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ABSTRACT 

Background: Traumatic Brain Injury (TBI) is a major cause of death and acquired disability. Adult 
studies demonstrate a high prevalence of endocrine dysfunction post-TBI with associated clinical 
morbidity but paediatric data are sparse. Pituitary hormone deficiencies adversely affect growth, 
sexual maturation, energy levels but also cognitive function, particularly memory and concentration. 

Hypotheses: 1) Long-term endocrine dysfunction occurs in children following severe/moderate 
TBI, and possibly mild TBI. 2) There is a relationship between neuro-endocrine dysfunction in TBI 
children and impaired physical, cognitive and psychological functioning and reduced health related 
quality of life (HRQL). 

Aims: To investigate in an established well-characterised prospective cohort of 
severe/moderate/mild TBI adolescents and non-injured controls endocrine status and relationship 
of neuro-endocrine function and neuroimaging changes post-TBI to measures of outcome including 
cognition, psychological status, fatigue and Health-Related Quality of Life (HRQL). 

Methods: TBI participants who had previously participated to KHIS (Kid’s Head Injury Study, Bristol 
2002-2004). Seventy-two participants (age 10-26y, time from TBI 6-11y) completed the study. 
(Group 1 [control group n=17, 14M], Group 2 [mild TBI n=24, 14M] and Group 3 [moderate/severe 
TBI n=31, 20M]). The following assessments were completed (a-c group 3 only, d-e all groups): 
a) Baseline endocrine status b) GH status (Insulin Tolerance Test [ITT] and overnight 12 hour GH 
profile), c) HPA axis status (ITT, overnight 12 hour cortisol profile and salivary cortisol profile), d) 
cognitive, psychological and HRQL assessment, e) pituitary and hippocampus imaging (MRI). 

Results: No auxological differences between groups (height, weight, BMI, body fat percentage). No 
cases of precocious puberty or diabetes insipidus. One female from group 3 had primary 
amenorrhea and GH deficiency. In group 3, GH response to ITT was abnormal in 7/25. Mean 12-
hour GH secretion was low (<1mcg/L) in 4/22 profiles. Peak spontaneous GH secretion was low in 
1/22 profiles. There was no correlation between stimulated and spontaneous GH levels. 
Spontaneous (but not stimulated) GH secretion correlated with IGF1 levels. Cortisol response was 
suboptimal in 2/25 ITT. Peak spontaneous cortisol was under 500 nmol/l in 9/22 profiles, stimulated 
levels were normal in 7 of these. Spontaneous and stimulated cortisol levels correlated strongly. 
Salivary cortisol analysis did not demonstrate differences between groups in regards to diurnal 
rhythm, awakening response or suppression with dexamethasone. Verbal IQ was lower in the 
mod/sev TBI group who also showed difficulties with both externalising (conflict, aggression, rule-
breaking), internalising behaviour (withdrawal, anxiety, depression) and working memory. TBI 
survivors reported high levels of depression (14/46) and fatigue (21/46). HRQL was lower in TBI 
participants mainly because of lower psychosocial scores. Neuroimaging did not demonstrate any 
structural pituitary abnormality. Voxel based morphometry showed reduced grey matter and right 
hippocampus volume in the mod/sev TBI group. 

Conclusions: Childhood TBI is associated with long term endocrine dysfunction. Although all had 
structurally normal pituitary glands, GH status in mod/sev TBI survivors based on ITT was abnormal 
in 28% and in 18% based on overnight GH profile. This did not affect their growth or body 
composition. Fatigue correlated with measures of spontaneous but not stimulated GH. High rates of 
behaviour problems including aggression, rule breaking behaviour but also depression, reduced 
HRQL and poor working memory were observed. 
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KHINES STUDY 



 

1 

1 CHAPTER 1 (INTRODUCTION) 

1.1 TBI EPIDEMIOLOGY 

Traumatic brain injury (TBI) - an acute brain injury resulting from mechanical energy 

forces to the head from external sources - is a major cause of hospital admission in 

children and the leading cause of acquired neurological morbidity. Previous studies 

reported that 1 in 100-200 children are admitted to hospital each year following TBI of 

all severities [1] with 80% of them being mild and 20% severe or moderate according 

to the Glasgow Coma Scale [2]. The [GCS] – a neurological scale aiming to offer an 

objective way to record the level of consciousness - has been conventionally used to 

classify brain injury in adults. A modified version [Table 1] has been developed for 

children (Paediatric GCS) [3] to account for the poor verbal performance of even health 

very young children. An admission GCS score of 13-15 signifies mild, 9-12 moderate 

and 8 or below severe TBI. Although mortality rates are higher among patients with 

lower admission GCS TBI (up to 100% with admission GCS of 3), the GCS on its own 

cannot reliably predict the neuropsychological outcome in children with mild [4] or even 

severe TBI in the absence of prolonged hypoxemia [5]. When compared to adults, 

severe TBI in children is associated with lower mortality rates and better functional 

outcome [6]. 

 >5 years <5 years 

Eye opening   
E4 
E3 
E2 
E1 
C 

Spontaneous 
To voice 
To pain 
None 

Eyes closed (by swelling or bandage) 
Verbal   

V5 
V4 
V3 
V2 
V1 
T 

Orientated(in person or place) 
Confused 
Inappropriate words 
Incomprehensible sounds 
No response to pain 
Intubated 

Alert, babbles, usual ability 
Less than usual ability, irritable cry 
Cries to pain 
Moans to pain 
No response to pain 
Intubated 

Motor   
M6 
M5 
M4 
M3 
M2 
M1 

Obeys commands     Normal spontaneous movements 
Localises to supraorbital pain (>9 months of age) or withdraws to touch 

Withdraws from nailbed pain 
Flexion to supraorbital pain (decorticate) 

Extension to supraorbital pain (decerebrate) 
No response to supraorbital pain (flaccid) 

Table 1 Paediatric Glasgow Coma Scale [3] 

 

TBI in the UK is more prevalent amongst children living in deprived areas with falls 

accounting for more than half of TBI in the under 5 years age group while in the 10-15 

years age group road traffic accidents are the most common cause [7]. TBI as a result 
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of child abuse is more likely to occur in infants [8]. These data collected from a regional 

UK register of all children admitted with TBI still represents a very conservative 

estimate of the true incidence of TBI in childhood and an overestimate of the proportion 

of severe TBI, as most cases of mild TBI are not seen in hospital. Population studies 

estimate that 3.8% of the population experienced at least one hospital admission due 

to TBI by 35 years of age [9]. Almost a third of the general population will have 

sustained a TBI by 25 years of age as reported in recent prospective population 

studies such as the Christchurch Birth Cohort study [10], BIONIC (Brain Injury 

Outcomes New Zealand In the Community) study group in New Zealand [11] and 

Olmsted County (MN, USA) [12]. These large, population-based studies showed the 

incidence of TBI to be 550-800 per 100,000 people per year. In addition, even cases of 

mild TBI that present to hospital emergency departments are likely to be misdiagnosed 

by medical personnel who sensibly focus on ruling out a more severe brain injury that 

may require additional monitoring or intervention. It appears however that once 

moderate/severe brain injury is ruled out (normal CT scan, only brief loss of 

consciousness [LOC] with apparently good recovery) patients with no obvious clinical 

signs of mild TBI by the time they arrive at the ED are more likely not to be diagnosed 

with mild TBI (greatest discrepancy when assessing degree of confusion) [13]. 

For more serious types of injury, requiring admission to paediatric intensive care units, 

the incidence of severe TBI is 5.6 per 100,000 population per year. There was a 

summer peak in admission in children under 10 years with timing of the TBI being 

mostly in the evening [14]. Extrapolation from these data suggest the UK incidence of 

severe/moderate TBI in the paediatric population to be 11.2 per 100,000 per year. 

Causes of childhood TBI in developed countries vary with age. Falls (interestingly the 

major cause of TBI in adults older than 65 years of age), pedestrian road accidents 

and inflicted injuries are the most common causes in infants and children younger than 

14 years of age while motor vehicle accidents, assaults and contact sports injuries 

predominate at older ages. Male children and adolescents have a greater risk of TBI 

due to transport accidents, exposure to mechanical forces or assaults compared to 

girls and women of the same age groups [11]. 

1.2 TBI PATHOPHYSIOLOGY 

In TBI, acceleration–deceleration motions over different planes (sometimes without 

actual impact) apply forces to the brain, which can deform white matter. Deformation of 

white matter results in diffuse axonal injury (DAI) through shearing forces [15]. With 

impact injuries, basal skull fractures may damage the pituitary and/or the 
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hypothalamus directly. Even without skull fracture, tethering of the pituitary to the 

hypothalamus with the pituitary stalk makes it delicate and vulnerable to trauma. Blood 

supply to the anterior pituitary is via the short and long portal vessels. In particular, 

areas containing the somatotropic and gonadotropic cells (usually in the periphery of 

the pituitary) are supplied mainly by the long portal vessels making them more 

vulnerable to ischaemic injury compared to the corticotropic cells which receive their 

blood supply by both long and short portal vessels [16]. This would suggest that the 

somatotropic and gonadotropic cells are more likely to be affected by disruptions in 

pituitary blood supply. Following DAI, oedema (which may cause herniation through 

the diaphragmatic opening and secondary compression [17]), ischaemia and 

excitogenic neurotransmitters may also contribute to the resulting diffuse damage [18]. 

In the chronic TBI phase, loss of pituitary gland volume, perfusion deficits, absence of 

posterior pituitary signal have been described in 80% of patients with hypopituitarism 

and 29% of those without hypopituitarism indicating that pituitary imaging abnormalities 

are more common in TBI patients with hypopituitarism than those without [19]. 

Although several studies suggest that severe TBI is more likely to be associated with 

post-traumatic hypopituitarism (PTHP) [20-22] other studies have not found any 

correlation between PTHP and injury severity as assessed with the GCS [23-25]. 

Interestingly repeated mild TBI may also be implicated in the development of PTHP as 

reported in studies of amateur boxers [26, 27]. 

1.3 TBI AND HYPOPITUITARISM 

The relationship between head trauma and endocrine dysfunction was first described 

in case reports early in the beginning of the last century [Cryan E. 1918] but further 

work on this subject was not published for half a century [28]. Although the wide range 

of pathological changes to the post-TBI brain had been described in detail [17], it was 

only after advances in intensive care and subsequent improved survival of TBI patients 

that more cases of hypopituitarism started being reported [29]. Following these initial 

case reports of PTHP, there has been an increasing recognition that TBI in adults can 

cause endocrine dysfunction as well as neurological, cognitive and psychological 

sequelae [30]. Prospective follow-up studies published over the last decade have now 

conclusively demonstrated hypopituitarism as a cause of endocrine dysfunction 

following TBI in adults and an association with major negative impacts on health. 

Although not as common as anterior pituitary damage, posterior pituitary dysfunction 

has a more dramatic presentation and will prompt further neuroendocrine assessment 

[31]. Benvenga et al (2000) reviewed 367 literature case reports and 15 new cases and 
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concluded that almost half of TBI patients showed evidence of adrenocorticotropic 

hormone (ACTH) or growth hormone (GH) deficiency during the first year after injury 

and delay in diagnosis was a common feature. Kelly et al (2000) described similar 

findings in almost half of 22 head-injured patients with GH and gonadotrophin 

deficiencies being most common [21]. A subsequent study by Lieberman (2001) of 70 

TBI patients from a transitional learning community found that 45% of them had 

subnormal morning cortisol levels, and an abnormal cortisol response to a high-dose 

Synacthen test in 7% [23]. Subsequent follow up studies have reported 20-30% 

prevalence of PTHP in adults following severe/moderate TBI [32-34] with some 

however reporting much higher (up to 80% in the acute post TBI period [35] and 50% 

after a year [36]) and some as low as 5% [37] - a reflection of differences in inclusion 

criteria, time since TBI, use of different diagnostic tests and cut-off values [38]. 

Although multiple hormone deficiencies have been described a year post TBI (range 3-

50%) most participants were deficient in a single axis. Isolated GH deficiency is more 

prevalent (8-38% [39]) which is probably an indication of the susceptibility of 

somatotroph cells to ischaemia or hypoxia. 

Despite however the increasing number of studies in adult PTHP, data regarding 

PTHP in childhood are limited. Aimaretti et al (2005) studied 23 adolescents and young 

adults after TBI and reported PTHP in a third of the patients 3 months post TBI that 

persisted after one year [40]. Ulutabanca et al (2014) in a prospective study of 41 

children (age 7±4 years) with TBI found PTHP in 44% (18/41) of them in the acute post 

TBI phase. 10/41 had low baseline cortisol levels (<15 µg/dL) with inappropriately low 

ACTH, 7/41 were diagnosed with central hypothyroidism (low TSH and fT4) and 1/41 

with hypogonadism. IGF1 was measured in all patients but no GH provocation tests 

were undertaken in the acute phase. When patients were reviewed 12 months post 

TBI, thyroid status was normal in all patients. GH stimulation testing (GHRH-arginine) 

was abnormal in two patients (2/22, 9.1 %) but only one demonstrated slow growth 

post-TBI. One of these patients had also low morning cortisol (<5 µg/dL – a different, 

lower cut-off was used for diagnosing adrenal insufficiency in the chronic vs acute 

phase) with inappropriately low ACTH. This study however was limited by the absence 

of dynamic testing for GH (acute phase) and cortisol deficiency (both in the acute and 

chronic phase). In addition, only half of patients initially recruited were reviewed after 

12 months (22/41) [41]. 

In a cross-sectional study of 36 children with mod/sev TBI who were discharged from a 

Paediatric Intensive Care Unit (all patients has either skull fracture or intracranial 

haemorrhage), no clinical evidence of PTHP was observed 3 years post injury. The 
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mean age at injury was 4 years so it is possible that the low incidence of PTHP in this 

study is a reflection of the different injury mechanism seen in this age group (falls 

rather than high velocity collisions) but also elective use of stimulation tests. In this 

study, stimulation tests were performed only if baseline, blood hormone levels were 

abnormal or when clinical findings suggestive of endocrine dysfunction were present 

[42]. In a prospective study of an older group of 87 children and adolescents (median 

age 6.7, range 0.8-15.2 years) who were hospitalised with severe TBI, PTHP was 

found in 6% a year after TBI applying strict criteria (two stimulation tests with GH 

response <5 mcg/L and IGF-1≤2SDS) [43]. In another prospective study, 23 TBI 

children (age >6 years) underwent two stimulation tests (glucagon and clonidine). 

Almost half (47.8%) showed a suboptimal GH response (using however a 10 mcg/L 

cut-off [44]) three months post TBI which persisted in most of them (8 out of 11) after 1 

year. No endocrine abnormalities were found in a subgroup of younger patients (<6 

years) who were not however assessed with stimulation tests [45]. 

Although older age and male gender appear to increase the risk of PTHP, the risk of 

endocrine dysfunction appears to be much higher if the mechanism of injury is non-

accidental. Auble et al (2014) found endocrine dysfunction in 80% in children (57%, if 

hyperprolactinaemia was excluded) with moderate/severe inflicted TBI. Half of them 

had multiple hormone deficiencies [46]. 

In contrast to the above study, Heather et al (2012) concluded that permanent PTHP is 

rare after both non-accidental (33%) and accidental (67%) TBI in early childhood, in 

one of the largest cross-sectional studies with longitudinal follow-up. Almost two 

hundred survivors of structural TBI were thoroughly assessed 3-9 years post injury. 

The endocrine assessment for GH included two dynamic tests of pituitary function 

(clonidine and arginine) using a cut-off of 5 mcg/L. Eight percent of children 

demonstrated an abnormal GH response but had normal height and IGF-1 (Insulin 

Growth Factor 1) and IGF-BP3 (Insulin Growth Factor Binding Globulin 3). This group 

was followed-up for a period of 6–36 months, and all children showed normal height 

velocity and had normal GH response on repeat testing [47]. 

Khadr et al (2010) in their retrospective exploratory study of 33 TBI survivors (mean 

age 13.4 years) did not find any clinically significant endocrinopathy 1–8 years post 

injury, but minor abnormalities of the pituitary axes were observed [48]. Finally, in two 

of the first paediatric TBI studies Poomthavorn et al. (2008) detected endocrine 

abnormalities in 17% of severe TBI survivors but the study was limited by selection 

bias as only half of the participants had baseline blood tests and only 8/54 stimulation 
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tests [49]. An earlier study by Einaudi et al (2006) found that 10.4% of the 48 patients 

developed thalamo-hypophysial dysfunction 6 months or more after TBI [50]. 

The nature of the relationship between hormone deficiencies and clinical outcome in 

paediatric TBI survivors remains poorly understood. Reviews of the subject confirm the 

pressing need to obtain such data [51] as hormone deficiencies may produce 

additional morbidity in TBI patients who already have a high burden of physical, 

cognitive and psychiatric disability. 

The mismatch between expected and diagnosed PTHP cases has also been a matter 

of debate. The relatively small number of reported cases with PTHP (mainly GH 

deficiency) that are registered in international databases, suggest that PTHP is 

underestimated or under diagnosed [52]. Certainly growth monitoring - the most 

sensitive indicator of pituitary function in children – is not consistently reported in every 

clinical setting, highlighting the need for a co-ordinated approach in any setting 

(hospital or primary care), that is involved in the follow-up of children with TBI [53]. 

Although there is no agreement that the GCS is a reliable predictor of PTHP, it has 

been suggested that all adult patients with moderate to severe TBI should have 

systematic screening of pituitary function to benefit from treatment of PTHP [54]. There 

are not sufficient data however to support similar practice for childhood TBI. The 

studies by Heather et al showing permanent hypopituitarism as being a rare 

consequence after both inflicted (abusive head trauma) and accidental structural TBI in 

early childhood [47] and Salomon-Estebanez showing absence of endocrine sequelae 

in children with TBI related skull fracture or intracranial haemorrhage [42] support the 

above practice. The former study however targeted a group of very young children 

(mean age of 1.7 ± 1.5 yr) and these findings are probably not applicable to 

adolescents, whose physical characteristics and TBI mechanism are similar to those 

seen in adults. In the latter study (which also included prepubertal children), only 

participants who had low IGF1 were reassessed after one year. In all of them IGF1 

levels normalised after a year so no further tests were undertaken. Once again, the 

authors highlight the importance of growth monitoring in children after TBI and suggest 

that “invasive assessments should be reserved for selected cases where there is slow 

growth or other clinical suspicion of hypopituitarism”. 

Assessments of endocrine function can be complex and difficult to interpret. Although 

thyroid, gonadotropin and posterior pituitary function can be reliably assessed with a 

baseline blood test, diagnosis of GH or ACTH deficiency is more problematic. For 

practical reasons dynamic, non-physiological and potentially dangerous tests are still 

being used. Unfortunately, interpretation of these tests and their numerous 
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combinations remains complex. By using the same and sometimes arbitrary diagnostic 

cut-offs in different populations (age, weight, pubertal stage) with different assays, it 

would be reasonable to assume that part of the variability of the reported prevalence of 

PTHP is related to different study methodologies and interpretation of tests. Although 

alternative approaches for diagnosing GHD based on combinations of auxological, 

radiological, biochemical and genetic measures have been proposed [55], stimulation 

tests remain the standard for assessing GH status as GHD is a diagnosis based on 

biochemical evidence of reduced/absent GH secretion. 

1.3.1 Growth hormone 

1.3.1.1 Growth hormone structure 

Growth hormone (GH) is a 191 amino acid polypeptide with a molecular weight of 22-

kDa. In addition to the 22-kDa isoform that constitutes 75-90% of pituitary GH, several 

other molecular isoforms of GH exist (20-, 17-, 5-kDa), the physiological significance of 

which remains mostly unknown [56]. The 20-kDa isoform, which represents 10% of 

circulating GH, is co-secreted with the 22-kDa GH lacking amino acids 32-46. The 

biological activity of both forms is thought to be comparable [57]. Some of these 

isoforms are detected to a variable degree by available GH assays. As a result 

measured levels of GH differ depending on the assay used [58]. The main GH isoform 

and these variants circulate partially bound (up to 50% [59]) to binding proteins (growth 

hormone-binding protein, GHBP), which have a structure identical to the extra-cellular 

domain of the GH receptor [60]. 

1.3.1.2 Growth hormone physiology 

GH is secreted from somatotroph pituitary cells in a pulsatile pattern following 

constantly changing equilibrium between stimulatory (GH-releasing hormone [GHRH] 

alone or in combination with ghrelin [61]) and inhibitory (somatostatin [SS]) signals [62] 

[Figure 1]. 
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Figure 1 Human GH axis – neuromodulators 

 

GHRH is predominantly produced in the arcuate nucleus while SS in the 

paraventricular nucleus [Figure 2]. SS determines the trough levels of GH by inhibiting 

GHRH release. Pulses of GH occur when SS tone is withdrawn – this usually every 3-4 

hours. A variety of neurotransmitters, metabolites (glucose, amino acids), hormones 

(oestrogen, testosterone, insulin) but also GH itself and IGF-1 may exert a positive or 

negative effect when binding to specific hypothalamic receptors and therefore mediate 

GH secretion [63]. Although fasting normally increases GH secretion via inhibition of 

SS release, this effect is not seen in obese patients. This suggests that metabolic 

changes (insulin resistance) rather than hypothalamic mechanisms are responsible for 

the low GH levels seen in obese patients [64]. 
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Figure 2 Growth hormone related hypothalamic nuclei 

 

The pulsatile pattern of GH secretion has been confirmed in other species from foetal 

life [65]. In humans, GH is secreted in markedly amplified GH-secretory bursts from the 

early neonatal period [66]. In the first day after birth, there is GH hypersecretion with 

increased frequency (every 70 min) and amplitude of GH pulses. Gradually and with 

the development of inhibitory mechanisms (mainly SS release), GH release becomes 

pulsatile. The effect of SS is not only on the pituitary level but also on hypothalamic 

GHRH and insulin release [67]. The net result of high circulating SS is a decrease in 

the mass and frequency of GH secretory events. As with other hormones 

(gonadotrophins), pulsatile GH secretion may be necessary for tissue specific 

responses. 

Although the pulsatile pattern of GH secretion continues throughout childhood and 

adult life, the frequency and amplitude of GH pulses evolves. During puberty there is a 

marked increase in GH secretion. This is due to increased amplitude of GH pulses with 

some notable differences between men and women. In men, GH pulsatility is more 

evident during the night with large pulses and low trough levels while in women there is 

less diurnal variation with higher trough levels and nocturnal pulses of lower amplitude 

[68]. 

Single measurements therefore do not reflect endogenous GH secretion and will 

produce an uninterpretable result in virtually all cases except during the early neonatal 
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period when SS tone is not yet established. Various protocols have therefore been 

developed to access GH secretion in a more predictable and controlled way. 

1.3.1.3 Assessing GH status 

Testing methods used for diagnosing impaired GH secretion include pharmacological 

(stimulated GH secretion) and physiological (measurement of spontaneous GH 

secretion over a period of time – usually 12 or 24 hours). There is considerable 

variability in GH status even when repeating the same test in the same individual, 

which suggests that the variability is test- rather than patient-related [69]. 

1.3.1.3.1 Pharmacologic tests for GH secretion 

A number of different stimulation tests using various stimuli have been used for 

assessing GH status. In decreasing frequency based on a pharmaco-epidemiological 

survey these include pharmacological agents like insulin, arginine, clonidine, L-dopa, 

glucagon, GHRH, ornithine [70]. 

Historically insulin was used as an indicator of growth hormone status based on the 

ability to recover from the induced hypoglycaemia. Roth et al [71] was the first to 

demonstrate the GH response to insulin-induced hypoglycaemia (Insulin Tolerance 

Test [ITT]) in 6 healthy adults. By sampling every 30 min for several hours, he was 

able to demonstrate a rise in GH levels 30 min after hypoglycaemia in all except one 

participant, to levels usually found in “random plasma samples from acromegalic 

subjects”. This study became the basis of using insulin-induced hypoglycaemia as a 

direct test of pituitary somatotropic function. Further studies [72] confirmed this 

observation in both healthy volunteers and patients with hypothalamic or pituitary 

dysfunction. The author also described – in his healthy, adult volunteer group - 

markedly variable, individual GH levels but also poor reproducibility of the GH 

response in comparison to cortisol, free fatty acid and plasma glucose. 

The test is regarded as safe when done by appropriately trained staff, in a safe 

environment and in patients without a history of seizures or heart disease. An audit of 

over 500 tests over a 10 year period (1989–99) from a tertiary paediatric centre in the 

UK, reported no serious adverse events [73]. An earlier serious incident associated 

with the ITT involved the administration of inappropriately large quantities of 

intravenous dextrose to correct the insulin induced hypoglycaemia [74]. 

When interpreting the result of an ITT it is important to consider the following factors to 

avoid misclassification. 
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 The test is sensitive to weight and therefore not as reliable in diagnosing GH 

deficiency in obese children [75]. 

