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Abstract – Invasion risk assessments are reliant on ecological data that assist the predictions of whether an
introduced species will adapt to novel conditions. Data from the native range of potential invaders can thus
assist these assessments. Here, the growth and reproductive characteristics of the Western tubenose goby
Proterorhinus semilunaris, a Ponto-Caspian gobiid, were assessed in three natural lakes in their native
range, as there are few extant data on these traits. Across the three lakes, the gobies were found in varying
abundances. Sex ratios varied, with females significantly outnumbering males in only one lake, with equal
sex ratios in the other lakes. The fish always showed a positive allometric growth, but had high variability in
their somatic growth rates and relative body conditions between the lakes. Scale ageing revealed all
populations comprised of individuals to four years old, with one lake having individuals to 5 years old.
Reproductive characteristics, including size at maturity, gonado-somatic index and fecundity, did not differ
significantly between the lakes. These data suggest that plasticity in aspects of their life history traits
provides P. semilunaris with considerable adaptive capacity following their introduction into novel
conditions.
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Résumé – La plasticité des traits de vie de Proterorhinus semilunaris indigène suggère une grande
capacité d'adaptation dans son aire de répartition potentielle. Les évaluations des risques d'invasion
reposent sur des données écologiques qui aident à prédire si une espèce introduite s'adaptera à de nouvelles
conditions. Les données de l'aire de répartition indigène des envahisseurs potentiels peuvent donc faciliter
ces évaluations. Ici, les caractéristiques de croissance et de reproduction du gobie demi-lune Proterorhinus
semilunaris, un gobiidé Ponto-Caspien, ont été évaluées dans trois lacs naturels de leur aire d'origine. Bien
que ce poisson ait une distribution de plus en plus envahissante, il existe peu de données sur ces caractères.
Dans les trois lacs, les gobies ont été trouvés en abondance variable. Les sexe ratios variaient, les femelles
étant nettement plus nombreuses que les mâles dans un seul lac, les sexe ratios étant équilibrés dans les
autres lacs. Les poissons ont toujours montré une croissance allométrique positive, mais leur taux de
croissance somatique et leur état corporel relatif entre les lacs étaient très variables. La scalimétrie a révélé
que toutes les populations étaient composées d'individus âgés de quatre ans, un lac ayant des individus âgés
de cinq ans et moins. Les caractéristiques de reproduction, comme la taille à maturité, l'indice gonadique
somatique et la fécondité, ne différaient pas de façon significative entre les lacs. Ces données suggèrent que
la plasticité dans certains aspects de son cycle biologique confère à P. semilunaris une capacité d'adaptation
considérable après introduction dans de nouvelles conditions.
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1 Introduction

The high endemism and species richness of freshwater
ecosystems results in introductions of non-native species being
a significant conservation issue, especially as the costs of
controlling freshwater invasions are considerable (Britton
et al., 2011). Efforts to manage invasions should involve
species-specific risk assessments that evaluate whether the
species will establish, disperse and cause impact, according to
the available empirical evidence (Copp et al., 2016). Where
assessments are inhibited by a lack of empirical data for a
species in its invasive range (Roy et al., 2017), they can utilise
ecological information derived from the species' native range
(Ribeiro et al., 2008).

The Ponto-Caspian (P-C) region is a major source area for
invasive gobies (Roche et al., 2013). P-C gobies have colonized
many freshwater ecosystems around the world, including the
upper andmiddle Danube River in Europe (Jepsen et al., 2008),
and the North American Great Lakes (Brown and Stepien,
2009). Introductions have been primarily via ship ballast water
(Corkum et al., 2004; Roche et al., 2013). The Western
tubenose goby Proterorhinus semilunaris (Heckel, 1837) is a
strong example of a P-C goby that has been introduced into a
number of new regions. Initial introductions to North America
were into the Laurentian Great Lakes (St. Clair River) in 1990
via ballast water (Jude et al., 1992). In Europe, initial
introductions were to the Danube part of the Czech Republic in
1994, most likely via their use as angling bait (Lusk and
Halačka, 1995). In both continents, the species remains
spatially restricted with, for example, their North American
distribution mainly limited to some Great lakes (e.g. Lake St.
Clair, Lake Erie and western Lake Superior) (Vanderploeg
et al., 2002). Their ecological impacts relate to their predation
of benthic macro-invertebrates that potentially have top-down
effects (Va�sek et al., 2014; Mikl et al., 2017).

