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ABSTRACT: Immobilization of enzyme could offer the biocatalyst with increased stability and 

important recoverability, which plays a vital role for the enzyme’s industrial applications. In this 

study, we present a new strategy to build an intelligent enzyme carrier by coating titania 
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nanoparticles with thermoresponsive epoxy-functionalized polymers. Zero-valent copper 

mediated living radical polymerization (Cu(0)-LRP) was utilized herein to copolymerize N-

isopropylacrylamide (NIPAM) and glycidyl acrylate (GA), directly from an unprotected 

dopamine-functionalized initiator, in order to obtain an epoxy-containing polymer with terminal 

anchor for the “grafting to” or “one-pot” modification of titania nanoparticles. A rhodamine B-

labelled laccase has been subsequently used as a model enzyme for successful immobilization to 

yield an intelligent titania / laccase hybrid bi-functional catalyst. The immobilized laccase has 

shown excellent thermal stability under ambient or even relatively high temperature above the 

lower critical solution temperature (LCST), at which temperature the hybrid particles could be 

facilely recovered for reuse. The enzyme activity could be maintained during the repeated use after 

recovery and enzymatic degradation of bisphenol A was proved to be efficient. The photocatalytic 

ability of titania was also investigated by fast degradation of rhodamine B under the excitation of 

simulated sunlight. Therefore, this study has provided a facile strategy for the immobilization of 

metal oxide catalysts with enzymes, which constructs a novel bi-functional catalyst and will be 

promising for the “one-pot” degradation of different organic pollutants.  

Introduction 

Enzymes are well known for their unique ability to catalyze ultrafast and selective reactions to 

produce specific materials under mild experimental conditions, which have shown extensive 

applications in pharmaceutical industry, biorenewables production, precision macromolecular 

synthesis, protein conjugation and carbon dioxide capture.1-5 Immobilization of enzyme enhances 

the stability of enzyme under operational or storage conditions and facilitates efficient recycling 

of the biocatalyst, which is critical important for the industrial application.6-8 Resins, biomaterials 
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and synthetic polymers are most frequently used supports to bind or encapsulate the enzyme in 

order to form an easy-handling solid phase biocatalyst for continuous production and facile 

separation.9-13 Among numerous strategies to immobilize nonspecific enzymes in large scale, 

epoxy chemistry has drawn great attention due to the abundance of commercial epoxy supports 

and their ability to react with different nucleophilic groups which are abundant in the enzymes, 

such as amino, thiol and carboxylic groups etc.14-19 The immobilization is believed to go through 

a two-step mechanism: first physical adsorption or chemical fixation of enzyme onto the support 

surface and followed by the intermolecular intramolecular covalent reaction of epoxy groups with 

the nucleophiles from the enzyme.18, 20-22 In order to promote the adsorption of enzyme on the 

surface, the immobilization is often performed either under high salt concentrations or using 

activated epoxy-functional supports.23, 24 The support surface could become more hydrophilic by 

modification of partial epoxy groups with carboxyl, boronate or copper chelate groups and this 

modification dramatically improved the very low reactivity of epoxy groups toward nonadsorbed 

enzymes.14 Immobilization is found to be more rapid using activated epoxy-amino supports and 

the stability of immobilized enzyme is much higher than those using conventional epoxy 

supports.15 When activated with thiol groups, the surface fixation of enzyme first takes place 

through effective thiol-disulfide exchange reactions followed by irreversible multipoint covalent 

reaction with the residual epoxy groups.16 Recently epoxy chemistry has been applied for the 

immobilization of peptide/protein to microarray substrate grafted with hydrophilic epoxy-

functional polymer brushes, during which the epoxy polymers showed excellent stability and high 

loading capacity.25 

Intelligent enzyme carriers are stimuli-responsive materials with conformation or properties 

adjustable with varied pH, light, thermo, ion or magnetic parameters and have direct affection on 
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the properties of immobilized enzymes.6, 7, 26-28 Such intelligent carriers have drawn much attention 

due to the high performance on increasing the enzyme activity, stability, loading capacity and the 

recoverability.19, 21, 26-28 Novel pH-responsive polymer nanocapsules are synthesized by surface 

initiated reversible addition-fragmentation chain transfer (RAFT) polymerization to encapsulate 

enzyme myoglobin and the activity of enzyme could be controlled by adjusting the permeability 

of nanocapsules under different pH.29 Hollow upconversion spheres have been constructed by 

DNA-mediated solvothermal strategy and coated with photosensitive compounds to realize near-

infrared light controlled loading and releasing of enzymes.30 By incorporation of thermoresponsive 

gels into the inner cavities of glucan microparticles, encapsulated insulin has shown much slower 

in vitro release rate and prolonged hypoglycaemic effect in both normal and diabetic rats.31 

Magnetic nanoparticles are promising enzyme supports as they can be facilely separated from the 

reaction mixture for reuse and great progress has been made on the preparation of magnetic 

polymer hybrid materials for enzyme immobilization in the last two decades.19, 21, 32-35 Surface 

initiated controlled radical polymerization is very efficient on grafting high-density functional 

polymers from the surface for enzyme immobilization.36-38 Surface-initiated atom transfer radical 

polymerization (ATRP) was utilized for the modification of nanoparticles (silica, iron oxide or 

polysaccharides etc.) with varied functional polymers for further loading of biomacromolecules 

such as peptides and DNA.39-43 By using RAFT or Cu(0)-LRP to incorporate functional anchor 

groups such as phosphine or dopamine groups etc., well-defined polymers could be immobilized 

to the surface of iron oxide and titanium dioxide (TiO2) nanoparticles via “grafting to” strategy for 

specific properties including glycomimetic surface, tuned LCST and antimicrobial properties.44-47  

It is of great interest for scientists to merge the enzyme with inorganic catalysts and multi-

responsive polymers to form an intelligent “multi-catalyst” system, which could be able to catalyze 
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different reactions in “one-pot” or treat different challenges in complex practical application.48-52 

TiO2 is an important photocatalytic material and has been used for efficient water disinfection and 

degradation of certain organic pollutants.53-55 Meanwhile, many enzymes such as laccase, 

horseradish peroxidase etc., can efficiently mediate the degradation of specific recalcitrant 

pollutants via precipitation or transforming process. 56-58 Laccase has been immobilized on titania 

nanoparticles via a typical cross-linking strategy and subsequently blended into the 

polyethersulfone membranes for water treatment applications.59 It is the main concept of this paper 

to immobilize enzyme to the surface of TiO2 nanoparticles through the attachment of 

thermoresponsive polymers, which forms an intelligent bi-functional catalyst for the 

photocatalytic and enzymatic degradation of varied pollutants in water. 

