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ABSTRACT 
Immersive technologies offer the potential to drive engage-
ment and create exciting experiences. A better understanding 
of the emotional state of the user within immersive experi-
ences can assist in healthcare interventions and the evaluation 
of entertainment technologies. This work describes a feasibil-
ity study to explore the effect of affective video content on 
heart-rate recordings for Virtual Reality applications. A low-
cost re�lected-mode photoplethysmographic sensor and an 
electrocardiographic chest-belt sensor were attached on a 
novel non-invasive wearable interface specially designed for 
this study. 11 participants responses were analysed, and 
heart-rate metrics were used for arousal classi�ication. The 
reported results demonstrate that the fusion of physiological 
signals yields to signi�icant performance improvement; and 
hence the feasibility of our new approach. 
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1 INTRODUCTION 
The increasingly evolving Virtual Reality (VR) technologies 
permit the adaptation of experimental protocols for their use 
with VR. Crucially, experiment design utilising VR can offer 
controlled laboratory conditions while granting a wealth of 
content resources and ecological validity [1]. User input and 
interface sensory modalities are currently integrated with VR, 
as they monitor the user’s actions. These systems use various 
haptic and wearable user-interfaces to track head and body 
movements, eye gaze and speech patterns [2]. Such metrics 
can describe useful information related to the user’s behav-
iour, preferences and actions within VR. As such, they can im-
prove automatic emotion recognition, which is important to 
enhance VR user interactions. Previous research on affective 
computing offers a wealth of emotion detection solutions 
ranging from physiological and speech signals, to monitoring 
facial expressions, and movement analysis [3]. Understanding 
the user's emotions and behaviour within VR experiences 
could not only assist experience-designers to evaluate their 
content [4, 5] but also in healthcare interventions such as VR 
exposure therapy [6]. 

There are two basic challenges for emotion recognition in 
VR. Firstly, the Head Mounted Displays (HMDs) commonly 
used during VR experiences cover a significant part of the face 
which renders the detection of facial expressions difficult. 
Secondly, commercial immersive experiences require often 
intense head and limb movements, which could result in noise 
artefacts on potential wearable sensors. To overcome the first 
challenge, our team developed a novel prototype for facial ex-
pression recognition, Faceteq™ [7] with surface physiological 
sensors. This interface can be incorporated on a commercial 
HMD, acting as non-invasive, soft medium between the user’s  
skin and the HMD.  

In this work, we propose a system for the detection of high 
and low arousal in VR settings via capturing multimodal 
heart-rate responses (from low cost, custom-made photople-
thysmographic (PPG) and electrocardiographic (ECG) sen-
sors) and continuous self-ratings of HMD users. 
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2   RELATED WORK  
Heart-rate (HR) metrics from ECG, plethysmographs and PPG 
have been previously used for stress and arousal detection 
[8]. These measures were correlated with measures of mental 
effort, as well as defensive (fear) and offensive (anger) emo-
tions [9,10]. Commonly used HR measures include heart-rate 
variability (HRV), Inter-Beat-Interval (IBI), standard deviation 
(SD) of heart rate and blood pressure. Changes in the HRV 
have been associated with changes in attention and emotional 
states, e.g. during a stressful high HRV related to orienting re-
sponses and faster habituation, while low HRV with hypervigi-
lance and defensive behaviour [11, 12]. 

Although ECG recordings have been primarily used for 
HRV monitoring due to its distinct pro�ile of R peaks, there 
might be many advantages of measuring Pulse Rate Variability 
(PRV) from the PPG. The PPG is easy to use, non-invasive, 
cost-effective, it involves less sensors and it enables continu-
ous, long-term recordings [13,14]. However, PPG signals are 
easily susceptible to movement artefacts and the detection of 
R-R intervals from arterial pulses from distant sources (e.g. 
�ingertips or legs) could potentially be erroneous [15]. PPG 
sensors have been utilised in a large variety of experimental 
studies and on numerous body locations, including �ingers, 
hands, forearms, earlobes, wrists, auditory canal, legs, but-
tocks, and the back [13]. Researchers have also recorded re-
�lected PPG signals from the forehead [14,16]. PPG forehead 
placement showed advantages over other peripheral body lo-
cation because it offered greater sensitivity to pulse changes 
during low blood �low [17], and because it was less suscepti-
ble to motion artefacts during certain body movements [18]. 

