

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Barker, Tim

Title:
Design and Numerical Validation of Decentralised Algorithms for the Control of Road
Networks

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Design and Numerical Validation of Decentralised
Algorithms for the Control of Road Networks

T. Barker

Department of Engineering Mathematics

University of Bristol

A dissertation submitted to the University of Bristol in

accordance with the requirements of the degree of

Doctor of Philosophy in the Faculty of Engineering.

October 2017

Word count: Thirty-Three Thousand Four Hundred

Abstract

Congestion on road traffic networks is a problem. Control theory can be
applied to reduce congestion, and new technologies present more opportunities
to do this. Strategies can be centralised or decentralised, but decentralised
strategies offer advantages in terms of feasibility and scalability. We propose
two decentralised control algorithms to be applied to road networks, controlling
both vehicle routes and traffic lights. We validate these algorithms numerically
using a microscopic traffic simulator.

We introduce the current literature on vehicle routing, and intersection
control, providing an overview of each. We present a decentralised routing
methodology, by which vehicles pick their routes by minimising a cost function
based on travel time and road occupancy. We investigate the effect of tuning
the control parameter which determines the relative balance between the two
components of the cost function, and find that this is dependent on network
topology and the presence of traffic lights. We find the algorithm performs
favourably compared to the shortest path, and contrast our algorithm with
Dynamic User Assignment using Gawron’s iterative approach, showing the
proposed method has distinct advantages in specific network topologies. We
prove that in a scenario where all other vehicles are routed using only the
shortest path, only a fraction of the vehicles in the network are required to
adopt our proposed routing strategy to make a significant reduction in delays.

We present a modular decentralized traffic light controller and propose
several algorithms which harness the potential of Vehicle-to -Infrastructure
communication. We compare the performance of these algorithms with those
already found in the literature, as well as exploring the impact of network
topology on the performance of the controller. We find that our algorithms
are able to outperform other controllers, but there is a significant relationship
between network topology and algorithm performance. We then test these
algorithms in the Luxembourg network and find the improvements in travel-
time carry over to a real world scenario.

iii

Dedication and acknowledgements

On the path to completing this thesis, I have received a great deal of time and expertise

from a number of people, without whom it may never have been completed. I would

especially like to thank my supervisor Professor Mario Di Bernardo, who has been a great

mentor to me and guided me through the last 3.5 years with a great deal of encouragement,

teaching and patience. I would also like to thank Dr Chao Zhai, Dr Gianfranco Fiore and

Dr Giovanni Russo for all of their help in completing various parts of my research. I have

been incredibly fortunate in having the chance to work with each of you and have benefited

a great deal from your experience. I would like to thank Dr Filippo Simini for the time

he spent reviewing me each year, and the detailed comments he gave me on my written

work.

I would like to thank those academics who hosted me at their labs during my PhD:

Professor Carlos Canudas-De-Wit and his team at INRIA, Grenoble, and Dr Simon Box

who was with the University of Southampton. These experiences were both informative

and enjoyable and gave me the insights necessary to go on to improve my research and

eventual dissertation.

Finally, I would like to thank my family, who supported me fully when I told them

that I wanted to return to University for another 3 years to achieve a PhD and have been

a rock throughout my time doing it, and Mariya, who has been and always will be my

biggest cheerleader. This dissertation is dedicated to you.

This thesis would never have happened in any form without the support of the James

Dyson Foundation. It is a testament to James Dyson that he supports engineering ed-

ucation, and my heartfelt appreciation goes to all those at the University of Bristol and

Dyson who made it happen.

v

Author’s declaration

I declare that the work in this dissertation was carried out in accordance with the re-

quirements of the University’s Regulations and Code of Practice for Research Degree

Programmes and that it has not been submitted for any other academic award. Except

where indicated by specific reference in the text, the work is the candidate’s own work.

Work done in collaboration with, or with the assistance of, others, is indicated as such.

Any views expressed in the dissertation are those of the author.

SIGNED: ... DATE:..........................

vii

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Aims and Hypothesis . 3

1.2.1 Contribution and Deliverables of the Thesis 4

1.3 Thesis Outline . 4

2 Vehicle Routing in Road Networks: An Overview 7

2.1 Finding a Path Through a Network . 7

2.2 Modelling Road Networks . 9

2.2.1 Definition of Traffic Flow . 9

2.2.2 Link Flow Models . 10

2.3 Traffic Assignment Theory . 13

2.3.1 Static Traffic Assignment . 14

2.3.2 Dynamic Traffic Assignment . 18

2.3.3 Sub-Optimal Approaches to Dynamic Traffic Assignment 21

2.4 Validation Methodology and Performance Metrics 23

2.5 Discussion . 24

3 Intersection Control: An Overview 27

3.1 Terminology Describing an Intersection . 27

3.2 Intersection Control . 28

3.2.1 Existing Approaches to Signal Timings at Intersections 28

3.2.2 Isolated Fixed-Cycle Approaches . 30

3.2.3 Coordinated Fixed-Cycle Approaches 31

3.2.4 Coordinated Traffic-Responsive Approaches 31

3.3 Decentralised Traffic-Responsive Approaches with Coordinated Behaviour . 32

3.3.1 The Principle of Work Conservation: A Promising Decentralised

Method for Intersection Control . 33

3.4 Discussion . 34

4 A Decentralised Routing Algorithm for Enhancing Network Resilience

to Congestion 37

4.1 Problem Formulation . 38

4.2 The Decentralised Routing Algorithm (DRA) 40

ix

T. Barker

4.2.1 Considering the Variation of α and its Effect on Routing 41

4.2.2 Choice of Sensory Functions . 42

4.3 Tuning the Parameter α . 44

4.3.1 Validation of the Existence of an Optimal Value of α via Numerical

Simulations . 46

4.3.2 Estimation of the Optimal Values of α 51

4.4 Comparison with Dijkstra’s Algorithm . 57

4.4.1 Simulations without Traffic Light Controlled Intersections 60

4.4.2 Simulations with Traffic Light Controlled Intersections 60

4.5 Comparison with Other Routing Algorithms 61

4.6 The Effect of Increasing Network Size . 63

4.7 The Effect of Penetration Rate on Performance 64

4.8 Discussion . 65

5 A Novel Approach to Intersection Control 67

5.1 The Proposed Architecture . 68

5.2 Problem Formulation . 69

5.2.1 Modelling Networks of Intersections 69

5.3 Control Algorithm Design . 72

5.3.1 Overview . 72

5.3.2 Stage Selection Algorithm Design . 73

5.3.3 Stage Duration Algorithm . 75

5.4 Properties of the Controller . 79

5.4.1 Work Conservation . 79

5.4.2 Complexity of the algorithms . 80

5.5 Developing an Advanced Algorithm to Address ‘Head-of-line-blocking’ . . . 81

5.5.1 The Pressure Propagating Controller 81

5.5.2 The Pressure Propagating Controller Stage Selection Algorithm . . . 82

5.6 Discussion . 84

6 Numerical Validation of our Intersection Control Algorithms in Syn-

thetic Networks 87

6.1 Simulation Methodology . 87

6.1.1 Method for Estimating the Capacity of Roads 89

6.1.2 Performance Metrics Used to Evaluate the Algorithms 90

6.2 Numerical Analysis of the Congestion-Aware and Capacity-Aware Stage

Selection Algorithms . 91

6.2.1 Flow Through The Network . 91

6.2.2 Mean Trip Duration . 93

6.2.3 Mean Waiting Time . 97

6.2.4 Discussion of Congestion-Aware and Capacity-Aware Algorithm Per-

formance . 101

6.3 Numerical Analysis of the Pressure Propagating Controller 103

x

Chapter 0

6.3.1 Flow Through The Network . 103

6.3.2 Mean Trip Duration . 104

6.3.3 Mean Waiting Time . 108

6.4 Discussion . 108

7 Preliminary Numerical Validation of Intersection Control Algorithms in

a Real-World Scenario 111

7.1 Luxembourg Scenario . 111

7.1.1 Simulation Set-Up . 114

7.2 Numerical Validation of Congestion-Aware and Capacity-Aware Stage Se-

lection in the Luxembourg Scenario . 115

7.2.1 Mean Flow Through the Luxembourg Network 115

7.2.2 Mean Trip Duration for All Vehicles 115

7.2.3 Mean Wait Time for All Vehicles . 115

7.3 Numerical Validation of the Propagating Pressure Controller in the Lux-

embourg Scenario . 119

7.3.1 Comparing the Two Versions of the PPC 119

7.3.2 Comparison of Best Performing Controller in the Luxembourg Network122

7.4 Discussion of the Real World Scenario . 122

7.4.1 Investigating the Final State of the Stage Duration Algorithms . . . 123

7.4.2 The Magnitude and Effect of Teleportations on the Simulation . . . 124

8 Conclusions and Future Work 127

Abbreviations 131

Glossary 133

Appendices 137

A Futher Details of Optimal Control Models from Section 2.3.2 137

A.1 Papagerogiou Model of Network Nodes . 137

A.2 Papageorgiou Model of Network Links . 137

A.3 Kachroo Link-Based Model . 138

A.4 Kachroo Route-Based Model . 139

B Notation 141

B.1 Routing Notation Reference (Chapter 4) 141

B.1.1 Network Topology . 141

B.1.2 Vehicle Properties . 142

B.1.3 General Routing Algorithm Description 142

B.1.4 Metrics . 143

B.1.5 Road Properties . 144

B.1.6 Chosen Cost Functions . 144

B.2 Intersection Control Notation Reference (Chapter 5) 145

xi

T. Barker

B.2.1 Intersection Topology . 145

B.2.2 Queuing Process at Time Step k . 146

B.2.3 General Stage Selection Algorithm Notation 147

B.2.4 Compact Form Notation . 148

B.2.5 Capacity-Aware Stage Selection Algorithm 148

B.2.6 Pressure Propagating Controller (PPC) Stage Selection Algorithm . 149

B.2.7 General Stage Duration Algorithm Notation 150

B.2.8 Tmin/Tmax Stage Duration Algorithm 150

B.2.9 Proportional Stage Duration Algorithm 150

Bibliography 153

xii

List of Tables

2.1 Values for flow and travel time along each route in our SUE and SSO ex-

ample. 16

4.2 Optimal Values of α from Fig. 4.2 and Fig.4.3 44

4.1 Network Properties . 44

4.3 Validation of DRA Compared to the Shortest Path (Dijkstra) 58

4.4 Validation of DRA Compared to DUA and LTTR 61

6.1 Network Parameters . 89

6.2 Selection of Controllers and Parameters Compared in the Figures on Syn-

thetic Networks . 91

6.3 Summary of controller performance in the synthetic scenarios. The mean

trip duration and mean wait time are taken for results below the criti-

cal car generation rate when the network remains uncongested. The best

results in the lattice network were gained when using the capacity-aware

stage selection algorithm and the proportional stage duration algorithm

in Scenario D. The best results in the random network were gained from

the congestion-aware stage selection algorithm and the Tmin/Tmax stage

duration algorithm in Scenario B. 100

6.4 Flow comparison between best fixed cycle and best controlled simulation in

synthetic networks. 101

6.5 Mean trip duration comparison between best fixed cycle and best controlled

simulation in synthetic networks. 101

6.6 Mean wait time comparison between best fixed cycle and best controlled

simulation in synthetic networks. 101

6.7 Critical car generation rate comparison between best fixed cycle and best

controlled simulation in synthetic networks. 102

6.8 Flow comparison between Occupancy Based Backpressure (OBB), Gregoire,

PPC, best fixed-interval and best Capacity-Aware intersection control . . . 110

6.9 Trip duration comparison between OBB, Gregoire, PPC, best fixed-interval

and best Capacity-Aware intersection control 110

6.10 Mean wait time comparison between OBB, Gregoire, PPC, best fixed-

interval and best Capacity-Aware intersection control 110

xiii

T. Barker

6.11 Critical car generation rate comparison between OBB, Gregoire, PPC, best

fixed-interval and best Capacity-Aware intersection control 110

7.1 Luxembourg Network Topology . 112

7.2 Luxembourg Simulation SUMO Simulation Parameters 115

7.3 Summary of controller performance in the Luxembourg scenario. Pressure

Propagating Stage Selection and comparison stage selection algorithms. . . 120

7.4 Summary of controller performance in the Luxembourg scenario for Fixed-

Cycle, Congestion-Aware and Capacity-Aware Stage Selection. 121

7.5 Summary of controller performance in the Luxembourg scenario for all al-

gorithms. 121

7.6 Statistics for the number of emergency stops, teleports and cancelled trips

in the simulations. Simulations are ordered by mean trip duration (lowest

to highest) . 126

xiv

List of Figures

2.1 A possible relationship between q and ρ. Whilst this relationship is not

realistic (noting that flow eventually becomes zero), it demonstrates the

fact that flow is non-monotonic in relation to density. 12

2.2 Example network demonstrating differences between SSO and SUE solu-

tions. An example directional network is given, with 3 possible routes

between the single origin and destination. The roads have differing speeds

and capacities. A total flow of 500 vehicles must be split across the routes.

The combined travel time for all vehicles, as the flow varies on routes 1 and

2, is shown on 2.2e for the SSO solution (white ‘x’) and SUE (white ‘o’).

The SSO and SUE with route 3 removed is also marked on 2.2e (red ‘o’).

The exact values of flow and travel time are not particularly important,

only the observation that the SSO sits at a global optimum, the SUE sits

somewhere off of this optimum. 17

3.1 A typical 4-way intersection with 4 input-links, 4 output-links 29

4.1 The communications hierarchy required to implement our routing algorithm 40

4.2 Change in ω̄(α, λ) (mean delay, measured in minutes) as α (the DRA tuning

parameter) and λ (the car generation rate, measured in vehicles per second)

are varied for each network, without traffic lights. Dark blue represents

regions where delay was below the threshold ω̂, and yellow where it was

above. The dashed red line (λ̂ = λ̂(α)) indicates the relationship between α

and the maximum value of λ reached before ω̄(α, λ) becomes greater than

ω̂ (the acceptable delay threshold). 48

4.3 Change in ω̄(α, λ) (mean delay, measured in minutes) as α (the DRA tuning

parameter) and λ (the car generation rate, measured in vehicles per second)

are varied for each network, with traffic lights. Dark blue represents

regions where delay was below the threshold ω̂, and yellow where it was

above. The dashed red line (λ̂ = λ̂(α)) indicates the relationship between α

and the maximum value of λ reached before ω̄(α, λ) becomes greater than

ω̂ (the acceptable delay threshold). 50

4.4 Relationship between the difference in the travel time based cost functions

of roads 1 and 2 (φ1−φ2), and the ratio of the longer of the proposed routes

to the shorter (∆). 54

xv

T. Barker

4.5 Calculation of φ1−φ2 for all road choice comparisons in each of the synthetic

networks, plotted against the ratio ∆
(
φ1
φ2

)
with the frequency of occurance

in the network indicated by the colour scale (the colour scale is logarithmic).

The figures show for each network the relative frequency of detours which

increase travel time by a factor of ∆, and the corresponding value of φ1−φ2.

We can use this information to determine the values of φ1 − φ2 we expect

to encounter in the network when tuning the parameter α. 55

4.6 Relationship between the difference in occupancy based cost functions of

roads 1 and 2 (ρ2 − ρ1), the tunable parameters σ and ηcrit, and the %

occupancy of each road (η). 56

4.7 Contour plot of the minimum value of α (z-axis) that will ensure that the i-

th vehicle takes the road on the fastest route (road 2) over the less congested

alternative road (road 1). As the difference in the expected travel time

costs of the roads (φ1 − φ2) increases, this value of α decreases, and as the

difference in occupancy costs (ρ2 − ρ1) increases the value of α increases.