 

Scheme 1. Synthetic approach toward thermoresponsive TiO2@laccase bi-functional catalyst. 

As shown in Scheme 1, laccase is chosen as a model enzyme for the immobilization to the surface 

of TiO2 nanoparticles via attachment of epoxy-functional polymers, which was hydrophilic and 

thermoresponsive due to the composition of typical LCST NIPAM monomer. Cu(0)-LRP is used 
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to synthesize the targeted polymer with terminal dopamine anchor, epoxy side group and typical 

LCST behaviour. The property and performance of obtained bi-functional catalyst, including the 

presence and catalytic performance of laccase, resistance to the environmental stressors, 

degradation of typical pollutants / substrates and recoverability, are systematically discussed in 

this research.  

Experimental section 

Materials  

Laccase from Trametes versicolor (≥0.5 U/mg) was supplied by Sigma-Aldrich and purified by 

dialysis against water for one day following lyophilization. NIPAM (97%, Aladdin) was 

recrystallized from hexane before use to remove the inhibitor. Glycidyl acrylate (GA), tris(2-

(dimethylamino)ethyl)amine (Me6TREN), 2-bromo-N-(3,4-dihydroxyphenethy)-2-methyl 

propanamide (DOPA-Br) were synthesized according to literature procedure and stored in the 

freezer under a nitrogen atmosphere.44, 60-62 The functional dye, rhodamine B 4-(3-(N-

hydroxysuccinimidyloxocarbonyl)-propyl)piperazine amide (Rhod B) was synthesized according 

to previous procedure for the labelling of laccase directly.63 Copper(I) bromide (CuBr, 98%, 

Aladdin) was washed sequentially with acetic acid and ethanol and dried under vacuum. Titanium 

dioxide (anatase 99.8% metals basis, average particle size: 25 nm, Aladdin) was dried in vacuum 

at 120 °C for 12 hours before use. 2,2'-Azobis(2-methylpropionitrile) (AIBN, 98%, Aladdin) was 

recrystallized from ethanol before use. Membrane dialysis (1K MWCO) was obtained from 

Spectrum Laboratories. All other reagents and solvents, such as 2, 2'-azinobis(3-

ethylbenzothiazoline-6-sulfonic acid ammonium salt (ABTS, 98%, Aladdin) and Poly (ethylene 

glycol) methyl ether acrylate (PEGA480, average Mn 480, Aladdin) etc. were obtained at the highest 
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purity available from Aladdin (China) and used without further purification unless otherwise 

stated. All polymerizations were performed under nitrogen protection using standard Schlenk 

technique and the stirring rate was set as 300 rpm unless otherwise stated.  

Analytical techniques 

SHIMADZU UV-2600 UV/Vis spectrophotometer was utilized to measure the LCST of 

thermoresponsive polymers at the wavelength of 500 nm and the heating rate for the 

thermostatically controlled cuvette was 1 °C min-1. The LCST was defined as the temperature 

corresponding to 50% decreases of transmittance. The enzyme activity of laccase was calculated 

according to the degradation of ABTS in defined buffer solution and temperature using 

SHIMADZU UV-2600 UV/ Vis spectrophotometer to measure the absorbance at 420 nm. 1H and 

13C NMR spectra were recorded at 25 °C with a Bruker AV 500M spectrometer using deuterated 

solvents obtained from Aladdin. The number-average molecular weight (Mn) and the molecular 

weight distribution (Mw/Mn) were determined by Waters 1515 size exclusion chromatography 

(SEC) in N, N- dimethylformamid (DMF) at 40 °C with a flow rate of 1.00 mL min-1, which was 

equipped with refractive index (RI) and UV detectors, a 20 μm guard column (4.6 mm ×30 mm, 

100 - 10K) followed by three Waters Styragel columns (HR1, HR3 & HR4) and autosampler. 

Narrow linear polystyrene standards in range of 540 to 7.4 × 105 g·mol-1 were used to calibrate the 

system. All samples were passed through 0.45 μm PTFE filter before analysis. Fourier transform 

infrared (FTIR) spectra were recorded on a Nicolet iS5 FTIR spectrometer using an iD7 diamond 

attenuated total reflectance optical base. Transition electron microscopy (TEM) images were 

acquired by FEI TECNAI G2 20 TEM microscope equipped with LaB6 filament. Thermal 

gravimetric analysis (TGA, Mettler Toledo, Switzerland) was performed at a heating rate of 10 °C 

min-1 from room temperature to 800 °C under nitrogen protection. The turbidity of the 
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nanoparticles were detected by WGZ-2000 turbidity meter (Beijing Warwick Industrial Science 

and technology, P. R. China). Fluorescence emission spectrum and life test for the solid sample 

was acquired from FL3-TCSPC fluorescence spectrometer (Horiba Jobin Yvon). Gas 

chromatography - mass spectrometry (GC-MS) was performed using a Thermo fisher spectrometer 

(Trace 1300-ISQ) with heating rate of GC columns increased from 50 ℃ to 200 ℃ in eight minutes. 

The HPLC system was an Agilent 1260 infinity series stack equipped with an Agilent 1260 binary 

pump, mixer and degasser. Samples were injected using an Agilent 1260 autosampler and 

detection was achieved using UV and fluorescence detector.  

Preparation of TiO2 / polymer hybrid nanocomposites via the “grafting to” strategy 

The copolymerization of GA and NIPAM by Cu(0)-LRP was performed using standard Schlenk 

technique under nitrogen protection. The polymerization procedure is similar as previously 

described with addition of GA or PEGA480 as the co-monomer.44, 45, 64 The polymerization was 

monitored by 1H NMR spectroscopy and run until a very high or even close to full conversion 

obtained, which cost ~ 2 h in most cases. The final polymer was purified by efficient dialysis 

against water for two days following lyophilization. A series of copolymers using different mole 

ratio of [GA]0 / [NIPAM]0 ( defined as Rco = 0.25) or PEGA480 monomers were synthesized in 

same way. 

