralised further by Danilov and Khovanskĭı [Dan78], [Dan79], [Kho16] who

introduced the notion of polyhedral projective spaces.

The notion of quasismoothness is crucial in order to study weighted vari-

eties effectively. We say that a variety embedded into a weighted projective
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space is quasismooth if its cone away from the vertex is smooth. This way,

we can generalise many results which hold true for ordinary smooth project-

ive varieties to quasismooth weighted varieties. It was shown for example

that quasismooth weighted complete intersections share many properties of

ordinary smooth complete intersections in a projective space [Dol82]. Simil-

arly, the Bott theorem on the cohomology of twisted sheaves of differentials

was generalised to the case of weighted projective spaces [Dol82], [Ste77]. In

the same vein, results concerning the Hodge structure of a smooth projective

hypersurface were generalised to the weighted case. However, it would be

foolish to think that everything can be extended to the world of weighted

quasismooth projective varieties. An example of this is the failure of the

local Torelli theorem for some quasismooth weighted complete intersections

described in the work of Catanese and Todorov [Cat79], [Tod80]. But in

general, this is the right definition to take to carry over most of the results

that are known to hold for regular projective spaces.

Fundamental differences appear when one looks at sheaves of modules

over the structural sheaf of any weighted projective space compared to what

is obtained for regular projective spaces. These pathologies are described

thoroughly by Dolgachev and Beltrametti [Dol82], [BR86]: a twist of the

structural sheaf is not always invertible, a twist of the structural sheaf which

is invertible is not necessarily ample and the tensor product on graded mod-

ules does not induce a group operation on the set of isomorphic classes of

twists of the structural sheaf. To preserve such fundamental properties, the

idea is to view weighted projective spaces as the GIT quotient of the punc-

tured affine space under the action of the multiplicative group Gm and de-
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scribe sheaves, not on the quotient, but on the punctured affine space as

Gm-equivariant sheaves. We consider these sheaves as genuine sheaves on

the weighted projective space. Such an approach makes sense geometrically

since we keep the information which would be lost otherwise if taking sheaves

directly on the GIT quotient. This is exactly what Dolgachev [Dol82] did

in his approach to define sheaves of differentials to extend Bott’s theorem.

In rather technical terms, what has been done is to study sheaves on the

quotient stack rather than on the GIT quotient. The sheaves on a quotient

stack of the form [X/Gm] are precisely the Gm-equivariant sheaves on X be-

fore taking the quotient. To sum up, the geometric spaces we actually study

are weighted projective stacks but this is rather just a technical detail and

with little common sense we can ignore it and see such sheaves are genuine

sheaves on our space. By doing so and with the appropriate definitions, all

the pathologies vanish and this gives us one more reason to why we should

be taking such sheaves as our objects of study. This approach was taken

by Corti and Reid when studying weighted grassmanians without getting

bogged down in what stacks are and loose track of what is important in the

exposition [CR02].

Many characterisations of the regular n-dimensional projective space were

given. A lot of work has been achieved towards identifying the key proper-

ties forcing a smooth irreducible n-dimensional projective variety to be iso-

morphic to the regular n-dimensional projective space. An old conjecture

of Remmert and Van de Ven giving such a characterisation was proved by

Lazarsfeld [Laz84]. The question was to know whether when there exists an

epimorphism from the n-dimensional projective space onto a smooth variety
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of positive dimension then the latter was necessarily isomorphic to the n-

dimensional projective space. Lazarsfeld provided a positive answer to this

question using Mori’s arguments [Mor79]. Mori developed these new ideas

in order to solve another conjecture formulated by Hartshorne [Har66]. He

showed that the tangent bundle of a projective space is ample and conjec-

tured that the only irreducible smooth n-dimensional projective variety with

an ample tangent bundle was necessarily isomorphic to the n-dimensional

projective space. Many researchers contributed towards solving the conjec-

ture for different base fields and dimensions [Har66], [Har70], [Mab78]. A

positive answer was eventually given by Mori [Mor79] for all dimensions and

all characteristics over an algebraic closed field. It is then only natural to

ask whether such a characterisation holds true if one is interested in looking

at smooth projective stacks. In this dissertation, we prove in Chapter 3,

Theorem 3.22

Theorem. The tangent sheaf of any weighted projective stack is ample.

It is well-known from a theorem of Gabriel that a noetherian scheme

is determined up to isomorphism by its category of coherent sheaves up to

equivalence of categories [Gab62]. This was the advent of doing geometry

from a categorical perspective. Another important theorem proved by Serre

showed that the category of coherent sheaves on Pn is equivalent to the

category of finitely generated graded modules modulo torsion over its graded

polynomial algebra. Many mathematicians tried studying non-commutative

algebras using ideas and inspirations from algebraic geometry. So the first

idea was to have a good notion of what a space would be for a given non-

commutative algebra. One way to proceed is to define our space categorically
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by describing its category of coherent sheaves. Artin and Zhang’s seminal

paper [AZ94] laid out the foundations of this approach where a suitable

cohomology theory was also built. Classical algebraic geometry was taken

to the realms of categorical algebraic geometry where many concepts and

ideas can be formalised in this context. The theorem of Serre assumes that

the graded algebra is generated in degree one which is not always the case

for a generic weighted projective space. To easily extend this theorem, the

space can be viewed as a stack and the condition of generation by degree

one elements can be withdrawn [AKO08]. Furthermore, the stack is smooth

although as a variety this is not true unless all weights are one [LMB00]. This

provides another motivation as to why weighted projective spaces should be

studied as stacks and not as varieties.

O-modules for any weighted projective stack satisfy numerous desired

properties [AKO08]. It would be interesting to study its category of D-

modules. For a variety, these are sheaves of modules over the sheaf of differ-

ential operators on the given space. These are just quasicoherent O-modules

endowed with flat connections. The initial main motivation of studying

D-modules was to do analysis from an algebraic perspective. Very soon,

spectacular applications appeared in various mathematical fields: algebraic

geometry, representation theory and topology of singular spaces. In rep-

resentation theory, the resolution of the Kazhdan-Lusztig conjecture was

the first achievement obtained by applying the theory of D-modules. It is

well known that all finite-dimensional irreducible representations of com-

plex semisimple Lie algebras are highest weight modules with dominant

integral highest weights. For such representations, the characters are de-
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scribed by the Weyl’s character formula. Inspired by the works of Harish-

Chandra on infinite-dimensional representations of semisimple Lie groups,

Verma proposed in the late 1960s the problem of determining the characters

of (infinite-dimensional) irreducible highest weight modules with not neces-

sarily dominant integral highest weights. A key observation in solving this

conjecture made by Beilinson and Bernstein is that (generalised) flag variet-

ies are D-affine. D-affinity is a property satisfied by a geometrical space for

which its D-modules are completely determined by their global sections. The

Beilinson-Bernstein Localisation Theorem was key in settling the conjecture.

So far, these are the only known connected smooth projective D-affine

varieties. In chapter 4, we prove over a field of characteristic zero the follow-

ing two theorems.

Theorem. Suppose X is a homogeneous complete D-affine variety. Then X

is isomorphic to a generalised flag variety.

If we work over the field of complex numbers,

Theorem. Suppose X is a complex complete D-affine variety and the tan-

gent sheaf TX is generated by global sections. Then X is isomorphic to a

generalised flag variety.

Thomsen proved that a toric smooth projective D-affine variety must be

a product of projective spaces. On the other hand, Van den Bergh proved

that a fairly general class of weighted projective spaces (all singular but the

ordinary projective space) are D-affine as varieties.

For a given smooth variety over an algebraically closed field of character-

istic zero, the category of D-modules is well-behaved [HTT08]; whereas when
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the space is not smooth, the category of D-modules is not anymore. There

is still a possibility to define the category of D-modules but the category we

obtain is not always nice. For example, it could be that the category is not

noetherian anymore [Cou95]. A way to circumvent this issue is to use one

of the famous theorems of Kashiwara. It basically says that for any closed

projective variety embedded into a regular projective space, the category

of D-modules of the closed variety is equivalent to the full subcategory of

D-modules of the ambient space whose objects are supported on the closed

variety. It can be shown as well that this definition is independent of the

embedding [Gai]. Hence, we could use this theorem to define the category of

D-modules for singular varieties. However this does not look very natural and

is only a way to get around the issue of non-regularity. For stacks, Beilinson

and Drinfeld provides a definition [BD91]. For our purposes, we only need to

define D-modules on the more restricted class of quotient stacks. In general,

if a smooth variety is acted on by an algebraic group G, then there are two

categories of D-modules that can be defined: one called G-equivariant D-

modules and the other strongly G-equivariant D-modules [Gai]. The latter

is our category of interest. The difference comes from the kind of equivariant-

ness required, we either want it at the level of O-modules only (G-equivariant

D-modules) or at the level ofD-modules (strongly G-equivariantD-modules).

Let [X] be a quotient stack of the form [Y/Gm] where Y is a smooth

Gm-invariant closed subvariety of V \ {0} and V a be a positively graded

n+ 1-dimensional vector space over a field K of characteristic zero. Let I be

the defining ideal of the closure of Y in V and D its reduced Weyl algebra

EndD(V )(D(V )/ID(V )) where D(V ) is the Weyl algebra of V . Consider the
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category, D-GrMod0, of all graded D-modules on which the Euler field E acts

on an homogeneous element by its degree and the full subcategory of torsion

modules, D-Tors0. In chapter 4, we give a description of the D-modules on

[X] as follows,

Theorem. The category D[X]-Qcoh of quasicoherent D-modules on the stack

[X] is equivalent to the quotient category D-GrMod0/D-Tors0.

More generally a similar description for twisted D-modules on the quo-

tient stack [X] is given as the quotient category D-GrModλ/D-Torsλ with the

twist λ taking values in K. It allows us to determine for which values of λ and

weights q0, . . . , qn the weighted projective stack [P(q0, . . . , qn)] is Dλ-affine.

Theorem. Let A be the Z≥0-span of all qi-s. If λ ∈ K\(−
∑

i qi−A), then the

global sections functor Γλ : Dλ[X]-Qcoh→ Dλ
[X]0

-Mod is exact. In this case, Γλ

defines an equivalence between the quotient category Dλ[X]-Qcoh/KerΓλ and

Dλ
[X]0

-Mod.

We then prove when KerΓλ is exactly zero.

Theorem. Let us assume that the greatest common divisor gcdi(qi) is equal

to 1. If λ ∈ (K \ Z) ∪ A, then KerΓλ is a zero category.

If any of the two conditions is not satisfied then KerΓλ is not zero. The

Dλ-affinity of the weighted projective stack P(q0, . . . , qn) characterisation fol-

lows,

Theorem. Let us suppose that λ ∈ (K \ Z) ∪ A and gcd (q0, . . . , qn) = 1.

Then Γλ : Dλ[X]-Qcoh→ Dλ
[X]0

-Mod is an equivalence of categories.
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Chapter 2

Preliminaries

2.1 Abelian categories

2.1.1 Quotient categories

Definition 2.1. Let A be any category (not necessarily abelian). A family

of objects in A, {Gi}i∈I for a given set I, is a generating set if when

f, g : A1 → A2 such that f 6= g then, there exists i ∈ I and a morphism

h : Gi → A1 with f ◦ h 6= g ◦ h. If the generating set consists of only one

object then we say that this object is a generator for A.

Definition 2.2. Let A be a category and object A be in A. A subobject

of A is an isomorphism class of monomorphisms A′ ↪→ A in A. In addition,

we say that it is a strict subobject if a representative of the class is not an

isomorphism.

Remark 2.3. Two monomorphisms i : A′ ↪→ A and j : A′′ ↪→ A are isomorphic

in A if there exists an isomorphism k : A′ → A′′ in A such that i = j ◦ k.
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Definition 2.4. A Grothendieck category A is an abelian category sat-

isfying the following three conditions:

1. (Ab3) A has arbitrary coproducts,

2. (Ab5) A satisfies (Ab3) and for any A ∈ A, family of objects {Ai}i∈I in

A, B a subobject of A such that {Ai}i∈I is right filtered then (
∑

iAi)∩

B =
∑

i(Ai ∩B),

3. A has a generator.

For a given abelian categoryA satisfying the Ab3 condition, an equivalent

definition for an object G to be a generator is that, for all X ∈ A, there exists

a set I (possibly infinite) and an epimorphism
⊕

I G� X.

Another condition known as Ab4 is said to hold when the category has

arbitrary products. An abelian category which is Ab5 is automatically Ab4

[Pop73, Corollary 8.9, p.61].

The archetypical example of a Grothendieck category is the category,

R-Mod, of modules over a ring R. Another typical example is given by the

category, Qcoh(X), of quasicoherent sheaves on a scheme X. An example

which is of more interest to us is the category of Z-graded modules R-GrMod

for a Z-graded ring R. It is a Grothendieck category and has a generating set

given by {R(k)}k∈Z where R(k) is the k-twist of R. The terminology used

for the latter category is detailed in the forthcoming sections.

Definition 2.5. Let A be a category. An object A ∈ A is noetherian if

any ascending chain subobjects of A is eventually stationary.

Remark 2.6. By eventually stationary we mean that, in the ascending chain,

only finitely many inclusions are not isomorphisms in A.
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This definition generalises the property for an object to be noetherian

that holds in the category of R-Mod for a ring R and in R-GrMod if the ring

is graded.

Definition 2.7. An abelian category A is said to be locally noetherian if

it satisfies Ab5 and it possesses a generating set of noetherian objects.

The category R-Mod is locally noetherian if R is noetherian. Similarly,

the category R-GrMod is locally noetherian if R is noetherian.

Definition 2.8. Let A be an abelian category. A Serre subcategory of A

is a full subcategory S of A satisfying the property that for all A ∈ A and

exact sequence in A

0→ A′ → A→ A′′ → 0

we have A ∈ S ⇐⇒ A′, A′′ ∈ S.

In other words, a Serre subcategory is a full subcategory of an abelian

category closed under taking subobjects, quotients and extensions. It is very

easy to build Serre subcategories from exact functors between abelian cat-

egories. Indeed, the kernel of such functors is a Serre subcategory of the

source abelian category. Authors sometimes use the term thick, dense or

épaisse subcategories to denominate Serre subcategories. A Serre subcat-

egory of an abelian category is an abelian subcategory (the inclusion functor

is exact).

Given an abelian category A and a fixed Serre subcategory S we can

define a new category called the quotient category A/S.
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Definition 2.9. The quotient category A/S is the category whose objects

are objects of A and whose morphisms are given by

HomA/S(A,B) := lim−→ HomA(A′, B/B′)

where the filtered colimit is taken over subobjects A′ 6 A, B′ 6 B such that

A/A′, B′ ∈ S.

We gather the main properties that quotient categories satisfy in the next

proposition.

Proposition 2.10 ([Gab62]). The quotient category A/S is an abelian cat-

egory and there exists a canonical functor π : A → A/S, called the quo-

tient functor, which is exact, with kernel S and is essentially surjective.

Moreover, the pair (A/S, π) satisfies the universal property that whenever

there exists an exact functor F : A → B of abelian categories such that for

all objects of S ∈ S we have F (S) = 0, then there exists a unique exact

functor F : A/S → B such that F = F ◦ π.

We have a nice description of monomorphisms and epimorphisms of the

quotient category A/S induced by morphisms from A. The following pro-

position summarises the main properties.

Proposition 2.11. [Gab62, lemme 3, p.366] Let f : A→ B be a morphism

in A, then

1. Ker(π(f)) = π(Ker(f)) and Coker(π(f)) = π(Coker(f));

2. π(f) = 0 if and only if Im(f) ∈ S

3. π(f) is a monomorphism if and only if Ker(f) ∈ S;
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4. π(f) is an epimorphism if and only if Coker(f) ∈ S;

5. π(f) is an isomorphism if and only if Coker(f) and Ker(f) ∈ S.

There is a special kind of Serre subcategories which plays a pivotal role

in this thesis: the localising subcategories.

Definition 2.12. A Serre subcategory of an abelian category is said to be

localising if the quotient functor admits a right adjoint called the section

functor.

Remark 2.13. Right adjoint functors are unique up to equivalence. So it

makes sense to talk about the section functor.

Proposition 2.14. [Gab62, proposition 3, p.45] Let S be a localising sub-

category of an abelian category A and let π be the quotient functor and ω

the section functor. Then, the natural transformation π ◦ ω → IdA/S is an

equivalence.

The above proposition is fundamental in our thesis. It allows us to define

saturated objects.

Definition 2.15. With the conditions of the previous proposition and given

an object A ∈ A, (ω ◦π)(A) is called the A-saturation of A. And an object

in A is said to be A-saturated if it is isomorphic to the A-saturation of an

object in A. Let A-Sat be the full subcategory of A-saturated objects in A.

It can be seen from the adjunction that an A-saturated object is iso-

morphic to its own saturation. If A1 and A2 are A-saturated, then being

isomorphic in A/S is equivalent to being isomorphic in A.
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Proposition 2.16. [Pop73, corollary 6.2 p. 186] If S is a localising subcat-

egory of an Ab3 (resp. Ab4, Ab5, Grothendieck) category A, then the quotient

category A/S is an Ab3 (resp. Ab4, Ab5, Grothendieck) category.

