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Preconditioners for the geometry 
optimisation and saddle point 
search of molecular systems
Letif Mones1,2, Christoph Ortner1 & Gábor Csányi2

A class of preconditioners is introduced to enhance geometry optimisation and transition state search 
of molecular systems. We start from the Hessian of molecular mechanical terms, decompose it and 
retain only its positive definite part to construct a sparse preconditioner matrix. The construction 
requires only the computation of the gradient of the corresponding molecular mechanical terms that 
are already available in popular force field software packages. For molecular crystals, the preconditioner 
can be combined straightforwardly with the exponential preconditioner recently introduced for periodic 
systems. The efficiency is demonstrated on several systems using empirical, semiempirical and ab initio 
potential energy surfaces.

Geometry optimisation and transition state search are fundamental procedures to identify important stationary 
points of molecules, molecular crystals and material systems in computational chemistry. Since the evaluation of 
chemically accurate ab initio potential energies and gradients are computationally demanding, several techniques 
have been developed over the last three decades to enhance the convergence of optimisation methods.

Among the most widely used are quasi-Newton methods, in particular BFGS or its limited memory version1, 
which start with a (scaled) identity as their guess for the Hessian and update it at each iteration based on the 
gradient information collected from previous steps. Initialising with a Hessian guess that includes more molecule 
specific geometrical information can improve the convergence. For instance, just introducing some connectivity 
information about a molecule can lead to surprisingly good results2,3.

Utilising internal coordinates in the construction of Hessian has also been intensively investigated4–9. These 
approaches include (1) methods that build the Hessian matrix in the space of internal coordinates in the begin-
ning of the optimisation and then transform it to Cartesian coordinates, (2) methods that recompute and trans-
form the internal Hessian every step and (3) methods that carry out even the optimisation step in the space of 
internal coordinates. However, this latter scheme requires to carry out both the projection of Cartesian gradients 
to internal coordinates gradients and the transformation of the internal coordinates to Cartesian coordinates. 
None of these steps is straightforward and the gradient conversion can be accomplished only by an iterative solu-
tion due to the curvilinear nature of the transformation8.

More sophisticated methods estimate the initial Hessian guess from a surrogate potential (e.g. force field 
or semiempirical potential) whose second derivative can be obtained at low computational cost. The update 
of the approximate Hessian can then be achieved either by using quasi-Newton methods or other techniques 
such as DIIS10,11. Such strategies significantly improve the speed of convergence in either Cartesian or internal 
coordinates6.

If the model Hessian is cheap to calculate (e.g., as obtained from a surrogate model) and provides a reason-
able approximation of the quantum Hessian, it may be advantageous to recompute it at every optimisation step. 
Such a scheme was introduced by Lindh et al.12, where a model potential is constructed consisting of quadratic 
terms for all distances, angles and dihedrals in the molecule. At each geometry optimisation step the force field is 
constructed such that the current conformation is its local minimum, and its “Hessian” is computed, neglecting 
the dependence of the force field parameters on the geometry. With this construction, the model “Hessian” is 
therefore not the Hessian of any potential. Nevertheless, this approach yields excellent performance, which led 
to its wide implementation in quantum chemistry program packages (e.g. in MOLPRO13, ORCA14, DALTON15, 
CRYSTAL16).
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The model “Hessian” of Lindh12 can be considered as a preconditioner or metric that effects a transformation 
to a new coordinate system where the optimisation problem is better conditioned, hence algorithms converge 
more rapidly and tend to be more robust. Geometrically, the shape of the energy landscape becomes more iso-
tropic. In general it is desirable that both the construction and inversion of the preconditioner matrix are inex-
pensive (at least compared to the computation of the energy and gradient). This can be achieved by building a 
sparse preconditioner from simple analytical functions. Since the preconditioner defines a metric in configura-
tion space it needs to be positive definite. This requirement is automatically fulfilled in the Lindh approach12 by 
the use of quadratic molecular mechanical terms with equilibrium points corresponding to the actual geometry 
at each step.

