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Abstract

This thesis introduces several novel, noninvasive lung function assessment
approaches in which we incorporate computer vision techniques to remotely
compute standard clinical Pulmonary Function Testing (PFT) measures.

Using a single depth sensor, a dynamic 3-D model of a subject’s chest is
reconstructed and used to generate chest volume–time data by estimating
the chest volume variation throughout a sequence. Following computation
of multiple keypoints and calibration of volume–time data to present real
volume of exchanged air, 7 Forced Vital Capacity (FVC) measures and 4
Slow Vital Capacity (SVC) measures are computed. Evaluation on a dataset
of 85 patients (529 sequences), attending a respiratory outpatient service for
spirometry, shows a high correlation between the proposed depth-based PFT
measures and the measures from a spirometer.

Trunk motion during PFT affects the accuracy of these results, so the natural
reaction of the subject’s body to maximal inhalation and exhalation, must be
decoupled from the chest-surface breathing motion. We present an automatic,
open source data acquisition and calibration pipeline in which two opposing
depth sensors are calibrated and used to reconstruct a well-defined dynamic
3-D model of the trunk during PFT performance. Our proposed method
is able to reconstruct dynamic 3-D models with accurate temporal frame
synchronisation and spatial registration. Then, we propose a whole body
depth-based photoplethysmography (dPPG) approach which allows subjects
to perform PFT, as in routine spirometry, without restraining their natural
trunk reactions. By decoupling the trunk movement and the chest-surface
respiratory motion, dPPG obtains more accurate respiratory volume–time
data which improves the accuracy of the estimated PFT measures. A dataset
spanning 35 subjects (298 sequences) was collected and used to illustrate the
superiority of the proposed dPPG method by comparing its measures to those
provided by a spirometer and the single Kinect approach.

Although dPPG is able to improve the PFT measures accuracy to a signif-
icant extent, it is not able to filter complex trunk motions, particularly at
the deep forced inhalation–exhalation stage. To effectively correct trunk mo-
tion artifacts further, we propose an active trunk shape modelling approach
by which the respiratory volume–time data is computed by performing prin-
cipal component analysis on temporal 3-D geometrical features, extracted
from the chest and posterior shape models in R3 space. We validate the
method’s accuracy at the signal level by computing several comparative met-
rics between the depth-based and spirometer volume–time data. Evaluating
on the dPPG PFT dataset (300 PFT sequences), our trunk shape modelling
approach outperforms the single Kinect and dPPG methods.
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Chapter 1
Introduction

Lung function diseases are among the leading causes of death worldwide. In 2015,

Chronic Obstructive Pulmonary Disease (COPD) and Asthma affected ∼ 532 million

people worldwide, of whom ∼ 3.6 million died [78]. COPD describes a long-term pro-

gressive lung condition, characterised by airways obstruction which limits respiration

airflow and affects normal breathing. It is the fourth major cause of death worldwide

and will become the third by killing 4.7 million people in 2020 [7, 118]. In the UK,

COPD affects around three million people [12] and it is known as the second largest

cause of emergency admission to hospital [8]. In an economic perspective, the annual

direct healthcare cost of COPD treatment is estimated as $30 billion in the US [7], e23

billion in the EU [5], and more than £800 million in the UK [11].

Pulmonary Function Testing (PFT) [128] is a group of clinical tests that evaluate human

respiratory status and is a vital component of clinical assessment in the investigation

of respiratory diseases. Whole–body plethysmography [56] and spirometry [129] are

traditional and clinically approved methods for PFT, which require patient co-operation

and direct contact with the equipment. In particular, spirometry is known as the gold

standard approach for COPD diagnosis and assessing its severity [197].

There are also other contact-based techniques and tools which are only used for tidal

volume respiratory monitoring and breathing rate estimation, such as: thermistors

[98], strain gauge [144], respiration belt [42], inductance plethysmography [54, 86] and

impedance pneumotachography [24].

1
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Figure 1.1: Whole–body plethysmography utilises an air-sealed cabin of known
volume and a pneumotach with a mechanically controlled shutter, which enables
it to measure Total Lung Volume and Residual Volume of lung, in addition to
standard PFT measures. Part of image is reproduced from [103].

1.1 Body Plethysmography

Plethysmography is a technique to measure the changes in the volume of an organ, limb or

body. The word “plethysmography” has been derived from Greek words “plēthysmos”

and “graphē” which resepctively mean increasing and writing. Plethysmography was

originally introduced by Bert [34] and Pflüger [146] in 1878 and 1882, which was then

developed to volume-constant box whole–body plethysmography by DuBois et al. [62, 63]

in 1956. Since then, this technique has been gradually improved to reach its current

sophisticated level which incorporates the state-of-the-art technology for PFT.

As seen in Figure 1.1, in whole–body plethysmography patients sit in a cabin and breathe

into a pneumotach with a mechanically controlled shutter. As a result of breathing inside

an air-sealed cabin with known initial volume and pressure, the unknown volume of lungs

is measured using the Boyle-Mariotte law [109]. Thus, in addition to regular PFT mea-

sures, plethysmography is able to measure Total Lung Capacity (TLC), Residual Volume

(RV) of lungs, airway resistance (Raw), and lung’s Functional Residual Capacity (FRC)

which is defined as lung’s volume at the end of normal expiration [56, 103]. However,

whole–body plethysmography is highly expensive and requires bulky equipment, e.g.,

the cabin, which occupies considerable space. These drawbacks reduce its accessibility

and usability.
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Figure 1.2: Spirometry is a contact-based clinically approved method to assess
lung function by measuring standard PFT measures. Patients breathe into a
pneumotach through a mouthpiece while using a nose-clip to prevent air leakage.
Image is reproduced from [2].

1.2 Spirometry

Spirometry is a technique to measure diagnostic information of lungs [129]. The word

“spirometry” has been derived from Latin words “spiro” and “meter” which respectively

mean to breathe and to measure. Spirometry was originally invented by the English

surgeon John Hutchinson [36] in 1840’s in its basic water-based form [184]. He introduced

“vital capacity” (VC ) as an important lung function measure obtained by his spirometer

[185].

In its current form, spirometry is performed by breathing into a contact-based pneumo-

tach through a mouthpiece, in an upright sitting posture while a nose-clip is applied to

prevent air leakage [129], as shown in Figure 1.2. Spirometry is the most prevalent PFT

method which is broadly used in clinical environments for assessing lung function due to

its portability, relative affordability, and accuracy. It is able to provide standard PFT

measures, used in diagnosis and assessment of restrictive and obstructive lung diseases

[129].

Forced vital capacity (FVC) and slow vital capacity (SVC) tests are two primary clinical

protocols undertaken with a spirometer which vary by the pattern of breathing into the

spirometer. Both tests start with a few cycles of normal breathing, called tidal volume

(TV), followed by a maximal inhalation–exhalation, called main effort (ME). The main

effort inhalation–exhalation is performed at the same speed of normal breathing in the

SVC test, whereas it is performed as fast and forcefully as possible in the FVC test.
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Table 1.1: FVC clinical PFT measures.

Measure Name Description

FVC (litre) Forced Vital Capacity Maximum amount of air blown out
after a maximal inhalation

FEV1 (litre) Forced Expiratory Volume Volume of air exhaled during the
1st second of forced exhalation

PEF (litre/s) Peak Expiratory Flow Maximum speed of exhaled air

FEF25% (litre/s) Forced Expiratory Flow 25% Flow of exhaled air at 25% of FVC

FEF50% (litre/s) Forced Expiratory Flow 50% Flow of exhaled air at 50% of FVC

FEF75% (litre/s) Forced Expiratory Flow 75% Flow of exhaled air at 75% of FVC

FEF25−75%

(litre/s)
Forced Expiratory Flow 25-75% Mean forced expiratory flow

between 25% and 75% of the FVC

FVC and SVC clinical PFT measures are computed using lung volume–time data, i.e.,

V (t), and flow–time data, i.e., V̇ (t), provided by a spirometer. Several FVC measures

are obtained within the FVC test among which seven measures, explained in Table 1.1,

are more important and frequently used in clinical diagnosis [129, 148]. Four clinical

PFT measures, described in Table 1.2, are obtained within the SVC test [129, 148].

Pulmonologists use these PFT measures and their combinations to diagnose restrictive

lung diseases, e.g., lung fibrosis, and obstructive lung diseases, e.g., COPD, Asthma

and Bronchiectasis. Global Initiative for Chronic Obstructive Lung Disease (GOLD)

[154] introduces FEV1, FVC and their ratio, i.e., FEV1/FVC, as the primary PFT

measures used in assessing COPD and its severity. Table 1.3 presents the different levels

of obstruction severity based on GOLD classification. In Table 1.3, the predicted FEV1

Table 1.2: SVC clinical PFT measures.

Measure Name Description

VC (litre) Vital Capacity Volume change between full
inhalation and full exhalation

IC (litre) Inspiratory Capacity Volume change between a slow, full
inhalation and passive end-tidal
exhalation

TV (litre) Tidal Volume Volume of air inhaled and exhaled
at rest condition

ERV (litre) Expiratory Reserve Volume Volume change between passive
end-tidal exhalation and complete
exhalation
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Table 1.3: GOLD classification of COPD severity [154]. According to GOLD,
COPD severity is classified based on the ratio between FEV1 and FVC, i.e.,
FEV1/FVC < 0.70 and FEV1 measures. The predicted FEV1 is a reference
value for a healthy person of the same age, gender, ethnicity and height.

COPD Class COPD Severity FEV1 (%Predicted)

GOLD 1 Mild ≥ 80

GOLD 2 Moderate [50− 80)

GOLD 3 Severe [30− 50)

GOLD 4 Very Severe < 30

(a) (b)

Figure 1.3: Spirogram patterns of normal, restrictive and obstructive lungs.
(a) Comparing the volume–time data, and FVC and FEV1 measures of a forced
exhalation. (b) Comparing the flow–volume data of a deep inhalation and a
forced and maximal exhalation. Images are reproduced from [72, 99].

is a reference value for a healthy person of the same age, gender, ethnicity and height.

In addition to PFT measures, pulmonologists also take the advantage of visualised

volume–time and flow–volume data (Figure 1.3) for better analysis of lung conditions.

For example, Figure 1.3a compares the volume–time spirogram pattern of normal, re-

strictive and obstructive lungs and their corresponding FVC and FEV1 measures within

a forced exhalation. Similarly, Figure 1.3b presents the flow–volume spirogram pattern

of normal, restrictive and obstructive lungs during a deep inhalation and a forced and

maximal exhalation.
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1.3 Motivations and Challenges

Spirometry is known as a clinical gold standard approach. However, it cannot be com-

pletely error-free as it measures the volume of exchanged air based on the estimation of

inhalation and exhalation airflow which can be affected by several factors like environ-

ment temperature and humidity. Also, it is highly dependent on patient compliance and

their instantaneous effort. Thus, patients are required to repeat PFT several times to

achieve at least three consistent-enough results for their measures to be in accordance

with ATS/ERS guidelines [128, 129]. Further, spirometry has certain drawbacks which

limit its application:

• It is particularly challenging for frail elderly and children, though it is also difficult

for other patients to deal with.

• It is a rather expensive approach given the price of a pneumotach and the required

disposable accessories, i.e., mouthpiece and nose-clip.

• It is intrusive and unpleasant to wear the nose-clip and mouthpiece, and to be

connected to an external device, i.e., pneumotach.

• The spirometer needs to be manually recalibrated on a daily basis to be able to

measure accurately.

• It requires the patient’s cooperation during the test, hence cognitively impaired

patients may find it troublesome to coordinate with.

• Patients with facial muscle weakness and abnormality cannot keep a tight seal

around the mouthpiece to prevent air leakage, hence spirometry cannot provide

accurate PFT measures for this group of patients [70].

• Cross-infection risk is possible via pneumotach contamination, even though dis-

posable accessories are used [39, 101, 161].

• It requires specialist training.

Remote respiratory sensing has recently become very popular and numerous approaches

have been proposed for tidal volume monitoring and respiration rate estimation, without

performing PFT [18, 19, 21, 22, 26, 30, 32, 33, 47, 50, 58, 59, 69, 73, 84, 88, 97, 111,

112, 113, 115, 126, 131, 132, 143, 156, 157, 165, 166, 167, 173, 174, 187, 188, 192, 198,

202, 203, 204, 206], based on time-of-flight [143, 157, 192] and structured-light [22, 30,

32, 33, 58, 88, 126, 173, 187, 202, 203, 204, 206] depth sensors, RGB video cameras
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[26, 50, 73, 97, 111, 115, 156, 174, 188], motion capture systems [18, 19, 47, 59, 69] and

other technologies [21, 84, 112, 113, 131, 132, 165, 166, 167, 198]. These are reviewed

in Chapter 2. Among all the existing related studies, we are only aware of the works

of Ostadabbas et al. [136, 137] who performed remote clinical respiratory assessment.

However, they mainly focused on airway resistance estimation using a Kinect and a pulse

oximeter [137], and estimated only FEV1 measure for only 5 healthy subjects in [136].

In this research, we go beyond monitoring of normal respiration and breathing rate

estimation, and propose several novel, remote, depth-based pulmonary function testing

approaches which estimate 11 standard clinical PFT measures using depth measurements

obtained from a single or two depth sensors.

Our proposed system has been developed in response to increasing clinical interest in

contactless or remote techniques for respiratory assessment. It can be exploited for a

wide range of potential applications, such as screening for respiratory diseases, home

monitoring, and gating controls for radiological imaging techniques. Our proposed sys-

tem uses low-cost and easily accessible commodity RGB-D sensors, e.g., Microsoft Kinect

V2 [3]. It is easy to setup and does not require calibration on a daily basis. Also, the

breathing test performance becomes easier and more pleasant for patients as sealing the

nose and using a mouthpiece is no longer required. Due to the remote assessment of the

lungs, not only does it cut the costs (pneumotach and disposable accessories), but also

it decreases infection risks caused by connecting to a pneumotach. Furthermore, our

method requires no specialist training.

In order to remotely acquire breathing data, vision-based respiratory sensing approaches

utilise the variation in depth (using RGB–D) or contrast (using RGB) of thoracoabdom-

inal region. Since only chest–surface respiratory motions must be acquired, the subject’s

trunk movement during the test interferes with the chest–surface motion, and would

therefore affect the data acquired by such vision-based remote respiratory sensing ap-

proaches [22, 26, 30, 32, 33, 50, 58, 73, 115, 126, 136, 137, 143, 156, 157, 173, 187, 188,

192, 203, 204, 206]. Thus, these approaches need to have the subject’s body movement

heavily restricted during respiratory monitoring. This would be even more challenging

in PFT. As a natural reaction of the human respiratory system, subjects inevitably move

their trunk during PFT, especially at the main effort deep forced inhalation–exhalation

stage. Since constraining such reactive motions would affect the lung function measures,

PFT must be performed as in routine spirometry, without restraint. However, when a

single depth sensor located in front of the subject is used, decoupling trunk motion and

chest-surface respiratory motion would be potentially impossible.
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To address the trunk motion problem during PFT performance, an accurate full 3–D

dynamic model of the subject’s trunk is required. Reconstructing such a model demands:

(i) accurate alignment of point clouds obtained by distinct depth sensors from different

points of view, (ii) precise temporal frame synchronization of distinct depth sensors, (iii)

acquiring body skeletal data to estimate body pose, and (iv) consistent full frame rate

data capturing.

1.4 Contributions

The work presented in this thesis introduces a number of key contributions to the field

of remote respiratory assessment:

Remote PFT using a single Kinect: We present a novel remote pulmonary function

testing approach in which a single depth sensor is used to compute seven PFT measures

of FVC test, i.e., FVC, FEV1, PEF, FEF25%, FEF50%, FEF75% and FEF25−75%, and four

PFT measures of SVC test, i.e., VC, IC, TV and ERV. Evaluation on a dataset of 85

patients (529 sequences), attending respiratory outpatient service for spirometry, shows

a high correlation between our computed depth-based PFT measures and the measures

obtained by a spirometer. Experimental results computed over an unprecedented number

of clinical patients confirm that chest–surface motion is linearly related to the changes

in the volume of lungs, which establishes the potential toward an accurate, low-cost

and remote alternative to cumbersome traditional methods, like spirometry. This work

was published in the Proceedings of the 2015 IEEE Biomedical Circuits and Systems

(BioCAS) Conference [180] and in the Journal of IEEE Transactions on Biomedical

Engineering, Vol. 64, No. 8, pp. 1943-1958, 2017 [182].

3–D data acquisition and registration by two opposing depth sensors: An open

source, automatic pipeline is introduced in which two static opposing RGB–D sensors are

calibrated and used to capture depth, RGB, infrared and body joints data (if applicable)

of dynamic objects at consistent and full device frame rate of 30 fps. The proposed

approach is able to reconstruct rigid and dynamic objects to high accuracy, which we

evaluated quantitatively on rigid objects and qualitatively on animated subjects. The

main contributions of our work are twofold. First, the deployment of only two RGB–D

sensors for 3–D data capture, (a) minimises the error of the temporal frame alignment

and the spatial point cloud registration, (b) reduces the system setup and calibration

effort, (c) lowers system costs and complexity, and (d) minimises the overall operation
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space. Second, unlike many other previous approaches, which require a considerable

overlap between point clouds for registration [100, 106, 130, 155, 171], our method is

able to perform temporal and spatial alignment of two non-overlapping point clouds.

This work was published in the Proceedings of 2016 International Conference on 3D

Vision [181].

Depth-based whole–body photoplethysmography (dPPG) in PFT: Using our

data acquisition pipeline, we present a novel dPPG approach to decouple trunk move-

ment and chest–surface respiratory motion which achieves more accurate PFT measures

by reducing motion artifacts in respiratory volume–time data. Evaluation on a dataset

of 35 subjects (298 sequences), and other comparative analysis between the dPPG and

the single Kinect approach, all show the superior accuracy of the dPPG approach. The

proposed dPPG method remarkably reduces the L2 error mean and standard deviation

of FEF50%, FEF75%, FEF25−75%, IC, and ERV measures by half, compared to the single

Kinect approach. The most significant novelties of this work are that it introduces the

concept of motion decoupling into the remote, vision-based respiratory sensing area and

achieves accuracy and efficiency in PFT. Unlike all other previous works (including ours),

which restrict the subject’s movement during the tests, this method allows subjects to

perform PFT as routine spirometry procedure without restricting the subject’s natural

body reactions at the inhalation–exhalation stages. In other words, our broad contribu-

tion to the state-of-the-art is to facilitate remote respiratory monitoring and diagnosis

without unduly constraining patients. This work was published in the Journal of IEEE

Transactions on Biomedical Engineering, Vol. 65, No. 6, pp. 1421-1431, 2018 [183].

Trunk shape modelling for body motion artifacts correction: We present a

vision-based trunk-motion tolerant approach to estimate lung volume–time data re-

motely within FVC and SVC tests. To effectively filter trunk motion during PFT, we

compute respiratory motion pattern by extracting temporal geometrical features from

the trunk shape within the whole PFT sequence. This considerably improves the ac-

curacy of the depth-based volume–time data compared to our single Kinect and dPPG

approaches. By filtering complex trunk motion — which has different patterns in tidal

volume and main effort breathing — our method is able to calibrate the entire volume–

time data using only the tidal volume scaling factor, whereas the single Kinect and

dPPG approaches require separate tidal volume and main effort scaling factors for cal-

ibration. Our evaluation results on the dual-Kinect PFT dataset shows that our active

trunk shape modelling approach reduces the average normalised L2 error of the depth-

based volume–time data to 0.05, from 0.454 and 0.136 obtained by the single Kinect
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and dPPG approaches, respectively. This work has been accepted for publication in the

2018 IEEE International Conference on Image Processing (ICIP). An extended version

of this work has been submitted to the Journal of Computer Methods in Biomechanics

and Biomedical Engineering, (under review).

The medical significance of our research has been published in the Proceedings of 2015

British Thoracic Society Winter Meeting [175] and in the Journal of Frontiers in Phys-

iology, Vol. 8, No. 65, 2017 [176].

1.5 Thesis Outline

This thesis is presented in 8 main chapters. Following this Introduction, in Chapter 2,

we present a brief background on depth acquisition methods which is then followed by

a review of related literature and state-of-the-art in remote respiratory motion sensing.

In Chapter 3, we outline the collected datasets used in Chapters 4, 6 and 7, and describe

their specifications and details. A dataset of 85 patients (529 sequences), attending

respiratory outpatient service for spirometry, was collected and used for evaluation of our

single Kinect lung function assessment method (Chapter 4). To evaluate our dPPG PFT

approach (Chapter 6) and also our active trunk shape modelling method (Chapter 7),

we collected a dataset of 35 healthy subjects (300 sequences) in which each subject

underwent routine spirometry tests while their body depth data was captured by two

opposing Kinects using our proposed 3–D data acquisition pipeline.

Chapter 4 describes our depth-based PFT approach which is able to remotely assess

patient’s lung function using depth measurements obtained from a single RGB–D sensor.

After generating a point cloud from scene depth values, we construct a 3–D model

of the subject’s chest. Then, by estimating the chest volume variation throughout a

sequence, we generate volume–time and flow–time data for FVC and SVC spirometry

tests. Tidal volume and main effort sections of volume–time data are analysed and

calibrated separately to deal with the effects of subject’s torso motion. After automatic

extraction of keypoints from the volume–time and flow–time data, seven FVC and four

SVC measures are computed and then validated against measures from a spirometer.

In Chapter 5, we explain our proposed 3–D data acquisition pipeline which exploits two

opposing non-overlapping RGB–D sensors (Kinect V2) for dynamic object reconstruc-
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tion. First, the relative pose of the two RGB–D sensors is estimated through a calibration

stage, and rigid transformation parameters are computed. These are then used to align

and register point clouds obtained from the sensors at frame-level. We validated the

proposed system by performing experiments on known-size box objects with the results

demonstrating accurate measurements. We also report on dynamic object reconstruction

by way of human subjects performing actions like waving hands.

Our novel, remote dPPG PFT approach is presented in Chapter 6. Following spatial

and temporal calibration of two opposing RGB-D sensors, a dynamic 3-D model of the

subject performing PFT is reconstructed and used to filter trunk motion by subtracting

the average depth of the chest-wall from the average depth of the posterior-wall per

frame. The retrieved depth-based volume–time data is then calibrated and used to

compute 11 clinical PFT measures for FVC and SVC spirometry tests. Experimental

validation results and other comparative evaluations between the dPPG and the single

Kinect approach, such as Bland-Altman analysis, similarity measures performance, intra-

subject error analysis, and statistical analysis of tidal volume and main effort scaling

factors, all confirm the accomplishments achieved by the dPPG approach.

Chapter 7 presents our proposed active trunk shape modelling approach which corrects

trunk motion artifacts within spirometry FVC and SVC tests by decoupling subtle chest-

surface respiratory motion and trunk motion during the test. After temporal modelling

of the trunk shape, generated using two opposing Kinects in a sequence, the chest-

surface respiratory pattern is computed by performing PCA on temporal geometrical

features extracted from the chest and posterior shapes. Finally, the retrieved depth-

based volume–time data is calibrated using scaling factors learnt in an efficient training

phase. We evaluated our approach by computing normalised L2 error, Fréchet distance,

dynamic time warping distance and correlation of determination between the depth-

based and spirometer volume–time data.

In Chapter 8, we present a summary of the thesis and its contributions, which is then

followed by a discussion. Finally, future directions and potential further extensions to

the works presented in this thesis are outlined in this chapter.
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1.6 Released Dataset, Source Code and Videos

We have released our dual-Kinect PFT dataset, and it is publicly available for other

researchers to use. The entire dataset is available for download from the University of

Bristol research data repository at:

• A Dataset for Depth-Based Whole–Body Photoplethysmography in Remote Pul-

monary Function Testing: http://doi.org/ckrh.

This dataset is composed of 300 PFT sequences performed by 27 male and 8 female

subjects. Each PFT sequence contains the subject’s body surface depth information

and skeletal data. Also, ground truth spirometry data and the results of our works are

provided for each sequence.

The source code for our proposed 3–D data acquisition and registration pipeline is pub-

licly available for download at:

• 3–D Data Acquisition and Registration using Opposing Kinects (MIT License):

https://github.com/BristolVisualPFT/3D_Data_Acquisition_Registration_

Using_Kinects.

Further, videos which visualise the results achieved in our work are available at:

• Remote, Depth-based Lung Function Assessment: https://www.youtube.com/

watch?v=AX4BvyoKYYQ.

• 3–D Data Acquisition and Registration using Opposing Kinects: https://www.

youtube.com/watch?v=-JKHG3UJG9Q.

• Depth-based, Whole–Body Photoplethysmography in Remote Pulmonary Function

Testing: UnderConstruction.

http://doi.org/ckrh
https://github.com/BristolVisualPFT/3D_Data_Acquisition_Registration_Using_Kinects
https://github.com/BristolVisualPFT/3D_Data_Acquisition_Registration_Using_Kinects
https://www.youtube.com/watch?v=AX4BvyoKYYQ
https://www.youtube.com/watch?v=AX4BvyoKYYQ
https://www.youtube.com/watch?v=-JKHG3UJG9Q
https://www.youtube.com/watch?v=-JKHG3UJG9Q
Under Construction


Chapter 2
Background

This chapter gives the background information for the thesis, in which we present a

brief overview of depth sensing methods and review the related works in 3-D scene data

acquisition and multi-view registration (Section 2.1). Then, we review the relevant lit-

erature on remote respiratory motion measurement in respiration monitoring, breathing

rate estimation and clinical respiratory assessment (Section 2.2). Finally, we conclude

this chapter by presenting a summary of the related works (Section 2.3).

2.1 3-D Data Acquisition and Registration

While a wealth of information can be extracted from a single image, depth (range) data

would achieve more accurate 3-D scene modelling, and it is more suitable for geometrical

processing. Depth data provides distance information of the scene from the sensor, and

can be acquired using passive, i.e., stereo vision [71, 186], and active, i.e., photometric

and structured-light (SL) [16, 162], and Time-of-Flight (ToF) [87, 90], approaches.

2.1.1 Depth Sensing

Binocular stereo vision is a technique to estimate depth information using at least two

images captured from different viewpoints. Knowing the camera(s) parameters, the

depth of a desired point can be estimated by a simple triangulation if the location of

13
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this point is identified in the images, i.e., stereo matching [89, 92]. Although epipolar

geometry [67, 209] and image rectification [75, 117] improve stereo matching speed and

accuracy, and reduce its complexity, it remains as the main challenge of stereo vision

algorithms [66, 168, 190, 195]. Thus, as a more robust depth sensing method, active

stereo vision has emerged in the form of SL [169, 196] and ToF [87, 90] techniques.

Using a geometrical formulation similar to passive stereo vision, SL methods substitute

the optical-based correspondence matching with an active pinhole modelling in which

a projector/illuminator projects the correspondences as SL patterns for more reliable

stereo matching [207]. Since the type of the projected light pattern has a huge impact

on the accuracy of the estimated depth map [163], various patterns, e.g., 1-D binary

[95, 196] and gray [64, 107] stripes, binary and gray coded grid [83, 114], color coded

grid [138, 145, 194] and color coded dots [61, 142], have been explored in the literature.

Nevertheless, SL depth sensing has also its limitations. First, it is restricted to in-house

use only, due to the destructive effect of direct sunlight on the projected pattern [124].

Second, the effective depth measurement distance is limited to several meters due to

the projected pattern visibility contraint [102]. Third, similar to other correspondence

matching techniques, SL suffers from shadowing effect in which the distance between the

camera and the projector affects the object’s side views visibility, and no depth data can

be acquired for these regions [80]. This is more critical for the objects closer to the sensor.

Microsoft Kinect [3, 85] and Asus Xtion Pro [1] are two well-known consumer-grade SL

depth sensors with embedded RGB video camera for visualisation. Table 2.1 presents

more hardware/software details for these sensors [85, 102, 164, 210]. Interference has

been reported for simultaneous use of multiple Kinect or Asus sensors [31, 46].

Unlike passive and SL depth sensing methods, ToF sensors do not employ geometrical

triangulation for depth measurements. These sensors estimate the depth based on the

radio detection and ranging (RADAR) principle in which the round-trip time of a light

pulse is measured to determine the distance between the sensor and the collision point.

Depending on the deployed distance measurement technique, ToF sensors can be divided

into two broad categories, i.e., pulsed-light and continuous-wave based technologies. The

first category employs high power single-photon avalanche diodes (SPAD) which is used

for outdoor long-distance (from a few meter to several Kilometres) measuring sensors

like light imaging detection and ranging (LIDAR) cameras. In contrast, in the second

category a sinusoidally modulated light signal is emitted using a regular NIR diode,

by which the travelling distance is computed by measuring the phase shift between

the emitted and the received signals, which limits its application to indoor and short-
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distance (from a few centimetres to several meters) measurements like Microsoft Kinect

V2 [90, 207]. Compared to SL Kinect and Asus, Kinect V2 is better in terms of price and

technical specifications (see Table 2.1) [90, 108, 139, 164]. While shadowing effects are

inevitable in SL depth sensors, they are minimised in ToF sensors as the transmitter and

receiver can be located within minimum distance of each other or ideally co-positioned.