An important example arises in the case where we have exact functor

F : A → B between Grothendieck categories with a fully faithful right adjoint

G : B → A. Then the kernel of F , KerF , is a localising subcategory of A

and it induces an equivalence of categories A/KerF ∼= B.

2.1.2 Torsion category

There is an important class of localising categories that can be described

using torsion theory of abelian categories.

Definition 2.17. Let A be an abelian category. A torsion pair is a pair

(T ,F) of strict (i.e. closed under isomorphisms) full subcategories of A

satisfying the following conditions:

1. HomA(T, F ) = 0 for all T ∈ T and F ∈ F ,

2. for all A ∈ A there exists a short exact sequence in A

0→ TA → A→ FA → 0

with TA ∈ T and FA ∈ F .

If such a pair exists, we say that T is a torsion class and F is a torsion-

free class. The assignment τA(A) = TA can be extended to an additive

functor τ : A → T called the torsion functor which is right adjoint to the

inclusion functor i : T → A [Dic66].

14



Definition 2.18. A torsion pair (T ,F) in an abelian category A is hered-

itary if the torsion class T is closed under taking subobjects.

It is very easy to see that for a given torsion pair, the torsion class is

always closed under factors, extensions and coproducts. An important result

shows that hereditary torsion theories are nothing but torsion theories whose

torsion class is a Serre subcategory [Ste71]. This gives a natural way to

construct Serre categories in the category of (graded) modules. What we

need to know now is what guarantees the existence of the section functor for

more specific categories. In the case where a category has sufficient injective

objects, we have the following important result.

Proposition 2.19. [Gab62, Corollaire 1, p.375] Let A be an abelian category

with injective envelopes and S a Serre subcategory. The following assertions

are equivalent:

1. S is a localising subcategory;

2. for any object A ∈ A, the set of all subobjects of A in S has a maximal

subobject.

Consider the category R-Mod for a given ring R and its full subcategory

of torsion modules R-Tors. It is easily seen that any module has a maximal

torsion submodule containing all the other ones. This result is essential to

prove the existence of the section functor for our categories of interest.

2.1.3 Graded algebras and quotient categories

Fix a field K throughout this subsection.
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Definition 2.20. A graded ring is a ring A together with a decompos-

ition into abelian groups A =
⊕

i∈ZAi with Ai.Aj ⊂ Ai+j. The non-zero

elements of the subgroup Ai are called homogeneous elements of degree i.

This decomposition is called a Z-grading and A is said to be Z-graded.

In the above definition, when Ai = 0 for i < 0, we say that A is positively

graded or N-graded. This definition can easily be extended to K-algebras

or just algebras if no confusion arises. The decomposition is, therefore, not

just an abelian group decomposition but a vector space decomposition. In

this case, if A is a positively graded algebra and A0 = K, then we say that

the algebra A is connected.

Definition 2.21. Let A be a graded algebra. An A-module M is Z-graded

if there exists a decomposition into vector spaces M =
⊕

i∈ZMi such that

Ai.Mj ⊂Mi+j

for all i, j ∈ Z.

If no confusion arises, we say that M is just a graded A-module. The

non-zero elements of Mi form the homogeneous elements of degree i of

M and Mi is the degree i homogeneous component of M .

Definition 2.22. Let A be a graded algebra. A homomorphism f : M →

N of graded A-modules of degree d is a homomorphism of A-modules

(forgetting the grading) such that f(Mi) ⊂ Ni+d for all i ∈ Z. If the degree

is not specified then the homomorphism is of degree zero.
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Denote by HomA(M,N)d the set of all degree d A-module homomorph-

isms and write

HomA(M,N) =
⊕
d∈Z

HomA(M,N)d.

It is a graded A-module.

Definition 2.23. Let A be a graded algebra. The category A-GrMod is

the category of graded A-modules whose morphisms are the graded module

homomorphims of degree zero.

We introduce the following notation for a given finitely generated graded

commutative noetherian connected K-algebra A.

Definition 2.24. Let M be a graded A-module. An element x ∈ M is

said to be torsion if there exists s ∈ Z such that x.
⊕

i>sAi = 0. Denote

by τA(M) the torsion elements of M ; it is a graded A-submodule of M . If

τA(M) = 0 then M is torsion-free. If τA(M) = M then M is torsion.

Denote by A-Tors the full subcategory of torsion modules in A-GrMod. It

is a torsion subcategory of A-GrMod which is a Grothendieck category with

injective envelopes. Hence, A-Tors is a localising subcategory of A-GrMod by

Proposition 2.19. Indeed, any graded module M has a maximal torsion mod-

ule, namely, τA(M). We can form the quotient category A-GrMod/A-Tors

and it comes equipped with an exact quotient functor

πA : A-GrMod→ A-GrMod/A-Tors

and a section functor

ωA : A-GrMod/A-Tors→ A-GrMod
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which is right adjoint to πA.

Let ExtqA(M,N)d be the qth derived functor of HomA(M,N)d and write

ExtqA(M,N) =
⊕
d∈Z

ExtqA(M,N)d.

Artin and Zhang prove [AZ94] that ExtqA( , ) is the qth derived bifunctor

of HomA( , ) and that for any graded A-module M

τA(M) ∼= lim−→ HomA(A/A>k,M),

R1τA(M) ∼= lim−→ Ext1
A(A/A>k,M).

Furthermore, there exists a long exact sequence of graded A-modules

0→ τA(M)→M → ωAπA(M)→ R1τA(M)→ 0

where τA(M) and R1τA(M) are torsion.

In the case where we are only interested in finitely generated graded

modules over A, we write the above categories in lower case: A-grmod, A-tors

and A-grmod/A-tors.

We can give an explicit description ofA-tors for finitely generated modules

when furthermore A is N-graded as follows:

HomA-grmod/A-tors(πA(M), πA(N)) = lim−→
M ′

HomA-grmod(M ′, N)

where M ′ runs through all the submodules of M such that M/M ′ is torsion.

We usually denote by curly letters the image of M ∈ A-GrMod through the

quotient functor πA : A-GrMod→ A-GrMod/A-Tors.

It is clear that the intersection of the categories A-grmod/A-tors and

A-Tors in the category A-GrMod/A-Tors coincides with A-tors. In particu-
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lar, the category A-GrMod/A-Tors contains A-grmod/A-tors as a full sub-

category. Sometimes, it is more convenient to work with A-GrMod/A-Tors

than with A-grmod/A-tors.

2.2 Weighted projective geometry

Fix an algebraically closed field K throughout this section.

Definition 2.25. Let An denote the n-dimensional affine space (one can

view An as Kn). Define an equivalence relation ∼ on An+1 \ {0} as follows:

x ∼ y ⇐⇒ ∃λ ∈ K× such that x = λy

Coordinatewise, we have (x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ xi = λyi for

i = 0, . . . , n. Define the n-dimensional projective space Pn to be the set

of equivalent classes with respect to ∼ on An+1 \ {0} . Formally,

Pn = (An+1 \ {0})/ ∼ .

One could naturally extend this definition to a more general case where

the powers of λ are general positive integers.

Definition 2.26. Fix Q = (q0, . . . , qn) to be n + 1-uple of positive integers

and let |Q| =
∑n

i=0 qi. The weighted projective space of type Q (wps),

P(Q), is the set of equivalence classes on An+1 \ {0} under the equivalence

relation ∼Q defined by:

(x0, . . . , xn) ∼Q (y0, . . . , yn) ⇐⇒ ∃λ ∈ K× such that xi = λqiyi for i = 0, . . . , n.
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The relation ∼Q defines an equivalence relation on An+1 \ {0}. The n-

dimensional projective space is a particular case of a wps of type (1, . . . , 1).

For each xi, we define its degree by letting deg(xi) = qi. Denote by [x0, . . . , xn]

the set of equivalence classes corresponding to the point (x0, . . . , xn) ∈ An+1\

{0}. Define

Ui = {[x0, . . . , xn] ∈ P(Q) | xi 6= 0}

to be the affine charts of P(Q) and

Hi = {[x0, . . . , xn] ∈ P(Q) | xi = 0}

its hyperplanes. We have:

P(Q) =
n⋃
i=0

Ui

Definition 2.27. FixQ as above. A polynomial f(x0, . . . , xn) ∈ K[x0, . . . , xn]

is weighted homogeneous of degree d if

f(λq0x0, . . . , λ
qnxn) = λdf(x0, . . . , xn) ∀λ ∈ K×

Definition 2.28. Fix Q. If for (x0, . . . , xn) ∈ An+1 \ {0}, f(x0, . . . , xn)

vanishes for a given weighted homogeneous polynomial, then f is well defined

on [x0, . . . , xn]. The set

V({fi|i ∈ I}) = {[x0, . . . , xn] ∈ P(Q) | fi(x0, . . . , xn) = 0, ∀i ∈ I} ⊂ P(Q)

is defined to be the weighted projective variety with respect to the family

{fi|i ∈ I} of weighted homogeneous polynomials.

Example 2.29. Let X = P(1, 1, 2). To understand X, a good strategy is

to look at the different affine pieces Ui for i = 0, 1, 2. We have U0
∼= A2 via
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the map [x0, x1, x2] 7→ (x1/x0, x2/x
2
0) and U1

∼= A2 via the map [x0, x1, x2] 7→

(x0/x1, x2/x
2
1). This is similar to what we get with the usual projective space

P2. The difference comes with U2. Consider the affine variety V = V(xz −

y2) ⊂ A3. We get U2
∼= V via the map [x0, x1, x2] 7→ (x2

0/x2, x0x1/x2, x
2
1/x2).

Now let us consider the map φ : [x0, x1, x2] 7→ [x2
0, x0x1, x

2
1, x2] from X → P3.

The map φ is injective and its image is the surface V(y0y2 − y2
1) ⊂ P3 with

homogeneous coordinates y0, y1, y2, y3. Via this map, we can consider X to

be a projective variety. More generally, weighted projective spaces are known

to be projective varieties [Dol82].

Example 2.30. Consider the equation y2 = f(x1, x2) where f is a homogen-

eous polynomial having 4 distinct roots in P1. We can define the hypersurface

C4 = V(y2 − f(x1, x2)) ⊂ P(1, 1, 2) with homogeneous coordinates x1, x2, y

and respective degree 1, 1, 2. This hypersurface does not pass through the

point [0, 0, 1] and it can be decomposed as the union of two affine charts U1

and U2 respectively when x1 6= 0 and x2 6= 0 (y 6= 0 implies x1 6= 0 or x2 6= 0)

glued together in the obvious way. Hence, we get a double cover C4 → P1

with 4 branch points given by f = 0. One could have taken the projective

closure and worked directly in P2 but the surface naturally sits in P(1, 1, 2)

[Rei02].

2.3 Appendix: stacks and orbifolds

The definition of an algebraic orbifold and its connection to smooth Deligne-

Mumford stacks is not very easy to find in the literature. In this section,

we would like to cover this gap and try to be as complete and self-contained

21



as possible. In particular, we want to show that in characteristic 0 the only

moduli space for a smooth quotient stack [X/G] is a quotient of X by G

endowed with its natural algebraic orbifold structure.

2.3.1 What is a stack?

For a good account on stacks, we invite the reader to look at [Ful] and

[LMB00]. There are two ways to think of what an algebraic stack is:

1. A category fibred in groupoids X with some additional properties,

2. An atlas (or groupoid presentation) R⇒ U where R and U are algeb-

raic spaces, and R determines an equivalence relation on U

We only give a description of a stack as a category fibred in groupoids.

Definition 2.31. A category fibred in groupoids over a base category

S is a category X with functor p : X → S satisfying the following two axioms:

(1) For every morphism f : T → S in S, and object s in X with p(s) = S,

there is an object t in X , with p(t) = T , and a morphism φ : t→ s in X

such that p(φ) = f .

(2) Given a commutative diagram in S

U

g
��

h

��????????

T
f
// S

with φ : t→ s in X mapping to f : T → S, and η : u→ s in X mapping

to h : U → S, there is a unique morphism γ : u → t in X mapping to
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g : U → T such that η = φ ◦ γ

u

∃!γ
���
�
�

η

��????????

t
φ
// s

Axiom (1) can be regarded as saying that pullbacks of objects exist, and ax-

iom (2) tells us that these pullbacks are unique up to canonical isomorphism.

For an object S in S, we denote by XS the subcategory of X whose

objects map to S through p : X → S, and whose morphisms map to the

identity map IdS. It follows from axiom (2) that every morphism in XS
is an isomorphism. (Given a morphism φ : t → s in XS, take u = s, and

η = Ids to get an inverse for φ). Recall that a groupoid is a category whose

morphisms are isomorphisms. This explains the terminology used to describe

these categories.

For a such a category to be a stack, it has to satisfy two descent properties

in étale topology listed in definition 2.48. To get an algebraic stack, it has to

satisfy some additional representability conditions given in definition 2.49.

All of our schemes are given over Spec(K) for a fixed field K. In the

category of schemes over K, the fibre product exists and is unique up to

isomorphisms. For two K-schemes X and Y , we denote their fibre product

by X ×K Y . It naturally comes equipped with two projection morphisms

p1 : X ×K Y → X and p2 : X ×K Y → Y .

Definition 2.32. We say that an affine group scheme G acts (on the

right) on a scheme X if there exists a morphism X×G→ X that induces

a right action X(U) × G(U) → X(U) of the group G(U) = Hom(U,G) on

the set X(U) = Hom(U,X) for every K-scheme U .
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Example 2.33. Let X be a scheme and G an affine group scheme. The

projection morphism p1 : X×KG→ X is called the trivial action and gives

a G-action X.

Definition 2.34. The (right) trivial torsor over a scheme S is the

scheme E = S ×K G together with the trivial action of G on S given by

E → S and the projection map on the first factor E × G → E. More

generally, a (right) G-torsor over a scheme S is a pair of schemes (X,S)

together with a morphism X → S and a right action of G on X which is

locally trivial with respect to the topology given on S. Given any morphism

f : T → S, we have a pullback f ∗E = T ×S E over T .

Remark 2.35. The locally trivial property required for G-torsors is given by

the existence of a covering map f : T → S such that the pullback f ∗E is

isomorphic to the trivial G-torsor on T , in particular T ×S E ∼= T ×G.

Example 2.36. Suppose that an affine group scheme G acts on the right on

a scheme X. There is a category, denoted by [X/G], whose objects are right

G-torsors E → S together with an equivariant morphism from E → X. A

morphism of [X/G] is a morphism from a G-torsor E ′ → S ′ to a G-torsor

E → S which is given by a morphism S ′ → S and a G-equivariant morphism

E ′ → E such that the diagram

E ′ //

��

E

��
S ′ // S
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is cartesian and that

E ′ //

  AAAAAAAA E

��
X

commutes.

The functor is given by p : [X/G] → S, (E, S,E → S,E × G → E,E →

X) 7→ S and (S ′ → S,E ′ → E) 7→ S ′ → S where S is the category of

K-schemes.

Proposition 2.37. [Gro61] For a fixed finitely generated K-algebra S, there

is a 1-1 correspondence between {Z-gradings of S} and {Gm-actions on Spec(S)}.

Proof. To define a Gm-action on Spec(S), it suffices to give a K-algebra

homomorphism S → S ⊗K K[X,X−1] ∼= S[X,X−1].

So let {x0, . . . , xr} denote a minimal set of homogeneous generators with

degree q0, . . . , qr respectively, so that S = K[x0, . . . , xr]. We define the K-

algebra homomorphism S → S[X,X−1], xi 7→ xiX
qi ; this gives us a Gm-

action on S.

For the converse, given a K-algebra homomorphism ψ : S → S[X,X−1],

we can write ψ as
∑

n∈Z ψnX
n where ψn : S → S are S-module homomorph-

isms and ψn(x) = 0 for all but finitely many n ∈ Z and x ∈ S. It can then

be checked that the image of 1 under ψn defines a Z-grading on S.

More generally, we have a 1-1 correspondence between {Zn-gradings of

S} and {Gn
m-actions on Spec(S)} where Gn

m is the n-dimensional algebraic

torus.

Definition 2.38. Let R = K[x0, . . . , xn] be the graded K-algebra with

deg(xi) = qi for some positive integers. Let An+1 = Spec(R) and denote by 0
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the element in An+1 corresponding to the irrelevant ideal. The multiplicative

affine schemeGm-action on An+1 is given by the grading of R. We can define a

category fibred in groupoid [An+1\{0}/Gm] called the weighted projective

stack denoted also by P(Q) where Q = (q0, . . . , qn). The canonical functor is

given by p : [An+1\{0}/Gm] → S, (E, S,E → S,E × G → E,E → X) 7→ S

where S is the category of K-schemes and (S ′ → S,E ′ → E) 7→ S ′ → S.