 As sex steroids enhance GH secretion during puberty, the practise of “priming” 

children of almost normal pubertal age with sex steroids for the purpose of the test, 

may have a similar effect. 

 Finally, age appropriate cut-offs should be used. In adults having an ITT, a GH cut-

off of 3mcg/L has been accepted [76] to diagnose GHD, while in children 7-10 

mcg/L is being used in most centres. During the transition phase, a cut-off of 5 

mcg/L achieved the best sensitivity and specificity [77]. 

1.3.1.3.2 Physiologic tests for GH secretion 

The first detailed studies in physiological GH secretion patterns in healthy adult 

participants, showed increased GH secretion with the onset of sleep. Sleep consists of 

5 stages (1, 2, 3, 4 and REM [Rapid Eye Movement]) and sleep cycle is defined as the 

period of time it takes for an individual to progress through all stages before returning 

to stage 1. A typical full cycle last about 100 minutes [78]. GH is released mainly during 

sleep stages 3 or 4 and is suppressed during periods of awakeness [79, 80]. The 

described GH secretion pattern is relatively uniform, starting 1-2 hours after sleep 

onset. The observed peak GH levels are reported to be comparable to those seen 

during stimulation tests. Interestingly this pattern of GH secretion is related only to 

sleep onset without any obvious circadian rhythm [81] [Figure 3]. 

 

Figure 3 Growth hormone secretion in relation to sleep stages (Takahashi et al) 

A similar pattern has been described in children where GH secretion during the day 

was lower than during the night period with the difference being more marked in short 

children [82] and some authors concluding that by using a single sample 1 hour after 

the onset of deep sleep, GHD could be precluded in as many as 70% of children [83]. 

In another study with similar design of short, prepubertal children without GHD (i.e. 

normal GH response to one or more pharmacological tests), at least one GH secretory 
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peak was observed in all children during sleep which was above the cut-off being used 

in that centre for pharmacological tests [84]. 

Early studies in children comparing peak GH response to ITT with peak GH 

concentration during the first cycle of stage 4 sleep, showed that results were 

discordant in less than 15% of children [85]. The authors suggest that the sensitivity of 

sleep sampling under EEG monitoring could be improved with information obtained 

from a complete 12 hour overnight profile as the maximum GH peak is not necessarily 

associated with the first cycle of stage 4 sleep. Growth velocity was also found to 

correlate with the mean GH level over 12 hours (or area under the curve), number of 

GH concentration peaks ≥ 5mcg/L and peak GH concentration 1 hour from sleep 

onset. Comparisons between normally growing and poorly growing children have 

shown that the difference in GH secretion is due to lower amplitude of same number of 

GH peaks rather than reduced number of GH secretory episodes [86]. 

When compared to GH stimulation tests, mean overnight GH secretion was found to 

have 100% specificity but variable sensitivity (54-95%) [87, 88]. Studies of 

spontaneous GH hormone secretion in normal children have shown that GH secretion 

depends on pubertal stage, sex, BMI and bone age and interpretation of data should 

therefore be done in relation to appropriate normative data which adds to the 

complexity of interpretation. These differences however become less significant at later 

states of puberty and mean overnight GH levels above 1mcg/L (using polyclonal RIA, 

Hazleton Biotechnologies, Vienna, VA) were seen in all healthy participants 

irrespective of bone age, sex or pubertal stage [89] [Figure 4]. 
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Figure 4 Spontaneous growth hormone during puberty in normal girls and boys (Reproduced from Rose, 

S.R., et al. J Clin Endocrinol Metab, 1991. 73(2): p. 428-35) 

 

Other researchers have found a strong correlation between mean 12-hour nocturnal 

GH concentration and growth velocity in all slowly growing children (height velocity less 

than 3rd percentile for bone age) having a mean nocturnal GH concentration less than 

4 mcg/L [90]. This led to the measurement of endogenous GH secretion in short 

children who were not GH deficient by conventional criteria (i.e. abnormal GH 

response to stimulation test). Results from these studies identified a subgroup of 

children where sleep-associated GH release was reduced and who benefited from GH 

therapy [91]. In another study spontaneous maximum GH concentration during night-

time sampling in children was a better predictor for the response to GH treatment than 

peak GH concentration following provocation testing [92]. 

In a more recent study [93] comparing nocturnal GH secretion in pre-pubertal and post-

pubertal lean and obese study participants using a modern, automated 

chemiluminescence assay (Nichols Luma Tag hGH), mean overnight GH concentration 

was 5.7±0.3 and 3.6±0.5 mcg/L for the lean and overweight pubertal participants 

respectively. The reduction in GH secretion in overweight participants was secondary 

to reduced GH burst mass (metric from deconvolution analysis of GH profiles) and half-

life but not because of changes in number of secretory events. The former is controlled 
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by GHRH secretion while the latter by SS and the same pattern has been 

demonstrated in studies of obese adults [94]. 

Although the pattern of growth hormone secretion in pre-pubertal and post-pubertal 

boys and girls is similar, during puberty sex-specific increases in GH secretion rate 

occur (sexual dimorphism). These appear at an earlier pubertal stage and are more 

pronounced in girls than in boys [95]. Not only the secretion rate but also the 

orderliness (as measured by Approximate Entropy [96]) of GH release is controlled by 

sex steroid hormones with the pattern of GH release becoming more irregular in 

pubertal boys as sex steroid concentrations rise [97]. The increased GH secretion 

rates during puberty are a result of a 2-3 fold increase in the mean serum GH 

concentration peak amplitude. The frequency of detected GH pulses using discrete 

peak detection methodologies remains unchanged [98]. The same pattern has also 

been described in boys with constitutional delay of puberty treated with testosterone. In 

these boys, treatment with testosterone increased the amplitude of GH-secretory 

peaks without changing pulse frequency, or pulse duration [99, 100]. In normal girls, 

pubertal GH elevations are proportionate to the rise in serum oestradiol levels and 

reach a peak 2- to 3- fold increase compared to pre-puberty at menarche [101]. 

Interestingly, the enhanced GH secretion of puberty gradually declines to below 

prepubertal levels, despite continuing adult sex-steroid hormone concentrations [100] 

Figure 5. 

 

Figure 5 Daily GH secretion rates by age (Adapted from A. Iranmanesh et al. [102]) 

 

Spontaneous GH secretion rate estimates seem to be stable and reproducible [103, 

104] and according to some researchers even more consistently reproducible 

compared to pharmacological tests [88]. Others however question the advantage of 
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spontaneous GH secretion compared to stimulation tests in prepubertal children, as 

measurements of spontaneous GH secretion were considerably less sensitive 

(sensitivity 57%; specificity 100%; predictive value of a low mean nocturnal GH level 

100%; predictive value of a normal mean nocturnal GH level 76% when using a mean 

GH cut-off level of 1mcg/L) [87, 105]. These results did not change significantly even 

when the cut-off level for diagnosing GHD with the use of a stimulation test was 

lowered from 7 mcg/L to 5 mcg/L. According to the same authors, testing of 

spontaneous GH secretion did not identify any GH deficient children that had not been 

already identified by a stimulation test. They did however suggest that overnight GH 

studies could be useful in selected clinical settings such as cranial irradiation in 

oncology patients or other central nervous system disorders which may include 

inflammatory conditions and possibly TBI [106]. 

As stimulation tests are less labour intensive, require a smaller number of samples and 

considered to be equally reproducible by some authors they were adopted early [71] 

and became the standard method of estimating GH secretion despite not being able to 

provide an explanation of the slow growth in children with “normal” GH response to 

stimulation test. This condition, referred to as GH “neurosecretory dysfunction” 

highlighted the importance of assessment of spontaneous GH secretion especially as it 

was shown to correlate closely with growth rate [107-109] and subsequent clinical 

course in comparison to stimulation tests [110]. 

In line with pharmacologic tests for GH secretion, it is reasonable to accept that using a 

universal cut-off value to define normality when assessing spontaneous GH secretion 

is misleading, as GH secretion is a continuous variable (notwithstanding the inherent 

problems associated with the performance of GH assays and how the test is 

performed) [111, 112]. 

To complicate interpretation of GH secretion normality, measured plasma GH levels do 

not reflect actual GH secretion as the plasma concentration at any time point is the 

result of GH secretion from somatotroph cells in the pituitary, distribution of GH in 

various compartments, binding, metabolism and excretion/elimination. The exact timing 

of GHRH release will therefore be inevitably blurred by the secretory and post-

secretory events. 

Advances in computer technology made it possible to undertake complex analyses – 

initially separating pulsatile signal from noise and then deconvolution analyses - and 

obtain reliable estimates of the pulsatile pattern of endocrine systems including GH 

secretion [113]. This still requires sampling at optimal intervals, which are mainly 
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determined by the half-life of GH, for which the elimination mechanisms are still largely 

unidentified. Fortunately, endogenous GH hormone disappearance rates as 

determined by deconvolution, agree well with those reported after exogenous GH 

hormone injections but also from GH kinetic studies where GH and somatostatin were 

given in combination (somatostatin given in order to supress endogenous GH 

secretion). The half-life of GH is estimated to be between 9-15 min with a mono-

exponential disappearance curve. This would suggest that 10-15 min GH sampling 

intervals are optimal in order to determine the pattern of secretion when using discrete 

sample methodology [114, 115]. With integrated sampling, in which blood is withdrawn 

continuously over time periods and assayed in defined time segments, 20 min 

subsampling frequency would seem to capture the essential major details of profiles 

[116]. More intensive 5-min or even 1-min sampling has been found to detect a higher 

number of peaks (all additional peaks however were detected within the GH major 

secretory peaks) when using an objective, statistically based pulse detection algorithm 

(Cluster). This suggests that major secretory episodes of GH release (detected fairly 

consistently with 10-30 min sampling) incorporate high-frequency GH secretory activity 

[117]. If however the focus is the secretion rate alone, longer sample intervals (up to 

30-min) are sufficient [Figure 6]. 

 

Figure 6 Simulated GH profile with different sampling intervals (adapted from Diagnostics of Endocrine 
function in children and adolescents 4th Edition) 

 

In early attempts to characterise GH secretion patterns, samples would be obtained 

serially over a period of hours or days, assayed and a “scorer” would identify peaks 
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(arbitrarily defined as a deviation from baseline of at least 20% [118]) by inspection and 

count them for analysis. This manual and highly subjective method of identifying GH 

peaks complicated communication among different researchers and was subject to 

bias at many different levels. 

Time series analysis was one of the first methods used; the principle behind time 

series being that any complex waveform can be expressed as a combination of sine 

and cosine waves with various frequencies. Following time series analysis, Fourier 

transformation can be applied to reveal dominant features [119]. Such methods, 

however, cannot deal with irregular cycles, which is the typical pattern seen with most 

biological systems. 

Pulse detection algorithms (Pulsar [120] and Cluster [121] being the most widely used) 

were subsequently developed to characterise GH secretion. Pulsar would identify 

secretory episodes by comparing the height from a baseline while taking into account 

the assay standard deviation. The Cluster program would define a pulse as a 

“statistically significant increase in a cluster of hormone values followed by a significant 

decrease in a second cluster of values” by using a sliding, grouped t-test. This method 

is limited in that it cannot adjust for varying trough hormone concentration, pulse 

amplitude and duration. Both Cluster and Pulsar algorithms operate at a similarly peak 

detection efficacy with 20-min GH sampling [120]. 

Development of sensitive GH assays that are able to detect low concentrations of GH 

and newer computer algorithms that are able to define parameters of GH secretion by 

an automated, statistically based approach, has enabled representation of hormone 

secretory episodes by a Gaussian distribution of brief molecular secretory episodes 

around a particular time point. 

Deconvolution methods take pulse detection algorithms a step further, as they are able 

to expose underlying GH secretion rates by taking away the influence of GH 

elimination on the measured plasma concentration [122, 123] [Figure 7]. They can 

therefore present information about regulation of secretory activity and enable detailed 

analysis of GH pulsatile secretion (AutoDecon) [124]. 
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Figure 7 Multiple-parameter deconvolution model 

 

1.3.2 Cortisol 

1.3.2.1 Cortisol physiology 

The hypothalamus–pituitary–adrenal (HPA) axis is a major endocrine system, which 

plays a crucial role in maintaining homeostasis and adaptability to physical and 

environmental challenges [125]. Cortisol, the final product of the HPA axis, binds to 

glucocorticoid receptors that are abundant in almost every bodily tissue and facilitates 

metabolic processes related to glucose utilization and delivery to the brain and 

muscles in addition to maintaining blood pressure and hence peripheral blood 

perfusion. 

Corticotrophin-releasing-hormone (CRH) is synthesized at the level of the 

paraventricular nucleus (PVN). The PVN receives input from the suprachiasmatic 

nucleus (SCN) in the hypothalamus which synchronises the body’s circadian rhythms 

[126]. Via the portal circulation, CRH reaches the anterior pituitary and stimulates the 

secretion of adrenocorticotropic hormone (ACTH) which in turn reaches the adrenal 

cortex and stimulates the synthesis and secretion of glucocorticoids [127]. 

The HPA axis has a distinct diurnal rhythm with short secretory episodes of high 

amplitude starting in the second half of the night with peak cortisol levels in the early 

morning [128]. An additional brisk increase in cortisol levels, embedded in this 

circadian pattern but relatively distinct from components of circadian cortisol secretion, 

is seen 20-30 minutes after awakening (cortisol awakening response [CAR]) [129]. 

Cortisol levels during this brief period rise by almost two fold and remain elevated for at 

least 60 minutes [130]. CAR shows high intra-individual stability (r= .45 - .70) even 

when measured at monthly intervals and in different age groups [131]. Thereafter, 
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cortisol levels gradually decline throughout the day with lowest levels seen around 

midnight [132]. 

The CAR is therefore considered a useful indicator of the integrity of the HPA axis. The 

cortisol increase can be supressed after intake of a low-dose dexamethasone the night 

before suggesting that CAR is mainly driven by hormonal release from the pituitary 

[133] influenced by orientation in time [134]. This is supported by the increased post-

awakening cortisol production seen by using a dawn simulator producing increasing 

light levels before awakening [135]. 

Although stress and depression can result in an enhanced CAR the results from 

various studies are mixed [136]. It is possible that differences in sleep and gender 

could account for these differences as although depressive symptoms are associated 

with an elevated CAR in females, in males the result is a blunted CAR [137]. 

Another important factor that needs to be taken into account whenever interpreting 

CAR data is the temporal accuracy of saliva sampling. Although the first sample should 

be taken immediately after awakening, studies that were able to verify awakening and 

sampling times found delays in sample collection by >30 min on 14% of sampling days 

[138]. This is clearly demonstrated in Figure 8. 

 

  

 

Figure 8 Illustration of the impact of sampling in CAR estimation.S1 denotes the first sample on 
awakening. Differences in the estimated Area under the Curve (AUC) can be seen with delays of 20 and 
40 min between awakening and collection of first sample. 
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Although the HPA axis is mainly regulated at the level of the PVN with input from the 

SCN, other brain regions including the hippocampus have been found to play a role in 

modifying HPA axis activity. Reduced hippocampal volume is associated with 

impairment of hippocampus-dependent cognitive processes and persistently elevated 

cortisol levels while larger hippocampal volume is associated with a greater CAR [139]. 

Taken together, these results suggest a central role of the hippocampus in regulation 

of the CAR. 

1.3.3 Impact of post traumatic hypopituitarism (PTHP) 

In addition to its growth promoting effects, GH plays an important role in maintaining a 

healthy metabolic profile, body composition with increases in lean body mass and bone 

density but also memory, cognition, mood and HRQL [140, 141]. Treatment with GH in 

GH-deficient children has been shown to improve cognition, especially performance IQ 

and processing speed [142]. 

GHD is associated with increased risk of developing adverse cardiovascular and 

cerebrovascular events - a combined result of various factors including reduced left 

ventricular mass, endothelial dysfunction and increased visceral fat [143]. Treatment 

with GH has a beneficial effect possibly by improving endothelial function and reducing 

arterial stiffness [144]. The beneficial effect of hormone replacement in patients with 

hypopituitarism is well established [145]. 

Hypogonadism is associated with infertility, adverse changes in body composition/bone 

mineralisation [146] and increased risk for cardiovascular and cerebrovascular events. 

Depending upon the age and gender of the TBI individual, the symptoms of 

hypogonadism can vary. Women can exhibit amenorrhea, decreased libido, fertility and 

reduction in bone density. Men can present with fatigue, reduced lean/muscle mass, 

loss of secondary sexually characteristics and decreased libido and fertility. 

Gonadotrophin deficiency has been found to be a significant independent factor for 

development of cerebrovascular disease, essentially increasing mortality two fold 

compared to the general population [147]. It is also associated with impairment of 

some aspects of cognitive function, particularly verbal fluency [148]. 

Glucocorticoid deficiency can cause lethargy, weakness, fatigue and cognitive 

dysfunction [149]. With secondary hormone deficiencies as seen with TBI, most 

mineralocorticoid secretion remains intact. Corticotropin deficiency is therefore less 

evident than primary adrenal deficiency. 
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Hypothyroidism causes fatigue, poor concentration and memory problems which can 

be ameliorated by treatment [150, 151], but again the clinical phenotype is less severe 

than that seen in primary hypothyroidism.  

1.3.3.1 Fatigue, HRQL, cognitive function and PTHP 

Persisting mental and physical fatigue has been reported in up to 80% of traumatic 

brain injury patients even at 5 years post TBI [152, 153] . This is much higher when 

compared to the lifetime prevalence of fatigue in the general population (24%) [154]. In 

the first year post-TBI, fatigue levels are more likely to improve, remain stable or 

increase following mild, moderate and severe TBI respectively and correlate strongly 

with depression, insomnia, and cognitive difficulties [155]. Various mechanisms have 

been proposed to explain fatigue in patients with TBI including excess mental effort to 

overcome memory, problem solving and attention impairment, disordered sleep and 

hypopituitarism [156]. Although fatigue levels between GHD and non-GHD TBI 

survivors (irrespective of TBI severity) have been reported to be comparable [157, 

158], studies of GHD patients from non-TBI causes indicate an association between 

GH status and fatigue. The discrepancy could be related to the small number of 

patients recruited in the formal studies as it is well described that GHD is associated by 

a described reduction in cardiorespiratory endurance which can present as physical 

fatigue [159, 160]. It would be reasonable to assume that treatment with GH would 

reduce fatigue in these patients. This has been confirmed with double blind, placebo 

controlled studies that have demonstrated an overall improvement in energy levels with 

GH replacement therapy in GHD [161-163]. 

The potential benefit to patients of correcting post-TBI endocrine deficits is further 

highlighted by evidence that adults with GHD following TBI, show a marked 

improvement in HRQL (including social and psychological wellbeing) but also in 

cognitive function, organisational skills, co-ordination and fine motor dexterity after 

treatment with GH [164]. Analysis of the German International Metabolic database 

(KIMS) in 2006 identified 84 TBI patients on GH treatment (54 adult-onset and 24 

childhood-onset). When compared to a matched group of GHD patients due to non-

functioning pituitary adenoma, they showed a similar benefit from GH replacement in 

terms of improved HRQL [172]. 

Although impaired cognitive function is a well-recognised complication of TBI, the 

relationship between TBI-related hypopituitarism and cognitive dysfunction is not clear. 

Children with congenital hypopituitarism have an intellectual ability that is in the low-

average range compared to the population norm but not significantly different when 
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compared to their siblings except for performance IQ (reflection of reduced ability to 

perform tasks requiring perceptual organisational skills) [165]. These children are 

susceptible to hypoglycaemia and other hormone deficiencies early in life that can 

affect the developing brain and are recognised causes of neurocognitive dysfunction 

[166] without forgetting that children with congenital hypopituitarism are also likely to 

have an abnormally developed brain to start with. Furthermore, intelligence in children 

with GH insensitivity due to abnormal GH receptor is not different compared to controls 

indicating that GH-induced IGF-1 production is not required for normal brain growth or 

for postnatal intellectual development [167]. 

Considering that GH and IGF-1 receptors are found in the thalamus, hypothalamus, 

hippocampus and parahippocampal areas it is still possible that GH exerts a 

neurotrophic effect in childhood but also during adulthood [168]. Although some of GH 

actions are mediated through IGF-1, the expression of GH receptors in the brain 

suggests a direct effect on neural cells especially as GH receptor is upregulated 

following brain injury and in response to GH administration [169]. Experimental 

research raises the possibility that at least some of the adverse effects of hormone 

deficiencies following TBI might be related to an impact upon endogenous neuro 

reparative processes [170, 171]. 

1.4 TBI AND QUALITY OF LIFE 

The impact of endocrine dysfunction following TBI is likely to be even more significant 

in children than in adults because of the crucial roles of pituitary hormones in growth, 

puberty and the successful physical and psychological transition from childhood to 

adulthood. TBI children have significantly lower HRQL than non-injured controls 

several years post injury [172] but in contrast to parent report they do not always rate 

their HRQL much differently compared to their peers when assessed a mean of 4 

years post TBI [173]. The reduction in HRQL correlates not only with injury severity but 

also with levels of cognitive and psychological dysfunction. 

Kokshoorn et al (2011) [37] reported differences in HRQL between patients diagnosed 

with and without hypopituitarism at least one year after TBI. From the 112 patients that 

were included in the study (age 19-69 years, time since TBI 4±3 years) six were 

diagnosed with one or more pituitary hormone deficiencies following a single dynamic 

test (3 GHD, 1 GHD and cortisol, 1 cortisol, 1 hypogonadism). As a group, patients 

with PTHP had problems with depression, social isolation, reduced activity and 

reduced general health perception. In another retrospective study of 97 symptomatic 

(presence of psychiatric or neuropsychological deficits like chronic fatigue, impairment 
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of alertness, listlessness) TBI patients, Nourollahi et al [174] found that all patients had 

significantly lower HRQL compared to the standard population. In addition patients with 

PTHP had also worse HRQL compared to patients without PTHP. 

1.5 TBI AND BEHAVIOURAL OUTCOMES 

Behavioural and psychosocial problems following TBI in childhood have not received 

the same attention as the physical and cognitive consequences. As damage to neural 

substrate after TBI can affect neurocognitive skills that mediate behaviour, children 

following TBI are at increased risk of adverse behavioural outcomes. The effects of 

injury severity are not clear [175, 176] for most behavioural outcomes except possibly 

for personality changes that may be noticeable shortly after injury [177]. With modern 

imaging modalities (DTI and fMRI) it is now possible to assess subtle changes in white 

matter integrity. Executive functioning (task planning, inhibition, attention control, 

sustained effort, and mental flexibility) for example relies on frontal–striatal networks 

that are particularly susceptible to diffuse axonal injury [178]. Approximately 20 to 40% 

of young children (5-15 years of age) with TBI show significant executive dysfunction 

within the first year of injury [179]. Frontal and temporal area networks are also 

important for processing emotional information. Acquired brain injuries to these areas 

(e.g. TBI, stroke, meningitis) can predict deficits in processing and recognizing 

emotions, executive function and general cognitive functioning [180, 181]. 

Early studies of children following severe TBI suggested that the risk of experiencing 

TBI is influenced by the child’s pre-accident behaviour, intellectual level, and 

psychosocial circumstances [182, 183]. Other studies have reported a threefold 

increase of new psychiatric disorders compared to children with mild TBI (62% vs 20%) 

or orthopaedic injury controls [182, 184]. These studies however have relied on post-

injury collection of pre-injury data and it is possible that parental perception of the 

child’s past behaviour was influenced by the child’s current behaviour. In addition these 

studies included only children that were hospitalised or seen in emergency 

departments while children with mild TBI are usually seen in primary care [10]. It is 

therefore possible that children with mild TBI presenting at hospital and included in 

these studies of hospitalised children were simply ones with overly concerned parents. 

These children therefore may not be an accurate reflection of the general population. 

Another way to obtain accurate pre-injury information would be with well-designed 

prospective studies like birth cohorts. In a large birth cohort study that included 1265 

children, McKinlay et al [185] challenged the hypothesis that children who have 

behavioural, cognitive problems or learning disabilities are more likely to experience 
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TBI and found that pre-injury behavioural problems were not a significant factor of TBI. 

This result was in agreement with other studies using prospectively collected data 

[186, 187]. Although the study identified three main risk factors of TBI (male sex, 

punitive parental style and number of adverse life events) the level of predictive 

efficacy of the statistical model suggested a number of unaccounted risk factors. It is 

hypothesised that children from stressed families are likely to be less supervised and 

therefore their exposure to TBI events is higher. 

There is however agreement regarding the behavioural outcome following TBI. 