Figure 2.1 shows samples of depth maps (color-coded) acquired by a SL Kinect and a

ToF Kinect V2. As seen, the depth map of the SL Kinect contains numerous areas with

no depth data (in dark blue) compared to the ToF Kinect V2 because of shadowing

effects and other noises. Also, literature reported no interference for simultaneous use of

multiple Kinect V2 [106]. We therefore use this sensor in our remote PFT approaches.

2.1.2 3-D Scene Reconstruction

There are many existing works on the registration of multi-view range images obtained

by photometric stereo and SL techniques, such as [16, 65, 159, 162, 200], with some

summative works, e.g., in [74, 172, 178]. We limit this review to methods using affordable

commodity RGB-D sensors, such as the Kinect, for multi-view 3-D reconstruction and

registration using single and multiple RGB-D sensors.

Table 2.1: Technical details and comparison of Microsoft Kinect, Asus Xtion
Pro and Microsoft Kinect V2 [90, 108, 139, 164].

Specification Microsoft Kinect Asus Xtion Pro Microsoft Kinect V2

Depth Sensing Technology Structured-light Structured-light ToF

Released Date 2010 2012 2014

Depth Resolution (pixels) 640×480 11-bit 640×480 11-bit 512×424 13-bit

RGB Resolution (pixels) 1280×1024 1280×1024 1920×1080

RGB/Depth frame rate 30fps 30fps 30fps

Min−Max depth distance 0.8− 3.5m 0.8− 4.0m 0.5− 4.5m

Horizontal×Vertical FOV 57◦×43◦ 58◦×45◦ 70◦×60◦

USB Interface 2.0 2.0 / 3.0 3.0

Dimensions (W×D×H) 280×76×76 mm 180×35×50 mm 250×66×67 mm

Weight 550g 120g 970g

Power Consumption (W) 2.5 (Power Supply) < 2.5 (USB) 15 (Power Supply)

Software Driver Microsoft SDK 1.8 OpenNI 2.0 Microsoft SDK 2.0

Skeleton Joint Defined 20 20 26

Full Skeletons Tracked 2 2 6

Individual PC per Sensor No No Yes
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(a) SL Kinect (b) ToF Kinect V2

Figure 2.1: Comparing depth maps (color-coded) of (a) SL Kinect, and (b) ToF
Kinect V2. SL Kinect has more areas with no depth data than ToF Kinect V2
due to shadowing effect and other noises. Images are taken from [199].

2.1.2.1 Single RGB-D Sensor 3-D Reconstruction

Approaches which apply a single capturing device, either use a moving sensor on a path

around the object or the object rotates for a fixed position sensor. These approaches

apply point matching algorithms, mainly Iterative Closest Point (ICP) [35, 208] and

other adapted variants [150], to register point clouds by minimising the distance be-

tween continuously detected corresponding keypoints in consecutive keyframes. These

corresponding keypoints can be determined using uniform sampling of point clouds, gen-

eral 2-D features, e.g., Scale Invariant Feature Transform (SIFT) [119] and Speeded Up

Robust Features (SURF) [27], or depth features specifically designed for 3-D registration,

e.g., Fast Point Feature Histograms [160].

Some approaches [94, 96, 134, 135, 212] have recently been proposed for reconstruction

of non-rigid objects and scenes using a single RGB-D sensor. Izadi et al. [96] and New-

combe et al. [134] introduced Kinect-Fusion as a real-time 3-D reconstruction approach

using a moving Kinect. They presented a new GPU pipeline which allows for real-time

camera tracking, surface reconstruction, and rendering. However, these methods expect

a static scene during reconstruction. In [212], Zollhöfer et al. first acquired an initial

template using Kinect-Fusion of [96], for which the object needed to be static for ∼1

minute. Next, in the non-rigid reconstruction phase, for each frame they roughly aligned

the template to the input data and then fitted the non-rigid surface using a new efficient

GPU-based Gauss-Newton solver, which minimised the fitting energy function. New-

combe et al. [135] presented a real-time Dynamic-Fusion technique for tracking surfaces
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and dynamic reconstruction of non-rigid objects. Each live depth frame was fused into

a canonical space using an estimated volumetric warp field, which removed the scene

motion, and a truncated signed distance function volume reconstruction was obtained.

However, since they omitted the RGB stream and also not utilised global features, their

method fails to track surfaces in specific types of topological changes (for example closed

to open hands) and it is also prone to drift. In another work, Innmann et al. [94] pro-

posed a similar method to [135], in which they tried to address these issues. In addition

to the dense depth correspondences, they applied global sparse color-based SIFT feature

correspondences which allows them to better deal with drifts and improve tracking.

Although these single RGB-D sensor approaches yield highly impressive results, they are

not able to capture changes that simultaneously happen in those parts of the object that

are not within the field of view. Further, they require a substantial overlap in the depth

data of consecutive frames, which enables the point matching algorithm, e.g., ICP, to

better estimate the point cloud registration parameters. Finally, they can be restricted

in speed and size of deformations, e.g., fast and large deformations.

2.1.2.2 Multiple RGB-D Sensor 3-D Reconstruction

In these approaches, multiple static RGB-D sensors are used to simultaneously capture

the scene from different points of view. To be able to find the sensors’ relative pose,

they need to be calibrated individually and together using optical and/or geometric

techniques. In the former, the point clouds from each RGB-D camera are aligned using

the correspondences established by calibration objects or visual makers, e.g., in [25, 28,

60, 100, 106]. In the latter, rigid transformations that help align the point clouds are

computed using geometric-based optimisation methods like ICP and bundle adjustment

[193], e.g., in [155, 171]. The geometric methods can also be used as a refinement step

for precise alignment of roughly aligned point clouds, e.g., in [100, 106, 130].

Avetisyan et al. [25] employed an optical tracking system to increase depth measurement

accuracy of three inward and circularly-located RGB-D sensors. A tracked chessboard

was moved inside the capture space by which an individual lookup table was created for

each sensor. This lookup table consisted of the chessboard crossing points locations in

the tracker coordinate system and their corresponding locations in the sensor coordinate

system. The lookup table was then used to correct the sensors’ depth measurement

accuracy during scene reconstruction. The depth sensors and the optical tracking system
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were calibrated using a single rigid transformation.

Beck and Froehlich [28] proposed a volumetric method to calibrate multiple RGB-D sen-

sors by transforming each depth sensor space into a normalized volume space, performing

a reference sampling and interpolation. A chessboard was placed in various locations of

the capturing volume and captured by the sensors while simultaneously being tracked

by a motion capture (MoCap) system. Real-world location of the chessboard crossing

points in both RGB-D sensors and motion capture system were used to fill a 3-D lookup

table. After performing an interpolation to fill empty cells, the table was used in the

reconstruction stage. Approximately 2000 reference samples are required for calibrating

a volume of 1.5×1.8×1.5 m3, which takes 20−30 minutes to be performed.

Deng et al. [60] localized rigid transformation parameters to improve registration accu-

racy of point clouds obtained from two Kinects. A 3-D grid of translation and rotation

parameters was generated using the established correspondence points obtained from

a moving chessboard, and then interpolated. The authors reported improvements in

their point cloud registration accuracy compared to the global rigid transformation ap-

proaches. However, their method demands a huge amount of overlap in the two sensors

capturing space. Their local registration results in geometrical distortion in the final

reconstructed point cloud.

Kowalski et al. [106] presented a 3-D data acquisition system, using four Kinect V2

sensors, in which they manually calibrated their system to align the point clouds in a

two-step procedure involving rough estimation and refinement. Their qualitative-only

results showed good performance for general static and dynamic object reconstruction.

However, their calibration stage is cumbersome requiring self-designed markers, manual

labelling of markers’ location, and sufficient overlap between the sensors. Figure 2.2

shows the 3-D reconstructed models of a subject playing guitar. Spatial registration

errors are observable especially on the face, hands and fingers which have more visual

details. Also legs 3-D data has not been captured even by using 4 Kinects.

Both optical and geometric techniques were used in [100] to register point clouds from

multiple Kinects. First, the relative pose of the Kinects was approximated using a

customised calibration box with 2-D visual markers attached on each side. After the

point clouds were roughly aligned, they applied an adapted version of Kinect-Fusion

[96] in an extra refinement step to create the final point cloud. Similar to Kowalski

et al. [106], relative position of markers had to be computed manually.
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Figure 2.2: 3-D reconstructed models of a subject playing guitar using 4 Kinects
by Kowalski et al. [106]. Spatial registration errors are observable especially on
the face, hands and fingers which have more visual details. Also legs 3-D data
has not been captured even by using 4 Kinects. Images are taken from [106].

Miller et al. [130] proposed an unsupervised method to estimate the rigid transform

parameters of two overlapping RGB-D sensors, without any initial calibration. First, a

moving foreground object was detected in the scene captured by both sensors and the

point clouds were roughly aligned by using the centroid of moving foreground objects.

In a refinement stage, they tuned the estimation by optimising an energy function which

used a nearest-neighbour penalty across all frames. However, this penalty had negative

effects where there was not sufficient overlap between the point clouds.

Using a geometric registration approach, Rafighi et al. [155] and Seifi et al. [171] exploited

image-based features to align overlapping point clouds obtained from two RGB-D sensors.

Matching keypoints were detected from corresponding RGB images of both sensors using

SURF and ORB [158] feature descriptors. They were then refined to reject the incorrectly

matched keypoints. Finally, after identifying the corresponding location of matching

keypoints in depth space, rigid transformation parameters were estimated. However, like

all geometric approaches, such as [100, 130], there is a dependency on the availability of

good features and a considerable amount of overlap in the sensors’ capturing space.

In our proposed optical data acquisition and registration approach in Chapter 5, we

perform a 1-step, fast and accurate calibration of two opposing Kinect V2 sensors by

using three double-sided chessboards at different depths in the scene and only a pair of

infrared/depth images taken each sensor. Our method does not involve any refinement

or interpolation steps.
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2.2 Remote Respiratory Measurement

In this section, we review the related literature in remote sensing for respiration monitor-

ing, breathing rate estimation, and clinical respiratory assessment. Remote respiratory

sensing has recently become an active research field and attracted many researchers,

particularly since the availability of commodity RGB-D sensors, e.g., Microsoft SL and

ToF Kinects and Asus Xtion Pro, and also high-resolution RGB video cameras. While

there is a considerable number of works which have investigated noncontact respiration

monitoring and breathing rate estimation, e.g., [22, 26, 30, 32, 33, 50, 58, 73, 88, 97,

110, 111, 115, 126, 149, 156, 157, 173, 174, 187, 187, 188, 192, 202, 203, 204, 206], we

are aware of only two works [136, 137] that have performed remote clinical respiratory

assessment. Categorising the related works to “respiration monitoring and breathing

rate estimation” (Section 2.2.1) and “clinical respiratory assessment” (Section 2.2.2), we

review each group based on the applied data acquisition sensor, i.e., RGB video camera,

ToF and SL depth sensors, and other types of optical/non-optical sensors.

2.2.1 Respiration Monitoring and Breathing Rate Estimation

2.2.1.1 RGB Video Camera

Many researchers have employed RGB video cameras for respiratory monitoring and

breathing rate estimation due to its easy accessibility, low price and minimum hardware

requirement. We review these works by categorising them based on their approach in

acquiring respiratory data, i.e., illumination-based [26, 156] and motion-based [50, 73,

97, 110, 111, 115, 174, 188] approaches.

Illumination-based Respiratory Sensing – To remotely acquire breathing data,

Bartula et al. [26] generating a 1-D row-wise profile for each captured frame, by which

the breathing-related motions were temporally detected by computing the lag of the

maximum correlation between consecutive frames’ profile. The respiratory signal was

then obtained by numerically integrating the estimated displacements. A two-step post-

processing stage was developed to improve the signal reliability. In the first step, each

frame was divided into “moving” or “stationary” smaller blocks using an adaptive thresh-

olding approach, from which a motion signal was computed as the ratio of “moving”

blocks to the total number of blocks, and used to eliminate the signal non-respiratory
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intervals. In the second step, a breath-to-breath classifier was used to extract only the

reliable breathing cycles. Extracting a feature vector from each breath cycle, a pre-

trained decision tree was exploited to classify the valid breath cycles. They reported an

initial 85% accuracy for 5 healthy subjects, which was improved to 89% and 95% by

performing the first and the second post-processing steps, respectively.

Using RGB data from a smartphone camera, Reyes et al. [156] estimated the chest-wall

movement signal in the phone by averaging the chest-wall pixels intensity of R, G, and

B channels. The breathing rate and tidal volume were then estimated off-line on a PC.

The breathing rate was computed using the signal energy density, and the tidal volume

was estimated from the calibrated breathing signal. The calibration was performed by

subject-specific scaling factors, computed in a training phase using the spirometer data.

They reported an average RMSE of 0.414± 0.178 bpm for the estimated breathing rate

and 0.182± 0.107 litres for the peak-to-peak tidal volume, for 15 subjects. Each subject

underwent a 2-minute spontaneous breathing half of which was used for the training.

Motion-based Respiratory Sensing – To conquer the illumination variation draw-

backs noted in [26, 156], motion estimation methods like optical flow have been employed.

Frigola et al. [73] quantified the breathing-related body movements by measuring the vari-

ation of the image gradient vector
−→
Gt in every pixel as Dt(x, y) = |

−→
Gt(x, y)−

−−→
Gt−τ (x, y)|.

Initialising τ as the half of the respiratory rate, and then adjusting it by an iterative

Kalman filtering approach, they reduced the effects of unrelated body movement. The

breathing signal was computed as the number of pixels contributed in Dt in each frame.

After smoothing the signal, the breathing rate was extracted by performing a peak

analysis within every 30-second window. Not quantitatively evaluated, authors visually

compared their breathing rates to a inductive plethysmograph. Using the same approach,

Tan et al. [188] reduced the sensitivity to the unrelated body movements by quantising

the movement using the grayscale images themselves rather than their gradient vectors

and empirically choosing τ = 0.5. The breathing rate was computed from the derivative

of the smoothed respiratory signal. To better track the respiratory motion, subjects

were asked to wear a tight and stripy t-shirt which increased the number of detectable

pixels on the thoracoabdominal region. The assessment was performed qualitatively by

comparing the estimated breathing rate to the visually observed ones.

Taking the advantages of [73, 188] methods, Chatterjee et al. [50] estimated the respi-

ratory rate by applying the optical flow along the image gradient defined as flow field

Ft(x, y). Since Ft(x, y) was very small and noisy for textureless and flat regions (Fig-

ures 2.3a and 2.3b), it was projected along the direction V(x, y) to increase its effective-
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(a) (b) (c)

Figure 2.3: (a) Inhalation and (b) exhalation visualisation of flow field. (c)
Visualisation of PFF . Images are taken from [50].

ness. The direction for which the projection was maximised for the first 250 frames of a

sequence was introduced as the principal flow field PFF (Figure 2.3c). The respiratory

signal was then generated for the remaining frames using the computed PFF .

Instead of considering the whole image for measuring the respiratory motion as in

[50, 73, 188], Shao et al. [174] and Lin et al. [115] localised the respiratory ROIs to

speed up their motion-based respiratory detection approaches. Applying the shoulders’

edge information, Shao et al. [174] generated the respiratory signal by measuring the

shoulders breathing-related vertical movements in two tiny ROIs (40×40 pixel) manu-

ally selected from top of the shoulders. The validation was performed on 10 healthy

subjects for which 0.93 correlation was reported between the estimated breathing rate

measurements and the ground truth readings. In contrast to Shao et al. [174]’s manual

ROI selection, Lin et al. [115] applied AdaBoost algorithm refined by a skin-color fil-

tering to automatically select the subject’s upper-body from which the respiratory ROI

was detected using Haar-like features. The respiratory signal was computed by using

a basic optical flow approach [91] from which the breathing frequency was extracted a

zero-crossing method. Evaluating on 296 sequences from 8 males and 3 females in various

scenarios, the correlation range 0.82− 0.98 was reported against a respiratory belt.

In another motion-based approach, Li et al. [110, 111] estimated the respiratory rate

of sleeping subjects inside a dark room using an infrared camera. Dividing each frame

of the breathing sequence into a grid of cells, 7 keypoints were detected in each cell

by Harris corner detector, and then tracked over the whole sequence using the Lucas-

Kanade optical flow method [120]. After computing each keypoint trajectory over a

30-second sliding window, non-useful trajectories were eliminated using thresholding

approach. After applying PCA on all trajectories of every sliding window, among 5

main principal components the component with the highest periodical resemblance to
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the previous sliding window, was used for extracting the breathing rate. A dataset of 75

breathing sequences were collected from 10 females and 7 males in five different sleeping

postures, i.e., supine, left-side, right-side, prone, and supine with the torso covered by a

blanket. An average RMSE error of 1.12± 1.38 bpm was reported against readings from

a respiratory belt for the whole dataset.

In a similar approach to Li et al. [110, 111]’s work, Janssen et al. [97] proposed a method

to detect breathing-related motions in a sequence. By applying a dense optical flow [44]

on each captured frame, a motion matrix was generated and factorised into individual

motion trajectories among which the most temporally correlated trajectories were chosen.

Then, the trajectory matrix was partitioned into separate spatial regions, and each

partition was scored based on its contribution to respiratory motion. Finally, by applying

an adaptive thresholding approach on the histogram of partitions score, the respiratory

regions were specified and used for generating the respiratory signal. The evaluation was

performed on 148 breathing sequences from 4 adults and 2 neonates, with an error of

1.4 bpm for adults and 92.55% accuracy for neonates reported.

There are other RGB camera based works of note [51, 52, 121, 149, 152, 189, 201, 211]

with similar approaches and methodologies. We have summarised the methods and

materials of these works in Section 2.3.

2.2.1.2 SL and ToF Depth Sensor Approaches

Taking the advantage of depth sensors range measurement, depth-based respiratory sens-

ing approaches generally compute the respiratory time series by measuring the distance

of the respiratory-related ROIs (mostly on thoracoabdominal area) from the sensor or

chest-wall volume estimation, for tidal volume estimation [88, 173, 192], respiratory mo-

tion modelling [187], respiration monitoring [22, 33, 58, 143, 202, 203, 204, 206], or

breathing rate measurement [30, 32, 126, 157]. Thus, any non-respiratory movement,

e.g., user’s body motion, interferes with the respiratory motion and affects most of these

approaches and their results.

Tidal Volume Estimation – Applying multiple depth sensors, Harte et al. [88] presented

a chest-wall motion analysis approach using depth measurements acquired by four SL

Kinects. After temporal synchronisation and spatial calibration of Kinects, respiratory

time series of a sequence were obtained by estimating the volume of the reconstructed

torso in each frame. They used off-the-shelf commercial 3-D software, i.e., Geomagic
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Figure 2.4: Torso reconstruction using Harte et al. [88] multiple-Kinects ap-
proach. The participant has kept up arms away from the torso for Kinects to
capture the lateral sides. Images are taken from [88].

Studio 2012 and Mesh Doctor plug-in [6], for (a) computing rigid transformation and

spatial calibration of Kinects, (b) isolating the torso point cloud and filtering its noise

per subject, and (c) hole filling and 3-D meshing of the torso surface. To be able to

construct a complete 3-D model of the torso during the test, subjects were asked to

keep their arms away from their torso (see Figure 2.4) such that Kinects could capture

the torso lateral sides (under arms), which is not compatible with spirometry ATS/ERS

guidelines [128]. Due to their inability in precise inter-Kinect synchronisation, they

reported errors in the dynamic trunk reconstruction. According to the authors, these

errors resulted in obtaining breathing time series with inconsistent sampling rates and

sudden sharp changes in the estimated volume. Their measurements on a static torso-

type resuscitation mannequin with ground truth volume 22.751 litres, showed 0.1 litres

error. Also, the minimum and maximum correlation for 40-second tidal breathing of

13 healthy subjects and 9 patients against a spirometer was reported as 0.86 and 0.92.

However, no explanation was provided about the torso volume calibration (to present

the exchanged volume of air) for validating against the spirometer.

Transue et al. [192] proposed a real-time iso-surface reconstruction algorithm for tidal

volume estimation by generating an omni-direction temporal model of the chest-wall.

Acquiring the depth data using a ToF Kinect V2, a water-tight 3-D model of the subject’s

chest-wall was generated and used to estimate the respiratory signal. To present the real

exchanged air volume, this signal was calibrated by a non-linear correlation function

estimated by a Bayesian neural network [122]. Evaluating on 4 healthy subjects, each

subject performed 20 trials of 20-second spontaneous breathing in standing posture.

Similar to [88], they constrained participants to keep up their arms away from the trunk

to avoid occluding the chest-wall lateral sides, as seen in Figure 2.5. Part of the collected

data was used for training their Bayesian network for each participant and the remaining
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Figure 2.5: Subject’s standing posture during respiration monitoring [192].
Participants are constrained to keep up their arms away from the trunk to avoid
occluding the chest-wall lateral sides. Images are taken from [10, 192].

was used for testing. Validating against a spirometer, a range of 92.2% to 94.19%

accuracy was reported for the estimated tidal volume across their dataset. Moreover,

the tidal volume mean error within a 0.2-second window was reported as 0.079, 0.075,

0.067 and 0.055 litres for four subjects, respectively.

Proposing a multi-input–single-output approach, Seppanen et al. [173] used optimally

trained filter banks to compute 5 different models by which the airflow data was generated

from the chest and abdomen respiratory motion. Evaluation was performed on 8 healthy

subjects in 5-minute breathing experiments, composed of 2 free rate breathing periods

at the beginning and the end, and 3 controlled breathing periods with 0.2 Hz, 0.15 Hz

and 0.33 Hz breathing frequencies. The training was performed on the spirometer and

Kinect first free rate breathing period. An average correlation of 0.930, 0.932, 0.909,

0.928 and 0.881 were reported for each of their 5 models for test data of all subjects.

Respiratory Motion Modelling – Tahavori et al. [187] proposed a markerless approach

for the chest-wall respiratory motion modelling and drift detection. Using depth data

acquired by a SL Kinect mounted on the top of subject’s chest-wall, they analysed the

respiratory motion data of 20 healthy subjects in three breathing sessions using single-

ROI and Multi-ROI approaches. In the single-ROI approach, applying PCA on the

temporal data of the thoracoabdominal area showed that the first principal component

describes more than 70% of respiratory motion variance in this region. In the multi-ROI

approach, the average depth values of 16 ROIs of size 16 × 16 pixels (see Figure 2.6a),

were computed over the whole sequence. PCA analysis of these values showed that the

first principal component describes more than 98% and 90% of respiratory variance in

the chest and abdomen regions for two participants, respectively. Figure 2.6b presents

the respiratory motions of four ROIs specified on the chest and abdomen of the partic-
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(a) (b)

Figure 2.6: (a) Respiratory motion modelling using 16 specified ROIs. (b) Res-
piratory motions of ROIs 1, 6, 11 and 16. Images are taken from [187].

ipant shown in Figure 2.6a. Also, the authors visualised respiratory motion patterns of

the chest and abdomen regions using Gaussian kernel density estimation to detect any

potential temporal drift between the chest and abdomen respiratory components.

Respiration Monitoring – Using depth measurements from a SL Kinect, Aoki et al. [22]

computed respiratory waveform by estimating the volume of thoracoabdominal 3-D

model reconstructed in each frame of the sequence. Evaluating on 4 healthy male sub-

jects performing 3-minute spontaneous breathing, an average 0.98 correlation was re-

ported against an expiratory gas analyser. De Boer et al. [58] computed the respiratory

signal by estimating the subject’s chest-wall volume similar to [22]. To improve the cor-

respondence matching accuracy, they performed an active stereo vision using two video

cameras and a regular data projector. By projecting a visible chessboard pattern on

the subject’s body, the crossing points detected by both cameras were used to estimate

the scene depth map to generate the chest-wall 3-D model. Undetected correspondence

points were corrected by a cubic interpolation based algorithm. An average correlation

of 0.91 was reported against the respiration volume data obtained from a spirometer for

40 healthy subjects.

Similarly, by calibrating a near infrared illuminator with a video camera, Bernal et al. [33]

developed their self-made SL depth sensor for measuring the chest-wall respiratory mo-

tion. After establishing the correspondences using the projected light pattern, the scene

depth map was reconstructed by performing triangulation on every pair of correspon-

dences. The respiratory signal was then computed by measuring the chest-wall average

depth variation in each frame of the breathing sequence. Without evaluating against
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any ground truth, they only reported qualitative results for four different respiratory

patterns from an unknown number of subjects performing the test in supine position.

Penne et al. [143] investigated the accuracy of a ToF prototype depth sensor for real-time

respiratory monitoring. After manually selecting abdominal and thoracic surfaces, the

respiratory waveforms were generated by temporally measuring the Euclidean distance

between the fitted plane of these surfaces and the underneath clinical bed surface. The

average correlation on 13 subjects was reported as 0.85 and 0.91 for the abdominal and

thoracic waveforms against the ANZAI belt, respectively. Not satisfied with the Kinect’s

depth measurement precision, Xia et al. [204] proposed a motion amplification approach

in which they used a flat rigid board on top of the subject’s chest (in supine position)

to decompose the respiratory motion into the vertical and horizontal displacements. By

reducing the angle between the sensor principal axis and the translation surface to 5◦, the

vertical respiratory motion precision was improved from 1 cm to 1 mm at a 2 m distance.

Using this configuration, the respiratory signal was generated from an ROI manually

selected from the middle of the board. The correlation range 0.958− 0.978 was reported

for 4 subjects against an ANZAI belt for a 5-minutes normal breathing.

Wijenayake and Park [202, 203] measured external respiratory motion by applying PCA

on the depth measurements acquired by an Asus SL depth sensor. Lying in supine

position at 85 cm under the sensor (Figure 2.7a), the thoracoabdominal ROI was selected

using the location of 4 markers attached on the subject’s t-shirt (Figures 2.7b and 2.7c).

After filling the holes of the first 100 frames’ depth data (training data) and performing

a bilateral filter to remove the depth measurement noise, a respiratory motion model was

generated by applying PCA and choosing the first 3 principal components. This model

was then used for reconstructing the depth data of the remaining frames. According to

(a) (b) (c)

Figure 2.7: (a) System setup in [203]. (b)-(c) The thoracoabdominal detected
ROI in RGB and depth images using the markers. Images are taken from [203].
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the authors, reconstructing the test depth frames using the obtained model eliminates the

spatial and temporal noise. The respiratory signal was finally generated by estimating

the thoracoabdominal 3-D model volume similar to [22, 58]. Evaluated on a dataset of 15

breathing sequences (unknown length) from 10 healthy males, they reported an average

of 0.97 correlation against a spirometer for the whole dataset.

In [206], a regional respiratory measurement method was developed by Yu et al. for ac-

quiring the left and right thorax, and abdomen breathing data using a SL Kinect. To

be able to measure the absolute size of the user’s chest-wall, the relationship between

the pixel size and acquisition distance was established in a calibration stage. After per-

forming a viewpoint transformation to correct the Kinect’s non-perpendicular viewpoint,

the respiratory waveforms were estimated using the computed length per pixel informa-

tion and the depth of each pixel within the left and right thorax and abdomen ROIs.

These ROIs were automatically detected using a predefined chest-wall mask which was

adjusted for each subject using their processus xiphoideus. Evaluated on 192 sponta-

neous breathing sequences from 12 healthy subjects, an average correlation of 0.96 was

reported against a spirometer for the estimating respiratory volume.

Breathing Rate Measurement – Benetazzo et al. [30] presented a noncontact breathing

rate estimation method and extensively evaluated its performance under various opera-

tional and experimental scenarios. Using a SL depth sensor, they automatically detected

the chest-wall ROI using the sensor body joint data and generated the respiratory signal

using the average depth value of the chest-wall ROI per frame. After smoothing and

removing the signal baseline using a weighted averaging filter, the respiratory rate was

computed by finding the local optima of the first derivative of the respiratory signal. Val-

idating against spirometer measurements, they reported the correlation range 0.89−0.98

and the average maximum error 0.53 bpm for 195 spontaneous respiratory tests collected

from 5 healthy subjects.

Bernacchia et al. [32] and Rihana et al. [157] applied a similar averaging-based methods

to estimate breathing rate from depth data. Bernacchia et al. [32] manually selected three

ROIs from the abdomen, thorax and neck regions, from which the respiratory signal was

computed by performing Independent Component Analysis (ICA) and wavelet decom-

position on the temporal average depth values of these ROIs. They reported an average

0.96 correlation for 40-second spontaneous breathing from 10 healthy subjects against

spirometer results. In a similar approach, Rihana et al. [157] investigated the depth

measurement accuracy of the ToF Kinect V2 in measuring respiratory rates with varied

breathing frequency. The respiratory waveform was generated by measuring the average
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depth values of a manually selected ROI on the thoracic surface through the sequence.

Fifty 1-minute duration breathing sequences with varied frequencies were collected from

10 healthy subjects. The spectral coherence between the estimated breathing rates and

the readings from a respiratory belt showed a range of 0.29− 0.85 correlation for 0.3 Hz

down to .17 Hz breathing frequencies. According to the authors reported results, the

correlation is lower for the higher breathing frequencies.