We recently introduced a general and effective preconditioner for geometry optimisation and saddle point 
search for material systems3. This preconditioner is determined by the local connectivity structure of atoms mak-
ing both the construction and inversion computationally inexpensive. Especially for larger systems we observe an 
order of magnitude or larger reduction of the number of optimisation steps for the preconditioned LBFGS method 
compared to the same without preconditioning. Here we expand our previous work to molecules and molecular 
crystals by combining it with a force field based preconditioner inspired by the approach of Lindh et al.12.

Methods
Enhancing geometry optimisation by using preconditioners.  We briefly review the methodology for 
preconditioning geometry optimisation and the dimer saddle point search method for material systems3. For a 
system with N particles let ∈xk

N3  denote the configuration at the k th iterate of an optimisation algorithm. The 
corresponding energy, gradient and preconditioner are denoted by fk =  f(xk), gk =  ∇f(xk) and 

∈ ≈ ∇×P f x( )k
N N

k
3 3 2 , respectively. A preconditioned steepest-descent step is then given by

α= −+
−x x P g (1)k k k k k1

1

where αk is the step size obtained from some line search procedure at the k th iteration. If Pk = I, then (1) becomes 
the standard steepest descent scheme and if Pk = ∇2f(xk), then it becomes a quadratically convergent Newton 
scheme. In general, different choices of Pk may “interpolate” between these extremes.

From an alternative point of view preconditioning can be thought of as a coordinate transformation, where a 
new set of coordinates is defined as =y P x:k k

1/2 . The advantage of this framework is that once an appropriate 
preconditioner matrix is available then any optimisation algorithm can be modified by applying the original 
algorithm on the transformed coordinates. To obtain the final form of the modified algorithm we need to trans-
form the variables back to the original coordinate system. As a simple example, applying the coordinate transfor-
mation on the gradient descent equation immediately leads to the equation of quasi Newton schemes (eq. 1):
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where we used the fact that ∇ = ∇−F y P f x( ) ( )y k k x k
1/2 . Preconditioning popular optimisation methods like LBFGS, 

conjugate gradients, FIRE17 etc. is similarly possible.
A simple preconditioner that is effective for a wide range of materials systems is based on the following N × N 
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where i and j denote atomic indices and μ, A, rcut and rnn are parameters that can be user-specified or estimated 
numerically. We note that (3) is a generalisation of the Laplacian matrix used to represent undirected graphs. 
Given a specific connectivity defined by rcut and setting A = 0 and μ = 1, Lij reduces exactly to the Laplacian 
matrix. The actual 3N × 3N preconditioner is simply obtained from the corresponding Lij element in an isotropic 
manner:
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where the k and l indices denote Cartesian components. Despite its simplicity in capturing only geometric con-
nectivity but no specific material information, PExp provides a good model for the local curvature of the potential 
energy landscape, which effectively controls ill-conditioning in large systems. The application of PExp resulted in 
a significant reduction of the number of optimisation steps required for several material systems compared to the 
unpreconditioned LBFGS3.

FF-based preconditioners.  Preliminary tests showed that for molecular systems such as molecules in gas 
phase or molecular crystals using PExp still leads to a speed-up, but a much more modest one than for mate-
rial systems. The explanation for this is that molecular systems contain a wide range of different interactions 
(e.g., pair, angle, dihedral, electrostatic, dispersive) of vastly varying stiffness which in addition are more loosely 
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coupled, and this creates a second source of ill-conditioning distinct from ill-conditioning due to large system 
size. Inspired by the use of internal coordinates in molecular optimisation techniques4 and the model Hessian of 
Lindh et al.12 we therefore propose a generalisation of PExp that is effective also for molecular systems.