The small bodied gobiid, P. semilunaris is typically found
in shallow rocky substrates (Jude and DeBoe, 1996), where its
diet is invertebrate based (e.g. chironomid larvae and
zooplankton) (Adámek et al., 2007). There is limited
information available on their life history traits in freshwaters,
with most native studies conducted in marine or estuarine
environments, including the Azov and Caspian seas (Ragimov,
1986; Smirnov 1986; Harka and Farkas, 2006). Indeed, there is
only a single study available on their somatic growth in their
native range (Lake Tisa, Eastern Hungary; Harka and Farkas,
2006). There are, however, other biological data available in
both ranges, including sex ratios, weight–length (WL)
relationships and diet (e.g. Tarkan et al., 2006, 2009;
V�setičková et al., 2014).

Invasion risk assessments have predicted that P. semi-
lunaris has moderately high invasiveness in the Balkans
(Simonović et al., 2013) and medium invasion potential in
Turkey (Tarkan et al., 2017), Finland (Puntila et al., 2013) and
the Murray-Darling basin, Australia (Vilizzi and Copp, 2013).
Their potential to rapidly colonise novel environments stems
from traits including a prolonged spawning period and batch-
spawning behaviours (e.g. Valová et al., 2015). Some studies
also highlight their potential to compete with native species
(especially juveniles) for food resources (Kocovsky et al.,
2011; V�setičková et al., 2014). However, there remain
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considerable gaps in knowledge on their interactions and
autecology from both their native and non-native ranges.

Given the potentially high utility of ecological data for
non-native species from their native range to inform invasion
risk assessments, and to overcome the knowledge gaps in
P. semilunaris ecology, the aim here was to quantify a range of
ecological and biological characteristics across three lakes in
their native range. Objectives were to evaluate their life history
traits across the lakes (age structure, somatic growth,
reproductive characteristics), and discuss these in the context
of their potential invasiveness and the commensurate invasion
management actions.

2 Materials and methods

2.1 Study sites

One shallow (Uluabat) and two deep (İznik and Sapanca)
natural lakes located in the Marmara Region (north-west of
Anatolia, Turkey) were sampled for P. semilunaris (Fig. 1). The
main physico-chemical and morphological characteristics of
the lakes are presented in Table 1. The lakes have a diverse
ichthyofaunal that is dominated by fishes of the Cyprinidae
family (Geldiay and Balık, 2009). Other gobiid fishes are
present, including monkey goby Neogobius fluviatilis, round
goby Neogobius melanostomus and Caucasian dwarf goby
Knipowitchia caucasica. Piscivores include Northern pike Esox
lucius and wels catfish Silurus glanis. Introduced fishes include
gibel carp Carassius gibelio and pumpkinseed Lepomis
gibbosus. The presence in the lakes of P. semilunaris was
recorded in the first ichthyofaunal studies in the studied lakes
(e.g. Numann, 1958) and is considered as a native fish species.

Lake İznik is a deep, tectonic, eutrophic lake. Fish were
sampled from its littoral shallow habitats that had substrates of
fine sand and gravel, and with emergent and submerged
macrophytes. Lake Sapanca is also a deep tectonic lake that
suffers from water level fluctuations and high nutrient inputs,
that results in frequent algal blooms. Its P. semilunaris
population inhabits areas around confluences thewith inflowing
streams.Sampleswere thus collectedmainly fromfive inflowing
streams, where substrates were of fine sand, coarse gravel and
small rocks. The flow regimeswere variable, andwidthswere to
6m and depths to 2m. However, because of the low number of
fish captured in each of the streams of Lake Sapanca, their fish
samples were combined together for the purposes of data
analysis. Lake Uluabat is a shallow (mean depth ∼2.5m),
eutrophic lake that has aRAMSARdesignation due tomigratory
birds. It also suffers from the adverse impacts of abstraction, and
domestic and industrial waste discharges (Arslan et al., 2010).
Samples of P. semilunaris population were collected from
littoral areas, where abundant submerged macrophytes were
present over a substrate of fine sand and large rocks (Fig. 1).