To improve the breathing rate monitoring accuracy similar to [204], Martinez and Stiefel-

hagen [126] configured the infrared projector of a SL Kinect to 1280 × 1024 pixels at

9.1 fps and installed a Nikon zoom lens only to the infrared projector by which they

increased the size of the projected dots to improve the infrared dots tracking accuracy.

Tracking the projected dots within consecutive frames, PCA analysis was performed on

the trajectory of all dots over the last 30 seconds. Next, the first 16 principal compo-

nents were used to estimate the respiratory rate by performing an autoregressive spectral

analysis. They evaluated their method on 9 healthy subjects each of which performed

2-minute spontaneous breathing in supine position. An average of 0.99 correlation was

reported against an inductance plethysmograph.

2.2.1.3 Other Types of Sensors

Other optical and non-optical sensors have also been investigated for estimating breath-

ing rate and respiratory monitoring and modelling. Prior to public accessibility of depth

sensors, many researches applied other types of marker-based [17, 18, 19, 47, 59, 69] and

markerless [21, 165, 166, 167, 198] optical sensors for respiratory sensing. Other non-

optical but still contactless methods like micro Doppler passive radar [112, 113], Doppler

multi-radar [84], Doppler ultrasound [131] and ultrasonic proximity [132] sensors have

also been explored for respiratory motion sensing.

Marker-based Optical Methods – Numerous marker-based MoCap methods [17, 47,

59, 69] have investigated the correlation between the chest-wall motion and the exchanged

airflow. A maximum of 100 markers were placed on the subject’s trunk by which the

chest-wall volume was extracted and validated against ground truth measurements.

In a different marker-based MoCap approach, Alnowam et al. [18, 19] used two sets of

8 active markers to acquire the respiratory motion of the chest and abdomen surfaces

for the respiratory motion prediction (RMP) [18] and the respiratory motion modelling

(RMM) [18, 19]. In [18], after applying PCA for reducing the feature space, a probability
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density function (PDF) model was used to predict the chest and abdomen respiratory

motions. The PDF model was continuously trained over a 10-second sliding window of

the acquired respiratory motion amplitude and velocity, and then used to predict the

next respiratory samples amplitude. A joint Gaussian density function was also used to

model the respiratory motion using the depth measurements variation. Evaluation was

performed on 20 subjects each of which performed 10-minute spontaneous breathing in

supine position. An average RMSE of 0.78 mm was reported for the predicted respiratory

motion over the whole dataset. In a similar approach, Alnowam et al. [19] used a

Gaussian kernel probability density estimation method to analyse inter and intra subject

variation of the in-phase and anti-phase respiratory motion patterns.

However, MoCap approaches have major drawbacks that limit their application. First,

MoCap systems require a cumbersome calibration of the acquisition space. This cali-

bration should be carried out before each data acquisition session which usually takes

around 15 minutes. Second, while markers are unpleasant for the user, placing and re-

moving a sufficient amount of markers on the subject’s body takes considerable time and

effort. Third, MoCap systems are highly expensive and require a lot of space. Thus,

these approaches are almost outdated and have not been used recently.

Markerless Optical Methods – A limited number of works have used fiber grating

optical sensor (FGOS) [21, 165] and laser-based instruments [105, 166, 167, 198] for

detecting respiration abnormality and breathing monitoring.

Sato and Nakajima [165] proposed a remote breathing abnormality detection method

using a fiber grating optical sensor. Projecting the luminescent spots by the fiber grat-

ing projector, the location of spots was detected by a 3-D vision sensor and used for

estimating the thoracoabdominal peak-to-peak volume change. Validating against a

spirometer, 0.96, 0.96, 0.89 and 0.91 correlations were reported for supine, prone, right-

side and left-side breathing postures, respectively. Using a similar data acquisition device

and methodology, Aoki et al. [21] performed 400 all-night monitoring of 65 elderlies for

detecting respiratory abnormalities during sleep.

Scalise et al. [166, 167] exploited an optical laser Doppler vibrometer (LDVi) device for

remote respiratory rate measurement. In [167], the distance variation of 10 pre-defined

points of interest on the subject’s neck, chest and abdomen were measured by emitting

laser beams from the LDVi. After discretising the acquired analogue reflection signal, the

respiratory movement signal was computed by applying a 12-level wavelet decomposition.

An average absolute error of 13 miliseconds was reported for the estimated respiratory
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rate of 33 subjects. In [166], they used a similar system for remote monitoring of other

vital signs, e.g., heart rate, besides the breathing rate. While Scalise et al. [166, 167]’s

approach required the user to be bare-chest with the reflective material applied for the

laser diffraction, Wang et al. [198] used a photo-EMF pulsed laser vibrometer (PPLV)

without requiring a strong laser diffraction which allowed the estimation of the subject

vital signs in their normal clothing.

Non-optical Remote Methods – Among the other remote works of note, Li et al. [112]

developed a micro Doppler radar system to measure the chest surface respiratory mo-

tion using passive radar signal energy harvesting. A minimum 0.60 and maximum 0.85

correlations was reported for the distances of 100 and 20 cm, respectively. In [113], they

extended their work to a two-stage signal processing framework in which they extracted

the respiratory rate using an in-home wireless energy transmitter. To improve the ac-

quired respiratory motion accuracy, Gu and Li [84] used a multi-radar system comprising

two radar sensors with four antenna patches located at a distance of 50cm from the chest-

wall. An average RMSE of 0.88, 2.3, 0.945 and 1.88 mm were reported for the estimated

respiratory motion in natural, anger, tenderness and speaking conditions, respectively.

Exploring the ultrasonic sensors accuracy for respiratory motion detection [131, 132], Min

et al. [132] estimated the breathing rate from the chest-wall respiratory motion acquired

by an ultrasonic proximity sensor after correcting the unwanted high frequency signal

drops by an envelop detection method. Evaluated on 10 male subjects, they reported an

average of 0.93 and 0.98 correlations for the with and without clothing scenarios.

2.2.2 Clinical Respiratory Assessment

As the most relevant works to ours, we know of only the works [136, 137] of Ostadabbas

et al. who also performed remote clinical respiratory assessment but mainly in airway

resistance estimation. In [136], they proposed a passive quantitative method to estimate

airway resistance using depth data from a SL Kinect. Using the mechanical model of

lung, the airway resistance Raw [81] was computed as

Raw =
Pair − Plung

Qf

, (2.1)

where Plung and Qf indicate lung pressure and airflow, respectively, and Pair denotes

the atmospheric pressure, which is constant at a given altitude. Considering a piecewise
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Figure 2.8: (a) Color-coded depth image of a subject performing a breathing
experiment with the chest region (Rchest) manually specified. (b) Normalised
volume and flow data over a period of time, obtained from the depth data of
Rchest. Images are taken from [136].

linear relationship between the pressure of lung (Plung) and its volume (Vlung) [38], i.e.,

Plung ∝ Vlung = k1 · Vlung, they estimated the airway resistance over time t as

Raw =
Pair − k1 · Vlung(t)

∆Vlung(t)

∆t

, (2.2)

where Vlung is the normalised volume of the lung, estimated by an averaging method from

the depth information of the chest region Rchest (Figure 2.8a). Using temporal chest

volume and flow data obtained from the Kinect (Figure 2.8b), unknown parameters Raw

and k1 (2.2) were computed by solving

[∆Vlung(t)

∆t
Vlung(t)

] [Raw

k1

]
= Pair · IM , (2.3)

using an overdetermined least squares technique, where IM denotes the identity matrix

with the same size as the temporal input data. By solving (2.3) separately for the

inhalation and exhalation periods, two distinct subject-specific k1 values were obtained

for these periods that are supposed not to changed in the future experiments.

They evaluated their method on 5 healthy participants in forced and spontaneous breath-

ing experiments. To induce varied airway resistance in the forced breathing experiments,

three custom mouthpieces were made by putting five plastic straws for “Mild” obstruc-

tion, three straws for “Moderate” obstruction and one straw for “Severe” obstruction.
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Table 2.2: Average intra-subject k1 of the forced and spontaneous breathing.
Table is reproduced from [136] c© 2014 IEEE.

Calibration Factor Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Forced k1 0.85 0.91 0.87 0.81 0.88

Spontaneous k1 0.94 0.95 0.73 1.03 0.88

Each subject performed 15 trials of forced tests using the three custom mouthpieces (5

times each), and 5 trials without mouthpiece. The exhalation volume and flow data of one

trial was used to compute k1 by solving (2.3). The computed k1 was then used to extract

airway resistance Raw in the other test trials. Their results showed a semi-linear increase

in the computed Raw value as the obstruction, emulated by the mouthpieces, had in-

creased. In the spontaneous breathing experiment, a similar procedure was followed and

Raw was computed for one minute spontaneous breathing periods, which again showed

a semi-linear increase as the obstruction had increased. However, the intra-subject k1

values computed within the forced breathing experiments were different with the ones

computed within the spontaneous breathing experiments. Table 2.2 reports the averaged

k1 for the 5 subjects in the forced and spontaneous breathing experiments.

Using the exhalation volume data, Ostadabbas et al. [136] computed the FEV1 measure

for the forced breathing tests. Table 2.3 reports the average correlation of the computed

FEV1 measures against the measures obtained from a spirometer for each subject. This

table also reports the lower and upper bounds of the correlation, i.e., CCL and CCU , for

each subject. However, no explanation was given about the calibration of FEV1 measure

as this measure was computed from the volume data which is normalised to the chest

volume, i.e., data values lie between 0 and 1.

In both experiments, they restricted subjects’ trunk movement by asking them to press

their back against a wall during the tests. They also asked subjects to manually mark

the timestamps for inhalation and exhalation by moving a wireless mouse on the wall

during the test.

Table 2.3: Average intra-subject correlation coefficient (CC) of computed
FEV1 measure against spirometry, along with the lower and upper correlation
bounds (CCL/CCU) for each subject. Table is reproduced from [136] c© 2014
IEEE.

Measure Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

CC 0.95 0.75 0.90 0.86 0.96

CCL/CCU 0.88/0.98 0.45/0.89 0.77/0.96 0.64/0.94 0.90/0.98
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By expanding their previous study in [136], Ostadabbas et al. proposed a noncontact

airway resistance monitoring system [137] in which they used a Microsoft Kinect V2 along

with a pulse oximeter (SpO2) to passively estimate the severity of airway obstruction as

mild, moderate or severe. They exploited the same mechanical model of lung in [136]

to estimate airway resistance using lung pressure Plung and airflow Qf , however, they

improved their approach in two aspects.

First, while they still estimated the airflow using depth measurements from a depth

sensor similar to [136], instead of manually selecting the chest region in [136], they applied

a depth-based thresholding approach to automatically detect a subject’s chest bounding

box. First, a mean image ImD is computed by averaging depth sequence ID, captured from

a subject who remained motionless for about one minute. By thresholding ImD using TL

and TU , computed from the histogram of ImD , a binary image IB is computed. This is then

followed by a row-wise and a column-wise connected components filtering of IB, in which

Mx and My are median lengths of the row-wise and column-wise connected components,

respectively. This is finally accomplished by performing an anatomical adjustment to

justify the chest bounding box to the subject’s torso height (see Figure 2.9 flowchart).

Second, instead of estimating lung pressure as Plung = k1Vlung, in this work they used a

photoplethysmograpghy-based surrogate model

PP ∝ ∆Plung = k2

(
P

(max)
lung − P

(min)
lung

)
, (2.4)

where PP (Pulsus Paradoxus) is the intrathoracic pressure changes in cardiac output

and can be estimated from PPG signal acquired by the SpO2. P
(min)
lung and P

(max)
lung are

the lung pressure at the end of inhalation and exhalation, respectively. They evaluated

their method on two groups of healthy participants and patients in two different phases,
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Figure 2.9: Automatic chest bounding box detection, proposed by Ostadabbas
et al. [137]. Image is reproduced from [137].
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Figure 2.10: Airway resistance prediction for 14 patients in [137]. Red bars
specify patients predicted with airway obstruction. Image is taken from [137].

respectively. In the first phase, they predicted the airway obstruction of 14 healthy

subjects who simulated airway obstruction by breathing through the three customised

mouthpieces. Each subject performed a spontaneous breathing trial of 1-minute duration

by each of the mouthpieces. They reported an average 76.2±13.8% accuracy in predicting

airway obstruction as “Mild”, “Moderate” and “Severe” in the phase I.

In the second phase, 14 patients participated in an 8-minute spontaneous breathing

session in which their overall airway resistance was computed by averaging the airway

resistance estimated per breath, over the whole breathing period. Figure 2.10 shows

the airway obstruction estimated for these patients. As seen, their proposed method

predicted 6 patients to have obstructed airways (red highlighted), whereas only 4 of

them were among the 5 patients who were clinically diagnosed with airway obstruction

according to the spirometry PFT measures. Thus, 2 patients were incorrectly detected

to have airway obstruction and one subject with airway obstruction was not detected.

No explanation was given about the threshold used for their classification. They also

reported 0.77 correlation and an average error of 0.07±0.06 litres between their computed

tidal volume and the plethysmography. However, they did not provide the details of their

tidal volume calibration as they computed the tidal volume from the normalised chest

volume data.

Since their airflow estimation method in [137] was prone to subject’s trunk movement,

to minimise such artifacts during the test, healthy participants performed the test in

supine position with the Kinect mounted above their chest. However, as this was difficult

for patients, they performed the test in sitting position while they were still advised to

remain as motionless as possible during the test. Also, a custom-built casing was designed

for the pulse oximeter to reduce the finger motion artifacts during PP estimation [137].
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2.3 Summary

In this chapter, we presented a background on active depth sensing and multi-view 3-D

data acquisition and registration methods. This was then followed by reviewing the

state-of-the-art and related literature in remote respiration monitoring, breathing rate

estimation and clinical respiratory assessment. Categorising by the acquisition sensor

type, a summary of the reviewed works are presented in Tables 2.4 (RGB video camera),

2.5 (SL and ToF depth sensor), and 2.6 (other optical and non-optical sensors).

For these works, type of the computed respiratory measure(s), a summary of their ap-

proach as well as the total number of subjects and breathing tests are provided. Compar-

atively, there are more works on RGB video cameras due to their affordability, availability

and the minimum hardware requirements. However, depth sensor based approaches are

more robust to illumination variation and the other measurement and environmental

noises, and consequently achieve more accurate results.

Among all the existing related studies, we are only aware of Ostadabbas et al.’s works

[136, 137] which performed real clinical respiratory assessment, i.e., airway resistance

and FEV1 measure estimation. Inspired by this, we deploy computer vision and signal

Table 2.4: Summary of related works on respiratory monitoring (RM), and
measuring TV and respiratory rate (RR) by RGB video camera.

Authors Date Measure Approach Subjects Tests

Frigola et al. [73] 2002 RM Image gradient vector subtraction / Kalman filter – –

Wiesner&Yaniv [201] 2007 RM Abdomen Marker-based tracking / PCA analysis 1 5

Tan et al. [188] 2010 RM Grayscale image subtraction 2 –

Poh et al. [149] 2011 RR R,G,B illumination processing / ICA analysis 12 12

Bartula et al. [26] 2013 RM imageprojection/cross-correlation/breathclassification 5 5

Zhao et al. [211] 2013 RR R,G,B illumination processing / ICA analysis 15 15

Shao et al. [174] 2014 RM Manual 40×40 pixels ROI / Image gradient analysis 10 10

Li et al. [110] 2014 RR Feature points/trajectory generation/PCA&Averaging 5 21

Lukac et al. [121] 2014 RM Optical flow / Spectral analysis 1 1

Tarassenko et al. [189] 2014 RR Skin detection / Spectral analysis 46 133

Chatterjee et al. [50] 2016 RR Modified Optical flow 31 186

Lin et al. [115] 2016 RR Automatic ROI / Vertical optical flow 8 296

Reyes et al. [156] 2016 TV, RR Manual ROI / R,G,B illumination averaging 15 15

Janssen et al. [97] 2016 RM Chest detection / motion trajectory selection&scoring 6 148

Chatterjee et al. [52] 2016 RR Optical flow / Fourier analysis 31 186

Chatterjee et al. [51] 2016 RM Modified Optical flow 33 198

Li et al. [111] 2017 RR Feature points/trajectory creation/periodicity analysis 17 75

Prathosh et al. [152] 2017 RM Singal processing / Spectral analysis 31 186
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Table 2.5: Summary of related works on respiratory monitoring (RM), respira-
tory motion modelling (RMM), and measuring airway resistance (Raw), FEV1,
TV, VC and respiratory rate (RR) by SL and ToF depth sensors.

Authors Date Measure Approach Subjects Tests

Penne et al. [143] 2008 RM Manual chest & abdomen ROI / Depth averaging 13 13

De Boer et al. [58] 2010 RM Automatic chest-wall ROI / volume estimation 40 –

Xia et al. [204] 2012 RM Increase depth sensing accuracy by a translation surface 4 4

Aoki et al. [22] 2012 RM Automatic chest-wall ROI / Volume estimation 4 4

Yu et al. [206] 2012 RM Thorax mask generation / Volume estimation 12 192

Martinez et al. [126] 2012 RR Use optical lens to improve depth sensing accuracy 9 9

Ostadabbas et al. [136] 2014 Raw,FEV1 Manual chest ROI / Depth averaging 5 75

Tahavori et al. [187] 2014 RMM Manual multi ROI / Depth averaging / PCA 20 60

Benetazzo et al. [30] 2014 RR Automatic chest-wall ROI / depth averaging 5 195

Bernal et al. [33] 2014 RM Automatic chest-wall ROI / Volume estimation 2 2

Bernacchia et al. [32] 2014 RR Manual multi ROI / Depth averaging / ICA 10 10

Seppanen et al. [173] 2015 RM Automatic ROI / Multi-Input–Single-Output FIR filter 8 8

Wijenayake&Park[202] 2016 RM Marker-based ROI / PCA modeling / Volume estimation 5 5

Harte et al. [88] 2016 TV, VC Trunk reconstruction / Volume estimation 22 66

Ostadabbas et al. [137] 2016 Raw Automatic chest-wall ROI / Depth averaging / SpO2 28 56

Transue et al. [192] 2016 TV Automatic chest-wall ROI / Volume estimation 4 80

Rihana et al. [157] 2016 RR Manual chest ROI / Depth averaging 10 50

Wijenayake&Park[203] 2017 RM Marker-based ROI / PCA modeling / Volume estimation 10 10

Table 2.6: Summary of related works on respiratory monitoring (RM), res-
piratory motion modelling (RMM), respiratory motion prediction (RMP), and
measuring TV, VC and respiratory rate (RR) by other sensors.

Authors Date Measure Approach Subjects Tests

Ferrigno et al. [69] 1994 RM MoCap-based chest-wall volume estimation 12 120

Cala et al. [47] 1996 TV MoCap-based chest-wall volume estimation 2 6

Dellaca et al. [59] 2001 TV, VC MoCap-based chest-wall volume estimation 8 –

Aoki et al. [21] 2003 RM optical fiber grating sensor / Volume estimation 65 400

Sato&Nakajima [165] 2005 RM optical fiber grating sensor / Volume estimation 1 1

Wang et al. [198] 2007 RR PPLV / Distance variation measurement 2 2

Min et al. [131] 2007 RM Doppler ultrasound / Distance variation measurement 1 6

Scalise et al. [166] 2008 RR LDVi / Distance variation measurement 5 5

Alnowami et al. [18] 2010 RMM,RMP MoCap / PCA / PDF & KDE estimation 20 20

Alnowami et al. [19] 2010 RMM MoCap / PCA / PDF estimation 10 30

Scalise et al. [167] 2010 RR LDVi / Distance variation measurement 33 33

Min et al. [132] 2010 RM Ultrasonic sensor / Distance variation measurement 10 20

Gu&Li [84] 2015 RM Doppler multi-radar signal analysis 10 10

Li et al. [112] 2016 RR Doppler passive radar signal analysis 1 5

Li et al. [113] 2018 RR Doppler passive radar+in-home wireless signal analysis 3 9
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processing algorithms and techniques to estimate primary clinical PFT measures of FVC

and SVC breathing tests using various novel approaches.

Acknowledged by all of the existing related works, a subject’s body movement during

the respiratory monitoring is the main challenge for vision-based respiratory sensing

approaches as it interferes with the breathing-related chest-wall motion. Thus, all of

these approaches, except for the 4-Kinect based approach by Harte et al. [88] and marker-

based approaches [47, 59, 69], restricted their participants trunk motion during the

respiration monitoring or just investigated the sensitivity of their approach for limited

body motion [30, 115]. Performing PFT using a single depth sensor (Chapter 4), we

have also experienced the subject’s body movement artifacts. This is even more critical

in PFT as subjects would hardly be able to avoid trunk movement during deep forced

inhalation–exhalation (ATS/ERS guidelines [128, 129]) since it is an involuntary reaction

of the human respiratory system when required to maximally inhale and exhale. Further,

restraining this movement can prevent subjects from performing their best breathing

effort and would therefore affect their lung function measures. Inspired by this, we

present a 3-D data acquisition and registration pipeline using only two opposing Kinects

by which we are able to decouple trunk motion and subtle respiratory motion, and

significantly improve the accuracy of the estimated PFT measures.



Chapter 3
Data

In this chapter, we introduce the PFT datasets that we collected and used throughout

this study. To the best of the author’s knowledge, no vision-based PFT dataset deemed

fit for evaluating our remote PFT approaches was available at the time of doing this

research. Thus, we collected two depth-based PFT datasets using a single and two

opposing depth sensor(s). We collected these datasets based on ATS/ERS spirometry

guidelines [128, 129]. To find out the optimal distance of the subject from the depth

sensor in PFT data acquisition, we carried out a depth measurement noise analysis

which is explained in Section 3.1. In Sections 3.2 and 3.3, we present the details our

single-Kinect and dual-Kinect PFT datasets. A summary is presented in Section 3.4.

3.1 Depth Measurement Noise Analysis

Kinect depth estimation suffers from measurement noise caused by the depth sensor

technology. At the time when we wished to use the state-of-the-art depth measurement

sensor, i.e., Microsoft Kinect V2, there was no public data on its noise characteristics.

Thus, we performed a planar depth measurement noise analysis experiment to find the

optimal distance range between the sensor and the subject for PFT respiratory data

acquisition.

In this experiment, we estimated the sensor measurement error by placing the Kinect at

various distances — from 60 cm to 500 cm at 20 cm intervals — in front of a white wall

under normal room temperature and lighting conditions, with the sensor’s optical axis

39
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Figure 3.1: Planar surface noise analysis of depth measurement within a dis-
tance range of 60− 500 cm.

approximately perpendicular to the wall. The sensor’s optical axis perpendicularity was

checked by measuring the distance of the leftmost and the rightmost edge of the sensor’s

casing from the wall. At each position, a sequence of 200 frames were recorded and 15 K

depth values were randomly sampled from a constant-size patch, and their STD was

computed. The patch was selected from the centre of the sensor’s viewpoint to minimise

the sensor’s lens distortion effects, and its size was approximately determined based on

the average size of a subject’s chest-wall area.

The results of our experiment show that the depth measurement noise increases between

∼60 and ∼80 cm, with the maximum error of 2.4 mm at the distance of ∼80 cm. The

error then decreases and drops to its minimum of 1.4 mm at ∼150 cm, and then starts

increasing again. Accordingly, we carried out all our experiments with the Kinect placed

at ∼150 cm from the subject for which the measurement error is 1.4 mm. Considering

the chest-wall respiratory motion range, i.e., ±2.5 cm for the tidal volume breathing

and ±10 cm for the main effort deep inhalation–exhalation approximately, the effect

of this error on the breathing depth measurements is minimal and limited to jitter

noises in the obtained volume-time data which can be easily addressed by applying a

smoothing filter as explained in Section 4.1.4. Figure 3.1 illustrates the results of our

noise analysis experiment in which the error (in millimetres) has been plotted against

the sensor distance to the wall (in centimetres). The presented error analysis shows a

non-linear behaviour similar to that of general ToF depth sensors [104, 116]. A similar

noise curve was reported by Breuer et al. [41].
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Figure 3.2: Kinect depth measurement precision validation within a distance
range of 60 − 500 cm. The depth measurement error for each distance is shown
in millimetres

We also evaluated the Kinect depth measurement precision by comparing the real dis-

tance of the sensor from the wall (groundtruth) to the average depth value of 15 K ran-

domly sampled pixels. Figure 3.2 shows the comparison of the measured distance against

the groundtruth (in centimetres) with the error shown at each distance (in millimetres).

However, noise may vary under different environmental lighting and temperature condi-

tions and also depends on the sensor temperature itself. These factors therefore require

the optimal distance to be recomputed for the environment the device is to be used in.

3.2 Single-Kinect PFT Dataset

To evaluate our remote PFT approach in Chapter 4, we need a vision-based PFT dataset

that contains:

• Participants’ chest-wall depth data acquired during FVC / SVC manoeuvre.

• Participants’ respiratory volume–time and flow–time data, as well as PFT mea-

sures, acquired by a ground truth device for the system training and validation.

More importantly, FVC and SVC spirometry tests must be perfomed in accordance

with ATS/ERS guidelines [128, 129]. According to these guidelines, a minimum of three

FVC / SVC manoeuvres with an acceptable repeatability criterion is required for the test
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to be considered as successful. For the FVC test, this criterion is to obtain three FVC

and FEV1 measures for which their difference with their corresponding measures across

the three manoeuvres is < 0.150 litres. Also, the forced exhalation duration must be

longer than 6 seconds (3 seconds for subjects aged< 10). Similarly, for the SVC test,

the acceptable repeatability criterion is to obtain three VC measures for which their

difference across the three manoeuvres is < 0.150 litres. The exhalation in the SVC

manoeuvre is performed in a relaxed manner, and can take a couple of seconds based

on the subject’s lung capacity. If the acceptable repeatability is not achieved in three

manoeuvres, performing additional manoeuvres is required. As per ATS/ERS guidelines

[128, 129], the participant must perform the FVC / SVC manoeuvre in an upright sitting

posture, using a standard clinically approved spirometer with a nose clip applied to avoid

air leakage. The spirometer must be capable of measuring a minimum volume of 8 litres

over a minimum 30-second duration. The spirometer must be calibrated before each

PFT session using a standard 3-litre syringe. To minimise the infection risk, disposable

mouthpiece and nose clip must be used. To avoid air leakage, the mouthpiece must be

completely sealed around the lips.

To the best of the author’s knowledge, such a PFT dataset was not available at the

time of doing this research. Thus, we collected a vision-based PFT dataset based on

ATS/ERS guidelines [128, 129] which covers all of the data requirements for evaluating

our proposed single-Kinect PFT approach in Chapter 4. Prior to the data collection, an

NHS ethical approval was granted from the North West England Research Ethics Com-

mittee (reference-15/NW/0040) for recruiting patients at Southmead Hospital Bristol

Respiratory Clinic.

As noted previously in Chapter 2, many of the related works minimised the participant’s

body movement artifacts by performing the data acquisition in the supine position.

Although this would restrict the subject’s body movement, it is not in accordance with

ATS/ERS guidelines [128, 129]. Moreover, it would be difficult for fragile COPD patients

to accomplish the deep forced inhalation–exhalation correctly in supine position. Thus,

for collecting our dataset, we asked patients to perform FVC / SVC manoeuvres in a

sitting posture to be in accordance with the guidelines. Patients sat upright on a chair,

facing the Kinect placed at a distance of 1.5 m away from the subject and at a height of

0.6 m, as seen in Figure 3.3a.

The subject’s frontal upper-body depth data and pose information were acquired in

each PFT performance using our open source single Kinect data acquisition software

[9]. Figure 3.3b shows a typical depth image of a subject performing PFT. The subject
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(a) (b)

Figure 3.3: (a) Data acquisition setup for collecting the single-Kinect PFT
dataset. (b) A typical Kinect depth image of a participant performing PFT.

was asked to put on a reasonably tight t-shirt to help improve the tracking accuracy of

the chest-wall motion. To be able to train and also validate our method, the respiratory

volume–time and flow–time data was simultaneously acquired using a clinically approved

spirometer, i.e., ‘HDpft 1000 High Definition’. This spirometer provides raw volume-time

and flow-time data at 200 Hz sampling rate for FVC and 50 Hz for SVC by which the

clinical PFT measures are computed using the spirometer software, i.e., “nSight Health”.

For validation, we compare our results against PFT measures directly taken from the

spirometer software.

A total of 590 PFT sequences, i.e., 287 FVC manoeuvres and 303 SVC manoeuvres,

were collected from 85 patients attending the respiratory clinic at Southmead Hospital

Bristol with a range of lung pathologies as they underwent their routine spirometry

test. The data collection spanned several months between March and July of 2015.

The 36 male and 49 female patients were of average age of 61.7±14.5 years, height of

166.2±8.2 cm, weight of 77.9±20.5 Kg and BMI of 28.1±6.4 Kg/cm2. From the total of

590 sequences recorded, 61 cannot be used, among which 15 are due to patient inability

to complete the spirometry manoeuvre, 8 are due to hardware failure and 38 are due to

significant body movement during the manoeuvre. The evaluation is therefore carried

out on the remaining 529 sequences (260 FVC and 269 SVC) from 85 patients. Note

that sequences are removed from the dataset only where their volume–time data has been

greatly affected by the body movement such that they cannot be processed for automatic

computation of the required keypoints, scaling factor computation and generalisation,

and PFT measures computation.
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Figure 3.4: Data acquisition setup for collecting the depth-based PFT dataset
using two opposing Kinects.