The construction of our FF-based preconditioner begins with a surrogate potential energy function, given by 
a sum over internal coordinates each describing a short-range bond in the system (distance, angle, or dihedral),

∑ ξ= .
α

α αV V x( ( ))
(5)FF

The individual potential energy terms are in general simple functions of the internal coordinates. Some exam-
ples of most typical forms are the quadratic, Morse or torsional potentials, respectively given by

= −V q k q q( ) 1
2

( ) , (6)Quadratic 0
2

α= − − −V d D d d( ) (1 exp( ( ))) , (7)Morse 0 0
2

and

φ φ φ= + −φV k n( ) 1
2

(1 cos( )) (8)Torsion 0

where the corresponding parameters can be taken from standard force field libraries.
Due to its simple functional form = ∇H V:FF

2
FF is cheap to compute. If only short-range bonds are taken into 

account then it is also sparse, hence it is cheap to store and invert. Moreover, we expect that VFF gives a good 
qualitative approximation to the quantum potential energy landscape, hence HFF is a good qualitative approxima-
tion to the quantum Hessian ∇2f. Therefore, HFF satisfies all the conditions required for a preconditioner except 
that it will in general be indefinite. A conceptually straightforward but computationally expensive approach to 
overcome this limitation is to enforce positivity by replacing all eigenvalues of HFF with their absolute values. 
Instead, we propose to analytically modify the local Hessian contributions to ensure overall positivity, resulting in 
a further reduction in computational cost.

The Hessian contribution from Vα is given by
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where we have decomposed Hα into two terms, αH (1) and αH (2). If Vα is quadratic then = >
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2 , hence 

αH (1) is positive semi-definite, while the sign of αH (2) is ambiguous. Note however, that if the system is at equilib-
rium of Vα with respect to ξα, i.e., if =

ξ
∂
∂

α

α
0V , then =αH 0(2) . This in fact is the case in the Lindh approach12. 

Instead of adjusting Vα at every step such that the geometry corresponds to its equilibrium, here we simply drop 
αH (2) and only use αH (1) to construct the preconditioner, thus ensuring that it always stays positive definite.

For non-quadratic contributions we expect that >
ξ

∂
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α

α
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2
 for most but not all bonds, hence we enforce positiv-

ity by replacing it with its absolute value. This leads to the following general preconditioner for molecular 
systems:
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It is worth noting that ξ∂

∂
α

x
 is already computed by molecular mechanics force field based MD programs since 

it is required for the assembly of ∇Vα. Thus, the only new quantity that must be computed is 
ξ

∂

∂
α

α

V2

2
, which repre-

sents a negligible additional computational cost.
We note that the final functional form (10) of our preconditioner is very similar to that of Lindh et al.12, 

however we arrived at it from a fundamentally different perspective, which has several advantages. Lindh et al.‘s 
method was introduced for quadratic terms only, hence the force constants have to be recomputed after each opti-
misation step (as the equilibrium bond lengths, angles and dihedrals are set to the actual ones to obtain a positive 
semidefinite matrix). Our method can be considered as a generalisation of their approach, allowing arbitrary 
functional forms of internal coordinate dependent terms. In particular this means that the FF parameters need 
not be adjusted to achieve a positive semidefinite matrix, and incorporating different parameter sets is straight-
forward. Moreover, as it will be discussed below our perspective makes it easy to extend the preconditioner 
construction to new situations. Finally we mention that since the FF-based preconditioner is a sparse matrix both 
its construction and inversion are computationally inexpensive, which gives the possibility to utilise it even for 
large systems.

Combining FF and Exp preconditioners.  For molecular crystals, intermolecular interactions also play 
an important role. This consideration led us to combine the molecular mechanics based FF preconditioner 
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(describing bonded interactions) with a modified Exp preconditioner (4) (tuned to describe only non-bonded 
interactions, i.e. interactions already treated by the FF preconditioner are omitted):

= ++P P P (11)Exp FF Exp
nb

FF

PFF is fully specified from the chosen force field VFF. To specify PExp
nb  we first manually choose the parameters A 

and rcut in (4) to account for the interaction between molecules3. The remaining parameters are computed in a 
similar automatic manner as described in ref.3, and we keep only those matrix elements of PExp for which the 
corresponding matrix element in PFF is zero. We note that correct scaling between PFF and PExp is implicitly 
ensured via the μ parameter in Eq. 3.