2.2 Sample collection and processing

All samples of P. semilunaris were collected by
electrofishing (SAMUS-725G). Sampling was completed
from August 2014 to January 2016 on a quarterly basis:
August (summer), November (autumn), January (winter) and
April/May (spring). In each lake, the sampled areas were
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Table 1. Latitude (Lat), longitude (Lon), surface area (SA, km2), altitude (Alt, m), minimum (Min), maximum (Max) and mean temperature
(°C), mean and maximum depth (m), pH, dissolved oxygen (DO, mg�1), electrical conductivity (EC, mS cm�1) and total phosphorus
(TP, mg�1) of three lakes in the Marmara Region of Turkey where P. semilunaris were sampled (Karakuş et al., 2018; Tarkan et al.,
2018).

Temperature Depth pH DO EC TP

Lake Lat Lon SA Alt Min Max Mean Mean Max

İznik 40°260 29°320 313 85 7.2 28.4 16.4 40.0 80.0 8.4 7.4 995 21

Sapanca 40°420 30°150 47 30 8.4 27.5 15.8 26.0 55.0 8.9 9.4 253 12
Uluabat 40°100 28°350 136 9 4.1 28.9 18.1 2.5 4.5 8.3 8.0 553 179

Fig. 1. Sampling areas (marked by red) where P. semilunaris were collected in Marmara region (northwest Turkey).
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approximately 200m long, 3m wide and up to 1.5m in deep.
Where sampling was also completed in streams, this started at
the confluence with the lake and extended for 200m upstream.
Due to the low number of specimens caught (<5) in winter
(January), all of the winter samples were omitted from further
analyses. All lakes and streams were sampled over 3 to 4 days
on each sampling occasion, with areas sampled for a fixed
time for standardisation (30min). Following capture, the
P. semilunaris specimens were euthanized (anaesthetic
overdose; 2-phenoxyethanol) and then transported to the
laboratory in iced water.

In the laboratory, the fish were defrosted, measured (total
length, TL; to 1mm) and 10 scales removed from the area
between the lateral line and dorsal fin, and stored for
subsequent ageing. Individuals were then dissected and
weighed (eviscerated mass, EW, to 0.01 g). Sex determination
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was from gonads, where females with ovaries containing
yolked eggs and males with distinguishable testes were
classified as mature. Ovaries were weighed to 0.001 g. For
fecundity estimates, sub-samples were taken from the anterior,
middle, and posterior portions of each ovarian lobe and fixed
(3.6% buffered formaldehyde).

Fish ages were determined from the scales by counting
their annuli from scale impressions on acetate strips (10 scales
per specimen) on a micro-projector (magnification:�48). Two
operators independently completed the age determinations,
who had no prior biological knowledge of the fish. Where age
estimates differed, a final determination was made and the
sample was rejected if disagreement remained. In combination
with regenerated scales, 10.2% of all fish were removed from
the ageing dataset, with 272 individual ages retained. Annuli
distances were measured along the antero-posterior axis from
f 10
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the best representative scale focus of each fish (Bagenal and
Tesch, 1978). Fecundity and egg diameter (ED) estimates were
made from the ovarian sub-samples from fish collected in
spring (pre-spawning period) by using a stereomicroscope
(n= 50 fish per lake). EDs were measured for 100 randomly
chosen oocytes per female using an ocular micro-meter.
2.3 Data analysis

Catch per unit effort (CPUE) was used as an indicator of
P. semilunaris abundance, measured as the number of sampled
individuals captured in 30min in the 200-m length of lake
shoreline (for İznik and Uluabat) or bank-side (for Lake
Sapanca). Mean lengths-at-age (LaA) were assessed by back-
calculation using the Fraser–Lee method (Francis, 1990):
Lt= cþ (TLc�c)(St/R), where Lt is the TL when annulus t was
formed, TLc TL at capture, St the distance from scale focus to
the annulus t, R the scale radius, and c is the intercept on
the length axis from the linear relationship of TL versus scale
radius (TL= 8.33�Rþ 12.60, r2 = 0.67, P < 0.01; n= 272).
Thus, the overall intercept (c) value (12.60mm) acted as a
‘weighting factor’ to reduce bias resulting from differences in
the size distributions of the populations. WL relationships
were determined from W= aTLb, where a and b are the
regression parameters. The 95% confidence limits of b
indicated whether there was deviation from b = 3.0. Fitting
of WL relationships was in R v.3.4.0 using libraries ‘FSA’ and
‘nlstools’ (Ogle, 2017).

