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Abstract: 16 

The photooxidative stability of an aromatic segmented poly(urethane-urea) (PUU) elastomer, 17 

stabilised with a range of carbon black fillers, was assessed after very low UVA doses as a means to 18 

identify components that are highly susceptible to UV degradation, and suggest better design of such 19 

materials. Fourier-transform infrared (FTIR) analysis indicated rapid degradation of the urea bonds 20 

in the hard segments, followed by chain scission and photo-Fries reaction of the urethane linkages. In 21 

the soft segments, the oxidation of the original ether groups resulted in the formation of large 22 

amounts of ester groups, while some crosslinking of the ether groups was also evident. Carbon black 23 

provided moderate protection against degradation, with the smallest-sized particles being the most 24 

effective. Protection was evidenced by reduced surface cracking as well as an increased resistance to 25 

chemical changes in both the soft segments and hard segments. Even so, significant degradation was 26 

still evident at low UV doses suggesting that further stabilisation is required to increase the UV 27 

durability of these elastomers and improve their long-term performance. 28 

 29 

Keywords: UV ageing; aromatic poly(urethane-urea); carbon black 30 

 31 

  32 
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1 Introduction 33 

Poly(urethane-urea) (PUU) is a type of polyurethane (PU) block copolymer formed using 34 

diamines as the chain extenders and crosslinking agents. This group of polymers is considered to 35 

have a more complicated structure and increased hydrogen-bonding properties relative to other PUs 36 

since there are two different type of N-H bonds present in the urethane and urea linkages [10]. For 37 

the production of PUUs, both aromatic and aliphatic diamines can be used, such as 4,4′-38 

methylenebis(2-chloroaniline) (MOCA), [11] diethyltoluenediamine (DETDA) [12], and 2,4-39 

diamino-3,5-dimethylsuphylchlorobenzene (DDSCB) [10]. The addition of these diamine chain 40 

extenders is supposed to improve thermal stability and mechanical properties since, compared with 41 

PUs, PUU elastomers have higher cohesive linkages through the urea groups in the hard segments 42 

[13-16]. PUU elastomers are widely used for marine, aircraft and biomedical applications due to 43 

their low glass transition temperatures (Tg), high flexibility and outstanding biocompatibility [17, 18]. 44 

However, PU-based elastomers are generally considered to be extremely susceptible to ultraviolet 45 

(UV) irradiation, resulting in irreversible changes in their structure and chemistry, which largely 46 

affect their physical and mechanical properties [9]. Thus, there has been a rising interest in finding a 47 

cost-effective method to improve the UV stability of PU elastomers to extend their lifetime and 48 

maintain their performance when exposed to aggressive environments.  49 

The mechanism of PUU photodegradation is complicated, as several photolytic reactions can 50 

occur at the same time, such as the oxidation-induced discolouration of aromatic urethane/urea 51 

groups, chain scission and oxidation of the polyol segment, and breakage of N–H bonds in the 52 

system. PUUs have been found to exhibit better photostability than their polyurea counterparts [19]. 53 

However, due to limited work in this area, a complete description of the PUU photodegradation 54 

process and how the UV irradiation affects the properties of PUU remain unclear.  55 
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For practical applications, there is an urgent need to find cost-effective techniques to improve the 56 

UV stability of PUUs. While the use of different additives/stabilisers in PUs and PUUs to enhance 57 

their photostability has been widely reported, carbon black has been found to be the most viable 58 

choice since it can absorb UV over a wide range of wavelengths and is not consumed during service 59 

[20]. Carbon black is one of the most commonly used and effective UV stabilisers in polymer 60 

applications, being the major additive providing UV protection for plastics such as outdoor wire and 61 

cable jacketing, pipes, and geosynthetic membranes [21, 22]. For polyethylene (PE), for example, a 62 

loading of 2–3% by weight of carbon black should provide effective UV protection [22-24]. By 63 

absorbing and scattering UV, well-dispersed carbon black can largely reduce the dosage of UV 64 

irradiation to polymers, thus greatly reducing the photoinduced structural and property changes [21].  65 

It is worth noting that the primary particle size, structure, surface chemistry, and dispersion state 66 

of carbon black could significantly influence the effectiveness of the UV protection provided [25]. 67 

Generally, smaller particles and aggregate sizes bring better stabilisation because of the increased 68 

surface area for intercepting UV [26]. However, when the sizes of the carbon black particles and 69 

primary aggregates become too small (less than 20–25 nm), light scattering, especially forward 70 

scattering, becomes more important, which may have a negative effect on the UV stability of the 71 

polymer [21]. It is also known that carbon black with small particle sizes usually have a higher 72 

tendency to agglomerate into clusters, which are difficult to disperse in polymers [26]. Therefore, the 73 

structural features of carbon black play a significant role in the UV stabilisation of polymers.  74 