Changes of both internalizing (anxiety/depression [188, 189], withdrawal [190], somatic 

complaints) and externalizing behaviours (aggression [175, 191], rule breaking and 

intrusive) have been reported. Whether pre-existing or not, inattention is among the 

most commonly reported disorder post TBI as almost half of children developed 

symptoms of ADHD after TBI [192, 193]. Interestingly in children with pre-injury ADHD, 

their symptoms persist without the fluctuations described in TBI children without a pre-

injury diagnosis of ADHD [194]. Children with TBI are at a much greater risk to develop 

new onset mood or and/or anxiety disorders as they are often left with residual 

cognitive, physical, behavioural and emotional deficits, all of which interfere with 

reintegration into the community (almost half of them at 6 months post TBI compared 

to 14% in children with orthopaedic injuries [195]). One year post injury, 10% of TBI 

children fulfil criteria for posttraumatic stress disorder (PTSD) which include avoidance, 

re-experiencing and hyperarousal [196]. Age at injury may affect the outcome in 

different ways. Younger children with TBI appear more vulnerable to anxiety disorders 

[197] but older ones are more vulnerable to depression [198]. 

Aggression and rule breaking behaviour are prevalent in children with TBI both before 

(explaining the higher TBI event risk described in some studies but not in prospective 

birth cohorts) and after their injury. In a prospective study of fifty children hospitalized 

after TBI, injury severity predicted oppositional defiant disorder (ODD) symptomatology 

at 2 years after injury but psychosocial factors appeared to play a greater role in the 

development of ODD symptomatology in the first year after TBI [199]. Children with 

ODD are also more likely to use aggression to resolve social conflicts rather than 

behaviours that preserve relationships with both peers and family [200]. All of the 

above attributable to TBI disorders can still be present several years post-injury [172, 

182] and predispose these individuals to violent crime [201] or further mental health 

disorders [202]. 

Depressive symptoms shortly after TBI are not more common or different to the 

symptoms experienced by other children hospitalized for other trauma (orthopaedic) 
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reasons. This suggests that the hospitalization experience rather than the type of injury 

determines the emergence of depressive symptoms [188]. At follow-up however, TBI 

children are more likely to report more depressive symptoms with socioeconomic 

status being a significant outcome moderator. Most studies suggest that TBI increases 

the risk of depressive symptoms (10-25% up to 2 years post TBI), especially among 

more socially disadvantaged children. 

The relationship between GH secretion and depression is multifactorial. Considering 

that GH secretion occurs mainly during sleep and patients with depression have 

problems with sleep quality (falling asleep and sleep maintenance), it has been 

hypothesised that GH secretion is reduced in these patients. Although some studies in 

adult patients with depression support this hypothesis [203, 204] other studies have 

failed to find blunted GH secretion in depressed adults [205, 206]. Studies in children 

and adolescents measuring spontaneous GH secretion are also inconclusive. De Bellis 

et al [207] in a study of 38 medically fit children with prepubertal major depression and 

28 healthy control children, found that depressed children had lower cortisol secretion 

during sleep but GH secretion did not differ between groups. Subgroup analysis 

showed lower GH secretion in depressed females when compared to depressed 

males. These findings were not replicated by Kutcher et al [208] in a smaller group of 

depressed adolescents who demonstrated higher overnight GH secretion compared to 

a matched (age, gender, pubertal stage, weight) control group. Using pharmacological 

stimuli (insulin induced hypoglycaemia, clonidine and GHRH) Ryan et al [209] 

demonstrated blunted GH secretion in 38 medically fit children with major depressive 

disorder. Although the study supported existing evidence demonstrating a relation 

between childhood depression and GH dysregulation, there was no clear explanation 

for the blunted GH response to GHRH suggestive of impaired pituitary responsiveness 

which was also described by Dahl et al [210]. 

Studies in adults with GHD have not found a relationship between measures of GH 

and psychometric tests [211]. The observed improvement of psychosomatic complaints 

and depression following GH treatment is therefore possible to be secondary to the 

associated improvement in somatic effects with GH replacement. Most studies overall 

suggest that TBI increases the risk of depressive symptoms (10-25% up to 2 years 

post TBI), especially among more socially disadvantaged children.  

1.6 TBI AND NEUROIMAGING 

Studies of paediatric TBI using conventional neuroimaging techniques have explored 

the location and volume of focal lesions or volumetric changes in total brain volume, 
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grey or white matter. It is not clear however that the methodology of cerebral 

localization [212] (the concept that specific areas of the brain control or mediate certain 

behaviours) which is based on adult based models can be extrapolated to the 

developing brain, which has less fixed functional organisation [213]. 

CT is widely available and is still regarded as the first line neuroimaging modality in 

TBI. Short acquisition time and high sensitivity in detecting life-threatening conditions 

requiring immediate intervention while allowing easy access to medical staff during the 

scan are important advantages over MRI (magnetic resonance imaging). 

Studies where CT brain scans were performed in children with inflicted or non-inflicted 

TBI suggest that the modified GCS, duration of impaired consciousness, number of 

intracranial lesions are predictive factors of Glasgow Outcome Scale and cognitive 

outcome after one year with pupillary abnormalities being associated with poorer motor 

outcomes [214]. However, other studies, using more advanced techniques [voxel-

based morphometry (VBM)], did not demonstrate persisting morphometric changes of 

the pituitary gland and hypothalamus in the long-term (minimum of 7 years post TBI) in 

paediatric TBI survivors without endocrine dysfunction requiring intensive care 

treatment [215]. 

Although CT provides important and timely information, MRI is able to identify 

significantly more intraparenchymal lesions [216, 217] but acquisition time is longer 

and will usually require the paediatric patient to be sedated. The identification however 

of more TBI related lesions has significant implications in regards to outcome 

measures and prediction models. Centrally located lesions appear to be directly 

associated to severity of acute impairment of consciousness and inversely related to 

functional outcome measures (Glasgow Outcome Scale and the Vineland Adaptive 

Behaviour Scale) [217]. Children with thalamic and/or basal ganglia injury are three 

times more likely to develop secondary ADHD when compared to children without 

injuries in those regions [218]. 

The frontal brain region, which is the most frequent – not centrally located – area of 

damage following TBI is believed to be associated with executive function, attention, 

and affections [219-221]. Although research in adults has clearly linked frontal lobe 

region integrity (prefrontal cortex) to measures of executive function [222], this 

functional specificity for executive processes has not been convincingly demonstrated 

in children where the volume of extrafrontal (rather than frontal) lesions and total 

number of lesions was predictive of executive functioning [223]. Frontal white matter 

damage correlated with novel depression 6 months after injury [198]. Diffuse cerebral 
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atrophy following paediatric TBI was associated with worse global outcomes (Glasgow 

Outcome Scale). Brain tissue preservation correlated positively with recovery 

outcomes [178].  

These findings suggest that in paediatric TBI, diffuse/extensive rather than localized 

brain injury may be more important with regard to predicting outcomes. Consequently, 

the focus has been in developing neuroimaging techniques that generate not only 

more detailed images of grey and white matter but also provide measures of function 

integrity. 

Diffusion Weighted Imaging (DWI) by using differences in diffusion/mobility of protons 

within the brain can reveal a greater extent and degree of abnormality than that seen 

with T2-weighted and FLAIR sequences [224]. The mapping of the diffusion process in 

biological tissues has been shown to be more sensitive to the diffuse white matter 

damage that often occurs in TBI [225-228]. DWI also allows differentiation between 

cytotoxic and vasogenic oedema (both associated with DAI which is seen following 

TBI), the latter or which may be reversible with appropriate treatment [229]. 

Following from DWI, Diffusion Tensor Imaging (DTI) measures the directionality of 

proton diffusion within the brain, providing information about white matter integrity 

through the calculation of Fractional Anisotropy (FA). High FA (range 0-1) corresponds 

to maximal anisotropic diffusion, as seen for example in intact, tightly packed fibre 

tracts [226]. FA across a number of white matter tracts was found to correlate with 

severity of TBI in children at least 1 year after TBI [230]. 

1.7 INTRODUCTION SUMMARY 

TBI remains the leading cause of acquired neurological morbidity in children. Data 

collected from registers of all children admitted to hospitals with TBI represents a very 

conservative estimate of the true incidence of TBI in childhood and an overestimate of 

the proportion of severe TBI, as most cases of mild TBI are not seen in hospital. Large, 

population-based studies estimate the incidence of TBI to be 550-800 per 100,000 

people per year with almost a third of the general population having sustained TBI by 

25 years of age. 

Although severe TBI has been reported to be associated with poor health-related 

quality of life, depression, fatigue, behavioural changes and sexual disturbances not 

much is known about the long term (10 year) prevalence of neuroendocrine 

dysfunction in children. Studies in adults report long-term prevalence of post traumatic 

hypopituitarism ranging from 10% to 70% which reflects the significant differences in 
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methodology and interpretation of tests used to measure outcomes (cognitive, 

behaviour, quality of life and endocrine). Similar variability is seen in the small number 

of available paediatric studies which in addition are limited by the small number of 

participants. Overall, post-TBI hypopituitarism was less prevalent in studies that 

included patients with mild TBI but indicators of trauma severity (GCS, skull fracture, 

DAI) have not been consistently reported to be associated with TBI related 

hypopituitarism. As there is a considerable overlap between post-TBI symptoms and 

chronic hypopituitarism, it has been hypothesised that TBI related morbidity could be 

secondary to undiagnosed and subsequently untreated hypopituitarism stressing the 

need for common diagnostic criteria to facilitate comparisons between studies and 

treatment outcomes. 

For practical reasons dynamic, non-physiological tests are being used to diagnose GH 

deficiency. These were initially developed for the endocrine assessment of specific 

patient groups (short children, cancer survivors etc.) but it is not known if these tests 

are appropriate for TBI patients where the “true” risk of chronic hypopituitarism is 

unknown. Measurement of spontaneous GH hormone secretion facilitates analysis of 

hormone pulsatility which could be used for assessing GH status in TBI survivors as it 

has already proven helpful in clinical settings such as oncology patients treated with 

cranial irradiation or slow growing children with normal GH response to dynamic testing 

(neurosecretory dysfunction). 

The clinical manifestations of hormone deficiencies due to post-traumatic 

hypopituitarism can be obvious or very subtle especially with mild TBI. In addition any 

symptoms or signs of hypopituitarism may be masked by the cognitive, physical, 

and/or behavioural sequelae secondary to damage to other regions of the cortex or 

diffuse axonal injury. Advances in neuroimaging techniques suggest that in paediatric 

TBI, diffuse/extensive rather than localized brain injury may be more important with 

regard to predicting outcomes. 
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2 CHAPTER 2 (STUDY DESIGN) 

HYPOTHESES 

• Potentially treatable long-term endocrine dysfunction occurs in a significant 

proportion of children following severe/moderate TBI, and possibly mild TBI. 

• There is an association between neuro-endocrine dysfunction in TBI children and 

impaired physical, cognitive and psychological functioning and reduced health related 

quality of life (HRQL). 

2.1 AIM 

The aim of KHINES was to assess the long-term prevalence of endocrine dysfunction 

and the impact on health, cognition, emotional/behavioural status and health related 

quality of life in an established, well-characterised cohort of severe/moderate and mild 

TBI children and adolescents when compared to non-injured controls. 

2.2 OBJECTIVES 

a. Endocrine assessment of: 

a. GH (Growth Hormone) status in the severe/moderate TBI group using: 

i. provocation tests 

ii. overnight venous sampling 

b. HPA (Hypothalamus-Pituitary-Adrenal) axis function with: 

i. provocation tests 

ii. overnight venous sampling (in severe/moderate TBI group only) 

iii. Non-invasive (salivary) sampling for cortisol (all groups). 

b. The relationship of neuro-endocrine function post-TBI to detailed measures of 

injury severity, including neuroradiological imaging. 

c. The relationship of neuro-endocrine function post-TBI to detailed and 

longitudinal measures of outcome including cognition, psychological status and 

Health-Related Quality of Life (HRQL).  
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2.3 PROJECT APPROVAL  

Sponsorship was obtained from the University Hospitals Bristol National Health (NHS) 

Foundation Trust in October 2009 (Appendix 6.1.1) 

• The study was approved by the South West Research Committee 4 on 13 April 

2010 (appendix 6.1.2) and University Hospitals Bristol Research and Development 

Department on 18 June 2010 (appendix 6.1.3). 

2.4 DATA PROTECTION 

Data were collected and retained in accordance with the Data Protection Act 1998. 

Identifiable personal information was anonymised, with codes accessible only to the 

investigators of the study, to ensure confidentiality. All study data have been stored 

according to local research policies and standards from Good Clinical Practice 

Guidelines on the University Hospitals Bristol, NHS server and accessible only from 

Trust intranet. Data were collected with the help of a Case Record File and transferred 

to an Access Database. Non-patient identifiable data were also backed up in an 

encrypted USB flash drive registered to ND. Data was entered in a Microsoft Access 

Database and exported for analysis with SPSS. 

2.5 STUDY PARTICIPANTS 

All individuals who had participated to the Kids’ Head Injury Study (KHIS, 2002-2004) 

and had agreed to participate in any further TBI related studies were eligible for 

recruitment. KHIS was a prospective study of outcome in children with severe, 

moderate and mild TBI for whom detailed data were available concerning the severity 

and mechanism of TBI and outcome. A research psychologist who had been a 

member of the original KHIS team made initial contact with participants. Failing initial 

contact by telephone, participant details were verified and updated if necessary by 

contacting their primary care physician followed by an invitation letter to their last 

known address if they could not be contacted by phone. Informed consent/assent was 

obtained from participants and parent/legal guardian as appropriate for age. 

Participants were divided into 3 groups. 

 Group 1 (control group) 

Control participants in KHIS were non-injured school children matched for 

age, sex, socio-economic status based on the Income Deprivation Affecting 

Children Index (IDACI) and pre-TBI academic attainment using the “best 

friend model”. In this model KHIS participants were asked to nominate a friend 
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or acquaintance of the same sex and age who were at the same school. 

Friend controls are presumed to be more motivated, inadvertently matched on 

characteristics not intended as matching factors and have higher response 

rates compared to general population controls [231, 232]. 

 Group 2 (mild TBI) 

Participants with admission Glasgow Coma Score [2] (GCS) 13-15 and normal 

neuroimaging) 

 Group 3 (moderate/severe TBI) 

Participants with Moderate/Severe TBI (admission GCS 3-8 for severe and 9-

12 for moderate TBI) or injury related abnormalities on initial neuroimaging 

even with GCS 13-15 . 

Exclusion criteria were failure to obtain informed consent, pregnancy, history of cranial 

irradiation, significant pre-TBI endocrine dysfunction (excluding transient 

endocrinopathy e.g. transient hypothyroidism, recovered adrenal suppression from 

steroids), medical or psychological problems not related to TBI (including alcohol and 

drug abuse) that could disturb interpretation of results and history of further TBI. In 

addition, participants on any steroid preparation (topical or systemic) were asked to 

stop this before the tests where clinically possible. If this was not clinically acceptable 

the endocrine tests were either postponed (if a short course of treatment was involved) 

or were not performed. Shift workers were tested at least a week after their last night 

shift and alcohol/drug intake was not permitted for a minimum of 24 hours before any 

assessment. Participants who had travelled across more than three time zones were 

seen at least 3 months after their return in the UK. 

Power calculations for the endocrine assessments were based on a conservative, 

estimated prevalence of GH deficiency in the general population of 1:10,000 (1:3,000 – 

1:17,000 from large population studies) [233, 234] and 10% in the moderate/severe 

TBI group. The number of participants needed to demonstrate with a power of 80% a 

statistically significant difference (5% level of significance) was 16. 

For salivary cortisol assessment, where a control group would be available, at least 17 

patients were needed per group in order to demonstrate with 80% power, a difference 

of one standard deviation (SD) between morning salivary cortisol levels in TBI patients 

and controls. 

The study design is shown in Figure 9. 
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Figure 9 KHINES study design 

  



 

33 

2.6 ENDOCRINE INVESTIGATIONS 

2.6.1 Clinical Assessment 

Participants were studied at the Bristol Royal Hospital for Children and had a baseline 

clinical assessment, including pubertal staging according to Tanner method [235], and 

symptom review with questionnaires for measures of HRQL and health status. All 

assessments were done by the same experienced research doctor (ND). 

2.6.2 Anthropometry 

Height 

Measurements included morning height using a daily-calibrated Harpenden® wall 

mounted stadiometer. Shoes, hair clips and braid were removed. Participants were 

positioned with feet together, flat on the ground, heels touching the back plate of the 

measuring instrument, straight legs, buttocks and scapulae against the backboard and 

arms loosely at their side. Head was positioned so that the lower margins of the orbit 

and external auditory meati were in the same horizontal plane. While applying gentle 

pressure and holding their mastoid processes to stabilise the head in the correct 

position, participants were asked to breathe normally and the headboard was placed 

on the top of their head. Height was recorded to the nearest mm after full exhalation. 

The measurement was repeated three times and the average rounded to the nearest 

mm. 

Weight 

Weight was measured to the nearest 0.1 kg with participant wearing light indoor 

clothing after removing shoes/slippers and pocket contents. The scales used were 

regularly calibrated with a traction weight. 

Body Mass Index (BMI) 

BMI was calculated as weight (kg) divided by the square of height. Weight, height, and 

BMI were corrected for age and gender using SDS from the Cole’s LMS method [236, 

237]. 

Waist circumference was taken during expiration at the narrowest waist level, or if this 

was not apparent, at the mid-point between the lowest rib and iliac crest using a cloth 

tape. Three measurements were taken at different levels and the lowest measurement 

recorded. 
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Body composition 

Methods to measure body fat can be divided in two categories: “reference” (body 

density, total body water, DEXA [dual-energy X-Ray absorptiometry), MRI] that 

measure a physical property of the body or “prediction” methods (skinfold thickness 

[238] and bioelectrical impedance analysis [BIA]) that use regression analysis to give 

an estimate of the “reference” method outcome [239]. Skinfold thickness has been 

found to provide an accurate estimate of total body fat when compared to DEXA 

including in GH deficient patients [240]. 

BIA estimates total body fat indirectly by using electrical current tissue resistance to 

measure total body water and by extrapolation fat free mass. Total body fat is then 

calculated as the difference between body weight and fat free mass [241]. BIA, 

especially when using recently developed analysers, provides a quick, safe and 

accurate method of measuring total body fat. Limitations are mainly dependent on 

hydration state including fluid shifts between different areas of the body throughout the 

day [241]. In healthy, normal weight, young adults this is not an issue and bioelectrical 

impedance is an accurate tool to estimate total body fat regardless of their activity level 

[242]. 

Skinfold thickness was measured over three sites (biceps, triceps and abdomen) using 

a Holtain® skinfold calliper. Measurements were taken on the right side for 

consistency. If for any reason measurements needed to be taken on the left side 

(injuries, amputation, deformities) this was recorded. All measures were performed by 

the same researcher. The mean of two measurements were taken and if they differed 

greatly (over 20%), a third was done and the median value was recorded. 

For bioelectrical impedance analysis, a Tanita® Body Composition Analyser (Model 

BC418, Tanita, Arlington Heights, Illinois) was used. Measurement of body 

composition is done using a constant, high frequency current (50kHz, 500μA). The 

electric current is supplied from electrodes on the toes and fingertips of both 

extremities. To calculate body fat percentage, the Body Composition Analyser uses 

normative data acquired from a representative Western population using DEXA and 

regression formula using height, weight, age, and impedance between right hand and 

foot as variables. Body fat percentage, fat mass, and fat free mass for individual parts 

and for the entire body calculated with this method, correlate strongly with DEXA, 

hydrostatic weighing and total body potassium results [243, 244]. Body composition 

measurements attained by bioelectrical impedance are therefore highly reproducible. 

Factors that can affect readings include hydration status (readings are usually highest 

in the morning). For consistency all body fat percentage readings were taken before 
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noon. In participants admitted for overnight studies measurements were taken the 

following morning before the stimulation test. Readings were taken with light clothing 

after socks or stockings were removed. Soles were inspected to ensure there were 

clean before stepping on the analyser. 

2.6.2.1 Statistical analysis of anthropometry 

Standard deviation scores (SDS) according to British references [236, 245] were used 

for comparisons. Differences between participant and non- participant characteristics 

were assessed by a χ2 test (for categorical variables) or t test (for continuous 

variables). A level of p<.05 was considered statistically significant. 

When analyses included comparisons between the 3 study groups (control group 

versus mild TBI versus moderate/severe TBI) these were performed by analysis of 

variance followed with pairwise comparisons (two tailed t-test with Bonferroni 

adjustment) when a significant difference was indicated. Non-parametric tests were 

used (Mann Whitney U for 2 groups and Kruskal-Wallis for 3 or more groups) to 

compare for dependent variables that were continuous but did not meet requirements 

of parametric equivalents. These were followed by pairwise comparisons (adjusted for 

the number of comparisons made) when the overall test showed significant differences 

across samples. 

2.6.3 Endocrinology 

2.6.3.1 Baseline Endocrine 

Baseline samples were drawn before the start of the ITT for analyses of free thyroxine 

(fT4), TSH, testosterone (men), oestradiol (E2, women), LH, FSH, prolactin (PRL), 

IGF1 and IGF-BP3. Three of the tested female participants were on oral 

contraceptives. 

2.6.3.2 Stimulation test 

The hypothalamic–pituitary–adrenal and GH–IGF1 axes were evaluated by an insulin 

tolerance test (ITT) if there were no contraindications (epilepsy or history of seizures, 

heart disease, pregnancy). The ITT was performed after completion of overnight 

sampling by administering soluble insulin i.v. (Actrapid, Novo Nordisk, Denmark) at a 

dose of 0.15 U/kg or 0.10 U/kg if there were concerns of multiple pituitary hormone 

deficiency. Participants were supervised constantly during the test by the research 

doctor and specialist endocrine nurse and hypoglycaemia was treated with oral 

glucose followed by a carbohydrate rich snack (biscuit or bread) or i.v. (2ml/kg of 10% 

Dextrose). Serum cortisol and GH were measured at the following time points: -15, 0, 
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30, 60, 90 and 120 min (insulin was given at time point 0). Between 5 and 30 min after 

insulin administration, serum glucose was determined every 5-10 min and every 15 

min thereafter. A successful test was defined by a blood glucose nadir lower than 2.2 

mmol/l and clinical symptoms of hypoglycaemia. Peak GH values used for diagnosing 

GHD differed depending on age group. A cut-off of <3 mcg/l was used in adults [246], 

<7 mcg/l in children and <5 mcg/l [77] in study participants in the transition phase – the 

5-7 year period from late puberty to full adult somatic maturation [247]. Cortisol levels 

>500 nmol/l were considered to reflect normal GH and ACTH function [248]. 

2.6.4 Spontaneous GH and cortisol secretion 

For assessing spontaneous GH and cortisol secretion participants were admitted for a 

12-hour overnight venous profile in a special investigation unit, detached from clinical 

wards. An intravenous cannula was placed after application of local anaesthetic in a 

forearm vein. Blood sampling started at least 1 h after catheter insertion to avoid 

artefactual effects related to the venepuncture stress and continued for every 15 

minutes. Sampling was performed with every effort not to disturb the participant and 

the IV line was kept patent with 2ml flushes of normal saline after sampling. All 

participants were ambulatory and encouraged to continue with their normal activities 

until their usual bedtime and had an age-appropriate meal. They were asked not to eat 

or drink anything after midnight, except water in preparation for the following mornings 

GH stimulation test. Participants were free to turn off the lights at their usual sleep 

times. During bedtime hours, the lights were turned off. Sleep status was recorded 

during sampling. Participants were allowed to wake up spontaneously in the morning. 

Total volume of sampled blood was less than 100 ml. Blood samples were kept at 5oC 

until completion of the overnight sampling and following centrifugation all samples were 

stored at -70oC until analysis (within 3 months). Assays were performed in duplicate, 

and each subject’s sample was run in one batch to minimize inter-assay variance. 

2.6.4.1 Statistical analysis for hormone profiles 

Integrated GH and cortisol concentration was calculated as the area under the GH 

curve using the trapezoidal rule. Parameters of GH and cortisol pulsatility were 

analysed with regard to concentration and secretion. The absolute GH nadir was 

assumed to reflect basal GH secretion. Wave form–dependent deconvolution analysis 

of the 12-h GH and cortisol profiles was used to calculate pulse frequency and 

secretion profile. Non-parametric tests were used (Mann Whitney U for 2 groups and 

Kruskal-Wallis for 3 or more groups) to compare dependent variables that were 

continuous but did not meet requirements of parametric equivalents. These were 
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followed by pairwise comparisons (adjusted for the number of comparisons made) 

when the overall test showed significant differences across samples. 

In the absence of a control group for the overnight GH profiles, normative data from 

other studies using the same GH assay were used as a guide. The study from Nindl et 

al [249] that included participants with physical characteristics (age, BMI, body fat) 

similar to the KHINES mod/sev TBI group was selected. 