PPG sensors have also been utilised in VR research. Be-
sides placing the sensors on common body-locations e.g. �in-
gers [19], several attempts have been made towards facial 
placement and HMD incorporation. As such, [20] placed PPG 
sensors on the temple area (middle of the forehead) using a 
headband, and [21] placed the sensor directly on the face 
plate of the HMD; however, the performance of this approach 
was not described. As PPG measurements could be susceptible 
to changes in light perfusions and movement artefacts, we en-
visaged that by incorporating PPGs on an interface between 

the HMD and the user’s skin, we could obtain a clear pulsative 
reading for reliable arousal detection in VR. The objective of 
this study was to test the feasibility of arousal detection via 
PPG on the super�icial temporal vein; and to explore its per-
formance ef�iciency when compared to an ECG (conventional 
method) and to the combination of both modalities. 

3 SYSTEM DESCRIPTION 
In 2016, we developed a novel interface prototype ‘Faceteq™’ 
[7]. The interface was designed to work as an intermediate 
layer between the HMD and the face of the wearer, consisting 
of eight electromyography (EMG) sensors, two PPG sensors 
and one inertial measurement unit (IMU) including gyroscope 
and accelerometer. We hypothesised that by placing biometric 
sensors on the facial areas where the HMD covers already, 
could prove to be an easy-to-use, unobtrusive or user motion 
non-constraining solution for affect monitoring in VR. For the 
purposes of this paper, we focus exclusively on arousal detec-
tion via ECG and PPG sensors.  

We designed a system where heart-rate responses were 
recorded using Faceteq™, while participants were watching 
videos with affective content and self-rating their level of 
arousal. As shown in Figure 1, recordings were sequentially 
becoming subject to signal processing where they were de-
noised and divided into segments, and feature extraction. The 
features, together with the participants’ self-ratings, were 
then fed to a classi�ier in order to estimate the arousal levels 
from the participants’ heart-rate responses to the stimuli. 

4 EXPERIMENTAL SET UP 
In this section, we describe the components of the proposed 
system as seen in Figure 1; the audio-visual stimuli, the partic-
ipants recruited, the hardware and software utilised, the ex-
periment procedure in which the participants’ physiological 
signals were collected, the signal processing steps performed, 
and the classi�ication experiments conducted. 

4.1 Audio-visual Stimuli 
A selection of the short videos from the affective �ilm library 

Figure 1: High-level overview of the proposed system. The Faceteq™ prototype is depicted on the upper left side. 
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[22] was used for this study following the protocol introduced 
in [7]. The selected videos were intended to provoke one of 
two levels of valence and one of two levels of arousal, corre-
sponding to each of the four quadrants of the dimensional 
model [23]. 5 videos were selected per each one of the four 
categories (High-Arousing Positive, High-Arousing Negative, 
Low-Arousing Positive and Low-Arousing Negative), as well as 
20 neutral videos. The order of the videos was counterbal-
anced across participants and presented as follows: �ive vide-
os from one category, followed by �ive neutral videos, then 
followed by �ive videos from another category and so on, until 
all videos have been played. Each video had a �ixed duration of 
25 seconds. Grey images lasting 8 seconds were added as 
‘breaks’ after every video. The videos sequence within a cate-
gory was randomised for each participant.  

4.2 Participants 
For this study, n=11 participants were recruited (P1-P11 in 
this paper; 5 female and 6 male) with a mean age of 21.5 years 
(SD: 2.6; range: 18-35 years). Prior to taking part in the study, 
we asked participants to avoid caffeinated drinks on the study 
day. After signing informed consent, basic demographic in-
formation was obtained from the participants and question-
naires veri�ied that they were not suffering from anxiety, de-
pression or any disorders of cardiovascular nature which 
could affect their heart-rate metrics at the time of the study. 
The study was reviewed and approved by the Science, Tech-
nology & Health Research Ethics Panel, Anonymous University 
(Ref. 13994).  

4.3 Apparatus 
The software solutions and hardware devices developed for 
this study are described below. 

 
4.3.1 The stimuli presentation. For the study, an application 
with three environments was developed: (1) a self-rating 
training environment where participants were introduced to 
the terms of arousal and valence. During this training period 
(duration: 15-30 min) we asked the participants to get ac-
quainted with rating these two dimensions using their 
mouse’s pointer on our Continuous Affect Self-rating (CASR) 
interface (based on the ‘FeelTrace’ tool [24]), (2) a grey scene 
where the participants were asked to relax while neutral base-
line data were recorded, and (3) a semi-dark cinema envi-
ronment where the videos were presented next to the CASR 
interface, as suggested by [25, 26]. All participants were asked 
to perform minimal head movements during the recording.  