The present work focuses on the photodegradation pathways of a segmented PUU elastomer 75 

based on an aromatic isocyanate and a polyether during the early stage of UV ageing (60 h). The 76 

effects of three types of carbon black with different structural characteristics on the UV stability of 77 

this PUU were also studied. The photodegradation processes were analysed using Fourier-transform 78 

infrared (FTIR) studies of the PUU surface chemistry over the monitoring period, along with other 79 

techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), 80 
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and differential scanning calorimetry (DSC), which were used to analyse the surface features and 81 

property changes before and after UV ageing. Thus, this work provides further mechanistic 82 

understanding of the photodegradation of PUU elastomers, which is expected to guide future work 83 

on the development of high-performance PUU composite materials with enhanced weathering 84 

stability.  85 

 86 

2 Materials and methods  87 

2.1 Materials 88 

A two-pack commercial PUU product, “NUWC XP-1 Polyurethane Encapsulant”, was purchased 89 

from Alfa International Corporation (Woonsocket, RI, USA). This PUU has been reported in the 90 

literature for use in marine applications [27]. Part A of this formulation is a prepolymer resulting 91 

from the reaction between polyether polyols and toluene diisocyanate (TDI). The polyether is 92 

polypropylene glycol (PPG), with an average molecular weight (Mw) of 1500 g/mol, achieved by 93 

mixing polyether polyols with molecular weights of 1000 and 2000 g/mol together. The TDI is a 94 

mixture of 80% toluene 2,4-diisocyanate and 20% toluene 2,6-diisocyanate. Part B is 95 

dimethylthiotoluenediamine (DMTDA), which is the curing agent. The recommended mixing ratio 96 

of the prepolymer (Part A) to the curing agent (Part B) is 100 to 11.5 parts by weight.  97 

Three types of carbon black were used, including BP460 (Cabot Malaysia), N660 (Cabot 98 

Malaysia), and H30253 Super P® Conductive 99+% (metals basis) (Alfa Aesar, UK). These types of 99 

carbon black were coded as C1, C2, and C3, respectively.  100 

 101 
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2.2 Poly(urethane-urea) preparation 102 

PUU films were prepared using a casting method. Firstly, carbon black was added into Part A 103 

and dispersed using a tip-probe sonicator (VC-505, 500 watts, 20 kHz, Sonics & Materials, Inc., 104 

Newtown, CT, USA). For the sonication, 12 pulsing cycles of 10 min with an amplitude of 20% 105 

were used. Between each cycle, there was a 30 min break to prevent the mixture from overheating. 106 

After sonication, the mixture was degassed in a vacuum chamber to −100 kPa for at least 200 min at 107 

room temperature until no air remained in the mixture (as identified by the absence of air bubbles 108 

escaping). Part B was then added into Part A and the mixture was stirred at 2000 rpm for 2 min using 109 

a stand drill mixer equipped with a propeller before undergoing a second degassing cycle in the 110 

vacuum chamber for 30 min. The weight ratio of Part A : Part B : carbon black was 100 : 11.5 : 0.56 111 

(carbon black shared 0.5% of the total weight). The degassed PUU mixture was then carefully 112 

poured into flat moulds for curing. The moulds had been sprayed with silicone as a mould release 113 

agent and heated for 1 h at 80°C before use. After the materials had set (≥20 h), the solid PUU 114 

samples were removed from the moulds and cured in a 60°C oven for about 24 h as an accelerated 115 

curing step, and further stabilised for over 7 days at room temperature before any characterisation 116 

work. A blank PUU sample (without carbon black) was also made following the same procedure for 117 

comparison purposes. 118 

 119 

2.3 Accelerated UV ageing 120 

Samples were cut from 2.5–3.5 mm thick flat sheets and loaded into custom-built extensometers 121 

according to ASTM D1149–16 using Method B, Procedure B1 – Straight Specimens (Static 122 

Elongation). The accelerated ageing method was adapted from UV Resistance MIL–STD–810G, 123 

Method 505.5, Procedure II (A2). Briefly, samples were loaded into a QUV accelerated weathering 124 

tester (Q-Lab, Ohio, USA) that was equipped with UVA-340 lamps. The samples were held at 50°C 125 
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and were exposed to a UV intensity of 0.73 W/m2 at 340 nm on the sample surfaces (The UVA dose 126 

was calibrated by a CR10 calibration radiometer every week). After 60 h of UVA ageing, samples 127 

received a total UVA dose of 157.68 kJ/m2 at 340 nm. 128 

 129 

2.4 Characterisation 130 

2.4.1 Scanning electron microscopy (SEM) 131 

The morphological features of the carbon black powders and PUU samples were examined using 132 

a JEOL JSM-7001F scanning electron microscope (SEM) with an accelerating voltage of 5 kV, a 133 

working distance of 10 mm and a spot size of 1. All samples were coated with platinum in an argon 134 

atmosphere to prevent charging during image acquisition. 135 

 136 

2.4.2 N2 adsorption 137 

Carbon black porosity analysis was performed by nitrogen sorption using a Tristar II 3020 138 

(Micromeritics). The samples were degassed under vacuum for 24 h at 200°C before measurement. 139 