Implementation details.  We tested the FF and FF + Exp preconditioners on a range of optimisation and 
saddle point search tasks. For geometry optimisations the form of the preconditioned LBFGS method was iden-
tical to the one we describe in ref.3: at each iterate the search direction is given by
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with initial search direction = ∇−z P f x( )0
1

0 . The box in Eq. 12 indicates the single modification of the standard 
algorithm to obtain preconditioning. Variable m is the maximum number of metric corrections. The step length 
selection is obtained by a backtracking line-search enforcing only the Armijo condition3. We note that although 
there exist several techniques (discussed in the Introduction) that use a quasi-Newton method in combination 
with some approximated Hessian information, their applicability is rather limited for large systems due to the 
excessive computational cost. Therefore our baseline was the unpreconditioned LBFGS method and where it was 
necessary we also compared our method to other preconditioning based techniques.

For saddle point search tasks we slightly modified the superlinearly converging dimer method18. Dimer meth-
ods use two copies of the system with coordinates x(1) and x(2) and a fixed separation length = −l x x(1) (2)  
between them. The algorithm is usually split into two alternating steps19: (1) in the rotation step we fix the mid-
point and rotate the endpoints to approximately align them with the lowest (negative) eigenmode of the Hessian 
(vk); (2) in the translation step we shift the dimer to maximise the energy along the dimer direction while mini-
mising energy in all directions perpendicular to it (pk).

In principle, both the rotation and translation steps can be preconditioned, however, we found that in many 
systems preconditioning the rotation step results in a smaller spectral gap and hence slower convergence. 
Therefore, we chose to precondition only the translation step. Our implementation employs the conjugate gradi-
ent method using the Polak-Ribière formula:
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and using the initial iterate s0 = −(I − 2v0 ⊗ v0)∇f(x0). Again, boxed steps are the modifications needed to the 
original method to achieve preconditioning. For computing the step length we used the trust region radius 
approach suggested by Kästner and Sherwood18, with acceptance criterion based on the projection of the gradient 
of the actual step.

For molecules in gas phase VFF is invariant under rotations and translations, hence PFF will be at least six fold 
degenerate with zero eigenvalues for any configuration of the molecule corresponding to the three translational 
and three rotational degrees of freedom. While these degrees of freedom could in principle be fixed we found that 
a straightforward solution is to simply regularise the preconditioner by replacing it with → +P P cI . We found 
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that good generic values for c are 0.1 and 1.0 eV/Å2 for geometry optimisations and saddle point search, 
respectively.

Model systems and potentials.  Organic molecules in gas phase.  Three potential energy surfaces were 
investigated for geometry optimisations: semiempirical PM620, DFT21,22 and MP223. For the DFT potential we 
used the the BLYP exchange-correlation functional24,25 with the DZVP-MOLOPT basis set26 and plane wave 
cutoff of 480 Ry within the Gaussian and plane waves method (GPW) approach27 and Goedecker-Teter-Hutter 
(GTH) pseudopotentials28. For the MP2 calculations the 6–31G** basis set was applied.

In the case of geometry optimisations on the PM6 surface we compared three different force fields from which 
we constructed the preconditioners: the force field of Lindh et al. (LFF)12, the universal force field (UFF)29 and the 
generalised Amber force field (GAFF)30.

Initial configurations were taken from 0.5 ns long molecular dynamics (MD) simulations at 300 K.
For transition state search we selected 7 examples (with their initial configurations) from the benchmark of 

Baker and Chan31 and three additional systems whose initial configurations were taken from 0.5 ns long MD 
simulations at 300 K. The computations were performed on the semiempirical PM6 surface20.