Data from this study is unavailable for sharing due to insufficient consent from the study

participants.

3.3 Dual-Kinect PFT Dataset

We collected this dual-Kinect dataset for evaluating our remote PFT approaches in

Chapters 6 and 7 in which we reduce the subject’s body movement artifacts during PFT

performance. Employing our open source 3-D data acquisition pipeline [4], we acquire

depth and body pose data of the participant’s trunk during FVC / SVC manoeuvres using

two opposing ToF Kinects. Each of the Kinects was placed at a distance of ∼1.5 m away

from the subject to minimise the depth measurement noise, and at a height of 0.6 m.

Figure 3.4 illustrates the dual-Kinect data collection setup. Each subject was asked to

wear a reasonably tight t-shirt and sit up straight on a backless chair. Participants

were neither restricted nor advised to be stationary during the PFT manoeuvres, and

the tests were performed as routine FVC / SVC spirometry test. The ground truth

respiratory data, i.e., volume–time and flow–time data as well as PFT measures, was

simultaneously collected using the clinical spirometer device — mounted on a clamp —

along with the software that we previously used in our single-Kinect data collection.

Figures 3.5a and 3.5b show the depth images of a subject acquired by the front and back

Kinects, respectively, during an FVC spirometry manoeuvre.

Thirty five healthy subjects (8 females and 27 males) were recruited for participating
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(a) (b)

Figure 3.5: Sample depth images of a subject performing a PFT spirometry
manoeuvre from (a) the front Kinect, and (b) the back Kinect viewpoints.

in this study. Subjects were of average age of 30.3±5.3 years, height of 175.4±8.0 cm,

weight of 73.6±11.1 Kg and BMI of 23.9±3.0 Kg/cm2. Ethical approval was obtained for

this study from the University of Bristol Research Ethics Committee (Reference 56124),

and each participant signed a written consent form.

Using the proposed experimental setup, a total of 156 FVC and 150 SVC sequences were

collected from the 35 subjects. Similar to the previous dataset, every test was performed

based on ATS/ERS guidelines [128, 129]. Thus, each subject underwent several FVC

and SVC spirometry tests (at least three) to achieve consistent PFT measures. Most of

the participants therefore had to perform extra manoeuvres to ensure consistency.

From the total of 306 PFT manoeuvres, the data for 5 sequences are omitted due to the

spirometer (2 sequences) and Kinect (3 sequences) failures, and 1 sequence’s data was

removed as a subject occluded their chest with their hands during the manoeuvre. Our

proposed depth-based whole-body photoplethysmography approach (Chapter 6) fails to

process the data from 2 sequences due to the subject’s complex body motion patterns in

these manoeuvres. Thus, in our proposed method in Chapter 6, the volume–time data

of all the other 298 sequences are successfully analysed, and their PFT measures are

computed and considered in the experimental analysis. However, our active trunk shape

modelling approach (Chapter 7), successfully analyses all 300 sequences’ volume–time

data and computes their keypoints.

We have released our dual-Kinect PFT dataset and it is publicly available for download

at: http://doi.org/ckrh.

http://doi.org/ckrh
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Table 3.1: Summary of our single-Kinect and dual-Kinect PFT datasets.

Specifications Single-Kinect Dataset Dual-Kinect Dataset

Total Subjects (females, males) 85 (49, 36) 35 (8, 27)

Smokes / Quit / Never 10 / 36 / 39 5 / 6 / 24

Total Acquired Sequences (FVC, SVC) 590 (287, 303) 306 (156, 150)

Age (mean±STD) 61.7±14.5 years old 30.3±5.3 years old

Height (mean±STD) 166.2±8.2 cm 175.4±8.0 cm

Weight (mean±STD) 77.9±20.5 Kg 73.6±11.1 Kg

BMI (mean±STD) 28.1±6.4 Kg/cm2 23.9±3.0 Kg/cm2

Total Used Sequences (FVC, SVC) 529 (260, 269) 300 (155, 145)

Excluded Sequences – Hardware Failure 8 5

Excluded Sequences – Motion Artifacts 38 1 (occluding chest-wall)

Excluded Sequences – Spirometry Failure 15 —

3.4 Summary

In this chapter, we first explained our depth measurement noise analysis study which

showed the optimal distance between the Kinect and subject as ∼1.5 m. Then, we

presented the specifications of the two datasets collected, i.e., the single-Kinect and

the dual-Kinect PFT datasets. Table 3.1 presents a summary of the specifications and

details of the two datasets. Thirty eight sequences were excluded from the single-Kinect

dataset as our algorithms failed to extract their keypoints automatically for scaling factor

computation and generalisation, and PFT measures computation due the destructive

effects of the body motion. Also, one sequence was excluded from the dual-Kinect

dataset as the subject occluded the chest-wall by their hand during the test.
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In this chapter, we present our single-Kinect remote PFT approach. After identifying

the subject’s chest-wall ROI automatically, and reconstructing its dynamic 3-D model in

each frame of a PFT sequence, Kinect volume–time data is computed by measuring the

chest-wall temporal volume variation (Section 4.1). Since this data presents the chest-

wall volume variation rather than real volume of exchanged air, it must be calibrated

by linearly scaling the chest volume to the lung volume using subject-specific (intra-

subject) scaling factors. To deal with the subject’s trunk movement, the volume–time

data is automatically split into tidal volume and main effort parts using several com-

puted keypoints, and each part is analysed separately (Section 4.2). In a learning phase,

we compute tidal volume and main effort scaling factors from training PFT manoeuvres

by performing linear regression analysis on every Kinect/spirometer volume–time data

pair. Then, we develop a scaling factor generalisation method to minimise the effect of a

subject’s trunk movement when calibrating a Kinect test volume–time data (Section 4.3).

Finally, using the extracted keypoints, we compute 7 FVC and 4 SVC measures from the

Kinect calibrated data (Section 4.4). We evaluate our remote approach on the single-

Kinect dataset which contains 529 sequences (260 FVC and 269 SVC) collected from 85

actual patients. The experimental results show a high correlation between our Kinect

PFT measures and the ground truth measures provided by the spirometer software. Fur-

ther, we evaluate the scaling factor learning method, and PFT measures’ reproducibility

and stability (Section 4.5). We conclude this chapter by presenting a summary of our

method and its achievements, and directions for future works (Section 4.6).

Figure 4.1 presents an overview of the our remote PFT approach.
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Figure 4.1: A schematic of the proposed method. The calibration scaling factors are computed for each training pair of
Kinect/spirometer volume–time data from which the optimum scaling factors for calibrating the Kinect test PFT sequence
are chosen using our scaling factor generalisation method.
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4.1 Chest-wall Modelling and Volume Estimation

4.1.1 Depth Measurement Noise Filtering

To filter the sensor’s depth measurement noise previously noted in Section 3.1, we use

a bilateral smoothing filter due its ability in eliminating high frequency noises while

preserving edges in depth data [140]. We apply

BF [I]p =
1

Wf

∑
q∈S

Gσs

(
‖p− q‖

)
Gσr

(
|Ip − Iq|

)
Iq, (4.1)

to every frame of the PFT captured sequence, where Wp is the normalization factor, Gσs

is a spatial Gaussian kernel, Gσr is a range Gaussian kernel, p and q are the locations

of the central and neighbouring pixels, ‖p − q‖ is the Euclidean distance between pixel

locations p and q, and I is the image to be filtered. The range parameter σr of the

bilateral filter is determined to be 1.5, which is approximately equal to the STD of

distance measurements obtained by the Kinect at the chosen distance of ∼150cm. In

particular, this value is selected as in [48], according to the level of noise at this distance,

to optimize the performance of the range component of the bilateral filter. For the

spatial filter, we select Wf = 13 which guarantees a good trade-off between precision

and processing speed, also reported by Camplani et al. in a similar filtering approach

[48]. Consequently, σs = Wf/6, such that the the significant part of the Gaussian kernel

(up to 3σs) is completely included within the selected window Wf [71].

4.1.2 Chest-wall 3-D Modelling

To segment a subject’s chest-wall point cloud from the captured scene in the filtered

depth image, a chest-wall ROI mask is automatically computed using Kinect skele-

ton joints data defined by ShoulderRight, ShoulderLeft, SpineShoulder and SpineMid

as seen in Figure 4.2a. While the mask width and height could be simply specified as

|ShoulderRight.x−ShoulderLeft.x| and 1.5×|SpineMid.y−SpineShoulder.y|, respec-

tively, it is not always a reliable approach because the mask might wrongly cover the

non-breathing-related regions as shown in Figure 4.2a. This happens due to the incon-

sistent skeleton joints position across subjects. To address this issue, we have developed

Algorithm 4.1 by which the mask is computed by tracking the top of the shoulders and

further processing of the joints. Figure 4.2b shows the final obtained mask.
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ShoulderRightShoulderLeft

SpineShoulder

SpineMid

incorrectly

computed

chest-wall

ROI mask 

(a)

final chest-wall

ROI mask

(b)

Figure 4.2: (a) Skeleton joints used in computing the chest-wall ROI mask, i.e.,
ShoulderRight, ShoulderLeft, SpineShoulder and SpineMid. As seen, using only
the original skeleton joints without any further processing, the chest-wall ROI
mask is incorrectly computed. (b) The correctly computed chest-wall ROI mask
using Algorithm 4.1.

input: depthImage, SoulderRight, ShoulderLeft, SpineShoulder, SpineMid
output: chestRectROI

1: initialise chestWidth = 2
3
× [ShoulderRight.x− ShoulderLeft.x];

2: initialise chestHeight = 3
2
× [SpineShoulder.y − SpineMid.y];

3: initialise ShRx = SpineShoulder.x− 1
2
chestWidth;

4: initialise ShLx = SpineShoulder.x+ 1
2
chestWidth;

5: initialise ShRy = ShoulderRight.y;
6: initialise ShLy = ShoulderLeft.y;
7: while

(
|depthImage(ShLx, ShLy)− depthImage(ShLx, ShLy − 1)| < 10 cm

)
do

8: ShLy = ShLy − 1;
9: while

(
|depthImage(ShRx, ShRy)− depthImage(ShRx, ShRy− 1)| < 10 cm

)
do

10: ShRy = ShRy − 1;
11: chestRectROI.x = ShLx;
12: chestRectROI.y = Max(ShLy, ShRy) + 1

5
× [SpineShoulder.y− SpineMid.y] + 1;

13: chestRectROI.width = chestWidth;
14: chestRectROI.height = chestHeight;

Algorithm 4.1: Chest-wall ROI mask computation algorithm.

Since the skeleton joints are unstable and noisy in consecutive frames due to the partial

occlusion of the face by the spirometer, the mask size and position would be very noisy

when computed using the joints data of each frame. We address this issue by computing

the mask from the subject’s joint data at the first frame of the sequence.
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Figure 4.3: (a) Reconstructed chest-wall 3-D model of a subject wearing a tight
t-shirt. (b) Chest-wall surface confined by a reference plane and lateral sides.

It is worth noting that Microsoft Kinect V2 obtains more consistent skeleton joints,

compared to its predecessor, when the subject is seated and partially occluded. The

chest-wall surface is then reconstructed by applying a 2-D Delaunay triangulation [57]

on the point cloud. Figure 4.3a shows a sample of a reconstructed chest-wall 3-D model.

4.1.3 Chest-wall Volume Estimation

In [136], Ostadabbas et al. estimated the chest-wall volume by obtaining the mean depth

value of this region. Given the 2.5-D data, we propose a method to estimate the chest-

wall volume by computing the volume between the generated chest-wall 3-D model and

a reference plane at a predefined distance from the sensor. Our approach is sufficient to

compute the volume–time data V (t) by measuring variations in the estimated volume,

based on the assumption that body movements are minimal during PFT and can be

ignored. The more accurately the chest-wall respiratory motion is tracked, the more pre-

cise the computed volume–time data would be. Ideally, the bare-chest would provide the

best results, but as this was not permitted by the granted ethical approval, participants

were asked to put on a reasonably tight t-shirt. Enclosing the reconstructed chest-wall

surface by surrounding lateral sides and a reference plane (Figure 4.3b), its volume is
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estimated using the divergence theorem,

˚
V

(∇ · F) dV =

"
S

(F · n) dS, (4.2)

where V is a compact solid region which is limited by a closed piecewise smooth surface

S, F is a vector field with continuous differentiable components, and n is an outward

pointing normal. Thus, the enclosed volume at time point t, i.e., Vt, is estimated by

computing
!
S
(F ·n) dS for each sub-surface of the enclosed chest-wall volume, i.e., chest

surface, lateral surface and reference plane, as

Vt =

"
S

(F · n) dS =

"
Sch

(F · nch) dSch +

"
Sl

(F · nl) dSl +

"
Sr

(F · nr) dSr. (4.3)

Since we want only the volume to be computed, i.e.,
˝

V
dV , then (∇ · F) = 1. To

facilitate the computation, the solid region is transformed in the coordinate system such

that the reference plane is placed on the xy-plane and the chest-wall surface displacement

is in the z axis (as seen in Figure 4.3). With this arrangement, by choosing F = z~k, the

only part of (4.3) which needs to be computed is
!
Sch

(F ·nch) dSch. Also, by considering

the whole chest-wall surface as a set of tiny triangles Ti (obtained by triangulation), we

compute the chest-wall volume by summing all these partial triangles as

Vt =

"
Sch

(F · nch) dSch =

"
Sch

(z~k · nch) dSch =
Nt∑
i=1

"
STi

(z~k · nTi) dSTi , (4.4)

where STi denotes the surface of triangle Ti, nTi is the normal vector of STi and Nt is

the total number of triangles. To compute the surface derivative of each triangle, i.e.,

dSTi , for further simplification of (4.4), each triangle surface STi is modelled using the

parametric surface representation

Pi(ui, vi) = pi0 + uiEi1 + viEi2, ui ≥ 0, vi ≥ 0, ui + vi ≤ 1. (4.5)

where Eij are two vectors inside STi defined as

Eij = pij − pi0 = (xij − xi0, yij − yi0, zij − zi0), 1 ≤ j ≤ 2, (4.6)

and pij =
{

(xij, yij, zij), 0 ≤ j ≤ 2
}

are the vertices of triangle Ti defined in counter-

clockwise order. Thus, given the infinitesimal measure of the surface area as

dSTi =

∣∣∣∣∂Pi(ui, vi)

∂ui
× ∂Pi(ui, vi)

∂vi

∣∣∣∣dudv =
∣∣∣Ei1 × Ei2

∣∣∣duidvi, (4.7)



4.1 Chest-wall Modelling and Volume Estimation 53

the final volume of the chest-wall surface at time point t is estimated as

Vt =
Nt∑
i=1

"
uivi

(z~k ·nTi)
∣∣∣Ei1×Ei2

∣∣∣duidvi =
Nt∑
i=1

(
1

6

3∑
j=1

zij×

∣∣∣∣∣∣∣
xi1 yi1 1

xi2 yi2 1

xi3 yi3 1

∣∣∣∣∣∣∣
)
. (4.8)

Similar to other related works, e.g., [30, 32, 45, 136, 204], we also estimate the uncali-

brated chest-wall volume by computing the average distance of all the pixels located in

the chest-wall region. The chest-wall averaging method is simple to implement and fast

to compute. We report results using both the chest-wall 3-D modelling and averaging

methods.

4.1.4 Kinect Volume–time Data Smoothing

The Kinect volume–time data is obtained for each sequence by estimating the chest-wall

volume as a function of time. Smoothing the data, in one form or another, is routinely

applied in all other works, for example in [68, 125, 137, 141]. Here, although the bilateral

filter is applied to each frame of the depth sequence, the obtained volume–time data

still remains considerably noisy (see Figure 4.4) as the chest-wall volume is estimated

temporally in a very limited breathing motion, i.e., ±2.5cm, approximately. Thus, we
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Figure 4.4: Kinect volume–time data before and after smoothing by a moving
averaging filter.
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use a non-causal moving average filter, which is a low-pass finite impulse response (FIR)

filter [179], to eliminate the high frequency noise in the Kinect volume–time data as

V (t) =
1

NW

(NW−1)/2∑
i=−(NW−1)/2

Vin(t− i), (4.9)

where Vin(t) and V (t) are the input and filtered volume–time data, respectively, and

NW is the averaging window size, which is selected as NW = 15 based on the filter

cut-off frequency of 1 Hz [133]. The cut-off frequency is chosen according to the range

of respiratory rates (frequency) for healthy adults at 12 − 20 bpm (0.2 − 0.34 Hz) [77],

elderly at 16− 25 bpm (0.27− 0.42 Hz) [127], and those with severe pulmonary disorders

at 36 bpm (0.6 Hz) [55]. The computed range of respiratory rates for the 85 patients of

our dataset, at 8−32 bpm (0.13−0.53 Hz), satisfies the chosen cut-off frequency of 1 Hz.

4.2 Volume–time Data Analysis

All PFT manoeuvres start with a few cycles of normal breathing, called tidal volume,

followed by the intended lung function test, called main effort. Since the Kinect volume–

time data measures the chest-wall volume in cubic metres (m3) relative to an arbitrary

plane, as opposed to the spirometer’s air volume measured in litres, we need to linearly

scale the y-axis in the volume–time data (using computed scaling factors) to enable the

correlation of the computed PFT measures. Note that this is not to imply that the depth

sensor truly measures lung volume, but chest-wall volume is a proxy for the amount of

air within the lungs that we show is linearly related to air flow as measured by the

spirometer.

4.2.1 Keypoint Computation

Several keypoints are automatically computed from the volume–time data in order to,

• identify tidal volume and the main effort parts of volume–time data,

• establish scaling factors, and

• compute PFT measures.
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Figure 4.5: Kinect and spirometer volume–time data and their corresponding
keypoints for (a) an FVC, and (b) an SVC manoeuvre.

Five keypoints are required for separating tidal volume and main effort in the FVC and

SVC volume–time data V (t), which are named as {C,D} (beginning and end of tidal

volume) and {E ,A,B} (beginning to the end of main effort), as illustrated in Figure 4.5.

In order to compute the keypoints correctly, first we need to find the extrema which iden-
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tify respiratory cycles during the PFT manoeuvre. Since the curve can be noisy (e.g.,

because of chest movement and coughing), local minima or maxima may be incorrectly

selected. To prevent this, the difference between two consecutive turning points present-

ing local extrema, needs to be greater than a threshold γ. Considering Vmin and Vmax as

the smallest and largest estimated chest-wall volume in a sequence (global minimum and

maximum), [Vmax − Vmin] indicates the maximum volume of exchanged air that occurs

during main effort. A fraction of this exchanged volume is defined as γ to identify local

extrema, i.e., γ = 1
ρ
[Vmax − Vmin], where ρ is defined as the ratio of the greatest exhaled

air during main effort (6.8 litres) to the smallest exhaled air during tidal volume (0.35

litres) among all sequences, which is ρ ≈ 20.

Note that SVC volume–time data presents inhalation and exhalation in the opposite

direction to the FVC, as seen in Figure 4.5. This means, while an increase in FVC

volume–time data corresponds to exhalation, it indicates inhalation in the SVC data.

This is similar to the volume–time data obtained from the spirometer.

FVC keypoints – Since lungs always contain a residual air volume, the amount of

exhaled air volume in deep expiration is greater than inhaled air in a deep inspiration.

Hence, keypoints A and B, indicating the beginning and end of deep expiration respec-

tively, are more detectable than other points, as seen in Figure 4.5a. These keypoints,

timestamped tA and tB respectively, are computed as a pair of consecutive minimum and

maximum points with the largest change in volume between them during expiration as

[tA, tB] = arg min
txi ,t

y
i

{
x(txi )− y(tyi )

}
, 1 = i . . . n, ∀txi , t

y
i 3 tyi > tx1 , (4.10)

where X and Y are sets of extrema computed as minima and maxima, x(.)∈X and

y(.)∈Y , txi and tyi are each minimum and maximum corresponding timestamps, and n

is computed as

n = min(|X|, |
|Y |⋃
i=1

y(tyi )|), tyi > tx1 . (4.11)

The local maximum directly before tA was selected as E (and also D as in FVC, keypoints

D and E are coincident in V (t)). The first extremum of the curve was selected as C.

In addition to the volume–time data, we also use the flow–time data to compute some
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FVC measures. The flow is defined as the rate of changing volume as

V̇ (t) =
∂V

∂t
. (4.12)

FVC peak flow and time zero – To compute some FVC test measures, such as

FEV1, we also need to compute the Peak Flow (PF ) point and ‘time zero’ t0 (Figure 4.6).

PF is the point at tPF with the maximum air flow speed during main effort exhalation,

tPF = arg max
t∈[tA,tB]

{ ∂
∂t

(
V (t)

)
}. (4.13)

Since FEV1 is a timed PFT measure, instead of using keypoint A (timestamped tA), a

starting ‘time zero’ t0 keypoint is used for computing FEV1. This is because keypoint A
is easily affected by hesitant or delayed exhalation in the main effort manoeuvre leading

to an incorrect and decreased FEV1 value. After subtracting V (tA) from the estimated

volume, t0 is computed using a standard clinical approach, i.e., back-extrapolation [129],

t0 = tPF −
[
V (tPF )− V (tA)

]
×
[
∂

∂t

(
V (t)

)∣∣∣
t=tPF

]−1

. (4.14)

Figure 4.6 shows the t0 and PF keypoints, and also the back-extrapolation method [129].

As seen, there is a notable difference between the t0 and tA as the start of the exhalation.
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Figure 4.6: ‘Time zero’ and peak flow keypoints in FVC volume–time data.
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SVC keypoints – In the SVC test, we extract {C,D} and {E ,B,A} keypoints for par-

titioning the volume–time data into the tidal volume and main effort parts, respectively,

as shown in Figure 4.5b. Similar to the FVC keypoints extraction method, to be able to

find other keypoints, we first compute {B,A} timestamps as,

[tB, tA] = arg max
tyi ,t

x
i

{
y(tyi )− x(txi )

}
, i = 1 . . .m, ∀tyi , txi 3 txi > ty1, (4.15)

where notations are similar to (4.10) and m is computed as

m = min(|
|X|⋃
i=1

x(txi )|, |Y |), txi > ty1 . (4.16)

Here, in the volume–time data V (t), inhalation in SVC shows as exhalation in FVC.

Thus, we still use the exhalation part of the main effort, which is more reliable, to extract

B and A, similar to the FVC test. Keypoint E marks the beginning of inhalation in main

effort and is determined as the local minimum directly before tB. Like FVC, keypoint C
is chosen as the first extremum of the curve, and D is the local maximum directly before

tB. For computing SVC measures, four maxima keypoints
{
Fi
}4

i=1
and four minima

keypoints
{
Gi
}4

i=1
from the tidal volume part are also extracted (see Figure 4.5b).

4.2.2 Tidal Volume Analysis and Calibration

To compute PFT measures, our method first needs to learn the calibration scaling factors

per subject (intra-subject) by which it would be able to calibrate the Kinect volume–time

data of a test sequence and compute its PFT measures without using any spirometer

data. For this, we

(i) temporally align the Kinect and spirometer training data,

(ii) compute intra-subject scaling factors, and

(iii) use them to calibrate a Kinect test data.

We perform the alignment and scaling of the tidal volume and main effort parts sepa-

rately, to take into consideration any inevitable trunk movement when subjects take a

deep inhalation, followed by a maximal exhalation.

After selecting the tidal volume part of the Kinect and spirometer volume–time data

using the C & D keypoints, we perform some pre-processing operations on these two
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sub-signals to allow them to be directly processed and compared. The spirometer sub-

signal is sampled at the Kinect sampling rate of 30 Hz. Both signals are normalized to

zero mean. Finally, the two sub-signals are synchronized by computing the optimal time

delay using windowed cross-correlation,

τdelay = arg max
τ

( +∞∑
−∞

V ∗k (t)Vs(t+ τ)

)
, (4.17)

where V ∗k (t) and Vs(t) denote the complex conjugate of the Kinect normalized tidal

volume and spirometer sub-sampled and normalized tidal volume data, respectively.

The tidal volume scaling factor can be computed using only a pair of consecutive min-

imum and maximum points, however this is not very reliable. We model it with a first

degree polynomial,

V̂s = ξtv · V̂k + ψtv, (4.18)

where V̂s and V̂k are sub-sampled and aligned Kinect and spirometer tidal volume data,

ψtv is the offset between the Kinect and spirometer tidal volume parts, and ξtv presents

the tidal volume scaling factor. Since the Kinect and spirometer tidal volume parts are

mean-zero normalized, then ψtv ≈ 0.

However, in many cases, this approach is insufficient to deal with an incremental or

decremental trend in the data that can appear in one or both of the Kinect and the

spirometer data. Figure 4.7a shows example Kinect and spirometer tidal volume data
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Figure 4.7: (a) Existing trends in the Kinect and spirometer tidal volume data.
(b) The Kinect data is incorrectly calibrated due to the existing trend.
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each plotted on a different scale, with the left y-axis for the uncalibrated Kinect volume

and the right y-axis for the spirometer volume (litres). Both volume–time data exhibit

such a trend which makes the extraction of a correct scaling factor (or an alignment

process) a cantankerous task. Figure 4.7b shows the calibrated Kinect tidal volume data

before the detrending process. As seen, the Kinect data has been incorrectly calibrated

due to the existing trends which affect the computation of tidal volume scaling factors.

This trend might occur due to one or more reasons: the use of a nasal Oxygen mask by

patients during the test (which affects only the spirometer data), lung hyperinflation, or

the subject’s trunk movements.

A simple approach to modelling the trend to help eliminate it, would be linear regression.

However, we find this to be insufficient due to the non-linear nature of the trend, thus we

apply Empirical Mode Decomposition (EMD) [93] to estimate the trend more accurately.

EMD is an adaptive method to decompose a non-linear and non-stationary signal in the

time domain into its individual components, i.e., Intrinsic Mode Functions (IMFs) and

a residual r,

s(t) =
l∑

j=1

IMF j(t) + r(t), (4.19)

from which no more IMFs can be extracted.

Figure 4.8a present the first three IMFs and the residual of a tidal volume data where

the residual displays the signal trend (solid pink). Figure 4.8b shows the modified tidal

volume data after subtracting the residual. Figure 4.8c shows the Kinect and spirometer

tidal volume data with their trend estimated and removed by EMD, and the Kinect
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Figure 4.8: (a) Original Kinect tidal volume data, IMF s and the residual signal.
(b) Tidal volume data after removing the trend. (c) Correct calibration of Kinect
tidal volume after removing the trend.
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volume–time data has been calibrated using the correct tidal volume scaling factor. Note

we use the modified tidal volume data (detrended by EMD) only for temporal alignment

and computing scaling factors while other analysis are performed on the original Kinect

and spirometer data.

4.2.3 Main Effort Analysis and Calibration

As stated in Section 4.2.2, the Kinect and spirometer volume–time data are aligned

only using their tidal volume parts to avoid errors arising from the subject’s upper-body

movement during main effort. Then, the main effort scaling factor (ξme) is obtained by

solving

V̂s = ξme · V̂k + ψme, (4.20)

using only theA & B keypoints on each signal as they are less affected by motion artifacts

and thus more reliable. Unlike in the tidal volume calibration process where ψtv is zero,

here, ψme correlates with the upper-body movement and appears as an offset along the

y-axis. However, in scenarios where subjects are stationary during the whole test (e.g.,

see Figure 4.5b), then ψme ≈ 0, and there is no offset between the tidal volume and main

effort parts.

We calibrate the tidal volume and main effort parts individually, and generate two

calibrated Kinect volume–time data. For the first, the whole Kinect volume–time data is

scaled by multiplying by the tidal volume scaling factor ξtv. Then, it is vertically aligned

with the spirometer tidal volume part by making both the Kinect and spirometer tidal

volumes zero-mean, as shown in Figure 4.9a. For the second, the whole Kinect volume–

time data is scaled by multiplying by the main effort scaling factor ξme, and vertically

aligned with the spirometer tidal volume part by adding the main effort offset ψme to

all Kinect volume–time data, as shown in Figure 4.9b.

4.3 Scaling Factor Generalisation

So far we have shown that we can compute PFT measures from the Kinect volume–

time and flow–time data which are calibrated using scaling factors computed from the

corresponding spirometer volume-time data. We refer to this as an ‘intra-test’ procedure.
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Figure 4.9: Calibrating and aligning Kinect volume–time data using (a) tidal
volume part, and (b) main effort part.

However, we need to remove this dependency, so we can compute measures for a new

trial1 using only Kinect volume–time data, i.e., a more practical ‘intra-subject’ procedure.