The greyed out region indicates values of ρ2 − ρ1 which do not occur with

our chosen cost function. Given a specific value of α, we can see from this

figure under what conditions a vehicle will reroute. 58

4.8 Change in ω̄(λ) (mean delay, measured in minutes) when varying λ (car

generation rate, measure in vehicles per second) in networks without traffic

lights, when routing using the shortest path (orange line) and the DRA

(blue line - using the best performing value of α for each network (see

Table 4.2)). ω̂ (the acceptable delay threshold) is shown by the dashed red

line for each network. 59

4.9 Change in ω̄(λ) (mean delay, measured in minutes) when varying λ (car

generation rate, measure in vehicles per second) in networks with traffic

lights, when routing using the shortest path (orange line) and the DRA

(blue line - using the best performing value of α for each network (see

Table 4.2)). ω̂ (the acceptable delay threshold) is shown by the dashed red

line for each network. 59

4.10 Figures showing change in ω̄(λ) (mean delay, measured in minutes) when

varying λ (car generation rate, measure in vehicles per second) in networks

with traffic lights, when routing using DUA (orange line), LTTR (grey

line) and the DRA (blue line - using the best performing value of α for each

network (see Table 4.2)). ω̂ (the acceptable delay threshold) is shown by

the dashed red line for each network. 61

4.11 Change in ω̄(α, λ) (mean delay, measured in minutes) as α (the DRA tuning

parameter) and λ (the car generation rate, measured in vehicles per second)

are varied for each network, in large networks with traffic lights present.

The dashed red line (λ̂ = λ̂(α)) indicates the relationship between α and

the maximum value of λ reached before ω̄(α, λ) becomes greater than ω̂

(the acceptable delay threshold). 63

xvi

Chapter 0

4.12 Change in ω̄(λ) (mean delay, measured in minutes) when varying λ (car

generation rate, measure in vehicles per second) in large networks with

traffic lights present, when routing using DUA (orange line), LTTR (dark

grey line), the shortest path (light grey line), and the DRA (blue line -

using the best performing value of α for each network and chosen using

Fig. 4.11). ω̂ (the acceptable delay threshold) is shown by the dashed red

line for each network. 64

4.13 Percentage reduction in ω̄(λ) (mean delay), in comparison to shortest path

routing, when varying the percentage of vehicles using the DRA (vehicles

not using the DRA are following the shortest path). Simulations were per-

formed in networks with traffic lights, and the value of λ used varies in each

network (as indicated in the sub-captions). 65

5.1 Schematic diagram illustrating the architecture of the decentralized con-

troller presented in this chapter. The controller outputs the best stage

choice (a combination of green lights at the intersection) as the control in-

put to the traffic lights, in an attempt to control the queue sizes at the

intersection. The controller also calculates a stage duration for each stage.

Intersections communicate with sensors, with neighbouring intersections

and also with approaching vehicles in order to gather data required to de-

cide on the next state of the traffic lights. The communication manager

and sensors also provide the input for the feedback loop used to adjust the

stage duration. 69

5.2 The pressure in each lane (in this case the queue length) is propagated

towards the next lane in the direction of the first vehicle in the queue.

Propagation is continuous until an empty lane is reached (which can be

seen for i = 2), or the pressure re-enters the original lane, which would

create a cycle. 83

6.1 Simulation architecture demonstrating how the traffic microsimulation (writ-

ten in C), connected to our intersection controller with its stage selection

and stage duration algorithms via the SUMO API (TraCI). 88

6.2 Comparison of betweeness centrality in the networks. Larger and darker

nodes have a higher betweeness centrality in the network. 89

6.3 Car generation rate (vehicles per second) plotted against mean flow through

the network (vehicles per hour). Results are shown for Scenarios A to D

(by row) and three network topologies (by column). The stage selection

algorithm and stage duration parameters are specified by the Scenario. The

lines shown are for Tmin/Tmax (purple), Proportional (maroon) and Model

Based (blue) stage duration algorithms. Fixed-cycle control is shown in

black. Standard deviation between simulation runs is shown by the shaded

region. 92

xvii

T. Barker

6.4 Car generation rate (vehicles per second) plotted against mean trip duration

(minutes). Results are shown for Scenarios A to D (by row) and three

network topologies (by column). The stage selection algorithm and stage

duration parameters are specified by the Scenario. The lines shown are

for Tmin/Tmax (purple), Proportional (maroon) and Model Based (blue)

stage duration algorithms. Fixed-cycle control is shown in black. Standard

deviation between simulation runs is shown by the shaded region. 94

6.5 Close-Up of Figure 6.4 showing performance differences at car generation

rates below the critical threshold. Car generation rate (vehicles per sec-

ond) plotted against mean trip duration (minutes). Results are shown for

Scenarios A to D (by row) and three network topologies (by column). The

stage selection algorithm and stage duration parameters are specified by

the Scenario. The lines shown are for Tmin/Tmax (purple), Proportional

(maroon) and Model Based (blue) stage duration algorithms. Fixed-cycle

control is shown in black. Standard deviation between simulation runs is

shown by the shaded region. 95

6.6 Car generation rate (vehicles per second) plotted against mean wait time

(minutes). Results are shown for Scenarios A to D (by row) and three

network topologies (by column). The stage selection algorithm and stage

duration parameters are specified by the Scenario. The lines shown are

for Tmin/Tmax (purple), Proportional (maroon) and Model Based (blue)

stage duration algorithms. Fixed-cycle control is shown in black. Standard

deviation between simulation runs is shown by the shaded region. 98

6.7 Close-up images of Figure 6.6 showing in more detail the performance of

the algorithms when the mean wait time is less than 5 minutes (which we

consider to mean the network is not congested). 99

6.8 Car generation rate (vehicles per second) plotted against mean flow through

the network (vehicles per hour) in the 3 network topologies. Intersection

controllers shown are OBB (dark blue), Gregoire et. al. (orange), and

PPC (dark green). For comparison we include the 15 second fixed-cycle

controller, and the best performing controller from our results in section

6.2 (this is either the proportional (maroon) or Tmin/Tmax (purple) stage

duration algorithm from Scenario D depending on the network topology). . 103

6.9 Car generation rate (vehicles per second) plotted against mean trip duration

(minutes). Intersection controllers shown are OBB (dark blue), Gregoire

et. al. (orange), and PPC (dark green). For comparison we include the

best performing fixed-cycle controller, and the best performing controller

from our results in section 6.2 (this is either the proportional (maroon) or

Tmin/Tmax (purple) stage duration algorithm from Scenario D depending

on the network topology). 105

xviii

Chapter 0

6.10 Car generation rate (vehicles per second) plotted against mean wait time

(minutes). Intersection controllers shown are OBB (dark blue), Gregoire

et. al. (orange), and PPC (dark green). For comparison we include the

best performing fixed-cycle controller, and the best performing controller

from our results in section 6.2 (this is either the proportional (maroon) or

Tmin/Tmax (purple) stage duration algorithm from Scenario D depending

on the network topology). 107

7.1 The Luxembourg network as visualised in the traffic simulator SUMO . . . 113

7.2 Luxembourg Network . 113

7.3 Traffic demand in the Luxembourg scenario. Blue bars show the mean car

generation rate for each hour, whilst the orange line indicates the mean

car generation rate throughout the 11-hour period. Morning rush-hour is

visible at hour 8, and a lunch time rush-hour is visible at hour 13. 114

7.4 Mean flow during the simulation for (1) Fixed-cycle (2) Tmin/Tmax (3)

Proportional (4) Model based stage duration. Flow is measured in vehicles

per hour. Note that the y-axis begins at 11000 vehicles per hour. The error

bars show standard deviation over the 13-hour simulation, which reflects

that some hours will have had much higher or lower flows than the mean. . 116

7.5 Mean trip duration during the simulation for (1) Fixed interval (2) Tmin/Tmax

(3) Proportional (4) Model based stage duration. Time is measured in min-

utes. The error bars show standard deviation in trip duration for all vehi-

cles. Given the size of the network and the vehicle loading this reflects that

many vehicles experience longer journeys and hence much longer or shorter

trip durations than the mean. 117

7.6 Mean wait time during the simulation for (1) Fixed interval (2) Tmin/Tmax

(3) Proportional (4) Model based stage duration. Time is measured in

minutes. The error bars show the standard deviation in wait time for all

vehicles. This reflects that many vehicles experienced much longer wait

times than the mean. 118

7.7 Network flow, mean durationwait time during the simulation for (1) Oc-

cupancy Based Backpressure (2) Gregoire Capacity Aware (3) PPC Stage

Selection (traffic light controlled intersections only) (4) PPC State Selection

(at all intersections). Error bars reflect standard deviation from the mean.

Due to this being a simulation of varied traffic loading over 13-hours with

different routes and route lengths the error bars show that the flow from

hour to hour, and the experience of many vehicles, differs significantly from

the mean. 120

xix

T. Barker

7.8 Network flow, mean durationwait time during the simulation for (1) Oc-

cupancy Based Backpressure (2) Gregoire Capacity Aware (3) PPC Stage

Selection (traffic light controlled intersections only) (4) PPC State Selection

(at all intersections). Error bars reflect standard deviation from the mean.

Due to this being a simulation of varied traffic loading over 13-hours with

different routes and route lengths the error bars show that the flow from

hour to hour, and the experience of many vehicles, differs significantly from

the mean. 122

7.9 Histogram of green times for the three stage duration controllers in scenario

D: Tmin/Tmax (purple), Proportional (maroon), and Model Based (blue). 124

xx

Chapter 1

Introduction

1.1 Background and Motivation

Transportation is of fundamental importance to a high functioning economy. The rapid

and efficient movement of goods and people has enabled commerce on a massive scale.

However, densely populated urban areas are plagued by transport networks which operate

below their maximum capacity due to congestion.

TomTom International, a company famous for their Global Positioning System (GPS)

devices, produce a congestion index for over 180 cities across the world [102,103]. TomTom

express congestion as the percentage difference in travel times between peak and off-peak

periods of road usage. According to TomTom’s research cities across the UK suffer from

delays due to congestion during peak periods, including Birmingham with a congestion

index of 23%, and London with a congestion index of 34%.

A report for INRIX, a transportation analytics company, in 2014 found that population

growth and increasing GDP per capita would drive up demand for road transport in the

world’s largest economies. Their findings suggest that the costs of traffic for the UK,

Germany, France and the US alone will rise 46% by the year 2030. The cumulative cost

across all 4 nations, accounting for time spent by citizens in traffic, indirect costs such as

the costs due to pollution and other direct costs such as the cost of gas, will have reached

$4.4 trillion by 2030 [18].

There are a number of factors that may contribute to congestion on a traffic network.

An obvious problem is the number of vehicles using the network [31]. A network with a

fixed capacity for vehicles will undoubtedly suffer congestion if the traffic on it exceeds

that capacity, for example during peak periods. Furthermore, if roads become congested

then the congestion will tend to spread to other roads in the network. If techniques can

be implemented to avoid congestion in the first place, or to clear congested roads faster,

then the whole network can benefit.

Solving the problem is difficult. Building new roads or widening the existing ones does

not necessarily reduce congestion, as it can encourage more people to drive their car, and

the behaviour of drivers tends to lead to inefficient use of the road network anyway. [17,26].

Governments can intervene by encouraging the use of other modes of transport, such as

buses, cycling and walking, and technology can ultimately make all of these transport

1

T. Barker

options better and more efficient.

Taking a network perspective of the road layout, with junctions represented by nodes

and roads represented by edges, then congestion is likely to occur around any node with

a high centrality1, as these nodes are likely to appear on the shortest path for many

vehicles [122]. This creates bottleneck situations at certain points in the traffic network

and may leave other parts of the traffic network underused. If access to the nodes with

high centrality is controlled by a traffic light, then the performance of the traffic network

will further depend on whether the timing of the traffic light is optimal.

Car drivers themselves are autonomous agents who make independent decisions about

their driving actions, such as the route they take. Whilst it is possible to use historical

data and other information in order to predict traffic movements, it is not possible to plan

for the movements and positions of all drivers in advance. Where possible drivers should

be influenced to behave in a way that benefits the network as a whole, such as avoiding

these high centrality nodes.

In general, the problem is that of devising network management strategies able to

maximise (or minimise) both system and user control objectives. The system objectives

are those relating to the performance of the entire network, such as the average delay

experienced by all drivers. The user objectives are those relating to the experience of an

individual driver, such as their actual delay time.

Upon first consideration, the system objectives would seem to be aligned with those

of the user, for example from both the system perspective and the user perspective it is

advantageous for the user to leave the network as quickly as possible. However, despite

this mutual objective, the selfish nature of individual users (such as picking the fastest

route, or not wanting to wait at traffic lights) can adversely affect the system, and in

turn, make the user’s journey worse. An example of this behaviour is provided in Section

2.3.1, where we review a simple well-known case of route choice behaviour, which shows

that when users are given free choice, the decision to speed up their own journeys can

result in slower journeys for all users, including themselves. The example illustrates the

simple fact that from a system perspective there is more information available to make

the best decision, whereas for a single user their desire to improve their current situation

may actually make it worse because that decision is not made in isolation.

Below, the key objectives are listed of the network management strategies we wish to

develop in this thesis:

1. Minimise the average delay, defined as the difference between a traveller’s actual

travel time, and the minimum possible travel time they could have expected.

2. Minimise the standard deviation in delay for all travellers. This means that all

travellers experience approximately equal delays if delays are occurring.

3. Maximise predictability in travel times and delays, making journey time estimates

highly reliable. This includes daily variations during the day, such as the morning

1Centrality in this sense refers to the nodes which are on the fastest path between many other nodes,
and so are associated with high flows through them.

2

Chapter 1

and afternoon peaks due to working hours, and also weekly, monthly and yearly

variations due to the sensitivity of traffic to small changes.

These objectives are interdependent, and clearly subject to a notable trade-off. It may

be possible to create strategies that create a lower average delay but unfairly penalise cer-

tain drivers. It may also be possible to come up with very good strategies for unsaturated

traffic conditions, but that perform wildly differently under saturated traffic conditions.

Addressing these issues to alleviate some of the problems of modern transport is the

goal of the emerging research field known as Intelligent Transportation Systems (ITS) [95].

Within ITS there are many areas, some looking at specific transport solutions and others

looking at integrated transportation systems (e.g. rail, air, road).

In general, current research in ITS can be broken down into five main areas [85] :

1. Design of advanced traveller information systems (for example, equipping drivers

with real-time traffic information).

2. Development of advanced transportation management systems (such as traffic signals

and traffic operations centres).

3. Synthesis of ITS-enabled transportation pricing systems (which are primarily focused

on optimal congestion pricing).

4. Design of advanced public transportation systems (including the provision of infor-

mation such as real-time location of public transport to passengers).

5. Implementation of fully integrated intelligent transportation systems (covering areas

such as vehicle-to-infrastructure and vehicle-to-vehicle communication).

The research work presented in this thesis is aimed at developing better management

systems for road networks and therefore falls in the second area listed above. Control

theory can offer methods and techniques suitable for addressing these issues. There is

a deficit of control actions that can be directly taken on a traffic network, where much

depends on the movement and behaviour of free, indestructible agents, whose behaviour

cannot be predicted with 100% certainty. However, new technologies, such as observers for

real-time traffic speed, Vehicle-to-Infrastructure (V2I) communication and autonomous

vehicles, are improving both the ability to observe the state of the network and exert

possible control actions and so new research must take advantage of these changes in

technology and introduce methods which take advantage of them.

1.2 Aims and Hypothesis

The aim of the thesis is to explore applications of control theory to road traffic control in

the areas of vehicle routing and intersection control. Specifically, we develop new control

architectures in these areas and algorithms to improve congestion across various road

network topologies.

3

T. Barker

Road networks are multi-variate time-varying systems. The scale of road networks

makes the problem of optimisation intractable, and even where centralised control has

been implemented it must operate using heuristics or settle for suboptimal strategies.