Variation in body condition due to size differences was
measured using the relative body condition (RC) formula
of Le Cren (1951): RC =EW/EW, where EW is the actual
weight of the individual and EW is the expected weight from
the WL relationship. RC values >1 or <1 indicate that the
individual is in better/worse condition than the other fish in
the same TL range. The index requires populations to be
sampled at the same time of year, region and similar stage of
lifespan (Knaepkens et al., 2002). Thus, analyses were
conducted separately for each seasonal sampling and
comparisons were made among the lakes. For within lake
and comparisons among the seasons, Fulton condition factor
(FC) was used, expressed as FC = (EW/TL3)� 100,000
(Bagenal and Tesch, 1978). In both indices, EW that is free
from gonad mass and gut content was used to avoid bias
(Masó et al., 2016).

Mean age at maturity (AaM) was calculated from the
percentage of mature males and females in each age-class
using the formula:

AaM ¼
X

AmaxA ½MA �M ðA�1Þ�

where A is the age in years,MA the proportion (from 0 to 1)
of mature fish at age A, and Amax is the maximum age in the fish
sample. A modified version of this formula (10mm TL
intervals in place of age-classes; Trippel and Harvey, 1987)
was used to calculate mean TL at maturity (LaM). Absolute
fecundity (AF) estimates of female P. semilunaris were
determined gravimetrically as: AF =GW�D, where AF is
the number of mature oocytes spawned by a female in a single
spawning, GW is the weight of ovary, and D is the density or
the number of mature oocytes per g of ovarian tissue. Relative
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fecundity (RF = number of oocytes g�1 of female) was
calculated as RF=AF/EW (Bagenal and Tesch, 1978). The
gonadosomatic index (GSI) was calculated from both males
and females for each population as: GSI = (GW/(EW�GW))�
100 (Wootton, 1990).

2.4 Statistical analyses

Differences in the sex ratio between males and females
from unity (1:1) were tested using chi-squared (x2) goodness
of fit. Permutational univariate analysis of variance
(PERANOVA) tested the significance of differences of
back-calculated LaA, mean CPUE, b, TL, W, RC, FC, GSI,
ED, AF and RF of P. semilunaris among the lakes. CPUE
(separately with lakes and seasons), TL, W, b and ED (with
lakes) were based on a one fixed-factor design, whereas a two-
way factorial design for AF and RF (with EW and lakes) and
LaA (with age and lakes), and a three-factor design for GSI
(with EW, lakes and seasons), RC and FC (with TL, lakes and
seasons) were employed, all fixed and crossed. In each case,
following normalisation of the data, a Euclidean dissimilarity
measure produced a distance matrix that was subjected to 9999
permutations of the raw data with statistically significant
effects for the main and interaction effects followed by
a posteriori pairwise comparisons (a= 0.05). Statistical
analyses were carried out in PERMANOVAþ v1.0.1 for
PRIMER v6 (Anderson et al., 2008). The use of PERMA-
NOVA versus traditional parametric analysis of variance
(ANOVA) is advantageous as the stringent assumptions of
normality and homoscedasticity in the data are substantially
relaxed in PERMANOVA, enabling its use with real-world
ecological data sets (Anderson and Robinson, 2001).

Some other gobiid species (e.g.N. melanostomus and
N. fluviatilis) have males with greater LaAs than females
(e.g. Kornis et al., 2012). However, here, lake-specific
PERMANOVA models found no significant effect of sex on
LaA, RC, TL and W; similarly, the effect of year on the
parameters was not significant (F# and P ranged from 0.02 to
1.36 and 0.26 to 0.84, respectively). Thus, sex and year data for
these analyses were combined. For growth analyses, von
Bertalanffy growth functions were not possible to fit, as LaA
values had not reached the asymptote, with linear relationships
with age evident in each lake.
3 Results

3.1 Sample sizes, CPUE, sex ratio and body size

In total, 276 P. semilunariswere collected from the streams
of Lake Sapanca, 172 from Lake Uluabat and 128 from Lake
İznik (Tab. 2). Fish lengths varied between 20 and 73mm
(Tab. 2), with similar length distributions across the lakes
(Fig. 2). Seasonal differences in CPUE were significant, being
highest in summer for Uluabat (F2;18 = 2.97, P# < 0.05,
# = permutational) and in autumn for İznik (F2;18 = 2.51,
P#< 0.05). Although not significant, summer CPUE in İznik
and Sapanca was higher than in spring (Fig. 3).