4.3.2 Monitoring equipment and sensors. The interface 
prototype was equipped with a custom-made PPG sensor (re-
�lection mode) on the upper left side of the mask (see Figure 
1), corresponding to the area over the super�icial temporal 
vein and artery. Additionally, a custom-made ECG chest-belt 
was developed comprising two ECG sensors, which were con-
nected to the Faceteq™ interface. Both data streams were rec-

orded simultaneously. 

4.4 Experiment procedure 
The study took approx. 50-60 minutes. During the study, eve-
ry participant was wearing the Faceteq™ device and the ECG 
belt. Video capture of the participant’s face and all physiologi-
cal sensor data streams were recorded and synchronised with 
the video presentation via the Faceteq API. After setting up 
the equipment, each participant watched a sequence of 40 
movie clips for 22 minutes. While watching the video, each 
participant was asked to rate their felt emotions in terms of 
arousal and valence using the CASR interface. They were ad-
vised to start rating as soon as a video commenced. After each 
video and during the grey images or ‘breaks’, participants 
were asked to return their rating pointer to the centre of the 
CASR interface (the neutral area).  

4.5 Signal Preprocessing & Feature Extraction  
PPG and ECG recordings from all participants were recorded 
using Faceteq API (sampling rate: 1000Hz). The analysis steps 
were as follows: First, the recorded raw data were �iltered 
(Notch �ilter: 50Hz; band-pass Butterworth �ilter: 0.5Hz and 6 
Hz for the PPG, 5Hz and 25Hz for the ECG; order: 2). Subse-
quently, the �iltered recordings were divided in 25 seconds 
long time-window epochs corresponding to each video stimu-
lus. Each epoch was further subdivided into 4.5 seconds over-
lap 5 second windows. Next, a peak detection method was ap-
plied on the PPG and ECG epochs.  

The mean peak distance (IBImean) and the Root-Mean 
Square (RMS) of successive R-R interval distance (RMSIBI) per 
epoch were calculated. The whole feature vector was trans-
formed based on the Minimum-Maximum normalisation [27]. 
The total number of processed samples per video-length was 
48 per metric, resulting for 20 videos to a total number of 960 
samples per participant per metric. 

4.6 Classification experiments  
As the automatic state recognition can be constrained by indi-
vidual user differences, two scenarios were explored; a user-
dependent and a user-independent approach. The following 
experiments were performed using: (1) the PPG derived met-
rics, (2) the ECG derived metrics and (3) the combination of 
both PPG and ECG derived metrics. 

The two outputs (IBImean and RMSIBI) per modality were 
used as input to train a C-Support Vector Machine (SVM) using 
a gaussian kernel. The open-source libSVM framework [28] 
was adopted to train the binary C-SVM. In the user-dependent 
classi�ication scenario, a 10-fold cross-validation was applied 
for each participant separately. In the user-independent sce-
nario, we applied leave-one-participant-out cross validation 
by pooling all 11 datasets and predicting the rating of each 
participant in turn based on the remaining 10. The two free 
parameters of the method (the regularization penalty C and 
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the standard deviation of the kernel function) were optimized 
exclusively on the training data for both dependent and user-
independent scenarios. 

The corresponding arousal CASR ratings per participant 
were used as the ground truth de�inition. Self-reported scores 
across users in terms of arousal for each video typically 
showed low dispersion (coef�icient of variation, CV, Table 1), 
indicating high rating agreement per video across partici-
pants. Videos which presented rating disagreement were part 
of the positive emotion-inducing categories (videos 1-10), in-
dicating higher rating variability during positive content.  

The mean CASR value per participant for the user-dependent, 
and the mean value across all participants’ ratings for the us-
er-independent scenario were utilised as the division point for 
the of high and low arousal classes. The total number of sam-
ples per participant was 960 (total: 10560s). The mean num-
ber of samples for high arousal levels for the user-dependent 
scenario is 532±20 (mean ± SEM; ranging from 368 to 602 
samples); and 5852 for all participants (P1-P11). Thus, classes 
are largely balanced. 

5 EXPERIMENTAL RESULTS 
We tested the feasibility of arousal detection via PPG sensor 
from the super�icial temporal vein in VR. The C-SVM enabled 
us to map the level of arousal with the metrics calculated from 
the PPG and ECG recordings (IBImean and RMSIBI) during the 
presentation of four audio-visual stimuli categories. 