The key hypothesis in this dissertation is that decentralised control can result in behaviour

that yields high performance with low computational and communication overheads. Such

decentralised algorithms do not require a centralised controller, scale withO(1) complexity,

and are robust to disturbance or changing demands.

1.2.1 Contribution and Deliverables of the Thesis

This thesis contributes two decentralised control frameworks aimed at reducing congestion

in road networks via the implementation of:

1. Decentralised vehicle routing

2. Decentralised intersection control

Algorithms have been developed within each of these frameworks and then extensively

tested via numerical validation across various network topologies. These algorithms have

been shown to increase the resilience of the networks to congestion when compared to a

naive alternative such as shortest path routing for fixed-cycle control. Furthermore, it

was demonstrated that network topology is a significant factor in the performance of the

algorithms. The algorithms draw from existing knowledge in the literature (explored in

Chapters 2 and 3), but the specific details of their implementation are notable for being,

as far as the authors have been able to ascertain, completely original in their approach and

validation across multiple network topologies. Notably the some of the results pertaining

to the development of intersection control algorithms in Chapters 5 and 6 in this thesis have

been published in the conference proceedings for the ’5th IEEE International Conference

on Models and Technologies for Intelligent Transportation Systems’ [9]. A significant

amount of software development has been done in order to allow the numerical validation

of these algorithms. In order to obtain the results presented in this thesis it was necessary

to extend open-source traffic modelling software with custom libraries to both test the

algorithms and present the data from simulations.

1.3 Thesis Outline

The rest of the Thesis is outlined as follows:

Chapter 2 provides a background to the problem of vehicle routing on a network. The

problem of finding a path between two points in any network is first covered, followed

by how these networks can be modelled specifically as traffic networks. We then cover

traffic assignment problems on these networks. An overview of the proposed centralised

and decentralised approaches, their advantages and their limitations is provided.

Chapter 3 provides a background to the problem of intersection control in a network.

Intersection control has been of interest since traffic lights were first introduced. The

4

Chapter 1

initial problem was to model delay to vehicles at a single intersection and attempt to

minimise it by careful selection of the controllable parameters (such as the cycle time).

Approaches have been extended in order to coordinate networks of intersections and max-

imise throughput, but they have limitations in terms of computation time and effectiveness.

These approaches are explored, and decentralised alternatives are discussed, specifically,

an overview of approaches based on the principle of work-conservation is presented, which

offer a compelling design strategy for decentralised control of intersections.

Chapter 4 covers the design and implementation of a new Decentralised Routing Al-

gorithm (DRA). Using a combination of expected travel time and local road occupancy

we explore if a simple cost function can be used for decentralised decision making, which

results in a lower mean delay to vehicles in the network. The algorithm is shown to bal-

ance loads on synthetic networks which results in a lower mean delay when the load on

the network reaches a certain threshold value when compared with vehicles routing using

only travel time.

Chapter 5 then presents the design and implementation of a new modular intersection

controller. The intersection controller is modular in the sense that algorithms can be cho-

sen independently for stage selection and stage duration. Several algorithms are developed

based on the principle of work conservation.

In Chapter 6 the intersection control algorithms described in Chapter 5 are extensively

tested in several synthetic networks. The algorithms are compared across several network

topologies and compared against a fixed-cycle control strategy and other work-conserving

controllers from the literature. We find that we are able to greatly outperform the fixed-

cycle strategy.

Chapter 7 shows the application of our intersection controller to a real-world scenario

in the city of Luxembourg. This scenario is based on the Luxembourg network with

vehicle loading which reflects real demands over a 13-hour period. The results show that

our algorithm can outperform the state-of-the-art in work-conserving controllers.

Finally, we discuss conclusions and suggestions for future work in Chapter 8.

5

Chapter 2

Vehicle Routing in Road

Networks: An Overview

In this chapter, we will review the literature pertaining to vehicle routing. Vehicle routing

touches on a broad range of topics, and a full review of the literature could constitute

the work of an entire thesis in itself. Here we will not regurgitate what can be found in

previous thesis on traffic networks; instead we direct the reader towards some excellent

literature reviews which the authors have come across if they are interested in reviewing all

areas of the topic [22,109]. In this literature review we touch upon the topics which have

been most influential in the design and validation of our decentralised routing algorithm.

Firstly we review the area of graph search and optimisation. Next, we review developments

in the modelling of road networks and finally study how route choice of drivers has been

modelled and classified in the literature. We summarise the state-of-the-art in some key

decentralised methods proposed in the literature, and then take a look at specific control

theoretic approaches to routing control.

2.1 Finding a Path Through a Network

The problem of routing cars on roads has presumably been around as long as cars them-

selves. In the formative years of the automobile, roads were undoubtedly less busy and

the route choices less numerous, and the rigorous application of mathematics was perhaps

unnecessary to this early problem. As the amount of traffic on roads, and indeed the

number of roads themselves, has continued to increase, vehicle routing has become a topic

of much interest in various research areas (see [104,108,123] and references therein).

Roads are clear candidates when it comes to graph representation; little abstraction

is required to envisage nodes as junctions and edges as the roads connecting them. For

this reason, whilst it was not concerned with only vehicle routing in mind, Dijkstra’s 1959

paper, which covered the topic of finding the shortest path between two nodes on a network,

is still referenced in papers on the subject [37]. In general, graphs associated with road

networks can be analysed at a Macroscopic [70] or Microscopic [78] level. Macroscopic

analysis provides properties of the roads and intersections, such as the expected flow along

a road based on the density of traffic. In macroscopic models, vehicles are aggregated

7

T. Barker

into flows through the network. Microscopic analysis looks at individual vehicles and

requires agent-based modelling. Vehicles control their speed and route individually, and

the journeys of all vehicles can be tracked explicitly.

Dijkstra’s algorithm has remained the backbone of vehicle routing algorithms for over

half a century, however, authors have demonstrated the benefits of heuristics in speeding

up Dijkstra’s discovery. These developments aim to reduce the number of nodes that

must be searched, as well as the computation time required to complete them. These

time savings become relevant when the networks have many nodes, or when dealing with

many different search requests. The A* algorithm [51], which Hart and Nils introduced in

1968, has a specific application in graph problems with a spatial dimension, which makes

it possible to focus the search for a shortest path through the network in the direction of

the traveller’s destination.

In the same way that Hart and Nils succeeded in speeding up Dijkstra’s algorithm, so

others have succeeded in manipulating the algorithms, or the networks, in order to generate

further time savings. Bi-directional search, priority queues and contraction hierarchies are

all examples of such techniques, for which Wagner and Willhalm provide a good overview

in [108].

Such research has provided the background upon which the lowest cost path is found

through a network for a single vehicle, in which the edge weights are fixed and known.

Whilst treating networks as static can be a useful assumption in many applications,

in reality, roads are non-linear and time-varying systems and this presents problems when

using the aforementioned techniques for graph search in isolation. If the user wishes to

find the quickest route, then the edge weights need to reflect travel time on the edge as

accurately as possible. Methods for calculating this are discussed in section 2.2.

Many of the heuristics which can be used to speed up algorithms such as A* do not

take into account changes in the network over time. To address this issue Chabini and

Lan present a dynamic A* algorithm in [19] for calculating shortest paths in dynamic

networks. The algorithm is shown to give a five-fold improvement over an equivalent

dynamic Dijkstra implementation, although the authors give no figures in comparison with

the static A* algorithm. This comparison would be of interest as a static A* algorithm

would be expected to complete the search much faster but give a sub-optimal solution,

due to the time-varying nature of the graph being searched. Nevertheless, their work is a

fundamental development for routing in dynamic networks.

In light of a better understanding of traffic dynamics and faster methods for searching

graphs, researchers have attempted to find solutions to various Vehicle Routing Problems

(VRPs) for some time. A first class of problems are those that can be formulated as

a Travelling Salesman Problem (TSP), in which an agent (the salesman) attempts to

find the shortest path between a given set of cities, visiting each destination only once.

This problem has been shown to be NP-complete [80]. The same type of thinking can

be applied to problems such as routing delivery vehicles in an optimum fashion. These

problems come in many variants: Capacitated VRP (CVRP), VRP with Time Windows,

VRP with backhauls, and VRP with pickup and delivery, all of which Toth and Vigo

8

Chapter 2

(2002) provide an excellent overview of in [104].

The increasing profile of Intelligent Transportation Systems has led to new methods

for increasing the efficiency of traffic travelling on roads, and vehicle route choice is one

of them. Traditionally cars have only been able to make routing decisions based on static

network information, but more recently cars are also able to take into account up-to-

date or historical traffic data before they make their journey. The advent of autonomous

vehicles also allows for stricter route control.

There is a broad range of literature covering the analytical, empirical, and algorithmic

elements of vehicle route choice. In the following sections, we attempt to distil the key con-

cepts and papers which have shaped research in this area, and led us towards formulating

a novel decentralised routing approach.

2.2 Modelling Road Networks

In order to understand road networks, researchers developed models to describe the be-

haviour of roads at both the macroscopic and the microscopic level. Link flow models

provide descriptions of macroscopic flows, that allow for road networks to be modelled

at scale [77]. The development of microscopic models has enabled for some of the ab-

straction of macroscopic models to be discarded in favour of exact descriptions of vehicle

movement and behaviour, although this comes at a greater computational cost and so has

only become more popular as computers have become more powerful [4]. Here we expand

on some of the research generated over the last 50 years.

2.2.1 Definition of Traffic Flow

A fundamental measure in conventional traffic analysis is the computation of the traffic

flow. Traffic counting allows for many inferences about the state of a road network of

interest, and is much more useful than taking into account either the speed or occupancy

of a road individually. The time over which a traffic count is performed is an important

consideration, and hence traffic counts become a traffic flow by expressing the number of

vehicles per unit time. For road traffic, the common units are vehicles per hour (veh/h).

There are two main distinctions in traffic counting [99]. A link count is the number

of vehicles passing an observation point along a road over a given period of time. The

count can include traffic travelling in either one direction or both directions. A turning

movement count is the number of vehicles making a particular turning movement at an

intersection.

Considering only the case of link counting, at a generic point x1 of a road of length X

it is possible to define the traffic flow rate as the number of cars N(x1, T) that pass point

x1 over some fixed time period T. This gives us the equation for flow rate on road i (qi)

as,

qi =
N(x1, T)

T
(2.1)

The second fundamental observation is the traffic density, which is the number of cars

9

T. Barker

per length of road. For a road of length X, with a N(X, t1) cars on it at fixed time t1, the

density of a road is,

ρi =
N(X, t1)

X
(2.2)

Traffic flow tells us how much a system is being used; if vehicles are able to travel at the

maximum speed limit, and are packed bumper to bumper, then they are at a theoretically

optimal flow rate. However, in reality, the closer vehicles are to each other, the higher the

likelihood that cars will slow down and phantom jams will be created [78]. The relationship

between vehicle density and flow rate is frequently studied in road dynamics.

2.2.2 Link Flow Models

A link flow model is a building block for macroscopic models. The objective of link

flow models is to describe the relationship between vehicle density, traffic flow, and traffic

speed. It is trivial to show that flow = density× speed, but where only flows or densities

are known it is desirable to directly calculate the other values. Models take as input one

of these values (usually traffic density) and return the missing values. From a routing

standpoint, for a given demand and entry time to a road, the link flow model tells us the

expected exit time of a vehicle. This allows for extension to describing time-varying models

of roads. If we can measure the starting vehicle density on all roads, we can estimate flow

between the roads over time and as such changes in the expected vehicles speed on each

road over time.

This is useful, for example, if we wish to find the travel time to traverse several con-

nected roads and have knowledge of the expected traffic density on each link. We can

estimate the total travel time along each link using link flow model, and use the exit time

of the previous link to model the state of the next link when a vehicle is about to enter it.

A variety of macroscopic models have been developed, such as exit functions [75],

hydrodynamic models, [70], the Cell Transmission Model (CTM) [27], and bottlenecks

models [107].

Link flow models are typically based on the following set of assumptions, which describe

the expected behaviour of road traffic:

• First-In-First-Out (FIFO) means that a vehicle which enters a link after another

vehicle cannot leave the link before it. In some real-world scenarios this is not true

(i.e. overtaking), but in general, it is a fair assumption (e.g. in single lane urban

networks). More importantly, FIFO also implies that no vehicle can exit a link

earlier by entering it later. FIFO is often a required assumption in many of the

models.

• Causality implies that the travel time of a user entering a link at time t solely

depends on the flow of vehicles which entered the link before time t, not the vehicles

after it.

10

Chapter 2

• Conservation of Flow implies that the flow on a link must be the difference

between cumulative inflows and outflows of that link over time.

• Non-negativity of Flows and Travel Times asserts that travel time and flow

functions are positive.

These assumptions provide a framework for constructing feasible models and also as-

serting where models may break-down. We now present some macroscopic link flow models

from the literature in more detail.

Hydrodynamic Models

The relationship between traffic density, vehicle speed, and vehicle flow has been exten-

sively covered since Lighthill, Whitham and Richards (LWR) proposed their models relat-

ing these properties [70, 86], and authors such as Nagel and Schreckenberg demonstrated

their validity [78]. Such relationships can also be shown empirically [50].

Such models describe the decrease in flow observed when the density of vehicles goes

above the capacity of a road. In free-flow conditions, the flow along a road will increase

linearly with the traffic density, as the number of vehicles moving at the maximum road

speeds increases. Eventually, the vehicle density goes above the capacity of the road, and

the velocity of all vehicles drops. In this congested state the drop in velocity reduces the

flow of vehicles. This behaviour leads to a wave equation describing the propagation of a

“congestion” wave along a road, against the flow of traffic. It describes many real-world

phenomena, although it also predicts abrupt changes in vehicle speed which, thankfully,

we do not observe in real-life. Kerner extended this model with a theory of 3-phase traffic

flow, which includes the synchronization of traffic moving at slow speeds, described by

Kerner as a wide moving jam [62]. We will not go into Kerner’s model in detail, as it

is beyond the scope of this thesis.

11

T. Barker

ρ

q

Figure 2.1: A possible relationship between q and ρ. Whilst this relationship is not
realistic (noting that flow eventually becomes zero), it demonstrates the fact that flow is
non-monotonic in relation to density.

LWR Model

The LWR model states that the relationship between density and flow satisfies,

∂ρ

∂t
+
∂q

∂x
= 0, (2.3)

where q, v and ρ are differentiable functions representing flow, traffic speed, and traffic

density at time t and at the point x. Also,

q = f(ρ), (2.4)

so that flow is a function of traffic density. A frequently used example is shown in Figure

2.1.

It follows that,

∂ρ

∂t
+
∂q

∂ρ
· ∂ρ
∂x

= 0, (2.5)

The solution to this implies that changes in the speed and density of vehicles propagate

along a stream of cars as a shock wave. It describes many real-world phenomena, although

it also predicts abrupt changes in vehicle speed which, thankfully, we do not observe in

real-life.

Whilst the LWR model is not directly solvable, a widely used approach to applying it

is the Cell Transmission Model (CTM) first suggested by Daganzo [27]. Daganzo’s scheme

is a discrete analogue to the LWR model of link behaviour, where freeways are divided into

small cells, and difference equations are calculated at the boundaries between the cells.

Link Performance Functions

A link performance function, such as that proposed by the U.S. Beareau of Public Roads

(BPR), describes travel time directly as a function of the amount of flow already on a link.

The function put forward by the BPR can be useful for estimating travel times on links

and therefore evaluating the effect of distributing flows on a road network. The equation

is formulated such that,

12

Chapter 2

t(x) = t0

(
1 + α

(x
c

)β)
(2.6)

where t(x) is the resultant travel time for a road with free-flow travel time t0, a constant

flow capacity c, and a current flow x. α and β are parameters to be tuned to reflect the

road being modelled.