Sex ratios varied between the lakes. It was significantly
female dominated in Lake İznik (F:M= 1.8:1.0, x2 = 6.31;
P= 0.01), but was relatively equal in both Lake Uluabat
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Table 2. (A) Number of specimens (n) that could be sexed (immature specimens were left out), minimum (Min), maximum (Max), mean and
standard deviation (SD) of total length (TL) and weight (W) of male (M) and female (F) P. semilunaris from İznik, Uluabat and Sapanca lakes.
(B) Parameter estimates (with 95% lower and upper confidence intervals: LCI and UCI, respectively) for the weight-length (WL) relationships
for P. semilunaris in İznik, Uluabat and Sapanca lakes. The data of Lake Sapanca are mean values of the five sampled streams flowing into
the Lake.

A

TL W

Lakes n Min Max Mean SD Min Max Mean SD

İznik (M) 30 25 73 45.13 1.34 0.14 4.75 1.27 1.20

İznik (F) 53 23 67 54.85 0.99 0.15 4.24 1.13 1.00
Uluabat (M) 35 23 66 44.71 1.13 0.13 3.26 1.31 0.93
Uluabat (F) 48 24 58 42.69 0.85 0.12 2.62 1.01 0.64
Sapanca (M) 79 21 72 44.20 1.12 0.09 4.73 1.30 1.07
Sapanca (F) 105 20 70 45.44 1.01 0.09 4.00 1.22 0.82

B

WL

Parameter Estimate SE LCI UCI

İznik
a 0.007 0.075 �0.142 0.155
b 3.217 0.054 3.110 3.325
Uluabat
a 0.006 0.00001 �0.080 0.200
b 3.415 0.051 3.314 3.517
Sapanca
a 0.009 �0.052 �0.013 0.019
b 3.153 0.037 3.080 3.225

Fig. 2. Probability density plots (Kernel density estimation) of
P. semilunaris length distributions from Lake Uluabat (solid black),
Lake Sapanca (solid grey) and Lake İznik (dashed black).
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Fig. 3. Catch per Unit Effort (CPUE) of P. semilunaris from the
streams of Lake Sapanca (upper) and all studied lakes (lower) by each
season.
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(1.4:1.0, x2 = 2.02; P= 0.16) and Lake Sapanca (1.4:1.0,
x2 = 1.33; P= 0.06). There was seasonal variation, with
samples from İznik being female dominated in spring
(8.0:1.0, x2 = 10.89; P < 0.01). Samples from Lake Sapanca
were male dominated in summer (0.5:1.0, x2 = 5.84; P = 0.02),
but female dominated in autumn (6.2:1.0, x2 = 18.78;
P < 0.0001). In Lake Uluabat, seasonal sex ratios were not
significantly different (Ps > 0.05).
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Table 3. For P. semilunaris (all individuals combined) from three lakes in theMarmara region, number of specimens (n), mean total length (TL)
in mm at capture, mean back-calculated lengths at age, standard error (SE), and mean annual growth increments using the scale radius to TL
regression equation.