The obtained polymer (120 mg) with terminal anchor groups were then mixed with TiO2 

nanoparticles (40 mg) in deionized water (5 mL) to produce a heterogeneous suspension and stirred 

at 4 ℃ for two days under nitrogen protection. Final hybrid particles were isolated by centrifugation 

at 15 000 rpm & 4 ℃ for 15 min. After discarding the supernatant, the sediments were dispersed 

in cold deionized water (4 ℃) via sonication and were centrifuged for one more time. The above 
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procedure was repeated five times in order to totally remove the unreacted free polymers. Finally, 

the product was dried via lyophilization for further characterization.  

Conventional radical polymerization of NIPAM and GA using AIBN as the initiator was 

performed in DMF under 70 ℃ for 12 h. The final random copolymer product, defined as AIBN-

poly(NIPAM)-r-(GA) could be purified via dialysis against water following lyophilization. 

Besides, the dopamine-terminal poly(NIPAM), defined as DOPA-poly(NIPAM) was synthesized 

according to previous procedure.44 As control experiments, these polymers were tried to be 

immobilized to the surface of TiO2 nanoparticles using similar procedures as shown above.  

“One-pot” preparation of TiO2 / polymer hybrid nanocomposites via aqueous Cu (0)-LRP 

The “one-pot” polymerization was performed in two vials equipped with a rubber seal and 

magnetic stir bar under nitrogen protection. The typical procedure is shown as below. H2O (2 mL), 

Me6TREN (26 μL, 0.1 mmol) and CuBr (14 mg, 0.1 mmol) were added into a vial for 

disproportionation and degassed by bubbling nitrogen into the suspension for 10 minutes. To 

another vial, DMF (100 μL, as internal standard to calculate the monomer conversion), H2O (2 

mL), isopropyl alcohol (i-PrOH, 2 mL), NIPAM (570 mg, 5 mmol), GA (160 mg, 1.25 mmol) and 

TiO2 nanoparticles (200 mg, 2.5 mmol) were charged and degassed for 10 minutes before being 

transferred to the catalyst suspension via cannula. The polymerization was performed under ice / 

water cooling for one day and sample was taken at defined time during the polymerization for 1H 

NMR spectroscopy in order to calculate the monomer conversion. After polymerization, the hybrid 

nanoparticles were separated and purified from the suspension via repeated centrifuge-wash cycles 

before lyophilization. The final product was obtained as solid powder for further characterization 

and test.  
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Fluorescent labelling of laccase by Rhod B 

Laccase was labelled by Rhod B in order to prove the presence of enzyme after immobilization 

onto the surface of TiO2 nanoparticles by fluorescence spectroscopy. Typically, laccase (500 mg) 

was dissolved in PBS buffer (pH=8, 0.1 M, 10 mL) and a solution of maleimide-functionalized 

Rhod B (5mg, 1.7 μmol) in DMSO (1 mL) was added dropwise. The solution was stirred for 12 

hours and then stopped for dialysis against water for two days. The final Rhod B labelled laccase 

was recovered as pink powder via lyophilization.  

Immobilization of laccase onto the epoxy-functionalized TiO2 nanoparticles  

TiO2 / polymer hybrid nanoparticles (40 mg) and laccase (40mg, Rhod B labelled or not) were 

charged to a vial containing 5 mL phosphate buffer solution (pH=7, 0.1 M) and stirred under 

ambient temperature for 24 hours. The free laccase was removed via efficient centrifuge (15 min, 

15000 rpm) and the obtained sediment particles were dispersed in deionized water and centrifuged 

again. The above procedure was repeated for at least 5 times. Finally, the sample is freeze-dried to 

yield granular products. The immobilization of laccase to the surface of TiO2@DOPA-

poly(NIPAM) was performed as control experiment in same procedure. 

Activity assays of free and immobilized laccase 

The enzyme activity of laccase was determined using ABTS as the substrate according to 

previously reported procedures by UV/Vis spectroscopy, typically measuring the absorbance at 

420 nm for a defined sample after defined period and the laccase activity was deduced according 

to the kinetic parameters.65 The equation used for the calculation of the activity of free laccase and 

immobilized laccase is shown as follow: 
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∆𝒄

∆𝒕
=

∆𝑬
∆𝒕⁄

𝟑𝟔
 [𝐔 𝐦𝐥−𝟏] 

∆𝒄 is the concentration of the sample per unit of molar concentration and ∆𝑬 ⁄ ∆𝒕 represents the 

activity of absorbance change (∆𝑬) at a specific time interval (∆𝒕). The extinction coefficient for 

the oxidation of ABTS at 420 nm is 36×10-3 M-1 cm-1 and the path length of the optical cell used 

is 1 cm. 66 1 Unit was defined as the formation of 1 mM of product per minute.  

The enzyme activity was determined under different pH (3-7), temperature (10-80 ℃) and at varied 

time periods (1-30 days) for both the free (60 mg/L) and immobilized (500 mg/L) laccase. To 

evaluate the reusability of immobilized laccase, the thermoresponsive TiO2@laccase hybrid 

nanoparticles were recovered by increasing the temperature of suspension to 50 ℃, which will lead 

to the aggregation and precipitation of nanoparticles at the bottom of the cell. After 15 minutes, 

the upper-layer clear solution was removed and fresh ABTS solution was added for the next 

degradation cycle.  