User-dependent scenario – In Figure 2 we illustrate the re-
ceiver operating characteristic (ROC) curves per experiment 
performed. Each line represents a participant. The areas un-
der curve (AUC) are included on the bottom right corner of 
each plot. Despite the variations in performance between par-
ticipants, the system’s capability for detecting changes in 
arousal is higher for the fusion versus unimodal approaches 
for most of the participants (Figure 2c) 

To evaluate the performance of each classi�ication experi-
ment, we compared the AUC per metric in recording modality 
pairs (e.g. PPG against ECG) using the Bradley’s test approach 
[29, 30]. The results from this test are reported on Table 2. We 
denote in bold when their AUC means are signi�icantly differ-
ent (see details in [29]). Detection performances between PPG 
and ECG modalities are generally signi�icantly different except 

for participants 1, 3, 5, 8 and 9 (p<.05). Moreover, the com-
bined PPG-EEG metric (termed here the fusion approach), 
outperforms the PPG and ECG modalities individually for 9 out 
of 11 subjects (Table 2).  

User-independent scenario –The system shows a similar 
ability to identify high and low arousal levels from ECG, PPG 
and from the fusion of the two modalities (Figure 3). The AUC 
values for each experiment are included on the bottom right 
corner of the plot. The performance of the system when using 
only the PPG metrics is signi�icantly lower than ECG and fu-
sion. Finally, the best overall performance is achieved via the 
fusion approach (signi�icance level at 5%, [29,30]), Table 3.  

Table 2: Bradley scores between experiments per subject 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 
PPG-ECG -1.5 -1.8 0.3 2.5 -0.7 2.1 7.2 1.3 0.2 -3.3 4.6 
PPG-Fusion -5.6 -7.0 -3.9 -5.7 0.0 -2.4 7.2 -1.1 -4.3 -5.7 -4 
ECG-Fusion -4.0 -5.3 -4.2 -8.3 0.7 -4.6 0.0 -2.4 -4.5 -2.3 -8.8 

Significance level at 5% | *significant values are indicated in bold 

Table 3: Bradley scores between experiments performed 

PPG-ECG -4.3 PPG-Fusion -9.1 ECG-Fusion -4.7 
Significance at 5% |                        *significant values in bold 

6  DISCUSSION AND CONCLUDING REMARKS 
We proposed a system for arousal detection in VR settings, by 
designing a novel interface which incorporates PPG and ECG 
sensors. During the study, participants facially expressed their 
emotions in response to video stimuli that resulted into lim-
ited head, and therefore sensor movements. Nonetheless, us-
ing the PPG metrics, our system yielded a similar detection 
performance to the ECG one for 5 out of 11 participants in the 
user-dependent scenario. This result supports our assumption 
regarding the system’s capability to detect arousal via PPG 
recordings from the superficial temporal vessels, subject to 
individuals’ variability. Moreover, the fusion of both methods 
provides an enhanced performance overall.  

The arousal detection issues that occurred in all three ex-
periments for participant 5 suggest that changes in heart-rate 
during audio-visual stimulation are elicited in different inten-
sities among individuals. Thus, the detection capacity of the 
system was less reliable. Additionally, detection issues could 
have resulted from wrong sensor placement, sensor’s quality, 
intense movements (e.g. laughter) which could also re-
position the sensors, or to skin sweatiness.   In this feasibility 
study the annotation interface was designed to minimize the 
cognitive effort. The use of alternative interfaces (e.g. [26]) 
will be explored in our future work.  

The system’s detection using PPG in the user-independent 
scenario performed slightly worse than using ECG (Figure 3). 
However, PPG sensors are affordable and easy to use, making  

Table 1: Agreement scores across users per video (mean 
value, standard deviation and Coef�icient of Variation) 
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them strong candidates for wearable integration in practice.  
Likewise, although ECG sensors are dif�icult to integrate at the 
moment, we envisage that improved ECG sensors will be read-
ily available for integration with wearable devices and clothes 
in future. Thus, given the enhanced performance for the fusion 
set-up demonstrated in this feasibility study, the combination 
of both sensors for arousal detection seems a robust approach 

for multiple applications incorporating immersive technolo-
gies. Further research will focus on (1) recruiting a larger 
sample size, (2) exploring additional modalities for interface 
integration such as electrodermal activity sensors, (3) investi-
gating supplementary physiological data metrics, and (4) ap-
plying regression approaches to detect �iner-grained levels of 
arousal and valence in VR. 
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