The specific surface area and pore volume were calculated using the Brunauer–Emmett–Teller (BET) 140 

equation. The pore size distribution curves were determined using non-local density functional 141 

theory (NLDFT) from the desorption branch of the isotherms. 142 

 143 

2.4.3 X-ray photoelectron spectroscopy (XPS) 144 

Surface analysis was performed on a Kratos Axis ULTRA X-ray photoelectron spectrometer 145 

(XPS) using monochromatic Al Kα (hν = 1486.6 eV) radiation. Curve fitting was undertaken using a 146 

Gaussian–Lorentzian peak shape and Shirley background function. The binding energy was 147 
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calibrated against the carbon signal at 284.6 eV. CasaXPS software was used to process the acquired 148 

data. 149 

 150 

2.4.4 Attenuated total reflectance-Fourier-transform infrared (ATR-FTIR) spectroscopy 151 

ATR-FTIR spectra of PUU samples were collected on a Nicolet 5700 Spectrometer (Thermo 152 

Electron Corporation) at a spectral resolution of 4 cm−1, over the range 4000–400 cm−1 for a total of 153 

32 scans. To check the consistency of the results, spectra were acquired at three separate spots on the 154 

surface of each sample. For the UV-aged samples, measurements were performed on the side that 155 

was towards the light during ageing. A self-cured Part A sample was also tested using the same 156 

method to help to identify the characteristic peaks in the FTIR spectra. Baseline correction was 157 

undertaken using OMNIC software (version 7.4.174). After baseline adjustment, the spectra were 158 

band-fitted using PeakFit software (version 4.12) and the fitted peak positions and areas calculated. 159 

 160 

2.4.5 Differential scanning calorimetry (DSC) 161 

A TA Q2000 DSC (TA Instruments, Inc., New Castle, DE 19720, USA) was used to investigate 162 

the thermal transitions of different PUU samples. 1.5–3 mg of each sample was weighed into 40 µL 163 

Tzero aluminium pans (TA Instruments). An empty pan was used as a reference. The pans 164 

underwent a three-stage run (from 30°C to 190°C; from 190°C to −90°C; and then from −90°C to 165 

300°C) at 20°C/min. The instrument was calibrated using indium as a standard. At least three runs 166 

were undertaken for each sample to ensure the consistency of the results. Universal Analysis 2000 167 

(TA Instruments–Waters LLC) software was used to analyse the thermal transitions from DSC traces. 168 

 169 
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3 Results and discussion  170 

3.1 Carbon black characteristics 171 

As discussed above, a smaller carbon black particle size generally delivers better protection for 172 

polymers against UV irradiation. In this study, three different types of carbon black, namely, BP460 173 

(C1), N660 (C2) and Super P® Conductive (C3), were used. As seen from Fig. 1, C1 is formed from 174 

large chunks (1 µm) composed of smaller particulates 40–80 nm in size embedded in a glue-like 175 

material, while C2 and C3 show individual particles, of which the sizes were about 80–120 nm and 176 

30–50 nm, respectively. For UV stabilisation applications, C2 and C3 are usually considered to be 177 

“high structure” carbon blacks, while C1 is a “low structure” carbon black with large agglomerates. 178 

The porosity of the three types of carbon black as determined by N2 gas adsorption is shown in 179 

Fig. S1 in Supplementary Data and the calculated surface areas are shown in Table 1 (note that 180 

these measurements usually have 10% experimental deviation). The data demonstrate that all of the 181 

carbon black types shared a similar pore size of 6–7 nm. C1 and C3 also have similar surface areas as 182 

determined by BET analysis. Meanwhile, the C2 sample presented a lower surface area. The 183 

observation correlates with the particulate size, where the smaller size of particles for C1 and C3 184 

provide higher porosity compared to C2, which is composed of larger particles. In addition, as the 185 

sample C1 has the highest porosity, it seems that the glue-like material present in this sample is also 186 

highly porous. Further, the pore volume in the sample follows the rule that the larger pores provide 187 

greater pore volume; however, the surface area is lower. This tendency was observed between 188 

samples C1 and C3.  189 

 190 
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 191 

Fig. 1. SEM images of different carbon blacks. 192 

 193 

Table 1. Surface area and porosity of different carbon blacks. 194 

Carbon black BET surface area 

(m2/g) 

Pore volume 

(cm3/g) 

Pore size 

(nm) 