Photocatalytic and enzymatic degradation of organic pollutants in the presence of bi-

functional catalyst 

The degradation of Rhod B aqueous solution (20 mL, 10 mg L−1, pH = 3.0) under simulated 

sunlight in the presence of TiO2 nanoparticles (10 mg), laccase or hybrid bi-functional catalysts 

(10mg) at 50 ℃ was studied. The simulated sun light (λ = 350–780 nm) was supplied by using a 

300 W xenon lamp (CEL-HXF 300, Beijing CEAULIGHT Co., Ltd, Beijing, China) equipped 

with a Vis-REF reflect patch. The concentration of Rhod B was measured by using UV/Vis 

spectrometer and all samples were filtered through a 0.45 μm PTFE filter before analysis.  
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The degradation of BPA aqueous solution (BPA, 20 mL, 10 mg L−1, pH = 3.0) in the presence of 

TiO2 nanoparticles, laccase or bi-functional catalysts were tested under both dark conditions to 

avoid the photocatalytic effect from TiO2 and in the presence of simulated sunlight to verify the 

synergistic effect. The concentration decrease of BPA was measured by HPLC. 

Results and discussion 

Preparation of intelligent TiO2@polymer hybrid nanoparticles by Cu(0)-LRP. 

Herein Cu(0)-LRP was utilized for the synthesis of thermoresponsive polymer with terminal 

catechol anchor, which has shown well control over the molecular weight (MW) and MW 

distribution during the polymerization from unprotected dopamine-functionalized initiator (2-

bromo-N-(3,4-dihydro-xyphenethy)-2-methylpropanamide, DOPA-Br).44, 45 As shown in Scheme 

1, GA was used as a co-monomer for the DOPA-Br-initiated copolymerization with NIPAM. 

However, epoxy-containing chemicals are capable of efficient ring opening reactions with varied 

functional groups such as thiol, amine, acid, alcohol, azide etc. and epoxy-phenol reaction is 

already widely used for the preparation of resins and coating materials since the early 20th 

century.62, 67-71 Although the epoxide ring opening reaction could be performed with acid, thiol or 

amine etc. under room temperature even without the presence of catalysts, the epoxy-phenol 

reaction was generally performed under relatively high temperature (more than 100 ℃) or in the 

presence of base chemicals as the catalysts.71-73 Before the copolymerization of GA with NIPAM, 

a model reaction of GA with DOPA-Br was carried out under ambient temperature to evaluate the 

stability of catechol groups in the presence of epoxy ring. The reaction was monitored by 1H NMR 

and GC-MS spectroscopy.  
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Figure 1. Evaluation of 1H NMR spectra with time for the GA in the presence of DOPA-Br in 

DMSO-d6 at 25 ℃ (A, DMF as internal standard) and the 1H NMR spectrum of poly(NIPAM)-r-

(GA) (Rco=0.1) in DMSO-d6 (B).  

As shown in Figure 1, the signals at 6.6-6.8 ppm (the three protons from benzene ring of the 

DOPA-Br), 5.8-6.2 ppm (vinyl groups from GA) and 2.6-3.2 ppm (three protons from the epoxy 

ring of GA) still existed even after addition of GA for 120 hours. No significant new peaks could 

be detected, which indicated that the epoxy ring opening reaction with catechol group did not 

happen under previous reaction conditions or could not be detected by NMR spectroscopy, either 

due to the low reaction conversion or overlap of similar resonance between the reactants and 

products. This result is in accordance with previous reports on the epoxy-phenol reaction 

conditions.71, 73 Subsequently we used GC-MS (Figure S 1) to analyse the composition of GA and 

DOPA-Br mixture after reaction for 120 hours under ambient temperature. As shown in Figure S 

1, GC revealed the presence of original GA and DOPA-Br at 8.5 min and 13.8 min separately as 

well as the appearance of new small peaks at 10.3 min, which was ascribed to ring-opening 

products of GA with activated hydrogen according to MS calculation. However, it is worth noting 

that the GC-MS test was performed under relatively high temperature (up to 200 ℃), which may 
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accelerate the epoxide ring opening reaction with phenols. Nevertheless, these results prove that 

catechol groups are stable in the presence of epoxy-functional monomers under ambient 

temperature, which is close to the polymerization conditions of Cu(0)-LRP. 

 

Figure 2. Conversion and ln([M]0/[M]) vs time plots (A) and SEC elution traces (B) for the Cu(0)-

LRP random copolymerization of NIAPM and GA in i-PrOH/H2O (Rco=0.1).  

The copolymerization of GA and NIPAM by Cu (0)-LRP was first performed in water / i-PrOH 

solution using CuBr / Me6TREN as the pre-catalyst in the following conditions: [DOPA-Br]: 

[NIPAM]: [GA]: [CuBr]: [Me6TREN] = 1: 20: 2: 0.4: 0.4. The polymerization went fast with a 

conversion of 90% for NIPAM and a conversion of 93 % for GA obtained in 75 minutes. SEC 

revealed a gradual increase of MW from 8400 Da to 11200 Da and the dispersity value remained 

relatively narrow (Mw/Mn = ~ 1.05) until conversion reached more than 90% as shown in Figure 

2. However, several shoulder peaks appeared when the polymerization was left for 19 hours after 

high conversion was obtained (Figure S 2). Although radical-radical coupling termination 

reactions are very common in controlled radical polymerizations, it is hypothesized that these 

shoulder peaks are possibly caused by the side reactions of epoxy and catechol groups. Thus the 

polymerizations by Cu (0)-LRP were often terminated after 2 h in order to avoid the side reactions 
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while attaining very high conversions. 1H NMR spectrum (Figure 1 B) of the final product 

(terminated after polymerization for 2 h) revealed typical resonances of poly(NIPAM) at 1.2 ppm 

(for protons from the methyl groups) and 4.1 ppm (for protons from the methine groups). The 

presence of epoxy-functional polymers was proved by the resonance at 4.4 ppm (for protons from 

the methylene groups close to the ester bond) and 2.7 & 2.8 ppm (for protons from the methylene 

groups of epoxy ring). The resonance at 6.4-6.7 ppm were from the three protons of terminal 

catechol groups and the average MW (4106 Da) of final polymer was calculated as by comparing 

the integral of catechol residues with typical peaks of NIPAM and GA, which is ~ 46 % higher 

than the theoretical MW (2818 Da). This deviation was due to the relatively low initiator efficiency 

of DOPA-Br with amide bond, which may cause certain radical termination at the early period of 

polymerization.44, 74 The presence of epoxy polymer was also proved by the peak at 1750 & 906 

cm-1 in the FTIR spectra (Figure 3 D) of the final polymer, which was attributed to the ester bond 