2.6.5 Salivary cortisol 

Several research studies have determined that saliva can be used to measure reliably 

cortisol levels [250]. More recently salivary cortisone has been shown to closely reflect 

free serum cortisol levels with the added advantage of being unaffected by cortisol 

binding globulin changes and being able to identify the rare patient with contamination 

of the salivary sample with topical steroids [251] [252]. Salivary samples were collected 

using Salivette® Cortisol (Sarstedt AG & Co) synthetic swabs. These are designed for 

measuring free cortisol and require a small volume of saliva (less than 1ml). Written 

instructions on how to collect the samples were handed to the participant on their first 

appointment followed by a demonstration [Appendix page Error! Bookmark not 

defined.]. Participants kept the swabs in their mouth for a 2-min period to collect saliva 

passively and then the swab was returned to the salivette tube, sealed and preserved 

at the participants’ domestic fridge. After all samples were collected they were posted 

or delivered in person to our laboratory in insulated packs and stored at -20oC until 

time of assay. Participants were instructed not to collect saliva when they were ill, had 

a cold, headache, or taking any medication. 

In order to assess the diurnal rhythm of cortisol, 4 samples were collected each day for 

3 days at waking, 4-6 hours, 8-10 hours, and at bedtime (all samples synchronised to 

the first morning sample). For assessing the response to physiological stress (cortisol 

awakening response [CAR]), cortisol samples were collected 30 minutes after 

awakening. Although the CAR is not an orthostatic response and is not influenced by 

morning activities [131], for uniformity we advised all participants to collect the first two 

samples while still in bed. Absence of diurnal variation was defined when the ratio of 

the first morning sample to the fourth or fifth sample (8-10 hours post awakening) was 

less than 0.5 [253]. HPA axis feedback was assessed with a dexamethasone 

suppression test. Dexamethasone 0.3 mg/m2 was administered orally at bedtime and 

three more salivary samples were collected on the final day at 8am, 12am and 4pm. 

Participants were given no direction as to when to wake up – this was left to their 

convenience. Samples were taken before or at least 30 minutes after drinking or 
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brushing teeth in order to prevent damage to the oral mucosa and contamination with 

blood. Eighteen samples were collected over 4 days. 

2.6.5.1 Statistical analysis for salivary cortisol 

Repeated measures ANOVA was performed to compare the salivary cortisol profiles of 

severe/moderate and mild TBI groups with the control group. Analyses were done with 

and without participants having a negative CAR on all three days of sampling. 

2.6.6 Assays 

All samples were assayed by biochemistry laboratories, which had full Clinical 

Pathology Accreditation (CPA). All analysis was done at the Bristol Royal Infirmary, 

University Hospitals Bristol, UK except from IGF-1 and IGFBP-3 that were assayed at 

Guildford biochemistry laboratory. 

Serum GH concentrations were measured using a commercial immunoassay (“hGH”, 

Roche Diagnostics GmbH) for in vitro quantitative determination of human GH forms 

with molecular masses of 20 kDa and 22 kDa. The electrochemiluminescence 

immunoassay (ECLIA) was used on a Cobas e601 immunoassay analysers. Intra- and 

inter-assay coefficients of variation (CV) were 1.9% and 3.0% at GH concentrations of 

0.163mcg/L; 2.0% and 3.0% at GH concentrations of 8.23 mcg/L. The limit of 

detectability was 0.03mcg/L with a limit of quantitation of 0.05mcg/L (lowest analyte 

concentration that can be reproducibly measured with an intermediate precision CV of 

≤ 20%). 

Salivary cortisol and cortisone were measured with ultra-performance liquid 

chromatography-tandem mass spectrometry (Waters Acquity UPLC, Waters Quattro 

premier XE tandem mass spectrometer) with intra- and inter-assay CV of less than 

10% at 5-48 nmol/L of cortisol and less than 7% at 10-102 nmol/L of cortisone. 

Serum IGF-1 and IGF-BP3 measurements levels were measured by solid-phase, 

enzyme-labelled chemiluminescent immunometric assay (IMMULITE/IMMULITE 1000 

IGF-I). For IGF-1, intra-assay and inter-assay CV’s were under 4% and 8% 

respectively for concentrations between 6-120nmol/L. IGF-BP3 intra- and inter-assay 

CV’s were 5.6% and 9.9%; 3.5% and 7.5% at IGF-BP3 concentrations of 1.6 and 

6.8mg/L respectively. IGF1 and IGF-BP3 SDS were calculated from the reference 

range values. 

Glucose concentration was measured on a COBAS analyser (Roche Professional 

Diagnostics’ Products, Burgess Hill, West Sussex, UK) by Hexokinase method with 

intra- and inter-assay CV of under 1% over the whole measuring range. 
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TSH, FT4, LH, FSH, prolactin, oestradiol and testosterone were all measured by 

ECLIA with intra- and inter-assay CV of less than 5% over the whole measuring range 

except from testosterone intra- and inter-assay CV were less than 5% at the range 

between 2.4-45 nmol/L but 15% at 0.3 nmol/L. 

2.6.7 Deconvolution 

Pulse analysis methods were introduced to assist in identifying hormone pulses in an 

objective way. Early methods such as Pulsar [254] and Cluster [121] did not provide 

detailed information about the secretory events or the substrate/hormone elimination 

and were still subject to operator measurement error. AutoDecon [255] automates the 

procedure and introduces statistical verification of secretory episodes. 

2.6.7.1 AutoDecon 

The pattern of GH and cortisol secretion was analysed using validated Deconvolution 

software (AutoDecon). The automatic algorithm identifies statistically significant 

secretory peaks using the assay as a scale factor rather than arbitrary defining a pulse 

as an increase in growth hormone exceeding the preceding nadir by 20% [256]. It also 

discriminates (by applying a multiple-parameter deconvolution model) the amplitudes, 

durations, interpulse intervals of all statistically significant underlying secretory bursts 

from the plasma hormone concentrations. The program does not make any 

assumptions on timing, size or duration of secretion events but assumes that secretory 

events follow a Gaussian distribution and elimination follows a single compartment 

pharmacokinetic model 

𝐸(𝑡 − 𝑧) = 𝑒−𝑙𝑛2
𝐻𝐿

(𝑡−𝑧) 

where HL is the elimination Half Life. 

 

The mathematical model for the time course of the hormone concentration is: 

𝐶(𝑡) = ∫ 𝑆(𝜏)𝐸(𝑡 − 𝜏)𝑑𝜏 + 𝐶(0)𝐸(𝑡)

𝑡

0

 

where C(t) is the hormone concentration at time t, S(t) is the secretion at time t and E(t-

τ) the elimination from serum as a function of time. 

Using a weighted, non-linear, least-squares method the software fits the above 

equation to experimental data by adjusting parameters of secretion and elimination and 

reporting the values of determined parameters that are statistically significant – i.e. 

having the highest probability of being correct. When one or more these parameters 



 

40 

are known in advance, they can be fixed and the remaining ones will be altered 

automatically in order for the mass of each peak to remain the same. 

The triage module of Autodecon applies the above deconvolution model in cycles and 

recursively assigns the locations of secretion events (i.e. peaks) after performing a 

series of statistical tests using a probability level of 0.05. Peaks are added one at a 

time, starting at the optimal location to lower variance-of-fit remains low. All peaks are 

then tested and removed if not statistically significant and the process is repeated until 

no additional secretion event can be added.  

AutoDecon uses the following settings when initialized: 

1. basal secretion set equal to zero 

2. concentration at time zero set equal to zero 

3. elimination half-life (HL) set to any physiologically reasonable value 

(approximately 10-20 minutes for GH) 

4. standard deviation of the secretion events (Secretion SD) set to one-half of the 

data sampling interval, and 

5. zero secretion events 

After all secretion events are added and the parameters above are estimated, 

AutoDecon will examine differences (residuals) between the data points and the fitted 

curve for fitting problems – usually failure to identify a partial secretion event at the 

beginning or end of the times series. When this is observed, that data point is removed 

and the AutoDecon is repeated without the offending data but with current initialization 

values. AutoDecon will highlight outliers as data points being statistically different from 

the expected. These are data points with a Z score of the particular residual greater 

than 4. Outliers may be the result of incorrect data entry or simply a reflection of 

inherent measurement uncertainty within experimental data. In any case, the cause for 

the outlier has to be investigated before removing from the data series. 

In order to estimate the precision of the measured hormone concentrations (as 

typically most studies use only a small number of replicate samples – usually 2), 

AutoDecon uses a weighting factor based on a variance model that takes into account 

parameters of the hormone assay which are well known as they are part of the quality 

control and performance characteristics of the assay. 

𝜎2(𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛) = (
%𝐶𝑉

100
∗ 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)

2

+  (
𝑀𝐷𝐶

2
)

2
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where CV is the % coefficient of variation at the optimal range for the assay, MDC is 

the minimal detectable concentration. 

A typical output of the use of the AutoDecon algorithm is seen on Figure 10. 

 

Figure 10 Sample of AutoDecon output 

At the top (Hormone Concentration) a time series of data points with vertical error bars, with the solid 
curve corresponding to the predicted concentration is plotted. The asterisk at the top of the panel marks 
the location of the single secretion event. In the middle panel weighted differences (residuals) between the 
data points ones calculated by AutoDecon. At the bottom (Secretion) is a representation of the calculated 
secretion pattern. The diamond in this panel marks the location of the next presumed secretory event, 
which was discarded because it was not statistically significant. 

The AutoDecon algorithm allows for non-equal data spacing and missing values. The 

area under the curve (AUC) was estimated from the level of the calculated baseline. 

The duration of a secretory pulse was defined as the time interval separating the 

preceding and following troughs and in each individual profile, the level of baseline 

secretion was estimated as the secretory rate necessary to maintain the baseline GH 

concentrations during the inter pulse intervals. For each significant pulse, pulsatile GH 

secretion was calculated by subtracting the baseline secretion from the total secretion. 

The amount of pulsatile GH secretion over a given time interval was determined by 

summing the amounts of pulsatile secretion in each of the significant pulses occurring 

during that time interval. 
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2.6.7.2 Approximate Entropy (ApEn) 

ApEn is a reflection of the regulation of a feedback network. It was developed as a 

single statistic to quantify the amount of regularity in time-series data which could not 

be measured with descriptive statistics like mean, median and variance. For example, 

the data series (70, 80, 70, 80, 70, 80, 70, 80, ….alternating 70 and 80) and (70, 70, 

80, 70, 80, 80, 80, 70, 80 ... randomly 70 or 80) have the same mean, median and 

standard deviation but are “different” in that the first series is "regular" and knowing 

one value gives insight into what the next value will be. 

Most biological processes have temporal irregularity and ApEn is a measure of how 

these processes are controlled [257]. Low temporal irregularity implies tight control and 

too strong control makes adaptation to changes in the environment difficult. For 

example a patient with complete heart block and fixed heart rate has not temporal 

irregularity and cannot adapt to changes, for example physical activity as he cannot 

increase his heart rate. The ApEn in this example would be close to 0. [258, 259]. 

In endocrinology ApEn has been used to distinguish acromegalic from normal pulsatile 

growth hormone release. Low irregularity implies tight control and high irregularity 

implies no control. For hormone time series, ApEn computed from secretion time 

series (for example after applying deconvolution methods to plasma concentration time 

series) enhances the discriminating ability of ApEn to identify endocrine states 

characterized by enhanced secretion irregularity [260]. 
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2.7 NEURO-PSYCHOLOGICAL AND HRQL ASSESSMENT 

Cognition and psychological assessments were undertaken by a team of student 

research psychologists under the supervision of an experienced clinical psychologist 

(HM). Measures of HRQL and health status were assessed by ND. All tests are listed 

in Table 2. 

  Age Self Proxy 

Cognition WASI-II (Wechsler Abbreviated Scale of Intelligence) 7+  

  TEACh (Test of Everyday Attention for Children) 17-  

  TEA (Test of Everyday Attention) 17+  

  CMS (Children’s Memory Scales) 17-  

  WMS (Wechsler Memory Scales) 17+  

  Wechsler Quicktest 17-  

  WRAT-4 (Wide Range Achievement Test) 17+  

Psychology Youth Self report (11-18y ) 18-  

  Child Behaviour Checklist (CBCL) 18-  

  Adult Self Report (18-59y) 18+  

  Adult Behaviour Checklist (ABCL) 18+  

  Beck Depression Inventory (BDI-II) 13+  

  Beck Anxiety Inventory (BAI) 13+  

  Birleson Depression Scale 11+  

  Children's Impact of Event Scale 8+  

  BRIEF (Behaviour Rating Inventory of Executive Function) 18+  

  BRIEF for under 18 18-  

Health PedsQL All  

  Participation All  

  Fatigue/Sleep All  

 Health Utilities Index (HUI) All  

Table 2 List of tests used in KHINES for assessing cognition, psychological status, fatigue and health 
related quality of life. 

2.7.1 Cognitive outcome 

In children aged <16 years, verbal and non-verbal reasoning ability, executive 

functioning and attention skills was assessed using the Wechsler Intelligence Scales 

for Children (WISC-III-UK) [261] and the full range of subsets from the Test of 

Everyday Attention in Children (TEACh) [262]. Objective assessment was 
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supplemented with behavioural ratings of executive function using parent and child-

completed Behaviour Rating Inventory of Executive Function (BRIEF) questionnaire 

[263]. Memory functioning was assessed using the Children’s Memory Scales (CMS); 

academic achievement using the Wechsler Quicktest, incorporating Basic Reading, 

Spelling, and Mathematical Reasoning subtests. In young people aged >16 years, 

assessment, where necessary, employed analogues of the above tests utilising adult 

normative data (i.e. WASI-II, WMS, TEA, WRAT-4). 

2.7.2 Psychological & behavioural outcome 

Long-term psychological status in participants aged years was assessed using the 

following tools: 

 Youth self-report and parent-report forms of the Child Behaviour Checklist 

(CBCL) [264] 

 Beck Depression Scale [265] (or Birleson Depression Scale [266] if under 13 

years) and Beck Anxiety Scale [267], both of which can be used in adolescents 

[268], as well as adults 

 Children’s Impact of Event Scale [269, 270]. 

In young people aged > 19 years at the time of the study, assessment employed 

analogues of the above tests utilising adult normative data (e.g. Impact of Events 

Scale) and comparison with previous test scores made using statistical algorithms 

accounting for association between test scores across adult and child versions. 

2.7.2.1 Behaviour checklist and self-report 

The Achenbach System of Empirically Based Assessment (ASEBA) comprises a family 

of forms for assessing adaptive functioning and problems. Originating in research on 

child and adolescent problems ASEBA forms were extended to adults in the 1980s and 

1990s [271]. 

ASEBA items are designed to tap strengths and problems that are potentially relevant 

to a person’s need for help. They include Self-Report (children CSR, adult ASR) and 

Behaviour Checklist (children CBCL, adult ABCL). These parallel forms facilitate 

comparisons between people’s perceptions of their own functioning and other people’s 

perceptions of their functioning. Behaviours are broadly categorized as internalizing or 

externalizing. The Internalizing grouping consists of three syndromes 

(anxious/depressed, withdrawal, somatic complains) that are mainly within the self. 

Externalizing grouping consists of three other behaviour syndromes (aggressive, rule 
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breaking and intrusive) that mainly involve conflicts with other people and with social 

mores [272, 273]. 

Each item is intended to provide useful information in its own right, in addition to 

contributing to scale scores. Some adaptive functioning scales comprise items that are 

relevant to most people, such as relationships with friends and family. Other scales 

comprise items that are scored only for people for whom they have been relevant at 

some time in the preceding 6 months, such as relationships with spouse or partner and 

job functioning. 

The respondent rates each item as 0 = not true, 1 = somewhat or sometimes true, and 

2 = very true or often true, based on the preceding 6 months. Raw and T scores are 

calculated. T scores facilitate comparisons between respondents using different 

instruments (adult vs child). T scores of 70 for example corresponds to a score on the 

98th centile of the normative sample for participants of that age and sex. T scores for 

competence scales are truncated at the nondeviant end, therefore comparisons 

between respondents that are “healthy” should be done using raw rather than T 

scores. Internalizing, Externalizing and total competence T scores are not truncated 

and can be used for statistical analyses and comparisons without losing any of the 

differentiation.  

Finally, ASEBA items have been used to construct DSM-oriented scales for 

behavioural, emotional, and social problems. Although not diagnostic per se, a high 

score on a particular DSM-oriented scale should prompt a check to see whether the 

client meets criteria (impairment, age of onset or duration of problems) for any DSM 

diagnoses corresponding to that scale. Validity testing of these scales has shown that 

scores on the CBCL and YSR anxiety problems scale predicted DSM-IV disorders only 

moderately but scores on the affective problems scale corresponded closely to DSM-IV 

major depressive disorder and dysthymia [274]. 

2.7.2.2 Depression 

The Birleson Depression Scale was developed as a clinical instrument to assess the 

degree of depressive feelings in children and adolescents [275]. The questionnaire 

consists of 18 items and children are asked to judge the extent to which a particular 

item has applied to them in the course of the previous week. Items are scored 0, 1, or 

2 and a total score of 17 or above is seen only in children with a diagnosis of clinical 

depression. 

The Beck Depression Inventory – Second Edition (BDI-II) is a 21-item self-report 

instrument for measuring the degree of depression in adults and adolescents aged 13 
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years and older. The second edition includes additional items such as agitation, 

worthlessness, concentration difficulty and loss of energy that address DSM-IV 

depression criteria, which were not included in the first edition. Respondents are asked 

to endorse the most characteristic statement over the previous 2 weeks. 

BDI-II is scored by summing the ratings for the 21 items (4-point scale ranging from 0 

to 3). Cut-off scores depend on the characteristics of the sample and the clinical 

considerations for which the instrument is administered. A cut-off score of 17 or over 

yielded a 93% true-positive rate in a clinical sample from the University of 

Pennsylvania [276] but lower cut-off scores can been used if the purpose is to screen 

for possible cases of depression. Total score ranges of 14-19, 20-28 and 29-63 for 

mild, moderate and severe depression respectively were obtained from the same 

clinical sample. 

2.7.2.3 Anxiety 

The Beck Anxiety Inventory (BAI) was developed as a clinical instrument for measuring 

the severity of an individual's anxiety [267]. It consists of 21 items describing common 

symptoms of anxiety and uses a 4-point scoring scale (range 0 to 3). There is an 

overlap with the depression scale as measured by the BDI-II (even when 

encompassing anxiety and depression specific items only in “purified” versions of the 

BAI and BDI-II) suggesting that anxiety and depression seem to be inherently linked 

[277]. BAI is scored by summing the ratings for the 21 items (4-point scale ranging 

from 0 to 3). Total scores in the 8-21 range are suggestive of mild, 21-42 of moderate 

and over 42 severe anxiety. 

2.7.2.4 Impact of events scale (IES) 

Children and adolescents can react to single acute stressors but also to chronic 

stressful situations with a particular form of anxiety called Post-Traumatic Stress 

Disorder (PTSD). The IES was developed to monitor the main phenomena of re-

experiencing the traumatic event and of avoidance and feelings associated with them. 

The original 15-item, four-point scale was reduced to 8 items as some of them were 

misinterpreted by children. The remaining 8 items still contain intrusion and avoidance 

items and the total score correlates highly with the total on the 15-item version (r>0.95, 

p<0.001). The IES is self-completed and the eight items are scored on a four-point 

scale with values of 0,1,3 or 5. The equivalent cut-off score indicating a high risk of 

PTSD for the shorter 8-item version is 17. 
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2.7.2.5 Behaviour Rating Inventory of Executive Function (BRIEF) 

BRIEF is an 86 item instrument designed to assess impairment of executive function. It 

has been shown to be useful in evaluating children and adults with a wide spectrum of 

developmental and acquired neurological conditions including TBI [278, 279]. Self and 

proxy rating forms are available. Two groups are assessed: behavioural regulation and 

metacognition. 

Clinical scales assessed in Behavioural regulation include inhibition (impulses control, 

stop behaviour), shift (ability to move freely from one activity/situation to another; 

transition; problem-solve flexibly) and emotional control (modulation of emotional 

responses). 

Clinical scales assessed in Metacognition include initiation (starting activity; generate 

ideas), working memory (holding information in mind for purpose of completing a task), 

organisation of materials (anticipating future events; setting goals; develop steps) and 

monitor (checking work; assessing own performance). 

Once raw scores for all scales are obtained, they can be converted to standard scores 

(T scores) with a mean of 50 and SD of 10. These scores are age and gender specific. 

Higher scores suggest a higher level of dysfunction.  

2.7.3 HRQL and health status 

Health related quality of life (HRQL) is the value assigned to duration of life as modified 

by the impairments, functional states, perceptions, and social opportunities that are 

influenced by disease, injury, treatment or policy [280]. In assessing HRQL, dimension 

or items (questions) are components of a domain of health. Instruments can be generic 

or disease specific. 

2.7.3.1 Paediatric Quality of Life Inventory 

HRQL was assessed using the generic Paediatric Quality of Life Inventory (PedsQL 

4.0) [281] a brief, standardized, modular instrument applicable for both children and 

adults. Generic core scales were designed to measure the core items of health as 

delineated by the World Health Organization and encompass: 1) physical functioning, 

2) emotional functioning, 3) social functioning and 4) school functioning. Although the 

PedsQL was derived from data collected on paediatric cancer patients, its reliability 

and validity was subsequently demonstrated on healthy and patient populations. It has 

been widely applied to children with a variety of acute and chronic conditions including 

TBI in childhood. In particular, the cognitive function scale of the PedsQL detected the 

largest differences among groups of children with varying severities of TBI [282]. 

Scores can be transformed to a 0-100 scale, so that higher scores indicate better 
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HRQL. An overall value of <69.7 (equivalent to one SD below the population mean) 

has been shown to represent poorer HRQL. PedsQL has been shown to be reliable: 

Total Scale Score (α=0.88 child, 0.90 parent report), Physical Health Summary Score 

(α=0.80 child, 0.88 parent) and Psychosocial Health Summary Score (α=0.83 child, 

0.86 parent). Both self and parent-report questionnaires were used in KHINES. 

For disease specific assessment the QoL-AGDHA, a one-dimensional, patient needs-

based HRQL instrument developed specifically to detect deficits in needs achievement 

in areas that are affected in adults with GHD was used. It consists of 25 ‘yes’ or ‘no’ 

questions [283]. The number of ‘yes’ responses constitute a score, with a high score 

denoting a poor HRQL. 

2.7.3.2 Chalder Fatigue Scale 

The Fatigue Scale devised by Chalder et al (1993) is a short, self-report measure of 

the severity of tiredness [284]. It produces a total score, with sub scores reflecting 

mental fatigue (4 items), and physical fatigue (7 items). The 11 items are rated on a 

four-option continuum, from “better than usual”, to “much worse than usual”. The 

responses are either assigned scores from 0 to 3 (Likert method) giving a maximum of 

33, or 0, 0, 1, 1 (bimodal method), giving a maximum of 11. A bimodal score of 3/4 was 

initially recommended for identifying significant fatigue [284] with subsequent studies 

estimating bimodal fatigue scores in community samples being 3.27±3.21 or 14.2±4.6 

using Likert method [285]. The scale has been validated in a general population study 

[286]. The validity of the questionnaire in assessing fatigue in the general population 

suggests that it is a useful tool for assessing fatigue in a variety of medical disorders. 

The limitations of the Fatigue Scale include its inability to distinguish between CFS and 

primary physical or cognitive dysfunction, which may confound interpretations of the 

responses [284].  

2.7.3.3 Health Utilities Index (HUI) 

The term utility corresponds to the value attached to a particular health state and is 

derived from judgments made by panels of the public, professionals or patients about 

relative values of different health states. The Health Utilities Index (HUI) is a system of 

measuring health status and is recognised to be a useful tool for reporting HRQL [287, 

288]. It was evolved in response to the need for a standardised system to describe a) 

the experience of patients undergoing therapy; b) long-term outcomes of disease or 

therapy; c) efficacy, effectiveness and efficiency of healthcare interventions and; d) the 

health status of general populations. HUI health-state attributes include vision, hearing, 

speech, ambulation, pain, dexterity, health-care, emotion and cognition. The major 
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criterion for selecting these particular attributes was the importance placed on each of 

them by members of the public. They are clearly distinguishable from one another and 

cover an extensive range of possible disabilities as each attribute has 3-6 levels that 

together describe almost one million unique health states. HUI attributes can be 

translated into a health utilities score by applying the utility formula of Torrance and 

colleagues [289]. HUI is scored using single- and multi-attribute utility functions and will 

allow for negative scores of HRQL that represent health states considered worse than 

dead. Utility scores have interval-scale measurement properties to support the use of 

HUI in constructing single summary indexes and to enable the use of parametric 

statistical techniques for making comparisons among clinical groups. The HRQL 

scoring systems provide utility scores on a generic scale where dead = 0 and perfect 

health = 1. Differences of 0.03 or greater in mean HUI overall HRQL scores have been 

reported to be definitely important, and differences as little as 0.01 may be meaningful 

and important in some contexts [290]. The overall HRQL score is determined using the 

HUI3 multi-attribute utility function (MAUF) is: 

=1.371*(lvl1*lvl2*lvl3*…lv8)-0.371 

Descriptive levels within HUI attributes were defined to be meaningfully different from 

each other when difference in utility scores between levels of an HUI attribute was 0.05 

or more. The lowest possible HUI3 multi-attribute utility is defined for the interval -0.36 

to 1.00. Single-attribute utility functions provide scores that describe the morbidity 

attribute by attribute. Each single-attribute utility function is defined on a scale from 

0.00 to 1.00 (0 for most disabled and 1 for no disability) and has interval scale 

properties allowing for comparisons between groups or to assess changes within 

groups over time. In brief, the overall health status of each person can be described 

using an 8-element vector (one from each of the eight attributes) and a single overall 

score of HRQL. 