Remark 2.39. For a given Q, we denote by P(Q) the weighted projective

space and by [P(Q)] the weighted projective stack. Sometimes, we might de-

note both weighted projective stacks and varieties by P(Q) when the context

allows it.

Remark 2.40. Weighted projective stacks are smooth algebraic stacks.

Definition 2.41. Given a scheme X, the canonical category fibred in group-

oid over the category of schemes denoted by X is the category of X-schemes.

Its objects are (S, S → X) where S is a scheme and S → X a morph-

ism of schemes. Its morphisms are S → T such that the following diagram

commutes

S //

��@@@@@@@ T

��
X

2.3.2 Stacks and algebraic orbifolds

In the sequel, we refer to quasi-projective algebraic varieties over K simply as

varieties. We recall the definition of a Q-variety [Mum83] given by Mumford

which we refer to as an algebraic orbifold.
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Definition 2.42. A morphism f : X → Y between varieties is said to

be étale in codimension 1 if there exists a closed subset Z ⊂ X with

codimXZ > 2 such that f�X\Z : X \ Z → Y is étale.

Definition 2.43. We say that a scheme of finite type over its base field

X has quotient singularities if there exists an étale surjective morphism

X
′ → X such that X

′
is the disjoint union of schemes of the form U/G,

where U is smooth and G is a finite group acting on U .

There exists an equivalent algebraic statement of the above:

Proposition 2.44. The following two statements are equivalent:

(1) X has quotient singularities,

(2) If A is the strict henselisation of the local ring of X at a point, there

exists a finite smooth A-algebra B over the base field and a finite group

G acting on B such that A = BG.

Definition 2.45. A (quasi-projective) orbifold structure on a variety

X consists of a finite set of data {Xi, Gi, πi : Xi → X}i∈I called charts such

that for each i ∈ I:

• Xi (quasi-projective) smooth over K,

• Gi a finite group acting faithfully on Xi,

• πi : Xi → X is a (quasi-finite) morphism

where the following holds:

• X =
⋃
i∈I πi (Xi),
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• πi induces an étale morphism π
′
i : Xi/Gi → X for each i,

• Denoting by Xij the normalisation of Xi ×X Xj, the natural maps

p1 : Xij → Xi and p2 : Xij → Xj are étale for each i and j.

Remark 2.46. The last point ensures the compatibility between charts. A

new chart can be added as long as it satisfies the compatibility condition.

We say that X is a (quasi-projective) orbifold if it carries a (quasi-

projective) orbifold structure.

It is obvious from the definition that any orbifold has quotient singular-

ities. Conversely, we have the following result.

Proposition 2.47. [Vis89, prop. 2.8] If X is a normal scheme which has

quotient singularities then it possesses an orbifold structure such that its

charts are étale in codimension 1.

Proof. Let P be a closed point of X. By definition of X having quotient

singularities, there exists a smooth scheme U and a finite group G acting

on U with an étale morphism U/G → X whose image contains P . Moding

out by the kernel of the action, we can assume that G acts faithfully. Let

Q be a point in the inverse image of P . If GQ is the stabiliser of G at Q,

the morphism U/GQ is étale at Q. By restricting U , we can assume that Q

is a fixed point of G. An element of G is called a pseudoreflection if it

acts trivially on a divisor of U passing through Q. It is then a well known

fact (theorem of Chevalley-Shephard-Todd) that a subgroup H of G has the

property that U/H is smooth at the image of Q if and only if it is generated

by pseudoreflections. By dividing by the normal subgroup of G generated

by pseudoreflections and restricting U , we may suppose that the set of fixed
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points of any element of G has codimension at least 2 in U . It follows then

that the morphism U → X is étale in codimension 1. So, there exists a finite

set of schemes Uα, and morphisms Uα → X such that

• the Uα are smooth,

• the morphisms Uα → X are étale in codimension 1,

• for each α, there is a finite group Gα, acting on Uα in such a way that

Uα → X is the composition of the projection Uα → Uα/Gα with an

étale morphism Uα/Gα → X and,

• X is the union of the images of the Uα. Call Uαβ the normalization

of Uα ×X Uβ. The two projections from Uαβ to Uα and Uβ are étale

in codimension 1. From the theorem of purity of the branch locus, we

conclude that Uαβ is smooth and that the projections are étale. So

{Uα → X} is an orbifold, in the sense of [Mum83] (except that we do

not assume that X is quasiprojective).

Definition 2.48. A groupoid X over K is a stack if

(i) For any scheme X in (Sch/K) and any two objects ξ1 and ξ2 in XX ,

the functor

IsomX (ξ1, ξ2) : (Sch/X)→ (Sets)

which associates to a morphism f : Y → X, the set of isomorphisms in

XY between f ∗ξ1 and f ∗ξ2, is a sheaf in the étale topology.
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(ii) Let {Xi → X} be a covering of X in (Sch/K) in the étale topology.

Let ξi ∈ XXi , and let

φij : ξj�Xi×XXj → ξi�Xi×XXj

be isomorphisms in XXi×XXj satisfying the cocycle condition. Then

there exists ξ ∈ XX with isomorphisms ψi : ξ �Xi →̃ξi, such that

φij =
(
ψi�Xi×XXj

)
◦
(
ψj�Xi×XXj

)−1

Definition 2.49. A stack X is algebraic if:

(i) The diagonal ∆X : X → X × X is representable, quasicompact and

separated.

(ii) There is a scheme U and an étale surjective morphism U → X . Such a

morphism U → X is called an atlas.

It has been proved [Gil84, prop. 9.2], that we can associate to such a set

of data a smooth stack having a quasi-projective orbifold as moduli space.

Definition 2.50. [Vis89, Definition 2.1] A moduli space for a stack X is

a scheme X together with a proper morphism π : X → X such that, for

any algebraically closed field Ω, π induces a bijection between the connected

components of the groupoid X (Spec(Ω)) and X(Spec(Ω)).

Proposition 2.51. [Vis89, Proposition 2.8] A scheme X of finite type over a

field of characteristic 0 is the moduli space of some smooth stack if and only if

X is geometrically unibranch and its normalization has quotient singularities.
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Let G be a smooth affine group scheme over S, and let X be a scheme of

finite type over S with a right G-action α : X ×S G → X. We assume that

the stabilizer of any geometric point of X is finite and reduced, and that the

action is locally proper, in the sense that X can be covered by open invariant

subschemes U such that the induced action of G on U is proper.

To give a morphism from [X/G] to a scheme M is equivalent to giving

a morphism of schemes f : X → M such that if p1 : X × G → X is the

projection and α : X ×G→ X the group action then, f ◦ p1 = f ◦ α.

Recall that f is called submersive if any subsetM ′ ofM such that f−1(M ′)

is closed in X then M ′ is closed in M , and is called universally submersive if

every morphism obtained from f by base change is submersive. We say that

M is a quotient of X by G if

(i) f is universally submersive, and

(ii) the geometric fibres of f are precisely the orbits of the geometric points

of X.

Proposition 2.52. [Vis89, Proposition 2.11] A scheme is a moduli space for

[X/G] if and only if it is a quotient of X by G.

This establishes the relation between the algebraic orbifold structure of

the moduli space X/G and the smooth quotient stack [X/G].
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Chapter 3

Projective stacks and their

(quasi)coherent sheaves

3.1 Why stacks?

There are many pathologies that are observed when working with wps as

varieties [Dol82, BR86]. In this subsection, we describe these explicitly. For

this, let Q = (q0, . . . , qr) be ordered positive integers and define

di = gcd(q0, . . . , q̂i, . . . , qr),

ai = lcm(d0, . . . , d̂i, . . . , dr),

a = lcm(d0, . . . , dr).

Furthermore, assume that gcd(q0, . . . , qr) = 1. Note that ai|qi, gcd(ai, di) = 1

and aidi = a. Since gcd(qi, di) = 1, for each k ∈ Z, there exist unique integers

bi(k) and ci(k) such that by

k = bi(k)qi + ci(k)di, 0 6 bi(k) < di
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Proposition 3.1 ([BR86]). Let Q′ = (q0/a0, . . . , qr/ar) and define φ(k) =

(k −
∑r

i=0 bi(k)qi) /a.

1. For all k ∈ Z, the number φ(k) is an integer.

2. The isomorphism of varieties P(Q) ∼= P(Q′) induces an isomorphism

of sheaves OP(Q)(k) ∼= OP(Q′) (φ(k)).

The following theorem is well known for regular projective spaces.

Theorem 3.2 ([Har77] p.117 proposition 5.12). The n-dimensional project-

ive space Pn has the following properties:

1. For all k ∈ Z, OPn(k) is an invertible sheaf.

2. For all k ∈ N\{0}, OPn(k) is ample.

3. The graded ring homomorphism S(l) ⊗S S(m) → S(Q)(l + m), where

S = k[x0, . . . , xn], induces the following isomorphism of sheaves: OPn(l)⊗OPn

OPn(m) ∼= OPn(l +m).

4. For any graded S-module M and for all k ∈ Z, M̃(k) ∼= M̃⊗OPnOPn(k).

None of the above properties hold for all wps. We give counterexamples

for each of the 4 properties.

1. Recall that an invertible sheaf is a locally free sheaf of rank 1. Let

Q = (1, 1, 2), consider the sheaf OP(Q)(1) restricted to the open set

x2 6= 0. It corresponds to the ring

S(Q)(1)(x2) =

{
a

xk2
| a ∈ S(Q)(1)2k

}
=

{
a

xk2
| a ∈ S(Q)2k+1

}
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But OP(Q) restricted to the open set x2 6= 0 corresponds to the ring

S(Q)(x2) =

{
a

xk2
| a ∈ S(Q)2k

}
The monomial xa0x

b
1x

c
2 has degree a+b+2c. As a consequence, S(Q)(1)(x2)

is minimaly generated by x0 and x1 as an S(Q)(x2)-module. Moreover,

it is not a free module as the following relation holds

x2
0

x2

.x1 −
x1x0

x2

.x0 = 0.

2. The above example shows that OP(Q)(1) is not invertible, hence not

ample. But we might have an invertible sheaf which is not ample.

Take Q = (3, 5), we have P(Q) ∼= P1 which induces the isomorphism of

sheaves

OP(Q)(k) ∼= OP1 (φ(k)) .

Take k = 2, then φ(k) = −1. Hence OP(Q)(2) ∼= OP1(−1) which is not

ample albeit OP(Q)(2) is invertible.

To see how this isomorphism of sheaves is induced, let us consider

S(Q) = K[X0, X1] with deg(X0) = 3 and deg(X1) = 5. Consider the

graded subring S ′ =
⊕

j S(Q)15j. We have an equality of S ′-graded

modules ⊕
j

S(Q)(2)15j =
⊕
j

(X4
0X

1
1 )S(Q)(−15)15j.

Recall that Proj(S ′) ∼= P(Q), so it induces the isomorphism of sheaves

on P(Q)

OP(Q)(2) ∼= OP(Q)(−15).
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We know as well that S ′(15) ∼= K[T0, T1] with deg(T0) = deg(T1) = 1

and it induces the isomorphism

OP(Q)(−15) ∼= OP1(−15/15) = OP1(−1).

3. Take Q = (2, 3), we get

OP(Q)(2) ∼= OP1 ,

OP(Q)(4) ∼= OP1 ,

OP(Q)(6) ∼= OP1(1).

But clearly, OP1 ⊗OP1
OP1 ∼= OP1 � OP1(1).

4. Take M = S(Q)(4) then with Q = (2, 3),

M̃(2) = OP(Q)(6)

∼= OP1(1)

and

M̃ ⊗OP(Q)
OP(Q)(2) = OP(Q)(4)⊗OP(Q)

OP(Q)(2)

∼= OP1

The above properties remain true for all wps when considered as stacks.

The study of their coherent sheaves boils down to only studying the Gm-

equivariant coherent sheaves on An+1\{0}.
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3.2 (Quasi)coherent sheaves on projective stacks

The following lemma is clear.

Lemma 3.3. [Rou10] Let A be an abelian category, A′ ⊂ A a full subcategory

and I a Serre subcategory of A. Suppose that for all M ∈ A′, and all N ∈ I

subobject or quotient of M we have N ∈ A′, then the canonical functor

A′

I ∩ A′
→ A
I

is fully faithful.

We want to understand the quasicoherent sheaves of an open subscheme

in terms of its natural ambient space.

Lemma 3.4. [Rou10] Let X be separated scheme of finite type over K and

Z a closed subscheme of X. Write U = X \ Z for the open complement of

Z in X. Then

Qcoh(X)/QcohZ(X) ∼= Qcoh(U)

and

Coh(X)/CohZ(X) ∼= Coh(U)

where QcohZ(X) (resp. CohZ(X)) is the full subcategory of quasicoherent

(resp. coherent) sheaves on X supported on Z.

Proof. Denote by j : U ↪→ X the embedding. The pullback j∗ : Qcoh(X) →

Qcoh(U) induces an equivalence of categories Qcoh(X)/QcohZ(X) ∼= Qcoh(U).

To see this, we can remark that the kernel of j∗ is precisely QcohZ(X). The

adjunction counit

j∗j∗ → IdQcoh(U)
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is an isomorphism. Suppose that F ∈ Qcoh (X) such that j∗ (F) = 0, taking

stalks for x ∈ U and knowing that FU = j∗ (F), we deduce that

(j∗j∗ (F))x = 0

which is equivalent to Fx = 0, hence the assertion. Since QcohZ(X) is a

Serre subcategory of Qcoh(X) (closed under taking subobjects, quotients

and extensions), we get an exact sequence of abelian categories

0→ QcohZ(X)→ Qcoh(X)→ Qcoh(X)/QcohZ(X)→ 0

But we have another exact sequence of abelian categories [Gab62, Proposition

3 p. 411] [Rou10] given by

0→ QcohZ(X)→ Qcoh(X)→ Qcoh(U)→ 0

Hence, by the universal property of quotient categories [Gab62], the result

follows.

For the case of coherent sheaves, it is enough to show that the induced

functor is fully faithful and that j∗ is essentially surjective.

From the above lemma, taking A = Qcoh (X), A′ = Coh (X) and I =

QcohZ (X), the question is local, so we can check the assumptions in the case

when X is affine for which the result is obvious since X is noetherian. Hence

Coh(X)/CohZ(X)→ Coh(U)

is fully faithful (the image category is Qcoh (U) but the coherent property is

preserved by this functor).

To prove essential surjectivity, let G be a coherent sheaf on U . We need

to show that there is a coherent sheaf K on X such that j∗ (K) ∼= G. Take
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F := j∗ (G), so in particular j∗(F) ∼= G by the natural adjunction counit

isomorphism

j∗j∗ → IdQcoh(U)
.

Since X is noetherian, we deduce that F is quasicoherent (For a noetherian

scheme X, taking direct image preserves the quasicoherent property [Har77,

chap. II prop.5.8]). Now in [Har77, chap. II ex. 5.15 (e)], we know that

F =
⋃

E6F , E coherent

E .

The pullback j∗ commutes with filtered colimit

j∗ (F) =
⋃

E6F , E coherent

j∗ (E) .

Knowing that j∗(F) ∼= G is coherent and that the filtered union is an increas-

ing union of a family of coherent subsheaves of F , then there exists a coher-

ent subsheaf E 6 F such that j∗ (E) = j∗ (F). So G ∼= j∗ (E) is a coherent

sheaf on X. Hence, we get an equivalence of categories Coh(X)/CohZ(X) ∼=

Coh(U).

It is known that for a given scheme X, there is a 1-1 correspondence

between quasicoherent ideal sheaves of OX and the closed subschemes of

X. Moreover if X = Proj (A) with A = K [x0, . . . , xn] and deg(xi) = 1,

then we have a 1-1 correspondence between saturated homogeneous ideals

of A = K [x0, . . . , xn] and the closed subschemes of X [Har77]. The last

correspondence relies on the property that the sheafification of the graded

A-module Γ∗ (F), namely Γ̃∗ (F), is isomorphic to F for any quasicoherent

sheaf of X under the additional condition that A is finitely generated by
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A1 as an A0-algebra. If there is an i such that deg(xi) 6= 1, then this is

not true anymore. Since we are only interested in meaningful geometrical

weighted projective varieties, i.e. varieties defined as zeroes of some weighted

homogeneous polynomials in A with a positive grading, we proceed as follows:

1. Let X be an irreducible weighted projective variety in a weighted pro-

jective space P(Q). Take its defining homogeneous ideal I(X) � A.

2. Define the homogeneous coordinate ring of X to be

K[X] = K[x0, . . . , xn]/I(X)

with deg(xi) = qi.

3. Define the cone of X to be C(X) = Spec(K[X]) and the punctured

cone of X, C(X)0, to be the cone of X minus the vertex of the cone of

X.

4. The torus Gm acts naturally on C(X) and we associate to X the quo-

tient stack

X̃ := [C(X)0/Gm]

There are different notions of a projective stack, for instance, a stack

whose coarse moduli space is a projective variety. Here we use a more re-

strictive notion:

Definition 3.5. [Zho09] A (smooth) projective stack is a (smooth) closed

substack of a weighted projective stack.