and epoxide ring. Besides, SEC system using DMF as the eluent and narrow distributed 

polystyrene as the standard polymer also revealed much higher MW than the theoretical value, 

possibly due to the different hydrodynamic volume of obtained polymers, which has also been 

observed in the previous reports. 44, 64  

It is worth noting that the epoxy groups are able to react with nucleophilic groups (e.g., thiol, 

amine), however, the epoxy groups are hardly reactive under mild reaction conditions as 

previously reported.15 Although the epoxy polymers were often exposed to aqueous condition for 

days during the post-polymerization treatment, clear presence of epoxy groups could be found as 

shown in the 1H NMR spectra (Figure 1 B) of the final product. To further check the hydrolysis 

rate of glycidyl groups during the synthesis and purification of functional polymers, homopolymer 

poly(GA) synthesized by Cu(0)-LRP was immersed in water or even slightly alkaline solution 
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(PBS buffer, pH=8.0, 0.1 M) for up to a week.62 As shown in the 1H NMR spectra (Figure S 3), 

no epoxide ring opening reaction was found as the resonances of typical groups from the polymer 

before and after the treatment were the same, which demonstrates that the epoxide groups are 

stable under aqueous conditions and its hydrolysis was not significant.  

 

Figure 3. TEM images (A, B, C), FTIR spectra (D) and TGA (E, Rco=0.25) of TiO2 (A & a), 

TiO2@poly(NIPAM)-r-(GA) (B & b, Rco = 0.25) and TiO2@poly(NIPAM)-r-(GA)@Laccase (C 

& c, Rco = 0.25) nanoparticles. 

Subsequently the catechol-terminal epoxy polymer (poly(NIPAM)-r-(GA), Rco = 0.25) was used 

for the surface functionalization of TiO2 nanoparticles. TEM images (Figure 3 A & B) demonstrate 

the presence of a thin polymer layer on the particle surface. The FTIR spectrum (Figure 3 D) of 
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TiO2 @poly(NIPAM)-r-(GA) showed clear peaks of NIPAM at 1640.6 cm-1 (C=O stretching) and 

1538.9 cm-1 (N–H in-plane bending vibration) as well as the absorbance from GA at 1739.5 cm-1 

(C=O stretching) and 1165.8 cm-1 (C-O-C stretching). TGA analysis (Figure 3 E) revealed a weight 

loss of only 0.6% for the raw TiO2 nanoparticles yet up to 28.3% after immobilization of epoxy 

polymers. All these results proved the successful preparation of TiO2@ poly(NIPAM)-r-(GA) via 

“grafting to” strategy. 

To prove the attachment of polymer to the surface of TiO2 nanoparticles through terminal 

dopamine group, a control experiment was performed using a random copolymer poly(NIPAM)-

r-(GA) synthesized by conventional radical polymerization. The AIBN initiated polymerization 

induced to AIBN-poly(NIPAM)-r-(GA) without terminal catechol group and broad MW 

distribution (Figure S 4), which was subsequently used for surface functionalization of TiO2 

nanoparticles. As shown in Figure S 5, the FTIR spectra of TiO2@ AIBN-poly(NIPAM)-r-(GA) 

revealed almost the same absorbance as that of the pristine TiO2. Very weak absorption band from 

the copolymer could be observed, indicating the presence of certain copolymer on the surface of 

nanoparticles. However, the intensity of absorption band is very weak compared with that from 

the TiO2@DOPA-poly(NIPAM)-r-(GA), as shown in Figure S 5. TGA analysis showed similar 

thermogravimetric degradation for the TiO2 and TiO2@ AIBN-poly(NIPAM)-r-(GA) and loss of 

weight is only 0.6% and 4.1% separately, which is much lower than that of TiO2@DOPA-

poly(NIPAM)-r-(GA) (up to 28.3%). All these results strongly prove that the attachment of 

copolymer is mainly through the strong interaction between TiO2 and catechol groups. The 

physical adhesion or intermolecular interactions between TiO2 and copolymers tend to be weak 

and almost could be overlooked compared with the strong catechol-TiO2 interaction.  
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In the previous report, a “one-pot” strategy has been used for simultaneous polymerization and 

post modification in order to avoid the multi-step purification procedures.45 It is hypothesized that 

this strategy may help to reduce the side reactions between the epoxy ring and catechol groups, 

mostly due to the high reactivity of catechol groups toward TiO2. Thus TiO2 nanoparticles were 

directly added into the system at the beginning of the reaction for one polymerization conducted 

under the following reaction conditions: [DOPA-Br]: [NIPAM]: [GA]: [CuBr]: [Me6TREN] =1: 

20: 2: 0.4: 0.4. 1H NMR spectroscopy (Figure S 7) was used to monitor the polymerization and it 

showed that a conversion of 93% could be obtained after two hours. Several polymerizations using 

varied monomer compositions were performed with all high conversion (even close to full 

conversion) and well-controlled MW and MW distributions obtained in short reaction time. The 

free linear polymers were isolated from the titania nanoparticles via centrifuge for further 

characterization. SEC (Figure S 8) revealed the presence of well-defined polymer with relatively 

low MW and narrow distribution in the solution and a relatively high MW peak was also observed, 

which was similar as previous report and was attributed to the fast polymerization initiated by 

possible excess catalysts.45 It has been observed that “grafting to” strategy often leads to lower 

grafting density due to the steric effect compared with the “grafting from” strategy. The “one-pot” 

strategy utilized here is in actual fact a combination of “grafting to” and “grafting from” strategy. 