While our experiments show that there is a linear relation between a subject’s chest-wall

motion and the volume of exchanged air, the coefficient of this relationship varies from

one subject to another, since it depends on the subject’s physical specifications, age,

gender, race and health condition. In theory, this relationship should remain unchanged

for a subject who performs a test several times (even on different days) with the same

system configuration. However, in practice, this is only true for the tidal volume scaling

factors, but not for the main effort scaling factor due to the subject’s trunk motion. To

overcome this problem, we analyse the tidal volume and main effort stages separately

and compute scaling factors for them individually. Since there is no significant movement

during tidal volume, it should be possible to detect trunk movement during main effort

by comparing scaling factors ξtv and ξme. However, even when ξtv and ξme are very similar

(i.e., ξtv/ξme ≈ 1), which implies there is no trunk motion, the Kinect volume–time data

might still be affected by trunk movements. This can be categorised in two ways:

(i) Backward motion at the beginning of deep inhalation (between E and A keypoints)

for FVC and SVC tests, and

(ii) Forward lean at the beginning or middle of the deep and fast exhalation (after A in

1A trial refers to each performance of the FVC/SVC test by each subject.



4.3 Scaling Factor Generalisation 63

0 3 6 9 12 15 18 21 24
Time (S)

-5

-4

-3

0

1

2

V
o

lu
m

e 
(L

)

Volume-time Curve for FVC Effort

Spirometer
min keypoint
max keypoint
TV end keypoint
Kinect
min keypoint
max keypoint
TV end keypoint

{ξ
tv

 = 0.101, ξ
me

 = 0.105
=

}= ψ
me

ψ
me

B

A

D/E

(a)

0 3 6 9 12 15 18
Time (S)

-3

-2

0

1

V
o

lu
m

e 
(L

)

Volume-time Curve for FVC Effort

Spirometer
min keypoint
max keypoint
TV end keypoint
Kinect
min keypoint
max keypoint
TV end keypoint

ψ
me

ψ
me

ξ
tv

 = 0.136, ξ
me

 = 0.130

A

D/E
B

moving
back

moving
forward

(b)

Figure 4.10: Two different types of trunk motion patterns during main effort
breathing. Even very close values of ξtv & ξme (specified in top of the figures) does
not indicate the subject’s trunk movement status, i.e., moving versus motionless,
during the main effort breathing.

both tests), and then a move back at the end of exhalation such that it compensates

the first forward lean – which might be also accompanied by the motion pattern in

(i) as well.

Figures 4.10a and 4.10b present two examples of volume–time data related to categories

(i) and (ii), and their scaling factors. The effects of similar motion artifacts on chest-wall

volume estimation have also been reported in [137, 206], previously.

The similarity of the motion patterns of trunk movements across different trials of a

subject allows us to estimate the best matching scaling factors for calibrating the Kinect

volume–time data of a new trial. This means that unless there is unexpected body

movement, we can train our system to learn the tidal volume and main effort scaling

factors for each subject, which enables us to compute PFT measures directly from the

Kinect volume–time data without using spirometer data when testing.

Training phase – We use training data, provided as pairs of corresponding Kinect and

spirometer volume–time data from training trials, to compute training tidal volume scal-

ing factors
{
ξ`tv
}ntv
`=1

and training main effort scaling factors and offsets
{

(ξ`me, ψ
`
me)
}nme
`=1

,

as explained in Sections 4.2.2 and 4.2.3. ntv and nme are the number of tidal volume and

main effort training trials, respectively.
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Testing phase – We calibrate the Kinect volume–time data of a test trial, by applying

the best matching scaling factors and offsets learned from the training phase. Our

analysis shows that similar intra-subject Kinect volume–time data can be calibrated

using similar scaling factors and offsets as they present similar chest-wall movement which

is a proxy for similar inhalation and exhalation air flow measured by the spirometer.

Thus, to calibrate a test Kinect volume–time data, we find the best matching scaling

factors and offsets among the training scaling factors using the curve similarity measures

Ftv =
1

4

4∑
i=1

[
Vk(tFi)− Vk(tGi)

]
, and (4.21)

Fme =
[
Vk(tB)− Vk(tA)

]
, (4.22)

for tidal volume and main effort parts, respectively, where Vk(t) is the original Kinect

volume–time data, and tA, tB, tFi and tGi are automatically computed keypoint times-

tamps, as introduced in Section 4.2.1.

For the FVC test, the estimated main effort scaling factor ξ′me is computed as

ξ′me = ξkme 3 k = arg min
j∈[1..nFS ]

{∣∣F test
me − F j

me

∣∣}, (4.23)

where F test
me denotes the main effort curve similarity measure extracted from the Kinect

test volume–time data in (4.22), F j
me is the same measure for the jth Kinect train-

ing volume–time data, j denotes different trials,
{
ξ`me
}nFS
`=1

states the training main ef-

fort scaling factors, and nFS is the total number of training FVC and SVC trials for

this subject. Since vital capacity,
∣∣Vs(tA)− Vs(tB)

∣∣, is equal for FVC and SVC tests

(notwithstanding the reproducibility measurement error), we also use training SVC tri-

als to estimate the best matching scaling factors for the FVC test trial. As no measure is

computed from the tidal volume section in FVC tests, Ftv is not extracted and therefore,

ξ′tv is not computed.

Similarly, for the SVC test, the estimated tidal volume scaling factor ξ′tv and the esti-

mated main effort scaling factor and offset (ξ′me, ψ
′
me), are computed as

ξ′tv = ξktv 3 k = arg min
j∈[1..nS ]

{∣∣F test
tv − F

j
tv

∣∣}, and (4.24)
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(ξ′me, ψ
′
me) = (ξkme, ψ

k
me) 3 k = arg min

j∈[1..nFS ]

{∣∣F test
me − F j

me

∣∣}, (4.25)

respectively, where nS is the total number of only SVC training trials. The tidal volume

part of the FVC data is not used for the estimation of ξ′tv because the tidal volume breath-

ing cycles are too short in FVC and are not reliable for computing Ftv and consequently

the tidal volume scaling factor. Note that in all FVC and SVC tests, ψ′tv ≈ 0.

The proposed scaling factor generalization approach is evaluated using leave-one-out

cross-validation (LOOCV), which repeatedly takes one trial as the test and the rest as

the training data. LOOCV is a more suitable approach than k-fold cross-validation or

other conventional validation methods, due to the limited number of FVC and SVC trials

for each subject.

After calibrating the Kinect volume–time data of the test trial using the estimated tidal

volume and main effort scaling factors and offsets, PFT clinical measures are computed.

4.4 Clinical PFT Measures Computation

4.4.1 FVC Measures

Within an FVC spirometry test, several clinical measures are provided by the spirometer

software. In addition to these numerical measures, there are two common ‘qualitative’

presentations of lung function test, i.e., volume–time curve (Figures 4.11a) and flow-

volume curve (Figure 4.11b), that pulmonologists often use to visually diagnose problems

in the patient’s breathing function.

The 7 most significant FVC measures that we compute using the Kinect FVC volume–

time and flow–time data are:

(i) FVC as the maximum amount of air in litres blown out after a maximal inhalation,

determined as the volume change between keypoints A & B, i.e.,

FV C =
[
V (tB)− V (tA)

]
,

(ii) FEV1 (Forced Expiratory Volume) as the volume of air forcibly expired in 1 second

starting from ‘time zero’ (4.14), i.e., FEV 1 =
[
V (t0 + 1)− V (t0)

]
,
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Figure 4.11: Clinical FVC measures illustrated on (a) a sample volume–time
data, and (b) its corresponding flow–volume data extracted from our single-
Kinect PFT dataset.

(iii) PEF (Peak Expiratory Flow) as the maximum speed of exhaled air, i.e.,

PEF = V̇ (tPF ),

(iv) FEF25% (Forced Expiratory Flow as flow of exhaled air at 25% of FVC, i.e.,

FEF25% = V̇ (t0.25FV C),
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(v) FEF50% as flow of exhaled air at 50% of FVC, i.e., FEF50% = V̇ (t0.5FV C),

(vi) FEF75% as flow of exhaled air at 75% of FVC, i.e., FEF75% = V̇ (t0.75FV C), and

(vii) FEF25−75% as the mean forced expiratory flow between 25% and 75% of the FVC,

computed as

FEF25−75% =
0.75FV C − 0.25FV C

t (FEF25%)− t (FEF75%)
. (4.26)

FVC, FEV1 and FEF25−75% measures are illustrated in Figures 4.11a and 4.11b, and

PEF, FEF25%, FEF50% and FEF75% measures are marked on the flow–volume curve in

Figure 4.11b. Note that since the last four measures are computed using volume–time

and flow–time data, only their corresponding locations are marked as ‘index’ on volume–

time curve in Figure 4.11a using their timestamps.

4.4.2 SVC Measures

Within an SVC test, four clinical measures and only one ‘qualitative’ presentation of

lung function, i.e., the volume–time curve (Figure 4.12), are provided by the spirometer

software, which we compute on the Kinect volume–time data:
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Figure 4.12: Clinical SVC measures illustrated on a sample volume–time data
extracted from our single-Kinect PFT dataset.
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(i) VC (Vital Capacity) as the volume change between full inspiration and complete

expiration between keypoints B & A,

V C =
[
V (tB)− V (tA)

]
, (4.27)

(ii) IC (Inspiratory Capacity) as the volume change between taking a slow, full inspi-

ration and the passive end-tidal expiration, i.e. difference of volume at keypoint B
and the average volume at group keypoints G within the tidal volume section,

IC = V (tB)− 1

4

4∑
i=1

V (tGi), (4.28)

(iii) TV (Tidal Volume) as the volume of air inspired and expired at rest condition,

i.e. the average volume difference between group keypoints F & G,

TV =
1

4

4∑
i=1

[
V (tFi)− V (tGi)

]
, (4.29)

(iv) ERV (Expiratory Reserve Volume) as the volume change between passive end-tidal

expiration and complete expiration, i.e. difference of the average volume at group

keypoints G within the tidal volume section and volume at keypoint A,

ERV =
1

4

4∑
i=1

V (tGi)− V (tA). (4.30)

Figure 4.12 illustrates these measures on a sample SVC volume–time data from our

single-Kinect PFT dataset. As noted previously in Chapter 3, each patient performed

FVC and SVC tests several times (at least three) to ensure that the obtained PFT

measures are in accordance with the spirometry ATS/ERS guidelines [128, 129].

4.5 Experimental Results

We evaluate our proposed method on the single-Kinect PFT dataset previously explained

in Chapter 3. This dataset contains 529 sequences (260 FVC and 269 SVC) collected

from 85 patients using both a Microsoft Kinect V2 and a spirometer.
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4.5.1 Intra-Test PFT Evaluation Results

Tables 4.1 and 4.2 report the chest-wall 3-D modelling and the chest-wall averaging

correlation coefficients (λv & λm) between the Kinect and the spirometer for all FVC

and SVC test measures, along with the mean (µv & µm) and STD (σv & σm) of the L2

error for all 85 subjects (529 sequences). For each measure, we also report the ratio of

the mean of the L2 error to the mean value of that measure (Ωv & Ωm).

The results show that the Kinect and the spirometer correlate well for the FEV1 measure

in the FVC tests and across all the SVC measures. The correlation amongst the other

FVC measures is less strong due to the potential issues we describe later in Section 4.5.4.

The results from both volume estimation methods are very close, with those from the

chest-wall averaging method just edging ahead. Although the results from the chest-wall

Table 4.1: Intra-test correlation coefficient (λv & λm), mean (µv & µm) and
STD (σv & σm) of L2 error, and ratio of each measure’s L2 error to the mean
value of that measure (Ωv & Ωm) for FVC measures.

FVC FEV1 PEF FEF25% FEF50% FEF75% FEF25-75%

(L) (L) (L/S) (L/S) (L/S) (L/S) (L/S)

3
-D

M
o
d

e
l µv 0.006 0.285 1.685 1.696 0.931 0.576 0.757

σv 0.041 0.241 1.284 1.282 0.916 0.637 0.676

Ωv 0.002 0.137 0.490 0.597 0.375 0.559 0.414

λv 0.999 0.929 0.756 0.701 0.687 0.577 0.719

A
v
e
ra

g
in

g µm 0.005 0.266 1.618 1.650 0.877 0.528 0.737

σm 0.039 0.217 1.259 1.246 0.830 0.576 0.665

Ωm 0.002 0.127 0.464 0.572 0.340 0.554 0.409

λm 0.999 0.940 0.774 0.719 0.729 0.595 0.728

Table 4.2: Intra-test correlation coefficient (λv & λm), mean (µv & µm) and
STD (σv & σm) of L2 error, and ratio of each measure’s L2 error to the mean
value of that measure (Ωv & Ωm) for SVC measures.

VC (L) IC (L) TV (L) ERV (L)

3
-D

M
o
d

e
l µv 0.011 0.045 0.066 0.049

σv 0.043 0.040 0.066 0.048

Ωv 0.004 0.019 0.072 0.105

λv 0.999 0.998 0.973 0.991

A
v
e
ra

g
in

g µm 0.011 0.043 0.059 0.046

σm 0.045 0.040 0.065 0.046

Ωm 0.004 0.019 0.065 0.098

λm 0.999 0.998 0.976 0.992
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averaging and 3-D modelling approaches should be identical in theory, we believe the 3-D

modelling approach is slightly less accurate due to the chest-wall surface reconstruction

errors. This confirms that the 3-D modelling approach, with its greater space require-

ments and time complexity, does not necessarily obtain better results than the simple

and fast averaging method. The FVC and VC results (gray background columns) are

highly correlated due to the rescaling of the y-axis in the volume–time data using their

respective keypoints A & B.

4.5.2 Intra-Subject PFT Evaluation Results

Tables 4.3 and 4.4 present the correlation coefficients (λ′v & λ′m), and the mean (µ′v &

µ′m) and STD (σ′v & σ′m) of L2 error for FVC and SVC computed measures for all 85

Table 4.3: Intra-subject correlation coefficient (λ′
v & λ′

m), mean (µ′
v & µ′

m)
and STD (σ′

v & σ′
m) of L2 error, and ratio of each measure’s L2 error to the

mean value of that measure (Ω′
v & Ω′

m) for FVC measures.

FVC FEV1 PEF FEF25% FEF50% FEF75% FEF25-75%

(L) (L) (L/S) (L/S) (L/S) (L/S) (L/S)

3
-D

M
o
d

e
l µ′

v 0.213 0.332 1.756 1.757 0.933 0.570 0.758

σ′
v 0.215 0.280 1.301 1.272 0.910 0.606 0.662

Ω′
v 0.074 0.163 0.523 0.633 0.385 0.564 0.425

λ′
v 0.968 0.906 0.753 0.703 0.682 0.585 0.717

A
v
e
ra

g
in

g µ′
m 0.200 0.299 1.717 1.735 0.882 0.509 0.727

σ′
m 0.186 0.243 1.286 1.254 0.822 0.540 0.670

Ω′
m 0.071 0.146 0.508 0.621 0.354 0.553 0.417

λ′
m 0.975 0.927 0.769 0.715 0.715 0.603 0.721

Table 4.4: Intra-subject correlation coefficient (λ′
v & λ′

m), mean (µ′
v & µ′

m)
and STD (σ′

v & σ′
m) of L2 error, and ratio of each measure’s L2 error to the

mean value of that measure (Ω′
v & Ω′

m) for SVC measures.

VC (L) IC (L) TV (L) ERV (L)

3
-D

M
o
d

e
l µ′

v 0.237 0.269 0.118 0.297

σ′
v 0.239 0.269 0.137 0.310

Ω′
v 0.084 0.116 0.129 0.592

λ′
v 0.956 0.915 0.888 0.737

A
v
e
ra

g
in

g µ′
m 0.214 0.279 0.098 0.280

σ′
m 0.248 0.271 0.110 0.300

Ω′
m 0.075 0.119 0.107 0.561

λ′
m 0.963 0.919 0.924 0.750
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subjects. They also report the ratio of mean of the L2 error to the mean value of that

measure (Ω′v & Ω′m). Similar to the intra-test results, the chest-wall averaging method

provides slightly better results.

The FVC test results for λ′v & λ′m in Table 4.3 indicate strong correlation of the FVC

and FEV1 measures against the spirometer, with the other five measures correlating

reasonably well at a minimum of 0.603 for FEF75% in the chest-wall averaging method.

Furthermore, good correlation can be seen between the intra-subject and intra-test FVC

measures (Tables 4.1 and 4.3).

The SVC test results for λ′v & λ′m in Table 4.4 also show strong correlation against

the spirometer for VC, IC, and TV measures and good correlation for ERV. However,

the differences between intra-subject mean (µ′v & µ′m) and STD (σ′v & σ′m) of errors

(Table 4.4) and their intra-test counterparts (µv & µm and σv & σm from Table 4.2)

are higher than these differences in FVC test. This is because SVC requires two scaling

factors for the tidal volume and main effort parts of the curve, in addition to estimating

the offset ψ′me.

4.5.3 Statistical Analysis of Scaling Factors

The tidal volume and main effort test trials are calibrated using intra-subject scaling

factors ξ′tv & ξ′me, which are chosen from the training sets
{
ξ`tv
}nS
`=1

&
{
ξ`me
}nFS
`=1

, respec-

tively, using (4.23), (4.24), and (4.25) based on the similarity measures in (4.21) and

(4.22). The performance of the similarity measures, in terms of choosing the best intra-

subject scaling factors from the training set, is evaluated by computing the normalised

L2 error:

SMEtv =

√
(ξ′tv − ξctv)2

ξctv
and SMEme =

√
(ξ′me − ξcme)2

ξcme
, (4.31)

where ξctv & ξcme are the closest scaling factors in the training set to the original scaling

factors of the test trial ξotv & ξome. The original scaling factors are computed using the

corresponding spirometer data as explained in Sections 4.2.2 and 4.2.3.

Figures 4.13a and 4.13b report the distribution of these errors for all tidal volume and

main effort trials, respectively, in the range 0 − 30% at 5% interval and then in the

entire 30−100% range. As can be seen, ∼83% of tidal volume scaling factors and ∼83%
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Figure 4.13: (a) Performance analysis of intra-subject tidal volume similarity
measure, i.e., Ftv (4.21). (b) Performance analysis of intra-subject main effort
similarity measure, i.e., Fme (4.22).

of main effort scaling factors are within an error of less than 10%. Only ∼2% of tidal

volume scaling factors and ∼1% of main effort scaling factors have errors of greater than

30%.

Further, for each test trial, to compare the estimated intra-subject tidal volume and main

effort scaling factors ξ′tv & ξ′me to the original scaling factors ξotv & ξome, their normalised

L2 error is computed as

SCEtv =

√
(ξ′tv − ξotv)2

ξotv
and SCEme =

√
(ξ′me − ξome)2

ξome
. (4.32)

As seen in Figures 4.14a and 4.14b, which present the distribution of errors for all tidal

volume and main effort trials, ∼81% of tidal volume scaling factors and ∼87% of main

effort trials have an error of less than 15%. Only ∼4% of tidal volume scaling factors

and ∼2% of main effort scaling factors have an error of greater than 30%.

Considering ATS/ERS acceptable repeatability criterion [128, 129], i.e., obtaining at

least three FVC or VC measures with < 0.150 litres error across the repeated ma-

noeuvres, the acceptable range of intra-subject scaling factor is based on the subject’s

lung volume and pathology, age, body physical specifications and other clinical aspects.

Thus, if the estimated intra-subject scaling factor can calibrate the Kinect data with

< 0.150 litres error, the estimated scaling factor provides a clinically approved measure-

ment and the error would be in an acceptable range. For example, if the main effort
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Figure 4.14: (a) Intra-subject tidal volume scaling factors error analysis. (b)
Intra-subject main effort scaling factors error analysis.

original scaling factor ξome = 2.92 calibrates the Kinect VC measure to 3.66 litres, then

the estimated intra-subject scaling factor ξ′me = 2.81 for which the error is ∼4%, cali-

brates the measure to 3.52 litres which is still in the clinically approved range.

We also analysed the correlation between the tidal volume and main effort scaling factor

normalized L2 errors SCEtv & SCEme, and error of FVC and SVC computed measures.

Figures 4.15a and 4.15b, present this correlation for FVC and TV measures. As can
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Figure 4.15: (a) Correlation between the FVC measure error and the main
effort intra-subject scaling factor error SCEme. (b) Correlation between the TV
measure error and the tidal volume intra-subject scaling factor error SCEtv.



74 Chapter 4. Remote PFT Using a Single Kinect

be seen, there is a high correlation between the FVC measure error and the main effort

scaling factor error across all trials. This correlation is less strong for the TV measure

error and tidal volume scaling factor error. The reason for this is, tidal volume scaling

factors are computed using all data points of tidal volume part of volume–time data,

and TV measure itself is computed using group keypoints F & G (4.29). However, FVC

measure and main effort scaling factors are both computed using the same keypoints

A & B. Thus, they are better correlated (Figure 4.15a) than the TV measure error and

the tidal volume scaling factor error (Figure 4.15b).

4.5.4 Measurement Stability

It is important to note that even spirometer readings differ between multiple consecutive

trials for the same subject, thus requiring at least three trials with similar readings before

a clinician considers the results. This is illustrated in Figures 4.16a, 4.16b, 4.16c and

4.16d which present some example measures (FVC, FEF25%, PEF, and TV ), provided

by the spirometer and the proposed method for one subject from four consecutive trials.

To find out the correlation between spirometry reproducibility and the proposed method’s

error in computation of measures, we obtained the STD of each measure and its corre-

sponding error in all repeated trials for each patient. Figures 4.16e, 4.16f, 4.16g and 4.16h

show the computed correlation for FVC, FEF25%, PEF, and TV measures. These results

indicate that when the measures provided by the spirometer are less consistent, the error

between measures obtained by the proposed method and the spirometer increases.
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Figure 4.16: (a)-(d) Comparing the Kinect PFT measures FVC, FEF25%, PEF and TV, to the spirometer measures for
4 trials of a sample patient. (e)-(h) Correlation analysis between the standard deviation of the Kinect computed PFT
measures (FVC, FEF25%, PEF and TV) error, and the standard deviation of the PFT measures ground truth values from
the spirometer for the whole trials of all 85 patients.
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The subject’s trunk movement during a test is a primary reason for poor correlation and

this is more evident in main effort measures. A specific example of how trunk movement

(due to expiration pressure) can affect the FEF25−75% measure is in Figure 4.17, where the

estimation of 0.75FVC is sometimes compromised. In another observation, illustrated

in Figure 4.18, we found that as the FEF25% and PEF readings from the spirometer
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Figure 4.17: Trunk motion artifacts effect on the computation of FEF25−75%.
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Figure 4.18: Analysis of the correlation between the Kinect PEF and FEF25%

measures error and their spirometer values over the whole FVC sequences. As
seen, there is a linear relationship between the error of the Kinect PEF and
FEF25% measures and the ground truth values. The greater the measures is,
the greater their error. Potentially, this is due to extensive trunk motion arti-
facts when patients blow harder and faster into the spirometer to achieve higher
(better) PEF and FEF25% measures.
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increases, our proposed method’s error also increases. To the best of our knowledge, this

happens as subjects try to attain better lung function measures by blowing faster into

the spirometer which inevitably results in more trunk movement. PEF and FEF25% are

more affected by the patient’s trunk translation because,

• they are calculated using flow data which is the first derivative of the volume over

time and so is more sensitive to displacements, and

• PEF and FEF25% are located at the beginning of the main effort section (Fig-

ure 4.19), which is more affected by the movement.

Even subtle movements caused by leaning forward, due to forcible expiration, affects key-

point positions of these measures. In Figure 4.19a, although the main effort parts of the

curves match very well, their flow–volume curve is considerably different in Figure 4.19b

between the start of exhalation and the location of the FEF50% point.
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Figure 4.19: Qualitative comparison of a sample Kinect/spirometer volume–
time data and their PFT measure. Although the Kinect and spirometer volume–
time data are very similar in (a) at the main effort part, the corresponding
flow–volume data is different in (b) at the beginning of exhalation.
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4.6 Conclusion

We proposed a remote, non-invasive depth-based approach for Pulmonary Function Test-

ing. The proposed system generates Kinect-based volume-time and flow-time curves, and

by locating several keypoints automatically, we computed several FVC and SVC mea-

sures which we compared against a spirometer, and evaluated their reproducibility. We

analysed the subject’s trunk motion pattern to generalize scaling factors to be able to

compute intra-subject PFT measures for each subject, without having to use a spirome-

ter to calibrate against for each trial. We validated our system in a clinical environment

with 85 actual patients and achieved high intra-test and intra-subject correlation against

the spirometer.

In our future work, we plan to use two Kinects to decouple trunk motion and chest-surface

motion to increase the accuracy of our PFT measures. Another potential development

could be applying machine learning techniques to generalise the scaling factors by in-

troducing parameters such as height, weight and age in the estimation and remove the

need for subject-specific spirometry.



Chapter 5
3-D Data Acquisition and

Registration by Two Opposing

Depth Sensors

Methods for capturing the full extent of an object, or a complete scene, have been

proposed using handheld depth sensors and temporal fusion [96, 135, 212]. Alternatively,

static multi-sensor setups with varying overlapping requirements between the sensors

have been proposed to reconstruct dynamic scenes on frame-level basis [28, 60, 106, 130,

155, 171]. These avoid the need, and challenge, for alignment and fusion between frames

and can readily reconstruct dynamic scenes and deformable objects in real-time. For

example, Kowalski et al. [106] recently presented a 3D data acquisition system, using

up to four Kinect V2 sensors, in which they manually calibrated their system to register

the point clouds from each sensor in a two-step procedure involving rough estimation

and refinement. Their qualitative-only results showed good subjective performance for

general static and dynamic object reconstruction. However, their calibration stage is

cumbersome requiring self-designed markers, manual labelling of marker’s locations, and

sufficient overlap between the sensors.

While this work belongs to the category of static multi-sensor setup, we rely on a simpli-

fied approach of using two static opposing Kinect sensors with no overlap. Each sensor

can perceive nearly half of the object, resulting in frame-level reconstruction of dynamic

objects. This is valuable in applications where a less intrusive and more easily configured

setup is necessary, which inherently means as few sensors as possible and as little incon-

79
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venience to the subject as possible. One such application is within healthcare pertaining

to respiratory measurements or pulmonary function testing, for which depth-based ap-

proaches have recently emerged [136, 137, 180, 182, 206], albeit for a single sensor.

The proposed approach is able to reconstruct rigid and dynamic objects to high accuracy,

which we evaluate quantitatively on rigid objects and qualitatively on animated subjects.

Ease of setup and high accuracy (range of average errors is 0.21−0.84 cm across 3 objects

and 3 placements) is achieved through,

• a fast and automatic calibration process using double-sided calibration chessboards

placed at varying depths,

• synchronising intra-Kinect RGB and depth channels as well as two data acquisition

PCs, and

• a highly accurate point cloud registration approach using only the infrared stream

to specify real world coordinates, as opposed to using RGB and depth which is

likely to increase registration error.

The main contributions of our work are twofold. First, the deployment of only two

Kinect sensors for 3D data capture minimises the overall operation space, reduces the

system setup and calibration effort, lowers system costs, and minimises the temporal

frame alignment error. Second, unlike many other previous approaches, which require

a considerable overlap between point clouds for registration [100, 106, 130, 155, 171],

our proposed method is able to perform temporal and spatial alignment of two non-

overlapping point clouds.

In this chapter, we present our open source1 3-D data acquisition and calibration pipeline

using two opposing RGB-D sensors (Kinect V2). First, the relative pose of the two

Kinects is estimated through a calibration stage. In this stage, after correcting the lens

distortion of the two Kinect depth sensors, the crossing points of three double-sided

chessboards are automatically detected from the illumination-normalised infrared im-

ages captured by the two facing Kinects. Automatically establishing the corresponding

crossing points, the rigid transformation parameters are computed using a singular value

decomposition approach (Section 5.1). Transferring the two Kinects’ point clouds into

a joint coordinate system, these parameters are then used to align and register point

1https://github.com/BristolVisualPFT/

https://github.com/BristolVisualPFT/
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clouds at frame level in the registration and reconstruction stage (Section 5.2). We val-

idate the proposed system quantitatively by performing experiments on rigid objects

in which dimension, surface information and volume of three boxes of known-size are

automatically measured and compared against ground truth measurements. The quan-

titative validation results confirm the proposed method’s accurate spatial alignment. To

assess our method’s ability in temporal synchronisation, we qualitatively report on non-

rigid object reconstruction by way of human subjects in motion, e.g., waving hands or

undergoing respiratory functional assessment (Section 5.3). We finish this chapter with

a conclusion on our proposed method and giving directions for potential extension for

future work (Section 5.4).

5.1 Synchronisation and Calibration

Figure 5.1 presents an overview of our proposed calibration approach.
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Figure 5.1: Schematic of our proposed calibration approach.
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Figure 5.2: Two facing Kinects are placed at a distance of ∼3m from each
other which provides sufficient space for the data acquisition. The optimal loca-
tion for minimal depth measurement noise is in the middle of the two Kinects
according to our study in Chapter 3. Three double-sided calibration chessboards
are placed at different depths to provide more distinct correspondences over the
whole calibration space.