C1 – BP460 65.8 0.100 6.08  

C2 – N660 33.6 0.052 6.16 

C3 – Super P 62.5 0.113 7.26 

 195 

3.2 Morphology of PUU samples 196 

Fig. 2 shows the SEM images of cross-sections and normal surfaces of the blank PUU (carbon 197 

black-free), PUU-C1, PUU-C2 and PUU-C3 before and after UV ageing for 60 h. There was a slight 198 

difference in morphology between the unaged blank PUU and the PUU samples that contained 199 

carbon black. The cross-sectional images of PUU-C1 and PUU-C2 show a higher degree of 200 

roughness, while all the samples showed a smooth normal surface. For all the UV-irradiated samples, 201 

roughening and surface cracking were observed, with different levels of cracking being evident for 202 
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the different samples. The blank PUU showed the greatest extent of cracking, with a crack depth up 203 

to 30 µm. Carbon black-containing samples showed lower crack depths, but significant surface 204 

cracking. PUU-C3 was found to be least affected, with cracking isolated to its surface. A possible 205 

reason for its higher stability was better dispersion of the smaller carbon black particles (C3) in the 206 

polymer matrix, compared with that of C1, which had large agglomerates. Although PUU-C2 seems 207 

to have a smooth surface after UV irradiation, the cross section was rough, which suggests 208 

degradation extended into the bulk of the sample. From the data collected here, carbon black particle 209 

size and structure appear to be the main factors that influence the UV stability of this PUU elastomer.  210 

 211 
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 212 

Fig. 2. SEM images of different PUU samples before and after 60 h of UV ageing. The 213 

scale bar in the insets is 1.00 µm. 214 

 215 

3.3 XPS  216 

X-ray photoelectron spectroscopy (XPS) was used to analyse the changes in the surface 217 

chemistry of PUU samples under UV irradiation in an examined area of 700 µm × 300 µm. Fig. 3 218 

shows the changes in the O1s/C1s and N1s/C1s ratios for different samples before and after ageing 219 

(errors are expected to be around 2–5%). The ratios were calculated from the related peaks in the 220 

wide-scan XPS spectra (see Fig. S2 in Supplementary Data). It is shown that the O1s/C1s and 221 

N1s/C1s ratios of all the samples were similar before UV ageing, suggesting that there was 222 
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consistency in the preparation of the materials. After UV irradiation, the O1s/C1s ratio of the blank 223 

PUU increased from 0.32 to 0.41, indicating that oxidation had occurred on the surface of the 224 

polymer [28, 29], which might be due to photooxidation of the aliphatic ether groups [30] 225 

Meanwhile, the N1s/C1s ratio increased from 0.05 to 0.11. After adding carbon black into the system, 226 

all the samples showed less UV-induced surface modification. Compared with the other samples, 227 

PUU-C3 (containing carbon black of the smallest particle size) seemed to have the least increase in 228 

both the O1s/C1s and N1s/C1s ratios, which rose from 0.32 to 0.33 and from 0.04 to 0.07, respectively. 229 

In contrast, for the PUU-C1 surface, the O1s/C1s ratio increased from 0.31 to 0.37 and the N1s/C1s 230 

ratio from 0.04 to 0.08. For the surface of PUU-C2, the O1s/C1s ratio changed from 0.30 to 0.39 and 231 

the N1s/C1s ratio from 0.04 to 0.09. The increases in both the O/C and N/C ratios on the surfaces of 232 

samples was possibly due to oxidation and loss of carbon during UV ageing (potentially through the 233 

formation of gaseous byproducts such as CO2) [31-33]. These data show that PUU-C3 had the lowest 234 

degree of surface photooxidation after UV exposure, which, again, shows that C3 gave the most 235 

efficient protection against UV damage. In contrast, PUU-C2 showed a much higher degree of 236 

oxidation compared to PUU-C1 and PUU-C3, which indicates that a low surface area carbon black 237 

will largely reduce the UV stabilisation effect of this additive. 238 

 239 
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  240 

(a) 241 

  242 

Fig. 3. O/C (a) and N/C (b) ratios for different PUU samples before and after UV ageing. 243 

 244 

To further understand the surface changes during the photodegradation, high-resolution XPS 245 

spectra of the C1s region were collected. All the spectra were calibrated using the reference C-C/C-H 246 

peak at 284.8 eV. Due to the complexity of the data collected, high-resolution C1s spectra were band-247 

fitted into a series of peaks corresponding to different functional groups. For the band fitting, the full 248 

width at half maximum (FWHM) was set between 1.1–1.3 eV. Fig. 4 shows the high-resolution C1s 249 

spectra and one possible envelope curve fitting of the blank PUU, PUU-C1, PUU-C2 and PUU-C3 250 

before and after UV ageing. The C1S spectra of the unaged blank PUU revealed the presence of four 251 
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peaks, corresponding to C-C/C-H groups (284.8 eV), C-O groups (286.3 eV), C-N groups (287.9 eV), 252 

and C=O groups (287.6 eV) [29, 34-36]. After UV ageing, two new peaks were found at 285.5 eV 253 

and 288.6 eV. These peaks are likely to be linked to perester or anhydride groups, respectively. After 254 

adding carbon black, the generated perester/anhydride peaks were considerably lower in intensity, 255 

suggesting that the carbon black provided some protection against UV degradation for PUU.  256 

 257 
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 260 

Fig. 4. C1s spectra of PUU (a), PUU-C1 (b), PUU-C2 (c), and PUU-C3 (d) before and after 261 