Thus the hybrid nanoparticles prepared by “one-pot” strategy could theoretically load more 

polymers on the surface. As shown in the TGA analysis (Figure S 9), it showed a weight loss up 

to 33.7%, which is indeed higher than that obtained from the “grafting to” strategy. Based on the 

size (~ 25 nm), density of TiO2 nanoparticles and the TGA results as well as the MW of 

immobilized polymers, we can calculate the grafting density is ~ 0.26 and 0.33 chains nm-2 

separately for the nanoparticles obtained by “grafting to” and “one-pot” strategies. 
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The final TiO2@poly(NIPAM)-r-(GA) nanoparticles showed different thermo phase transition 

behaviours and the LCST also changed significantly with the increase of Rco. As shown in Figure 

4 A, the absorbance of the suspension (TiO2@poly(NIPAM)-r-(GA) nanoparticles in water, 1 

mg/mL) sharply increased when the temperature was above the LCST of the polymer. This 

indicates that above the LCST the polymer becomes insoluble in water and interchain aggregation 

happens, further leading to the aggregation of nanoparticles, which will scatter the incident light 

and decrease the optical transmittance. One interesting phenomenon was also observed that with 

the increase of Rco from 0.125 to 0.5 the aggregation temperature (defined as the temperatures 

corresponding to 50% decreases of transmittance) of TiO2@polymer nanoparticles starts to 

decrease from 38 ℃ to 25 ℃, which is mostly due to the increase of hydrophobic GA composition. 

To extend the temperature responsive zone of the TiO2@polymer nanoparticles, more hydrophilic 

monomer such as poly(ethylene) glycol methyl ether acrylate, was used as the co-monomer for 

polymerization (SEC & 1H NMR spectrum, Figure S 8 & 10) and the thermo-induced aggregation 

temperature of obtained hybrid nanoparticles increased to ~ 50 ℃ (Figure 4 A). This indicates that 

the aggregation temperature of final nanoparticles could be well-tuned by changing the monomer 

composition of epoxy-functional polymers. The difference in the initial absorbance of varied 

nanoparticles (10 ℃, Figure 4 A) may be due to the different grafting density and solubility of 

grafted polymers, which will lead to the presence of different amounts of hybrid nanoparticles 

even under same concentration as well as different setting velocity. In summary, TiO2 

nanoparticles have been successfully coated with thermoresponsive epoxy-functional polymers via 

“grafting to” or “one-pot” strategy using Cu(0)-LRP. 

Immobilization of laccase onto the epoxy-polymer-functionalized TiO2 nanoparticles 
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Scheme 2. Fluorescent labelling of laccase by Rhod B for the immobilization to epoxy-

functionalized TiO2 nanoparticles. 

Laccase was then immobilized to the surface of TiO2@polymer hybrid nanoparticles via the 

reaction of epoxy groups with the nucleophiles exposed on the enzyme surface. In order to prove 

the successful immobilization, laccase was first labelled by a maleimide-functionalized rhodamine 

dye (Scheme 2) so that the modification could be characterized via fluorescence spectroscopy or 

even visually. The enzyme activity (Figure S 11) only slightly decreased from 0.51 U mg-1 to 0.49 

U mg-1 after the fluorescent labelling, mainly due to the low content of induced dye. The 

immobilization of enzyme was performed in PBS buffer (pH=7, 0.1 mmol/L) at ambient 

temperature.  
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Figure 4. Temperature dependence of absorbance at 500 nm obtained for the aqueous suspensions 

of TiO2 / polymer hybrid nanoparticles (A, 1 mg/mL, all by “grafting to” strategies) and 

fluorescence spectroscopy (B) of TiO2@poly(NIPAM)-r-(GA)@Rhod-laccase (Rco=0.25). 

As shown in the TEM images (Figure 3 C), the layer of soft matter on the particle’s surface tends 

to become thicker and much clearer after immobilization of enzyme, indicating the success of 

subsequent modification. The FTIR spectra demonstrate typical peaks from laccase at ~ 3300 & 

1100 cm-1 as well as peaks related to the polymer from 1200-1800 cm-1 (Figure 3D). TGA analysis 

(Figure 3 E) reveals an increase of weight loss from 28.3% to 31.5% after enzyme immobilization, 

which is caused by the addition reaction of laccase and demonstrates that the laccase loading is 3.2 

wt% thus the enzyme loading amount is ~ 32 μg/mg support, which is much higher than that 

(8.6±1.0 μg/mg) in previous report using small molecular cross-linkers for immobilization.59 After 

reaction the products were obtained as pink powders, although the composition of rhodamine B in 

the enzyme was low, the hybrid biocatalyst exhibited high fluorescence intensity at ~ 595 nm upon 

irradiation (λex = 565 nm, Figure 4 B). These results proved the successful immobilization of 

enzyme to the surface of TiO2 nanoparticles and the loading yield is similar as previous reports 

using commercial resin beads.16   

To further prove the covalent attachment of enzyme on the polymeric surface rather than the 

physical adsorption, a control experiment using epoxy-free TiO2 / DOPA-poly(NIPAM) hybrid 

nanoparticles was performed for the immobilization of enzyme. DOPA-poly(NIPAM) was 

synthesized by homo-polymerization of NIPAM using dopamine-functionalized initiator.44 FTIR 

and TGA were used for the characterization of final products. As shown in Figure S 12, the FTIR 

spectra did not reveal significant changes after enzyme immobilization. The TGA curves (Figure 

S 13) for the TiO2@DOPA-poly(NIPAM) nanoparticle before and after enzyme immobilization 
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were almost overlapped and the weight loss (9.8%) was very close to that (9.5%) from the 

unmodified TiO2@DOPA-poly(NIPAM). Such small differences could be from the errors during 

the measurement or caused by the presence of tiny physically absorbed enzyme, which indicated 

no significant occurrence of conjugation. All these results prove that the enzymes are covalently 

attached to the hybrid nanoparticles via epoxy chemistry rather than physical adsorption. 

Stability, reusability and catalytic performance of bi-functional catalyst 

Epoxy-functionalised copolymer has shown different water solubility and LCST in water, which 

mainly depends on the composition ratio of hydrophilic monomers (NIPAM, PEGA480) to 

hydrophobic monomer (GA). The sedimentation of unmodified TiO2 nanoparticles in water goes 

fast and most of the particles could precipitate at the bottom under ambient temperature in 30 

minutes (Figure 5 A). After coating with functional copolymers, the hybrid TiO2 nanoparticles 

have shown better dispersion stability in water and the sedimentation rate is much slower as 

visually observed (Figure 5 A) or by turbidity characterization (Figure S 14). When the 

temperature is above the LCST, significant aggregation between the hybrid particles could be 

observed and most of the particles already precipitate in 10 minutes (Figure 5 B).  
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Figure 5. Optical photographs of TiO2 (a) and TiO2@poly(NIPAM)-r-(GA) (b, Rco=0.25, obtained 

by “grafting to” strategy) hybrid nanoparticles in aqueous solution at 25 ℃ (A group) or at 50 ℃ 

(B group). Photographs were taken at 0, 5, 10, 15 and 30 minutes respectively (from left to right). 