Molecular crystals.  We compared four different optimisation schemes (unpreconditioned, only FF-based, only 
Exp-based and Exp + FF-based preconditioners) on five organic molecular crystals (systems XVIII to XXII) 
whose initial geometries were taken from the Organic Crystal Structure Prediction competition of the Cambridge 
Crystallographic Data Centre32,33. We used a DFT potential energy surface with the PBE exchange-correlation 
functional34 with a plane wave basis set using a cutoff energy of 800 eV and ultrasoft pseudopotentials35.

Material systems.  We also tested how the force field based preconditioner works on two material systems com-
pared to the exponential preconditioner. We examined the unpreconditioned and preconditioned geometry opti-
misation for bulk silicon and vacancy with varying system size. The potential energy surface was the screened 
Tersoff potential36,37 and we used the universal force field (UFF)29 for building the FF-based preconditioner 
matrix. The bulk systems were built by using the bulk function of ASE38 with default lattice constants while for the 
corresponding vacancy systems a silicon atom was removed. Initial configurations were obtained by applying a 
random displacement on the atomic positions using normal distribution with standard deviation of 0.05 Å.

Next we considered bulk tungsten and a single interstitial site in bulk tungsten, also using different system 
sizes. The potential energy surface was a machine learning based Gaussian Approximation Potential (GAP) 
reproducing the quality of DFT (with PBE functional)39. The preconditioner in this case was based on a simple 
Embedded Atom Method (EAM) potential40,41. Initial configurations were obtained in a similar way as the bulk 
silicon ones but this time a standard deviation of 0.15 Å was applied.

Software.  For the semiempirical PM6 method AmberTools1642 was used. The MP2 potential surface was gener-
ated using MOLPRO13,43. The screened Tersoff potential was provided by Atomistica44. The DFT potentials with 
the BLYP and PBE functionals were provided by CP2K45 and CASTEP46, respectively, using the QUIP interface47. 
The GAP model was called via QUIP47.

In all cases the geometry optimisation was performed within ASE38. The other software packages were only 
used to compute the energy and gradient of the configurations. A Python implementation of the FF and Exp + FF 
preconditioners with several potential forms of nonbonded terms is available within ASE38,48 (https://gitlab.com/
molet/ase).

Initial structures of molecules and molecular crystals as well as the generating Python codes for the starting 
geometry of material systems are provided as Supplementary Data.

Accession codes.  Python implementation of the preconditioners can be found here: [https://gitlab.com/
molet/ase].

System (# of atoms)

PM6 DFT(BLYP) MP2/6–31 G**
ID FF/GAFF ID FF/GAFF ID FF/GAFF FF/LFF Lindh

5-nitrobenzisoxazole (16) 89 25 119 63 71 27 31 32

menthone (29) 207 29 197 48 107 22 31 38

alanine tripeptide (32) 395 77 536 124 210 59 47 67

thc (53) 720 84 239 69

heme (75) 500 175 358 95

taxol (113) 1662 419

16-mer polyalanine (172) 3549 348

Table 1.  Total number of function/gradient calls of geometry optimisation for organic molecules in gas phase 
using conventional (ID) and FF-based preconditioned (FF) LBFGS method on three different quantum 
chemistry surfaces. Convergence threshold was ∇ =∞

−E 10 4 eV Å−1 for PM6 and ∇ =∞
−E 10 3 eV Å−1 for 

DFT and MP2 potentials, respectively.

https://gitlab.com/molet/ase
https://gitlab.com/molet/ase
https://gitlab.com/molet/ase
https://gitlab.com/molet/ase
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Results
Organic molecules in gas phase.  We investigated several organic molecules’ geometry optimisations with 
(FF) and without (ID) our new FF-based preconditioner on three potential energy surfaces (PM6, DFT and 
MP2), using the GAFF force field for building the preconditioner. The results are shown in Table 1 and Fig. 1. The 
convergence criterion of the geometry optimisations was ∇ =∞

−E 10 3 eV Å−1 for DFT and MP2 surfaces while 
for the relatively inexpensive PM6 potential we applied a slightly tighter threshold of ∇ =∞

−E 10 4 eV Å−1. 
Depending on the system and underlying potential we can observe a 4–10 fold decrease in the required number 
of optimisation steps using our preconditioner.