UV ageing 262 
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3.4 FTIR 264 

FTIR spectroscopy was used to further monitor the chemical changes on the surfaces of PUU 265 

samples after UV irradiation. 266 

3.4.1 PUU band assignments 267 

An FTIR-ATR spectrum from the blank PUU is shown in Fig. 5. Critical FTIR band assignments 268 

are listed in Table 2, which contains bands characteristic of both urethane and urea functional 269 

groups. This includes bands at: 3302 cm−1 (N-H stretching vibration, Amide A), 1727 cm−1 (C=O 270 

stretching vibration, Amide I), 1535 cm−1 (N-H deformation and C-N and C-C stretching vibration, 271 

Amide II), 1224 cm−1 (C-N stretching vibration, Amide III), 1634 cm−1 (stretching vibration of the 272 

C=O bond in the carbonyl group (-NH-CO-NH-) in diphenylurea [6, 37-40]), a shoulder at 273 

1691 cm−1 (hydrogen-bonded carbonyls of the urethane group), a shoulder at 3250 cm−1 (stretching 274 

vibration of the N-H bond in the urea group or the hydrogen-bonded N-H bond in the urethane 275 

group), and a shoulder at 1261 cm−1 (C-N stretching vibration in the urea bond).  276 

 277 
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  278 

Fig. 5. FTIR spectrum from the blank PUU sample (unaged), shown below its chemical 279 

structure. 280 

 281 

Table 2. FTIR band assignments for PUU materials. 282 

Peak centre (cm−1) Relative intensitya Assignmentb 

3302 vw, sh υ (N-H) in urethane group (Amide A) 

3270 vw, sh υ (N-H) in urethane & urea group (free and hydrogen-bonded) 

combined 

2970 m υ
as (-CH3)  

2929 w υ
s (-CH3)  

2902 w υ
as (-CH2)  

2867 m υ
s (-CH2)  

1728 s υ (C=O) in urethane (Amide I) 

1700 w, sh υ (C=O) H-bonded 

1634 s υ (C=O) in diphenylurea group 

1597 m υ (C=C) in aromatic ring 
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1535 s δ (N-H) + υ (C-N) + υ (C-C) Amide II in urethane & urea group 

combined 

1449 m δ (-CH2) 

1372 s υ (C-N) 

1261 w, sh υ (C-N) in urea 

1224 s υ (C-N) in urethane (Amide III) 

1089 vs υ
as (C-O-C) 

1013 s υ
s (C-N) in amine [41] 

927 s υ
s (C-O-C) [41] 

867 m υ (C-O-C)/ρ (-CH2) from ether [42] 

815 w δoop (C-H) in aromatic ring 
a vw = very weak; w = weak; m = medium; s = strong; vs = very strong; sh = shoulder. 283 
b υ, Stretching vibration; δ, in plane deformation vibration; δoop, out of plane deformation vibration 284 

 285 

3.4.2 Effect of UV ageing on PUU 286 

Fig. 6a, b and c show different regions of the FTIR spectra from the blank PUU after UV ageing 287 

for different times, with the major changes in FTIR spectra of different PUU samples after UV 288 

ageing shown in Table 3. In the region from 3700–2200 cm−1 (Fig. 6a), UV irradiation led to the 289 

emergence of several new peaks at 3467 cm−1, 3204 cm−1, and 3055 cm−1, which are considered to 290 

represent the stretching vibration of N-H bonds in primary and secondary amine and imine groups 291 

[43]. Meanwhile, the peak intensities in the region from 3000–2800 cm−1 greatly decreased 292 

especially after 24 h, indicating oxidation of methylene and methyl groups in both aliphatic and 293 

aromatic structures. These changes are in agreement with the broadened peak in the whole region 294 

(3700–2200 cm−1) resulting from the formation of different types of N-H and O-H groups [19, 43, 295 

44].  296 

 297 
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  306 

(f)       (g) 307 

Fig. 6. FTIR spectra of the blank PUU sample after 0 h, 7 h, 12 h, 16 h, 24 h, 28 h, 40 h and 308 

60 h of UV ageing in the regions: 3700–2200 cm−1 (a), 1850–1450 cm−1 (b), and 1400–309 

750 cm−1 (c); Band-fitted FTIR spectra of the blank PUU samples in the region of 3800–310 

2200 cm−1 before (d) and after (e) 60 h of UV ageing; and band-fitted FTIR spectra from the 311 

blank PUU samples in the region from 1350–900 cm−1 before (f) and after (g) 60 h of UV 312 

ageing. 313 

 314 

Table 3. Changes in FTIR spectra of PUU materials after 60 h of UV ageing. 315 

Peak area (cm−1) Peak centre (cm−1) Changea Assignmentb 

3700–2200 3510 a υ (N-H) in free primary amines 

 3390 a υ (N-H) in free secondary amines 

 3302 de υ (N-H) in urethane group  

 3250 de υ (N-H) in urea group  

 3190 a υ (N-H) in hydrogen-bonded primary/ secondary 

amines 

 3033 a υ (N-H) in imines 

 2970 de υ
as (-CH3)  

 2929 de υ
s (-CH3)  