Back-calculated body lengths at age

Lakes TL at capture Age 1 Age 2 Age 3 Age 4 Age 5

n TL SE TL SE TL SE TL SE TL SE TL SE

İznik
2015 14 34.10 0.18 33.68 0.07
2014 20 47.00 0.17 33.53 0.07 43.68 0.08
2013 11 50.10 0.24 30.80 0.12 41.25 0.17 50.09 0.24
2012 8 61.30 0.20 31.50 0.14 42.28 0.21 51.94 0.22 61.25 0.20
Mean back-calculated TL at age 32.37 42.40 51.01 61.25
Mean TL increment (mm) 10.03 8.61 10.24
Uluabat
2015 10 31.40 0.13 27.78 0.86
2014 16 37.20 0.13 27.97 0.06 31.06 0.24
2013 21 46.70 0.12 29.17 0.07 38.99 0.10 46.71 0.12
2012 7 52.70 0.17 27.44 0.06 35.85 0.08 45.21 0.12 52.71 0.17
Mean back-calculated TL at age 28.09 0.37 35.30 2.30 45.96 0.75 52.71 –
Mean TL increment (mm) 7.21 10.66 6.75
Sapanca
2015 15 26.92 0.19 25.60 0.11
2014 42 37.19 0.11 27.18 0.04 34.67 0.07
2013 74 43.51 0.08 27.38 0.04 35.13 0.05 41.64 0.07
2012 22 55.13 0.17 29.32 0.05 37.49 0.07 46.43 0.09 54.72 0.12
2011 12 59.91 0.1x7 27.28 0.12 32.65 0.18 39.99 0.24 47.78 0.27 54.99 0.25
Mean back-calculated TL at age 27.35 0.59 34.99 0.99 42.69 1.92 51.25 3.47 54.99 –
Mean TL increment (mm) 7.64 7.70 8.56 3.74
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Across the three lakes, there were minimal differences in
mean total length (F2;571 = 1.98, P

# > 0.05), but there were
significant differences inmeanweight (F2;575 = 3.39,P

#< 0.05).
The fish from Lake Sapanca and Lake İznik were significantly
heavier than from Lake Uluabat (t# = 2.44, P# < 0.05; t# = 2.60,
P# < 0.05) (Tab. 2).
3.2 Weight–length relationship, condition and growth

In each lake, estimated values of b (as 95 % CI) in the
weight–length relationship were all above 3.0, indicating
positive allometry (Tab. 2). b was significantly higher in
Lake Uluabat than Lake Sapanca and Lake İznik (F# = 23.12,
P# < 0.01), but differences between Lake Sapanca and Lake
İznik were not significant (F# = 0.74, P# > 0.05).

The oldest aged fish was 5 years old in the streams Lake
Sapanca, where the lowest LaA values were recorded (Tab. 3).
The highest LaA were from Lake İznik. Between lake
differences in LaA were significant (lake; F2;260 = 28.45,
P# < 0.001, lake� age interaction; F6;260 = 5.57, P

# < 0.001)
(Tab. 4). The significant differences included higher growth
increments at ages 1, 2 and 4 years in Lake İznik than Uluabat
(for age 1; t# = 4.96, P# < 0.001, age 2; t# = 5.29, P# < 0.001,
age 4; t# = 3.49, P# < 0.01), and higher in Lake İznik than
Lake Sapanca (for age 1; t# = 5.01, P#< 0.001, age 2; t# = 7.29,
P# < 0.001, age 4; t# = 2.60, P# < 0.05).
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There was significant variation in the relative condition of
P. semilunaris between the lakes (F4;244 = 2.83, P

# < 0.05).
Specifically, significant differences were in autumn, with fish
Lake Sapanca having higher RC values than Lake Uluabat
(t# = 3.43, P# < 0.05), and in spring, where fish in Lake İznik
had significantly lower relative condition than Lake Uluabat
(t# = 4.66, P# < 0.001) and the Sapanca (t# = 4.48, P# < 0.05)
(Tab. 5). For Fulton's condition, no significant differences
were detected between seasons for the lakes (F4;244 = 0.96,
P# > 0.05) (Tab. 5).
3.3 Reproduction and life history traits

The minimum total lengths and ages of mature
P. semilunaris were: Lake İznik: female 40mm and 2 years,
male 33mm and 3 years; Lake Uluabat: female 42mm and
3 years, male 35mm and 3 years; and Lake Sapanca: females
38mm and 3 years, males 37mm and 3 years (Tab. 6).
Seasonal GSI data were generally similar between the lakes
(F219;254 = 2.98, P# = 0.10, and its interaction with lake:
F1;254 = 0.07, P

# = 0.94). The highest values occurred in spring
and summer, suggesting a prolonged spawning period (Fig. 4).
Females generally had significantly higher GSI values than
males (P# < 0.05) in the spawning period.