It is given by the quotient stack of a smooth closed Gm-invariant subvari-

ety of V \ {0}. Let us spell it out. Let V =
⊕

Vk be a positively graded
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K-vector space of dimension n + 1. Naturally, we treat it as a Gm-module

with positive weights by λ • vk = λkvk where vk ∈ Vk. Let Y be a smooth

closed Gm-invariant subvariety of V \ {0}. We define a projective stack as

the stack [X] = [Y/Gm]. The GIT quotient X = Y//Gm is the coarse moduli

space of [X]. Note that we do not require the closure of Y in V to be smooth

at the origin. In that case, C(X)0 is precisely given by Y .

We would like to describe the category of the wps (quasi)coherent sheaves.

In general, if a scheme U is acted by an algebraic group G then it can be

shown that the category of (quasi) coherent sheaves on the quotient stack

[U/G] is equivalent to the category of G-equivariant (quasi)coherent sheaves

on U due to effective descent for strictly flat morphisms of algebraic stacks

[LMB00, Thm. 13.5.5]. Applying this fact to projective stacks, it follows

that

Qcoh([Y/Gm]) ∼= QcohGmQ (Y ) .

Where QcohGmQ (Y ) is the category ofGm-equivariant quasicoherent sheaves

on Y . A similar result holds for coherent sheaves on a projective stack.

Proposition 3.6. [AZ94, AKO08] Let A be a connected finitely generated

N-graded commutative noetherian K-algebra. Then the category of coherent

(resp. quasicoherent) sheaves on the quotient stack [Spec(A)0/Gm] is equival-

ent to the quotient category A-grmod/A-tors (resp. A-GrMod/A-Tors).

Proof. The category of (quasi)coherent sheaves on the stack [Spec(A)0/Gm]

is equivalent to the category of Gm-equivariant (quasi)coherent sheaves on

Spec(A)0 where Spec(A)0 = Spec(A)\{0}. The category of (quasi)coherent

sheaves on Spec(A)0 is equivalent to the quotient of the category of (quasi)-

coherent sheaves on Spec(A) by the subcategory of (quasi)coherent sheaves
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with support on 0 by the above lemma. But this is also true for the cat-

egories of Gm-equivariant sheaves. However, the category of (quasi)coherent

Gm-equivariant sheaves on Spec(A)0 is just the category of finitely gener-

ated modules A-grmod (resp. A-GrMod) of graded modules over A; and the

subcategory of (quasi)coherent sheaves with support on 0 coincides with the

subcategory A-tors (resp. A-Tors). Thus, we obtain that

Coh([Spec(A)0/Gm]) ∼= A-grmod/A-tors

and

Qcoh([Spec(A)0/Gm] ∼= A-GrMod/A-Tors.

This proposition says that to study the coherent sheaves on the weighted

projective stack, it suffices to understand the quotient category of graded

finitely generated modules over A modulo torsion (or quotient category of

graded modules over A modulo torsion for quasicoherent sheaves). Taking

the special case where A = K[X], we get the following result.

Corollary 3.7. The category of coherent (resp. quasicoherent) sheaves of a

projective stack X̃ is equivalent to the category K[X]-grmod/K[X]-tors (resp.

K[X]-GrMod/K[X]-Tors) where K[X] is the associated homogeneous coordin-

ate ring of X.

3.3 A tensor product

Let A be a commutative connected positively gradedK-algebra. All our mod-

ules in this section are graded A-modules and homomorphisms are graded
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A-module homomorphisms.

Let M and N be two A-modules. Then M ⊗AN has a natural A-module

structure. We want to induce on the quotient category A-GrMod/A-Tors, for

which A-Tors is a localising subcategory of A-GrMod by Proposition 2.19, the

structure of a symmetric monoidal category. Consider the full subcategory

of A-saturated modules A-Sat in Definition 2.15. The essential image of the

section functor ωA consists precisely of the A-saturated modules. Thus

ωA : A-GrMod/A-Tors→ A-GrMod

is full and faithful onto its image. Indeed if N is A-saturated,

HomA-GrMod/A-Tors(πA(M), πA(N)) ∼= HomA-GrMod(M,N).

We identify the quotient category with its image A-Sat and call its objects

sheaves.

Let A be the coordinate ring of some projective stack [X] and denote by

Qcoh([X]) the category of quasicoherent sheaves on [X]. The graded global

section functor Γ∗ : Qcoh([X]) → A-GrMod and the sheafification functor

Sh: A-GrMod→ Qcoh([X]) induce the following equivalence of categories:

A-GrMod/A-Tors ∼= Qcoh([X]).

Definition 3.8. Let M be a graded A-module. Then M = πA(M) is said

to be a coherent O[X]-module if there exists K such that M>K is finitely

generated. If M satisfies this property then we say that M is eventually

finitely generated.

Remark 3.9. For all K, πA(M) ∼= πA(M>K). This ensures that, up to iso-

morphism, the same object is considered in the quotient category. It extends
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the definition of a coherent sheaf for regular projective spaces to projective

stacks. We do not specifically ask the module to be finitely generated. For

example, when A = K[x] with deg(x) = 1, M = K[x, x−1] is not finitely gen-

erated over A but it corresponds to the sheaf O[X] which is coherent. Indeed,

M>0 is finitely generated over A.

From general localisation theory [Gab62], A-Sat is a Grothendieck cat-

egory and in particular, it is abelian. But it is not an abelian subcategory of

A-GrMod 1. The kernels in both categories are the same but the cokernels of

a homomorphism between two saturated A-modules are not necessarily satur-

ated. The saturation functor Sat : A-GrMod → A-Sat is exact and its right

adjoint, namely the inclusion functor, is left exact. Moreover it preserves

finite direct sums as does any additive functor in any additive category.

There exists a symmetric monoidal structure in the category of quasico-

herent sheaves on [X]. Note that Sh(M)⊗Sh(N) ∼= Sh(M ⊗A N) in Qcoh([X]).

So,

Γ∗(Sh(M)⊗ Sh(N)) ∼= Γ∗(Sh(M ⊗A N))

∼= Sat(M ⊗A N)

where all the isomorphisms are natural. Hence, we can transport the sym-

metric monoidal structure to A-GrMod/A-Tors and define a tensor product.

Take M and N in A-GrMod/A-Tors and let

M⊗N := Sat(M ⊗A N).

1A full subcategory of an abelian category need not be an abelian subcategory
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where as objects M = πA(M) and N = πA(N). Since Sat and the tensor

product of graded modules is right-exact so is the new tensor product defined

on A-GrMod/A-Tors. As A-Sat is naturally equivalent to A-GrMod/A-Tors,

we can define an equivalent tensor product on A-Sat which is used henceforth

in this chapter. We five a more detailed proof of the next proposition first

given by Garkusha and Prest.

Proposition 3.10 ([GP08]). Let M , N be two graded A-modules. We have

Sat(Sat(M)⊗A Sat(N)) ∼= Sat(M ⊗A N).

Proof. Consider the following exact sequence in A-GrMod [AZ94]:

0→ τ(M)→M → Sat(M)→ R1τ(M)→ 0

where τ(M) is the largest torsion submodule of M . The saturation of M ,

denoted by M̃ , is the maximal essential extension of M/τ(M) such that

M̃/(M/τ(M)) is in A-Tors. So we have

0→M/τ(M)→ Sat(M)→ T → 0

where T is in A-Tors. Applying by ⊗A N we obtain

. . .→ TorA1 (T,N)→M/τ(M)⊗A N → Sat(M)⊗A N → T ⊗A N → 0.

From the properties of the Tor functor, it is known that TorA1 (T,N) ∼=

TorA1 (N, T ). Now taking a projective resolution of N and tensoring by T

we get a complex of objects in A-Tors since tensor product preserves torsion.

Therefore TorA1 (T,N) is in A-Tors. The saturation functor is exact and the
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saturation of a torsion object is isomorphic to the zero object, so we get a

short exact sequence

0→ Sat(M/τ(M)⊗A N)→ Sat(Sat(M)⊗A N)→ 0→ 0.

And hence, an isomorphism

Sat(M/τ(M)⊗A N) ∼= Sat(Sat(M)⊗A N).

Moreover, we have the following short exact sequence

0→ τ(M)→M →M/τ(M)→ 0.

Tensoring on the left by N we get

τ(M)⊗A N →M ⊗A N →M/τ(M)⊗A N → 0.

Since τ(M)⊗A N is torsion, applying the saturation functor we obtain

0→ Sat(M ⊗A N)→ Sat(M/τ(M)⊗A N)→ 0.

And hence, an isomorphism

Sat(M ⊗A N) ∼= Sat(M/τ(M)⊗A N).

So,

Sat(M ⊗A N) ∼= Sat(Sat(M)⊗A N).

To conclude,

Sat(M ⊗A N) ∼= Sat(Sat(M)⊗A N)

∼= Sat(N ⊗A Sat(M))

∼= Sat(Sat(N)⊗A Sat(M))

∼= Sat(Sat(M)⊗A Sat(N)).

45



3.4 Ample vector bundles

In this subsection, we define the notion of vector bundles of finite rank purely

in cohomological terms.

We have a graded Hom defined on A-Sat as follows:

HomA-Sat(M,N ) =
⊕
k∈Z

HomA-Sat(M,N [k])

where as objects N [k] = Sat(N [k]) (saturation is preserved under shifts).

The injective objects in A-Sat are the injective torsion-free A-modules

in A-GrMod (they are all saturated) and since A-Sat is a Grothendieck cat-

egory then it has enough injectives [Gab62]. Moreover, an injective object

in A-GrMod can be decomposed as a direct sum of an injective torsion-free

A-module and an injective torsion A-modules determined up to isomorphism

[AZ94]. So, the injective resolution of a A-module N , say E•(N), is equal

to Q•(N)⊕ I•(N) where Q•(N) is the saturated torsion free part and I•(N)

the torsion free part. Assume from now on that M is an eventually finitely

generated graded A-module:

ExtiA-Sat(M,N ) = RiHomA-Sat(M, )(N )

∼= hi(HomA-GrMod(M,Q•(N))).

Graded Ext is defined as follows:

ExtiA-Sat(M,N ) =
⊕
k∈Z

ExtiA-Sat(M,N [k])

∼= hi(HomA-GrMod(M,Q•(N))).

So, we can endow the graded Ext in A-Sat with the structure of a graded
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A-module. Now we define the sheafified version of graded Ext as follows

Exti(M,N ) := Sat(ExtiA-Sat(M,N ))

where M = Sat(M) and N = Sat(N) are objects in A-Sat (recall that M is

an eventually finitely generated A-module).

Let X be a smooth projective variety, OX its structure sheaf and E a

vector bundle of finite rank. Equally, E is a locally free sheaf. This is

equivalent to asking that for all x ∈ X the stalk Ex is a free module of

finite rank over the regular local ring OX,x. But Ex is a free module if and

only if ExtiOX,x(Ex,OX,x) = 0 for all i > 0. Since ExtiOX,x(Ex,OX,x) ∼=

ExtiOX (E ,O)X,x for all x ∈ X, then E is a vector bundle if and only if

ExtiOX (E ,OX) = 0 for all i > 0. This justifies the next definition for quotient

stacks [X],

Definition 3.11. Let M be a coherent sheaf. M is a vector bundle or a

locally free sheaf if

Exti(M,O[X]) = 0

for all i > 0 where O[X] := Sat(A).

For example, if [X] is a weighted projective stack of dimension greater

than 2 then A is a graded polynomial ring with more than 2 variables. In

this case, it is known that O[X] = A [AZ94]. But since O[X](k) is projective

then O[X](k) is locally free for all k.

Definition 3.12. A sheaf M is said to be weighted globally generated

if there exists an epimorphism

l−1⊕
j=0

O[X](j)
⊕sj →M→ 0
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for some non-negative sj with l = lcm(q0, . . . , qn).

In the case where all the weights are 1, the least common multiple is also

equal to 1 and we obtain the definition of globally generated sheaves adopted

for projective varieties.

Proposition 3.13. 1. Any quotient of a weighted globally generated sheaf

is weighted globally generated.

2. The direct sum of two weighted globally generated sheaves is weighted

globally generated.

3. For all k > 0, O[X](k) is weighted globally generated.

4. The tensor product of two weighted globally generated sheaves is weighted

globally generated.

Proof. 1. It follows from the definition and the fact that the composition

of two epimorphisms is an epimorphism.

2. This follows immediately by definition.

3. By the division algorithm, we know that k = al + r for some non-

negative integer a and 0 6 r < l.

Claim. The following map

O[X](r)
⊕(n+1) → O[X](k)

induced by (0, . . . , 1j, . . . , 0) 7→ x
al
qj

j is an epimorphism in A-Sat.
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To prove our claim we need to show that the cokernel of the map in

A-GrMod is torsion. Take a homogeneous element f ∈ A(k) and let

N = max
{
al
qj
, j ∈ {0, . . . , n}

}
. Suppose that h ∈ A is a homogeneous

element of degree greater than N . So, it can be written as h′x
al
qj

j for

some j ∈ {0, . . . , n}. It follows that hf is in the image of the map.

Hence, its cokernel is torsion.

4. Suppose that M1 and M2 are weighted globally generated. Then we

know that
l−1⊕
j=0

O[X](j)
⊕s1j →M1 → 0 (1)

and
l−1⊕
k=0

O[X](k)⊕s
2
k →M2 → 0 (2)

Tensoring (2) by
⊕l−1

j=0O[X](j)
⊕s1j on the left and (1) by M2 on the

right, it follows that

l−1⊕
j=0

O[X](j)
⊕s1j ⊗

l−1⊕
k=0

O[X](k)⊕s
2
k →

l−1⊕
j=0

O[X](j)
⊕s1j ⊗M2 → 0.

and
l−1⊕
j=0

O[X](j)
⊕s1j ⊗M2 →M1 ⊗M2 → 0

Since the composition of epimorphisms is an epimorphism, we get

l−1⊕
j=0

O[X](j)
⊕s1j ⊗

l−1⊕
k=0

O[X](k)⊕s
2
k →M1 ⊗M2 → 0.

Therefore, ⊕
06j+k62(l−1)

O[X](j + k)⊕(s1j+s
2
k) →M1 ⊗M2 → 0.
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Since each summand is weighted globally generated and that a direct

sum of such is weighted globally generated, the result follows.

In any symmetric braided tensor abelian category A we can define the

nth symmetric power functor Symn : A → A as the coequalizer of all the

endomorphisms σ ∈ Sn of the nth tensor power functor T n.

Proposition 3.14. Let M ∈ A-Sat, then Symn(M) ∼= Sat(Sn(M)) where

Sn is the nth symmetric power taken in A-GrMod and M = Sat(M).

This result holds because of the definition of our tensor product in A-Sat;

we preserve the monoidal symmetric structure and each transposition acts by

switching tensorands before saturation. More generally, it should be noted

that saturating a module corresponds geometrically to the sheafification of a

presheaf.

Furthermore, the following properties hold:

Proposition 3.15 ([Bra14]). 1. There exists an epimorphism

Symp(M)⊗ Symq(M)� Symp+q(M).

2. There is a natural isomorphism⊕
p+q=n

Symp(M)⊗ Symq(N )→ Symn(M⊕N ).

3. The functor Symn preserves epimorphisms and sends coherent sheaves

to coherent sheaves.

50



4. There is a natural epimorphism

Symn(M)⊗ Symn(N )→ Symn(M⊗N ).

Definition 3.16. A vector bundle M is ample if for any coherent sheaf F

there exists n0 > 0 such that

F ⊗ Symn(M)

is weighted globally generated for all n > n0.

Proposition 3.17. 1. Let M be an ample sheaf. There exists a non-

negative integer n0 such that for all n > n0, Symn(M) is weighted

globally generated.

2. The quotient of an ample sheaf is ample.

Proof. 1. Suppose M is ample, since O[X] is a coherent sheaf then there

exist a non-negative n0 such that for all n > n0

O[X] ⊗ Symn(M) ∼= Symn(M)

is weighted globally generated.

2. For a given sheaf F , tensoring by F on the left is a right exact functor

as it is a composition of a right exact functor and an exact functor.

Let M′ be a quotient of M, i.e., we have an epimorphism M �M′.

Since Symn preserves epimorphisms we have

Symn(M)� Symn(M′),

so

F ⊗ Symn(M)� F ⊗ Symn(M′)
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for any coherent sheaf F . ButM is ample, so for n sufficiently large F⊗

Symn(M) is weighted globally generated and since F ⊗ Symn(M) �

F ⊗ Symn(M′) is an epimorphism then F ⊗ Symn(M′) is weighted

globally generated. This shows that M′ is ample.

Proposition 3.18. The finite direct sum of ample sheaves is ample.

Proof. The proof is similar to the one given by Hartshorne [Har66]. We know

that

Symn(M⊕N ) =
n⊕
p=0

Symp(M)⊗ Symn−p(N ).