The HUI-Mark 3 has been shown to discriminate between various child populations 

[291]. The health status measure provides information on the type and extent of 

disabilities whilst the utility scoring measures relative importance of disabilities, which 

is necessary for any health economic evaluations as outcomes, can be measured in 

quality-adjusted life years (QALYs). QALYs are estimated by multiplying the number of 

life years with a utility score that has the value 1.00 for “perfect health” and 0.00 for “a 

health state comparable to the value of death” as described previously. QALYs are 

particular useful to provide a common metric of burden of disease across the entire 

spectrum of diseases. 
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In addition, HUI measures have been shown to be responsive to changes of health 

status over time, which is an important property in detecting effects of recovery or 

treatment over time [292]. The HUI-3 can be used in all people age 5 and older in both 

clinical and general populations. Respondents were the participants and people other 

than the participant (usually parent or spouse) referred as “proxy”. Participants were 

asked to focus on their “usual” health without defining a specified period and explaining 

that short-time, self-limiting illnesses or injuries were not the point of interest. 

2.7.4 Child and Adolescent Scale of Participation (CASP) 

The Child and Adolescent Scale of Participation (CASP) has been developed to 

assess the extent to which children participate in movement-related, communication 

related and school-based social activities compared to children of the same age as 

reported by the carer. It was initially designed as part of the Child and Family Follow-up 

Survey (CFFS) to monitor outcomes of children with acquired brain injury [293] and 

subsequently, has been used alone or as part of the CFFS to examine participation of 

children other diagnoses [294]. 

The CASP consists of 20 ordinal-scaled items (applicable to children who are 5 years 

or older) in four subsections: 1) Home Participation (6 items), 2) Community 

Participation (4 items), 3) School Participation (5 items), and 4) Home and Community 

Living Activities (5 items). The 20 items are rated on a four-point scale: (4=Age-

expected, 3=somewhat limited; 2=Very limited; 1=Unable). 

CASP summary scores are created by summing all applicable item responses 

(maximum score 80), then dividing this number from the total possible score from all 

applicable items and then multiplying this number by 100 to conform to a 100-point 

scale. Higher scores indicate greater extent of age-expected participation. Item-level 

scores can be used to assess specific situations where for example mobility related 

participation is likely to be more affected. 

2.7.4.1 Statistical analysis of neuropsychological and HRQL data 

When analyses included comparisons between the 3 study groups (control group 

versus mild TBI versus moderate/severe TBI) these were performed by analysis of 

variance followed with pairwise comparisons (two tailed t-test with Bonferroni 

adjustment) when a significant difference was indicated. Non-parametric tests were 

used (Mann Whitney U for 2 groups and Kruskal-Wallis for 3 or more groups) to 

compare for dependent variables that were continuous but did not meet requirements 

of parametric equivalents. These were followed by pairwise comparisons adjusted for 
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the number of comparisons made) when the overall test showed significant differences 

across samples. 
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2.8 NEURO-IMAGING 

CT brain scans previously performed as part of KHIS in severe/moderate TBI children 

during the acute post-injury phase were classified according to criteria/patterns 

described by Lobato et al [295]. Eight anatomical patterns emerged in a series of CT 

scans in 277 patients with severe TBI which provided stronger prognostic information 

when compared to the following four patterns of severe head injury: epidural 

haematoma, subdural haematoma, brain contusion and diffuse brain damage. The 

eight patterns included the following: 

Pattern 1: Pure extracerebral hematoma 

Pattern 2: Extracerebral hematoma plus acute hemispheric swelling 

Pattern 3: Single brain contusion, whether or not associated with a neighboring 

extracerebral hematoma 

Pattern 4: Multiple unilateral brain contusion whether or not associated with subdural 

hematoma 

Pattern 5: Multiple bilateral brain contusion 

Pattern 6: General brain swelling whether or not associated with small extracerebral 

hematoma 

Pattern 7: Diffuse axonal injury 

Pattern 8: Normal CT scans. 

Patients with acute hemispheric swelling after operation for a large extracerebral 

hematoma, multiple brain contusion (unilateral or bilateral) and diffuse axonal injury 

had worse outcomes. Conversely patients with normal CT scans, uncomplicated 

extracerebral hematoma, single brain contusion and general brain swelling had better 

prognosis [295, 296]. 

Unless contraindicated, all study participants were examined on a 3T MRI scanner 

(Magnetom Skyra, Siemens Medical Systems, Clinical Research and Imaging Centre, 

Bristol). 

Sagittal and coronal T2 TSE (TR/TE 4430/89ms; thickness 2mm; FOV 190; resolution 

0.5x0.5mm) and T1 weighted images (TR/TE 500/2.93; thickness 2mm; FOV 190) 

were obtained. These data sets were assessed visually by the same consultant neuro-

radiologist blinded to clinical details to rule out artefacts, structural abnormalities or 

other pathologies. 
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Assessment of the hypothalamic-pituitary axis included pituitary volume (using the 

ellipsoid formula i.e. volume = 4/6 *  * height * length * width) and height and 

thickness of the pituitary stalk. 

Volumetric and region of interest analysis (ROI) from obtained volumetric T1 data sets 

in participants who did not have any contraindication for having an MRI scan was 

performed using open source packages and toolboxes. The latest version of SPM 

[297] (SPM12, Statistical Parametric Mapping) developed at the University College 

London was used for most analyses in conjunction with CAT12 toolbox – an SPM12 

extension which provides computational anatomy options using Voxel-based approach 

(VBA) including voxel-based morphometry (VBM) but also surface-based morphometry 

(SBM) and deformation-based morphometry (DBM).  

VBA provide a voxel-based estimation of volume of a specific tissue compartment and 

as it “interrogates” the entire brain for abnormalities [298] it is particularly useful in 

evaluating TBI where brain abnormalities are not always fully delineated. 

VBM requires a number of pre-processing steps before data are appropriate for 

statistical analyses. Firstly, images have to be converted to a compatible format for 

processing which can be done with SPM12. Study imaging files were converted from 

DICOM (Digital Imaging and Communications in Medicine) to NIfTI (Neuroimaging 

Informatics Technology Initiative) format, and imported for pre-processing. 

Following conversion and in order to compare MRI data from different participants, all 

brain images were spatially registered in the same 3D space (normalization). This was 

done using a template defined by the Montreal Neurological Institute (MNI152 or 

MNI305). In general, the closer the images start out to the MNI template orientation, 

the better the outcome of the normalization. Alignment was further improved by using 

computational anatomy methods (DARTEL toolbox for SPM) [299] which can align fine 

structures across individuals in a way that takes into account anatomical constraints. 

Once images were normalised, tissue classification (segmentation of brain tissue into 

separate tissue compartments) allowed estimation of CSF, grey and white matter 

volumes. This was followed by scaling modulation so the total amount of grey matter 

was scaled back to the volume it would be in the original image. A sample of the output 

report following image segmentation is show in Figure 11. 
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Figure 11 VBM output sample 

 

2.8.1 Statistical analysis of neuro-imaging 

When analyses included comparisons between the 3 study groups (control group 

versus mild TBI versus moderate/severe TBI) these were performed by analysis of 

variance followed with pair comparisons (two tailed t-test with Bonferroni adjustment). 

Non-parametric tests were used (Mann Whitney U for 2 groups and Kruskal-Wallis for 

3 or more groups) to compare for dependent variables that were continuous but did not 

meet requirements of parametric equivalents. These were followed by pairwise 

comparisons (adjusted for the number of comparisons made) when the overall test 

showed significant differences across samples.  
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3 CHAPTER 3 – (RESULTS) 

3.1 PARTICIPANTS 

Exploration of the KHIS database identified 216 potential participants who were eligible 

for participation in this study. Forty-four participants were not contactable (11 moved 

outside the UK, one deceased in prison, five left home not registered with new GP, 27 

with updated contact details not contactable). From the remaining 172, 93 (54%) were 

not willing to participate in the study (in decreasing frequency due to time constrictions 

related to school/studies/work/family commitments, relocation outside the area, 

participating in other studies and court proceedings related to TBI in 2 cases). Six were 

excluded (two further TBI, 2 pregnant, 2 with non-TBI related endocrinopathy). All of 

the remaining 73 consented and 72 completed the study (one participant withdrew for 

family reasons) [ Figure 12 ]. 

 

Figure 12. KHINES recruitment flow chart 

 

There were no differences between participating and non-participating groups with 

regards to age, gender, time since TBI, duration of post-traumatic amnesia, days in 

intensive case or type of structural abnormalities on acute neuroimaging 

(extradural/subdural haemorrhage, diffuse axonal injury or skull fracture) as seen in 

Table 3 

216
KHIS study

172
invited to participate

79 agreed to participate

6 excluded

2 further TBI

2 pregnant

1 steroid Tx

1 IDDM

1 withdrew

72 studied

17 Controls

24 Mild

31 Mod/Sev

93 declined

44 not able to 
contact
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 KHINES (n=72) Non – KHINES (n=93)  

 N (%) median range N (%) median range p 

Male 
48 

(67) 
  

57 

(61) 
  0.52 

TBI moderate/severe  
31 

(43) 
  

31 

(33) 
  0.42 

TBI mild 
24 

(33) 
  

23 

(25) 
  0.55 

Extradural haemorrhage 
20 

(28) 
  

18 

(19) 
  0.46 

Subdural haemorrhage 
9 

(12) 
  

18 

(19) 
  0.65 

Diffuse axonal injury 
9 

(12) 
  

12 

(13) 
  0.94 

Skull fracture 
34 

(47) 
  

36 

(39) 
  0.50 

Post traumatic amnesia days  10 1-99  10 1-77 0.81 

Intensive care days  1.5 0-22  0.5 0-30 0.20 

Age at TBI  11.7 0.2-16.7  11.1 0.1-17.5 0.45 

 

Table 3. Comparison between participating and non-participating patient groups 

 

The mechanism of injury in the 55 TBI participants is shown in Table 4. Two thirds of 

studied participants were male (n=49, 67%). Characteristics of study groups including 

age at injury and time from injury are shown in Table 5 

 

 

*Possible Non-Accidental Injury in one fall. 

 

 

 

Table 4. Injury mechanism in TBI children 

 

Of the 72 participants 31 (43%) were categorised as moderate/severe TBI (GCS 

severe 3-8, moderate 9-12), 24 (33%) mild TBI (GCS 13-15) and 17 (24%) were 

healthy controls. Three female participants were on oral contraceptive. No participants 

were on treatment for epilepsy. 

Mechanism of injury n=55 

Fall *23 

Motor vehicle accident 23 

pedestrian 21 

passenger 2 

Cyclist 9 
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Table 5. KHINES Study group characteristics 

  

KHINES groups Mean SD Range 

Control     

Age at evaluation (years) 18.5 5.5 10.9 - 27.6 

Mild TBI     

Age at evaluation (years) 17.8 5.0 9.4 - 26.3 

Age at injury (years) 9.5 5.4 .2 - 16.6 

Time from TBI (years) 8.3 1.3 5.8 - 10.7 

Mod/Sev TBI     

Age at evaluation (years) 19.8 4.2 11.3 - 26.4 

Age at injury (years) 10.7 4.1 .4 - 16.8 

Time from TBI (years) 9.0 1.1 6.8 - 10.8 
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3.2 CLINICAL ASSESSMENT AND ANTHROPOMETRY 

The anthropometry of the three participant groups is shown in table 4. There was no 

statistical difference (independent samples Kruskal-Wallis test) between groups with 

regards to height, weight, BMI, skinfold thickness, abdominal circumference or body 

composition [Table 6]. 

 

N=72 Mild (n=24) Mod/Sev (n=31) Control (n=17) p 

Height (cm) 165.2 ± 14.1 172.3 ± 9.9 171.8 ± 14.0 p=.112 

Weight (kg) 66.1 ± 22.6 69.4 ± 12.1 72.2 ± 21.8 p=.655 

BMI 23.6 ± 6.1 23.3 ± 3.6 24.1 ± 5.3 p=.703 

Skinfold Biceps (mm) 7.2 ± 5.9 7.7 ± 7.1 7.2 ± 5.6 p=.955 

Skinfold Triceps (mm) 13.8 ± 9.2 13.5 ± 12.0 13.8 ± 8.7 p=.497 

Body fat (%) 23 ± 12 20 ± 10 21 ± 7 p=.597 

Abdominal circumference (cm) 77.0 ± 12.9 79.0 ± 8.1 80.5 ± 12.2 p=.753 

 

Table 6 Auxology of participant groups 

 

Comparison of SD scores did not show any statistical difference between groups either 

(independent samples Kruskal Wallis test) [ Table 7 ]. 

 

N=72 Mild (n=24) Mod/Sev (n=31) Control (n=17) p 

Height SDS 

(range) 

0.185 ± 1.17 

(-2.0 – 2.43) 

0.234 ± 0.92 

(-1.74 – 2.45) 

0.439 ± 0.92 

(-1.01 – 2.8) 
p=.750 

Weight SDS 

(range) 

0.775 ± 1.49 

(-2.56 – 3.88) 

0.636 ± 1.02 

(-1.36 – 2.85) 

1.095 ± 1.03 

(-0.37 – 3.85) 
p=.446 

BMI SDS 

(range) 

0.732 ± 1.29 

(-1.81 – 3.17) 

0.528 ± 0.95 

(-1.08 – 2.81) 

0.953 ± 1.14 

(-0.65 – 3.44) 
p=.554 

 

Table 7 Participant SDS scores for height, weight and BMI 
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3.3 ENDOCRINE RESULTS 

3.3.1 Baseline endocrine function 

All participants were clinically euthyroid and had normal thyroid and posterior pituitary 

function. Testosterone levels in pubertal/post-pubertal males were within the normal 

range [Table 8]. 

One post pubertal female with primary amenorrhea and history of eating disorder 3 

years ago had low levels of both oestradiol (<50 pmol/L) and gonadotropins. IGF1 SDS 

and IGF-BP3 SDS for this participant were -2.39 and -2.14 respectively. 

 

N=25 Mean Minimum Maximum 
Reference 

range 

TSH (mIU/L) (n=25) 2.6 0.6 4.9 0.5-5 

FT4 (pmol/L) (n=25) 15.8 11.5 20.2 9-20 

Testosterone (nmol/L) (n=15) 18.5 9.3 28.1 9-30 

Oestradiol (pmol/L) (n=10) 194.1 50.0 572.0 >73 

IGF1 (nmol/L) (n=23) 37.5 21.6 60.1 Age dependent 

IGF-BP3 (mg/L) (n=23) 3.2 2.3 4.6 Age dependent 

IGF1 (SDS) -0.56 -2.39 1.53 Age dependent 

IGF1BP3 (SDS) -0.58 -2.14 1.13 Age dependent 

 

Table 8 Baseline endocrine function in mod/sev TBI participants 

 

3.3.2 Stimulated growth hormone and cortisol 

Twenty-five out of 31 mod/sev TBI participants had a stimulation test. In 7/25 (4 male 

and 3 female including the one with secondary amenorrhea and low gonadotropin 

levels), GH response to ITT using age/pubertal stage appropriate cut-off values was 

abnormal [Table 9]. 
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Gender Age 

(yr) 
Tanner 
stage 

Height 
SDS 

BMI 
SDS 

Injury 
type 

Injury 
mechanism 

Stimulated 
GH peak 
(mcg/l) 

IGF1 
SDS 

IGF-BP3 
SDS 

Stimulated 
cortisol peak 

(nmol/l) 

1 F 12 3 1.42 2.58 Mod Fall 4.4 0.21 1.13 524 

2 M 22 5 1.10 1.30 Mod Pedestrian 1.8 -0.49 -0.86 586 

3 F 16 4 0.76 0.16 Mod Pedestrian 3.7 -2.39 -2.14 584 

4 M 24 5 0.23 -1.04 Sev Fall 0.1 -0.46 -0.74 501 

5 M 25 5 -0.33 0.59 Mod Pedestrian 0.1 -0.30 -0.51 526 

6 M 14 3 0.35 -0.36 Mod Cyclist 1.2 -1.06 -1.17 483 

7 F 17 5 0.35 0.73 Sev Pedestrian 4.1 -0.71 0.76 511 

 

Table 9 Mod/sev TBI participants with abnormal GH response following ITT 

 

IGF1 SDS was not different between participants with normal and abnormal stimulated 

GH response (Mann-Whitney p=.86) [Figure 13]. The peak GH response to ITT did not 

correlate with IGF1 (ρ = .21, p =.35), IGF-BP3 (ρ = -.04, p =.87), IGF1 SDS (ρ = .07, p 

=.77) or IGF-BP3 SDS (ρ =-.06, p =.79) even when controlling for weight. 

 

Figure 13 IGF1 SDS in TBI patients depending on result of GH stimulation test 

 

In three ITT’s, intravenous glucose had to be administered to correct symptomatic 

hypoglycaemia that did not respond to oral treatment. 

In two participants, the cortisol response was suboptimal (peak cortisol 392 and 

483nmol/l). One of them had also abnormal stimulated GH response (peak GH 1.2 

mcg/L) but normal height for his age (Height SDS 0.35). 
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3.3.3 Spontaneous growth hormone and cortisol 

Twenty-two of 31 participants completed an overnight GH profile (eight did not consent 

to the overnight stay and one GH profile was incomplete due to difficult venous 

access). 

3.3.3.1 Growth hormone 

The following pulsatility parameters of GH were studied: half-life, area under the curve, 

mean secretion, peak secretion, number of secretory peaks, mean secretion pulse 

amplitude, mean secretion pulse mass and approximate entropy (ApEn). 

Mean 12-hour GH secretion was under 3.3 mcg/l in 18/22, under 2 mcg/l in 12/22 and 

under 1 mcg/l in 4/22 profiles. In the four participants with mean 12-hour GH secretion 

<1 mcg/l (“x” in Figure 14 ), peak stimulated GH was 9.7, 4.4, 3.7 and 0.1 mcg/l (two 

abnormal ITT’s using age appropriate cut-offs). There was no significant correlation 

between peak stimulated and peak spontaneous GH levels (ρ=.17, p=0.45). Although 

spontaneous peak GH was higher compared to the stimulated one (11.1±7 vs 8.1±6.9 

mcg/L) the difference was not statistically significant (paired t-test, p=.129). 

 

 
 
Figure 14 Peak stimulated and spontaneous overnight GH secretion in survivors of childhood mod/sev 
TBI. 

 

Agreement between spontaneous (“normal”/”abnormal” profile using cut-off of 

<1mcg/L, <2mcg/L or <3.3<mcg/L) and “normal”/”abnormal” stimulated GH secretion 

(ITT) was less than .20 in all comparisons. This indicates poor agreement. 
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Using the GH cut-off from the stimulation test as the differentiating factor to categorise 

a profile as “normal” or “abnormal” [84], only one profile was “abnormal”. In this 

participant, both stimulated (3.7 mcg/L) and spontaneous peak GH secretion 

(2.7mcg/L) were low. This 16y old (TBI at 7y of age) female participant had also low 

IGF1 (-2.39 SD), but normal height (0.76 SD), weight (0.39 SD) and did not have any 

symptoms of fatigue. 

All individual GH concentration profiles are shown in the following pages [Figure 15]. 
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64 

 

 

 

 

 

Figure 15 Individual overnight GH profiles of children/young adults with TBI (black square at the top right 
corner indicates patients with abnormal ITT). X axis: time 12 hours (8pm to 8am), Y axis: GH (mcg/L) 

 

Characteristics of GH profiles after deconvolution analysis in mod/sev TBI participants 

are shown in Table 10.  
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 Mean ± SD Minimum Maximum *Mean ± SD 

GH Basal Secretion (mcg/L/min) 0.0051 ± 0.0048 0.0002 0.0182 0.0011± 0.0003 

GH Half-life (min) 20.21 ± 5.32 11.5 29.5 19.32± 0.57 

GH AUC (mcg/L/min) 1600 ± 978 367 4585 1064.3± 147.2 

GH Average (mcg/L) 2.22 ± 1.35 0.52 6.37 0.87± 0.12 

GH Max Measured (mcg/L) 11.2 ± 7.0 2.7 37.6 3.11± 0.4 

GH Secretory Peaks 8 ± 2 3 14 5.5± 0.3 

GH Mean Secretory Pulse Height 0.39 ± 0.30 0.12 1.39 0.17± 0.03 

GH Mean Secretion Pulse Mass 6.98 ± 5.06 1.80 24.68 4.39± 0.69 

GH ApEn 0.51 ± 0.23 0.18 0.87   

 

Table 10 Parameters of GH profiles in mod/sev TBI patient using deconvolution tools (AutoDecon) and 
representative values from *Nindl et al [249] (Cluster) 

 

Average GH secretion correlated negatively with age in our relatively age-homogenous 

study group (ρ=-.516, p=0.007) [Figure 16]. 

 

Figure 16 Average overnight GH secretion in mod/sev TBI group 

 

In contrast to stimulated GH levels, which did not correlate with IGF1/IGF-BP3 and 

their standard deviation scores (SDS), parameters of spontaneous GH secretion 

(average, maximum, mean secretion pulse mass) correlated with IGF1/IGF-BP3 

[Figure 17]. 

SDS for IGF1/IGF-BP3, also correlated with basal GH secretion and mean secretory 

pulse height (r=.495, p=.022 and r=.535, p=.013 respectively) but not with other 

measures of spontaneous GH secretion (average, maximum). 
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Figure 17 Correlation between IGF1 and measures of spontaneous GH secretion 

 

Participants with average overnight GH secretion <1mcg/L had significantly lower IGF1 

(t-test for equal variances, p=.001) [Figure 18] but not IGF-BP3, IGF1 SD or IGF-BP3 

SD. 
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Figure 18 IGF1 levels in TBI patients with mean overnight GH secretion <1mcg/L  



 

68 

3.3.3.2 Cortisol 

Mean, overnight, 12-hour cortisol concentration was 170 nmol/l and the mean of peak 

overnight levels 540 nmol/L. Cortisol levels from 00:00-02:00 were significantly lower 

than those between 06:00-08:00 (paired samples t-test, p<.001) [Table 11] and [Figure 

19]. 

 Mean SD Minimum Maximum 

Maximum overnight cortisol (nmol/L) 540 127 227 811 

Mean overnight cortisol (nmol/L) 170 63 33 310 

Mean cortisol 00:00 – 02:00 (nmol/L) 59 35 13 127 

Mean cortisol 06:00 – 08:00 (nmol/L) 411 136 132 715 

 

Table 11 Summary data of overnight cortisol secretion in mod/sev TBI patients 

 

 

Figure 19 Midnight and morning plasma cortisol levels in mod/sev TBI patients 

 

Maximum measured cortisol was under 500 nmol/l in 9/22 profiles. Stimulated cortisol 

(ITT) was normal in seven of these. In one of the two participants with abnormal 

stimulated and spontaneous cortisol secretion, GH response to ITT was also abnormal 

(peak GH 1.2 mcg/L). In the other participant (20y female), stimulated GH response 

was normal (peak GH 6.2 mcg/L) but ApEn for cortisol was very low (0.009, Z score -

3.15) as was the average cortisol secretion which was the lowest in the study group 
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(minimum values in Table 11 are all from this participant). Fatigue and depression 

scores in this participant were high. 

Peak spontaneous and stimulated cortisol levels correlated strongly (r=.788, p<.001) 

[Figure 20]. 

 

Figure 20 Stimulated and spontaneous plasma cortisol in mod/sev TBI patients 

 

The correlation between stimulated and measures of spontaneous cortisol secretion 

was also significant for 00:00-02:00 am cortisol (r=.675, p<.001), 06:00-08:00 cortisol 

(r=.677, p<.001) and mean overnight cortisol secretion (r=.746, p<.001). The 

correlation with pulse height, pulse mass and basal secretion was not significant. 