Due to the presence of LCST polymer, which will cause aggregation under stimuli of high 

temperature to encapsulate the enzyme with a “polymer coat”, it is hypothesized that the enzyme 

stability will be increased after immobilization especially under relatively high temperature. The 

enzyme activity is calculated by measuring the degradation of ABTS in the PBS buffer solution 

(0.2 M) by UV/Vis spectroscopy under different pH (ranging from 2 to 7) and temperature (ranging 

from 10 to 80 ℃). The optimum pH and temperature for the free laccase was determined as pH 

=3.0 and 50 ℃. After being attached to the TiO2 nanoparticles, the immobilized laccase also shows 

the highest activity at pH=3.0 and 50 ℃ (Figure 6). However, the enzyme activity of immobilized 

laccase decreased to ~ 60% of that from the free laccase, indicating the effect of conjugation on 
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the activity of enzyme. It is hypothesized that the chemical modification and steric effect due to 

the presence of polymer may change the spatial conformation of enzyme and affect the binding of 

enzyme with substrates. It is worth noting that the enzyme activity recovery (~ 60%) for the 

immobilized laccase under a much higher enzyme loading amount in this research is higher than 

that in previous report using glutaraldehyde as cross-linkers.59 It also needs to be emphasized that 

the activity of laccase significantly decreased when the temperature was increased to 60 ℃ or 

higher, however, the free laccase decreased much faster than the immobilized laccase as shown in 

Figure 6. This further demonstrates the importance of thermoresponsive polymers on the 

maintaining of enzyme activity. We believe that the polymer coat will embrace the enzyme inside 

and prevent the enzyme from subunit dissociation or denaturation during heating.  

 

Figure 6. Enzyme activity of free and immobilized laccase (TiO2@poly(NIPAM)-r-

(GA))@Laccase, Rco=0.25) under different temperature (A, the pH was set as 3.0) and pH (B, the 

temperature was set as 25 ℃).  

The stability of enzyme has always been a key concern during enzyme’s industrial application. 

Figure 7 shows the relative activity of the free and immobilized laccase in PBS buffer (pH=3, 0.2 

M) under 25 ℃ after different periods. Both samples show a decrease of relative activity with the 
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increase of time and it is worth noting that the relative activity of free laccase decreased fast to 

~60% after one day, only 10% left after 5 days and 0% after 15 days, indicating a fast loss of 

activity. However, the immobilized laccase keeps 96% of activity after one day, ~ 50% after 5 

days and even ~ 10% left after four weeks, which demonstrates much better stability through 

storage after immobilization.  

 

Figure 7. Relative activity of the free and immobilized laccase (TiO2@poly(NIPAM)-r-

(GA))@Laccase, Rco=0.25) incubated in PBS buffer (pH=3, 0.2 M) under 25 ℃ at different time.  

The increase of temperature can disrupt the hydrogen bonds in the protein and change the advanced 

structures (secondary, tertiary and quaternary structure), which leads to the denaturation of protein 

and loss of activity or function. A significant decrease of activity is observed when the temperature 

is increased to higher than 60 ℃ (Figure 6). When laccase was heated to 80 ℃, fast loss of activity 

was found and less than 10% of activity could be maintained after 2 hours, only ~ 2% left after 4 

hours (Figure 8) and total loss of activity after 24 hours. Decrease of activity under high 
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temperature is also observed for the immobilized laccase; however, the declining rate is much 

slower compared with pristine laccase and ~ 30% of activity is maintained after 2 hours, ~ 20% 

left after 4 hours and even ~ 4% of activity left after 24 hours. These results further prove the 

increased stability for the immobilized laccase even under relatively high temperature.  

 

Figure 8. The effect of temperature on the free and immobilized laccase (TiO2@poly(NIPAM)-r-

(GA))@Laccase, Rco=0.25).  

The reusability of immobilized laccase was calculated by measuring the enzyme activity through 

the degradation of ABTS, during which the TiO2@polymer@laccase catalyst was separated from 

the system before next cycle via increasing the temperature to the one above the LCST for efficient 

flocculation. As shown in Figure 9, the enzyme activity dropped ~ 20% through the first three 

cycles. It is hypothesized that a part of the hybrid nanoparticles, especially the one with relatively 

smaller size, may cannot be efficiently recovered during the temperature-induced flocculation. It 

is also possible that the enzyme was gradually destroyed in use thus the activity dropped.  
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However, the rest catalysts maintained relatively stable activity during the subsequent 4 recycles, 

which exhibited good reusability and retained ~ 60% residual activity after 8 total cycles. In 

summary, the immobilized laccase could be efficiently recovered via thermo-control and reused 

with high activity maintained.  

 

Figure 9. The operation stability of immobilized laccase (TiO2@poly(NIPAM)-r-

(GA))@Laccase, Rco=0.25).  

The bi-functional catalysts are composed by photocatalytic TiO2 nanoparticles and enzymatic 

laccase, which have shown wide applications in the degradation of organic pollutants such as 

formaldehyde, dye and phenolic chemicals etc.75-78 The catalytic performances of the bi-functional 

catalyst are briefly evaluated in this paper by degradation of rhodamine B (Rhod B) and bisphenol 

A (BPA). As shown in Figure 10A, the degradation of Rhod B was performed under simulated 

sunlight with control experiments to verify the role of TiO2 and laccase. It showed that the 

photodegradation of Rhod B could happen even in the absence of catalysts and a degradation ratio 
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of ~ 40% could be obtained in 150 minutes. Interestingly, the addition of laccase could adversely 

affect the degradation of Rhod B as only ~ 10% of degradation could be obtained in 150 minutes. 

Nevertheless, the degradation went much faster with the addition of TiO2 nanoparticles or the 

TiO2@poly(NIPAM)-r-(GA)-r-(PEGA480) hybrid nanoparticles, for which the degradation ratio 

could go to up to 95% and 75% separately in 30 minutes and both close to 100% in 90 minutes. 