Write q = n − p. It suffices to show that there exists some non-negative

integer n0 such that when p+ q > n0, then

F ⊗ Symp(M)⊗ Symp(N )

is weighted globally generated.

Fix some coherent sheaf F ,

1. M is ample so there exists a positive integer n1 such that for all n > n1,

Symn(M)

is weighted globally generated.

2. N is ample so there exists a positive n2 such that for all n > n2,

F ⊗ Symn(N )

is weighted globally generated.
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3. For each r ∈ {0, . . . , n1−1}, the sheaf F⊗Symr(M) is coherent. Since

N is ample, there exists mr such that for all n > mr,

F ⊗ Symr(M)⊗ Symn(N )

is weighted globally generated.

4. For each s ∈ {0, . . . , n2−1}, the sheaf F ⊗Syms(N ) is coherent. Since

M is ample, there exists ls such that for all n > ls,

F ⊗ Symn(M)⊗ Syms(N )

is weighted globally generated.

Now take n0 = maxr,s{r +mr, s+ ls}, then for any n > n0

F ⊗ Symp(M)⊗ Symq(N )

is weighted globally generated.

Indeed, we have 3 cases,

(i) Suppose p < n1. Then p + q > n0 > p + mp, so q > mp and by 3. we

are done.

(ii) Suppose q < n2. Then p + q > n0 > lq + q, so p > lq and by 4. we are

done.

(iii) Suppose p > n1 and q > n2, so Symp(M) and F ⊗ Symq(N ) are

weighted globally generated and so is their tensor product.

We conclude that M⊕N is ample.
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Corollary 3.19. Let M and N be two sheaves. Then, M⊕N is ample if

and only if M and N are ample.

Proof. We already know that if M and N are ample then so is their direct

sum. Conversely, M and N are quotient of M⊕N which is ample, so are

M and N .

Corollary 3.20. The tensor product of an ample sheaf and a weighted glob-

ally generated sheaf is ample.

Proof. LetM be an ample sheaf and N a weighted globally generated sheaf.

So,
l−1⊕
j=0

O[X](j)
⊕sj → N → 0.

Tensoring by M,

l−1⊕
j=0

M⊗O[X](j)
⊕sj →M⊗N → 0.

It suffices to show that M⊗O[X](j) for j ∈ {0, . . . , l − 1} is ample. Let F

be a coherent sheaf and consider

F ⊗ Symn(M⊗O[X](j))

for n a non-negative integer. It is a quotient of

F ⊗ Symn(M)⊗ Symn(O[X](j)) ∼= F ⊗ Symn(O[X](j))⊗ Symn(M).

But F ⊗ Symn(O[X](j)) is a coherent sheaf and M is ample, so there exists

a non-negative integer n0 such that for all n > n0

F ⊗ Symn(O[X](j))⊗ Symn(M)
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is weighted globally generated. It follows that all its quotients are weighted

globally generated and in particular F ⊗ Symn(M⊗O[X](j)). Hence, M⊗

O[X](j) is ample and the result follows.

Lemma 3.21. The sheaf O[X](1) is ample.

Proof. Let F = πA(F ) be a coherent sheaf. Without loss of generality, we

can assume that F is finitely generated over A by finitely many homogeneous

elements f0, . . . , fc of degree ρ0, . . . , ρc respectively.

Take n0 = max{ρ0, . . . , ρc}, then for each n > n0 we have

n− ρi = ail + ri

where 0 6 ri < l by the division algorithm.

Claim. The map
n⊕
j=0

c⊕
i=0

O[X](ri)→ F(n)

induced by ((0, . . . , 0), . . . , (0, . . . , 1i, . . . , 0)j, . . . (0, . . . , 0)) 7→ x
ail

qj

j fi is an epi-

morphism in A-Sat.

To prove the claim, it suffices to show that the cokernel of the map in

A-GrMod is torsion. So take f ∈ F (n) homogeneous and assume that f can

be written kfi for some i ∈ {0, . . . , c}. Let N be the maximum among all
ail

qj
for i ∈ {0, . . . , c} and j ∈ {0, . . . , n}. Suppose that h ∈ A is an homogeneous

element of degree greater than N . So it can be written as h′x
ail

qj

j for some

i ∈ {0, . . . , c} and j ∈ {0, . . . , n}. It follows that hf is in the image of the

map. Henceforth, its cokernel is torsion.
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Since O[X](1) is ample and weighted globally generated, then O[X](2) is

ample for any weighted projective stack. However, OX(2) ∼= OX(−1) is not

ample for X = P(3, 5) when considered as a variety.

Theorem 3.22. The tangent sheaf of any weighted projective stack is ample.

Proof. We have the short exact sequence [Zho09]

0→ O[X] →
n⊕
j=0

O[X](qj)→ T → 0.

It is evident that T is a vector bundle. Each summand of the central term

is ample since O[X](qi) = O[X](1)⊗qi and O[X](1) ample. Moreover, T is the

quotient of a finite direct sum of ample sheaves. So T is ample.

We obtain the following corollary proved first by Hartshorne

Corollary 3.23 ([Har66]). The tangent sheaf of a standard projective space

is ample.

A converse of this corollary exists and provides a characterisation of

smooth projective spaces also known as the Hartshorne conjecture proved

by Mori,

Theorem 3.24 ([Mor79]). Let X be an irreducible projective smooth variety

of dimension n. If the tangent vector bundle of X is ample then X ∼= Pn.

It is natural to ask whether the conjecture of Hartshorne holds for smooth

projective stacks. We formulate it as follows:

Conjecture 3.25. The only smooth irreducible projective stacks with ample

tangent bundle are weighted projective stacks.
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Chapter 4

D-modules

In this chapter, K will be an algebraically closed field of characteristic 0.

4.1 Introduction

4.1.1 Differential operators

Definition 4.1. Let X be a smooth algebraic variety over K. It possesses

two natural sheaves: the structural sheaf OX also called sheaf of regular

functions and the vector fields sheaf ΘX . More explicitly,

ΘX = {θ ∈ EndC (OX) | θ (f.g) = θ (f) .g + f.θ (g)} .

We usually consider OX as a subsheaf of EndC (OX). The sheaf of differ-

ential operators DX on X is generated by OX and ΘX as an OX-algebra.

Definition 4.2. Let F be a sheaf on X, we say that it is a left DX-module

if for all open set U ⊂ X, F(U) is a left DX(U)-module compatible with

restriction maps.
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OX-modules possessing a left DX-module structure are characterised by

the following lemma:

Lemma 4.3. Let F be an OX-module. F has a left DX-module structure if

and only if there exists a C-linear morphism ∇ : ΘX → EndC (F) defined by

θ 7→ ∇θ satisfying the following conditions:

(i) ∇fθ(s) = f∇θ(s),

(ii) ∇θ(fs) = f∇θ(s) + θ(f)s,

(iii) ∇[θ1,θ2](s) = [∇θ1 ,∇θ2 ] (s).

The DX-module structure is given on F by θ.s = ∇θ(s).

Proof. It suffices to notice that [θ, f ] = θ (f) for f ∈ OX and θ ∈ ΘX , and

that DX is generated by OX and ΘX .

For a sheaf F that is locally free of finite rank, the conditions (i) and

(ii) define a connection and (iii) says that the connection is flat (or integ-

rable).

4.1.2 D-affinity

We denote the category of quasicoherent OX-modules by OX-Qcoh and the

category of left DX-modules which are quasicoherent over OX by DX-Qcoh.

In particular, the latter is an abelian category.

In the case where X is an affine variety, we know that the global sec-

tion functor Γ (X, ) : OX-Qcoh → Γ (X,OX) -Mod is exact, and also, if

Γ (X,F) = 0 then F = 0 for F ∈ OX-Qcoh.

This notion is extended to DX-modules as follows:
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Definition 4.4. A smooth algebraic variety is called D-affine if both

(a) the global section functor Γ (X, ) : DX-Qcoh → Γ (X,DX) -Mod is ex-

act,

(b) if Γ (X,F) = 0 then F = 0 for F ∈ DX-Qcoh.

It is obvious to see that affine algebraic varieties are D-affine. An equi-

valent definition is that the global section functor Γ (X, ) establishes an

equivalence of categories between DX-Qcoh→ Γ (X,DX) -Mod.

There is a criterion that allows us to eliminate easily spaces which are

not D-affine and the first non-trivial example is given by C2 \ {(0, 0)}.

Proposition 4.5. Assume that X is D-affine. Then for any F ∈ DX-Qcoh

and i > 0, we have H i(X,F) = 0.

Proof. Any such sheaf can be embedded into an injective object consisting

of quasicoherent left DX-modules which are flasque. Then by taking such a

resolution and using the fact that Γ (X, ) is exact, the result follows.

Example 4.6. Let X = C2 \{(0, 0)}, we compute the first Čech cohomology

vector space to show that X is not D-affine. An affine covering of X is

given by Ux = Spec (C [x, y]x) = Spec (C[x, y, x−1]), Uy = Spec
(
C [x, y]y

)
=

Spec (C[x, y, y−1]). The intersection is given by

Uxy = Ux ×C Uy

= Spec
(
C
[
x, y, x−1

]
⊗C C

[
x, y, y−1

])
= Spec

(
C
[
x, x−1, y, y−1

])
and the Čech complex is given by
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0→ C[x, y, x−1]⊕ C[x, y, y−1]→ C[x, x−1, y, y−1]→ 0

where the non-obvious map sends (f1, f2) 7−→ f1 − f2. It follows that

H1(X,OX) is spanned by monomials xαyβ whith α, β < 0. Since the struc-

ture sheaf of X is a left DX-module, then, by the previous proposition, X is

not D-affine.

4.2 D-modules on varieties

Let OX be its sheaf of functions, DX its sheaf of differential operators and

denote by D(X) = DX(X) its global sections. We consider the category of

quasicoherent DX-modules DX-Qcoh and the category of modules over the

globally defined differential operators D(X)-Mod. They are connected by

the global sections functor

Γ: DX-Qcoh→ D(X)-Mod.

X is said to be D-affine if Γ is an equivalence. Affine varieties are D-affine

but the converse statement is not true: the generalised flag variety G/P is

a smooth projective D-affine variety [BB81]. In the light of this result, it is

interesting to pose the following question.

Question: Classify connected smooth projective D-affine varieties.

It would be interesting to find other examples of such varieties besides

G/P . Notice that any such example X must have zero Hodge numbers

h0,m(X) for m > 0 because OX is a DX-module, hence, has no higher co-

homology. A glimmering hope for settling this question is the result of Thom-
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sen who classified smooth toric D-affine varieties [Tho97]. Hereby, we explain

that some other classes of varieties do not give new examples.

Recall that a variety X is homogeneous if a connected algebraic (not

necessarily linear) group G acts transitively on X. For a complete variety X,

it is equivalent to asking that the automorphism group of X acts transitively

on X [SdS03]. Such X is necessarily smooth.

Theorem 4.7. Suppose X is a homogeneous complete D-affine variety. Then

X is isomorphic to a generalised flag variety.

Proof. By Borel-Remmert Theorem [SdS03], X is a product of a partial flag

variety and an abelian variety A. It remains to notice that A is not D-affine

because RdimAΓ(A,OA) 6= 0 by Serre’s duality, unless A is a point. This

would imply that RdimAΓ(X,OX) 6= 0 that is impossible because OX is a

DX-module. Thus, A is a point and X is a generalised flag variety.

If K = C is the field of complex numbers, this result can be slightly

improved.

Theorem 4.8. Suppose X is a complex complete D-affine variety and the

tangent sheaf TX is generated by global sections. Then X is isomorphic to a

generalised flag variety.

Proof. Since X is a complete algebraic variety, the global (algebraic) vector

fields g = Γ(TX) form a finite dimensional Lie algebra [Sha94, p. 95]. Let

G be an analytic connected simply-connected Lie group with Lie algebra g.

The group G locally acts on X by the second Lie Theorem [Akh95, p. 23].

Since X is compact, each element a ∈ g defines a one-parameter group γa(t)
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of (global) diffeomorphisms of X [Akh95, p. 20]. Choosing a real basis

a1, . . . ak of g, we can extend the assignment

ExpG(t1a1) · ExpG(t2a2) · . . .ExpG(tkak) 7→ γa1(t1)γa2(t2) . . . γak(tk)

to a global (real) analytic action of G on X [Akh95, p. 29].

Since TX is generated by global sections, each point x ∈ X lies in the

interior of its orbit G · x. Hence each point belongs to an open set, entirely

within this point’s orbit. By connectedness there is only one orbit, hence,

X ∼= G/H as analytic manifolds.

By Borel-Remmert Theorem [Akh95, p. 101], there exists an abelian

variety A such that X is an A-fibration over a generalised flag variety Y .

If A is a point, we are done. If A is not a point, RdimAΓ(A,OA) 6= 0 by

Serre’s duality. Thus, the derived push-forward R(X → Y )∗(OX) has higher

cohomology and so does OX . This is a contradiction.

Observe that TX is not usually a DX-module. This would require a flat

connection on TX which is quite rare. For instance, abelian varieties admit a

flat connection on TX as well as any other variety with a trivial tangent sheaf.

On the other hand, the only generalised flag variety with a flat connection

on TX is a point.

Corollary 4.9. If X is complex complete D-affine variety and TX is a DX-

module, then X is the point.

It would be interesting to extend Theorem 4.8 and Corollary 4.9 to vari-

eties over an arbitrary algebraically closed field K. Our proof does not work

because we use analytic methods.
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4.3 D-modules on smooth projective stacks

4.3.1 Introduction

The theory of D-modules on stacks is known [BD91] but it is significantly

simpler on a quotient stack. Let Y be a smooth algebraic variety with an

action of an algebraic group G. D-modules on the quotient stack [X] = [Y/G]

can be understood in terms of G-equivariant D-modules on Y .

We can define a quasicoherentD[X]-module as a quasicoherentDY -module

M with a G-equivariant structure on the level of D-modules. Such a mod-

ule is called a strongly equivariant D-module. A DY -module M with an

OY -module G-equivariant structure is sometimes called a weakly equivari-

ant D-module. The Lie algebra g of G acts on M in two ways: via the

differential of the action g → DY and via the differential of the equivariant

structure. An equivalent condition for a weakly equivariant D-module M to

be strong is that these two actions coincide.

Definition 4.10. Let [X] = [Y/G] be a quotient stack where Y is a smooth

algebraic variety with an action of an algebraic group G. A D[X]-module is

a quasicoherent strongly G-equivariant DY -module.

4.3.2 Coherent sheaves on projective stacks

Let [X] = [Y/Gm] be a projective stack where Y a smooth Gm-invariant

closed subvariety of a punctured positively graded n+1-dimensional K-vector

space V \ {0}. Choose a homogeneous basis ei on V with ei ∈ Vqi , i =

0, 1, . . . , n. Let xi ∈ V ∗ be the dual basis. Then K[V ] = K[x0, . . . ,xn]
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possesses a natural grading with deg(xi) = qi. Let I be the defining ideal of

Y := Y ∪{0} where Y is the closure of Y in V . Since Y is Gm-invariant, the

ideal I and the ring

A := K[Y ] = K[x0, . . . ,xn]/I

are graded. The category of quasicoherent sheaves O[X]-Qcoh is equivalent to

the quotient category A-GrMod/A-Tors where A-GrMod is the category of

Z-graded A-modules and A-Tors the full subcategory of torsion A-modules.

Recall that

τA(M) = {m ∈M | ∃N ∀k > N Akm = 0}

is the torsion submodule of M . M is said to be torsion if τA(M) = M and

torsion-free if τA(M) = 0.

Denote by

πA : A-GrMod→ A-GrMod/A-Tors

the quotient functor and by

ωA : A-GrMod/A-Tors→ A-GrMod

the section functor. Recall that πA is exact, ωA is left exact and πA ◦ ωA ∼=

IdA-GrMod/A-Tors.

Definition 4.11. Let M be a graded A-module. The graded A-module

ωAπA(M) is the A-saturation of M . A graded A-module is A-saturated if

it is isomorphic to the saturation of a graded A-module.

It can be seen from the adjunction that an A-saturated module is torsion-

free and is isomorphic to its own saturation.
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We need a description of the global sections functor on [X] in these terms:

Γ: O[X]-Qcoh→ VSK, Γ(M) = ωA(M)0,

where VSK is the category of vector spaces over K. In particular, if M is an

A-saturated module then,

Γ(πA(M)) = M0.

The sheaf O[X](k) is defined as πA(A[k]) where A[k] is the shifted reg-

ular module and the grading is given by A[k]m = Ak+m. In particular,

Γ(O[X](k)) = Ak if A[k] is A-saturated which is the case for polynomial rings

of more than two variables [AZ94]. A well-known example of a ring which

is not A-saturated (as an A-module) is the polynomial ring in one variable

A = K[x]. Its A-saturation is given the Laurent polynomial ring K[x, x−1]

with the natural A-module action. Finally we need the push-forward functor

π∗ : O[X]-Qcoh→ OX-Qcoh.