5.1.1 System Configuration and Setup

We use two Kinects facing each other with ∼3m distance between them as seen in Fig-

ure 5.2, which allows objects to be captured at the optimal distance away from each

sensor. For registering and aligning two sets of 3-D points, we need at least three cor-

responding and distinct 3-D points in each point set [35]. However, using more distinct

points distributed over the calibration space improves the alignment accuracy and de-

creases the registration error.

The easiest solution for calibrating multiple depth sensors would be deploying calibra-

tion boxes [100] by which the calibration parameters can be estimated using the boxes

specifications, e.g., corners for establishing the correspondence points. However, this is

not an appropriate solution for us because,

• Kinects cannot acquire all of the corners of calibration boxes depth data due to

the Kinects facing topology,

• depth measurement at edges and corners is noisy and inaccurate, and

• calibration cannot be performed automatically as corners must be selected man-
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ually which not only affects the overall registration accuracy but also makes it a

bothersome calibration method for users.

Thus, to help with the calibration, we use three double-sided chessboards which are

placed at different depths from the Kinects (Figure 5.2). To make a double-sided chess-

board, a 5 × 6 square pattern (with each square size of 55 × 55mm2) is printed on two

A3 sheets, which are then joined back to back and held by a frame such that the chess-

boards’ crossing points are aligned as precisely as possible. This solution provides us

with three groups of points (3× 20 inner points in total) so that the points in any group

have considerably different (x, y, z) coordinates from points in the other groups.

5.1.2 Data Acquisition and Synchronization

Unlike Kowalski et al. [106], our system is designed to capture all four of RGB, depth,

infrared and body joints data in simultaneous processing threads at full device frame

rate (30 fps). Online visualisation is possible, although at the expense of lower frame

rates. Our proposed system is able to generate RGB point clouds from pre-recorded and

synchronised RGB and depth data.

Here, we wish to achieve ‘synchronization’ between corresponding frames of different

data modalities in each Kinect separately (intra-Kinect) and also, between corresponding

frames of the same type in different Kinects (inter-Kinect). Intra-Kinect synchronization

is necessary to identify temporally corresponding RGB, depth, and skeleton data frames

in each Kinect, which is simply performed by using the timestamps provided for each

data frame in a Kinect. Inter-Kinect synchronization is achieved by synchronising the

system time of two locally networked PCs (one for each Kinect) using Network Time

Protocol (NTP) and recording the Kinects’ system and threads timestamps for aligning

each data frame. Since there are no means of triggering multiple Kinects simultaneously

by software control commands, this can cause a maximum lag of 33 ms between our two

Kinects, which would cause a synchronization error of at most one frame. We reduce

this error by sending only one trigger command at the beginning of the capture, from

one machine to another through the network, however the error is dependant on the

network traffic and speed. Note that, the more Kinect sensors within a system, as in

[13, 14, 15, 28, 29, 106, 123], the greater is this error.



84 Chapter 5. 3-D Data Acquisition and Registration by Two Opposing D...

(a) Before distortion correction (b) After distortion correction

Figure 5.3: A sample of Kinect infrared images before (a) and after (b) lens
distortion correction.

5.1.3 Lens Distortion Correction

Kinect V2 depth images are computed from the captured infrared images and therefore,

both images have the same optical specifications. Similar to other lens-based imag-

ing devices, the Kinect also suffers from lens distortion. Thus, both the infrared and

depth image distortions are corrected by applying the Brown model [43] using the man-

ufacturer’s built-in radial distortion coefficients specifically extracted from each Kinect.

Since the manufacturer’s built-in tangential distortion coefficients are zero, they have

not been taken into account in distortion correction. Figures 5.3a and 5.3b show an

infrared captured image before and after lens distortion correction, respectively.

5.1.4 Establishing Crossing Points Correspondences

We use real world coordinates of the crossing points of three double-sided chessboards

(3 × 20 points) to align point clouds and register them to a joint coordinate system.

Previous approaches [13, 14, 15, 100, 106, 123] combined RGB and depth data to obtain

coordinates of points required for calibration. However, we detect the coordinates of

the crossing points [79] from the intensity and depth space obtained by illumination-

normalised infrared images and depth images, respectively. Using only infrared sensor

instead of using both RGB and depth, increases point cloud registration accuracy by

eliminating the error caused by RGB to depth space mapping. Figures 5.4a and 5.4b

illustrate the detected chessboards’ crossing points where the corresponding crossing

point sets of each chessboard in the two Kinects’ infrared images are indicated in the
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Figure 5.4: Establishing crossing points correspondences from the illumination-
normalised infrared images captured by the two Kinects. The corresponding
crossing point sets of each chessboard each view are indicated in the same color.
The zoomed-in chessboard shows the established correspondences in more details.

same color.

5.1.5 Kinects Pose Estimation

As there is an insufficient number of overlapping points in our point clouds, an iterative

point matching algorithm, like ICP [35, 208], is unsuitable for aligning them. Thus,

we considered one Kinect’s coordinate system as reference, and then the other Kinect’s

relative pose was estimated using translation T and rotation R matrices. The transfor-

mation matrices T and R was computed by registering 3 × 20 corresponding crossing

points of the reference and the second Kinect, i.e., Q and Q′, as

Q′ = R×Q + T. (5.1)
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The rotation matrix R is computed by applying singular value decomposition on a cross-

covariance matrix M created using Q and Q′ point sets [49],

M =
1

N

N∑
j=1

[
(Qj −Qµ)(Q′j −Q′µ)T

]
, (5.2)

where Qj and Q′j denote the jth points in Q and Q′ point sets, Qµ and Q′µ are the

point sets’ centroids, and N = 60 is the number of points in each set. Since M is a

real square matrix with a positive determinant, it can be decomposed into orthogonal

square matrices U and V, and diagonal non-negative matrix Σ, such that M = UΣVT

[82], where Σ, and U and VT , are considered as scaling matrix and rotation matrices,

respectively. Thus, M can be intuitively interpreted as a geometrical transformation

composed of a rotation, a scaling, and another rotation. As the transformations need to

be rigid, we omit Σ to preserve the objects’ shape and size. Thus, the rotation matrix

is computed as R = UVT . Then, the translation matrix is determined as

T = −R×Qµ + Q′µ. (5.3)

5.2 Registration and Reconstruction

For a pair of temporal sequences of our dynamic object captured by our Kinects, e.g., of a

human being breathing forcefully through a spirometer, we first found the corresponding

frames using our intra-Kinect and inter-Kinect synchronisation approach. Then, the

reference point cloud Pref
1 and the second point cloud P2, were generated. Using the

computed translation and rotation matrices, we transformed P2 into the coordinate

system of Pref
1 , such that P′2 = R×P2 + T. Finally, we created a merged point cloud,

P = Pref
1

⋃
P′2. (5.4)

The point cloud P is the final registered point cloud.

Figure 5.5 shows example scene point clouds, in purple and green, obtained by our two

Kinects after aligning and registration. An enlarged side-view of the three calibration

chessboards, held by 5mm-thick frames, is also shown, which presents the accuracy of our

method in aligning the chessboards data points. Note that as long as the Kinects’ position

(fixed in calibration stage) remains unchanged, the computed rotation and translation

matrices are valid for aligning the two point clouds.
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Figure 5.5: Aligned scene point clouds from the facing Kinects: the scene as viewed by each Kinect, after alignment. The
zoomed-in side view shows the data points on the calibration chessboards.
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5.3 Experimental Results

5.3.1 Implementation Details

Two laptops with Intel R© CoreTM i7 quad core processors running at 2.8GHz and 16GB

memory were used to acquire the data streams from our two Kinects, respectively. The

proposed approach, comprising data acquisition, registration, reconstruction, and visual-

ization were implemented in Microsoft Visual C++, using OpenCV [40] and Visualization

Toolkit (VTK) [170] libraries, and Matlab 2015b. For concurrent processing, we used the

Intel R© Threading Building Blocks (TBB) library [147] to grab, buffer and record RGB,

depth, infrared and body joint data in separate threads which enabled us to reconstruct

a 3-D dynamic object at a consistent, full device frame rate of 30fps.

5.3.2 Registration Accuracy: Quantitative Evaluation

We measure the accuracy of our calibration method by computing the root mean square

error (RMSE) of distances between corresponding chessboards’ crossing points in Pref
1

and P′2. This error was computed as 4.6 mm for the lung function test setup (∼3 m

distance between Kinects at a height of ∼0.6 m).

We evaluate the calibration accuracy by estimating the dimensions of three boxes of

known sizes placed at different depths and validating them against the ground truth

values. Since more capturing space is required to be able to position the boxes in the

scene, in this experiment the Kinects were placed at ∼4 m away from each other and at

a height of ∼1.2 m. The RMSE of distances between corresponding crossing points in

this setup was computed as 6.8 mm.

We evaluate the spatial registration accuracy of the proposed method by measuring

dimensions and volumes, and performing surface analysis, of the 3 differently sized boxes.

Figure 5.6 presents the 3-D models of these boxes reconstructed by our approach. Each

box was captured three times, i.e., once at each of 3 different depths or locations, and

all measurements made. Table 5.1 presents the 3 locations at which (the centroid of)

each box was placed in the world coordinate system and the real dimensions of the 3

boxes. In each of the 9 captured sequences, the box was segmented from the registered

point clouds by depth value thresholding. For each reconstructed box, sides planarity
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Figure 5.6: 3-D model of boxes used for quantitative evaluation of point clouds
registration. The boxes 3-D model has been reconstructed using our proposed
approach.

Table 5.1: Centroid location of the 3 boxes in the Kinects’ joint coordinate
system and their actual dimensions (all in cm).

Box Location Box Dimension

Location X Y Z Box W H D

Location 1 −17.7 18.7 241 Box 1 34.0 47.0 43.5

Location 2 −41.4 23.7 202 Box 2 23.2 45.0 23.2

Location 3 10.0 41.1 166 Box 3 23.2 22.5 23.2

and orthogonality, height, width, depth, and volume were automatically estimated by

performing surface analysis, and then compared against ground truth measurements.

The boxes’ four sides are automatically apportioned into separate point sets using the

M-estimator SAmple Consensus (MSAC) approach [191]. Then, a plane is fitted on

the point set of each side (see Figure 5.7) using a first degree polynomial, and R2 and

RMSE are computed for the fitted plane. The angles between the sides are estimated

using the normal vectors of the fitted planes. Table 5.2 presents these estimations for

Box 1, Box 2 and Box 3 in the 3 locations in which S1 to S4 refers to 4 sides of each box.

The R2 and RMSE values illustrate that the side-planarity is preserved very well in the

reconstructed models. Furthermore, the estimated angles between the fitted planes show

that our proposed system performs well in measuring orthogonality.
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Table 5.2: The surface analysis results of 3 boxes in 3 different locations computed using plane fitting. The RMSE and
estimated angles are measured in cm and degree, respectively.

Box 1 Box 2 Box 2

Location 1 Location 2 Location 3 Location 1 Location 2 Location 3 Location 1 Location 2 Location 3

Side R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

S1 0.997 0.003 0.997 0.004 0.997 0.003 0.994 0.004 0.997 0.002 0.993 0.004 0.997 0.003 0.998 0.002 0.996 0.003

S2 0.998 0.004 0.998 0.004 0.998 0.003 0.997 0.002 0.992 0.004 0.995 0.003 0.990 0.004 0.990 0.004 0.995 0.004

S3 0.996 0.004 0.997 0.003 0.997 0.003 0.995 0.003 0.993 0.005 0.993 0.004 0.995 0.003 0.996 0.003 0.997 0.002

S4 0.998 0.004 0.998 0.003 0.997 0.004 0.992 0.005 0.996 0.003 0.996 0.003 0.992 0.004 0.991 0.004 0.994 0.004

⊥ Angle Angle Angle Angle Angle Angle Angle Angle Angle

S1–S2 88.89◦ 89.45◦ 89.17◦ 88.85◦ 89.96◦ 88.78◦ 88.65◦ 88.93◦ 89.19◦

S1–S4 89.41◦ 88.52◦ 88.42◦ 88.89◦ 89.02◦ 89.27◦ 88.45◦ 88.40◦ 89.22◦

S2–S3 89.19◦ 89.16◦ 89.94◦ 89.88◦ 89.26◦ 88.82◦ 88.99◦ 88.88◦ 88.64◦

S3–S4 89.10◦ 88.18◦ 90.83◦ 89.92◦ 89.81◦ 89.32◦ 91.20◦ 91.64◦ 88.67◦

S1–S3 0.59◦ 1.25◦ 1.08◦ 1.09◦ 0.78◦ 0.46◦ 0.51◦ 0.18◦ 0.71◦

S2–S4 2.35◦ 2.56◦ 1.90◦ 0.24◦ 1.37◦ 1.05◦ 0.37◦ 0.63◦ 0.54◦
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Figure 5.7: Plane fitting of Box 3 sides.

To help achieve the best estimation of height, width, and depth automatically, we use

the planes fitted on the lateral sides of the boxes. Since the bottom of the boxes was not

captured and the top was too sparse to rely on, the corresponding planes are computed

by inference from the existing sides. First, the cross product of the normals of the lateral

sides’ fitted planes are computed to define two planes perpendicular to the side planes.

These planes, which represent the bottom and top planes, are then placed respectively

at the bottom-most and top-most of the box’s point cloud, where there is a significant

change in the number of points. Then, the eight corner points of the boxes are computed

using the intersection of the fitted planes. Since the fitted planes are not exactly parallel,

height, width, and depth are estimated by computing the average distance between the

relevant four corner points of each side-plane and its facing side-plane.

Even though the box volume can be approximated using the estimated height, width,

and depth (V = W ×H ×D), we estimate the volume by applying Gauss’s Divergence

Theorem as described in Section 4.1.3 of Chapter 4, since that would have to be used for

geometrically non-uniform or non-rigid objects in any case. To be able to perform the

surface integral over the box boundary, the box surface is reconstructed by applying a

2D Delaunay triangulation [57] on the registered point cloud. Note that dimensions and

volume are presented in centimetres and litres, respectively.

Table 5.3 reports the estimated dimensions, volume and their L2 error for Box 1, Box 2

and Box 3 against the ground truth at each of the 3 locations. We note that the extent

of the error is a little different across height, width and depth, with an average of L2
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Table 5.3: Automatically estimated width, height, depth (in cm) and volume
(in litre) of 3 boxes using surface analysis.

Location 1 Location 2 Location 3

Estimated Error Estimated Error Estimated Error

Box 1

W 34.3 0.3 34.2 0.2 34.3 0.3

H 47.2 0.2 47.2 0.2 47.3 0.3

D 44.4 0.9 44.4 0.9 44.2 0.7

V 69.7 L 0.2 L 69.3 L 0.2 L 68.3 L 0.2 L

Box 2

W 24.0 0.8 23.7 0.5 23.8 0.6

H 45.3 0.3 44.9 0.1 45.4 0.4

D 24.0 0.8 23.9 0.7 24.1 0.9

V 24.7 L 0.5 L 24.9 L 0.7 L 24.9 L 0.7 L

Box 3

W 23.9 0.7 23.8 0.6 23.9 0.7

H 22.7 0.1 22.4 0.1 22.7 0.3

D 24.2 1.0 24.1 0.9 23.9 0.7

V 12.6 L 0.5 L 12.5 L 0.4 L 12.5 L 0.4 L

error for the 3 boxes in all locations across the height at 0.21, width at 0.54, and depth

at 0.84 centimetre. Considering there is a ∼4m distance between the two Kinects, our

results show very good accuracy for the estimated measurements, independent of the

location of the boxes.

5.3.3 Dynamic Object Reconstruction: Qualitative Evaluation

We demonstrate the ability of the proposed method to achieve non-rigid 3-D object re-

construction with two different examples. The first is based on dynamic human trunk 3-D

reconstruction for use in remote respiratory monitoring. The current remote respiratory

sensing approaches, e.g., [58, 136, 137, 202, 203, 206], attempt to simulate traditional

breathing tests, such as spirometry, however, none of these methods is able to decouple

the subject’s trunk motion from the subject’s chest-wall surface motion as previously

discussed in Chapter 2, which greatly affects the test results. Acquiring accurate and

dynamic 3-D body shape data using our proposed method during the breathing test, can

address this problem. In this test, the distance between each Kinect and the subject is

∼1.5m (optimal distance), at a height of ∼0.6m, to be able to observe chest-wall motion

as accurately as possible. Then, a 3-D surface of the subject’s trunk performing real lung

function assessment test, e.g., FVC, is reconstructed per frame. The analysis of such

data demands precise point cloud alignment, accurate temporal frame synchronization,
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body joints data acquisition (to estimate body pose), and consistent full frame rate data

recording, all of which are provided by our system. Figure 5.8 shows sample 3-D re-

constructed frames of a subject performing the FVC test. The reconstructions enable

monitoring of the subject’s trunk during the test. Although, the gap between the two

aligned point clouds is not important in this application, it can be filled by interpolation.

The second example was performed to show accurate temporal and spatial point cloud

alignment by way of the subject performing different actions, e.g., waving hands, dancing,

and jumping. The two facing Kinects are placed ∼4m away from each other at a height

of ∼1.2m. Sample 3-D reconstruction of a subject waving hands in different frames are

presented in Fig 5.9. As seen, the fingers have been well aligned and reconstructed. A

sample video of the dynamic 3-D reconstruction is available at: https://www.youtube.

com/watch?v=-JKHG3UJG9Q.

5.4 Conclusion

We proposed a 3-D RGB-D data acquisition pipeline which can provide accurate tem-

poral and spatial 3-D reconstruction that can be used in applications such as remote

respiratory monitoring and lung function assessment. The extrinsic parameters of the

two facing Kinects are computed in a calibration stage, using three double-sided chess-

boards placed at varying depths. Then, these parameters are exploited to register point

clouds and reconstruct 3-D, dynamic objects, for example performing lung function test-

ing using a spirometer, and other actions such as waving. We evaluate the proposed

system’s accuracy by automatically measuring the dimensions, volume, and surface in-

formation of three different boxes and show that it is efficient in reconstructing the

boxes and estimating their dimensions. Compared to the currently existing state-of-the-

art dynamic 3-D data acquisition approaches, our proposed system only uses two sensors

achieving frame-level reconstruction suitable for capturing fast and abrupt motions of

dynamic objects. One shortcoming of our approach is that the current arrangement of

our Kinects can result in missing information on parts of the object obscured from the

Kinects’ view (e.g., see the side of the person’s trunk in Figure 5.8). However, The

system has been designed such that it can be easily extended by more Kinects as long

as each Kinect can see the three chessboards.

https://www.youtube.com/watch?v=-JKHG3UJG9Q
https://www.youtube.com/watch?v=-JKHG3UJG9Q
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Figure 5.8: Dynamic 3-D reconstruction of a subject performing lung function test while using a spirometer.

Figure 5.9: Dynamic 3-D reconstruction of a subject waving hands.



Chapter 6
dPPG: Depth-based Whole-body

Photoplethysmography in PFT

Our findings in Chapter 4 showed that when the respiratory motion is acquired using

a single depth sensor, it can be easily affected by the subject’s trunk motion during

PFT. These motion artifacts not only provide unreliable measures, but also affect the

volume–time data calibration due to the non-identical training and testing scaling factors.

Filtering these motion artifacts under such circumstances is potentially impossible. Thus,

in our single depth sensor approach (Chapter 4), we partially overcame this problem, by

calibrating the tidal volume and main effort parts of the data separately using distinct

tidal volume and main effort scaling factors.

Although subjects are asked to be completely still during the test, most of them in-

evitably move their trunk, especially during the deep forced inhalation–exhalation. Sim-

ilar body motion artifacts have been also reported in [136, 137] where the main solution

was to constrain the body movement, which is neither easy to achieve, nor particularly

comfortable for patients. Further, this body movement is a natural reaction of the hu-

man respiratory system when required to maximally inhale and exhale, and restraining

it can prevent subjects from performing their best breathing effort and would therefore

affect their lung function measures.

In this chapter, we present our whole-body dPPG approach which allows subjects to

perform the test as in routine spirometry without restraining their respiratory-related

trunk reaction. Particularly, by decoupling trunk motion and chest-surface respiratory

95
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motion, the proposed dPPG method reduces motion artifacts in volume–time data which

consequently improves the accuracy of PFT measures.

Using our 3-D data acquisition and registration pipeline (Chapter 5), a dynamic 3-D

model of the subject is reconstructed during the test. Then, a pair of depth varia-

tion time series automatically estimated from the subject’s chest-wall and posterior-wall

ROIs, are combined to retrieve the depth-based respiratory volume–time data, which is

subsequently smoothed in a twofold filtering process (Section 6.1). Next, the training

depth-based and spirometer volume–time data are analysed to extract keypoints and es-

tablish the intra-subject scaling factors (Section 6.2). Depth-based volume–time data of

a test sequence is then calibrated using the learnt scaling factors from which 11 clinical

FVC and SVC measures are computed (Section 6.3). We evaluate our dPPG method on

the dual-Kinect PFT dataset containing 298 sequences from 35 subjects (Section 6.4).

This method reduces the L2 error mean and STD of FEF50%, FEF75%, FEF25−75%, IC,

and ERV measures by half, compared to the single-Kinect approach. To investigate the

accomplishment of the dPPG approach, we perform various comparative evaluations, i.e.,

Bland-Altman analysis, similarity measures performance analysis, intra-subject scaling

factor error evaluation, and statistical analysis of within-subject tidal volume and main

effort scaling factors, between the dPPG and the single-Kinect approaches, all of which

show the superior accuracy of the dPPG. Finally, we conclude this chapter by summaris-

ing our approach and its achievements, and providing directions for future extensions

(Section 6.5).

6.1 Depth-based Volume–time Data Retrieval

In order to compute PFT measures correctly, especially the timed measure FEV1, and

the flow-based measures, PEF and FEF25%, FEF50%, FEF75% and FEF25−75%, it is es-

sential for the depth-based volume–time data to have a constant and high sampling rate.

Since it is impossible to trigger multiple Kinects simultaneously, an exact frame level

synchronisation between them cannot be achieved. Thus, the more Kinects used, the

greater the temporal synchronization error would be.

As the only multiple-Kinect respiratory approach that this author is aware of, Harte

et al. [88] estimated breathing time series from depth measurements acquired by four

Kinects. They used off-the-shelf commercial 3-D software and plug-ins [6] for spatial

calibration of the Kinects, trunk surface isolation, 3-D meshing and hole filling. Due
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to their inability in precise inter-Kinect synchronisation, they reported temporal errors

in the dynamic trunk reconstruction. According to the authors, these errors resulted in

obtaining breathing time series with inconsistent sampling rates and sudden changes in

the estimated volume.

Our dual-Kinect 3-D data acquisition and registration pipeline reconstructs an almost

complete 3-D model of a subject performing the breathing test in a sitting position,

at the Kinect’s full frame rate (30 fps). Deploying only two sensors, (a) reduces the

system setup and calibration effort, (b) keeps system costs low, (c) minimises the overall

operation space, and most importantly, (d) minimises the temporal and spatial alignment

errors. With this topology, there would be no overlapped views of the scene and the

thoracoabdominal regions occluded by the arms are not considered pertinent to volume

estimation accuracy. Figures 6.1a, 6.1b and 6.1c show an example 3-D reconstructed

model of a subject’s upper-body from different viewpoints during PFT performance.

(a) front view (b) back view

(c) side view (d) trunk 3-D model

Figure 6.1: (a)–(c) 3-D reconstructed model of a subject performing PFT from
different points of view. (d) 3-D reconstructed model of trunk for this subject.
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Inessential body parts are filtered using a chest-wall ROI mask which is automatically

generated using skeleton joints similar to Section 4.1.2. Since the masking is performed

on the whole reconstructed body in three dimensional space, the mask is transformed into

the real world coordinate system using the camera parameters and rigid transformation

matrices. Note that the skeleton joints data is acquired from the back Kinect as it is more

stable than the data of the front Kinect as there is no occlusion of the face. Figure 6.1d

shows the final 3-D reconstructed model of the subject’s trunk after removing the head

and limbs.

After registering the models of the chest and posterior walls into a joint real-world

coordinate system for each frame of the sequence, their depth variations are computed

as a pair of time series, i.e., Vch(t) and Vpo(t), using an averaging-based method. As an

en bloc object, the subject’s trunk movements are reflected on both the chest and the

posterior walls, whereas the breathing motions mainly appear on the chest wall, with the

posterior considerably less affected. Taking this into consideration, the trunk movements

can be cancelled out by subtracting the motions of the chest and the posterior walls per

frame, due to their similarity in direction and magnitude. However, this subtraction

intensifies the breathing motions because expansion and contraction of the lungs move

the chest and the posterior walls in nearly opposite directions. Thus, the final dual-Kinect

dPPG volume–time data is computed as Vdk(t) = [Vpo(t)− Vch(t)]. For comparison, we

define the single-Kinect volume–time data as Vsk(t) = Vch(t). Note that, Vpo(t) does not

present any meaningful or useful information on its own. Figures 6.2a and 6.2b present
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Figure 6.2: Comparing volume–time data of the dPPG, i.e., Vdk(t)), front
Kinect, i.e., Vsk(t), and the back Kinect, i.e., Vpo(t), to the spirometer, i.e., Vs(t).



6.2 Volume–time Data Analysis 99

the retrieved Vdk(t) and its corresponding Vsk(t), and their comparison to the spirometer

data Vs(t), for FVC and SVC tests, respectively. As seen, the motion artifacts have been

significantly reduced in Vdk(t).

We improve the data filtering method in three ways compared to our previous work.

Firstly, we choose not to apply a bilateral smoothing filter, as we noticed it eliminates

subtle respiratory motions and affects the lung measures, especially the flow-based mea-

sures. Secondly, we realised that applying a moving-averaging filter over-smooths the

main effort data and increases the error in the flow-based measures. Thus, here we

use a 4th order Butterworth low-pass filter to smooth Vdk(t) and Vsk(t), similar to [137].

Thirdly, we perform twofold data filtering with two different cut-off frequencies, i.e., 1 Hz

and 3 Hz. In the first data filtering stage, we choose the cut-off frequency as 1 Hz to

• identify the keypoints accurately,

• align the depth-based and spirometer volume–time data temporally, and

• segment them into tidal volume and main effort parts.

This frequency was chosen given the wide range of respiratory rates for adults and

elderly at 12− 36 bpm (0.2− 0.6 Hz) [55]. However, to avoid the respiratory data over-

smoothing, especially at the main effort part where the curve slope is critical and needs

to be preserved, we increase the cut-off frequency to 3 Hz and filter the original volume-

time data for computing just PFT measures.

6.2 Volume–time Data Analysis

Since Vdk(t) presents the subject’s trunk volume variations rather than the real exchanged

amount of air, it must be calibrated in order to obtain meaningful lung measures. This

calibration is performed by linearly scaling the y-axis of the depth-based volume–time

data using a scaling factor. Since scaling factors are subject-specific (intra-subject),

they are learnt during a training phase for each subject by performing a linear regression

analysis between the depth-based and spirometer training data. The main step towards

this is to compute keypoints.

Keypoints computation – Multiple keypoints are automatically identified from the

depth-based and spirometer volume–time data by performing an elaborate extrema anal-
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ysis, as detailed in Chapter 4, using the same parameter and threshold values. We

categorise these keypoints based on their application through as follows:

• Identifying tidal volume using {C,D} and main effort using {E ,A,B}.

• Computing main effort scaling factors using {A,B}.

• Computing tidal volume and main effort similarity measures using {A,B} and

{Fi,Gi}4
i=1.

• Computing PFT measures using {E ,A,B}, {Fi,Gi}4
i=1, ‘time zero’ t0 and ‘Peak

Flow’ tPF .

Figures 6.3a and 6.3b illustrate the computed keypoints for Vs(t), Vdk(t) and Vsk(t) of

FVC and SVC tests, respectively. As shown, all keypoints are computed correctly for

Vdk(t) and match their corresponding ones in the spirometer Vs(t). However, for Vsk(t),

several keypoints, i.e., {B, C,D, E} and {Fi,Gi}4
i=1, (labelled in red in Figures 6.3a and

6.3b), are computed incorrectly due to the effects of the subject’s body movement on

Vsk(t). For example, in Figure 6.3b keypoint B is computed incorrectly resulted in an

incorrect calibration of Vsk(t), whilst Vdk(t) is calibrated quite precisely for the same

sequence.

Linear regression analysis – Linear regression is performed separately for tidal volume

and main effort parts of depth-based and spirometer training volume–time data, and

provides individual tidal volume and main effort scaling factors. In order to perform

the linear regression, the depth-based and spirometer corresponding data samples are

identified. For this, the spirometer data is sampled at the Kinect sampling rate of 30 Hz,

and the depth-based and spirometer tidal volume are separated using {C,D} keypoints.

They are then detrended (see the trend in Vsk(t) in Figures 6.3a and 6.3b) by applying

EMD [93] to increase their similarity and attain better temporal alignment. Finally, the

delay is computed using a windowed cross correlation and used to temporally align the

whole depth-based and spirometer volume–time data. This process is carried out for

Vdk(t) and Vsk(t) separately.