 2902 de υ
as (-CH2)  

 2867 de υ
s (-CH2)  
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1850–1450 1780 a υ (C=O) in peresters/anhydrides 

 1754 in υ (C=O) free 

 1727 (move to 1720) in υ (C=O) free and hydrogen-bonded 

 1691 in υ (C=O) hydrogen-bonded 

 1690–1640 a υ (C=N) in imines 

 1654 a δ (N-H) shoulder in primary amines 

 1634 de υ (C=O) in diphenylurea group 

 1597 de υ (C=C) in aromatic ring 

 1536 d δ (N-H) + υ (C-N) + υ (C-C) Amide II in urethane & 

urea groups combined 

1400–750 1373 de υ (C-N) 

 1261 de υ (C-N) in urea 

 1222 de υ (C-N) in urethane (Amide III) 

 1176 a υ
as (C-O) in esters 

 1086 de υ
as (C-O-C) in ethers 

 1043 a υ
s (C-O) in esters  

 927 de υ
s (C-O-C) in ethers  

 867 de υ (C-O-C)/ρ (-CH2) from ethers  

 814 de δoop (C-H) in aromatic ring 
a a = appear; d = disappear; in = increase of intensity; de = decrease of intensity. 316 
b υ, Stretching vibration; δ, in plane deformation vibration, δoop, out of plane deformation vibration 317 

 318 

An additional analysis of the FTIR region from 3000–2800 cm−1 was performed through band 319 

fitting using the Gaussian method. The band-fitted peaks before and after 60 h of UV ageing are 320 

shown in Fig. 6d and e, respectively. It can be seen that both the peaks representing the N-H bonds in 321 

the urethane (at 3302 cm−1) and in the urea (at 3250 cm−1) decreased in intensity after 60 h of UV 322 

ageing. The peaks at 3510 cm−1, 3390 cm−1, 3190 cm−1 and 3033 cm−1 are speculated to represent the 323 

N-H stretching vibration of free primary amines, free secondary amines, hydrogen-bonded 324 

primary/secondary amines, and imines. 325 

In the region from 1850–1450 cm−1 (Fig. 6b), urea bonds (-NH-CO-NH-) at 1634 cm−1 rapidly 326 

decreased during the first 7 h, indicating a significant initial loss of urea bonds in the early stage of 327 
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UV ageing for the blank PUU. This peak had almost disappeared after 12 h. The peak at 1261 cm−1 328 

(Fig. 6c), which represents the C-N stretching vibration in the urea bond, also decreased quickly, and 329 

almost disappeared within the first 7 h. The Amide II peak at 1536 cm−1 (Fig. 6b) decreased slightly 330 

within the first 24 h then decreased rapidly until 28 h, suggesting a substantial decomposition of the 331 

urethane bonds in the blank PUU. Meanwhile, the characteristic peaks of the benzene ring (the C=C 332 

stretching vibration at 1597 cm−1 and the C-H out-of-plane deformation vibration at 814 cm−1) (Fig. 333 

6c) were also reduced after exposure to UV for 28 h, indicating a loss of aromatic groups on the 334 

sample surface. As a result, the loss of the aromatic urethane structure as indicated by both the 335 

urethane and aromatic groups suggests possible chain scission and photo-Fries rearrangement of the 336 

urethane group during photodegradation [43, 45, 46]. Meanwhile, a new shoulder appearing at 337 

1654 cm−1 could be recognised as the deformation of N-H bonds in primary amine groups formed 338 

during UV ageing [47]. In the carbonyl region, the main C=O stretching vibration peaks slightly 339 

increased and shifted from 1727 cm−1 to 1720 cm−1, while the peaks at 1754 cm−1 and 1691 cm−1 340 

increased steadily during ageing, indicating that both free and hydrogen-bonded C=O groups were 341 

formed. The increase in intensity in the spectral region between 1690 cm−1 and 1640 cm−1 is 342 

proposed to be due to the formation of imine groups (stretching vibration of C=N). In addition, a new 343 

peak at 1780 cm−1 appeared after 24 h of UV ageing. This new peak could be due to the C=O 344 

stretching vibration in perester or anhydride groups produced during the photooxidation, which is 345 

consistent with the XPS results. These changes are all likely to be related to the oxidation of ether 346 

groups in soft segments well as the urethane/urea groups in hard segments of the PUU elastomer [19, 347 

48-50].  348 

In the region from 1400–750 cm−1 (Fig. 6c), the relative decrease in absorbance of the C-N 349 

stretching vibration at 1373 cm−1 and Amide III peak at 1222 cm−1 are similar to that of the Amide II 350 

peak in Fig. 6b. Characteristic peaks from ether groups are due to the C-O-C asymmetrical stretching 351 

vibration, which occur at 1086 cm−1 for these materials. During UV ageing of the blank PUU, this 352 
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peak, along with the peaks at 927 cm−1 and 867 cm−1 representing the C-O-C symmetrical stretching 353 

vibration and the coupled C-O stretching vibration in the ether group, kept decreasing [41, 42]. As 354 

the characteristic peaks for ether groups decreased, two new peaks emerged, one being a shoulder at 355 