The average number of cortisol secretory episodes was 7 (range 2-9) and almost all 

occurred in the second half of the 12-hour overnight profile [Table 12 and Figure 21]. 
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COR Basal Secretion (nmol/L) 0.50 ± 0.42 

COR Half-life (min) 58.1 ± 22.0 

COR AUC (nmol/L) 122562 ± 45685 

COR Average (nmol/L) 170 ± 63 

COR Max Measured (nmol/L) 539 ± 127 

COR Peaks 7 ± 2 

COR Mean Secretory Pulse Height (nmol/L) 23.3 ± 18.1 

COR Mean Secretion Pulse Mass (nmol/L) 251.5 ± 112.7 

COR ApEn 0.45 ± 0.14 

 

Table 12 Summary data of overnight cortisol profiles in mod/sev TBI patients (mean ± SD) 
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Figure 21 Individual overnight cortisol profiles of children/young adults with mod/sev TBI. X axis: time 
(minutes), Y axis: cortisol (nmol/L) 

 

3.3.4 Salivary cortisol 

Salivary cortisol and cortisone levels were averaged for each of the five samples 

collected over three days. CAR was calculated for each one of three sampling days 

(before Dexamethasone suppression). Participants with negative CAR were excluded 
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only if CAR was negative on all three sampling days. Complete absence of a post-

awakening increase is likely to occur only if the delay and initiation of sampling is long 

enough so the first cortisol level exceeds the peak of the underlying CAR but can rarely 

be seen in patients with brain lesions (particularly in the hippocampus) [254]. A 

negative CAR over all three sampling days occurred in two participants (one control 

and one mild TBI). 

Two way mixed ANOVA for the CAR over three consecutive sampling days did not 

demonstrate an effect of TBI [F(1,39)=22.25, p=.445], depression [F(1,39)=.002, 

p=.963] or fatigue [F(1,39)=.058, p=.811] on CAR over time. 

When comparing the average CAR over three days there was no difference between 

groups (Kruskal-Wallis independent samples test, p=.053) [Figure 19] or when 

comparing TBI vs controls (Mann-Whitney U test, p=.828) [Figure 20].  

Analyses were done excluding the two participants having a negative CAR over three 

days. Results were not different when those were included in the analysis. 

 

 
      n=10        n=17      n=23 

Figure 22 Comparison of Cortisol Awakening Response between TBI and control group 
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    n=10             n=40 

Figure 23 Comparison of Cortisol Awakening Response between TBI and non-TBI/control group 

 

Subgroup analysis did not show any difference in CAR between male and female 

participants (Kruskal-Wallis independent samples test, p=.848) or between participants 

with fatigue (Mann-Whitney U test, p=.110) or depression (Mann-Whitney U test, 

p=.138). 

Descriptive statistics of salivary cortisone samples before suppression with 

Dexamethasone are shown in Table 13. ANOVA with Bonferroni adjustment for each 

sampling time point did not show any differences between groups. 
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 Groups 
Mean Cortisone 

(nmol/L) 
SD p 

Waking 

Control 16.3 6.2 

.083 Mild 19.8 4.4 

Mod/Sev 22.0 8.0 

30min post waking 

Control 18.7 8.6 

.083 Mild 25.4 7.2 

Mod/Sev 23.9 7.2 

4-5h post waking 

Control 9.0 4.5 

.178 Mild 12.1 5.0 

Mod/Sev 12.6 5.5 

8-10h post waking 

Control 8.4 2.6 

.541 Mild 6.8 4.2 

Mod/Sev 7.8 4.0 

Bedtime 

Control 2.5 2.0 

.628 Mild 3.0 1.8 

Mod/Sev 3.4 2.8 

 

Table 13 Salivary cortisone levels in TBI and control groups. Values represent the average over 3 days of 
consecutive sampling. 

 

Circadian rhythm pattern was preserved in all three groups (mild, mod/sev TBI and 

control). The change over time in salivary cortisone levels between groups was 

statistically significant [F(2,47)=3.23, p=.049, partial ƞ2=.121] due to the cortisone 

difference drop (but not absolute levels) between mild TBI and control group from 4-5h 

post waking to 8-10h post waking below [Figure 25]. 
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Figure 24 Diurnal salivary cortisone levels in TBI and control groups (mean with 95% CI) 

 

 

 
Figure 25 Salivary cortisone difference between 4-5h and 8-10h post waking in TBI and control groups.  

 

There was no difference between groups in cortisone suppression with 

dexamethasone [F(2,46)=1.85, p=.169] [Figure 26]. In two participants (one mild and 
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one mod/sev TBI) there was no suppression of morning salivary cortisone. Both had 

normal auxology and no depressive symptomatology. 

 

 
Figure 26 Difference in morning salivary cortisone pre- and post- suppression with Dexamethasone in TBI 
and control groups.  

 

3.3.5 Endocrine results summary 

Baseline endocrine function was normal in all but one female participant with primary 

amenorrhea. There was no clinical or biochemical indication of posterior pituitary 

dysfunction. GH response to standard stimulation testing (ITT) was abnormal in almost 

one third of mod/sev TBI participants. This did not correlate with IGF1/IGF-BP3 or 

auxology. Cortisol response to the same test was suboptimal in 10% of participants. 

Spontaneous and stimulated GH levels did not correlate. In one participant, both 

stimulated and spontaneous peak GH secretion was low. Mean 12-hour GH secretion 

was low (under 1 mcg/l) in 20% of overnight profiles. Measures of spontaneous GH 

secretion (basal, average, maximum, mean secretion pulse mass) correlated with 

IGF1/IGF-BP3. 

Spontaneous cortisol was under 500 nmol/l in 9/22 overnight profiles tests. Stimulated 

cortisol was normal in 7 of these. Spontaneous and stimulated cortisol correlated 

strongly. Cortisol pulsatility was preserved in all participants. 

Salivary cortisol sample analysis did not show any clinically significant difference 

between groups in regards to CAR or suppression with dexamethasone. Circadian 

rhythm patterns were preserved overall with only a slightly more pronounced drop in 
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cortisone levels (between 4-5h and 8-10h post waking) in mild TBI participants when 

compared to controls. 
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3.4 NEUROPSYCHOLOGY RESULTS 

3.4.1 Cognitive results 

IQ scores were not different between groups (Kruskal-Wallis independent samples 

test, p=.068) [Figure 27] or when comparing TBI vs non-TBI (control) groups (Mann-

Whitney U test, p=.200) 

 
 n=17 n=24 n=30 

Figure 27 Comparison of summary IQ scores between TBI and control groups 

 

Verbal IQ (VIQ) percentiles were lower in the Mod/Sev TBI group (39±33 centile) when 

compared to the control (62±25 centile) and mild TBI group (60±23 centile) (Kruskal-

Wallis independent samples test, p=.029 and .022 respectively) [Figure 28]. There was 

no statistical difference in VIQ between mild TBI and control group participants. 
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n=17     n=24     n=30 

Figure 28 Comparison of Verbal IQ between TBI and control groups 

 

Performance IQ (PIQ) percentiles between groups was not statistically significant 

(Kruskal-Wallis independent samples test, p=.415) [Figure 29] or when comparing TBI 

vs non-TBI (control) groups (Mann-Whitney U test, p=.304) [Figure 30]. 

 
  n=17         n=24      n=30 

Figure 29 Comparison of Performance IQ between TBI and control groups 
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n=17           n=54 

Figure 30 Comparison of Performance IQ between TBI and non-TBI/control groups 
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3.4.2 Psychology and Behaviour results 

3.4.2.1 Behaviour checklist and self-report 

The Self-Report (children CSR, adult ASR) and Behaviour Checklist (children CBCL, 

adult ABCL) is designed to obtain own and proxy reports of competencies and 

problems in a standardised format. As what individuals and especially adolescents 

report about themselves is subject to their recall at that moment, candour and self-

awareness, reports by other informants (multiaxial assessment approach) were also 

analysed and compared. 

 Total competency T scores were different between groups (Kruskal-Wallis 

independent samples test, p=.042). Pairwise comparisons showed a significant 

difference between mod/sev TBI and the control group [Figure 31]. T scores above 70 

are in the clinical range. 

 
n=17    n=24     n=30 

 

Figure 31 Comparison of Total Competency scores between TBI and control groups (self-report) 

 

The same was seen with proxy reporting (Kruskal-Wallis independent samples test, 

p=.014) [Figure 32.] 
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n=17    n=24    n=30 

 
Figure 32 Comparison of Total Competency scores between TBI and control groups (proxy-report) 

 

3.4.2.1.1 Externalising behaviour 

Externalising grouping consists of behaviour syndromes that mainly involve conflict 

with other people and with social mores. 

There were differences between groups (Kruskal-Wallis independent samples test, 

p=.006) with the mod/sev TBI group having higher T scores. There was no statistical 

difference between the mild TBI and control group [Figure 33]. 

The same difference was observed with proxy assessment (Kruskal-Wallis 

independent samples test, p=.007) [Figure 34]. 
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n=17    n=24    n=30 

 

Figure 33 Comparison of Externalising behaviour between TBI and control groups (self-report) 

 

 
n=17    n=24    n=30 

 

 Figure 34 Comparison of Externalising behaviour between TBI and control groups (proxy-report) 
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When analysing the components contributing to externalising behaviour problems, the 

mod/sev TBI group had higher T scores for aggressive behaviour (Kruskal-Wallis 

independent samples test, p=.003) [Figure 35] compared to the control group. 

 
n=17         n=24            n=30 

 

 

Figure 35 Comparison of Aggressive behaviour between TBI and control groups (self-report) 

 

Proxy T scores for aggressive behaviour were also different between groups (Kruskal-

Wallis independent samples test, p=.001) [Figure 36] and higher in the mod/sev TBI 

group. 
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    n=17         n=24        n=30 

 

Figure 36 Comparison of Aggressive behaviour between TBI and control groups (proxy-report) 

 

T scores were also higher in the mod/sev TBI group in regards to rule breaking 

behaviour (Kruskal-Wallis independent samples test, p=.014) [Figure 37]. 
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       n=17            n=24          n=30 

 

Figure 37 Comparison of Rule breaking behaviour between TBI and control groups (self-report) 

 

A similar pattern was seen with proxy assessment (Kruskal-Wallis independent 

samples test, p=.004) [Figure 38] with the mod/sev TBI group having significantly 

higher scores for rule breaking behaviour when compared to either mild TBI or the 

control group. 
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       n=17        n=24            n=30 

 

Figure 38 Comparison of Rule breaking behaviour between TBI and control groups (proxy-report) 

 

The Thought problems scale is mainly comprised of low prevalence items and has low 

internal consistency unless sample sizes are large. It measures symptoms common in 

several mental disorders (hallucinations, OCD-symptoms, self-harm and suicide 

attempts). 

Self-reporting showed differences between groups (Kruskal-Wallis independent 

samples test, p=.008) [Figure 39] with T scores for the mod/sev TBI group being higher 

when compared to the control group but not when compared to the mild TBI group. 
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n=17       n=24            n=30 

 

Figure 39 Comparison of Thought problems between TBI and control groups (self-report) 

 

Proxy assessment did not demonstrate a difference between groups (Kruskal-Wallis 
independent samples test, p=.079) [Figure 40]. 

 
n=17            n=24        n=30 

Figure 40 Comparison of Thought problems between TBI and control groups (proxy-report) 

 

In the Attention problems scale mod/sev TBI participants demonstrated higher T 

scores (Kruskal-Wallis independent samples test, p=.042) [Figure 41]. 



 

93 

 
n=17    n=24    n=30 

 

Figure 41 Comparison of Attention problems between TBI and control groups (self-report) 

 

Proxy scores were similar with the mod/sev TBI group demonstrating higher T scores 

(Kruskal-Wallis independent samples test, p=.019) [Figure 42]. 
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n=17          n=24              n=30 

 

Figure 42 Comparison of Attention problems between TBI and control groups (proxy-report) 

 

3.4.2.1.2 Internalising behaviour 

The Internalising grouping consists of three syndromes (anxious/depressed, 

withdrawal, somatic complains) that are mainly within the self. 

There were differences between groups (Kruskal-Wallis independent samples test, 

p=.046) [Figure 43] with Internalizing T scores being higher in the mod/sev TBI group 

compared to the control group. 
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n=17             n=24          n=30 

 

Figure 43 Comparison of Internalising problems between TBI and control groups (self-report) 

 

Proxy assessment did not demonstrate differences between groups (Kruskal-Wallis 

independent samples test, p=.069) [Figure 44]. 

 
n=17      n=24           n=30 

Figure 44 Comparison of Internalising problems between TBI and control groups (proxy-report) 
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Anxiety/depression and somatic problems T scores were not different between groups 

with either self or proxy assessment (Kruskal-Wallis independent samples test, p> .1) 

[Figure 45] & [Figure 46]. 

 
n=24   n=30    n=17       n=24     n=30        n=17 

Figure 45 Comparison of Anxiety/Depression problems between TBI and control groups (self and proxy-
report) 

 

 
n=24      n=30    n=17        n=24   n=30       n=17 

Figure 46 Comparison of Somatic problems between TBI and control groups (self and proxy-report) 

 

Analysis of ASEBA derived DSM-oriented scales were also consistent with most of the 

ASEBA total and sub score results. 

Correlation between self and proxy reports for ASEBA summary [Figure 47], 

externalising and internalising [Figure 48], anxiety/depression [Figure 49], withdrawal 

[Figure 50], somatic symptoms [Figure 51], attention [Figure 52 ] and aggressive 

[Figure 53] /rule breaking behaviour [Figure 54] scores was strong both using Raw and 

T scores. 
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Figure 47 Correlation between self and proxy ASEBA Summary T scores 

 

 

Figure 48 Correlation between self and proxy ASEBA Externalising and Internalising T scores 
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Figure 49 Correlation between self and proxy ASEBA Anxiety/Depression T scores 

 

 

 

Figure 50 Correlation between self and proxy ASEBA Withdrawal T scores 
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Figure 51 Correlation between self and proxy ASEBA Somatic symptoms T scores 

 

 

 

Figure 52 Correlation between self and proxy ASEBA Attention T scores 
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Figure 53 Correlation between self and proxy ASEBA Aggressive behaviour T scores 

 

 

 

Figure 54 Correlation between self and proxy ASEBA Rule breaking behaviour T scores 

 

3.4.2.2 Depression and Anxiety 

In addition to ASEBA-derived DSM-oriented scales for behaviour and anxiety, 

assessments for depression and anxiety were also undertaken using specific clinical 

instruments. Beck Depression Inventory (BDI) was used for participants 13 years of 

age or older and the Birleson Depression Scale for younger children. 
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   n=10    n=14    n=28 

 

Figure 55 Comparison of Depression scores (BDI) in TBI and control groups 

 

Depression scores using BDI were significantly higher in the mod/sev TBI group when 

compared to the control group (Kruskal-Wallis independent samples test, p=.011) 

[Figure 55]. Almost a third (9/28) of mod/sev TBI participants had a score of 17 or 

above which is seen only in patients with clinical depression. A similar proportion (5/18) 

of mild TBI participants scored above 17. 

No differences were demonstrated between groups in the smaller group of younger 

participants (n=9) who were assessed using the Birleson depression scale. 

Measures of spontaneous or stimulated GH or cortisol secretion were not different in 

participants with depression compared to the ones without. 

Anxiety assessment using the Beck Anxiety Inventory (BAI) did not demonstrate any 

differences between groups (Kruskal-Wallis independent samples test, p=.798) [Figure 

56]. Only one participant in the mild TBI group had anxiety levels in the severe range 

(BAI score over 42). 
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n=11     n=15       n=28 

Figure 56 Comparison of Anxiety scores (BAI) in TBI and control groups 

 

3.4.2.3 BRIEF (Behaviour Rating Inventory of Executive Function) 

Global BRIEF scores were not different between groups (Kruskal-Wallis independent 

samples test, p=.207) [Figure 57]. 

 
   n=11       n=15     n=26 

Figure 57 Comparison of Global T scores between TBI and control groups (BRIEF) 

 

Behavioural regulation T scores were higher in mod/sev TBI group and statistically 

significant when compared to the control group (Kruskal-Wallis independent samples 

test, p=.02) [Figure 58]. 
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n=11       n=15    n=26 

 

Figure 58 Comparison of Behavioural Regulation T scores between TBI and control groups (BRIEF) 

 

When reviewing the clinical scales assessed with Behavioural Regulation, the main 

difference between groups was in the inhibition scale (impulsivity) (Kruskal-Wallis 

independent samples test, p=.009) [while there were no differences in the other two 

scales (shift and emotional control) [Figure 59]. 

 
n=11       n=15    n=26 
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n=11      n=15    n=26 

Figure 59 Comparison of Inhibition T scores between TBI and control groups (BRIEF) 

 

Metacognition summary T score was not different between groups (Kruskal-Wallis 

independent samples test, p=.315) [Figure 60]. 

 
n=11         n=15     n=26 

Figure 60 Comparison of Metacognition T scores between TBI and control groups (BRIEF) 

 

Analysis of scales assessed in Metacognition (i.e. initiation, working memory, 

organisation of materials and monitor) were not different between groups except for 

working memory T scores. These were higher in the mod/sev TBI group suggesting a 

higher level of dysfunction in this domain, which involves holding information in mind 

for purpose of completing a task (Kruskal-Wallis independent samples test, p=.02) 

[Figure 61]. 
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n=11       n=15    n=26 

 Figure 61 Comparison of Working memory T scores between TBI and control groups (BRIEF) 

 

3.4.3 Neuropsychology results summary 

Cognitive impairment was seen in the mod/sev TBI group. Verbal IQ was lower (-20% 

when compared to the control or mild TBI group) as was working memory which is 

important for holding information in mind in order to completing a task. The same group 

had higher scores for aggressive/rule breaking behaviour, attention problems, 

depression but not for anxiety. 
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3.5 QUALITY OF LIFE AND FATIGUE RESULTS 

3.5.1 PedsQL 

Total PedsQL score was not different between groups (Kruskal-Wallis independent 

samples test, p=.265) [Figure 62]. 

 
n=14       n=20         n=30 

Figure 62 Comparison of Total QoL scores between TBI and control groups (PedsQL) 

 

When comparing two groups (TBI vs non-TBI), the total PedsQL score in the TBI group 

was lower (80.3±16.8 vs 88.3±7.9, 95% confidence interval of the difference 1.5-14.4). 

The difference was statistically significant (t-test for unequal variances, p=.016) [Figure 

63]. 

 
     n=50            n=14 
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Figure 63 Comparison of Total QoL scores between TBI and non-TBI groups (PedsQL) 

 

Physical and Psychosocial sub-scores were not significantly different between the 

three groups (Kruskal-Wallis independent samples test, p=.716 and p=.127 

respectively) [Figure 64]. 

 
n=14      n=20        n=30 

 
n=14       n=20    n=30 

Figure 64 Comparison of Physical and Psychosocial QoL scores between TBI and control groups 
(PedsQL) 

 

When comparing two groups (TBI vs non-TBI), the Psychosocial PedsQL score in the 

TBI group was lower by (76.6±19.1 vs 87.5±8.6, 95% confidence interval of difference 

3.7-18.0). The difference was statistically significant (t-test for unequal variances, 

p=.003) [Figure 65]. 
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         n=50              n=14 

Figure 65 Comparison of Psychosocial QoL scores between TBI and non-TBI groups (PedsQL) 

 

The school sub-score was not significantly different between the three groups (Kruskal-

Wallis independent samples test, p=.154), but when comparing two groups (TBI vs 

non-TBI) it was lower in the TBI group (74.8±20 vs 84.4±9.3, 95% confidence interval 

of the difference 3.9-19.3). The difference was statistically significant (t-test for unequal 

variances, p=.004) [Figure 66].  

 
n=50              n=14 

Figure 66 Comparison of School QoL sub-scores between TBI and non-TBI groups (PedsQL) 

 

There was a strong correlation between self and proxy reports [Table 14]. 
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 Pearson r p 

PedsQL Total score .665 <.001 

PedsQL Physical score .555 <.001 

PedsQL Psychosocial .540 <.001 

PedsQL Feelings .655 <.001 

PedsQL Social .569 <.001 

PedsQL School .625 <.001 

Table 14 Correlation between self and proxy report for PedsQL. 

 

Overall, sixteen participants (7 mild, 9 mod/sev TBI) had a summary PedsQL score of 

less than 69.7%, which is the level for detecting children with chronic health conditions. 

Physical and psychosocial health summary sub-scores were less than 69.7% in 5 and 

9 participants respectively. 

3.5.2 Health utilities index (HUI) 

Mean HUI scores were not significantly different between the three groups with either 

self or proxy report (Kruskal-Wallis independent samples test, p=.099 and .088 

respectively) [Figure 67]. 
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n=17       n=23       n=30 

 
n=17       n=23       n=30 

Figure 67 Comparison of HUI scores between TBI and control groups (self and proxy report) 

 

Two group comparison (TBI vs non-TBI) showed that the mean HUI score in the TBI 

group was significantly lower in the control group [0.765 ± 0.28 vs 0.922 ± 0.09 (t-test 

for unequal variances, p=.001) with self-assessment and 0.706 ± 0.34 vs 0.942± 0.06 

(t-test for unequal variances, p<.001), with proxy-assessment] [Figure 68]. 



 

111 

 
 n=17         n=53 

 
n=17         n=53 

Figure 68 Comparison of HUI scores between TBI and non-TBI groups (self and proxy report) 

 

Analysis of single attribute scores did not show any differences for Vision, Speech, 

Ambulation, Dexterity and Pain between groups with either self- or proxy- assessment. 

Cognition attribute scores were significantly lower in the TBI group (Kruskal-Wallis 

independent samples test, p=.006) for both mild TBI and mod/sev TBI groups 

compared to the control group [Figure 69]. 

 
   n=17      n=23    n=30 

Figure 69 Comparison of HUI Cognition attribute scores between TBI and control groups 
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Cognition attribute scores were also lower with proxy-assessment (Kruskal-Wallis 

independent samples test, p=.004) but only between the mod/sev TBI and control 

group [Figure 70]. 

 
    n=17       n=23      n=30 

Figure 70 Comparison of HUI Cognition scores between TBI and non-TBI groups (proxy report) 

 

Emotion attribute scores were not significantly different with self-assessment but were 

lower in the mod/sev TBI vs control group with proxy assessment (Kruskal-Wallis 

independent samples test, p=.016) [Figure 71]. 

 

 
    n=17      n=23    n=30 

Figure 71 Comparison of HUI Emotion scores between TBI and non-TBI groups (proxy report) 

 

With two group comparison (TBI vs non-TBI), emotion attribute scores were 

significantly lower with both self [0.920 ± 0.217 vs 0.995 ± 0.022 (t-test for unequal 

variances, p=.017] and proxy assessment [0.885 ± 0.24 vs 0.992 ± 0.025 (t-test for 

unequal variances, p=.007]. 

3.5.3 Participation (Child and Adolescent Scale of Participation- [CASP]) 

Participation scores were lower in the mod/sev TBI group as seen in Table 15. The 

difference between the three groups was not statistically significant (Kruskal-Wallis 

independent samples test, p=.082). 
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 Mean SD 
95% Confidence Interval 

for Mean 

Mild 95.5 6.5 91.9 - 99.1 

Mod/Sev 89.6 12.7 83.2 - 95.9 

Control 99.1 1.6 97.7 - 100 

Table 15 CASP scores in mild, mod/sev TBI and control groups 

 

Two group comparison (TBI vs non-TBI) showed that the mean CASP score in the TBI 

group was significantly lower, 92.3 ± 10.6 vs 99.1 ± 1.6 (t-test for unequal variances, 

p=.001) [Figure 72]. 

 

 
 n=33         n=8 

Figure 72 Comparison of CASP scores between TBI and non-TBI groups. 

 

3.5.4 Fatigue 

Fatigues scores as assessed with the Chalder fatigue scale are shown in Table 16. 

When comparing two groups (TBI vs non-TBI/control) the difference was statistically 

significant (t-test for unequal variances) using either bimodal or Likert scoring method. 

TBI participants had higher fatigue scores. 

 Groups Mean SD p 

CFS Bimodal (0-11) 
Control .43 .852 

<.001 
TBI 3.13 3.462 

CFS Likert (0-33) 
Control 10.07 3.362 

.035 
TBI 13.07 7.129 

Table 16 Fatigue scores in TBI and control groups. 
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Fatigue scores were significantly different between the 3 groups using bimodal scoring 

(scale 0-11) (Kruskal-Wallis independent samples test, p=.02) but not when using 

Likert scores (Kruskal-Wallis independent samples test, p=.339) [Figure 73]. 

 

 
    n=14      n=18    n=28 

 
Figure 73 Comparison of Fatigue scores between TBI and control groups 

 

As the binomial fatigue score for the control group was .43 ± .85 (mean±SD) a bimodal 

score of ≥3 (same as the bimodal score initially recommended for identifying significant 

fatigue [239]) or ≥16 (Likert) was considered abnormal for our study sample and 

suggestive of fatigue levels above what would be expected in healthy controls. 

20/46 of TBI participants had fatigue scores of 3 or above (mod/sev 13/28, mild 7/18) 

and 1/14 in the control group. The difference was statistically significant (Chi-Square, 

p=.013) [Figure 74]. 

 
  n=14          n=46  

Figure 74 Frequency of significant fatigue among TBI patients. 