The tidal volume and main effort scaling factors are computed by establishing linear

regression individually for tidal volume as

V̂ tv
s = ξtvdk · V̂ tv

dk + ψtvdk, V̂ tv
dk = V̂dk(t)

∣∣∣tD
tC
, (6.1)
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computation of keypoints caused by the trunk motion.

and for main effort as

〈
V̂s(tA), V̂s(tB)

〉
= ξmedk ·

〈
V̂dk(tA), V̂dk(tB)

〉
+ ψmedk , (6.2)

where V̂dk(t) and V̂s(t) are detrended and zero-mean normalised data from the Kinect
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and spirometer. Since the data is normalised to zero-mean of their tidal volume, then

ψtvdk ≈ 0. Thus, the tidal volume and main effort scaling factors are defined as 〈ξtvdk〉 and

〈ξmedk , ψmedk 〉, respectively. Similarly, the tidal volume and main effort scaling factors for

Vsk(t), i.e., 〈ξtvsk〉 and 〈ξmesk , ψmesk 〉, are computed for comparative analysis.

6.3 Scaling Factors Generalisation

The aim of this study is to assess human lung function remotely and independently,

without support from any other clinical device, e.g., a spirometer. The coefficients of

the linear regression, i.e., the scaling factors, between the trunk volume and lungs air

flow, are subject-specific and depend on physical body specifications, e.g., weight, height,

BMI, gender and race. Thus, we train our system to learn the scaling factors per subject,

which enables it to perform PFT independent of a spirometer at later trials.

In the training phase, intra-subject scaling factors are learnt using training trials, and

computed as
{
〈ξtvdk〉`

}ntv
`=1

&
{
〈ξmedk , ψmedk 〉`

}nme
`=1

for
{〈
Vdk(t), Vs(t)

〉`}nT
`=1

as explained in Sec-

tion 6.2, where ntv and nme are the number of tidal volume and main effort training trials,

and nT = ntv + nme.

In the testing phase, first, the volume–time data of a test trial, i.e., V test
dk (t), is retrieved

using the method explained in Section 6.1. Then, tidal volume and main effort simi-

larity measures are computed as F test
tv &F test

me and
{
F `
tv

}ntv
`=1

&
{
F `
me

}nme
`=1

using (4.21) and

(4.22), for V test
dk (t) and

{〈
Vdk(t)

〉`}nT
`=1

, respectively. These allow for optimisation of tidal

volume and main effort training trials by matching training similarity measures with

the similarity measures of V test
dk (t) as

tv = arg min
j∈[1..ntv ]

{∣∣F test
tv − F

j
tv

∣∣}, (6.3)

me = arg min
j∈[1..nme]

{∣∣F test
me − F j

me

∣∣}. (6.4)

The associated scaling factors of tv and me trials, declared as 〈ξtvdk〉tv and 〈ξmedk , ψmedk 〉me

are then used to calibrate V test
dk (t) as

V cal
dk (t) =

[
V test
dk (t) · 〈ξtvdk〉tv

]t=tD
t=tC

+
[
V test
dk (t) · 〈ξmedk 〉me + 〈ψmedk 〉me

]t=max(tA,tB)

t=tD
. (6.5)
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In order to compare our method to the single-Kinect approach, a similar process is

carried out to obtain 〈ξtvsk〉
′
tv and 〈ξmesk , ψmesk 〉

′
me , and calibrate V test

sk (t), where ′tv and ′me

are the optimised tidal volume and main effort selected trials.

The intra-subject training and testing process is performed using leave-one-out cross-

validation due to the limited number of trials for each subject.

6.4 Experimental Results

We evaluate the dPPG method on our dual-Kinect PFT dataset previously introduced

in Chapter 3. This dataset contains 300 sequences (155 FVC and 145 SVC) collected

from 35 subjects. From the 300 sequences, we drop only 2 sequences as our method fails

to compute their volume–time data keypoints due to complex body motion patterns.

Otherwise, the data of all the other 298 sequences are successfully retrieved and their

measures are computed and considered in the experimental analysis.

We demonstrate the accomplishments of our dPPG approach by,

• achieving significant improvements in FVC and SVC measures compared to the

single-Kinect approach,

• improving volume–time data calibration accuracy by computing more accurate

similarity measures and reducing intra-subject scaling factor learning error,

• computing more consistent and stable tidal volume and main effort scaling factors,

which increases the depth-based PFT measures’ reproducibility, and

• achieving higher correlation between tidal volume and main effort scaling factors

confirmed by performing a comparative statistical analysis across 35 subjects.

6.4.1 Evaluation of PFT Measures

Using the standard formulation explained in Chapter 4, seven FVC and four SVC mea-

sures are computed from Vdk(t), and also Vsk(t) for comparison. Tables 6.1 and 6.2

present the results of these measures for all 35 subjects, computed for 155 FVC and

143 SVC sequences respectively, from Vdk(t) and Vsk(t). These tables report, (i) mean
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Table 6.1: Intra-subject mean (µdk &µsk) and STD (σdk &σsk) of L2 error, and
ratio of each measure’s L2 error to the mean value of that measure (Ωdk & Ωsk)
as well as correlation coefficients (λdk &λsk), for the dPPG and single-Kinect
against the spirometer FVC measures.

FVC FEV1 PEF FEF25% FEF50% FEF75% FEF25-75%

(L) (L) (L/S) (L/S) (L/S) (L/S) (L/S)

d
P
P
G

µdk 0.36 0.55 1.83 2.02 1.55 0.85 1.28

σdk 0.39 0.55 1.59 1.92 1.28 0.86 1.04

Ωdk 0.07 0.13 0.22 0.26 0.32 0.39 0.31

λdk 0.87 0.68 0.46 0.35 0.34 0.47 0.43

si
n
g
le
-K

in
e
c
t

µsk 0.45 0.68 2.32 2.48 3.29 2.60 2.67

σsk 0.40 0.49 2.30 2.45 3.17 2.97 2.48

Ωsk 0.09 0.17 0.28 0.32 0.68 1.22 0.64

λsk 0.86 0.67 0.41 0.22 0.09 0.15 0.19

Table 6.2: Intra-subject mean (µdk &µsk) and STD (σdk &σsk) of L2 error, and
ratio of each measure’s L2 error to the mean value of that measure (Ωdk & Ωsk)
as well as correlation coefficients (λdk &λsk), for the dPPG and single-Kinect
against the spirometer SVC measures.

VC (L) IC (L) TV (L) ERV (L)

d
P
P
G

µdk 0.421 0.393 0.148 0.315

σdk 0.474 0.409 0.150 0.331

Ωdk 0.095 0.127 0.160 0.239

λdk 0.869 0.810 0.839 0.748

si
n
g
le
-K

in
e
c
t

µsk 0.550 0.730 0.181 0.778

σsk 0.656 0.712 0.202 0.812

Ωsk 0.124 0.235 0.196 0.592

λsk 0.719 0.466 0.767 0.389

(µdk &µsk) and STD (σdk &σsk) of L2 error for each measure, (ii) ratio of mean of L2

error to the mean value of that measure (Ωdk & Ωsk), and (iii) correlation coefficients

(λdk &λsk) for the dPPG & single-Kinect against the spirometer measures.

As can be seen in Table 6.1, (µdk, σdk,Ωdk) are lower for the dPPG approach across

all measures, compared to their single-Kinect counterparts (µsk, σsk,Ωsk). In particular,

these errors are reduced by half for FEF50%, FEF75% and FEF25−75% measures. This re-

markable error reduction is due to the measures being computed using the top curvature

of the main effort data, which is successfully recovered in Vdk(t) by decoupling trunk

movements from the respiratory motion (compare in Figure 6.3a against Vsk(t)).

For the other measures reported in Table 6.1, (µdk, σdk,Ωdk) are not decreased signif-
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icantly compared to their single-Kinect counterparts. For FVC, this is because the

measure is computed using the same keypoints A and B, which are also used in the main

effort calibration. FEV1, PEF and FEF25% measures are computed from the steepest

part of the main effort, between keypoints t0 and tFEF25%. Thus, we believe the trunk

forward movement at the start of forceful exhalation increases the main effort curve slope

and accidentally contributes in achieving better FEV1, PEF and FEF25% measures.

These results confirm the superiority of the dPPG method to the single-Kinect approach,

with λdk also showing better correlation of measures than λsk. However, λdk does not

express strong correlation between the dPPG FVC measures and the spirometer, except

for FVC and FEV1. This is expected as we exploit all of the acquired data and do

not remove the trials that impose greater error. In particular, these trials appear as

outliers and influence the correlation coefficients. To further clarify this issue, we per-

form a Bland-Altman analysis of measures (Section 6.4.2) and present more qualitative

and quantitative comparison between the dPPG and single-Kinect methods against the

spirometer measures.

Ostadabbas et al. [136] reported a 0.88 average correlation with a spirometer for FEV1

(and no other measures). However, this cannot be directly compared to the FEV1

correlation coefficient computed here which is on a different dataset, acquired by different

protocols, under different criteria.

Table 6.2 reports the evaluation results for SVC measures, in which (µdk, σdk,Ωdk) are also

reduced by half for IC and ERV measures, compared to (µsk, σsk,Ωsk). Moreover, λdk

shows much better correlation for these two measures, compared to λsk. The improved

results are due to the trunk motion corrections, which remove the offset between the

tidal volume and the main effort. The VC measure is computed using the keypoints A
and B, which are also exploited for calibrating SVC volume–time data, thus the dPPG

method achieves only a slight improvement in this measure. TV is also slightly improved

as subjects’ movements in the ‘rest’ condition is insignificant.

PFT measures’ correlation coefficient and error, reported in Chapter 4, are relatively bet-

ter than the results reported here because they are evaluated on the single-Kinect dataset

in which the subject’s trunk motion were strictly restrained during the test. Tables 6.1

and 6.2 report the results of applying the same single-Kinect method of Chapter 4 on

the dual-Kinect PFT dataset in which subjects performed PFT as in routine spirome-

try and their body’s normal reaction to deep and forced inhalation–exhalation was not

restricted. Comparing the evaluation results of the dPPG and single Kinect approaches
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on the dual-Kinect dataset (Tables 6.1 and 6.2), confirms that eliminating trunk mo-

tion, achieved by the dPPG approach, highly improves the measures’ correlation and

reduces the error, even when both approaches use the same volume–time data analysis

and intra-subject scaling factor learning methods.

6.4.2 Bland-Altman Analysis of PFT Measures

Tables 6.3 and 6.4 report Bland-Altaman [37] range of agreement between the dPPG

and the spirometer measures, i.e., Ldk−Udk, and also between the single-Kinect and

the spirometer measures, i.e., Lsk−Usk, where Ldk &Udk and Lsk &Usk indicate the

lower & upper limits of agreement for the dPPG and the single-Kinect measures, re-

spectively. Results confirms that the dPPG better agree with the spirometer across all

the measures, particularly for FEF50%, FEF75%, FEF25−75%, IC and ERV.

Further, in order to better compare the error between the dPPG and the single-Kinect

measures, Mdk is computed as the percentage of trials where the difference between

the dPPG and the spirometer measure lies in Ldk−Udk. Similarly, Msk specifies the

percentage of trials in the same range of agreement between the single-Kinect and the

spirometer measure (see Tables 6.3 and 6.4). AlthoughMdk is greater thanMsk across

Table 6.3: Bland-Altman analysis of the dPPG and the single-Kinect FVC
measures.

FVC Measures

Metric FVC FEV1 PEF FEF25% FEF50% FEF75% FEF25-75%

(L) (L) (L/S) (L/S) (L/S) (L/S) (L/S)

Ldk – Udk -0.9–1.1 -1.0–1.7 -3.5–5.3 -3.9–6.1 -3.4–4.2 -2.1–2.5 -2.2–3.6

Lsk – Usk -1.1–1.2 -1.6–1.7 -7.0–5.5 -6.0–7.4 -10–6.0 -8.6–5.5 -7.9–5.7

Mdk (%) 98.0% 95.5% 94.2% 93.5% 95.5% 94.2% 92.9%

Msk (%) 92.2% 92.2% 83.2% 85.1% 70.3% 67.7% 63.8%

Table 6.4: Bland-Altman analysis of the dPPG and the single-Kinect SVC
measures.

SVC Measures

Metric VC (L) IC (L) TV (L) ERV (L)

Ldk – Udk -1.4–0.8 -1.2–0.7 -0.4–0.4 -0.9–0.8

Lsk – Usk -1.8–1.5 -2.1–1.9 -0.4–0.6 -2.2–2.1

Mdk (%) 95.1% 95.8% 93.0% 95.1%

Msk (%) 90.2% 76.2% 88.1% 64.3%
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Figure 6.4: Bland-Altman plots for (a) FEF75%, (b) FEF25−75% and (c) ERV.

all measures, the difference between Mdk and Msk is more distinguishable for FEF50%,

FEF75%, FEF25−75%, IC and ERV. Figure 6.4 shows Bland-Altman plots of FEF75%,

FEF25−75% and ERV measures for the dPPG and the single-Kinect approaches. Many of

the single-Kinect measures lie outside of the dPPG lower and upper limits of agreement,

i.e., Ldk and Udk.

6.4.3 Performance Evaluation of Similarity Measures

We evaluate the performance of the tidal volume and main effort similarity measures,

in terms of their ability to choose the intra-subject scaling factors 〈ξtvdk〉tv & 〈ξmedk 〉me ,
which are supposed to calibrate the test volume–time data with the minimum error,

among the training scaling factors
{
〈ξtvdk〉`

}ntv
`=1

&
{
〈ξmedk 〉`

}nme
`=1

. Thus, we use normalised

L2 error SMEtvdk & SMEmedk , computed as the ratio of L2 error between 〈ξtvdk〉tv & 〈ξmedk 〉me

and 〈ξtvdk〉c & 〈ξmedk 〉c, to 〈ξtvdk〉c & 〈ξmedk 〉c. 〈ξtvdk〉c & 〈ξmedk 〉c are the numerically closest scaling
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Figure 6.5: Performance evaluation of similarity measures by distributing (a)
143 tidal volume trials, and (b) 298 main effort trials over SMEtvdk & SMEtvsk and
SMEmedk & SMEmesk at various intervals for the dPPG (blue) and the single-Kinect
(orange) approaches.

factors to the spirometer scaling factors of the test trial, i.e., 〈ξtvdk〉o & 〈ξmedk 〉o. Note that,

〈ξtvdk〉o & 〈ξmedk 〉o are computed using the spirometer volume–time data of the test trial and

are only used for evaluation and comparison. Similarly, SMEtvsk and SMEmesk are also com-

puted for the single-Kinect approach. Figures 6.5a and 6.5b show the distribution of tidal

volume and main effort trials over the computed error SMEtvdk & SMEtvsk and SMEmedk & SMEmesk

for the dPPG (blue) and the single-Kinect (orange) approaches, respectively, in the range

0 − 30% at 5% intervals and then for more than 30%. As can be seen, ∼75% of tidal

volume trials and ∼81% of main effort trials in the dPPG approach have < 10% error.

This reduces to ∼51% and ∼76% in the single-Kinect approach. Also, many fewer trials

with > 30% error occur in the dPPG approach, i.e., ∼5%, as opposed to ∼26% in the

single-Kinect method.

6.4.4 Error Analysis of Intra-subject Scaling Factors

We obtain the spirometer scaling factors 〈ξtvdk〉o & 〈ξmedk 〉o to assist us in evaluating our

intra-subject scaling factors by computing the normalised L2 error, i.e., SCEtvdk and SCEmedk ,

between 〈ξtvdk〉tv & 〈ξmedk 〉me and 〈ξtvdk〉o & 〈ξmedk 〉o. We also compare against the single-Kinect

approach by computing SCEtvsk and SCEmesk . Figures 6.6a and 6.6b present the distribu-

tion of tidal volume and main effort trials over the intra-subject scaling factor errors

SCEtvdk & SCEtvsk and SCEmedk & SCEmesk for the dPPG (blue) and the single-Kinect (orange)
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Figure 6.6: Error analysis of intra-subject scaling factors by distributing (a)
143 tidal volume trials, and (b) 298 main effort trials over SCEtvdk & SCEtvsk and
SCEmedk & SCEmesk at various intervals for the dPPG (blue) and the single-Kinect
(orange) approaches.

approaches, respectively. For example, in Figure 6.6a, ∼50% of tidal volume trials have

< 10% error in the dPPG approach against ∼28% in the single-Kinect approach. Also,

only ∼10% of the tidal volume trials have > 30% error for the dPPG against ∼34% in the

single-Kinect method. In the main effort trials, the dPPG approach similarly performs

better (see Figure 6.6b).

6.4.5 Statistical Analysis of Within-subject Scaling Factors

Table 6.5 reports the mean and STD of within-subject tidal volume and main effort scal-

ing factors, for the dPPG and single-Kinect approaches for all 35 participants, denoted

as Mtvdk, M
me
dk & Σtv

dk,Σ
me
dk and Mtvsk, M

me
sk & Σtv

sk,Σ
me
sk , respectively. Minimum to maximum range

of scaling factors and their distribution between the 1st and 3rd quartiles along with the

outliers and median are presented in Figure 6.7.

The comparison between the scaling factors’ STD, i.e., Σtv
dk,Σ

me
dk versus Σtv

sk,Σ
me
sk in Ta-

ble 6.5, shows that the dPPG within-subject scaling factors are more consistent than

the single-Kinect method, especially for the tidal volume. This can be better realised

by comparing the minimum to maximum range of the scaling factors, and also their in-

terquartile ranges in Figure 6.7, for the dPPG (blue boxes) and the single-Kinect (orange

boxes) approaches.
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Table 6.5: Mean and STD of within-subject tidal volume and main effort scaling
factors for the dPPG approach, i.e., Mtvdk, M

me
dk & Σtv

dk,Σ
me
dk , and the single-Kinect

approach, i.e., Mtvsk, M
me
sk & Σtv

sk,Σ
me
sk . Blue numbers highlight some samples of the

best agreement between Mtvdk and Mmedk whereas their corresponding values in the
single-Kinect approach, i.e., Mtvsk and Mmesk , disagree with each other. Bold red
numbers are related to Σtv

sk or Σme
sk , where their values are considerably higher

than the corresponding Σtv
dk and Σme

dk . Red numbers highlight the Σtv
dk or Σme

dk

where their value are higher than value of Σtv
sk and Σme

sk .

Subject Specifications dPPG Single-Kinect

No GEN AGE BMI SMK Mtvdk Mme
dk Σtv

dk Σme
dk Mtvsk Mme

sk Σtv
sk Σme

sk

#01 M 33 22.8 Quit 4.82 4.72 0.57 0.41 4.48 4.67 1.11 0.46

#02 M 26 23 Never 6.81 5.73 1.03 0.29 9.05 5.79 2.34 0.54

#03 F 23 22 Never 3.19 3.40 0.49 0.56 2.71 3.43 0.90 0.61

#04 F 35 23.2 Never 3.29 3.30 0.48 0.43 3.32 3.48 0.66 0.69

#05 M 32 25.1 Smokes 9.05 7.18 0.55 0.47 9.30 7.11 1.01 0.40

#06 M 27 23.8 Never 5.95 5.65 0.36 0.48 6.88 5.59 0.39 0.51

#07 M 22 23.4 Never 6.33 5.75 0.30 0.73 5.93 5.84 0.40 0.74

#08 M 29 26.3 Never 6.47 6.56 1.01 0.62 2.98 12.5 1.05 4.31

#09 F 37 20.4 Never 3.08 2.97 0.55 0.23 3.09 3.00 1.46 0.27

#10 M 27 20.4 Never 4.51 4.30 0.32 0.40 4.30 4.34 0.65 0.57

#11 M 36 22.2 Never 7.74 4.61 0.32 0.27 6.71 4.86 2.68 0.68

#12 F 26 22.2 Never 4.06 3.77 0.19 0.94 4.16 3.64 0.77 0.67

#13 M 27 26 Never 5.69 4.93 0.28 0.19 5.54 4.91 0.53 0.16

#14 M 32 24.6 Never 5.53 5.74 0.85 1.01 5.25 6.08 1.82 2.38

#15 F 31 23 Never 4.78 4.18 0.69 0.17 4.69 4.25 0.52 0.29

#16 M 45 26.8 Quit 4.23 5.32 1.51 0.61 5.95 6.34 3.47 2.03

#17 M 25 24.5 Never 5.14 4.17 0.54 0.52 5.58 5.32 1.73 1.94

#18 M 27 20.2 Never 5.25 3.62 0.42 0.30 5.39 3.56 0.45 0.24

#19 M 33 27.2 Never 6.92 6.10 0.64 0.27 5.53 6.11 2.55 0.21

#20 M 38 22.8 Never 5.47 5.01 0.58 0.50 5.59 5.59 0.92 1.07

#21 M 29 27.8 Smokes 10.2 5.17 2.61 1.04 7.03 5.14 2.76 1.30

#22 M 26 22.5 Smokes 5.63 4.42 0.76 0.25 5.88 4.45 0.99 0.30

#23 M 32 19.6 Never 7.99 5.29 0.31 0.48 8.81 5.29 1.08 0.46

#24 M 23 24 Never 5.71 5.45 1.30 1.09 4.96 8.82 1.48 6.81

#25 M 26 33.4 Never 5.22 5.16 0.35 0.22 7.14 11.9 1.32 6.16

#26 M 27 24.1 Never 5.90 4.89 0.54 0.43 7.67 5.18 1.11 0.70

#27 M 25 26.5 Never 5.59 5.33 0.78 0.62 5.72 5.31 0.73 0.60

#28 M 31 20.9 Quit 4.52 5.00 1.84 0.46 4.95 5.21 2.27 0.84

#29 M 33 26.1 Never 5.95 4.97 0.24 0.19 8.41 4.92 1.43 0.21

#30 F 31 19.4 Never 4.36 3.91 0.33 0.45 3.95 3.92 0.75 0.47

#31 F 34 19.6 Smokes 6.34 3.92 1.31 0.10 7.78 4.04 2.70 0.36

#32 F 37 27.7 Smokes 3.27 3.04 0.16 0.17 3.43 3.42 0.35 0.76

#33 M 35 29.1 Quit 7.14 5.42 0.72 1.03 9.28 5.88 1.69 1.56

#34 M 24 21.5 Quit 6.07 4.31 0.54 0.61 6.24 4.30 1.05 0.62

#35 M 38 23.7 Quit 5.28 7.91 3.48 1.75 3.76 7.86 1.87 1.62
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Figure 6.7: Boxplot of statistics of within-subject tidal volume (top) and main effort (bottom) scaling factors of 35
subjects’ trials, in which interquartile range, median, max, min and outliers of tidal volume and main effort scaling factors
are illustrated for the dPPG (blue) and the single-Kinect (orange) approaches. The interquartile range of the single-Kinect
tidal volume scaling factors are wider across all subjects except for a few, e.g., subjects #15 and #35 (pink highlighted).
In particular, Σtv

sk is 8.4 and 2.3 times higher than Σtv
dk for the green highlighted subjects #11 and #16. Similarly, for the

main effort scaling factors, Σme
sk is 6.9 and 28 times higher than Σme

dk for the green highlighted subjects #8 and #25.
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Among all subjects, only subject #35 has a considerably greater Σtv
dk (bold red) than

Σtv
sk, whereas Σtv

sk,Σ
me
sk are higher for numerous subjects (bold red). For example, Σtv

sk

is 8.4 and 2.3 times higher than Σtv
dk for subjects #11 and #16, and Σme

sk is 6.9 and 28

times higher than Σme
dk for subjects #8 and #25 (highlighted in green in Figure 6.7). The

greater the scaling factors’ STD, the higher the depth-based PFT measures’ error would

be. For example, the average error of TV and FVC measures decreases from 0.23 and

0.84 in the single-Kinect method to 0.07 and 0.19 in the dPPG approach for subjects

#16 and #25, respectively.

Closely looking into our statistical analysis in Table 6.5 and investigating any poten-

tial association of subject specifications, i.e., gender, age, BMI and smoking condition

(SMK), to the scaling factors, no meaningful relationship could be established. For ex-

ample, subject #25 with the highest BMI = 33.4 Kg/cm2 has very closed dPPG tidal

volume and main effort scaling factors with also very low STDs. Similar scaling factor

statistics has been reported for subject #09 with a very low BMI =20.4 Kg/cm2. Thus,

the tidal volume and main effort scaling factors coherency and consistency does not

seem to be relevant to the BMI. Similar examples also exist for smoking condition. For

example, while the smoker subject #32 has very close tidal volume and main effort scal-

ing factors with small STDs, subject #21 with similar smoking condition has completely

different tidal volume and main effort scaling factors with rather high STDs. Regarding

the age, subjects #20 and #35 who are both 38 years old male subjects with similar

BMIs, have different scaling factors coherency and consistency. Also, no association be-

tween gender and scaling factor statistics was found. However, noting that our dataset is

rather small, establishing such associations requires larger datasets with more variation

in the subjects lung pathology, body specifications and background.

The scaling factor outliers, shown by (+) and (∗) in Figure 6.7 for the dPPG and single-

Kinect approaches, specify the scaling factors which are highly different with the other

scaling factors obtained for the same subject. Comparing the tidal volume to the main

effort within-subject scaling factors, almost all of the outliers belong to the main effort

data calibration with only one tidal volume outlier for the subject #16. This implies

that the trunk motion artifacts caused by deep forced inhalation–exhalation could be

the main reason for the main effort scaling factor outliers.

Finally, Table 6.6 shows the mean (µM′) and STD (σM′) of the absolute difference between

‘the average of within-subject tidal volume scaling factors’ and ‘the average of within-

subject main effort scaling factors’, i.e., M′ = |Mtvx − Mmex |, where x = dk for the dPPG

approach and x = sk for the single-Kinect method. It also shows the normalised mean
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Table 6.6: Statistics of M′ = |Mtvx − Mmex | and Σ′ = |Σtv
x − Σme

x |, x=sk or dk across
35 subjects in the dPPG and the single-Kinect methods.

Method µM′ σM′ ΩM′ µΣ′ σΣ′ ΩΣ′

dPPG 1.02 1.10 0.19 0.37 0.44 0.57

single-Kinect 1.72 1.98 0.81 1.03 1.28 0.85

of M′ as ΩM′ = µM′/αM′ , in which the normalisation factor αM′ is defined as the average of

{Mtvx , Mmex } across all subjects. Table 6.6 also presents similar statistics (µΣ′ , σΣ′ ,ΩΣ′) for

the absolute difference between ‘the STD of within-subject tidal volume scaling factors’

and ‘the STD of within-subject main effort scaling factors’, i.e., Σ′ = |Σtv
x − Σme

x |. As

seen, mean, STD and the normalised mean of Σ′, are notably smaller for the dPPG,

where it shows better agreement between tidal volume and main effort scaling factors.

For example, Mtvdk and Mmedk are almost equal for subjects #8, #24 and #25 (in blue in

Table 6.5), whereas Mtvsk and Mmesk show considerable disagreement for these subjects (in

orange in Table 6.5).

6.5 Conclusion

We introduced depth-based whole-body photoplethysmography to increase remote PFT

measure accuracy by decoupling a subject’s trunk movements from their chest-surface

respiratory motions using two opposing depth sensors. First, two Kinects are calibrated

and synchronised to construct a dynamic 3-D model of a subject during a breathing test.

Using a 3-D mask, thoracoabdominal volume is automatically segmented and used to

retrieve volume–time data. This data is then calibrated using the intra-subject scaling

factors, learnt in a training phase, and 11 clinical FVC and SVC measures are computed.

We validate the dPPG computed measures by comparing them to the measures obtained

from a spirometer. The evaluation results show very good improvement compared to the

single-Kinect approach.

The proposed dPPG method does not perform in real-time as the body data acquisition,

trunk reconstruction and PFT computation stages operate separately. While the data

acquisition and the PFT computation stages perform in nearly real-time, the trunk

reconstruction for each breathing test performance is accomplished in less than a minute.

However, we feel confident to project that by applying GPU-based 3-D reconstruction

techniques, and incorporating these stages using further development, dPPG can operate
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in real-time.

The proposed method for decoupling body movements from respiratory motions results

in tidal volume and main effort scaling factors that are more consistent and better

agree with each other than the single-Kinect method. However, they are not identical

enough to be a unique intra-subject scaling factor that could be used to calibrate the

whole volume–time data. As a potential reason this could be because of estimating

the respiratory data using a simple averaging based method which is not very effective

in filtering complex trunk motions specifically during the main effort breathing. Thus,

future work can include the investigation of other methods of volume estimation for more

effective trunk motion filtering.



Chapter 7
Trunk Shape Modelling for Body

Motion Artifacts Correction

In Chapter 6, we presented the dPPG approach which filtered the natural reaction of

the human respiratory system by constructing a 3-D model of a subject’s trunk and then

subtracting the average depth of the chest-wall from the average depth of the posterior-

wall per frame. This was intended to reduce the trunk motion artifacts during the

breathing test, and therefore, allowed subjects to perform PFT as in routine spirometry.