Bottleneck Models

Congestion is formed in the network either on the links or at the nodes. Such a distinc-

tion can be described as the difference between flow congestion , which is caused by

overloading the links in the network and causing traffic to move slowly, and bottleneck

congestion which is caused by a sudden drop in capacity (such as when vehicles reach

an intersection) on a free-flowing road. Vickrey [107] provided the first description of

such a model. In combination with the FIFO principle, it usefully describes the effect of

departure time on a journey, where users must either accept delays due to being at the

back of a long queue, or else leave at unfavourable times, and arrive early, to avoid delays.

Car Following Models

In contrast to the methods mentioned previously, car following models take a micro-

scopic view of roads. These models are a form of agent-based simulation and are based

on the interaction of vehicles at an individual level. A simple explanation of car following

behaviour is that all vehicles maintain a certain distance from the next vehicles ahead,

and will decelerate or accelerate up to the preferred maximum speed in order to maintain

that distance [44,65]. Usually, this is implemented with some sort of delay to reflect driver

reaction time, and additional attributes can be introduced in order to add realism to

these models, such as behaviour at intersections, lane-changing, aggressiveness and brak-

ing behaviour [67]. Microsimulation is more computationally intensive than equivalent

macroscopic simulation, but increases in computing power have aided in its prevalence

for model validation. Various approaches can be found in the literature, although Gipp’s

model [44] is considered a seminal and reliable approach [61].

2.3 Traffic Assignment Theory

In order to optimise the structure of a road network designers need to understand the

maximum flows that it needs to tolerate. Given the layout and demographics of an urban

area, for example, the location of residential and business districts, trip distribution models

provide estimates for the likely demands on the road network [84]. Road designers can

use these demands to calculate the expected flows by understanding how drivers will pick

their routes through the network. Traffic assignment theory studies how drivers pick their

routes, based on the notion that they want to minimise some cost to themselves (usually

their travel time through the network).

Traffic assignment, therefore, allows road designers to answer questions such as:

13

T. Barker

• What routes will drivers end up taking?

• What are the expected travel times?

• What are the resultant flows through the network?

• How will the network cope with congestion?

The models discussed in the previous section relate the demand on a road to its travel

time. As we showed with the work of Lighthill-Witham and Richards, the capacity of the

roads, in terms of maximum flow, follows a non-linear relationship with traffic density.

High traffic density may result in slow speeds on the shortest route, and thus as the

demand increases drivers may change their plans accordingly. This results in drivers

taking alternative routes or departing at different times.

In this section, we discuss the evolution of solutions to the traffic assignment prob-

lem. There are two main distinctions between solutions, whether they are system or user

optimal, and whether the approaches are static or dynamic (time-varying).

2.3.1 Static Traffic Assignment

A starting point for Static Traffic Assignment is Dijkstra’s algorithm [37]. A vehicle picks

the route with the shortest length, or the fastest travel time according to the maximum

speed limit on each road. This is an all-or-nothing approach. Such an approach is

myopic and has a high probability of certain edges being overused, with better paths

available to users because, although they are longer, they are less congested.

In his seminal work, Wardrop presented two principles which have become fundamental

to traffic assignment algorithms [113]. Wardrop’s first principle is the case where no driver

can unilaterally reduce his/her travel costs by shifting to another route. This defines the

User Equilibrium (UE) condition, where all drivers have had the opportunity to pick

the route that will best serve them, accounting also for the behaviour of other drivers.

Any other route would give an equal or greater travel time. The UE condition does not

necessarily lead to a System Optimal (SO) assignment. SO assignment is Wardrop’s

second principle that drivers cooperate with one another in order to minimise total system

travel time. This means that, given the total demand on the network, the sum of all

drivers travel times is at a global minimum.

Static User Equilibrium

The Static User Equilibrium (SUE) is the solution to the UE problem when traffic

loads are constant. Sheffi [93] provides a method to find the SUE, using the following

minimisation,

min z(x) =
∑
a

∫ xa

0
ta(ω)dω (2.7)

subject to:

14

Chapter 2

xa =
∑
o

∑
d

∑
k

δakodf
k
od

∑
k

fkod = qod

fkod ≥ 0

where ta is the average travel time for a vehicle on link a, xa is the volume of traffic on

link a, fkod is the number of vehicles on path k between the origin o and destination d, qod

is the trip rate between them, and δarod is given by,

δarod =

{
1 if link a is on route k

0 otherwise
(2.8)

Static System Optimal

The Static System Optimal (SSO) solution is the SO equivalent to the SUE. Traffic

flow is considered constant, and the SSO is found by solving the following minimisation

(where notation is the same as for the previous minimisation),

min z(x) =
∑
a

xata(xa) (2.9)

subject to,

∑
k

fkod = qod ∀ o, d

fkod ≥ 0 ∀ k, o, d

It is worth noting that if the effects of congestion are eliminated, the SSO and SUE

solutions are equivalent and stable. In general, the effect of congestion is to ensure that the

SSO is not stable when considering driver behaviour, and drivers will pick routes according

to the SUE.

A Simple Example to Demonstrate the Differences Between SUE and SSO

Solutions

Here it is worth providing a common example to demonstrate the SSO and SUE solutions

in a small network, which is shown in Figure 2.2. This example is commonly used to

demonstrate Braess’ paradox [17], which is explained below.

In our network (Figure 2.2a) there is a single origin and a single destination for all

traffic. Links 1-4 are 1000m long, with a flow capacity of 250 vehicles. Link 5 is 500m

long with a flow capacity of 500 vehicles. We imagine a total flow of 500 vehicles between

the origin and destination. There are 5 directional links in the network. Links 1 and 3 are

“slow” links, with a 30 m/s speed limit, and links 2, 4 and 5 are faster links with a 60 m/s

speed limit. We model the travel time of each link using the BPR function introduced

15

T. Barker

Table 2.1: Values for flow and travel time along each route in our SUE and SSO example.

Route 1 & 2 Route 3 Total Travel Time
Flow Travel Time Flow Travel Time

SSO 213 57 74 50.4 27998
SUE 154.2 60 191.6 60 29969

2 Routes Only 250 57.5 N/A N/A 28747

previously so that as the flow on a link increases, and goes above that link’s capacity, the

travel time on that link increases.

There are 3 routes that can be followed between the origin and destination (see Figures

2.2b to 2.2d). Routes 1 and 2 are identical in length and travel time and involve taking

one fast link and one slow link. Route 3 involves taking the 3 fast links.

Figure 2.2e shows the total travel time in the system, which is the objective function

to be minimised when calculating the SSO, against the flow through routes 1 and 2 (as

the total flow is 500 vehicles, knowing the flow in routes 1 and 2 fixes the flow through

route 3). The white ‘x’ marks the location of the SSO solution, and the white ‘o’ marks

the location of the SUE.

Table 2.1 details the flow along each route, the travel time for each route, and the

total travel time for all vehicles. In the SUE solution, we note that the travel time on all

routes has become equal, and there is no incentive for any vehicles to change its route.

In contrast, in the SSO solution route 3 is significantly faster than route 1 or 2, however,

both route 1 and 2 are faster than in the SUE solution.

A novelty of this example, known as Braess’ Paradox is that if we remove link 5,

leaving only two possible routes, then the solution is still better than the SUE when all 3

routes are available. The total travel time in this instance is indicated by the red ‘o’ in

Figure 2.2e. This is counter-intuitive to the notion that more road capacity would mean

a reduction in congestion.

This example serves to demonstrate the differences in the SUE and SSO, and further-

more to demonstrate the possible inefficiencies in SUE solutions. Even if the SSO seems

inherently unfair, the overall result can still be to the benefit of all road users.

Balancing User Equilibrium and System Optimum Solutions

An extension of the traffic assignment problem is the balancing the user desire for taking

the fastest route, with the impact that this has on the system as a whole. In taking the

’fastest route’, drivers inadvertently slow down the network as a whole. Whilst the ratio

of the UE to the SO can be shown to be bounded in certain instances [90], it is not known

whether the change in travel time for any given driver is bounded, when comparing the

UE and SO solution. Hence the SO gives no guarantees of fairness. In order to balance

this Jahn et al proposed a Constrained System Optimal (CSO) problem [57], which

proposed alternative routes with bounds on fairness between routes allocated to drivers.

16

Chapter 2

(a) A road network with 3 routes (b) Route 1

(c) Route 2 (d) Route 3

0 100 200 300 400 500
Flow Along Route 1

0

100

200

300

400

500

Fl
ow

 A
lo

ng
 R

ou
te

 2

(e) Combined travel time for all drivers for a given flow
split between routes 1, 2, and 3.

Figure 2.2: Example network demonstrating differences between SSO and SUE solutions.
An example directional network is given, with 3 possible routes between the single origin
and destination. The roads have differing speeds and capacities. A total flow of 500
vehicles must be split across the routes. The combined travel time for all vehicles, as the
flow varies on routes 1 and 2, is shown on 2.2e for the SSO solution (white ‘x’) and SUE
(white ‘o’). The SSO and SUE with route 3 removed is also marked on 2.2e (red ‘o’). The
exact values of flow and travel time are not particularly important, only the observation
that the SSO sits at a global optimum, the SUE sits somewhere off of this optimum.

17

T. Barker

The formulation for this problem is similar to that for calculating the SSO, however, the

set of feasible paths is restricted to those which fall within a tolerance factor of the “normal

path length”, which is the path length (or travel time) the driver might have expected

when taking the shortest path. Thus the CSO provides the bounds on fairness lacking in

an SSO solution.

2.3.2 Dynamic Traffic Assignment

Dynamic Traffic Assignment (DTA) (or Dynamic User Assignment (DUA))

extends the traffic assignment problem to dynamic networks. Specifically, road networks

are considered time-varying, and the relationship between traffic density and speed leads

to non-linear relationships. Whilst there is no definitive method for DTA, there are many

attempts in the literature to tackle the problem in a manner which is computationally

efficient, scalable, and by some measure “optimal”. DTA research can be grouped into

three main approaches: optimal control, variational inequality and simulation-based for-

mulations [123].

Methods proposed in the literature for DTA can be further classified as either path-

based or splitting-rate methods.

A path-based model computes a limited set of paths between each origin-destination

pair, computed at some time t which would be the interval between success path calcu-

lations. Vehicles then take the calculated paths with some probability related to their

calculated cost (or travel time). New paths are calculated at the next interval t + 1.

Path-based algorithms are dependent upon an algorithm which computes a number of

possible paths, for which appropriate algorithms are available and are also an area of

active research [120,121].

Splitting-rate models define turning proportions to each node in the network, specific

to the destination. This splitting rate is typically defined as fm(d, t) where fm ∈ [0, 1] is

the proportion of flow destined for node d, that uses the movement m.

Splitting rate models provide a much clearer basis for en route decision making, such

as taking an alternative path. They also have lower memory requirements as they can

describe any path on the network without storing it explicitly. However splitting rates can

lead to loops, and as a splitting rate does not explicitly define a path, the travel time to

the destination can only be calculated as an average from the end of the current link.

Both splitting rate models and path based models can be used to determine a UE or

SO in a dynamic system. These are known as the Dynamic User Equilibrium (DUE)

and Dynamic System Optimal (DSO) respectively.

Dynamic User Equilibrium

In the area of DUE, Gawron presented an early simulation and path-based approach [41].

A route is assigned to each vehicle using a shortest path calculation; the assigned routes

are then inserted into a micro simulator, and the resulting traffic conditions of each edge

are recorded. A portion of the vehicles are allowed to adjust their routes in order to

avoid the congested sections of the network if it will improve their projected travel time.

18

Chapter 2

This process is iterated so that the solution converges to a local optimum (as a rule of

thumb, convergence is expected in around 50 iterations). Mahut presents a splitting-rate

alternative to Gawron’s path-based model [73], with a focus on finding the DUE with a

reasonable error in the shortest period of time. This iterative simulation approach is also

suited to genetic algorithm methods, such as those used by Sadek et al [91]. A logit model

can also be used to ascribe path choice probabilistically [58].

Path-based models can have the problem that alternate routes overlap for significant

portions of their length, and therefore the sections which overlap are overrepresented in

the route choice probabilities. This is noted in [15], and a path-based model is presented

which addresses this problem.

Dynamic System Optimum (DSO)

The DSO problem has also been addressed in the literature. The key insight to finding the

DSO is that moving any vehicle to another edge should result in a total increase in travel

time to all vehicles on that edge equal to the decrease in travel time to the vehicles on the

edge it was previously planning to occupy. This does not negate the large computational

complexity required to solve such a problem.

The assumption that all vehicles in a network are heading towards a single destination

has proved useful in simplifying the DSO problem and has some applicability to consid-

ering traffic dominated by commuters to one particular area of a network. Merchent and

Nemhauser [75] proposed an early discrete time macroscopic model for solving the DSO,

for the single-destination problem. The formulation is non-linear and non-convex, but with

certain assumptions, a global optimum can be calculated using the simplex algorithm.

Decentralised alternatives have also been proposed in the literature, with some promis-

ing results. Lim and Rus proposed a path-based algorithm for calculating DSO [71]. Tak-

ing flows on paths as the sum of probabilities that a vehicle will take a route with that

road, the cost to vehicles on that route is calculated. The marginal cost is calculated as

the total increase in travel time for all vehicles on a path for a small increase in the flow

on that path. Vehicle path probabilities are varied until the marginal cost is equal for all

paths. Vehicles communicate with each other to exchange information on their path prob-

abilities, and a distributed control law is synthesised. This work was applied to 100 taxi

journeys on a road network in Singapore and the results demonstrated a 15% reduction

in journey times [8]. It should be noted that this work is path-based, and therefore takes

a high-level macroscopic view of the road dynamics. Whilst it produces a DSO in terms

of the paths, it is not necessarily a DSO in the network sense.

Optimal Control Formulations for Dynamic System Optimal Routing

A framework for the control theoretic dynamic macroscopic modelling of traffic phenomena

on multi-destination road networks with time-varying (but non-elastic1) demands, with

1Elasticity in this sense indicates that demand on the network is not related to the state of the network
(e.g. if the travel time for a journey doubles, this will not reduce the demand of vehicles wanting to make
that journey)

19

T. Barker

application to vehicle routing, was presented by Papageorgiou [81].

The model combines a model of the nodes, which vehicles are routed between, with a

model of the links, for which flow equations can be used as defined earlier. The key control

variables are the splitting rates for vehicles on each route at each node. See Appendix A

for further details.

A general framework for the model is to consider x as the state vector of the road

network (we will define later what the elements of the state vector represent). The model

is expressed by the general equation,

x(k + 1) = f [x(k), β(k),D(k)], k = 0, ...,K − 1, (2.10)

where x(k) is the state vector at time step k, D(k) is a matrix representing the demand

on the network, and β is the vector of independent splitting rates.

The performance index is expressed generally as,

J = θ[x(K)] +

K−1∑
k=0

φ[x(k), β(k),D(k), k], (2.11)

where θ and φ are functions to be chosen as explained below.

The performance index is to be minimised with respect to some observable metric of

the system. As an example Papageorgiou considers the minimisation of travel time in the

network, taking, as a heuristic, that minimising travel time means minimising a disutility

function in terms of road traffic densities. In this case θ and φ are defined as,

θ = T
∑
m∈M

∆mρm(k) (2.12)

φ = T
∑
m∈M

∆mρm(K), (2.13)

where T is the sample time, and ∆m is the length of link m, and ρm is the traffic density

on link m. The problem can be solved by numerical methods for optimal control.

Kachroo developed Papageorgiou’s work and proposed a system optimal DTA con-

troller making use of a nonlinear H∞ feedback control approach [60], which is known to

be robust in the presence of system noise as it will minimise the maximum disturbance

to the system. The control approach required simplifications to be made to the model, so

that time-invariance could be assumed, due to dependence on a stationary solution to the

Hamiltonian. We do not go in the minimax or Hamiltonian solutions here.