For PM6 only, to highlight the correlation between performance gain and ill-conditioning, we also computed 
the ratio between the condition numbers for the unpreconditioned and preconditioned Hessians, κI/κP, at the 
minima, where

κ
λ
λ

= = =

=

~

u Hu

u Hu
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min (14)
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T

u Pu

T
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1
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Figure 1.  Computational saving of FF/GAFF preconditioner over unpreconditioned LBFGS optimisations for 
geometry optimisation of molecular systems in gas phase on three model potentials.

Figure 2.  Correlation between the computational saving and the condition number ratio at potential energy 
minima of molecular systems in gas phase on PM6 potential.

System (# of atoms)

LBFGS

ID FF/GAFF Hessian/GAFF Hessian/PM6

5-nitrobenzisoxazole (16) 89 25 32 24

menthone (29) 207 29 36 21

alanine tripeptide (32) 395 77 109 110

thc (53) 720 84 95 120

Table 2.  Comparison of total number of function/gradient calls of geometry optimisation of different 
optimisation algorithms for minimisation of small organic molecules on PM6 surface: unpreconditioned 
LBFGS (ID), FF-based preconditioned LBFGS (FF/GAFF), FF-Hessian based preconditioned LBFGS (Hessian/
GAFF), PM6-Hessian based preconditioned LBFGS (PM6/GAFF). Convergence threshold was ∇ =∞

−E 10 4 
eV Å−1 for all cases.
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where ∼H  is a modified Hessian where the zero eigenvalue due to symmetries are removed. In Fig. 2 we observe 
that the computational saving is more strongly correlated to the condition number ratio than to the system size.

For the three smallest systems and the PM6 surface only we also compared our FF-based preconditioner 
against using the exact Hessian of the model potential (Hessian/GAFF) and a finite-difference Hessian of PM6 
(Hessian/PM6) as preconditioners for LBFGS method. Zero eigenvalues of the Hessian matrices were shifted to 
a moderate positive number to avoid numerical instabilities. The results are collected in Table 2 and Fig. 3. Our 
FF-based preconditioner clearly outperforms both of these variants.

We also examined the effect of using different force fields from which to construct the FF-based precondi-
tioner. Beside the GAFF force field, we investigated two general force fields: the universal force field (UFF)29 and 
a general force field introduced by Lindh et al. (LFF)12. The results shown in Table 3 and Fig. 4 indicate that there 
is no significant difference between the three force fields. We only mention that the LFF force-field includes all 
possible 2, 3 and 4–body interactions12, resulting in a dense preconditioner matrix, which for larger systems and 
an efficient potential energy surface could become a performance bottleneck. By contrast, the preconditioners 
based on GAFF or UFF are sparse, hence their cost scales linearly with system size.

Figure 3.  Computational gain of different optimisation algorithms compared to the unpreconditioned LBFGS 
method for geometry optimisation of molecular systems in gas phase on PM6 potential.

System (# of atoms) ID FF/GAFF FF/UFF FF/LFF

5-nitrobenzisoxazole (16) 89 25 31 34

menthone (29) 207 29 39 39

alanine tripeptide (32) 395 77 79 90

thc (53) 720 84 77 92

heme (75) 500 175 219 n.a.

taxol (113) 1662 419 393 400

16-mer polyalanine (172) 3549 348 280 273

Table 3.  Comparison of the effect of different force field based preconditioners for the geometry optimisation 
of organic molecules in gas phase (total number function/gradient calls). Convergence threshold was 
∇ =∞

−E 10 4 eV Å−1 for all cases.