While the dPPG method is able to reduce the trunk motion artifacts to some extent

and show advancement in the accuracy of the computed measures and also in the con-

sistency of the scaling factors, there is still room for further improvements. First, the

dPPG method cannot filter complex trunk motion patterns, particularly at the main

effort inhalation–exhalation stage, due to using only the average depth of the chest

and posterior walls. Second, different patterns of trunk motion in tidal volume and

main effort breathing, requires individual calibration of their volume–time data rather

than calibrating the whole data using a single scaling factor. For example, Figures 7.1a

and 7.1b show the body’s natural reaction to the main effort deep inhalation and deep

forced exhalation during a routine spirometry FVC test, respectively. Correspondingly,

Figure 7.1c presents the volume–time data of the single-Kinect Vsk(t) and dPPG Vdk(t)

methods for this test which are entirely calibrated using only the tidal volume scaling

factor. As seen, both the single-Kinect and dPPG methods fail to provide an accurate

enough volume–time data, though dPPG performed better. Also, the ratios of the tidal

volume to main effort scaling factors, i.e., scltv/sclme, for the single-Kinect (2.33) and

115
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Figure 7.1: Trunk’s natural reaction to (a) deep inhalation, and (b) deep forced
exhalation, in main effort breathing. (c) The single-Kinect and dPPG volume–
time data and their tidal volume to main effort scaling factors ratio.

dPPG (1.72), denote that both methods obtained considerably different tidal volume and

main effort scaling factors. This can be perceived by comparing the scale of depth-based

main effort to the spirometer’s main effort in Figure 7.1c.

In this chapter, we present our active shape modelling approach to extract the chest-

surface respiratory pattern by temporal modelling and tracking of the trunk shape,

generated using the measurements acquired by two opposing depth sensors (Section 7.1).

Instead of filtering the trunk motion by subtracting the average depth of the chest from

the average depth of the posterior in the dPPG method, here we extract the respiratory

pattern by performing PCA on temporal 3-D geometrical features extracted from the

chest and posterior shape models in R3 space. To present the real volume of exchanged

air, the respiratory data is then calibrated using scaling factors learnt in an efficient

training phase (Section 7.2). We validate our method on the dual-Kinect PFT dataset,

by computing the normalised L2 error, dynamic time warping and Fréchet [23] distances,

as well as correlation of determination between the depth-based and spirometer volume–

time data. Comparing our results to the single-Kinect and dPPG methods verifies that

our active trunk shape modelling approach outperforms previous approaches across all

evaluation metrics. We also demonstrate that this method calibrates the whole volume–

time data using only tidal volume scaling factors with a significantly lower error than

the single-Kinect and dPPG approaches (Section 7.3). Finally, we conclude this chapter

by briefly reviewing our method and its key achievements (Section 7.4).
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(a) Front view (b) Side view (c) Back view

Figure 7.2: (a)-(c) A sample of a subject’s reconstructed 3-D model of the trunk
in different points of view. The black dots show the uniformly generated data
points over the chest and posterior walls. The partial volumes are demonstrated
by a direct line between the chest and posterior data points.

7.1 Trunk Shape Modelling

Using depth measurement acquired by our 3-D data acquisition and registration pipeline

(Chapter 5), we first reconstruct the dynamic 3-D model of the subject’s body during the

breathing test. Then, chest-wall ROI and its corresponding region on the posterior-wall

are automatically isolated by a 3-D mask generated from skeletal joint data. Figures 7.2a,

7.2b and 7.2c present a sample of the subject’s final reconstructed 3-D model of the trunk

from different points of view.

Noting that the trunk motion is reflected on both chest and posterior walls with the same

direction and magnitude, while the respiratory motion mainly appears on the chest-wall,

dPPG filters the trunk motion by merely subtracting the average distance of the chest-

wall data points Pch from the average distance of the posterior-wall data points Ppo in

each frame. Although this simple subtraction reduces the trunk motion artifacts to a

notable extent, it fails to correctly filter more complex motion patterns due to,

(i) using the depth as the only feature of the chest and posterior walls, i.e., z-coordinate

of Pch and Ppo in R3 space, and

(ii) eliminating useful potential features by filtering Pch and Ppo to single average

depth values.
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We address these issues by extracting a set of temporal geometrical features over the

entire chest and posterior walls within a sequence. Using these features, partial volumes

are uniformly computed from the full trunk, and tracked per frame. However, as a

markerless trunk reconstruction approach, we are faced with two main challenges. First,

the number and location of data points in either of the chest and the posterior regions

may vary from one frame to another. Second, since each Kinect captures either the chest

or the posterior, these two regions are different in the number of the data points and

their locations. Thus, it is quite unlikely that there would be a corresponding co-located

posterior data point for a chest data point in the xy-plane.

We address these issues by,

(i) defining a fixed size 2-D region Rxy(t) which covers the chest in the xy-plane at

time t through the sequence, and generating a fixed number of points uniformly

distributed on it, and

(ii) defining temporal interpolant functions I tch and I tpo to compute corresponding

chest and posterior data points in R3 space which are located at the same position

in the xy-plane.

Figure 7.3 shows the uniformly distributed data points on the chest and posterior shapes

(a) Front view (b) Side view

Figure 7.3: A subject’s chest and posterior shape models with their data points
presented as small green spheres.



7.2 Volume–time Data Retrieval and Calibration 119

of a subject’s trunk as small green spheres. The interpolant functions are generated by

applying a Delaunay triangulation on the original data points [20].

7.2 Volume–time Data Retrieval and Calibration

Using I tch and I tpo, partial volumes vij(t) are computed over the trunk as

vij(t)=

[
I tpo
(
pij(t)

)
−I tch

(
pij(t)

)]
, ∀pij(t)∈Rxy(t). (7.1)

Figure 7.2 demonstrates the partial volumes within the whole trunk as the direct lines

between the corresponding data points of the chest-wall and posterior-wall ROIs. Since

the extent of body motion along the trunk varies during the breathing test, i.e., from the

minimum at the hips to its maximum at the shoulders, we accumulate vij(t) along the

longitudinal direction to further reduce their sensitivity to the trunk motion. Thus, the

final feature matrix for the whole sequence is created by extracting these partial volumes

and their location in the xy-plane for each frame of the sequence as

F =
[〈
Rxy(t),

∑
j vij(t)

〉]t=τ
t=0

, (7.2)

where τ indicates the PFT sequence duration.

The feature matrix F is normalised to zero mean for each frame of the sequence (variable)

and its covariance matrix is computed as

CF =
1

Nτ − 1

Nτ∑
i=1

(Fi − µFi)(Fi − µFi)
T , (7.3)

where Nτ and µFi indicate the number of the variables (frames) and the mean value of

each frame’s data samples, respectively. Finally, PCA is computed by factorisation of

CF to orthogonal and diagonal matrices. Since CF is a square symmetric matrix with

rank Υ, it can be diagonalised as

CF = VΛVT =
Υ∑
i=1

λiviv
T
i , (7.4)

where vi is the ith principal component (PC) and λi is the ith eigenvalue of CF which
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Table 7.1: Statistical analysis of the percentage of the variance presented by
the first 10 principal components across the whole dataset.

Metric 1st PC 2nd PC 3rd PC 4th PC 5th PC 6th PC 7th PC 8th PC 9th PC 10th PC

Mean 97.76% 1.64% 0.28% 0.11% 0.05% 0.03% 0.02% 0.01% 0.01% 0.01%

STD 2.66% 2.16% 0.36% 0.16% 0.06% 0.03% 0.02% 0.01% 0.01% 0.01%

Median 98.52% 0.94% 0.17% 0.06% 0.03% 0.02% 0.01% 0.01% 0.01% 0.01%

Min 78.99% 0.11% 0.03% 0.01% 0.005% 0.004% 0.003% 0.003% 0.003% 0.002%

Max 99.78% 15.59% 4.01% 2.16% 0.66% 0.29% 0.16% 0.11% 0.08% 0.06%

indicates the variance of the data along the ith PC. Statistical analysis of the first 10 PCs

across the whole dataset, reported in Table 7.1, shows that the first component presents

an average 97.76% variation of the data. Thus, the trunk shape modelling volume–time

data Vr(t) is provided by choosing only the first PC and the other PCs are not used as

they only present < 2.24% of the data variability. Figure 7.4 presents the plot of the first

three PCs for a sample sequence. As seen, the first PC presents the main variability of

the data while the other two PCs hardly present any variability. It is worth noting that

deep convolutional neural networks can also be investigated for extracting more effective

and distinguishable features per subject instead of extracting hand-crafted geometrical

features.

To eliminate high frequency noise, Vr(t) is then smoothed using a 4th order Butterworth

low-pass filter. Given a wide range of respiratory rates for adults and elderly at 12 −
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Figure 7.4: The first three PCs for a sample breathing sequence. The first PC
presents the main variability of the data compared to the second and third PCs.
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Figure 7.5: Comparing the depth-based volume–time data Vr(t), Vsk(t) and
Vdk(t) obtained by the trunk shape modelling approach, single-Kinect and dPPG
methods, respectively, for (a) FVC and (b) SVC tests. Our proposed approach
greatly corrects the motion artifacts that the single-Kinect and the dPPG meth-
ods fail to improve.

36 bpm (0.2 − 0.6 Hz) [55], the cut-off frequency was chosen as 1.2 Hz, which is twice

the maximum respiratory frequency and ensures preserving the respiratory information

while filtering the high frequency noise.

Figures 7.5a and 7.5b present Vr(t) (dashed black curve) and its comparison to the

volume–time data obtained by the spirometer Vs(t) (solid red curve), single-Kinect Vsk(t)

(solid orange curve), and dPPG Vdk(t) (dashed blue curve) methods for FVC and SVC

tests, respectively. As seen, while Vsk(t) and Vdk(t) are significantly affected by the trunk

motion (yellow highlighted regions), especially at the deep forced inhalation–exhalation

stage, Vr(t) is much more accurate.

To present the real volume of exchanged air (in litres), Vr(t) is calibrated by linearly scal-

ing the y-axis using scaling factors learnt per subject in a training phase from spirometer

and depth-based training volume–time data. In the training phase, corresponding data

samples of Vs(t) and Vr(t) are identified by sampling Vs(t) at 30 Hz, and detrending Vs(t)

and Vr(t) (using EMD), and temporally aligning them. Next, the tidal volume and main

effort scaling factors are separately computed by solving linear least square equations

for Vs(t) and Vr(t) using an overdetermined system. This process is repeated for every
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pair of training spirometer and depth-based volume–time data which provides several

pairs of training scaling factors.

For a test sequence, Vr(t) is first computed using the trunk shape modelling approach,

and then calibrated by an average of all the training scaling factors, instead of applying

similarity metrics exploited in the single-Kinect and dPPG methods. This is because

our trunk shape modelling approach filters the trunk motion to a great extent such that

calibrating a test volume–time data using the average of the training scaling factors

would be more accurate than applying similarity metrics.

7.3 Experimental Results

7.3.1 Volume–time Data Evaluation

Since the PFT measures are computed from specific parts of volume–time data [129],

evaluation based on only these measures does not provide an accurate enough validation

of the computed depth-based respiratory data. Thus, unlike our single-Kinect and dPPG

works in which the evaluation is based on the measures, here we validate our proposed

method at the signal level over the whole calibrated respiratory data. In particular, we

validate our method on the dual-Kinect PFT dataset by computing the mean± STD of

(i) normalised L2 error (NL2),

(ii) Fréchet distance (FRD) [23],

(iii) dynamic time warping distance (DTW), and

(iv) correlation of determination (R2),

between the computed and spirometer volume–time data for 155 FVC and 145 SVC

sequences of all 35 subjects. Note that our trunk shape modelling approach is able

to process and retrieve the volume–time data of the 2 sequences which could not be

processed by the dPPG due to their complex trunk motion.

The L2 error is normalised to the sequence duration and the difference between the
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maximum and minimum volume of exchanged air, computed as

NL2 =

t=τ∑
t=0

(
Vs(t)− Vd(t)

)2

τ ∗
(
Vs(tmax)− Vs(tmin)

) , (7.5)

where Vs(t) and Vd(t) are the spirometer and depth-based volume–time data, tmax and

tmin are the timestamps of the global maximum and minimum of Vs(t), and τ is the

sequence data duration. Other metrics, i.e., FRD [23], DTW and R2 are standard signal

comparison measures.

Tables 7.2 and 7.3 present the evaluation results of the single-Kinect, dPPG, and the

trunk shape modelling approaches for the tidal volume and main effort parts of volume–

Table 7.2: Depth-based volume–time data (tidal volume + main effort) eval-
uation results for 155 FVC sequences, calibrated using tidal volume and main
effort scaling factors

Metric Single-Kinect dPPG Trunk Shape Modelling

ti
d
a
l

v
o
lu

m
e NL2 0.033± 0.041 0.013± 0.018 0.004± 0.006

FRD 7.87± 4.98 4.86± 3.16 3.02± 1.77

DTW 91.54± 76.06 43.68± 38.51 22.49± 19.08

R2 0.42± 0.31 0.66± 0.24 0.85± 0.11

m
a
in

e
ff

o
rt NL2 0.908± 2.796 0.068± 0.122 0.014± 0.015

FRD 22.34± 32.61 7.80± 6.45 3.89± 1.92

DTW 211.52± 499.81 38.06± 48.05 18.38± 12.48

R2 0.74± 0.29 0.91± 0.15 0.98± 0.02

Table 7.3: Depth-based volume–time data (tidal volume + main effort) evalua-
tion results for 145 SVC sequences, calibrated using tidal volume and main effort
scaling factors

Metric Single-Kinect dPPG Trunk Shape Modelling

ti
d
a
l

v
o
lu

m
e NL2 0.038± 0.066 0.012± 0.011 0.005± 0.006

FRD 10.00± 7.76 6.07± 3.12 4.03± 2.00

DTW 147.59± 155.73 71.59± 51.78 39.13± 26.34

R2 0.41± 0.29 0.63± 0.26 0.80± 0.15

m
a
in

e
ff

o
rt NL2 0.951± 6.681 0.025± 0.026 0.013± 0.013

FRD 20.44± 43.88 6.60± 3.30 4.97± 2.65

DTW 239.88± 779.48 35.66± 34.84 30.28± 23.89

R2 0.91± 0.13 0.97± 0.03† 0.98± 0.02
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time data which are separately calibrated using corresponding scaling factors. The evalu-

ation results across all the metrics confirm that while the dPPG method shows a notable

improvement to the single-Kinect approach, the trunk shape modelling method achieves

even more significant accuracy than the dPPG. In particular, while the dPPG method

reduces the tidal volume and main effort average NL2 errors of 300 sequences from 0.0357

and 0.9288 (obtained by the single-Kinect method) to 0.0124 and 0.0473, respectively,

the trunk shape modelling approach further reduces NL2 errors to 0.0049 and 0.0138,

which are 2.5 and 3.4 times lower than the errors achieved by the dPPG. Note that

although dPPG achieves a close (†) correlation of determination (R2) to the trunk shape

modelling method for the SVC main effort tests, NL2, FRD and DTW, still achieve

considerably lower error for the trunk shape modelling method. This implies that the

correlation analysis might not be as reliable as the other evaluation metrics for this

application.

Table 7.4 reports the mean± STD of the same metrics for 155 FVC and 145 SVC se-

quences in which the volume–time data is entirely calibrated using only tidal volume

scaling factor. As the results confirm, the trunk shape modelling method outperforms

the single-Kinect and dPPG methods across all of the evaluation metrics, except for

R2 of the SVC tests (?) where our method achieves almost the same R2 as dPPG. In

particular, the average NL2 error across 300 sequences is reduced from 0.454 and 0.136

by the single-Kinect and dPPG methods to 0.050 by our method, which shows 9.1 and

2.7 times lower error.

Comparing Table 7.4 to Tables 7.2 and 7.3, verifies that calibrating the entire volume–

time data using only the tidal volume scaling factor achieves lower accuracy than the indi-

vidual calibration of tidal volume and main effort. However, as a significant achievement,

Table 7.4: Depth-based volume–time data evaluation results for 155 FVC and
145 SVC sequences, calibrated using only tidal volume scaling factor

Metric Single-Kinect dPPG Trunk Shape Modelling

F
V

C
te

st
s NL2 0.679± 1.243 0.181± 0.309 0.051± 0.079

FRD 39.31± 35.51 21.08± 17.89 11.95± 8.08

DTW 541.4± 566.1 248.3± 246.7 136.2± 125.8

R2 0.59± 0.32 0.78± 0.28 0.93± 0.06

S
V

C
te

st
s NL2 0.229± 0.327 0.092± 0.137 0.049± 0.047

FRD 31.15± 20.64 19.72± 13.35 15.49± 7.34

DTW 510.2± 470.9 279.6± 250.6 204.1± 132.6

R2 0.73± 0.23 0.91± 0.06? 0.90± 0.07
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the difference in this accuracy is notably lower in the trunk shape modelling approach

than the single-Kinect and dPPG methods. While the average NL2 error across all FVC

sequences increases by 0.042 in the trunk shape modelling approach, it increases by 0.208

and 0.141 in the single-Kinect and dPPG methods. Thus, the trunk shape modelling

approach is 5.0 and 3.4 times more accurate than the single-Kinect and dPPG methods

in calibrating the whole volume–time data using only tidal volume scaling factor. Such

calibration eliminates the threshold-based analysis required for separate calibration of

tidal volume and main effort, which not only allows our approach to perform online, but

also removes the calibration error due to incorrect keypoints computation.

Altogether, since the trunk shape modelling approach achieves a higher accuracy in the

signal level, it is logical to induce that it would also provide more accurate clinical PFT

measures.

7.3.2 Calibration Assessment and Scaling Factors Evaluation

We compare the performance of our simplified volume–time data calibration method, i.e.,

using the average of training scaling factors, to the similarity based measures exploited

in the single-Kinect and dPPG approaches. For this, we calibrate the trunk shape

modelling volume–time data using, (i) the average of training scaling factors, and (ii)

similarity based measures, which provides two sets of calibrated volume–time data. Both

of these data sets are then evaluated against the spirometer by computing the mean of

NL2, FRD, DTW and R2 metrics for tidal volume and main effort parts of all 300 FVC

and SVC sequences. As Table 7.5 shows, our simplified method attain higher or equal

performance across all metrics due to achieving more consistent intra-subject scaling

factors within different trials.

Table 7.5: Comparing the performance of the volume–time data calibration
using the average of training scaling factor to the similarity based measures
exploited in the single-Kinect and dPPG methods across 300 PFT sequences

Evaluation Metrics

Calibration Method NL2 FRD DTW R2

ti
d
a
l

v
o
lu

m
e Averaging 0.005 3.51 30.53 0.83

Similarity Measure 0.005 3.54 31.15 0.83

m
a
in

e
ff

o
rt Averaging 0.014 4.41 24.13 0.98

Similarity Measure 0.015 4.58 25.81 0.98
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Table 7.6: Comparing the ratio of tidal volume and main effort scaling factors,
i.e., scltv/sclme computed across 155 FVC and 145 SVC tests

Metric Single-Kinect dPPG Trunk Shape Modelling

FVC scltv/sclme 1.11± 0.61 1.27± 0.41 1.07± 0.17

SVC scltv/sclme 1.11± 0.56 1.30± 0.41 1.10± 0.14

To further evaluate our method effectiveness in filtering trunk motion which has dif-

ferent patterns in tidal volume and main effort data, we computed the mean± STD of

tidal volume to main effort scaling factors ratio, i.e., scltv/sclme, for all FVC and SVC

sequences. As reported in Table 7.6, the trunk shape modelling approach obtains the

closest ratio to 1 with the lowest STD, which indicates achieving very close tidal volume

and main effort scaling factors for both FVC and SVC tests. This implies that we can

calibrate the entire volume–time data using only the tidal volume scaling factor which

is more reliable and less affected by trunk motion.

7.4 Conclusion

We proposed a vision-based trunk-motion tolerant approach for estimating the respira-

tory data within forced and slow vital capacity tests. Our approach corrects the body

motion artifacts to a remarkable extent which not only improves the accuracy of the

depth-based volume–time data, but also increases the intra-subject calibration process

accuracy. After constructing a dynamic 3-D model of a subject’s trunk during a breath-

ing test, temporal geometrical features are extracted from the entire chest-wall and

posterior-wall shapes. Then, a feature matrix is created for the whole sequence from

which the respiratory volume–time data is computed by performing PCA. The retrieved

respiratory data is then calibrated by the average of training scaling factors.

Evaluation on the dual-Kinect PFT dataset verifies that the trunk shape modelling

approach achieves more accurate volume–time data than the single-Kinect and dPPG

methods when calibrating by only the tidal volume scaling factor, or tidal volume and

main effort scaling factors separately. In particular, the trunk shape modelling method is

3.4 times more accurate than dPPG with only tidal volume scaling factor calibration, and

2.7 times more accurate with the tidal volume and main effort scaling factor calibration.

Our new averaged based calibration method is more accurate and efficient than using

similarity based metrics, and it also attains closer tidal volume and main effort scaling
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factors, compared to the single-Kinect and dPPG methods.

The trunk shape modelling complexity mainly lies in the trunk reconstruction stage as

explained in Section 6.5 with negligible computational costs for the feature extraction

and PCA computation stages. As long as the breathing test is performed based on

ATS/ERS guidelines in which subjects must perform the test in a sitting posture without

any significant non-breathing-related body movements prevented by the breathing test

protocols, e.g., standing up or walking, our shape modelling approach is able to filter

the trunk and shoulder breathing-related motions to a great extent. However, our model

is prone to any kind of chest-wall and posterior region occlusion. This can be occlusion

caused by external objects or self-occlusion due to the subject over-bending or trunk

sideways movement during the deep forced exhalation. While deep learning methods

could be investigated for constructing a more robust trunk shape model, they demand a

considerable amount of body shape data from various stages of breathing per subject.





Chapter 8
Conclusions and Future Work

In this chapter, we present a summary of the thesis and outline our main contributions

to the remote respiratory assessment field. This is then followed by providing some

directions and ideas for future works.

8.1 Thesis Summary

We have proposed remote depth-based methods for clinical PFT using low-cost and

publicly available depth sensors, such as the Microsoft Kinect V2.

In Chapter 1, we outlined the concepts of clinical PFT using spirometry [129] and in-

troduced its two main protocols, i.e., FVC and SVC, as the key techniques in diagnosis

of restrictive and obstructive lung diseases. Motivated to address the spirometry draw-

backs as a contact-based PFT technique, we set out our vision-based approaches for

estimating clinical lung measures remotely. In Chapter 2, we presented a review of scene

depth acquisition and registration works and considered previous related works in remote

respiratory sensing.

In Chapter 3, we described the specifications of our single-Kinect and dual-Kinect PFT

datasets. In summary, the single-Kinect dataset comprises 529 sequences collected from

85 patients attending Southmead Hospital Bristol for respiratory test. In the dual-Kinect

dataset, we collected 300 PFT sequences from 35 subjects based on ATS/ERS [128, 129]

guidelines, similar to the single-Kinect dataset, but using two opposing depth sensors.

129
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We presented our single-Kinect approach for PFT in Chapter 4. Using a depth sensor,

the respiratory volume–time data was estimated by measuring the chest-wall volume vari-

ation in a PFT sequence. Calibrating this data to present the real amount of exchanged

air, we computed 11 clinical FVC and SVC measures. We evaluated this approach by

comparing our results to the ground truth measures obtained directly from the spirome-

ter software. The evaluation results showed a high correlation between our depth-based

and the spirometer measures when the subject’s trunk motion artifacts are minimised

during the test.

In Chapter 5, we explained our 3-D data acquisition and registration pipeline. Two

opposing depth sensors were calibrated and synchronised for reconstructing an almost

complete 3-D model of dynamic objects with precise temporal and spatial alignment

accuracy. Quantitative and qualitative validations on known-size rigid boxes and non-

rigid objects showed a high accuracy in spatial registration and temporal synchronisation,

respectively. While this is a general data acquisition pipeline, we specifically used it for

collecting our dual-Kinect PFT dataset.

In Chapter 6, our dPPG approach for PFT was presented. Exploring our single-Kinect

results and analysis, we noticed that many subjects had involuntary respiratory-related

trunk motion reaction to deep forced inhalation–exhalation. These motion artifacts

affected the acquired respiratory data and consequently decreased the accuracy of com-

puted measures in our single-Kinect method. Motived to solve this, we reconstructed the

3-D model of the subject’s trunk during the test and decoupled the trunk and the respi-

ratory motions by subtracting the average depth of the chest-wall from the posterior-wall

in each frame of the sequence. Calibrating the retrieved data, PFT measures were then

computed. We evaluated this approach on the dual-Kinect dataset which showed a great

improvement in the dPPG measures compared to the single-Kinect approach.

As the last part of our work, we presented a trunk shape modelling approach for correct-

ing body motion artifacts in Chapter 7. Although dPPG gained a notable improvement

in the computed PFT measures compared to the single-Kinect method, it was not very

effective in correcting the complex trunk motion, particularly at main effort inhalation-

exhalation. To address this issue, we proposed the trunk shape modelling approach

which computes the respiratory data by applying PCA on the temporal 3-D geomet-

rical features extracted from the chest and posterior shape models. Evaluating on the

dual-Kinect PFT dataset, we validated this approach in the signal level by computing

several curve similarity measures between the computed and spirometer volume–time

data. Comparing to the single-Kinect and dPPG methods, the trunk shape modelling
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approach shows a significant improvement in the estimated volume–time data for both

of tidal volume, and tidal volume & main effort individual calibration.

8.2 Contributions

The main contributions of this thesis are:

• Presenting a novel remote PFT approach using a single Kinect for estimating 11

clinically approved PFT measures.

• Developing an accurate and efficient 3-D data acquisition and registration pipeline

using only two opposing RGB-D sensors.

• Improving PFT measures accuracy by decoupling trunk motion and chest-surface

respiratory motion.

• Correcting complex trunk motion artifacts by proposing an active trunk shape

modelling approach.

• Releasing the dual-Kinect PFT dataset, which is the first publicly available dataset

of such kind (to the best of author knowledge) for other researchers to use.

8.3 Clinicians Point of View

The work presented in this thesis is a huge step forward in the development of remote

monitoring of patients with respiratory diseases. As elaborated in [175, 176], our ‘real

world’ clinical data, collected from a large group of patients with a wide range of lung

function, is unique, and given the correlation and Bland-Altman analysis results, we

are able to accurately obtain respiratory measures remotely, which has potential clinical

applications for monitoring of patients in the hospital inpatients, gating (timing) of

thoracic imaging and synchronisation with ventilatory support. Also, this work has

the potential to be implemented in residential settings with no specialist requirement.

With only a limited dependency to the spirometer, i.e. to build our model per subject

using only a few training manoeuvres, our work is specifically useful for monitoring of

pulmonary function without the continuous use of the spirometer which is of significant

hindrance for frail elderly, children, and physically and cognitively-impaired patients. In
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summary, in this work, we have taken a vital step towards applying remote sensing as

an independent surrogate for spirometry.

8.4 Directions for Future Work

Our current remote vision-based PFT work and dataset opens up new opportunities for

other researchers to extend the current work and also investigate other remote respira-

tory assessment methods, or develop the related frameworks such as remote respiratory

monitoring in the wild. Thus, in this section several technical directions and novel ideas

are provided for further extensions and future developments.

For a remote PFT approach, it would be preferable to straightly perform on any subject

without prior intra-subject training requirement or support from other devices, e.g.,

spirometer. It means the need for subject-specific scaling factor for calibration shall be

addressed. The main step toward this would be applying machine learning techniques

to train on depth and ground truth respiratory data of male and female subjects with a

wide range of ages, weights, heights, upper-body sizes and shapes, ethnicities, respiratory

physiologies and lung pathologies. With the recent advances in deep learning methods,

this is possible, however, it requires a considerable amount of training data.

Instead of filtering trunk motion by reconstructing the subject’s body model using depth

data from two sensors, applying single-view spatio-temporal deformable shape models

[53, 177, 205] may be investigated. For this, several key trunk templates can be built for

a subject’s trunk in various sizes, i.e., different inhalation and exhalation stages, using a

single-Kinect fusion method [96, 134]. Then, these models can be temporally fit to the

subject’s trunk shape during the test to help with decoupling the trunk and respiratory

motions.

Although external respiratory motion is reflected on both thoracic and abdominal re-

gions, it can be dominant in one of these regions depending on the subject’s respiratory

system physiology. Using the breathing data of the region with the dominant respi-

ratory reflection, can potentially obtain more accurate depth-based volume–time data.

Moreover, we note that in different subjects, thoracic and abdominal regions contribute

differently in the tidal volume breathing, and the main effort inhalation–exhalation.

Hence, a multi-patch linear regression model may be investigated to help with both

of these considerations for further improving the depth-based volume–time data and
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calibration scaling factors.

Finally, deep learning techniques may be investigated for retrieving more reliable depth-

based respiratory data and measures. The Long Short Term Memory (LSTM) recurrent

network has proven to be applicable in time series regression and prediction [76, 151, 153].

Taking the advantage of LSTM network in learning short-term patterns in long period

of time, and also its regression output, we can train it on a subject’s trunk surface

3-D temporal data along with the ground truth air flow information from a spirometer.

Next, this trained network can be used for on-line generation of respiratory data and

lung measures directly from the depth measurements. This method not only may provide

more accurate respiratory data, but also would eliminate the volume–time data analysis

for keypoints extraction and scaling factors computation for calibration.
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