Differences in EDs between the lakes were not significant
(F2;147 = 1.59, P

# = 0.80) (Tab. 6). There were no significant
f 10



Table 4. PERMANOVA results for total length at age among the three studied lakes (Uluabat, Sapanca, İznik).

df MS F# t# P#

Age 3 41.27 128.85 0.0001

Lake 2 9.11 28.45 0.0001
Uluabat vs. Sapanca 0.38 0.7044
Uluabat vs. İznik 5.91 0.0001
Sapanca vs. İznik 7.57 0.0001
Age � lake 6 0.93 2.90 0.0081
Age 1
Uluabat vs. Sapanca 1.44 0.1629
Uluabat vs. İznik 4.96 0.0001
Sapanca vs. İznik 5.01 0.0001
Age 2
Uluabat vs. Sapanca 1.90 0.0599
Uluabat vs. İznik 5.29 0.0001
Sapanca vs. İznik 7.29 0.0001
Age 3
Uluabat vs. Sapanca 3.26 0.0016
Uluabat vs. İznik 1.38 0.1842
Sapanca vs. İznik 3.93 0.0004
Age 4
Uluabat vs. Sapanca 0.72 0.4791
Uluabat vs. İznik 3.49 0.0080
Sapanca vs. İznik 2.60 0.0131

A posteriori pairwise comparisons are given for the statistically effect of interest (a= 0.05, in bold type). F# = permutational F value;
t# = permutational t-test value; P# = permutational probability value; MS=mean square; PERMANOVA=permutational univariate analysis of
variance.

Table 5. Relative condition (RC) and Fulton's condition (FC) values of P. semilunaris by seasons from İznik, Uluabat and Sapanca lakes.

Spring Summer Autumn

Lakes RC FC RC FC RC FC

İznik 0.87 ± 0.16 0.59 ± 0.12 0.95 ± 0.17 0.89 ± 0.22 1.00 ± 0.17 0.73 ± 0.11

Uluabat 1.01 ± 0.12 0.74 ± 0.10 0.99 ± 0.11 0.85 ± 0.14 0.90 ± 0.14 0.65 ± 0.09
Sapanca 1.14 ± 0.17 0.81 ± 0.16 1.04 ± 0.16 0.88 ± 0.17 1.08 ± 0.22 0.87 ± 0.18
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differences in absolute (F2;147 = 2.33, P
# = 0.50) and relative

(F2;147 = 1.17, P
# = 0.86) fecundity between the lakes (Tab. 6).

However, AF was positively (r > 0.90) and significantly
(P < 0.05) correlated with length and weight in all lakes
(Tab. 6).

4 Discussion

Despite a 30-year invasion history in North America and
Europe, there is a considerable knowledge gap on the
environmental biology of P. semilunaris, especially when
compared with other P-C gobiids, such as N. melanostomus
(Kornis et al., 2012). To our knowledge, no study has
previously aged P. semilunaris from hard structures, with the
only ageing data from length frequency analyses (Harka and
Farkas, 2006; V�setičková et al., 2014). Although maximum
age and length given in these studies are similar to our results,
the age structure and length at age data are considerably
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different to our data. This suggests that ageing of this species
should be based on the analysis of hard structures, such as
scales, and further studies on the age ranges and growth rates
of P. semilunaris should be completed across their native and
invasive ranges. These studies would then enable testing of age
and growth data between their ranges and over environmental
and latitudinal gradients. These analyses have been completed
for other invasive fishes, including pumpkinseed Lepomis
gibbosus (Cucherousset et al., 2009) and largemouth bass
Micropterus salmoides (Britton et al., 2010).

Significant differences in LaA between the lakes suggested
the growth rates of P. semilunaris are highly variable. In
general, fish growth is indeterminate and can vary highly
between populations due to a wide range of abiotic (e.g. water
temperature) and biotic (e.g. food availability) factors
(Beardsley and Britton, 2012). Thus, the differences in growth
rates between the lakes are likely to be related to differences
in their environmental conditions and/or the habitats sampled
f 10



Table 6. Mean age at maturity (AaM, in years), mean total length
(TL) at maturity (TLaM, in mm), mean absolute (AF) and relative
fecundity (RF), mean egg diameter (ED, in mm), relationship between
TL and weight (W) and absolute fecundity of P. semilunaris from
Uluabat, Sapanca and İznik lakes.