1171 cm−1, with the other at 1043 cm−1. These two newly-formed peaks could be the double peaks of 356 

asymmetrical and symmetrical C-O peaks from aliphatic esters, which are formed as oxidation 357 

products of the ether groups in soft segments [50-52]. UV ageing also caused the consistent 358 

movement of the peak for the C-O-C asymmetrical stretching vibration from 1086 cm−1 to 1076 cm−1, 359 

suggesting possible chain scission and crosslinking reactions between the ether chains in soft 360 

segments [37, 53, 54].  361 

To better understand the modification of the C-O structure in soft segments of the PUU, band 362 

fitting was performed on the FTIR spectra in the region from 1350–900 cm−1 before and after 60 h of 363 

UV ageing, with the results shown in Fig. 6f and g, respectively. The blank PUU without UV ageing 364 

showed a peak at 1087 cm−1, which is proposed to be due to the asymmetrical stretching vibration of 365 

the C-O-C bond in the polyether groups of PUU. After band fitting, there were two peaks at 366 

1041 cm−1 and 1176 cm−1, which likely represent the asymmetrical and symmetrical stretching 367 

vibration of C-O-C bonds in ester groups formed during UV ageing by oxidation of the ether groups. 368 

After 60 h of UV ageing, these peaks at 1041 cm−1 and 1176 cm−1 had a dramatic increase, while the 369 

peaks at 1068 cm−1 reduced significantly. These changes indicate that significant amounts of ester 370 

groups formed from ether groups. Meanwhile, a new peak emerged at 1068 cm−1, suggesting that a 371 

new type of ether group had formed in the aged PUU sample. The new ether groups might have 372 

resulted from crosslinking generated by radicals on the C-O-C chain under UV irradiation. In 373 

addition, UV ageing led to the appearance of several new peaks between 900 cm−1 to 1000 cm−1, 374 

namely, peaks at 993 cm−1, 970 cm−1, and 932 cm−1, indicating the formation of some -OH group-375 

containing products, such as carboxylic acids and alcohols.  376 
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3.4.3 Effect of carbon black addition on the UV stability of PUU 377 

Fig. 7 shows representative results for carbon black-containing samples. Fig. 7a compares the 378 

spectra of the blank PUU and PUU-C3 in the region from 1800–700 cm−1. It can be seen that the 379 

peaks due to C=O and C-N stretching vibrations of urea groups at 1637 cm−1 and 380 

1261 cm−1disappeared in the blank PUU. However, these peaks remained to some extent in the PUU-381 

C3 sample after 12 h of UV irradiation, indicating that carbon black provided some protection to the 382 

polymer in the early stages of UV ageing. Fig. 7b shows the spectra in the region from 3700–383 

750 cm−1 comparing PUU and PUU-C3 after 40 h ageing. The peak representing urea bonds could 384 

not be seen for both the blank PUU and PUU-C3. However, PUU-C3 appeared to suffer less from 385 

UV damage than the blank PUU as shown by the large amounts of the original structure remaining 386 

(aromatic ring at 1597 cm−1 and 811 cm−1; and aliphatic ether at 1079 cm−1) and the low content of 387 

oxidation products detected (carbonyl group at 1708 cm−1 and amine group at 3502 cm−1)  388 

 389 
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 394 

(c) 395 

 Fig. 7. FTIR spectra of (a) PUU and PUU-C3, aged for 12 h; (b) PUU and PUU-C3, aged 396 

for 40 h; and (c) PUU, PUU-C1, PUU-C2 and PUU-C3, aged for 60 h. 397 

 398 

To compare the degree of photoinduced changes in different samples, the FTIR spectra of the 399 

blank PUU, PUU-C1, PUU-C2 and PUU-C3 aged for 60 h were collected and are shown in Fig. 7c. 400 

The aged PUU sample had increased peaks at 3476 cm−1 (υ (N-H)), 1710 cm−1 (υ (C=O)) and 401 

1042 cm−1 (υs (C-O) in esters) and decreased peaks at 1420 cm−1 (δ (-CH2)) and 1078 cm−1 (υas 402 

(C-O-C) in ethers). The carbon black-containing samples present less significant changes than the 403 

sample without carbon black, indicating lower degrees of oxidation in the soft segments and less 404 

degradation in the hard segments when carbon black is present. The relative degrees of photoinduced 405 

changes in the hard segments and soft segments have been assessed using two indices that were 406 

calculated using peak areas from band-fitted spectra. The hard segment irradiation index (HSII) (Fig. 407 

8) was calculated using the ratio of the area of the UV-generated peaks for the N-H bonds of primary 408 
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amines (3508 cm−1, 3371 cm−1 and 3184 cm−1) to the area of the peak for the original N-H bonds in 409 

the urethane/urea linkages (3302 cm−1 and 3250 cm−1). The soft segment irradiation index (SSII) 410 