 

p=.013 
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Five participants (4 mod/sev and 1 mild TBI) had bimodal fatigue scores above 9, 

which is seen in Chronic Fatigue Syndrome (CFS) sufferers (mean 9.14 and SD 2.73 

from large study involving 361 CFS sufferers and 1615 healthy individuals from the 

community [285]) 

There were more females with fatigue (8/20 vs 13/40 males) but the difference in 

fatigue between TBI and non-TBI females was not significant (Fisher’s exact test, 

p=.656). The difference was significant in males as 13/29 in the TBI and 0/11 in the 

control group reported fatigue (Fisher’s exact test, p=.006). 

Fatigue scores correlated negatively with PedsQL scores (ρ= -.68, p<0.001). 

Participants with higher levels of fatigue tend to have poorer QoL (physical and 

psychosocial) (Mann-Whitney U, p<.001) [Figure 75]. 

 

 
    n=39         n=21            n=39         n=21 

Fatigue              Fatigue 
 

  
    n=39         n=21 

   Fatigue 

 
Figure 75 Association between Fatigue and PedsQL scores 
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Fatigue was also associated with higher Anxiety and Depression levels (Mann-Whitney 

U, p=.003 and <.001 respectively) [Figure 76]. 

 

 
        n=39         n=21            n=39          n=21 

Fatigue              Fatigue 

 
Figure 76 Association between anxiety scores (BAI), depression scores (BDI) and fatigue. 

 

3.5.5 HRQL and fatigue results summary 

Measures of HRQL associated with physical health (vision, speech, ambulation, 

dexterity) were not different between groups. Psychosocial measures of HRQL, 

although not statistically different when comparing the three groups (mid, mod/sev, 

controls) were lower when comparing all TBI participants (mild/mod/sev) to the non-

TBI/control group. Cognition scores as assessed with the Health Utilities Index (HUI) 

were lower in the mod/sev TBI group. Cognition, emotion and participation (CASP) 

scores were different with two-group comparison (lower in TBI vs non-TBI). Self and 

proxy reports correlated strongly. 

3.5.5.1 HRQL, fatigue and endocrine status summary 

There was no significant difference in quality of life (PedsQL) or any of the various 

health attribute scores (HUI) between mod/sev TBI participants with normal and 

abnormal stimulated GH secretion. 

Fatigue (using binomial or Likert score cut-offs) did not correlate with stimulated GH 

(Fisher exact Test, p=.208) [Figure 77] or cortisol status (Fisher exact Test, p=.739) as 

assessed with the ITT [Figure 77]. 
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Figure 77 Fatigue (as assessed with Chandler fatigue scale) and GH status (as assessed with ITT) in 
mod/sev paediatric TBI survivors. 

 

Measures of spontaneous GH secretion (mean secretion pulse height) were 

significantly different in participants with fatigue (t-test for unequal variances, p=.042) 

[Figure 78]. 

 

 
n=10       n=12 

   Fatigue 

 
Figure 78 Fatigue and GH secretion pulse height in mod/sev TBI survivors 

 

Measures of spontaneous cortisol secretion (overnight cortisol profile) were not 

different between mod/sev TBI participants with or without fatigue. 

No difference was seen in CAR (Mann-Whitney U test, p=.414), or response to 

dexamethasone suppression (Mann-Whitney U test, p=.243) between the fatigue 

groups. The only significant difference was observed with bedtime salivary cortisone 

which was higher in participants with fatigue (Mann-Whitney U test, p=.007) [Figure 79] 
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     n=10             n=12 

   Fatigue 

 

Figure 79 Bedtime salivary cortisone in mod/sev TBI survivors according to fatigue status 
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3.6 NEUROIMAGING RESULTS 

Following screening, 56/72 participants (14 controls, 21 mild TBI, 21 mod/sev TBI) 

without any metallic implants or any other contraindication had a head MRI scan (10 

from the mod/sev TBI, 3 from the mild TBI and 3 from the control group were 

excluded). 

From the 42 TBI participants who had an MRI scan 19 were abnormal (4 in mild and 15 

in mod/sev TBI). Reported abnormalities included contusions in 15, white matter 

sheering injury in 1, frontal lobe cavities in 1, reduced brain volume in 1 and acoustic 

neuroma in 1 (incidental finding). Pituitary morphology (both anterior and posterior) 

was normal in all participants. 

Pituitary size as calculated with the ellipsoid formula was not different between groups 

when adjusting for pubertal stage (Kruskal-Wallis independent samples test, p=.309) 

[Figure 80]. 

 
   n=21      n=21    n=14 

Figure 80 Pituitary volume in mild, mod/sev TBI study participants and healthy controls 

 

Pituitary volume did not correlate with measures of spontaneous or stimulated GH or 

cortisol secretion. Pituitary volume was greater in participants with fatigue (Mann-

Whitney p=.039) but the difference was not significant when adjusting for pubertal 

stage (Mann-Whitney p=.285) as all participants with fatigue were at late stages or had 

completed puberty and as expected had larger pituitaries compared to younger 

participants. 

3.6.1 Voxel Based Morphometry (VBM) results 

VBM and ROI analysis for hippocampal areas demonstrated differences between the 

groups. 

Grey matter volume (GM) was overall different between groups [F(2,53)=8.59, p=.001]. 

When a Bonferroni adjustment was applied for multiple comparisons, GM volume in 
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the mod/sev TBI group remained significantly lower than the control group (756±83 vs 

874±84 ml) [Figure 81]. 

 
n=14        n=21    n=21 

Figure 81 Comparison of grey matter volume between TBI and control groups 

 

White matter volume (WMV) differences between groups did not reach statistical 

significance overall [F(2,53)=3.10, p=.053] so no further post hoc analyses were done. 

WMV in the mod/sev TBI group was 487±65ml vs 536±60ml in the control group. 

CSF volume was different between groups overall [F(2,53)=7.54, p=.001]. The only 

significant difference was between the mild and mod/sev TBI groups [Figure 82]. 

 
n=14           n=21        n=21 

Figure 82 Comparison of CSF volume between TBI and control groups 

 

Total intracranial volume (TIV) was lower in TBI participants (statistically significant 

difference between mild TBI and control group) [Figure 83]. 
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n=14            n=21       n=21 

Figure 83 Comparison of Total Intracranial Volume between TBI and control groups 

 

Two-group comparisons (TBI vs non-TBI participants) demonstrated differences in 

GMV, WMV and TIV (t-test for unequal variances, p=.001, p=.015 and p=.008 

respectively) [Figure 84]. 

 

Figure 84 Comparison of Grey matter, White matter and Total Intracranial Volume between TBI (n=42) 
and non-TBI/control groups (n=14) 
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3.6.2 Region of Interest analysis 

Only hippocampal areas were explored with ROI analysis but data are available for 

analyses of other ROI. 

Left hippocampus volume was only just not statistically different between groups 

(Kruskal-Wallis independent samples test, p=.051) [Figure 85]. 

 
n=14        n=21    n=21 

Figure 85 Comparison of Left Hippocampus volume between TBI and control groups 

 

Right hippocampus volume was smaller in the mod/sev TBI group (Kruskal-Wallis 

independent samples test, p=.022). Pairwise comparisons showed the only significant 

difference being between the mod/sev TBI and control group [Figure 86]. 

 

 
      n=14            n=21       n=21 

Figure 86 Comparison of Right Hippocampus volume between TBI and control groups 
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When comparing all TBI participants (mild/mod/sev as one group) vs the control group, 

significant differences were seen in all VBM - except for CSF- and hippocampus 

volumes. WM, GM, TIV and both hippocampus volumes were smaller in the TBI group 

[Table 17, Mann-Whitney test)]. 

 

 Control group TBI group p 

CSF volume (ml) 275± 31 284± 55 .718 

Grey matter volume (ml) 874± 84 781± 85 .002 

White matter volume (ml) 537± 60 490± 60 .032 

Total Intracranial Volume (ml) 1686± 140 1555± 158 .008 

Left hippocampus volume (ml) 5.16± .38 4.70± .55 .015 

Right hippocampus volume (ml) 5.24± .32 4.77± .56 .006 

Table 17 Comparison of brain (VBM analysis) and hippocampus volumes between TBI and control group. 
(mean±SD). 

 

When only participants that had completed their growth were included in the analysis 

(9 from control group, 35 TBI group), GM and right hippocampus volumes were still 

significantly smaller in the TBI group [Table 18, t-test adjusted for unequal variances 

when indicated]. 

 

 Control group TBI group p* 

CSF volume (ml) 282± 33 295± 52 .357 

Grey matter volume (ml) 839± 65 769 ±82 .022 

White matter volume (ml) 535± 59 496 ±61 .092 

Total Intracranial Volume (ml) 1657± 131 1560 ±162 .106 

Left hippocampus volume (ml) 5.08± .40 4.74 ±.58 .056 

Right hippocampus volume (ml) 5.20± .33 4.81 ±.58 .014 

Table 18 Brain (VBM analysis) and hippocampi volumes in TBI adolescents after completion of growth 
(mean±SD). 
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4 CHAPTER 4 – (DISCUSSION) 

The KHINES study represents the first attempt to our knowledge to determine the long-

term prevalence of PTHP following TBI during childhood with detailed endocrine 

assessments of GH and cortisol including both spontaneous secretion analysis and 

provocation testing. KHINES also included assessments of cognitive function, fatigue, 

depression and quantification of quality of life and health status. Finally, detailed 

neuroimaging was undertaken in all participants including matched controls. 

KHINES succeeded in its aim to determine the long-term prevalence of PTHP following 

childhood TBI and support the limited number of previous paediatric TBI studies with 

sufficient patient numbers to recognise PTHP as a complication of paediatric TBI and 

estimate its prevalence [Table 19]. 

Although persistent endocrine dysfunction was identified only in a small number 

participants, KHINES raises questions regarding the use of dynamic testing for a 

condition where the a priori likelihood of pituitary/hypothalamic dysfunction is relatively 

small compared to high-risk populations where these tests have been traditionally used 

(i.e. oncology/neurosurgical patients with pituitary tumours, short children) and 

evaluates the use of spontaneous GH secretion and IGF1/BP3 as a diagnostic test for 

assessing pituitary function in TBI survivors. 

4.1 INTRODUCTION 

TBI remains a major cause of acquired neurological morbidity with an incidence of 100-

350 per 100,000 in the general population [300]. Studies estimate that 3.8% of the 

population will experience at least one hospital admission due to TBI by 35 years of 

age which highlights the scale of the problem [9]. Injury severity can vary from mild to 

severe with few fatal cases of TBI especially when associated with multiple other 

injuries/trauma. Causes of TBI differ depending on the age group with falls being more 

common in preschool age children while road traffic accidents are more common in the 

older 10-15 age group [7]. A similar pattern was seen in KHINES as in 40% of 

participants TBI was secondary to falls (including one possible non-accidental injury in 

an infant) and road traffic accidents in the remaining 60% (pedestrian or cyclist hit by a 

vehicle). Males are more at risk for TBI irrespective of age group [11] and the same 

was seen in KHINES. Although mild TBI is more common than more severe types of 

TBI, the percentage of participants with mild TBI in KHINES was lower compared to 

moderate/severe TBI participants (33% vs 43%). The same distribution was seen in 

the non-participant group (mild 25% vs moderate/severe TBI 33%) and it is therefore 
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 Study design 
Period of data 

collection 
Interval since TBI 

 

Patients 
eligible/included 

Age range 

Eligibility 
criteria 

Protocol Pituitary 
deficiencies 

Clinical outcome 
 

Einaudi et al 
2006 [50] 
 

Retrospective and 
prospective 
1994–2002 
retrospective 
2002–2003 
prospective 
Interval 12 months 
 

Retrospective 
n=98/22 (22%) 
Age 11.2–18y 
 
Prospective 
n=30 
Age 0.25–15.5y 

GCS at 
inclusion: 
severe, 
moderate or 
mild 
 

-Basal & 
-Dynamic tests 
restricted to 
patients with 
height velocity 
<25 centile (n=2) 
GHRH+arginine 
 

Complete 
hypopituitarism 
(n=1) 
LH/FSH (n=1) 
GHD (n=2) 
Hypocortisolism 
(n=1) 
 

Retrospective group 
1 precocious puberty 
1 complete anterior 
hypopituitarism 
1 hypogonadism 
1 GHD 
 
Prospective group 
18/20 normal 
auxological data, 
1 GHD 
1 asymptomatic 
hypocortisolism 
 

Niederland et 
al 2007 [301] 
 

Retrospective 
2003–2004 
Interval 
30.6±8 months 
 

n=38/26 (68%) 
Age 11.4±0.7 

GCS at 
inclusion: 
severe to 
mild 
 

-Dynamic test all 
L-DOPA and ITT 
GH sufficiency >7 
ng/mL 
 

42% abnormal 
GH 
34% abnormal 
basal cortisol 
 

No significant height 
reduction 
No clinical 
hypocortisolism 
 

Poomthavor 
et al 2008 [49] 
 

Retrospective 
1995–2005 
Interval 0.9–8.5 
years 
 

n=50/17 
questionnaire; 
n=29 hormonal 
tests (24% 
of eligible 
patients) 
Age 3.5–20.1y 

GCS at 
inclusion: 
severe 
 

-Basal 
-Dynamic tests 
restricted to 
patients with 
low growth velocity 
(n=8) glucagon test 
GH sufficiency >10 
ng/mL 
 

Normal GH 
response 
Subnormal 
cortisol 
response 
(n=3) 
 

1 precocious puberty 
8 low growth velocity 
with normal GH 
tests 
4 previously 
diagnosed with one 
or more 
pituitary deficiencies 
1 central 
hypothyroidism 
 

Khadr et al 
2010 [48] 
 

Cross-sectional 
2001–2007 
Interval 0.6-14.1 
 

n=133/33 (24%) 
Age 5.4–21.7y 

GCS 
inclusion: 
severe, 
moderate or 
mild short 
stature 
 

-Basal 
-Dynamic tests in all 
ITT or glucagon 
GH sufficiency >5 
μg/L 
 

GHD (n=7) 
Low cortisol 
peak (n=9) 
Low basal 
prolactin (n=1) 
 

32/33 mean height, 
weight and BMI SDS 
comparable with 
reference population 
1 GH treatment 
 

Norwood  
2010 [302] 
 

Cross-sectional 
2007–2009 
Interval 0.7–3.8 
years 
 

n=52/32 (62%) 
Age 18.2±2y 
 

GCS 
inclusion: 
severe or 
moderate 
 

-Basal 
-Dynamic tests in all 
Arginine/glucagon 
(GH sufficiency 
>7 ng/mL 18 
years/>5 ng/mL <18 
years) 
-Overnight profile 
(GH >5ng/ml) 

GHD (n=10) 
Low basal 
cortisol (n=6) 
Low basal fT4 
(n=1) 
 

GHD 
Eexcessive weight 
gainafter TBI 
 

Moon et al 
2010 [303] 
 

Cross-sectional 
Medical records 
1999–2004 
Interval 4.2–10.3 
years 
 

n=97/20 (20%) 
Age 9.2–23.2y 

GCS 
inclusion: 
severe, 
moderate, 
mild 
 

-Basal 
-Dynamic tests to 
patients with clinical 
hypopituitarism 
 

No subject 
warranted 
further 
investigation 
 

Mean height, weight 
and BMI SDS 
comparable with 
reference population 
* No precocious 
puberty 
*Measures of 
adiposity similar to 
controls 
*Quality-of-life 
assessment 
 

Kaulfers et al 
2010 [304] 
 

Prospective 
2011–2007 
Interval 1.4–7.8 
years 
 

n=102/34 (33%) 
Age 5.4–21.7y 
 

GCS 
inclusion: 
severe or 
moderate 
 

-Basal 
-Overnight GH 
profile 

Central 
hypothyroidism 
(n=2) 
GHD (n=1) 
 

Mean height, weight 
and BMI SDS 
comparable with 
reference population 
Precocious puberty 
(n=3) 
No GH profile results 
 

Heather et al 
2012 [47] 
 

Cross-sectional 
2000–2010 
Interval 
6.5±3.2 years 

n=345/198 (57%) 
Age 8.3±3.3y 
 

GCS 
inclusion, 
moderate, 
severe 

-Basal 
-Dynamic test all 
Arginine 
clonidine 

GH peak <10 
µg/dL (n=65) 
and 

*Of those with GH 
peak <5 ng/dL 
Mean height SDS 
1.0±1.2 and BMI 2.8 
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 or 
mild+structu
ral TBI (skull 
fracture, 
intracranial 
haemorrhag
e 
or cerebral 
injury) 
 

low-dose ACTH test 
 

GH peak <5 
µg/dL (n=16) 
IGF-1 within 
normal range 
Suboptimal 
cortisol 
response 
(n=17) 
 

±0.8; follow-up with 
normal growth 
velocity 
*None were 
considered to have 
significant ACTH 
deficiency 
*One boy and one 
girl with precocious 
puberty 
 

Casano-
Sancho 2013 
[305] 
 

Prospective 
2009–2011 
Interval 3 and 
12 months after 
TBI 
 

n=51/37 (73%) 
Age 0.2–19.9y 

GCS 
inclusion: 
severe, 
moderate 
or 
mild+structu
ral TBI (skull 
fracture 
 

-Basal 
-Dynamic test all 
two tests 
glucagon 
clonidine 
 

GH peak 
<7.5 ng/mL after 
1 year of TBI 
(n=8) 
IGF-1 within 
normal range 
Suboptimal 
cortisol 
response 
after 3 months of 
TBI (n=10), 
after 12 months 
(n=3) 
Abnormal 
response GnRH 
test 
(n=1) 
 

*Growth velocity 
within normal limits in 
all patients except for 
one 
*None were 
considered to have 
significant ACTH 
deficiency 
*No precocious 
puberty 
 

Salomón-
Estébanez 
et al 2014 [42] 
 

Cross-sectional 
2004–2009 
Interval 1.3– 
5.8 years after TBI 
 

n=58/36 (61%) 
Age 2.7–15.1y 

Did not 
include GCS 
score 
(abnormal 
TC and 
admission to 
PICU) 
 

-Basal 
-Dynamic tests if 
clinical PTHP 
 

1 Autoimmune 
hypothyroidism 
2 Low morning 
cortisol 
(1 of them 
abnormal ITT) 
4 IGF-1 levels 
below the 2.5th 
 

*Normal height 
velocity 
*No precocious 
puberty 
 

Auble et al 
2014 [306] 
 

Retrospective 
2008-2011 
Interval 1-9 years 
 

n= 102/14 (13.7%) 
Age 2-9y 

GCS 
inclusion: 
severe or 
moderate + 
subdural 
hematoma 
On CT or 
MRI 
*Abusive 
head trauma 
 

-Basal 
-Overnight GH 
profile 
-Low-dose ACTH 
 

GH peak low 
(n=2) 
TSH surge low 
(n=6) 
Hyperprolactine
mia (n=9) 
Low morning 
cortisol (n=1) 
*GH profile 
mean 
GH>1.1mcg/l 
 

Relatively smaller 
stature was noted 
in 29% of patients 
BMI z-sore median 
0.5 (-2.3 to +1.9) 
 

Personnier et 
al 2014 [43] 
 

Prospective 
2008–2011 
Interval 9.5 
±3.4 months 
 

n=103/87 (84%) 
Age 0.8–15.2y 

GCS:severe 
(+acute 
subdural 
haematoma) 
 

-Basal 
-Dynamic test 
glucagon 
 

GH peak <7 
ng/mL (n=27) 
Low fT4 (n=6) 
Suboptimal 
cortisol 
response 
(n=1) 
 

*Decrease their 
height SDS >0.5 
(n=6) 
*No precocious or 
delayed puberty 

Table 19 Paediatric TBI studies published to date (adapted from Casano-Sancho P. Arch Dis Child 2017) 
[307] 

unlikely that the higher representation of moderate/severe TBI participants in KHINES 

represents systematic error. It is possible this is simply a reflection of mild TBI patients 

being seen mostly in primary care rather in a hospital emergency department and 

therefore being less likely to be recruited to hospital based studies like KHINES. 
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4.2 TBI AND PTHP 

In the acute phase of TBI PTHP is a recognised complication which usually resolves 

spontaneously and is considered to represent physiological adaptation to critical illness 

[308, 309]. However, the natural history of acute PTHP and the risk factors determining 

the development of permanent PTHP remain an area or controversy. Our knowledge of 

chronic PTHP has evolved from single case reports, to case series, to an increasing 

number of studies using different inclusion criteria and methodology making their 

results difficult to compare. 

Spontaneous recovery from PTHP was initially described by Agha et al in a case report 

of a 25 year old male who was diagnosed with PTHP (GH and ACTH deficiency) 16 

months post TBI and showed full recovery at retesting after 5 years [310]. Tanriverdi et 

al in a pilot, prospective study reported that 3 years post TBI, pituitary function 

recovers in about half of mild and moderate TBI survivors but persists in those with 

severe TBI [311]. PTHP may therefore not be as persistent as initially described. 

Conversely, development of PTHP with isolated or multiple hormone deficiencies years 

after the acute TBI phase in patients where the initial endocrine assessment was 

normal has been described, but longer-term prospective data are not available to 

determine if these remain persistent [312, 313]. There is a possibility that these 

evolving and recovering hormonal deficiencies are just a reflection of inaccuracies and 

poor reproducibility of diagnostic testing as previously discussed in Chapter 1. 

The unclear natural history of TBI has impacted on the recommendations for assessing 

pituitary function following TBI which over the last decade have varied considerably. 

Some suggest that endocrine tests should be reserved only for survivors of moderate 

or severe TBI with risk factors including cerebral oedema with increased intracranial 

pressure, hypoxia/hypotension, diffuse axonal injury and basal skull fracture [20, 25, 

312, 314] while others recommend universal testing [306, 315]. Although the former 

approach can underestimate the true incidence of PTHP the latter approach carries the 

risk of over diagnosing PTHP if strict diagnostic criteria are not used. Identifying 

patients for endocrine screening on the basis of clinical symptoms is also difficult as 

the symptomatology of PTHP is non-specific and may overlap with TBI sequelae. 

Fatigue for example is very common amongst TBI patients without PTHP [152] but also 

in patients with GHD who show a good response with improved energy levels when 

treated with GH [162]. 
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The challenge therefore remains in deciding how, when and most importantly who to 

screen for PTHP considering that 3.8% of the population will experience at least one 

hospital admission due to TBI by 35 years of age. 

4.3 METHODS DISCUSSION 

Researchers have used various types of studies to explore the prevalence of PTHP 

following TBI in childhood. From the first case reports and case-control studies that led 

to the generation of the PTHP hypothesis there has been an exponential increase in 

the number of prospective studies in adults exploring risk factors and outcome 

measures of TBI. Similarly the first paediatric studies were retrospective with varied 

time intervals from TBI, inclusion criteria and methodology. Despite however the 

relatively flexible inclusion criteria most studies were not able to recruit high numbers 

of participants with some recruiting only 10-30% of eligible participants [Table 19]. 

Although KHINES followed the Kids’ Head Injury Study (prospective study of outcome 

in children with severe, moderate and mild TBI [KHIS, 2002-2004]) by nearly10 years, 

almost half (79/172) of contactable participants agreed to take part in KHINES which is 

comparable to recent prospective TBI studies. This was a result of their previous 

positive experience with KHIS and ensuring that the research psychologist who had 

been a member of the original KHIS team made the initial contact. In order to assess 

the potential of bias between participants that agreed to participate and those that 

didn’t, we compared these groups and we found no differences with regards to age, 

gender, time since TBI, severity of TBI, duration of post-traumatic amnesia, days in 

intensive case or type of structural abnormalities on acute neuroimaging 

(extradural/subdural haemorrhage, diffuse axonal injury or skull fracture). Although not 

statistically different, more participants with moderate/severe TBI, extradural 

haemorrhage and skull fracture agreed to take part in KHINES compared to non-

participants. 

TBI presents a new challenge to clinicians dealing with neuroendocrine conditions as 

the diagnosis of hypopituitarism is highly dependent on pre-analytical (confounders 

that are patient related such as age, BMI, gender, drugs, pre-existing medical 

conditions including mental health) and analytical factors. Previous studies have shown 

the prevalence of PTHP to vary greatly depending on inclusion criteria, testing 

methodology and analytical factors [38, 43, 47, 50, 316]. As outlined in Table 19 some 

researchers used only baseline endocrine tests while others employed dynamic tests 

in all or only in symptomatic participants. Only three paediatric TBI studies report 

assessing spontaneous GH secretion. 
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Even when applying the same inclusion criteria, sources or variation that affect the 

reported prevalence of PTHP cannot be ignored. Analytical factors such as changes in 

assays (mainly GH and cortisol which are the ones mostly measured with dynamic 

tests) can result in misclassification of a test result as abnormal. The use of new, 

automated, highly specific cortisol assays for example has resulted in a reduction of 

the cut-off used to diagnose adrenal insufficiency from 500 nmol/l to 420nmol/l [317]. 

For other hormones including GH and IGF1 consensus statements have been 

developed to standardise GH assays [318]. 