Kachroo proposed two formulations for modelling the continuous system: (i) a link-

based model or (ii) a route based model [60], further details of which can be found in

Appendix A. The big drawback of Kachroo’s approach is that for realistic large networks

there is a requirement for development of solvers for the Hamiltonian and for excellent

estimation of the demand matrix (D(k)). We are not aware of further development for

this method in a realistic scenario.

More recently Ma et. al. [72] applied optimal control to the continuous-time DSO

20

Chapter 2

for single-destination traffic networks with queue spillbacks. The major drawback with

these formulations is the computational complexity and time required to calculate the

solution, or else the required simplification of the scenarios either in terms of the model

(i.e. macroscopic over microscopic) or scenario (single-origin/single-destination over multi-

origin/multi-destination).

2.3.3 Sub-Optimal Approaches to Dynamic Traffic Assignment

The difficulties of calculating real-time DUE and DSO solutions have led to research in

more heuristic approaches. Despite being sub-optimal, these heuristics can lead to good

results, and their faster or decentralised computation makes them more realistic candidates

for implementation in a real road network. We briefly summarise below some of the main

approaches.

Cooperative Intersection Management is an approach whereby the individual

intersections are agents who act individually or coordinate with other intersections to

direct traffic in an optimal manner. The intersections may act as intermediaries for a

central controller, communicate sideways (with other intersections), or only communicate

with the vehicles themselves. Wang et al propose such a method of vehicle routing in

[111], which they call Multiagent system based Next-Turn Rerouting (MNTR). Their main

hypothesis is that current routing strategies are “reactive” and therefore unable to make

decisions based on future traffic conditions. Therefore a strategy is proposed to tackle

unexpected congestion events such as lane blockages and accidents. When such an event

occurs a central controller signals the intersection controllers of the edge in question to

begin rerouting vehicles. The intersection controller does this by calculating an optimum

next turn for the next vehicle in its “queue”, using a weighted cost function based on

geographic closeness, travel time and traffic load. Once the vehicle has been diverted

away from the affected edge it calculates a new route based on current travel times.

Perronnet et. al. also use intersection controllers to solve the problem of intersection

gridlock, whereby every vehicle is waiting for another vehicle to move before it can leave

an intersection [83]. The method is highly centralised, as it relies on a central controller

to coordinate between intersections to determine which car should be given right of way.

Using the same principle as in [111], the vehicles then calculate their own routes using the

A* algorithm, however, the authors perform a comparison of factors which can be used to

calculate the edge weights.

A comparison of the effect of edge weights can also be found in work by Bazan et.

al. on the management of driverless pod cars [11]. The proposed routing of the pod

cars is done using updated travel times, however, the author’s main contribution is in

comparing centralised and decentralised schemes for updating edge weights, both with

and without Vehicle-to-Vehicle (V2V) communication. Similar research has been done

using edge weights based on both historical and stochastic factors using travel time [7]

and traffic densities [115].

Kerner’s work on traffic physics [63, 64] relates the probability of traffic breakdown,

another term of unbounded queue growth and congestion. Kerner related traffic break-

21

T. Barker

down probability to link inflow rate and the duration of a red phase at a set of traffic

lights. Based on the principle of traffic breakdown probability, Guo et. al. proposed

a distributed method of minimising this probability across a road network [47, 48]. The

approach increases the robustness of the network in the presence of heavy traffic loads,

which in turn reduces travel times by reducing the chances of congestion in the network.

Ant Inspired Routing takes its inspiration from the way in which ants leave pheromone

trails which other ants follow. The strength of these trails fades over time, hence ’fresh’

routes are more attractive than ’stale’ ones [34]. Ant-based optimisation has been used

previously in delivery problems, but several modified approaches have been proposed in

order to utilise the method for avoiding congestion. In both [23] and [29] the authors

stipulate that vehicles could be routed in a manner that anticipates and mitigates traffic

jams. Rather than using artificial “pheromone” trails as a way to attract vehicles, the

authors agree that they can be used in order to repel vehicles away from roads which were

recently used.

Whilst the authors of both papers use the ant methodology, their implementation

differs in several important ways. Claes et. al. [23] use two types of virtual ant to aid in

vehicle routing. The first type of ants are exploration ants, which explore possible routes

in the network, attempting to detect intersections which will possibly become congested.

Once a route is chosen, an intention ant communicates this route to all the intersection

controllers the vehicle will pass through, so that they can update the data they provide

to the exploration ants of other vehicles. The authors highlight that the intersection

controllers use learning algorithms to develop the relationship between intention ants and

the likelihood of congestion. Dallmeyer et. al. on the other hand use a weighted cost

function for each edge, which is calculated based on the strength of the pheromone trails

and the traffic density on the edge. The coefficients of the cost function must be tuned

in order to attain the appropriate response from vehicles, as a poorly tuned cost function

does not result in the vehicle behaviour the authors are trying to achieve. Using these

updated edge weights the route is then calculated using the A* algorithm. Hasan et.

al. explore route guidance based on real-time congestion information available through

social media, which whilst not explicitly an ant-based algorithm, does assume disutility

associated with some roads being above their optimum capacity in order to redistribute

traffic [52].

An alternative to reducing travel time is to focus on the reliability of estimated travel

times. Bell developed such an algorithm [13], by developing on the work of Spiess and

Florian [96]. This method combines elements of path-based and splitting rate methods,

building ’hyper-paths’ through the network with turning rates based on how likely the

driver is to encounter congestion if they turn down a particular road. These hyperpaths

not only provide vehicles with alternative routes but also ensure they take the route with

the highest probability of an uncongested alternative being available. This method was

further developed to allow for time-varying delays and travel times [14], thanks to previous

work on a time-dependent A* algorithm [19].

22

Chapter 2

2.4 Validation Methodology and Performance Metrics

The majority of DUE and DSO methods use macroscopic models, with few demonstrating

the use of microscopic simulation to verify the performance of the algorithm [52,60,71,81].

These models are often required in order to abstract away some of the complexities and

reduce vehicles to flows between points in the network. In the case of the sub-optimal ap-

proaches, it is common to find validation via microsimulation [23,29,112]. Microsimulation

is done using pre-built simulators. Simulators found in the literature include Simulation

of Urban Mobility (SUMO) [111,112] and MAINSIM [29].

In [112] the authors attempt to review the state-of-the-art in routing literature and test

the algorithms in controlled conditions. The authors state that a problem with the current

literature is a lack of standardised testing using comparable metrics and that this limits

the scope of the reader to compare available algorithms. The authors propose testing the

algorithms using real roadmaps and real traffic data.

The authors compared four algorithms, static and dynamic versions of Dijkstra’s al-

gorithm, and static and dynamic versions of the A* algorithm.

The network was taken from the TAPASCologne project [105], which exported the

road layout of TAPASCologne into a format that can be run in SUMO. The project also

performed DUA for an extensive set of real traffic data and has made a two hour period of

vehicle routes spanning 6-8 AM publicly available. The authors broke the network down

into 3 areas: (city) centre, suburban, and remote. They then sampled journeys at various

scales (2, 4, 6, 8, and 10km - measured by Euclidean distance). The authors compared

the algorithms both in terms of driver experience and computational efficiency.

The metrics proposed by the authors are travel time, travel distance, travel time vari-

ability, computation time, data storage, and implementation cost. Travel time variability

is calculated as the ratio between the standard deviation and the average travel time for

each edge over the course of the simulation, the travel time variability of a route is then

the sum of the travel time variability of each edge it consists of; the purpose of the metric

to measure route reliability.

The authors identify A* having a higher computational efficiency thank Dijkstra, in

both static and dynamic cases, and that dynamic routing provides travel time savings

over the static methods. However, Shen et. al. also state that the benefits of dynamic A*

increase greatly with the trip distance. The authors suggest a threshold of 4-6 km as to

where the benefits outweigh the costs of implementing dynamic methods.

Scale and location were shown to have a similar effect on the travel time variability,

however, there was no obvious difference between the 4 algorithms, and so the metric was

not considered successful by the authors.

Network structure may have an effect on the performance of a routing algorithm, as

variation in network structure will determine properties such as the mean degree of nodes

and the connectivity of the network. Braess’ Paradox highlights the effects of network

structure on the onset of congestion.

In the majority of cases algorithms presented in the literature are tested on contrived

23

T. Barker

grid networks [14, 29, 58, 71, 83, 111]. Only in a limited number of instances are they

validated on real road networks, and a few cases where testing is done on real networks

exclusively [8, 23].

In the grid networks it is not explored what the effect of properties such as the length

of all the elements has on the network, however, Perronnet et. al. acknowledge that they

use deliberately short links in their simulations in order to encourage congestion in the

links.

Traffic load and trip distribution could also be an influencing factor in terms of routing

algorithm performance. In cases of real road networks where data is available, authors

such as Wang [110] and Lim [71] have used actually recorded traffic demand for highly

realistic traffic loads.

Where data is not available or the network has been contrived, trips are generated

according to some model. Perronnet et. al. use additional nodes connected to the edges

of the network to act as car origin and destinations, they then generated cars by varying

between a low and high car generation rate2, and varying between homogeneous and non-

homogeneous trip distribution. In contrast Wang et. al. state that they generate traffic

demand uniformly on their synthetic networks, but fail to show if exactly what they mean

by this (e.g. a constant car generation rate, or a homogeneous trip distribution).

Dallmeyer et. al. use random Origin-Destination (O-D) pairs in their grid network, an

approach which would encourage non-homogeneous traffic loading. Once the network has

’settled’, they then use the novel strategy of holding the number of vehicles in the network

at a constant level, only generating a new vehicle when one reaches its destination. This

approach is inherently unrealistic, but the authors vary the number of vehicles in the

network, and so are able to demonstrate the performance under different traffic loads.

Travel time is the most frequently used metric in the literature. This is usually mea-

sured as a mean or total for all journeys [7,8,11,23,29,71,111,115], although in [112] the

authors do a good job of only comparing journeys of a similar distance. Wang et. al.

also use travel distance as an indicator of financial cost to the user, equating distance

travelled with fuel used.

In contrast, Perronnet et. al. only use the number of vehicles in the network to

compare between the routing strategies tested in their paper.

2.5 Discussion

Research into cooperative traffic routing has had several major inputs in the last few years.

Many of the authors have demonstrated promising methodologies and demonstrated a so-

phisticated understanding of both the dynamics of road networks and the computational

hurdles that need to be overcome. In particular, those papers which encourage the pre-

diction and mitigation of congestion [23,29,111] are extremely promising.

2Car generation rate refers to the number of cars entering the network at each time step

24

Chapter 2

However, it is almost impossible to compare the relative performance of these algo-

rithms from the results reported in each individual paper as different metrics are typically

used for their validation. Within the literature there is a lack of consensus about what per-

formance means; travel time, travel distance, system stability and environmental cost are

all cited as factors which can be improved upon over the current situation, but many au-

thors fail to provide a definitive value on their work. A definitive set of network tests, traffic

loads and metrics would greatly improve the field. This would also enable researchers to

better classify their work under their aims, such as savings in the environment or the

economy.

25

Chapter 3

Intersection Control: An Overview

In this chapter, we review the literature on the subject of intersection control. Firstly

we establish terminology for describing the topology of an intersection. We then cover

intersection control strategies and distinguish between the main classifications of strategy.

We contrast the state-of-the-art in centralises traffic responsive methods which promising

decentralised approaches, which may offer the benefits of reducing congestion, but in a

manner which makes them much more scalable and robust.

Traffic light controlled intersections are a fundamental aspect of modern road networks.

The control system is responsible for managing the crossing or merging of conflicting traffic

streams, and in urban areas, the performance of an intersection has a measurable effect

on congestion in the network as a whole. Electric traffic signals can be traced back to

1914 [42]. As explained in The Traffic Control Systems Handbook [45], since 1952 cities

have increasingly relied on computer-aided signal control. The introduction of detectors

into road infrastructure enabled both the actuation of traffic lights and also the collection

of data to develop better timings.

The performance of traffic lights at a network level has always been limited by available

computing power and the models being used. As both of these have improved over time,

increasingly sophisticated methods have been developed.

3.1 Terminology Describing an Intersection

The development of signalised intersections has led to some generally accepted formal

terminology, however, there are some differences between sources. Here we clarify some

terminology we will be using, which can be found in other literature on the subject [106].

We imagine any intersection as having a number of input links (roads for vehicles to

enter the intersection) and a number of output links (roads for vehicles to leave the

intersection). A stop line marks the end of an input link. The maximum flow rate of

vehicles crossing the stop line of an input link is termed the saturation rate .

A phase is a movement from an input link to an output link, made by crossing the

stop line. A queue is a queue of vehicles; the vehicles may all belong to the same phase or

may belong a mix of phases with the same input link. A set of simultaneously permitted

27

T. Barker

phases is termed a stage . This topology is visualised in Figure 3.1.

The cycle-time is the time it takes for the intersection to go through every stage in

a fixed-cycle program. The green time is the length of time that the light is green for

a phase, and the red time is the length of time that the light is red for a phase. Loss

is time spent with no vehicles moving, primarily due to amber stages of the traffic lights.

The green split is the proportion of green time allocated to each stage in a cycle.

When networks of intersections are considered we may also consider the offset between

traffic lights, which is the delay between green lights for a downstream and upstream link.

We consider a network to be under-saturated if all the queues in the network only grow

during a red light. When queues grow during their green phase then we can say that the

network is over-saturated .

Clever design of the offsets allows for vehicles to experience a green-wave in under-

saturated traffic conditions, which is a continuous set of green lights across adjacent in-

tersections. In saturated conditions, the most efficient approach is store-and-forward ,

where queues in downstream links are given a green light before the upstream queues, in

order to create space for new vehicles.

3.2 Intersection Control

Control theory, in the realm of intersection control, relates to selecting the stage and the

stage duration at any particular time step, in order to minimise or maximise some objective

function [55]. There is no clear consensus on the objective function that should be selected,

delay at an intersection is an obvious candidate, but it could also be to maximise the flow

along a road, reduce the travel time through a network, or minimise vehicle emissions. In

a review of the roles of traffic detection, optimisation objective and control feedback it was

found that the key state variables are queue lengths and mean arrival rates, rather than

delay [54]. These findings are backed up by the performance of control schemes which

work well in saturated networks [2, 3, 32]. The use of delay equations to optimise traffic

seems to have stagnated somewhat, with limited work having been done to develop the

accuracy and range of application of queuing models, and develop new models [100].

3.2.1 Existing Approaches to Signal Timings at Intersections

The solution space can be divided into approaches which are either fixed-time (or fixed-

cycle) or traffic-responsive , and are either isolated or coordinated . Furthermore

a solution can be stage-based (stages have a pre-determined order) or phase-based

(stages can be implemented in any order) [82]. We briefly describe the key features of

these approaches.

The simplest approach to traffic lights is the fixed-cycle. Stages are activated for

a fixed period of time in predetermined order. A fixed-cycle scheme can take different

approaches to try and improve performance. For example, in under-saturated conditions,

the neighbouring intersections are offset so that the green light of the next intersection

begins once the vehicles from the previous intersection have travelled the distance between

28

Chapter 3

An Input
link

An Output
link

Stop line

A Phase

(a) A phase is a movement from an input link to an output link

A Stage

(b) A stage is a combination of compatible phases

Figure 3.1: A typical 4-way intersection with 4 input-links, 4 output-links

29

T. Barker

them. In a saturated network, a negative offset is used, so that the green light at the next

intersection is given early in order to clear traffic and make space for the next set of cars,

thus avoiding the propagation of congestion when vehicles have a green light but nowhere

to go.

Fixed-cycles must be chosen in advance, using predictions of demand and some model

of traffic behaviour. Their design can be based on centralised or decentralised optimisation,

but it will always be done offline. This is likely to lead to be a suboptimal solution [6].