In general, it is not an equivalence. For instance, O[X](k) is an invertible

sheaf but OX(1) ∼= π∗(O[X](1)) might not be [Dol82].

4.3.3 Reduced Weyl algebra

Let us now describe the (twisted) D[X]-modules. Let ∂i = ∂/∂xi, i =

0, 1, . . . , n. The Weyl algebra D(V ) = K〈x0, . . . ,xn, ∂0, . . . , ∂n〉 gets a grad-

ing from the Gm-action on V : deg(xi) = qi, deg(∂i) = −qi. We define the

reduced Weyl algebra as

D := EndD(V )(D(V )/ID(V )) ∼= I(ID(V ))/ID(V )
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where

I(ID(V )) = {w ∈ D(V ) | wID(V ) ⊆ ID(V )}

is the idealiser of ID(V ) in D(V ). Notice that D is graded: I is graded, then

ID(V ) is graded, then I(ID(V )) is graded, and finally D is graded. Observe

that A is a graded subalgebra of D since K[xi] ⊆ I(ID(V )). It is known that

for w ∈ D(V ) [MR01, 15.5.9]

w ∈ ID(V )⇔ w(K[xi]) ⊆ I and w ∈ I(ID(V ))⇔ w(I) ⊆ I

where w acts naturally on polynomials in I. This defines an algebra em-

bedding D ↪→ EndK(A) whose image lies in D(Y ), the ring of differential

operators on A.

Proposition 4.12. [MR01, 15.5.13] The map φ : D→ D(Y ) is an isomorph-

ism.

The element
∑

i qixi∂i belongs to the idealiser I(ID(V )). We call its

image in D the Euler field

E =
∑
i

qixi∂i + ID(V ).

It belongs to D0 and defines the grading of D and its subalgebra A.

Lemma 4.13. Let x ∈ D. Then, x ∈ Dk if and only if Ex− xE = kx.

Proof. It suffices to check it on the generators:

Exi =
∑
j

qjxj∂jxi = xiE + qixi.

Similarly,

E∂i = ∂iE− qi∂i.
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The Euler field can be used to define gradings on D-modules.

Lemma 4.14. Let M be a D-module. The span M ′ of all eigenvectors of the

Euler field E is a D-submodule of M equipped with a natural K-grading.

Proof. Let m ∈Mλ, the λ-eigenspace of E. Using Lemma 4.13,

Exim = xiEm+ qixim = (λ+ qi)xim,

so

xim ∈Mλ+qi .

Similarly,

E∂im = ∂iEm− qi∂im = (λ− qi)∂im

and

∂im ∈Mλ−qi .

4.3.4 Twisted D-modules

In general, for a given λ ∈ K and D-module M ,

M ≥M ′ = ⊕µ∈KMµ ≥M (λ) := ⊕n∈ZMλ+n.

Definition 4.15. A D-module M is called λ-Euler if M = M (λ). A λ-Euler

D-module M admits a canonical Z-grading given by Mk = Mk+λ which

turns it into a graded λ-Euler D-module. The category of λ-Euler

graded D-modules D-GrModλ is the full subcategory of the category of

D-modules D-Mod whose objects are graded λ-Euler D-modules with their

canonical grading.
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Remark 4.16. Any morphism in D-Mod between two λ-Euler D-module pre-

serves the canonical grading. So it is a morphism in D-GrMod.

Remark 4.17. We are only interested in graded modules whose grading coin-

cides with the action of the Euler field up to λ. When talking about λ-Euler

modules, we mean λ-Euler modules equipped with their canonical grading

unless specified otherwise.

Proposition 4.18. D-GrModλ is a locally noetherian category.

Proof.

Claim. D-GrModλ is an abelian category.

Proof of Claim: Monomorphisms (resp. epimorphisms) in D-GrModλ are still

monomorphisms (resp. epimorphisms) when viewed in D-GrMod. It suffices

to prove that D-GrModλ is closed under taking kernels and cokernels. Given

a morphism f : M → N , its kernel is a subobject of M . So the action of the

Euler field and its grading coincide up to λ. Similarly the image of f is a

subobject of N , hence the action of the Euler field and its grading coincide.

Now, the cokernel is the quotient of N by the image of f . The result follows.

2

Claim. D-GrModλ satisfies Ab3, i.e., it has arbitrary coproducts.

Proof of Claim: It suffices to prove that taking the coproduct in D-GrMod

gives us the coproduct in D-GrModλ. For a given family {Mi}i∈I in D-GrModλ,

its coproduct in D-GrMod is given by taking
⊕

k∈Z Sk where Sk =
⊕

i∈I(Mi)k.

The action of the Euler field and the grading coincide up to λ. 2

Claim. D-GrModλ satisfies Ab5, i.e., it satisfies Ab3 and for any N ∈

D-GrModλ, family of objects {Ni}i∈I in D-GrModλ, M a subobject of N
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such that {Ni}i∈I is right filtered then (
∑

iNi) ∩M =
∑

i(Ni ∩M).

Proof of Claim: This follows automatically since it holds in D-Mod. 2

Claim. D-GrModλ possesses a generating set of noetherian objects.

Proof of Claim: Consider the free module Dv and its quotientMn = Dv/D(Ev−

(n+λ)v). Then, Mk is a noetherian λ-Euler D-module, v has degree k. Also,

{Mk}k∈Z is a generating set of noetherian objects of D-GrModλ since for any

given λ-Euler D-module M , we can build an epimorphism⊕
Mk →M → 0.

which for a given homogeneous element m ∈M of degree k maps the element

v ∈Mk to m. 2

We prove here directly that D-GrModλ has injective envelopes directly.

However, this follows immediately since D-GrModλ is Grothendieck (as it is

locally noetherian).

Proposition 4.19. D-GrModλ has injective envelopes.

Proof.

Claim. If Q is injective in D-Mod then Q(λ) is injective in D-GrModλ.

Proof of Claim: Suppose that we have a diagram in D-GrModλ

0 //M
j //

f
��

N

Q(λ)
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But Q(λ) is a D-submodule of Q which is injective in D-Mod, then there exists

g such that i ◦ f = g ◦ j

0 //M
j //

f
��

N

g

��

Q(λ)
� _

i
��
Q

But N is a λ-Euler module, so the image of g is a λ-Euler module contained

in Q, hence it is a submodule of Q(λ). Denote by f : N → Q(λ) given by

f(n) = g(n) for all n ∈ N . We obtain in D-GrModλ the following diagram

0 //M
j //

f
��

N

f}}
Q(λ)

with f = f ◦ j. 2

Claim. Let M ∈ D-GrModλ and E(M) the injective envelope of M in

D-Mod. Then, E(M)(λ) is the injective envelope of M in D-GrModλ.

Proof of Claim: We only need to check that E(M)(λ) is an essential extension

of M in D-GrModλ since we already know that it is an injective object

containing M from the previous claim. But if H 6 E(M)(λ) in D-GrModλ

such that H ∩ E(M)(λ) = {0} then H = 0 since H 6 E(M). 2

Let

τλD(M) = {m ∈M | ∃N ∀k > N Akm = 0}

for M ∈ D-GrModλ. The torsion submodule of a graded D-module is a

graded D-module, and moreover, if it is λ-Euler, then the torsion submodule
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is λ-Euler too. The full subcategory of the torsion (as A-modules) modules

is denoted D-Torsλ.

D-Torsλ is a Serre subcategory of D-GrModλ and for all object M in

D-GrModλ, it has a maximal subobject amongst all its subobjects in D-Torsλ,

namely, τλD(M). Therefore, D-Torsλ is a localising subcategory of D-GrModλ

[Gab62, Corollaire 1, p.375] [Pop73, Proposition 5.2, p.182]. This implies

that the exact quotient functor

πλD : D-GrModλ → D-GrModλ/D-Torsλ

has a right adjoint section functor

ωλD : D-GrModλ/D-Torsλ → D-GrModλ

and πλD ◦ ωλD ∼= IdD-GrModλ/D-Torsλ .

Theorem 4.20. The category D[X]-Qcoh of quasicoherent D-modules on the

stack [X] is equivalent to the quotient category D-GrMod0/D-Tors0.

Proof. The category of D-modules on Y is just the category of D(Y )-modules

since Y is affine. The category of weakly Gm-equivariant D-modules on Y

is D(Y )-GrMod. The two actions of the Lie algebra of the multiplicative

group Gm are given by the Euler element E and by the grading. Thus,

the category of strongly Gm-equivariant D-modules on Y is the category of

0-Euler D-modules D(Y )-GrMod0.

By definition, the category D[X]-Qcoh is the category of strongly Gm-

equivariant D-modules on Y . Thus, taking sections on the open set Y induces

an exact functor (Y is affine)

Γ(Y, ) : D[X]-Qcoh→ D(Y )-GrMod,
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where D(Y ) is the ring of global differential operators on Y . Proposition 4.12

makes the global sections Γ(Y,M) into a graded D-module via the restriction

map D ∼= D(Y ) → D(Y ). This module is 0-Euler, because M is strongly

equivariant. Thus, we obtain exact functors

Γ(Y, ) : D[X]-Qcoh→ D-GrMod0 and

π0
D ◦ Γ(Y, ) : D[X]-Qcoh→ D-GrMod0/D-Tors0.

Let us examine the sheafification functor D-GrMod0 → D[X]-Qcoh. The

sheafification of an object in D-Tors0 is supported at 0. Hence objects in

D-Tors0 give the zero sheaf on Y . So, it induces a functor on the quotient

˜: D-GrMod0/D-Tors0 → D[X]-Qcoh

which is quasiinverse to π0
D ◦ Γ(Y, ).

An inquisitive reader may observe that we have defined the category

D[X]-Qcoh without defining the object D[X]. Later on we remedy this par-

tially by constructing an object Dλ
[X] for each λ ∈ K so that D[X] = π0

D(D0
[X]).

Define the category Dλ[X]-Qcoh of twisted D-modules on [X] as the

quotient D-GrModλ/D-Torsλ for λ ∈ K. It is possible to define the category

internally and then prove a version of Theorem 4.20 but we see no value in

doing it here.

Definition 4.21. Let M be in D-GrModλ. The Dλ-saturation of M is

the λ-Euler module ωλDπ
λ
D(M). Moreover, a λ-Euler module is said to be

Dλ-saturated if it is isomorphic to the Dλ-saturation of a λ-Euler module.

It can be seen from the adjunction that a Dλ-saturated module is torsion-

free and is isomorphic to its own saturation.
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4.3.5 A-saturated and Dλ-saturated modules

We prove in this section that an A-saturated λ-Euler D-module is automat-

ically Dλ-saturated. This makes our forthcoming calculations easier.

Lemma 4.22. Let M be a λ-Euler D-module. Then, the Dλ-saturation of

M is an A-submodule of its A-saturation.

Proof. We have a map

M → ωλDπ
λ
D(M)

in D-GrModλ [AZ94]. The kernel and cokernel of this map are torsion which

implies that

πA(ωλDπ
λ
D(M)) ∼= πA(M).

From adjunction, this isomorphism is the image of a map in A-GrMod,

φ : ωλDπ
λ
D(M)→ ωAπA(M).

Claim. The map φ : ωλDπ
λ
D(M)→ ωAπA(M) is injective.

Since πA(φ) is an isomorphism then Kerφ is a torsion A-module. Consider

DKerφ (which contains Kerφ), it is a left D-submodule of ωλDπ
λ
D(M). Take

m ∈ Kerφ then there exists an integer N such that

A>Nm = 0.

For any d ∈ D of order k, we have

A>N+k(dm) 6 DA>Nm = 0.

It follows that it is a torsion submodule of ωλDπ
λ
D(M) but ωλDπ

λ
D(M) is torsion-

free. Hence Kerφ = 0
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An immediate corollary is the following:

Corollary 4.23. Any A-saturated λ-Euler D-module is Dλ-saturated.

Let us give examples of objects in Dλ[X]-Qcoh. The sheaf O[X](k) is an

object in Dk[X]-Qcoh where k ∈ Z. We introduce

Dλ
[X] := D/D(E− λ).

Another interesting object in Dλ[X]-Qcoh is

Dλ[X] := πλD(Dλ
[X]).

It plays the role of the sheaf of twisted differential operators, although Dλ
[X] is

not an algebra because D(E−λ) is not a two-sided ideal, in general. However,

E is a central element of D0, so

Dλ
[X]0

= D0/D0(E− λ)

is an algebra. It plays the role of the algebra of global sections of the twisted

differential operators on [X]. Dλ
[X] is a D−Dλ

[X]0
-bimodule.

In the next section the adjoint functors of global sections and localisation

play an important role. This adjoint pair (Γλ, Lλ) is defined as:

Γλ : Dλ[X]-Qcoh→ Dλ
[X]0

-Mod, Γλ(M) := ωλD(M)0 = ωλD(M)λ,

Lλ : Dλ
[X]0

-Mod→ Dλ[X]-Qcoh, Lλ(N) := πλD(Dλ
[X] ⊗Dλ

[X]0

N).

The way we defined our global sections functors for Dλ[X]-Qcoh depends

on λ and is not necessarily equivalent to O[X]-Qcoh, although we believe they

are. Yet we know that

Γλ(π
λ
D(M)) 6 Γ(πA(M))
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as A-modules for any λ-Euler D-module M .

The exposition would be greatly simplified if ωA restricted to Dλ[X]-Qcoh

was equivalent to ωλD. However, to ensure that we obtain λ-Euler D-modules

and not just A-modules, we use ωλD.

4.4 D-affinity of weighted projective stacks

4.4.1 Introduction

In this section, Y = V \{0} where V is a graded vector space of dimension at

least 2 and [X] = [Y/Gm] = [P(V )] is the weighted projective stack associated

to V .

In this case I = {0}, A = K[x0, . . . ,xn] where the degree of xi is qi >

0 and D = K〈x0, . . . ,xn, ∂0, . . . , ∂n〉 is the Weyl algebra. Without loss of

generality, we assume that 0 < q0 6 q1 6 . . . 6 qn.

Let us look at the D-module ∆ generated by the delta-function at zero

δ = δ0(x0, . . . ,xn)

∆ = Dδ ∼= D/(Dx0 + Dx1 + . . .+ Dxn) .

The linear map

K[∂0, . . . , ∂n]→ ∆, f(∂0, . . . , ∂n) 7→ f(∂0, . . . , ∂n) · δ

is an isomorphism of vector spaces. If we identify K[∂0, . . . , ∂n] with ∆ using

this linear map, then ∂i acts by multiplication and xi acts by derivation

∂j 7→ −δi,j. In particular,

E · δ = E · 1 =
∑
j

qjxj · ∂j =
∑
j

−qj = −(
∑
j

qj)δ.
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Hence, ∆ is k-Euler for each integer k. Its canonical k-Euler grading is given

by

δ ∈ ∆−
∑
j qj = ∆−k−∑j qj

, ∂i · δ ∈ ∆−k−qi−
∑
j qj
.

Let J = (x0, . . . ,xn) � A. If M is a D-module, τA(M) = {m ∈ M |

∃k Jkm = 0} is its torsion D-submodule (a reader can easily verify that if

Jkm = 0, then Jk+1∂im = 0). The torsion D-modules are those, supported

set theoretically on the zero 0 ∈ V . By Kashiwara’s theorem, any D-module

supported at 0 is a direct sum of copies of ∆.

Recall that Artin and Zhang prove [AZ94] that for any graded A-module

M ,

τA(M) ∼= lim−→ HomA(A/A>k,M),

R1τA(M) ∼= lim−→ Ext1
A(A/A>k,M)

and that there exists a long exact sequence of graded A-modules

0→ τA(M)→M → ωAπA(M)→ R1τA(M)→ 0

where τA(M) and R1τA(M) are torsion.

4.4.2 Exactness of Γλ and D-affinity up to some kernel

The following proposition is a direct application to the previous exact se-

quence.

Proposition 4.24. A λ-Euler D-module M is Dλ-saturated if it is torsion-

free and lim−→ Ext1(A/A>k,M) = 0.

The next lemma proves crucial in the proof that ΓλLλ ∼= IdDλ
[X]0

-Mod for

any λ and n > 2.
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Lemma 4.25. For n > 2, Dλ
[X] is Dλ-saturated.

Proof. Recall that Dλ
[X] = D/D(E − λ). It is easier to compute Ext groups

by taking a projective resolution of the left argument than an injective one

of the right argument. Since A/A>1
∼= K, the first three terms of the Koszul

resolution are given by

. . .→
⊕
i0<i1

A(−qi0 − qi1)→
n⊕
i=0

A(−qi)→ A→ A/A>1 → 0.

Take away A/A>1 and apply HomA( , Dλ
[X]) to the above exact sequence to

get

0→ Dλ
[X]

φ1→
n⊕
i=0

Dλ
[X](qi)

φ2→
⊕
i0<i1

Dλ
[X](qi0 + qi1)→ . . .

where

φ1 : m 7→ (xim)ni=0

and

φ2 : (mi)
n
i=0 7→ (xi0mi1 − xi1mi0)i0<i1 .