Figure 4.  Computational gain of the FF-based preconditioner using different force fields for geometry 
optimisation of molecular systems in gas phase on PM6 potential.
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Finally, we tested how the different preconditioners perform when applied to transition state search, compar-
ing again against ID (no preconditioning) and against the Exp preconditioner (with default parameter set and 
μ = 1; unlike LBFGS, CG is invariant under rescaling of μ). The results are collected in Table 4 and Fig. 5. Overall 
the Exp preconditioner does not improve significantly over ID. We experimented with different parameters, e.g., 
adding connectivity information up to the 4-body interaction, but observed no improvements. Both FF-based 
preconditioners are again comparable and yield a much improved convergence even for these relatively small 
systems. For instance, the gain is already 2–3-fold for dimethyl-phosphate and tyrosine hydrolyses.

Molecular crystals.  We compared geometry optimisation with fixed unit cells using LBFGS, preconditioned 
with ID (unpreconditioned), Exp3 and FF (GAFF force field). For Exp the nearest neighbour distance (rnn) in 
Eq. 4 was calculated from the initial structure, we specified rcut = 2rnn and A = 3.0. In addition, we also employed 
the Exp + FF preconditioner as defined in (11). The results for different molecular crystals are shown in Table 5 
and Fig. 6. As expected, Exp reduces the number of optimisation steps compared to ID, although the improve-
ment is significantly smaller for molecular crystals that for material systems3. Interestingly, FF alone already leads 
to a significant speed-up over both ID and Exp even though the inter-molecular interaction is not captured well. 
This indicates that for molecular crystal optimisations preconditioning based on specific intramolecular infor-
mation is crucial. The most successful method was the Exp + FF combination, which leads to a 3-7 fold speed up 
even for these relatively small test systems.

System (# of atoms) ID Exp FF/GAFF FF/LFF

HCCH ↔ CCH2 (4) 20 (79) 17 (67) 14 (55) 32 (124)

H2 CO ↔ H2 + CO (4) 24 (94) 19 (73) 18 (69) 18 (70)

CH3 O− ↔ CH2 OH− (5) 18 (69) 18 (70) 14 (55) 22 (82)

vinyl alcohol ↔ acetaldehyde (7) 58 (227) 62 (245) 39 (154) 46 (179)

ring opening of cyclopropyl (8) 52 (205) 51 (199) 31 (121) 35 (137)

ring opening of bicyclo[1.1.0] butane TS 1 (10) 87 (332) 77 (291) 56 (207) 52 (191)

ring opening of bicyclo[1.1.0] butane TS 2 (10) 66 (259) 72 (282) 35 (135) 33 (127)

dimethyl-phosphate + OH− TS 1 (15) 395 (1541) 361 (1425) 127 (504) 123 (489)

dimethyl-phosphate + OH− TS 2 (15) 355 (1379) 329 (1302) 172 (683) 159 (631)

tyrosine + H2O (27) 531 (2120) 396 (1574) 147 (583) 185 (728)

Table 4.  Number of steps of translations (and total number of function and gradient calls in parentheses) of 
saddle searches using different preconditioned variants of superlinearly converging dimer method. 
Convergence threshold was ∇ =∞

−E 10 4 eV Å−1 for all cases.

Figure 5.  Computational gain of the Exp and FF-based preconditioners compared to the unpreconditioned 
superlinearly converging dimer method for molecular systems in gas phase on PM6 potential.