A traffic-responsive strategy is calculated online [88]. It may be similar to the fixed-

cycle, in that some timings have been calculated in advance, however real-time measure-

ments of the traffic state are taken and adjustments made to the green split, cycle length,

and/or offsets. The goal is optimisation in real-time, and the optimisation function will

depend on the strategy being implemented.

If the strategy is isolated, then it attempts to optimise the signal timings for a single

intersection [5]. In contrast, a coordinated strategy groups intersections together into a

single model [89], and must find an optimal solution for the network as a whole.

If the strategy is stage-based then it determines the optimal green split and cycle-time

for a pre-specified program, however, if the strategy is phase-based then it additionally

determines the optimal order of the stages [55].

3.2.2 Isolated Fixed-Cycle Approaches

Isolated fixed-cycle strategies are those which aim at controlling a single intersection using

predetermined signal settings. An early optimisation objective was to minimise vehicle

delays at an intersection. Webster’s formula [69, 114] provided a method to estimate the

average delay per vehicle at an intersection, based on the cycle time, green time, arrival

rate, saturation rate and capacity of the intersection. It can be given as,

d =
c(1− g

c)2

2(1− xgc)
+

x2

2q(1− x)
− 0.65(

c

q2
)
1
3x(2+5 g

c
) (3.1)

where d is the average delay per vehicle, c is the cycle time, g is the green time within

each cycle, r is the red time within each cycle, x is the degree of saturation (ratio of flow

to capacity), and q is the arrival rate of vehicles.

The three terms of the right-hand side of equation (3.1) model delay to uniform ar-

rivals, delay due to random arrivals, and an empirical adjustment, respectively. Webster’s

formula is well suited to manipulation when considering, for example, uniform arrival rates

only. The formula itself provides a possible objective function by which engineers can op-

timise fixed-cycle control schemes. A fixed-cycle strategy, SIGSET [6] does just this and

minimises the total intersection delay for a given number of demands at an intersection.

In contrast, another approach known as SIGCAP [5] maximises the intersection capacity,

which can be done by optimising to maximise the demand, rather than minimising the

delay. Such an approach will always yield the highest allowable cycle time. SIGSET and

SIGCAP are examples of stage-based solutions, in that they took a predetermined set of

ordered stages and determined the green time which should be allocated to each stage,

30

Chapter 3

however, the problem has also been extended to consider the more complex phase-based

solution which determines the order of the stages themselves [55].

3.2.3 Coordinated Fixed-Cycle Approaches

Coordinated fixed-cycle approaches extend methods used for solving the isolate fixed-cycle

problem to groups of intersections.

TRANSYT [89] was developed to optimise a network of coordinated fixed-time inter-

sections. Using offline traffic data, knowledge of the network, and initial signal settings,

TRANSYT optimises for a Performance Index (PI) based on delays and stops. The cy-

cle time is fixed (and chosen by the user), but offsets and green splits are adjusted by

iteratively optimising them based on some starting value.

These fixed-cycle schemes have an inherent weakness in their inability to adapt to

changing traffic demands. Incidents which disrupt traffic flow, short-term variations within

a day, and long-term changes in demand may cause such models to break down.

3.2.4 Coordinated Traffic-Responsive Approaches

Coordinated traffic-responsive strategies address some of the limitations of strategies such

as TRANSYT, by adapting in real-time to measured traffic data. Split Cycle Offset

Optimisation Technique (SCOOT) [88] is the traffic-responsive extension of TRANSYT. It

is used in 150 cities in the United Kingdom [82]. SCOOT determines the effects of changing

the offset, splits or cycle time at individual intersections, and pushes those changes to local

intersections if it determines them to be beneficial. SCOOTS performance is known to

deteriorate in saturated traffic conditions, although features to combat this can be found

in [45].

A similar set-up is found in the Sydney Co-Ordinated Traffic System (SCATS) [94].

SCATS differs from SCOOT in having both a strategic and a tactical control layer. Strate-

gic control is regional and links together intersections, which share a common cycle time,

and sets the splits and offsets. The tactical layer, which is based at the intersection, may

adjust a stage so that certain phases are omitted, terminated early or extended. In both

SCOOT and SCATS the cycle time is adjusted in order to keep the degree of saturation

of the lane with the highest degree of saturation below 90%. The green splits for both

methods are set to reduce delays, but SCATS equates this to balancing the saturation at

approaching lanes to an intersection, whereas SCOOT computes this explicitly.

Where SCOOT and SCATS react to measured traffic data to reduce some PI, other

methods model traffic in order to predict trends, and optimise for both current and fu-

ture demands. Such methods disregard splits, offsets and cycles, and instead rigorously

calculate switching times for each intersection, based on the performance of the network

over some fixed time horizon (e.g. 60 seconds). Rolling horizon approaches are similar

to model predictive control, but only optimise up to some fixed (rolling) time window.

A dynamic programming approach is taken, and the algorithm works back from the end

31

T. Barker

of the time horizon to calculate the settings for the next step. The resulting settings are

applied for some much short time period (usually a few seconds) and then recalculated.

Models which use a rolling horizon methods include RHODES [76], OPAC [40], and

PRODYN [53]. The most recent of these, RHODES, is a prediction and control archi-

tecture which works at both the network and the intersection level. At a network level,

the model captures the slowly changing loads on the network, taking into account factors

such as route choice and road closures. Predicted loading on each link allows RHODES to

allocate green time for each phase in the network. Given the approximate required green

times, RHODES adjusts the change of the stage at the intersection level based on observed

and predicted vehicle arrivals. In contrast to centralised methods to control intersections

as a network, these methods split the problem into sub-networks, and so demonstrate a

move towards more decentralised decision making.

Traffic-responsive approaches can also be applied to bandwidth problems in arterial

roads [30]. In this methodology, bandwidth is controlled using signal offsets and variable

speed limits. Furthermore, the myopic aim of only maximising bandwidth is addressed,

and the scope of the optimisation problem is increased to include energy consumption and

network travel time. It is proposed that maximum speed does not correlate with minimum

travel time, but does correlate with maximum energy usage. A solution is formulated to

the two-way maximum bandwidth problem. The methodology is validated via numerical

methods, to show increased theoretical bandwidth, and simulation in AIMSUN, to show

microscopic vehicle behaviour. The key results indicate that reductions in energy con-

sumption (due to reduced stops and speed) can be made without a reduction in travel

time.

3.3 Decentralised Traffic-Responsive Approaches with Co-

ordinated Behaviour

Clearly the most likely models to find a network optimal solution for a given cost func-

tion are traffic-responsive coordinated phase-based strategies, however, these models are

frequently complex, with millions of permutations in complex networks that cannot be

solved in reasonable time-frame when considering the real-time updating of the traffic

lights. The opportunity offered by costly but powerful computation and distributed sens-

ing means that we find a wide range of strategies both in the literature and used in practice.

Here we provide a chronological development of the best strategies in the literature. We

then branch into the state-of-the-art, showing the range of approaches which have touched

on optimal control, game theory, machine learning and communications science.

There are many examples of attempts to further decentralise intersection control using

various methodologies. One approach is to try and mimic the performance of a human

controller at an intersection, which can be achieved using q-learning [16]. This approach

yields good results but its performance was only considered for an isolated intersection.

In contrast in [1] a q-learning algorithm is applied in several groups (termed holons) of

intersections of increasing size, in an attempt to distribute decision making with a coherent

32

Chapter 3

overall strategy. Other decentralised approaches include utilising game-theory [10] and

Bid-Based Control [56]. Bid-based control is a scheme in which drivers may bid for priority

at an intersection, where a movement manager manages the overall bid for a given queue of

drivers. Regardless of the moral implications of a system which favours those most able to

pay, this economic driven approach was able to balance delays in comparison to actuated

traffic lights at a single crossroad intersection where one approach had much higher traffic

flow.

The future of intersection control may do away with traffic lights altogether [35, 36].

An example is slot-based intersection control, where driverless vehicles with Vehicle-to-

Infrastructure (V2I) communication request a time slot to pass through the inter-

section, and adjust their speed accordingly to pass through at the correct time. As the

vehicle localisation and control improves it will be possible for vehicles to pass through

from opposing directions simultaneously, whilst avoiding any collisions. In [97] such a

system was modelled at a city-scale, including pedestrian and stages for human drivers,

and found that traffic capacity might be doubled were such a system implemented. The

problem of how conflicting reservations may be resolved whilst minimising the risk of ve-

hicle collisions has been the subject of much recent research and indicates that this is a

technology which is gaining moment [21, 28, 38, 49, 68]. Unfortunately, such systems are

unlikely to be implemented at a large-scale soon. The introduction of the first driverless

vehicles to our roads may not be far off, but based on the introduction of previous tech-

nologies it will take a long time for them to saturate the market. In the meantime, there

are good reasons to introduce technologies that can take advantage of V2I communication

or improvements in image recognition and vehicle sensing.

3.3.1 The Principle of Work Conservation: A Promising Decentralised

Method for Intersection Control

Work conservation, for a traffic light controlled intersection, means that for a system with

some zero and some non-zero queues, a non-zero queue will always be actuated. Work

conserving controllers naturally infer that less of the cycle time is wasted servicing empty

queues. Work conserving traffic lights are also desirable because they are completely

decentralised, meaning they do not require a centralised controller and no coordinating

strategy. Where a centralised policy must be changed when a new intersection is added to

the network, a decentralised traffic light adapts automatically to the change. The system

can, therefore, be implemented in stages, is scalable, and is adaptable at the level of the

individual intersection.

The properties of work-conserving controllers have been investigated thoroughly in

the literature and using network calculus it has been shown that for any network of

intersections for which a fixed-interval control scheme can keep queue lengths and delays

bounded, a work conserving controller exists that also keeps queue lengths and delays

bounded [20, 25, 106]. One such algorithm which resulted from this work was the max-

pressure controller, which uses the queue lengths as weights to determine the service policy

at the intersection. Extensions proposed to this are analogous to the back-pressure routing

33

T. Barker

algorithm discussed for communication networks in [39,43,98]. Whilst the algorithm does

not require vehicle arrival rates, it is assumed that turning ratios, which provides the

expected number of vehicles along each movement, can be accurately estimated.

The benefits of the backpressure algorithm have been further verified in the literature

for road networks. For example, algorithms have been designed which enable maximum

network throughput, and results were verified in MITSIMlab, where it was able to outper-

form SCATS [116]. In the case where stages are strictly ordered and turning rates could

not be computed exactly further backpressure policies have been shown to still retain the

stability properties [66]. This work was extended to the case where queue measurements,

saturation rates, and turning ratios are all estimated or noisy [119], and still, it was possi-

ble to show that maximum throughput is achieved under certain conditions. In this case,

the algorithm was verified in the microsimulator VISSUM, showing improvement over a

fixed-cycle strategy based on the optimisation of Websters formula [118].

A criticism of the above methods is that they do not account for downstream con-

gestion, which causes the stability proofs of work-conservation to break down [46]. A

capacity aware back-pressure controller was proposed [46] as a counter to those examples

where supposedly work conserving controllers, such as those in [66,106,119], can lose work

conservation in the presence of gridlock, when the input links do not have equal maximum

queue lengths at an intersection. The algorithm proposed was a modified back-pressure al-

gorithm, where pressures on all roads are ’normalised’ using a convex function, rather than

using absolute queue lengths and saturation rates to determine weights. The performance

of the algorithm was verified via simulation (SUMO) [46].

The benefits of backpressure controlled intersections have been proven in the literature

both mathematically and via simulation, however, there are many possible permutations

of the algorithm. In particular, there has been much research into its performance when

turning ratios cannot be measured exactly, but we have not found anything in the literature

about the benefits of determining the exact numbers of vehicles and allocating pressure

precisely. Green time is also either held constant [46] between subsequent calculations of

the backpressure or else is based on the backpressure weighting of the stage in question

[66, 117]. There is scope for research into a combination of adaptive green times using

traditional control theoretic approaches, in combination with stage selection based on

backpressure or max-pressure.

3.4 Discussion

Research into intersection control has evolved steadily over the last 40 years. The offline

optimisation of a single intersection [5] has been surpassed by the traffic-responsive online

optimisation of groups of intersections [88]. However, there are drawbacks in terms of

computation overhead, ability to scale, and robustness to change that state-of-the-art

centralised strategies present.

The principle of work conservation has been shown to be extremely effective when

designing decentralised control strategies, which avoid some of the aforementioned prob-

lems. However, when work conservation breaks down this can cause network congestion,

34

Chapter 3

and the breakdown is clearly dependent on network topology [46]. Further research into

work-conserving intersection controllers would, therefore, be of benefit.

35

Chapter 4

A Decentralised Routing

Algorithm for Enhancing Network

Resilience to Congestion

It is postulated that autonomous vehicles will decrease private car ownership, instead en-

couraging users to utilise cheap fleets of autonomous vehicles [101]. In a healthy market,

it is probable, and desirable, that multiple operators will compete for market share. Such

operators will be unlikely to share proprietary routing algorithms, and it may be difficult

to coordinate centralised routing strategies, or even decentralised strategies if they are

overcomplicated. Current trends in the industry suggest that sub-optimal User Optimal

Dynamic Traffic Assignment will be adopted as a feasible solution. In this chapter, we

present a simple decentralised routing algorithm, which requires only one-way communi-

cation with infrastructure, and will be shown to enhance network resilience to congestion

in a number of circumstances.

In our approach a vehicle chooses the next road at every intersection by minimising a

cost function that combines both distance to the destination and congestion of each road

that a vehicle could take at its next turn. In contrast to methods discussed in Chapter 2,

our method only requires short-range communication between vehicles and an intersection

controller (see Fig. 4.1).

The initial inspiration for the decentralised controller was the method of coverage

control, in non-linear control where decentralised agents distribute themselves optimally

over an area to be measured [92]. Using inspiration from centralised control formulations,

which optimise traffic flows based on a disutility function of the traffic density, we propose

to have vehicles self-distribute in a manner which evenly spreads their density over a road

network, whilst still taking them towards their destination.

The algorithm we present is unique because it combines Dynamic Traffic Assignment

(DTA) in a decentralised and localised manner with no Vehicle-to-Vehicle (V2V) commu-

nication and one-way Vehicle-to-Infrastructure (V2I) communication.

• Our algorithm does not increase the average travel time of vehicles in uncongested

networks, therefore it poses no disadvantage to users in this case.

37

T. Barker

• Our algorithm increases the network resilience to congestion.

The key properties of our algorithm are that it:

• Is a decentralised routing algorithm which attempts to perform System Optimal

Traffic Assignment. This is in contrast to algorithms which are primarily centralised

mixed-integer dynamic programming assignments.

• Is a dynamic routing algorithm that is not affected by the road network being mod-

elled as a time-invariant non-linear system.

• Requires local occupancy data of the next available road.

• Requires one-way communication. Vehicles only receive data and make a routing

decision based on our algorithm, they do not need to transmit back.

• Has a low overhead for computation resources

• Has O(1) complexity for an increasing number of vehicles in the network

4.1 Problem Formulation

We consider the problem of routing a set of N vehicles, I = {1, 2, ..., N}, travelling in a

bounded region Q ⊂ R2. The starting position of the i-th vehicle is denoted si ∈ Q, i ∈ I.

The position of the i-th vehicle at time t is denoted by the point pi(t) ∈ Q , i ∈ I. The

intended final destination of the i-th vehicle is denoted by some point di ∈ Q, i ∈ I.

Vehicles are located on a road network G = {V,E} contained in Q, where V =

{1, 2, ...,m} is the set of m vertices which represent junctions, and E is the set of edges

which represent the roads between junctions. The j-th junction is labelled vj , j ∈ V. An

arbitrary road between two junctions vj and vk is denoted (vj , vk) ∈ E, where vj and vk

are the parent and child vertices (junctions) of the edge (road) respectively.