Assay changes however are only one of the sources of variation. Interpretation of 

dynamic tests relies on the use of specific cut-offs. For GH dynamic tests these cut-offs 

depend on the pharmacologic stimulus used but also on other confounders such as the 

age or BMI of the patient. Obesity blunts GH response to insulin [75], glucagon or 

GHRH+arginine [319] and therefore BMI specific cut-offs need to be applied. As these 

limitations/restrictions were not widely recognised previously, they may have resulted 

in over diagnosis of GHD in the past. In light of this, some researchers have 

reanalysed their data and subsequently reported a lower prevalence of PTHP [320]. All 

of the above apply for TBI studies that include assessment of spontaneous GH 

secretion with the addition of scarce normative data (most from studies using older 

non-standardised GH assays). 

Another source of overestimating the prevalence of PTHP is not including confirmatory 

retesting considering the intra-individual variation of GH dynamic tests [321-323]. It is 

possible that the intra-individual variation of GH dynamic tests is associated with the 

specific dynamic test protocol and sampling intervals. 

In the majority of paediatric TBI studies the somatotroph axis appears to be the one 

mostly affected, either in isolation or with other pituitary hormone deficiencies (thyroid, 

gonadotrophins) especially during the first year post TBI. It has been suggested that 

this is a result of the location of somatotroph and gonadotroph cells in the periphery of 

the anterior pituitary and fragility of the infundibular-hypothalamic-pituitary structure 

due to its unique anatomical and vascular structure [324]. In our study, only one female 

participant presented with hypogonadism, which was not isolated but combined with 

GHD. Thyroid function was normal in all participants. 

In view of the vulnerability of the somatotroph axis, the emphasis of the endocrine arm 

of KHINES was to assess the long term impact of TBI on GH status. Although various 

stimuli have been used for assessing GH status by stimulating pituitary GH release, 

KHINES chose the ITT as a) it is regarded to be the “gold standard” for assessing GH 
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status, b) it can assess both the somatotroph and HPA axes and c) the test is safe 

when done by experienced staff in a centre that already has extensive experience in 

performing the test. 

In contrast to GH stimulation tests where cut-offs for diagnosing GHD have been 

mostly agreed (in adults having an ITT, a GH cut-off of 3mcg/L has been accepted 

[76], while in children 7-10 mcg/L is being used in most centres), diagnostic criteria for 

defining “normal” spontaneous GH secretion are lacking. Some studies have used the 

presence of at least one GH concentration peak above the pharmacological test cut-off 

used for that age group as a criterion [84] while others have used mean overnight GH 

secretion instead, as this was found to have 100% specificity depending on the applied 

diagnostic cut-off (<1 mcg/L) [87, 88, 249]. Nevertheless, with KHINES we chose 

spontaneous GH secretion analysis as the second endocrine test as this was the only 

way to explore associations between neurosecretory dysfunction (i.e. abnormal 

spontaneous secretion in the presence of normal stimulated secretion) and PTHP 

symptoms. Although studies comparing normally growing vs poorly growing children 

but also lean vs overweight children have shown that differences in spontaneous GH 

secretion are due to lower amplitude of GH peaks rather than reduced number of GH 

secretory episodes, it is not known if TBI is associated with a similar GH secretory 

pattern or impaired GH pulsatility. 

4.4 RESULTS DISCUSSION 

4.4.1 Endocrine (growth hormone) 

Stimulated GH secretion as assessed with the ITT was abnormal in 7/25 

moderate/severe TBI participants. Although the rate of abnormal tests was in line with 

that reported in some of the earlier TBI studies that did not use confirmatory retesting, 

all KHINES participants with abnormal ITT were growing normally (lowest height SDS 

was -0.33) and were not overweight (highest BMI +1.3 SDS). IGF1 which is mainly 

regulated by GH and is a surrogate marker of GH status was within the reference 

range in all but one participant (IGF1 -2.39 SDS). IGF1 levels did not correlate with 

peak GH response to ITT even when controlling for their (normal) weight. In the study 

by Heather et al [47] that included young children with structural TBI, 8% (16/198) 

demonstrated abnormal GH responses to two stimulation tests (clonidine and arginine) 

but all 16 children had normal IGF1 levels and demonstrated normal growth at follow-

up making the clinical significance of even two, abnormal GH stimulation tests 

questionable.  
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Using the overnight GH profile as the second test to assess GH status, 4/22 (using 

mean overnight GH as the diagnostic criterion) and 1/22 (using peak spontaneous GH 

secretion as the diagnostic criterion) participants would be diagnosed with GHD. IGF1 

was less than -2 SDS in two out of the four abnormal overnight profiles using mean 

overnight GH secretion as the diagnostic criterion and was also low (-2.39 SDS) in the 

single abnormal profile using peak spontaneous GH secretion as the diagnostic 

criterion. There was no correlation between peak stimulated and peak spontaneous 

GH secretion. Peak GH during sleep was generally higher compared to stimulated 

(ITT) for the same participant but the difference was not statistically significant. 

Although some studies report less than 15% discordance between stimulated and 

spontaneous GH secretion results, this does not appear to be the case with TBI 

patients as there was no concordance between the ITT and overnight GH profile result 

using either mean or peak overnight GH spontaneous secretion criteria to define a 

profile as being normal or abnormal. It would be reasonable to expect good 

concordance between these two methods of assessing GH status in clinical scenarios 

where GH secretion is severely impaired (patients with hypothalamo-pituitary 

pathology and multiple hormone deficiencies) but in TBI patients who have been 

growing normally and are asymptomatic, an abnormal result on a GH stimulation test is 

of questionable significance especially when both IGF1 and spontaneous GH secretion 

are normal. 

A possible explanation for the deceptively high rate of false positive ITT’s in TBI 

patients can be found in the design of the ITT itself. Although most ITT protocols use 

sampling at 0, 20, 30, 60, 90 and 120 min as originally described by Roth [71] these 

may not be the optimal sampling time points especially when diagnostic decisions are 

going to be based on the result of a single test. The results from deconvolution 

analysis of KHINES overnight GH profiles, but also from GH kinetic studies where GH 

and somatostatin were given in combination (somatostatin given in order to supress 

endogenous GH secretion), show that the half-life of GH is between 9-15 minutes with 

a mono-exponential disappearance curve [325]. This would suggest that in order to 

detect GH concentration peaks, GH samples should be taken at much shorter 

intervals. As peak GH levels with the ITT are achieved on average 45 min after the 

administration of insulin [326] it would be reasonable to intensify sampling around that 

time point to increase the probability of capturing the “true” peak GH response. 

KHINES TBI participants had only one stimulation test (ITT) and the high prevalence of 

GHD based on the ITT result alone without associated clinical findings, highlights the 

limitations of the ITT (more so a single ITT) to diagnose GHD in this context. As there 
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is no physiological reason for GH kinetics to change with other pharmacological stimuli 

used in stimulation tests, it is likely that the same limitations will apply if sampling 

intervals are longer than the estimated half-life of GH. 

Analysis of spontaneous GH secretion is therefore more likely to provide accurate 

information regarding not only overall GH secretion but also the pulsatile pattern of GH 

secretion which acts as a signal for tissue specific responses and can be disrupted, 

sometimes without changes in overall GH secretion. It has been shown that IGF1 

production differs in muscle and liver depending on the pattern of GH secretion [327]. 

Although basic information regarding pulsatility can be obtained by plotting GH 

concentration over time, interpretation and definition of what is a peak or pulse can be 

very subjective and does not take into account the kinetics of GH (secretion, 

distribution, elimination) which can affect the form of the GH concentration curve. It is 

therefore preferable to use pulse detection or deconvolution algorithms as described in 

detail in Section 1. Although not perfect, these almost fully automated methods enable 

direct comparisons and consistency between analyses. Analysis of KHINES participant 

GH profiles using AutoDecon demonstrated intact GH pulsatility exposing secretory 

and in contrast to the ITT, measures of spontaneous GH secretion derived from 

deconvolution correlated strongly with IGF1 levels. ApEn for GH was higher in female 

TBI participants indicating greater irregularity. This pattern reflects the physiological 

gender separation in GH secretion. ApEn was not different between participants with 

fatigue. 

For the paediatric TBI population, growth is a very sensitive indicator of somatotroph 

axis integrity and measurement of height velocity in particular has been shown to aid 

identification of TBI survivors with PTHP, providing that growth velocity remains 

consistently under the 25th centile during a follow up period or at least one year. Using 

this screening method, a third of paediatric patients will demonstrate suboptimal GH 

response to a single stimulation test with GHRH & Arginine [328].  

The prevalence of GHD in KHINES provides information about the natural history of 

PTHP after TBI in childhood. In another study with similar design (Wamstad et al. 

[329]) that enrolled slightly younger children and adolescents 3-4 years post TBI, the 

prevalence of GHD was 17% based on the overnight GH profile and 33% based on 

dynamic testing. The results of the stimulation test are almost the same (33% vs 28% 

in KHINES) using a different stimulation test (arginine/glucagon). Overnight GH 

secretion was abnormal in a smaller percentage in KHINES (5% vs 17%) using 

however more strict criteria (peak overnight GH cut-off same as the one used for the 

ITT). In the study by Wamstad the same peak overnight GH level of < 5mcg/L was 
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used to diagnose GHD even in participants that were over 18 years of age. If the same 

cut-off (5 mcg/L) was applied in KHINES, the prevalence of GHD would be 13% (3/22) 

based on the profile only and 4.5% (1/22) based on both tests (14% in the study by 

Wamstad). 

In summary and by assessing both stimulated and spontaneous GH secretion in 

moderate/severe TBI survivors the long-term prevalence of GHD is between 5-10%. 

4.4.2 Endocrine (cortisol) 

HPA axis abnormalities in KHINES were mild. In two participants stimulated cortisol 

secretion (392 and 483 nmol/l) was suboptimal using the local laboratory diagnostic 

cut-off value of 500 nmol/l. One of the participants had also suboptimal GH response to 

the ITT. In all moderate/severe TBI participants cortisol was secreted predominantly in 

the second half of the night with gradually increasing pulsatility. Salivary cortisol 

profiles did not differ between TBI participants and controls, or between participants 

with depression or fatigue. The circadian rhythm was preserved and all participants 

responded with low morning cortisol levels following suppression with oral 

dexamethasone. The two participants with suboptimal stimulated cortisol response had 

high fatigue scores. One had a bimodal score of 10 (patients with Chronic Fatigue 

Syndrome have a score of 9 or above). Although chronic stress is associated with 

chronic elevation of cortisol levels, preceded by changes of trough cortisol levels and 

loss of circadian rhythm [330, 331] this was not seen in KHINES participants. A similar 

response has been described in adult patients with depressive disorders [332]. 

Conversely, chronic pain syndromes, anxiety disorders and posttraumatic stress are 

associated with hypocortisolism [333]. 

Although changes in CAR have been described in patients with PTSD [334], chronic 

fatigue [335], hippocampal lesions [336] (blunted response) and chronically stressed, 

recovered depressed patients (enhanced response) [337], neither was seen in 

KHINES. In two participants (one healthy control and one mod/sev TBI) the CAR was 

negative over three consecutive days. The most likely explanation for these results 

would be delayed collection of the first sample after awakening or mislabelling of the 

samples. 

4.4.3 Cognitive function 

The findings of this study confirm the presence of significant cognitive impairment in 

paediatric TBI survivors 10 years following TBI as previously demonstrated in adult 

patients [338]. Anthropometric and physical function scores in our study group of TBI 

survivors suggest a good outcome from the physical disability point of view but 
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significant residual neurocognitive disability. In addition to cognitive impairment our 

study participants (mostly moderate/severe TBI) demonstrated reduced QoL, high 

rates of fatigue and depression scores. Cognitive deficits involve mainly working 

memory which are comparable to previous studies with shorter follow up post TBI 

[179]. Although significant cognitive recovery takes place during the first year after TBI, 

the rate of improvement slows down in severe TBI survivors particularly in the domains 

of performance IQ, adaptive problem solving, memory and motor skills [339]. The 

persistent deficits and lack of catch-up over time suggest the possibility of reduction in 

the rate of acquisition of new skills after severe TBI. Although TBI KHINES participants 

had total IQ scores (Full Scale Intelligence Quotient) that were not significantly different 

to that of the control group, only the moderate/severe TBI group included participants 

with IQ scores under 80. Performance IQ which is one of the last domains to recover 

was not different between groups but again only the moderate/severe TBI group 

included participants with performance IQ in the lower centiles. Verbal IQ was 

significantly lower in the moderate/severe TBI group and being linked to academic 

achievement highlights the persistent consequences and deleterious effects of TBI on 

academic performance.  

A link between the somatotropic system and cognitive function has been hypothesised 

once it was shown that GH is permeable to the brain and receptors for both GH and 

IGF1 exist in areas of the brain associated with cognitive function and behaviour [141]. 

GH treatment in adults with non-TBI related GHD has been shown to improve memory 

and attention [340] but these findings have not been reproduced in other studies [341]. 

Children with congenital hypopituitarism have an intellectual ability that is in the low-

average range compared to the population norm but not significantly different when 

compared to their siblings except for performance IQ (reflection of reduced ability to 

perform tasks requiring perceptual organisational skills) [165]. These children are 

susceptible to hypoglycaemia early in life and are also likely to have other associated 

brain malformations [166]. GH therefore appears to have a less important role in brain 

development compared to thyroid hormone. Furthermore, intelligence in children with 

GH insensitivity due to abnormal GH receptor is not different compared to controls 

indicating that GH and GH-induced IGF-1 production is not necessary for normal brain 

growth and development [167]. It is however possible that the beneficial effects of GH 

treatment in regards to cognitive function and memory are a result of neuroprotective 

properties of GH and IGF1 as demonstrated in the hippocampus [342, 343]. There is 

however agreement in that memory, attention and executive function decline in adults 

with PTHP [344]. 
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4.4.4 Behaviour 

Behavioural and psychosocial problems following TBI in childhood have not received 

the same attention as the physical and cognitive consequences but many children with 

TBI demonstrate low self-esteem. This is closely linked with anxiety and depression 

and can impair academic performance leading to further psychosocial problems [345]. 

Recent studies have reported a surprisingly high incidence (31%) of novel psychiatric 

disorders in children with mild TBI in the second year post injury [346] but a systematic 

review of mild and moderate paediatric TBI studies from 2008-2013 did not show a 

clear effect [347]. Frontal white matter is particularly susceptible to injury and persistent 

changes in the area were demonstrated in KHINES participants. Executive functioning 

(task planning, inhibition, attention control, sustained effort, and mental flexibility) relies 

on frontal–striatal networks that are particularly susceptible to diffuse axonal injury 

[178]. Approximately 20 to 40% of young children (5-15 years of age) with TBI show 

significant executive dysfunction within the first year of injury [179]. In KHINES the 

prevalence of behavioural problems in the moderate/severe TBI group was significantly 

higher. This included changes in externalizing behaviour consisting of three other 

behaviour syndromes (aggressive, rule breaking and intrusive) that mainly involve 

conflicts with other people and with social mores but also problems with attention. 

Scores for internalizing behaviour consisting of three syndromes (anxious/depressed, 

withdrawal, somatic complains) were also higher in all TBI participants including those 

with mild TBI. Depression scores were significantly higher in the moderate/severe TBI 

group. 

Considering the potential neuroprotective effects of GH, studies looking at psychiatric 

outcomes in TBI patients showed a high incidence of depression, anxiety and 

psychosis, which correlated negatively with peak, stimulated GH responses. In the 

study by Wamsad et al [329], abnormal spontaneous (but not stimulated) GH secretion 

was associated with impaired visual memory and lower HRQL but this was not 

demonstrated in KHINES as there were no differences in regards to anxiety, 

depression and cognitive function between participants with normal and abnormal 

stimulated or spontaneous GH status. 

Depression has also been reported to be associated with reduced spontaneous 

(mainly nocturnal [348]) and stimulated GH secretion [349]. A similar effect was seen in 

KHINES but did not reach statistical significance, possibly due to sample size. In 

KHINES participants with depression 
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, GH pulse mass, pulse height and average GH secretion but not number of detected 

pulses was lower. It has been hypothesised that increased activity of central beta 

receptors [350] and CRH hypersecretion (which is found in patients with depression) 

exert an inhibitory effect on GH release. 

4.4.5 HRQL 

Although it is encouraging that only a small proportion of TBI survivors are left with 

significant physical disability, it is the subtle but significant issues in childhood such as 

decline in school performance (but still within the “normal” range, hence not causing 

major concerns) and behavioural changes that are often missed. To complicate things 

further, TBI survivors (much like cancer survivors) often perceive their quality of life as 

satisfactory after having to live for many years with the complications and sequelae of 

their condition. All these symptoms are difficult to capture as even detailed 

neuropsychological assessments have their limitations and can be affected by deficits 

in self-awareness (common sequelae of severe TBI) that render adolescents less 

capable of accurately rating their HRQL. Furthermore popular QoL measurement 

systems fail to consider whether the measured outcomes are relevant to the 

adolescent and capture the subtlety of the adolescent social experience [351]. 

None of KHINES TBI participants had significant physical disability as assessed with 

the PedsQL sub-score for physical functioning. Although summary and PedsQL sub-

scores (physical and psychosocial) were similar between the three KHINES groups 

(control vs mild vs moderate/severe TBI), differences emerged once comparisons were 

made between TBI and non-TBI participants. Both summary and psychosocial PedsQL 

scores (but not Physical sub-scores) were significantly lower in the TBI group. Overall, 

sixteen participants (7 mild, 9 moderate/severe TBI) had a summary PedsQL score of 

less than 69.7% (equivalent to one SD below the population mean) which has been 

shown to represent poorer HRQL. Similar results were obtained using the Health 

Utilities Index (HUI), a system of measuring health status once comparisons were 

made between TBI and non-TBI participants. Similarly to the PedsQL results, the HUI 

did not show any differences for ambulation, dexterity and pain between groups but 

attribute scores for cognition and emotion were lower in the TBI group. 

4.4.6 Fatigue 

Fatigue was one of the most prominent symptoms in KHINES TBI participants. Almost 

half (13/28) of moderate/severe TBI participants had high fatigue levels (some of them 

in the range seen only in CFS sufferers [285]) as assessed with Chalder’s fatigue 

scale. This is similar to what has been reported previously within the first two [352] or 
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five years [153] post TBI. Although not always clear unless using a standardised tool to 

measure fatigue, it is important to distinguish between physical and central fatigue. The 

former refers to impaired physical performance or exercise tolerance. This can be seen 

in TBI survivors with musculoskeletal injury and prolonged immobilisation [353]. One of 

the proposed mechanisms linking PTHP and physical fatigue is impaired muscle 

mitochondrial function secondary to GHD [354]. The latter (central fatigue) refers to the 

lack of motivation to initiate or sustain mental or physical tasks [355]. Although 

functional gains appear to continue for long periods after TBI – even after rehabilitation 

intervention has stopped – fatigue levels do not seem to follow the same pattern of 

improvement over time. This could be a result of TBI survivors realising and having to 

deal with the consequences of TBI when returning to their previous activities. 

Maintaining the same achievement level and having to “catch-up” adds an additional 

burden on TBI survivors, which over time results in increased levels of fatigue. 

Considering the high incidence of cognitive impairment in domains as executive 

functioning, memory and attention following TBI this is not unexpected [338] and is 

reflected in the employment and studying status of TBI survivors, which declines over 

time. In the study by Olver et al [153] only half of TBI survivors who were employed at 

the time of injury were employed at 2 years and even fewer after 5 years (40%). 

Although fatigue levels between GHD and non-GHD TBI survivors (irrespective of TBI 

severity) have been reported to be comparable, TBI survivors with PTHP show a 

similar benefit from GH replacement in terms of improved HRQL when compared to a 

matched group of GHD patients due to non-functioning pituitary adenoma. It is not 

known if non-GHD survivors with fatigue would respond to GH treatment in the same 

way. In a randomised, placebo controlled study evaluating the efficacy of GH therapy 

in patients with chronic fatigue and low spontaneous GH levels, Moorkens et al. 

showed there was no significant improvement in HRQL after 12 months of treatment. 

KHINES did not demonstrate any correlation between stimulated GH secretion and 

fatigue levels (even in those participants where stimulated GH response was clearly 

abnormal) and in conjunction with available evidence we cannot advocate the use of 

GH for treating fatigue symptoms in TBI survivors without solid evidence of PTHP 

using strict diagnostic criteria. 

4.5 STRENGTHS AND LIMITATIONS OF THE STUDY 

KHINES has significant strengths compared to other paediatric TBI studies. 

Recruitment was high considering that almost half of contactable KHIS participants 

agreed to take part in KHINES. KHIS, being a prospective study of outcome in children 
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with severe, moderate and mild TBI, consecutively recruited participants over a short 

period of time. This resulted in little variability in time from injury for KHINES 

participants (all between 7-11 years) and no selection bias. Clinical characteristics 

between participants and non-participants were not different (age, time from TBI, 

gender, TBI severity, socioeconomic status). 

From the endocrine perspective, all study participants had the same stimulation test 

(ITT) and overnight sampling for GH and cortisol was done in the same hospital. 

Samples were analysed at the same lab using the same assay and method for blood 

and salivary samples. All tests were done by the same researcher. 

One of the limitations of the study was not having a control group for the endocrine 

investigation arm of KHINES involving blood tests. Ethics approval was obtained for 

studying the mod/sev TBI group but not for mild TBI or controls. These groups did 

however have an assessment of their cortisol status and integrity of the HPA axis 

feedback using salivary cortisol sampling. 

Although height SDS was used for all analyses, parental adjusted height SDS would 

have been another useful outcome measure. As accurate parental heights were not 

available for most KHINES participants this was not possible. 

Spontaneous GH secretion can also show marked night to night variation (-50% to 

+100% change in night GH secretion) in the same individual [356]. Considering the 

effect of sleep on GH secretion this is probably not unexpected. Although overnight 

testing conditions were kept as much as possible the same, it is not possible to 

exclude without EEG monitoring differences in sleep quality and their effect in 

individual GH secretion.  

The final limitation to consider for this study is the number of participants that could not 

have an MRI for research purposes due to strict safety criteria (mainly metal plates 

from neurosurgery). Most of these participants had had brain surgery and were more 

likely to have suffered more severe brain damage. It is therefore possible that the 

chronic neuroimaging brain changes of TBI could be underestimated as some of the 

most severe TBI were excluded. 

4.6 FUTURE PERSPECTIVES AND POTENTIAL STUDIES 

KHINES has succeeded in its aim to determine the long term prevalence of PTHP after 

childhood TBI and has raised a number of further questions. These could be the theme 

of further studies and research papers that may include the following themes. 
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4.6.1 Methods for diagnosing PTHP 

By using strict diagnostic criteria KHINES has shown that PTHP is less frequent than 

has been previously reported. The ITT at its current implementation may not be 

suitable for diagnosing hypopituitarism in conditions where the a priori likelihood of 

pituitary disease is low as with PTHP. While the hypothesis that other GH stimulation 

tests may have similar limitations remains to be tested, we would recommend that in 

the absence of multiple hormone deficiencies and in order to facilitate prospective 

studies the diagnosis of PTHP is supported by at least two abnormal dynamic tests (or 

modified dynamic test with frequent sampling) and IGF1 levels lower than -2 SD and 

patients Link to prospective clinical scores. 

4.6.2 Identification of predictors of neuroendocrine test eligibility 

Considering the controversy of using dynamic GH endocrine tests in diagnosing PTHP 

and the practical difficulties of evaluating spontaneous GH secretion in a clinical 

setting, novel neuroimaging modalities can provide additional support in identifying TBI 

survivors that are at risk of developing PTHP. DWI has been used to indirectly assess 

the hormone secreting capacity of the pituitary in TBI patients [357] and very recently 

DTI has been successfully used to visualise the hypothalamo-hypophyseal tract 

preoperatively, reducing the risk of tract injury [358]. The same modality could 

potentially be used in TBI patients to assess the integrity of the same tract with 

prospective follow-up of clinical outcomes and to identify those most at risk of PTHP. 

4.6.3 Efficacy of GH treatment in TBI survivors with PTHP 

TBI survivors with PTHP show a similar benefit from GH replacement in terms of 

improved HRQL when compared to GHD patients due to pituitary adenomas. However, 

a randomised placebo controlled study evaluating the efficacy of GH therapy in 

patients with chronic fatigue and low spontaneous GH levels, showed no significant 

improvement in HRQL. It is not known if TBI survivors with fatigue and abnormal GH 

parameters using would respond to GH treatment in the same way. 

4.6.4 Role of GH treatment on brain repair after TBI 

There is mounting evidence about the neuroprotective effects of GH but more studies 

are necessary in order to understand the role of GH in these processes. A prospective 

randomised study comparing clinical outcomes after GH treatment in both PTHP and 

non-PTHP TBI patients would help to evaluate the contribution of GH treatment with 

regards to speed of recovery and rehabilitation. 
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