Interestingly, the degradation of Rhod B in the presence of TiO2@poly(NIPAM)-r-(GA)-r-

(PEGA480)@Laccase went much faster than that in the presence of TiO2@poly(NIPAM)-r-

(GA)@Laccase. It is hypothesized that the utilized temperature (50 ℃) is higher than the LCST of 

poly(NIPAM)-r-(GA) and leads to the aggregation of nanoparticles, which may cover the active 

sites of TiO2 thus decrease the enzyme activity. While the aggregation of TiO2@poly(NIPAM)-r-

(GA)-r-(PEGA480)@Laccase nanoparticles only occurred partially under 50 ℃ thus the 

degradation of Rhod B went much faster. When the degradation was performed under decreased 

temperature at 25 ℃, the degradation of Rhod B in the presence of TiO2@poly(NIPAM)-r-

(GA)@Laccase became faster than that under 50 ℃ (Figure 10 A). This further revealed that the 

thermoresponsive polymers under LCST will not cover the active sites of TiO2 thus favoured the 

photodegradation of Rhod B. For the degradation in the presence TiO2@poly(NIPAM)-r-(GA)-r-

(PEGA480)@Laccase, the degradation rate became a bit slower when the temperature was 

decreased from 50 ℃ to 25 ℃. This is in agreement with our previous finding that the degradation 

of Rhod B is temperature-relevant and higher temperature will accelerate the degradation.45 All 

these results suggest that the photocatalytic ability of TiO2 has been maintained even after being 

coated with a dense polymer and laccase layer.  
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Figure 10. Degradation of Rhod B (10 mg/L, under the irradiation of simulated sunlight, A) and 

BPA (10 mg/L, under dark condition, B) in the presence of TiO2, TiO2@poly(NIPAM)-r-

(GA)@Laccase (Rco= 0.25) and TiO2@poly(NIPAM)-r-(GA)-r-(PEGA480)@Laccase 

nanocomposites (DP = 20:5:4) at 50 ℃ in PBS buffer (pH=3, 0.2 M). The concentration of all the 

particles in the suspension is 0.5 mg / mL. 

After that, the activity of immobilized laccase was measured by catalysing the degradation of BPA. 

The experiments were performed under dark conditions as the photocatalytic degradation of BPA 

has been reported to occur under the presence of TiO2 catalyst.76 The degradation of BPA in the 

absence of catalyst is very slow; however, after addition of pristine TiO2 nanoparticles for 150 

minutes the concentration of BPA decreased by ~ 5% (Figure 10 B). It is worth noting that the 

phenol groups have strong interactions with TiO2 and may increase the agglomeration and zeta 

potential of nanoparticles.79 The adsorption capacity of BPA by TiO2 nanoparticles could be up to 

0.2 mmol/g and should not be ignored in this research as it significantly contributes to the 

concentration decrease of BPA. Nevertheless, the degradation of BPA catalysed by laccase has 

shown the fastest rate and ~ 40% of BPA has been degraded in 150 minutes. The degradation of 

BPA in the presence of TiO2@poly(NIPAM)-r-(GA)-r-(PEGA480)@laccase is much faster than 
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that in the presence of pristine TiO2 or blank control experiment and only slightly slower than that 

in the presence of free laccase, which demonstrates that the immobilized laccase could efficiently 

catalyze the degradation of BPA. It is also worth noting that the enzymatic degradation of BPA in 

the presence of TiO2@poly(NIPAM)-r-(GA)@Laccase under 50 ℃ is also slower than that in the 

presence of TiO2@poly(NIPAM)-r-(GA)-r-(PEGA480)@laccase, probably also due to the thermo-

induced aggregation between the nanoparticles, which will unavoidably cover some active sites of 

laccase. Nevertheless, this temperature-responsive behaviour suggests that the catalyst could be 

recovered and the catalytic activity could also be tuned with change of temperature. Moreover, the 

degradation of BPA became much slower when the temperature was decreased from 50 ℃ to 25 

℃, which indicates that the enzymatic activity could be seriously affected by temperature.  

For the degradation of BPA in the presence of bi-functional catalyst under simulated sunlight, the 

degradation rate tends to be even faster than that in the presence of only TiO2 or laccase, which 

revealed a synergistic effect for the simultaneous photocatalytic and enzymatic degradation of 

BPA (S Figure 8). All these results prove the efficiency of bi-functional catalysts and show 

advantages on enzyme storage, stability, reusability and synergistic degradation of typical organic 

pollutants, which will be promising for the applications in the environmental science and 

biomaterials area. 

Conclusions 

In conclusion, we have successfully immobilized laccase onto the surface of TiO2 nanoparticles 

through the linkage of thermoresponsive epoxy-functional polymers. Cu(0)-LRP of GA and 

NIPAM has shown typical characteristics of living radical polymerization even in the presence of 

catechol-functionalized initiator, yielding epoxy-containing polymers with terminal anchor for the 
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surface modification of TiO2 nanoparticles via “grafting to” or “one-pot” strategies. The successful 

immobilization of enzyme has been proved by the presence of fluorescent laccase after the epoxide 

ring-opening reaction with nucleophiles from the laccase, using different characterization tools 

such as FTIR, TGA, TEM and fluorescence spectroscopy. The synthesized bi-functional catalyst 

has shown different disperse behaviour in aqueous solution depending on the composition of 

copolymers and could be facilely recovered for reuse when the temperature is higher than the 

corresponding LCST. The immobilized laccase has shown excellent thermal stability under 

ambient or even relatively high temperature compared with the free laccase. The enzyme activity 

could be maintained during the repeated use after recovery and enzymatic degradation of BPA was 

proved to be efficient. The photocatalytic ability of TiO2 was also investigated by fast degradation 

of rhodamine B under the excitation of simulated sunlight. Moreover, the strategy developed 

herein could be applied for immobilization of enzyme to many different metal oxide catalysts 

coated with thermoresponsive polymers, mainly due to the versatility of dopamine chemistry. 

These novel intelligent bi-functional catalysts will be promising for applications in environmental 

science and biocatalyst fields, such as for the “one-pot” degradation of different organic pollutants 

in water treatment. 
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