It follows that

HomA(A/A>1, D
λ
[X])
∼= Ker(φ1),

Ext1
A(A/A>1, D

λ
[X])
∼=

Ker(φ2)

Im(φ1)
.

Claim. Both HomA(A/A>1, D
λ
[X]) and Ext1

A(A/A>1, D
λ
[X]) vanish.

Let us first compute HomA(A/A>1, D
λ
[X]). Pick m ∈ Ker(φ1), then xim =

0 for each i, where

m = m+ D(E− λ).
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We can assume m to be homogeneous, so

xim = pi(E− λ)

for some homogeneous pi ∈ D. We want to show that pi ∈ xiD. Suppose, for

a contradiction, that it is not. Then we can write

pi = xim
′ + f∂β + LT

where m′ ∈ D, f ∈ K[x0, . . . ,xn] is the highest term which is non-zero by

assumption, free of xi, β the biggest power and LT are the lower terms using

DegLex for the ordering of the monomials in ∂. Without loss of generality,

we can assume that i 6= 0. It follows that

xim = xim
′′ + q0fx0∂

β+e0 + LT

since f∂βx0∂0 = fx0∂
β+e0 +LT . But fx0 is not divisible by xi and we obtain

a contradiction. Thus,

HomA(A/A>1, D
λ
[X]) = 0.

Similarly, let us show that Ext1
A(A/A>1,Dλ[X]) vanishes. To proceed,

choose (mi)
n
i=0 ∈ Ker(φ2). Then for all i, j, there exists a θij ∈ D such

that

ximj = xjmi + θij(E− λ).

Write

mj = xjm
′
j + f∂β + LT

where m′j ∈ D, f ∈ K[x0, . . . ,xn] is the highest term, free of xj, β is the

highest power and LT are the lower terms using DegLex for the ordering

78



of the monomials in ∂. Let us suppose, for the sake of a contradiction, that

|β| 6= 0. Then without loss of generality, we can assume that β is the lowest

among all the possible representatives of mj. Write

θij = xjθ
′ + g∂γ + LT

where g ∈ K[x0, . . . ,xn] is the highest term, free of xj. If g = 0 then we are

done. Suppose that g 6= 0 so that

xixjm
′
j + xif∂

β + LT = xj(mi + θ′(E− λ)) + g∂γ(E− λ) + LT.

Again without loss of generality, suppose that i, j 6= 0 as n > 2. By compar-

ing the highest terms, free of xj, we get

xif∂
β = q0gx0∂

γ+e0

with |γ| < |β|. Therefore,

f∂β = q0
g

xi
x0∂

γ+e0 =
g

xi
∂γ(E− λ) + LT.

So mj − g
xi
∂γ(E − λ) is another representative of mj which has an index γ

lower than β, contrary to our hypothesis. Thus g = 0 and

mj = xjm
′
j

For all i, j, we have

xixjm
′
j = xixjm

′
i + θij(E− λ)

which implies that

xixj(m
′
j −m′i) ∈ D(E− λ).
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By using the first argument twice, we obtain that for all i, j

m′j −m′i ∈ D(E− λ).

Write

m′ := m′j = m′i

for the residues of m′j and m′i. Then for all i,

mi = xim′.

Hence,

Ext1
A(A/A>1, D

λ
[X]) = 0.

To finish our proof, for each k we have a short exact sequence of graded

A-modules:

0→ A>k/A>k+1 → A/A>k+1 → A/A>k → 0

and A>k/A>k+1 is isomorphic to a finite direct sum of copies of A/A>1. By

applying HomA( , Dλ
[X]) to this short exact sequence and by induction on k,

we conclude that for all k:

HomA(A/A>k, Dλ
[X]) = 0,

Ext1
A(A/A>k, Dλ

[X]) = 0.

Taking direct limit [AZ94] it follows that

τA(Dλ
[X]) = 0, and lim−→ Ext1(A/A>k, Dλ

[X]) = 0.

Hence Dλ
[X] is Dλ-saturated by Proposition 4.24.
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The condition on n in the last proof is necessary. We can prove that Dλ
[X]

is not Dλ-saturated for all λ when n = 1 . For this, it suffices to notice that

when λ = 0,

(−q1∂1, q0∂0) ∈ Ker(φ2)

but

(−q1∂1, q0∂0) /∈ Im(φ1)

since q0x0∂0 = −q1x1∂1 + E.

Lemma 4.26. Let n > 2. If Γλ is exact then ΓλLλ ∼= IdDλ
[X]0

-Mod

Proof. Let N be a Dλ
[X]0

-module. Take the first two terms of a free resolution

of N

P1 → P0 → N → 0

where Pi =
⊕
j∈Ii

Dλ
[X]0

and Ii is an index set. Since both Dλ
[X]⊗Dλ[X]0

and πλD

are right exact functors, it follows that

ΓλLλ(P1)→ ΓλLλ(P0)→ ΓλLλ(N)→ 0

is exact. We can compute the first two terms explicitly:

ΓλLλ(Pi) = (ωλDπ
λ
D(Dλ

[X] ⊗Dλ
[X]0

Pi))0

= (ωλDπ
λ
D(Dλ

[X] ⊗Dλ
[X]0

⊕
j∈Ii

Dλ
[X]0

))0

∼= (ωλDπ
λ
D(
⊕
j∈Ii

Dλ
[X] ⊗Dλ

[X]0

Dλ
[X]0

))0

∼= (ωλDπ
λ
D(
⊕
j∈Ii

Dλ
[X]))0
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since the tensor product commutes with arbitrary direct sums and that

Dλ
[X] ⊗Dλ[X]0

Dλ
[X]0
∼= Dλ

[X]. The category D-GrModλ is locally noetherian.

Hence, by a result of Gabriel, the section functor ωλD commutes with induct-

ive limits and, in particular, with arbitrary direct sums [Gab62, p. 379].

Moreover, πλD is left adjoint to ωλD, so πλD commutes as well with arbitrary

direct sums. This yields the following sequence of natural isomorphisms:

ΓλLλ(Pi) ∼= (ωλDπ
λ
D(
⊕
j∈Ii

Dλ
[X]))0

∼= (
⊕
j∈Ii

ωλDπ
λ
D(Dλ

[X]))0

∼= (
⊕
j∈Ii

Dλ
[X])0

∼=
⊕
j∈Ii

Dλ
[X]0

∼= Pi

since Dλ
[X] is Dλ-saturated and that ( )0 commutes with arbitrary direct

sums. Thus, we have a commutative diagram with exact rows:

P1
//

α

��

P0
//

β

��

ΓλLλ(N) //

γ

��

0

��
P1

// P0
// N // 0

where α and β are isomorphisms, so ΓλLλ(N) ∼= N is a natural isomorphism

by the four lemma.

Theorem 4.27. Let A be the Z≥0-span of all qi-s. If λ ∈ K \ (−
∑

i qi −

A), then the global sections functor Γλ : Dλ[X]-Qcoh → Dλ
[X]0

-Mod is ex-

act. In this case, Γλ defines an equivalence between the quotient category

Dλ[X]-Qcoh/KerΓλ and Dλ
[X]0

-Mod.
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Proof. The category Dλ[X]-Qcoh is the quotient category of the category of

λ-Euler modules by the category of torsion modules. The canonical grading

on a λ-Euler module M is given by Mk = Mk+λ. The torsion modules are

direct sums of ∆. The global sections functor Γλ is expressed as

Γλ : M 7→ ωλD(M)0 = ωλD(M)λ.

We know that ωλD is a left exact functor. Taking λ-eigenspaces is an exact

functor, so we are left to prove that Γλ is right exact. An epimorphism

f : M→N induces the exact sequence

ωλD(M)→ ωλD(N )→ coker(ωλD(f))→ 0

where coker(ωλD(f)) is a torsion D-module. Taking the zeroeth graded part,

we get the exact sequence

Γλ(M)→ Γλ(N )→ coker(ωλD(f))0 → 0.

Our restriction on λ provides that coker(ωλD(f))0 = 0. Indeed, if λ 6∈ Z,

then coker(ωλD(f)) = 0. If λ ∈ Z, then coker(ωλD(f)) = ⊕∆ and coker(ωλD(f))0 =

⊕∆λ. Since the E-weights of ∆ are −
∑

i qi −A, coker(ωλD(f))0 = 0. Hence

Γλ is exact.

The kernel KerΓλ is the full subcategory of Dλ[X]-Qcoh whose objects are

thoseM without non-trivial global sections, i.e., with Γλ(M) = 0. Since Γλ

is exact, it is a Serre subcategory, and Γλ descends to a functor

Γ̃λ : Dλ[X]-Qcoh/KerΓλ → Dλ
[X]0

-Mod.

Let

Q : Dλ[X]-Qcoh→ Dλ[X]-Qcoh/KerΓλ

be the quotient functor.
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Claim. QLλ is a quasiinverse of Γ̃λ.

In one direction,

Γ̃λ(QLλ)(N) = (Γ̃λQ)Lλ(N)

= ΓλLλ(N)

∼= N

since Γλ is exact. Thus,

Γ̃λQLλ ∼= IdDλ
[X]0

-Mod.

In the opposite direction, we have a natural transformation

QLλΓ̃λ → IdDλ
[X]

-Qcoh/KerΓλ
.

Take an object M̃ in Dλ[X]-Qcoh/KerΓλ. Then there exists an object M in

Dλ[X]-Qcoh such that M̃ = Q(M). Hence,

QLλΓ̃λ(M̃) = QLλΓλ(M)

= QπλD(Dλ
[X] ⊗Dλ

[X]0

(ωλD(M))0).

On a level of a λ-Euler module M (with its canonical grading), the natural

map

Dλ
[X] ⊗Dλ

[X]0

M0 →M

gives rise to the long exact sequence

0→ K → Dλ
[X] ⊗Dλ

[X]0

M0 →M → N → 0

where K is its kernel and N is its cokernel. Since πλD is exact,

0→ πλD(K)→ πλD(Dλ
[X] ⊗Dλ

[X]0

M0)→ πλD(M)→ πλD(N)→ 0
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is a long exact sequence as well. If M = ωλD(M), applying Γλ yields

0→ Γλπ
λ
D(K)→ ωλD(M)0 → ωλD(M)0 → Γλπ

λ
D(N)→ 0

since Γλπ
λ
D(ωλD(M)) ∼= ωλD(M)0 and ΓλLλ ∼= IdDλ

[X]0
-Mod when Γλ is exact.

The middle map

ωλD(M)0 → ωλD(M)0

is the identity map and hence an isomorphism. It follows that πλD(K) and

πλD(N) are objects in Ker(Γλ). Therefore,

πλD(Dλ
[X] ⊗Dλ

[X]0

ωλD(M)0)→ πλD(ωλD(M))

is an isomorphism in Dλ[X]-Qcoh/KerΓλ and

QLλΓ̃λ(M̃) ∼= QπλD(ωλD(M))

∼= Q(M)

∼= M̃.

It follows that QLλΓ̃λ ∼= IDλ
[X]

-Qcoh/KerΓλ
.

We are left to study when KerΓλ is a zero category so that Γλ defines an

equivalence between Dλ[X]-Qcoh and Dλ
[X]0

-Mod.

Lemma 4.28. Suppose that λ ∈ Z \ A or that the greatest common divisor

gcdi(qi) 6= 1. Then KerΓλ 6= 0.

Proof. If k ∈ Z, then O[X](k) = πλD(A[k]) is a non-zero Dλ-saturated (since

it is A-saturated [AZ94]) object of Dk[X]-Qcoh because 1 ∈ A0 = A[k]−k and

E · 1 = 0 = (−k + k)1.
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The global sections

Γk(O[X](k)) = A[−k]0 = Ak

are non-zero if and only if k ∈ A. Thus, if k ∈ Z \ A, then O[X](k) is a

non-zero object of KerΓk.

Now let us assume that the greatest common divisor d of q0, . . . , qn is

greater than 1. It easily follows that

D1 = D2 = . . . = Dd−1 = 0.

Let M be the K-vector space with a basis of all formal monomials xa00 . . .xann ,

ai ∈ K. It is a D-module under the following operations, defined on the

monomials by

xi · xa00 . . .xann = xa00 . . .x1+ai
i x

ai+1

i+1 . . .x
an
n ,

∂i · xa00 . . .xann = aix
a0
0 . . .x−1+ai

i x
ai+1

i+1 . . .x
an
n .

Given λ ∈ K, we consider the D-submodule N = Dx
(λ−1)/q0
0 . Since

E · x(λ−1)/q0
0 = q0x0∂0 · x(λ−1)/q0

0 = (λ− 1)x
(λ−1)/q0
0 ,

the module N is λ-Euler and x
(λ−1)/q0
0 ∈ Nλ−1 = N−1 in the canonical λ-

Euler grading. Put N = πλD(N). By definition, N is torsion-free. Denote by

τλD the restriction of τA to D-GrModλ. The long exact sequence [AZ94]

0→ τλD(N)→ N → ωλDπ
λ
D(N)→ R1τλD(N)→ 0

reduces to the short exact sequence

0→ N → ωλDπ
λ
D(N)→ R1τλD(N)→ 0.
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But R1τλD(N) is a torsion D-module, hence it is a direct sum of copies of

∆. The E-weights of N are congruent to −1 modulo d and the E-weights of

the module ∆ are congruent to 0 modulo d. It follows that the short exact

sequence splits and

ωλDπ
λ
D(N) ∼= N ⊕R1τλD(N).

But ωλDπ
λ
D(N) is torsion free, so ωλDπ

λ
D(N) ∼= N and R1τλD(N) = 0. This

means that N is Dλ-saturated and

Γλ(N ) = N0 = 0.

Hence, N is a non-zero object in KerΓλ.

In all the other cases the kernel is trivial.

4.4.3 Conditions on KerΓλ to be zero

Lemma 4.29. Let us assume that the greatest common divisor gcdi(qi) is

equal to 1. If λ ∈ (K \ Z) ∪ A, then KerΓλ is a zero category.

Proof. Let m be the least common multiple of q0, . . . , qn. Suppose thatM is

a non-zero object in Dλ[X] −Qcoh. Then M := ωλD(M) is a non-zero λ-Euler

torsion-free D-module. We need to show that M0 6= 0. Let us suppose that

the contrary is true, i.e., M0 = 0. We proceed to arrive at a contradiction

via a sequence of claims.

Claim 1. M−mt = 0 for any t ∈ Z>0.

Proof of Claim: If a ∈ M−mt, then x
mt/qi
i · a = 0 for all i = 0, . . . , n since it

is an element of M0. Hence, a generates a torsion D-submodule of M but M

is torsion-free. So a = 0. 2
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Claim 2. M−mt+kqi = 0 for all i and 0 6 k 6 mt
qi

. In particular, M−kqi = 0

for all k > 0.

Proof of Claim: We proceed by induction. The case k = 0 is Claim 1. Assume

that this is true for k, and let us prove it for k + 1. If −mt+ (k + 1) qi = 0,

then we are done. Otherwise, let us pick a non-zero element a ∈M−mt+(k+1)qi .

It follows that

∂i · a ∈M−mt+kqi

which is zero by induction. Moreover, x
−(k+1)+mt/qi
i · a ∈ M0 which is zero

again. Since[
∂i,x

−(k+1)+mt/qi
i

]
=

(
mt

qi
− (k + 1)

)
x
−(k+2)+mt/qi
i ,

we conclude that x
−(k+2)+mt/qi
i · a = 0. We can repeat this argument to

conclude that x
−(k+l)+mt/qi
i · a = 0 for all positive l with mt

qi
− (k + l) ≥ 0. In

particular, a = x0
i · a = 0. 2

Claim 3. If c0, . . . , ck are positive integers and g is their greatest common

divisor, then there exist integers r0 6 0, and r1, . . . , rk > 0 such that r0c0 +

. . .+ rkck = g.

Proof of Claim: Let l be the least common multiple of c0, . . . , ck. By the

Euclidean algorithm there exist integers s0, . . . , sk such that

s0c0 + . . .+ skck = 1.

Now we can add − l
c0
c0 + l

ci
ci = 0 for various i to this relation to get integers

r0, . . . , rk such that

r0c0 + . . .+ rkck = 1

and r1, . . . , rk > 0. Inevitably, r0 6 0. 2
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Claim 4. For all integer b0, . . . , bl > 0, M−(b0q0+...+blql) = 0.

Proof of Claim: We proceed by induction on l. The base case l = 0 is Claim

2. Assume this is true for l − 1. In particular, it is true if bi = 0 for some i.

Let gl = gcd (q0, . . . , ql) and fix a positive integer k. Consider a non-zero

element a ∈M−kgl . There exist positive integers c0, c1, . . . , cl such that

∂c00 · a = ∂c11 · a = . . . = ∂cll · a = 0.