We propose that, in order to decide what route to take, the i-th vehicle approaching

junction vj calculates a cost function J
(j,k)
i for each road (vj , vk) ∈ Ej, where Ej is a set of

all roads departing from the junction vj . We assume the cost function for the road is the

weighted sum of several terms represented in a vector Φ
(j,k)
i , which will be defined later

in Sec. 4.2, and denote α the vector of weights, such that,

J
(j,k)
i = αT ·Φ(j,k)

i (4.1)

The vehicles choice of road at junction vj is then the one that minimizes the cost

function, i.e. it is such that,

min
(vj ,vk)∈Ej

J
(j,k)
i (4.2)

Then the crucial problem is to design cost functions and tune their parameters in order

to achieve the desired global behaviour in the road network. For example, the desired

38

Chapter 4

behaviour could be to reduce the mean travel time for all vehicles, reduce the standard

deviation in delay between vehicle journeys (i.e. homogenise travel times) and/or other

objectives related to vehicle journeys.

In this chapter, we are most interested in characterising the network resilience to

congestion, i.e. the maximum rate at which vehicles may enter the network before the

majority of vehicles experience a significant increase in delay to their journey.

Before presenting our decentralised solution to the routing problem, we first give some

definitions and introduce notation that will be used throughout the rest of the Chapter.

Let D(vj , vl) represent the shortest travel time between two vertices in the network,

calculated using Dijkstra’s algorithm [37] with free-flow travel time as the edge weights.

The minimum expected travel time for the i-th vehicle, is therefore Di = D(si,di). The

estimated travel time along the shortest path does not include delays due to traffic lights

or turning movements. The actual measured travel time for a vehicle on its journey is

termed Ti = T (si,di). The actual travel time is recorded from the moment the vehicle

wishes to enter the network, even if it is not able to do so until a later time step, in this

manner the travel time also incorporates any ’depart’ delays. The delay experienced by

the vehicle along its route is termed ωi and is calculated as,

ωi = Ti −Di (4.3)

The mean expected travel time for all vehicles is,

D̄ =
1

N

N∑
i=1

Di (4.4)

and the mean travel time measured for all vehicles,

T̄ =
1

N

N∑
i=1

Ti (4.5)

implying that the mean delay experienced by all vehicles is,

ω̄ = T̄ − D̄ (4.6)

We denote the number of cars entering the network at every time step as λ, and

consider that the mean delay is a function of this, i.e. ω̄ = ω̄(λ). We further define the

delay as acceptable if it is less than some delay threshold, termed ω̂, where,

ω̂ = β · D̄, β ∈ R+, β ≥ 0 (4.7)

and note that ω̄ ≤ ω̂ implies that,

T̄ ≤ (1 + β)D̄, β ≥ 0 (4.8)

where β is the acceptable ratio between the minimum expected travel time for a vehicles

39

T. Barker

Intersection
Controller

Sensors on roads
(e.g. microwave

beam)

Pre-journey information
(e.g. network topology,

vehicle destination)

Junction v1

V2I communica-
tion (e.g. providing
road occupancy of

connected roads)

Sensor
data

Vehicles
(perform own

route calculation)

Intersection
Controller

Sensors

Junction v2

Vehicles

...

Junction vj

Intersection
Controller

Sensors

Vehicles

Figure 4.1: The communications hierarchy required to implement our routing algorithm

journey, and the actual delay it experienced.

The maximum car generation rate before vehicles experience intolerable delays is

termed λ̂, and is defined as,

λ̂ = max{λ : ω̄(λ) ≤ ω̂} (4.9)

4.2 The Decentralised Routing Algorithm (DRA)

To solve the problem above we propose to use an intersection controller at each junction

to keep track of the following properties for each road (vj , vk) connected to it:

1. A load [L(j,k)(t)] - modelling the number of vehicles currently using the road (vj , vk).

2. A capacity [C(j,k)] - representing the maximum number of vehicles that can fit onto

road (vj , vk).

3. An occupancy [η(j,k)(t) = L(j,k)(t)

C(j,k)] - modelling the percentage of space on road (vj , vk)

occupied by vehicles.

When a car, say the i-th vehicle, reaches a junction vj , it can access two types of

sensory functions φ
(j,k)
i and ρ(j,k), for every road (vj , vk) ∈ Ej. The first sensory function,

φ
(j,k)
i , is related to the minimum estimated travel-time for the car i to reach its destination,

di, if it takes a particular road (vj , vk) ∈ Ej:

φ
(j,k)
i = φ(di, vj , vk), 0 ≤ φ(j,k)

i ≤ 1
(4.10)

The second sensory function, ρ(j,k), is related to the occupancy η(j,k)(t) of road (vj , vk) ∈ Ej

40

Chapter 4

at time t:

ρ(j,k) = ρ(η(j,k)(t)), 0 ≤ ρ(j,k) ≤ 1
(4.11)

To obtain J
(j,k)
i , expressions (4.10) and (4.11) are combined via a control parameter

α ∈ (0, 1], so that when car i reaches junction vj , the cost functions for every road

(vj , vk) ∈ Ej can be computed as,

J
(j,k)
i =

[
α (1− α)

] [φ(j,k)
i

ρ(j,k)

]
(4.12)

Note that by tuning the control parameter α we can make the vehicle routing choice

more or less sensitive to distance or congestion respectively.

4.2.1 Considering the Variation of α and its Effect on Routing

Here we study analytically how the value of α will cause a vehicle to change its route.

Consider the case of two possible paths 1 and 2, whose costs are the sum of the generic

monotonic increasing functions ρ1, φ1, ρ2 and φ2 respectively. Let us assume that the cost

of path 1 is lower than path 2, and as such will be taken by the vehicle. We do not assume

any other characteristics of the network. We describe this using the following inequality,

α · ρ1 + (1− α) · φ1 < α · ρ2 + (1− α) · φ2, α ∈ (0, 1) (4.13)

Lemma 1. When two paths are of equal length, the one with the lowest occupancy will be

taken.

Proof. It is trivial to show that when ρ1 = ρ2 equation (4.13) reduces to φ1 < φ2. Similarly

if the cost of route 2 was less that route 1 we would find that φ1 > φ2.

Lemma 2. When two paths are of equal occupancy cost, the one with the shortest path

will be taken.

Proof. As before it is trivial to show that when φ1 = φ2 we must have ρ1 < ρ2.

We can rearrange the inequality (4.13) to show that,

α <
C

C + 1
, (4.14)

where,

C =
ρ2 − ρ1

φ1 − φ2
(4.15)

We apply conditions so that we are considering the case where the route with the lower

overall cost, 1, has a higher route cost, but a lower occupancy cost,

41

T. Barker

φ1 > φ2

ρ1 < ρ2

s.t. C > 0.

Lemma 3. As the difference in route cost between two routes approaches 0, the value of α

required to detour onto the one with the lower occupancy cost will approach 1 from below.

Proof. We consider the asymptotic behaviour of (4.15). As φ2 → φ1, then C → ∞, and

hence from 4.14 α→ 1.

Lemma 4. As the difference in occupancy cost between the two routes approaches 0, the

value of α required to detour onto the one with the lower occupancy cost will approach 0

from above.

Proof. As before, we consider asymptotic behaviour. As ρ1 → ρ2 we find that C → 0 and

from equation (4.14) α→ 0.

We can conclude that the longer the detour we wish it to be possible for a vehicle to

take in the presence of equal occupancy differences between two roads, the lower the value

of the tuning parameter α must be. Whilst this conclusion is obvious, in our system where

we normalise the cost functions we can visualise the value of α that will allow for a detour.

In Section 4.3 we show numerically that α can be tuned to modify the performance of the

Decentralised Routing Algorithm. We then compare this with a method for estimating

the value of α which will perform best.

4.2.2 Choice of Sensory Functions

We propose to choose the sensory function φ
(j,k)
i as follows

φ
(j,k)
i =

D(vj , vk) +D(vk, di)

maxvs,vt∈VD(vs, vt) + max(s,t)∈ED(vs, vt)
(4.16)

In this cost function the numerator is the sum of the travel-time of the road being consid-

ered, D(vj , vk), and the travel-time of the shortest path (found using Dijkstra) between

junction vk and the destination di, D(vk, di)), and hence is equivalent to the shortest path

from the i-th vehicles current position, vj , to its destination, di, via the junction vk. The

denominator is the sum of the network diameter (or the travel time between the two most

distant nodes in the network), maxvs,vt∈VD(vs, vt), and the longest edge in the network

max(s,t)∈ED(vs, vt), which ensures 0 < φ
(j,k)
i < 1.

42

Chapter 4

To allow for the effect of congestion1, the sensory function ρ(j,k) is chosen as

ρ(j,k) =

η(j,k)(t), if η(j,k)(t) < η
(j,k)
crit

1− e−ση(j,k)(t), otherwise
(4.17)

where η
(j,k)
crit is a critical occupancy level in each road that the algorithm aims at keeping

each edge below, and σ is a tuning parameter determining the value of ρ(j,k) when the

occupancy of road (vj , vk) reaches this threshold. The choice of σ tunes the difference in

the cost function when a road is above or below η
(j,k)
crit . We have chosen an exponential

decay function because it emphasises a low cost of roads with a low occupancy, and a

disproportionately higher cost for roads which already have a high occupancy.

We were motivated to design the cost function in this way in order to limit the inflow

of vehicles to intersections with long or growing queues, which is observed in traffic flow

studies to reduce the probability of gridlock [63].

The Decentralised Routing Algorithm (DRA) resulting from the combination of

the two sensory functions given above, attempts to control traffic flow using decentralised

rules applied at the level of the individual vehicle.

In contrast to a user simply entering their vehicle and following a route which takes

into account traffic conditions at the beginning of their journey, in our methodology the

user plans their route in real time during the journey. When a large enough percentage

of vehicles engage in this method, the resultant effect is load balancing of traffic on the

network.

The measurement of data and communication to vehicles is distributed across the

junctions. The junctions deal with one-way communication with the vehicles closest to

it, providing the occupancy level of any connected roads (information which would be a

few bytes in size). This contrasts with a system which might update all vehicles with

the real-time occupancy of roads in the whole network, which would have a much higher

communications overhead.

The computation of routes is done by the vehicles themselves, using the occupancy data

received from the next intersection. The vehicle already has knowledge of its intended

destination, the network topology, and of free-flow travel times. This distributes the

computational overhead amongst the vehicles themselves, removing the necessity for a

central controller whilst still enabling the vehicles to behave in a cooperative manner

Note that our solution to the vehicle routing problem is highly decentralised; Fig. 4.1

shows how vehicles only require one-way communication with local intersection controllers

in order to receive information on local traffic conditions. The global information on the

network is stored by the vehicles and does not change during the journey, while local

information about road conditions in the immediate vicinity is updated at the nearest

intersection. We also note that in our implementation of the algorithm we stopped vehicles

1Congestion here is considered the reduction of flow through the network. For a single road this
relates to the density of traffic going above a certain value according to the Lighthill-Whitman model.
Occupancy and density are related measures, in that occupancy is a dimensionless measure of vehicle
density. Therefore, we allow for congestion by measuring occupancy and attempting to adjust the cost of
a route in order to balance loads across the network

43

T. Barker

from taking roads if the shortest path would then take them along the same road in the

opposite direction, causing unnecessary loop planning from the vehicles.

4.3 Tuning the Parameter α

Table 4.2: Optimal Values of α from Fig. 4.2 and Fig.4.3

Network Best Performing Value(s) of α

Topology without Traffic Lights with Traffic Lights

10x10 Lattice {0.95} {0.95}
Spiderweb {0.85, 0.9} {0.9}
Random {0.65, 0.7} {0.95}

Small-world (10x10) {0.4} {0.8}

To investigate the performance of the algorithm and the importance of tuning the parame-

ter α, we used the well known traffic simulator SUMO (Simulation of Urban Mobility) [12].

Using the SUMO API (TraCI), several Python modules were produced in order to allow

vehicles to be rerouted at each junction, according to the selected routing algorithm.

For all simulations, journeys were generated randomly using the ’randomTrips.py’

script (included within the SUMO tools library).

The aim is to investigate numerically:

• The existence of an optimal range of values of α, which minimises unacceptable

delays.

• The performance of the DRA against routing based on the shortest path only.

• The effect of different road network structures on the performance of the algorithm

and hence on their resilience to congestion.

Table 4.1: Network Properties

Network Nodes Edges Mean Network
Topology Degree Diameter

10x10 lattice 100 180 1.8 1800
Spiderweb 100 190 1.9 2000
Random 100 180 1.8 1364

Small-world (10x10) 110 190 1.7 1371
32x32 lattice 1152 2112 2 6200

Small-world (32x32) 1152 2112 2 5839

44

Chapter 4

• The effect of the market penetration rate of the DRA (i.e. an assessment of the

fraction of vehicles in the car that needs to adopt the proposed DRA in order for

the network to become more resilient to congestion).

We used a selection of synthetic networks to explore how tuning the value of α affects

the performance of our routing algorithm, and then compared the performance of the

DRA to taking only the shortest path. As our networks are small, and therefore journeys

are short, we used a high value of β = 5 in order to compare performance. The acceptable

delay threshold therefore becomes ω̂ = 5 · D̄ for each network. This means that journeys

can be delayed by up to 5 times the mean expected travel time in free flow conditions, but

in real terms this is a delay will only be a few minutes, and it provides an equal measure

by which to compare the algorithms tested in this study, regardless of the size of β. We

performed simulations both in the presence of traffic lights and also in their absence, in

order to determine how their presence affects the performance of the DRA. Finally, we

scaled up the size of two of our networks to determine robustness to scale. We studied the

performance of DRA on a selection of network topologies of different sizes (see Table 4.1

for their structural properties):

(a) 10x10 lattice

(b) Spiderweb network

(c) Random network created by rewiring a lattice network

(d) Small-world like network created by rewiring a lattice network

(e) 32x32 lattice

(f) Small-world like network created by rewiring the 32x32 lattice

The lattice networks analysed are inspired by road layouts in places such as Manhattan

Island in New York City (Google Map - http://tinyurl.com/kz32ut8). Any vehicle

wanting to travel diagonally across the network can choose among a large selection of

shortest paths, thereby favouring a routing algorithm which considers all the possible

paths.

The spiderweb network is a collection of 10 ring roads of increasing size, connected by

another 10 roads which travel between the innermost and outermost rings. The spiderweb

network is reminiscent of road structures around cities like Beijing (Google Map - http:

//tinyurl.com/ojyexwk). The spiderweb network can be formed by taking the 10x10

lattice and considering periodic boundary conditions so that the opposite sides of the

lattice are touching. In so doing the horizontal roads in the lattice become the ring roads,

and the vertical roads in the lattice become the connecting roads.

The random and small-world networks were generated by rewiring a lattice network,

in order to generate networks with similar numbers of nodes and edges but with varying

degree distributions. Links were removed from the edges and then reassigned with a

probability related to their degree, in order to produce the desired degree distribution

45

T. Barker

(following a methodology for rewiring networks [79] with adaptions inspired by work on

generating planar graphs [74]). There is evidence to suggest that a large number of urban

road networks have a scale-free structure [59].

4.3.1 Validation of the Existence of an Optimal Value of α via Numerical

Simulations

Simulations without Traffic Light Controlled Intersections

We investigate the dependence of ω̄(λ), which we defined as the mean delay, on α. We find

that for each network there is an optimal range of values of α which allow for a relatively

larger value of the car generation rate λ and hence corresponds to a network which is more

resilient to the onset of congestion. Specifically, we refer to ω̄(λ, α) as the delay observed,

and we seek values of α such that,

ω̄(α, λ) ≤ ω̂ (4.18)

As ω̂ is constant equation 4.18 defines implicitly in the (λ, α) plane the critical curve

of values of λ, say λ̂(α), over which congestion is detected.