(Fig. 8b) was calculated using the ratio of the area of ester peaks (1179 cm−1 and 1041 cm−1) and 411 

branched ether bond peaks (1119 cm−1 and 1068 cm−1) formed during UV ageing, to the area of the 412 

original ether peaks (1086 cm−1 and 1076 cm−1). Changes in the hard segments and soft segments 413 

after 60 h of UV ageing with carbon black as a UV stabiliser were 44% and 32% of the respective 414 

values without carbon black, with  the PUU sample containing carbon black C3 again showing the 415 

least degradation.  416 

 417 
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 418 

(a) 419 

 420 

(b) 421 

Fig. 8. HSII (a) and SSII (d) changes based on FTIR spectra of PUU, PUU-C1, PUU-C2 422 

and PUU-C3 aged for 60 h. 423 
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3.5 DSC 425 

Fig. 9 shows the DSC results for the different PUU samples before and after UV irradiation for 426 

60 h. For all the samples, there was a glass transition (Tg) for the soft segments at −48°C and a 427 

melting transition (Tm) of the soft segments at about 9°C. A Tg at a higher temperature of about 44°C 428 

was shown, which could be ascribed to the hard segments [56]. The absence of a melting transition at 429 

higher temperature suggests that the hard segments based on TDI in this work were not flexible 430 

enough for chain alignment and the formation of crystallites. It is possible that crosslinking during 431 

cure restricted chain movement and the formation of a crystalline structure [57].  432 

 433 

  434 

Fig. 9. DSC results for different PUU samples, unaged and aged. 435 

 436 

The PUU samples showed almost identical DSC curves (Fig. 9), suggesting that neither the 437 

carbon black type nor UV exposure had any apparent impact on the thermal properties of the samples. 438 

Previous studies [58, 59] have reported that photoageing could reduce the ability of elastomers to 439 

crystallise due to crosslinking. Here, our results indicate that although UV irradiation did cause 440 

Temperature (oC)

-100 -50 0 50 100 150 200 250

H
ea

t f
lo

w
 e

nd
o 

up
 (

W
/g

)

-4

-2

0

2

4

6

8

10

12

14

PUU unaged
PUU-C1 unaged
PUU-C2 unaged
PUU-C3 unaged

PUU aged
PUU-C1 aged
PUU-C2 aged
PUU-C3 aged

Tg (soft)

Tm (soft) Tg (hard)



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

33 

variation in the surface molecular structure, these changes were not significant enough to affect the 441 

bulk thermal properties of the polymer. Higher exposure times would likely reduce the enthalpy and 442 

temperature of the crystalline melting peak or recrystallisation exothermic peak. 443 

 444 

4 Conclusions  445 

The photodegradation of aromatic PUUs is a complicated process that requires further study to 446 

completely elucidate the mechanism of degradation and determine the best approach to stabilisation. 447 

In this study, crosslinked segmented PUU samples were prepared with and without different types of 448 

carbon black as the UV stabiliser, and the resulting samples were then exposed to low doses of UVA 449 

at 50°C up to a total dose of 157.68 kJ/m2 at 340 nm. SEM, XPS, FTIR and DSC analyses were 450 

applied to investigate the changes in the UV-aged samples.  451 

From the XPS and FTIR analyses, urea groups were found to be the most UV-sensitive, showing 452 

early degradation during the ageing of the PUU, most likely due to chain scission and photo-Fries 453 

rearrangement via direct UV absorption of the aromatic groups. Aliphatic ether groups were also 454 

found to be very sensitive to UV irradiation, leading to the formation of anhydride or perester groups 455 

via photooxidation.  456 

Carbon black provided moderate UV protection for PUU elastomers, especially in preventing 457 

oxidation of aliphatic ether groups, with results from XPS and SEM analyses suggesting that the 458 

carbon black with a smaller particle size and a higher surface area may provide better UV protection. 459 

It was shown by FTIR analyses that the degrees of photoinduced changes in the hard segments and 460 

soft segments after 60 h where carbon black was used as a UV stabiliser were 44% and 32% of the 461 

respective values without carbon black.  462 
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Results from DSC analysis suggested that changes in the samples due to UV degradation were 463 

restricted to the surface, with bulk thermal properties unaffected. 464 

Based on the data collected here, recommendations to improve the UV weathering performance 465 

of PUUs include: reducing the urea content; using small particle size, high surface area carbon black 466 

additives; increasing carbon black content to protect against direct UV absorption of aromatic 467 

groups; and, the introduction of hindered amine stabilisers to protect against photooxidation, 468 

particularly of aliphatic ether groups. 469 
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Highlights: 

� Initial (60 h) photodegradation pathways of poly(urethane-urea) (PUU) was studied 

� Urea groups were the most UV-sensitive, followed by aliphatic ether groups 

� Carbon black provided moderate UV protection especially for aliphatic ether groups 

� The smallest-sized carbon black protected PUU against degradation more effectively 

� UV degradation-induced changes predominantly occurred at the surface 

 