Indeed, by Claim 3, there exist ri 6 0 and r0, . . . , ri−1, ri+1, . . . rl > 0 such

that

r0q0 + . . .+ rlql = gl

Now if ci = −kri > 0, then

∂cii · a ∈M−ciqi−kgl = M−k(r0q0+...+ri−1qi−1+ri+1qi+1+...+rlql) = 0,

by induction. Let us consider the Weyl algebra

D̃ = K〈x0, . . . ,xl, ∂0, . . . , ∂l〉

and its polynomial subalgebra Ã = K [∂0, . . . , ∂l]. The Ã-module D̃a is sup-

ported at zero, hence, it must be a direct sum of copies of ∆̃ = D̃δ(∂0, . . . , ∂l) ∼=

K [x0, . . . ,xl]. It follows that

xb00 . . .xbll · a 6= 0 for all b0, . . . , bl > 0.

We want to determine for which k, we can find b0, . . . , bl > 0 such that

xb00 . . .xbll ·a ∈M0 = 0 to get a contradiction and hence prove that M−kgl = 0

for such k. The condition sought is that

b0q0 + . . .+ blql = kgl,
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i.e. kgl ∈ Z>0q0 + Z>0q1 + . . .+ Z>0ql. 2

In particular, it is true for l = n, i.e., M−k = 0 for all k ∈ A. Now let us

finish the proof of the theorem. By Schur’s Theorem there exists1 K > 0 such

that k ∈ A for all k > K, in particular, M−k = 0 for all k > K. Thus, M is

supported at zero as a K [∂0, . . . ∂n]-module. By Kashiwara’s Theorem M is a

direct sum of copies of A = K [x0, . . .xn]. If λ ∈ K \Z then A is not λ-Euler.

Thus, M = 0. Finally, if λ ∈ Z then A is λ-Euler. Moreover, as a graded

module M is a direct sum of copies of A[λ]. Observe that A[λ]0 = Aλ 6= 0 if

and only if λ ∈ A. Thus, if λ ∈ A, then M = 0 as well.

4.4.4 D-affinity of the weighted projective stack

Combining the last two claims, we obtain a characterisation of the kernel of

the global sections functor.

Theorem 4.30. The greatest common divisor gcdi(qi) is equal to 1 and λ ∈

(K \ Z) ∪ A if and only if KerΓλ is a zero category.

Together with Theorem 4.27 this gives the following corollaries.

Corollary 4.31. Let us suppose that λ ∈ (K\Z)∪A and gcd (q0, . . . , qn) = 1.

Then Γλ : Dλ[X]-Qcoh→ Dλ
[X]0

-Mod is an equivalence of categories.

In particular, we obtain a necessary and sufficient condition for a weighted

projective stack to be D-affine.

1 The smallest such K is called the Frobenius number. It is a NP-hard problem to find

such K. There is no known closed formula that gives K as a function of q0, . . . , qn for

n > 2.
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Corollary 4.32. The weighted projective stack [X] = [P(V )] is D-affine if

and only if gcdi(qi) is equal to 1.

Proof. D-affinity deals with the case of λ = 0. Γ0 is exact, and its kernel is

zero if and only if gcdi(qi) is equal to 1.

A similar functor for varieties

Γ′λ : DλX-Qcoh→ Dλ
[X]0

-Mod

is studied by Van den Bergh [VdB91]. It is instructive to compare it with

the push-forward functor

π∗ : Dλ[X]-Qcoh→ DλX-Qcoh.

The functors Γ′λπ∗ and Γλ are naturally equivalent, so we can conclude the

final corollary.

Corollary 4.33. Let us suppose that λ ∈ K \ Z ∪ A and gcdi 6=j (qi) = 1

for every j (the well-formedness condition). Then the push-forward functor

π∗ : Dλ[X]-Qcoh→ DλX-Qcoh is an equivalence of categories.

It can be noticed as well that the condition of well-formedness is not

required for a weighted projective stack to be D-affine. We only need the

greatest common divisor of its weights to be equal to one to guarantee it. As

varieties, this condition was added to prove D-affinity of weighted projective

spaces.

4.5 Kashiwara’s theorem for projective stacks

Let K be an algebraically closed field of characteristic zero.
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4.5.1 Smooth affine varieties

Let i : X ↪→ Y be a closed embedding of smooth affine varieties over K. We

have X = Spec(OX) and Y = Spec(OY ) where OX = OY /IX and IX is the

defining ideal of X in Y . We work with right D-modules.

The pushforward functor

i∗ : mod−DX → mod−DY

is defined by M 7→M ⊗DX DX→Y where DX→Y = OX⊗OY DY is the transfer

DX −DY bimodule. The pullback functor

i! : mod−DY → mod−DX

is defined by N 7→ N IX where N IX = {n | IX .n = 0} is the submodule of

sections of N killed by IX .

Let (mod − DY )X be the category of right DY modules set theoretically

supported on X. Kashiwara’s theorem states that we have an equivalence of

categories induced by i∗ with quasiinverse i!

mod−DX
i∗
�
i!

(mod−DY )X .

4.5.2 Smooth affine varieties with a Gm-action

Keeping the same notation as in the above section, suppose that Gm acts on

X and Y . Then OX , OY are graded K-algebra and IX is the defining graded

ideal of X in Y . Moreover DX and DY are graded K-algebras, but not

commutative. The transfer bimodule DX→Y has a natural induced grading.

This induces the (graded) pushforward functor

i∗ : grmod−DX → grmod−DY
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and the (graded) pullback functor

i! : grmod−DY → grmod−DX .

We need to check that this pair of functors is still a pair of adjoint functors.

There is a natural isomorphism

Homgrmod−DY (i∗(M), N)→ Homgrmod−DX (M,Homgrmod−DY (DX→Y , N))

but

Homgrmod−DY (DX→Y , N) ∼= Homgrmod−OY (OX , N)

given by f 7→ (z 7→ f(z ⊗ 1)) and

Homgrmod−OY (OX , N) ∼= N IX

given by f 7→ f(1) are both natural isomorphisms in grmod−DX . Therefore,

the adjunction still holds in the graded case,

Homgrmod−DY (i∗(M), N)→ Homgrmod−DX (M, i!(N)).

It induces the graded version of Kashiwara’s theorem for smooth affine

varieties with a Gm-action. Let (grmod − DY )X be the category of graded

right DY modules set theoretically supported on X. We have an equivalence

of categories induced by i∗ with quasiinverse i!

grmod−DX
i∗
�
i!

(grmod−DY )X .

4.5.3 Smooth projective stacks

What is left to check in this section is that the graded version of Kashiwara’s

theorem preserves strongly equivariant Gm-modules and torsion modules.
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Let M be a λ-Euler DX-module. Recall that the Lie algebra of Gm acts

on the differential operators via the adjoint action, and hence, by the degree

of the element. For an homogeneous element m⊗ (f ⊗ A) ∈ i∗(M),

E.(m⊗ (f ⊗ A)) = E.m⊗ (f ⊗ A) +m⊗ (E.(f ⊗ A))

= E.m⊗ (f ⊗ A) +m⊗ (E.f ⊗ A+ f ⊗ E.A)

= (deg(m) + λ+ deg(f) + deg(A))(m⊗ (f ⊗ A))

= (deg(m⊗ (f ⊗ A)) + λ)(m⊗ (f ⊗ A)).

So i∗(M) is a λ-Euler DY -module. Similarly let N be a λ-Euler DY -module,

then it is obvious that i!(N) is a λ-Euler DX-module.

It induces the (graded) pushforward functor

i∗ : grmodλ −DX → grmodλ −DY

and the (graded) pullback functor

i! : grmodλ −DY → grmodλ −DX .

Suppose now that M ∈ torsλ − DX , we want to show that i∗(M) ∈

torsλ − DY . Take a homogeneous element in i∗(M) and without loss of

generality we can assume that it is of the form m⊗ (f ⊗ xα∂β). But

m⊗ (f ⊗ xα∂β) = m⊗ ((fxα)⊗ ∂β)

= (m.(fxα))⊗ (1⊗ ∂β)

= m′ ⊗ (1⊗ ∂β)

for some m′ ∈M . So, we can further assume that our element is of the form

m⊗(1⊗∂β). Let xγ be a homogeneous element in OY . By direct calculations

we can show that
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∂β(xγ) =


γ0!

(γ0−β0)!
. . . γn!

(γn−βn)!
xγ−β if for all i, γi > βi,

0 otherwise.

Therefore,

(m⊗ (1⊗ ∂β)).xγ = m⊗ (1⊗ ∂βxγ)

= m⊗ (1⊗ ([∂β,xγ] + xγ∂β))

= m⊗ (1⊗ (∂β(xγ) + xγ∂β))

We have two cases:

1) Suppose that there exists an i such that γi 6 βi. Then,

(m⊗ (1⊗ ∂β)).xγ = m⊗ (1⊗ (∂β(xγ) + xγ∂β))

= m⊗ (1⊗ (xγ∂β))

= (mxγ)⊗ (1⊗ ∂β).

2) Suppose that for all i, we have γi > βi. Then,

(m⊗ (1⊗ ∂β)).xγ = m⊗ (1⊗ (∂β(xγ) + xγ∂β))

= m⊗ (1⊗ (
γ0!

(γ0 − β0)!
. . .

γn!

(γn − βn)!
xγ−β + xγ∂β))

= (mxγ)⊗ (1⊗ ∂β) +
γ0!

(γ0 − β0)!
. . .

γn!

(γn − βn)!
(mxγ−β)⊗ (1⊗ 1).

The two cases show that if m is torsion, then so is m⊗ (1⊗ ∂β) and we are

done.

Similarly, if we suppose that N ∈ torsλ − DY , we want to show that

i!(N) ∈ torsλ −DX . But this is obvious by definition of the pullback.
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We conclude that the (graded) pushforward functor

i∗ : grmodλ −DX → grmodλ −DY

preserves torsion modules and that the (graded) pullback functor

i! : grmodλ −DY → grmodλ −DX .

preserves torsion modules too. We now need a technical lemma.

Lemma 4.34. Let F : A1 → A2 and G : A2 → A1 be a pair of functors

yielding to an equivalence of (abelian) categories between A1 and A2. Let T1

be a Serre subcategory of A1 and T2 be a Serre subcategory of A2. Suppose

that F and G induce an equivalence of categories between T1 and T2. Then

F and G induce an equivalence of categories between A1/T1 and A2/T2.

Proof. Let π1 : A1 → A1/T1 and π2 : A2 → A2/T2 be the projection functors.

The composite π2 ◦ F sends every object of T1 to the zero object in A1/T1.

Similarly the composite π1 ◦G sends every object of T2 to the zero object in

A2/T2. Hence, this induces two functors

F̃ : A1/T1 → A2/T2

and

G̃ : A2/T2 → A1/T1

such that π2 ◦ F = F̃ ◦ π1 and π1 ◦G = G̃ ◦ π2.
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Let π1(A1) ∈ A1/T1, then

(G̃ ◦ F̃ )(π1(A1)) = (G̃ ◦ (F̃ ◦ π1))(A1)

= (G̃ ◦ (π2 ◦ F ))(A1)

= ((G̃ ◦ π2) ◦ F )(A1)

= ((π1 ◦G) ◦ F )(A1)

= π1 ◦ (G ◦ F )(A1)

∼= π1(A1)

So G̃ ◦ F̃ ∼= IdA1/T1 . Similarly, we can easily show that F̃ ◦ G̃ ∼= IdA2/T2 .

Applying the lemma above and Kashiwara’s theorem to the case where

A1 = grmodλ − DX , A2 = (grmodλ − DY )X , T1 = torsλ − DX and T2 =

(torsλ −DY )X , we obtain the following equivalence of categories

grmodλ −DX/torsλ −DX ∼= (grmodλ −DY /torsλ −DY )X .

where

(grmodλ −DY /torsλ −DY )X = (grmodλ −DY )X/(torsλ −DY )X .

A similar equivalence holds for left D-modules. Let [X] = [C(X)0/Gm] and

[Y ] = [C(Y )0/Gm] be two smooth projective stacks of dimension bigger than

one where C(X)0 is the punctured cone of [X]. Assume furthermore that

we have a closed embedding [X] ↪→ [Y ] (i.e. we have a closed embedding

of the punctured cone of X in the punctured cone of Y ). The category of

D[X]-modules on [X] is equivalent to DC(X) − grmodλ/DC(X) − torsλ. Hence

proving a version of Kashiwara’s theorem for smooth projective stacks.
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Theorem 4.35. Let i : [X] ↪→ [Y ] be a closed embedding of smooth projective

stacks. i∗ induces an equivalence of categories

D[X] −mod ∼= (D[Y ] −mod)[X]

with i! as a quasiinverse. A D[Y ]-module is said to be supported on [X] if it

is supported on the punctured cone of X.

4.6 D-affinity of weighted flag stacks

Let G be a reductive group and P 6 G a fixed parabolic subgroup (unique

up to conjugacy) corresponding to the highest weight λ ∈ Hom (T,K∗) where

T 6 G is a maximal torus of G sitting in P . Also, denote by Vλ the corres-

ponding irreducible G-representation. We call Λ = Hom (T,K∗) the weight

lattice of T and its dual Λ∗ = Hom (K∗, T ) the lattice of one parameter

subgroup. We obtain a non-degenerate bilinear pairing:

〈 , 〉 : Λ× Λ∗ → Z

Moreover the flag variety Σ := G/P embeds into P (Vλ). Choose a coroot

µ ∈ Λ∗ and an integer u ∈ Z such that:

〈wλ, µ〉+ u > 0

for all w ∈ W , λ ∈ Λ where W is the Weyl group of the root system ∇ of G.

We can now define a Gm-action on Vλ as follows:

(z, v) 7−→ zu (µ (z) .v)
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where µ (z) gives an element of T 6 G which therefore acts on Vλ. We

multiply the vector µ (z) .v by the scalar zu to ensure that all the weights

are positive. Now we can form a quotient space which gives us a weighted

projective space whose weights depend on two parameters µ and u.

wP (Vλ) (µ, u) = V 0
λ /Gm

From our embedding of the flag variety Σ in a regular projective space,

we take its cone C(Σ) sitting in Vλ and then act accordingly to the action

defined precedently.

wΣ (µ, u) = C(Σ)0/Gm

with associated closed projective substack [C(Σ)0/Gm] ↪→ [V 0
λ /Gm].

Example 4.36. LetG = SL (5,K). The corresponding Lie group is g =sl (5,K)

which is of type A4. The simple roots are given by

∇0 = {e0 − e1, e1 − e2, e2 − e3, e3 − e4} = {α1, α2, α3, α4} .

It is better to work with the fundamental weights basis, say {w1, w2, w3, w4}

and we let w1 = (1, 0, 0, 0),. . . ,w4 = (0, 0, 0, 1). Now V = K5 is an irredu-

cible g-representation which corresponds to the weight w1, V = Vw1 . Let

BV = {x1, . . . , x5} be an ordered basis for V . We want to get a root space

decomposition of V under the Cartan subalgebra action h 6 g:

V =
⊕

Vλi

We get:
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λ1 = w1 = (1, 0, 0, 0)

λ2 = w1 − α1 = (−1, 1, 0, 0)

λ3 = w1 − α1 − α2 = (0,−1, 1, 0)

λ4 = w1 − α1 − α2 − α3 = (0, 0,−1, 1)

λ5 = w1 − α1 − α2 − α3 − α4 = (0, 0, 0,−1)

where λi is the weight of xi and it follows:

α1 = (2,−1, 0, 0)

α2 = (−1, 2,−1, 0)

α3 = (0,−1, 2,−1)

α4 = (0, 0,−1, 2)

We want to know the weights on the coordinate system which are given

by the Plücker coordinates

pijkl = xijxkl − xikxjl + xilxjk

for 0 6 i < j 6 5. We can consider that xij = xi ∧ xj, 0 6 i < j 6 5 to form

a basis for
2∧
V . The degree of xij equals the degree of xi and xj.

Fix a coroot µ = (a1, a2, a3, a4) ∈ Λ∗ and positive integer u ∈ Z, K∗ ↪→

T 6 SL (2, 5) defined by

z 7−→



za1

za2−a1

za3−a2

za4−a3

z−a4


.
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Basis elements weight degree

x12 w2 a2 + u

x13 w1 − w2 + w3 a1 − a2 + a3 + u

x14 w1 − w3 + w4 a1 − a3 + a4 + u

x15 w1 − w4 a1 − a4 + u

x23 −w1 + w3 −a1 + a3 + u

x24 −w1 + w2 − w3 + w4 −a1 + a2 − a3 + a4 + u

x25 −w1 + w2 − w4 −a1 + a2 − a4 + u

x34 −w2 + w4 −a2 + a4 + u

x35 −w2 + w3 − w4 −a2 + a3 − a4 + u

x45 −w3 −a3 + u

From the fact that wi (µ (z)) = zai and we get the following table giving the

weights for the basis of defined
2∧
V above.

We can remark that x12 is the only basis element with no negative coef-

ficient. This gives Vw2 =
2∧
V the right embedding of G/P ↪→ P (Vw2).

Conjecture 4.37. The weighted flag stack is D-affine if its ambient weighted

projective stack is.

We think that Kashiwara’s theorem for projective stacks preserves D-

affinity in this case.
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