System (# of atoms) ID Exp FF/GAFF Exp + FF/GAFF

xxii (60) 77 60 45 29

xxi (84) 291 164 134 77

xx (220) 174 169 16 45

xix (112) 193 137 73 29

xviii (184) 232 97 70 39

Table 5.  Total number of function/gradient calls of geometry optimisation of molecular crystals using different 
preconditioning strategies. Convergence criterion was ∇ = .∞

−E 1 0 3 eV Å−1.
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Material systems.  Finally, it is also interesting to investigate how an FF-based preconditioner compares 
against the Exp preconditioner for material systems, where Exp performs very well3. We tested geometry opti-
misation of bulk silicon and a vacancy in bulk silicon with perturbed initial conditions, with increasing system 
size. The screened Tersoff potential was used as the potential energy, while the FF preconditioner was constructed 
from UFF. The results are shown in Table 6. In both cases, the FF-based preconditioner yields a clear further 
speed-up over Exp for both systems.

Another test system was bulk tungsten and a single interstitial site in bulk tungsten with perturbed initial con-
ditions and different system sizes. The potential energy surface was provided by a GAP model that was trained on 
DFT data. The preconditioner was based on a simple EAM potential:
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where Φ(rij) is a pair potential, F is the embedding function and ρ(rij) is the electron charge density contribution 
from atom j to atom i. Based on Eq. 10 our FF-based preconditioner was defined as = ∑ ⊗α

∂
∂

∂
∂

∂

∂
α α

α
P r

x
r
x

V

rFF

2
EAM

2
, 

where α runs over all ij pairs. In the actual implementation Φ, F and ρ functions are represented by splines so 
computing the corresponding curvature is fairly straightforward.

The results are presented in Table 7. For both the bulk and interstitial systems the number of function/gradient 
calls of the unpreconditioned optimisation increases with system size while the preconditioned optimisations 
require almost the same number of optimisation steps to achieve the same convergence criterion.

Figure 6.  Computational gain of the Exp, FF and Exp + FF preconditioned over unpreconditioned LBFGS for 
geometry optimisation of molecular crystals on a DFT potential.

System (# of atoms)

Bulk geometry 
optimisation

Vacancy geometry 
optimisation

ID Exp FF/UFF ID Exp FF/UFF

2 × 2 × 2 (64) 32 17 10 34 15 9

4 × 4 × 4 (512) 63 18 10 57 16 9

8 × 8 × 8 (4096) 105 21 13 96 17 11

16 × 16 × 16 (32768) 147 35 21 142 19 11

Table 6.  Total number of function/gradient calls geometry optimisation steps of bulk silicon and a bulk silicon 
vacancy using different preconditioning strategies. Convergence criterion was ∇ = .∞

−E 1 0 3 eV Å−1.

System (# of atoms)

Bulk geometry optimisation
Interstitial geometry 
optimisation

ID Exp FF/EAM ID Exp FF/EAM

4 × 4 × 4 (64) 21 11 9 62 42 33

8 × 8 × 8 (512) 32 12 8 72 43 36

16 × 16 × 16 (4096) 56 12 9 116 46 33

Table 7.  Total number of function/gradient calls for geometry optimisation of bulk tungsten and interstitial 
defect in bulk tungsten using different preconditioning strategies. Convergence criterion was ∇ = .∞

−E 1 0 3 
eV Å−1.
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Conclusion
We introduced a flexible preconditioner for molecular simulation based on empirical potentials that are widely 
implemented in popular molecular mechanical program packages. Our method, which can be considered a gen-
eralisation of Lindh et al.12, decomposes the analytic Hessian of the empirical potential and modifies individual 
components to ensure their positivity. An advantage of this procedure is that it avoids the computation of second 
derivatives of the collective variables (or internal coordinates). The preconditioner yields significant improve-
ments (at least 2 fold, and typically 5 fold decrease in function/gradient calls compared to unpreconditioned 
techniques), demonstrated thoroughly on a wide range of systems including molecules in gas phase, molecular 
crystals and materials, using different target potential energy surfaces (empirical, semiempirical and ab initio) as 
well as different optimisation tasks (geometry optimisations and saddle point searches).
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