Reproductive
parameters

İznik Uluabat Sapanca

AaM (M) 3.17 3.33 3.66

AaM (F) 2.58 3.25 3.54
TLaM (M) 52.70 (39–73) 56.70 (35–66) 59.80 (52–72)
TLaM (F) 42.20 (38–63) 48.80 (44–53) 49.00 (36–59)
AF 122.46 ± 32.32 154.71 ± 36.66 148.83 ± 52.00
RF 140.26 ± 84.21 135.39 ± 29.58 124.77 ± 85.78
ED 0.42 ± 0.18 0.50 ± 0.20 0.44 ± 0.22
TL-AF 4.0266AF0.0128 1.9487AF0.1761 1.7216AF0.0191

W-AF 0.5169AF0.0790 0.0354AF0.7074 0.0313AF0.8007

M=males, F = females. Total length range (TL, mm) of the specimens
that mean fecundity and ED were calculated: Lake Uluabat = 44–53,
Lake Sapanca = 36–59, Lake İznik = 38–57.
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Fig. 4. Gonadosomatic Index (GSI) ± SD of male (circle) and female
(square) P. semilunaris from the lakes sampled in Marmara Region.
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(i.e. deep vs. shallow; lotic vs. lentic). These environmental
differences were despite their close proximity in a relatively
small geographical region (the Marmara region) and some
similarities in their physical features, such as their recorded
temperature, pH and dissolved oxygen levels. Notably, the
largest lake (Lake İznik) had the fastest growth rates and Lake
Sapanca had the slowest, where the latter was sampled from
inflowing streams.

Compared to studies on age and growth, more studies have
been completed on P. semilunaris reproduction, including in
their native and non-native ranges. Our results revealed their
reproductive characteristics did not differ significantly
between the lakes, although they did differ with other studies
from both distribution ranges. The apparently fast growth of
P. semilunaris reported in other studies (i.e. Valová et al.,
2015) was coincident with earlier ages at maturity (usually
<1 year old). Conversely, we measured maturity at 2 and
3 years old, although lengths at maturity were more similar.
Similarly, their spawning period was similar between our lakes
and other water bodies from the native range, including in
Bulgaria (Georghiev, 1966) and Hungary (Harka and Farkas,
2006) where spawning was occurring as late as August. Other
studies have reported spawning was complete in June in both
their native (e.g. Azov Molochnyi estuary, Yankovskiy, 1966)
and non-native (Ladich and Kratochvil, 1989; Valová et al.,
2015) ranges.

For fecundity, ranges of 379–628 eggs were reported for a
non-native P. semilunaris population from the Czech Republic
(Valová et al., 2015), with these estimates similar to some
native populations from marine environments, such as
the Caspian Sea (i.e. 354 to 714 eggs; Ragimov, 1986) and
the Sea of Azov (i.e. 207 to 648 eggs; Smirnov, 1986). These
estimates were higher than for our lakes, where estimates were
only 123–155 eggs per female. Despite the fact that this
comparison should include relative instead AF, as the latter is
largely affected by the size of the specimens, our length ranges
of the females analysed for fecundity were higher than those
Page 8 o
for the non-native population in the Czech Republic (44 to
59 mm TL vs. 28 to 50 mm SL) (Valová et al., 2015).
Speculatively, the difference between our fecundity results and
the other studies could relate to the higher productivity and
lower species diversity of the Azov and Caspian Seas than our
lakes. It might also relate to the non-native P. semilunaris
allocating more resources to reproduction than to somatic
growth to assist their establishment and invasion (e.g. Kováč
et al., 2009).

In conclusion, our results suggest that P. semilunaris in
three natural lakes in their native range had high plasticity in
aspects of their life history traits, especially growth rates. As
trait plasticity provides individuals with high adaptive
capacity when introduced into new environments, these data
suggest that this attribute should facilitate the ability of
P. semilunaris to survive the introduction process and then
establish populations in novel environments (Colautti et al.,
2006). In terms of management actions, the outcomes of
f 10
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the present study emphasise the need to monitor potential
further expansion of P. semilunaris across their non-
native range and indicate the need for a full risk assessment
of their detrimental impacts on native fauna and food web
structure. If high invasion risks are identified, actions and the
implementation of measures to prevent the further spread
and/or introduction of this species should be prioritised.
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