We plot this critical curve numerically for different network configurations in Fig. 4.2.

Here we notice that such a curve possesses local and global maxima as a function of α

suggesting that some choices of this parameter lead to more resilient networks and better

performance. The values of α for which λ̂ is maximal are reported in Table 4.2 (including

the case when traffic lights are present).

These figures show the results of approximately 900 simulations per network. Specifi-

cally, each point in the Figure is obtained by evaluating the mean delay, ω̄, for fixed values

of α and λ.

Setting α = 0 represents routing based entirely on avoiding congestion, and so we would

expect a poor performance because the vehicle simply avoids congested roads rather than

moving towards its destination, so simulations were not performed with this value. Setting

α = 1 represents routing based entirely on the shortest path (and in the case of multiple

shortest paths, one will be chosen at random).

In the lattice (Fig. 4.2a) we observe that the optimal value of α is approximately equal

to 0.95, meaning that better performance is obtained by giving more weight to following

the shortest path than to avoiding roads with a high occupancy. However, when α = 1

we find that λ̂ is lower than when 0 < α < 1, so we see that it is important to choose an

intermediate value that weights some of the cost of taking high occupancy roads.

The spiderweb network (Fig. 4.2b), shows similarities to the 10x10 lattice, as we

observe that choosing α in the range (0.85,0.9) gives better performance than for other

values of α.

In the random network (Fig. 4.2c) we observe again a global maximum but at a differ-

ent value of α which is around α = 0.65. Furthermore, we observe that the performance of

the DRA is reduced in this network in comparison to the lattice and spiderweb networks,

in terms of the maximum observed value of λ̂(α).

46

Chapter 4

In the small-world network (Fig. 4.2d) we observe multiple local maxima with the

global maximum corresponding to a value of α approximately equal to 0.4. As such this is

the only network in which the weighting of α is more biased towards the occupancy based

cost function.

47

T
.

B
arker

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 7.7 mins)

(a) 10x10 Lattice

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 10.2 mins)

(b) Spiderweb

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 7.7 mins)

(c) Random

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 7.9 mins)

(d) Small-world (10x10)

Figure 4.2: Change in ω̄(α, λ) (mean delay, measured in minutes) as α (the DRA tuning parameter) and λ (the car generation rate, measured in
vehicles per second) are varied for each network, without traffic lights. Dark blue represents regions where delay was below the threshold ω̂, and
yellow where it was above. The dashed red line (λ̂ = λ̂(α)) indicates the relationship between α and the maximum value of λ reached before ω̄(α, λ)
becomes greater than ω̂ (the acceptable delay threshold).

48

Chapter 4

Our simulations clearly show the fundamental effect that the network topology and

structure has on the performance of the routing algorithm. Nevertheless, in all the topolo-

gies being investigated we notice the beneficial effects of weighing both distance from

destination and congestion on the roads when making routing choices. In particular, the

simulations confirm the existence of an optimal range of values for the tuning parameter

α in the cost function that makes our algorithm adaptable to different network structures

and definitely better performing than shortest path routing.

The next step is to assess the effects of traffic lights and whether their presence changes

the scenarios uncovered so far.

Simulations with Traffic Light Controlled Intersections

We repeated the simulations with traffic lights included in the networks. Traffic lights

were added by SUMO using inbuilt options for building the network, which included

SUMO guessing appropriate timings. The results of the simulations for different network

structures is depicted in Fig. 4.3.

It is immediately apparent by contrasting Fig. 4.2 and Fig. 4.3 that traffic lights do

have a significant effect on the performance of the routing algorithm. Surprisingly this

can be beneficial as in the case of lattice and spiderweb networks or not as in the case

of random and small-world networks. In any case, we notice again the presence of both

local and global maxima and the fundamental effect that the network structure has on

determining the performance.

More specifically, in the lattice network (Fig. 4.3a) we observe that the best value for

α is still 0.95, as in the network without traffic lights.

We also observe that when α < 0.5 the DRA performs better in the lattice without

traffic lights than compared to the lattice with traffic lights; however, when comparing

the maximum values of λ̂(α) achieved in each scenario, the value is higher in the network

with traffic lights.

In the spiderweb network (Fig. 4.3b) we make similar observations to those in the

lattice network. We find that traffic lights do not affect the presence or location of the

maximum which is still located at approximately 0.9. We find that λ̂(α) is lower in the

network with traffic lights when α ≤ 0.7, but that when 0.7 < α ≤ 1 the values of λ̂(α) are

greater, and the network resilience to congestion is higher when traffic lights are present.

In the random network (Fig. 4.3c) we observe that the best choice for α is to set

α ≈ 0.95. λ̂(α) shows the same trend seen in the lattice and spiderweb networks, whereby

higher values of α (excluding α = 1) outperform lower values when traffic lights are

present. However, we find in the random network that the value of λ̂(α) is generally lower

when traffic lights are present, which contrasts with our findings in both the lattice and

spiderweb networks.

49

T
.

B
arker

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 7.7 mins)

(a) 10x10 Lattice

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 10.2 mins)

(b) Spiderweb

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 7.7 mins)

(c) Random

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 7.9 mins)

(d) Small-world (10x10)

Figure 4.3: Change in ω̄(α, λ) (mean delay, measured in minutes) as α (the DRA tuning parameter) and λ (the car generation rate, measured in
vehicles per second) are varied for each network, with traffic lights. Dark blue represents regions where delay was below the threshold ω̂, and
yellow where it was above. The dashed red line (λ̂ = λ̂(α)) indicates the relationship between α and the maximum value of λ reached before ω̄(α, λ)
becomes greater than ω̂ (the acceptable delay threshold).

50

Chapter 4

In the small-world network (Fig. 4.3d) we see that a shift in the optimal value of α

from 0.4 to 0.8, meaning that this trend of shifting maxima in the presence of traffic lights

is seen across all of the networks studied here. We also find that in the small-world network

the maximal value of λ̂(α) decreases when traffic lights are introduced, contrasting with

the lattice and spiderweb networks but matching findings in the random network.

Comparing the results in the networks with and with traffic lights (see Table 4.2) we

observe that the optimal values of α increase in the networks with traffic lights when com-

pared to those without. We can explain this behaviour of the DRA due to the relationship

between α, the behaviour of individual vehicles, and the effect of traffic lights on travel

time. A vehicle has a certain probability of being delayed by every traffic light that it

encounters, keeping it at a junction for a period of time. When α is small the cars are

encouraged to take detours and therefore travel through a larger number of junctions,

increasing the number of traffic lights they come into contact with. This increases the

probability of encountering additional delays on their journey, and hence the performance

of the DRA is decreased.

In the case of the lattice and spiderweb networks where we find that the DRA performs

better when traffic lights are present, for high values of α, we believe that the traffic lights

are able to dissipate queues evenly across the network, but that this is only effective when

traffic is spread evenly amongst the roads. This is more feasible in networks with many

alternative paths to a destination.

Therefore, in networks with traffic lights, we conclude that it is preferable to choose

higher values of α than in networks without, however, we still find that α = 1 (i.e. routing

based solely on shortest distance) is not optimal.

4.3.2 Estimation of the Optimal Values of α

We present an analysis of the optimal values of the parameter α in each network. This

analysis also allows us to better understand observations from numerical simulations.

Properties of the Chosen Cost Functions

We consider the effect of varying α on the likelihood of a vehicle taking an alternative route

to the shortest path. We consider the comparison of two paths, which was introduced in

section 4.2.1.

Consider a choice between two alternative roads for the i-th vehicle. Road 2 will

take us on the fastest path to the destination if the network has no congestion, and road

1 will take us on an alternative path which is equal to or longer than the fastest path

(potentially avoiding some congestion). For simplicity, we denote the two possible roads

in our equations by the subscripts 1 and 2 (as opposed to the convention of using the pair

of end nodes denoted by (vj , vk)), and do away with the i subscript for this section. We

will, therefore, refer to the distance and occupancy based cost functions for the two roads

as φ1, φ2, ρ1 and ρ2.

We wish to control the behaviour of the vehicle and determine when it will accept a

longer travel time in order to avoid a congested road. We showed previously that we can

51

T. Barker

determine the maximum value of α which will cause a vehicle to detour onto an alternate

path if we are able to evaluate (4.14) and (4.15). In order to evaluate equation (4.15) we

need to find expressions for φ1 − φ2 and ρ2 − ρ1.

Looking at equation (4.16), used for calculating the “travel-time” based cost function,

we can see that the denominator is a constant for a given network, and is at least as great

as the travel time for the longest path in the network The numerator is the expected travel

time to the destination of the i-th vehicle taking road (vj , vk). The numerator, therefore,

increases or decreases with an increasing or decreasing expected path length when taking

the road in question.

We can rewrite equation (4.16) as,

φ
(vj ,vk)
i =

l
(vj ,vk)
i

L̄
, dn ≤ L̄ (4.19)

where l
(vj ,vk)
i is the length of the path which will be taken by the i-th vehicle, if it takes

road (vj , vk),

l
(vj ,vk)
i = D(vj , vk) +D(vk, di) (4.20)

and L̄ is the maximum possible path length through the network,

L̄ = max
vs,vt∈V

D(vs, vt) + max
(s,t)∈E

D(vs, vt) (4.21)

Definitions for these symbols can be found with equation (4.16).

Given that in equation (4.19) L̄ is constant for a given network, then the value of

φ
(vj ,vk)
i depends solely on l

(vj ,vk)
i , which becomes greater the longer the travel time to

the destination. Therefore, in this case φ2 < φ1, which we can rewrite to say that φ1 =

∆ · φ2, c̄ ≥ 1, where ∆ is the ratio of the travel times for the two routes.

Given that no path can be longer than the longest path (i.e. L̄ > l
(vj ,vk)
i always), then

φ1, φ2 ≤ L̄ and we can show that the maximum value of φ1 − φ2 for any value of ∆ is

found by,

φ1 − φ2 = 1− 1

∆
(4.22)

We plot this in Figure 4.4a. In this figure we compare the ratio of the lengths between

the two routes (∆) with the maximum difference in their travel time-based cost functions.

We see that the difference φ1−φ2 increases non-linearly with the length of the longer path,

thus short detours will be more readily accepted than long detours. For completeness we

plot Figure 4.4b, which shows the value of φ1 − φ2 for all values of φ2 and a small range

of ∆. This figure shows that the value φ1 − φ2 will increase linearly as φ2 increases, but

increase non-linearly as ∆ increases (i.e. the higher the travel time of the shortest path,

the higher the effect of ∆ on increasing φ1 − φ2).

We can use a similar approach to visualise the change in the value of ρ2 − ρ1 as the

occupancy of the roads 1 and 2 are varied. We have already shown that high values of

α make vehicles less likely to avoid high occupancy roads, and low values of α do the

52

Chapter 4

opposite, but we wish to quantify in exactly which situations the vehicle will choose to

avoid the road with higher occupancy. We firstly plot our occupancy based cost function

ρ(vj ,vk) as a function of percentage road occupancy, and the tunable parameters σ and

ηcrit. We show several cases in Figure 4.6a. We plot the the case when σ = 10 and

ηcrit = 0.2 (20% occupancy) and show the change in ρ2 − ρ1 as road occupancy varies in

Figure 4.6b. We observe in this figure that when the occupancy of the road on the fastest

path to the destination (road 2) goes above the critical occupancy, and the occupancy

of the road on the alternative longer route (road 1) stays below the critical occupancy,

we see an immediate jump in ρ2 − ρ1 from ≈ 0.2 to ≈ 0.7. This indicates a switching

behaviour, which we can use to control when a vehicle will detour from the fastest path

onto an alternative.

Estimation Method

In Figure 4.7 we visualise how α can be chosen to control when a vehicle will choose

between road 1 and road 2. We plot φ1 − φ2 (x-axis) against ρ2 − ρ1 (y-axis) and the

minimum value of α which will cause the vehicle to reroute to the road on the longer path

(z-axis).

Firstly we consider the possible ranges values of φ2 − φ1 which will be encountered by

our vehicle. We noted previously that in Figure 4.6b the value ρ2 − ρ1 will jump from 0.2

to 0.7 when the road on the shortest path (road 2) goes above its critical occupancy. We

have greyed out the region where 0.2 < ρ2 − ρ1 < 0.7 in Figure 4.7, as we want to focus

on behaviour outside of this region.

In Figure 4.5 we have information for each network about the range of values for

φ1 − φ2 which will be encountered in the network, the relative length of a detour to the

shortest path at that value (∆), and the frequency we encounter these values. We also

know from Figure 4.4b that the length of a detour increases with both φ1−φ2 and ∆. We

can, therefore, predict how tuning α will change when an alternative path is followed (in

our example by taking road 1) over a shorter path (in our example by taking road 2) for

certain values of φ1 − φ2 and ∆.

In Figure 4.5a we see that in the lattice network there are only a few possible values for

φ1−φ2, in the network those values are approximately 0, 0.1, and 0.2. We therefore expect

to find our optimal value of α by considering the region of Figure 4.7 where φ1−φ2 < 0.2.

We found through simulation that the delay to vehicles in the network was lowest when

α = 0.95, which in Figure 4.7 is shown by the dark red line contour line. When α = 0.95

a vehicle will only take road 1 over road 2 when φ1 − φ2 is slightly greater than 0.1,

which tells us that only a certain proportion of possible detours (those up to ∆ = 3) are

possible. Furthermore, when both roads are above 20% occupancy, or both are below 20%

occupancy, then vehicles will only take route 1 when φ1 − φ2 = 0 (i.e. when both paths

have the same travel time).

In Figure 4.5b we observe that in the spiderweb network there is a much wider range

of values for both φ1−φ2 and ∆. The most frequent values to occur are when ∆ ≈ 1.5 and

φ1−φ2 < 0.1, but the most extreme occurrences go up to ∆ = 14.5 and φ1−φ2 = 0.4. In

53

T. Barker

2 4 6 8 10

 (1
2)

0.0

0.2

0.4

0.6

0.8
m

ax
im

um
 v

al
ue

 o
f

1
2

(a) Maximum value of φ1−φ2 as the ratio between them (∆) increases. The relationship
is non-linear, suggesting that detours which have a higher ∆ will require a lower value
of the tuning parameter α to be taken by a vehicle.

1 2 3 4 5 6 7 8 9 10

 (1
2)

0.0

0.2

0.4

0.6

0.8

1.0

2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2

(b) Actual value of φ1 − φ2 as the ratio between them (∆) and the travel time
cost of the shortest path (φ2) increases. The figure shows that the difference in
costs will increase linearly as the length of the shorter of the two paths increases,
and non-linearly as the ratio between the two paths increases.

Figure 4.4: Relationship between the difference in the travel time based cost functions of
roads 1 and 2 (φ1 − φ2), and the ratio of the longer of the proposed routes to the shorter
(∆).

54

Chapter 4

0 10 20 30 40
 (1

2)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Frequency (Log)

(a) Lattice

0 10 20 30 40
 (1

2)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Frequency (Log)

(b) Spiderweb

0 10 20 30 40
 (1

2)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Frequency (Log)

(c) Random

0 10 20 30 40
 (1

2)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1
2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Frequency (Log)

(d) Small-world

Figure 4.5: Calculation of φ1− φ2 for all road choice comparisons in each of the synthetic

networks, plotted against the ratio ∆
(
φ1
φ2

)
with the frequency of occurance in the network

indicated by the colour scale (the colour scale is logarithmic). The figures show for each
network the relative frequency of detours which increase travel time by a factor of ∆, and
the corresponding value of φ1 − φ2. We can use this information to determine the values
of φ1 − φ2 we expect to encounter in the network when tuning the parameter α.

55

T. Barker

0 20 40 60 80 100
Road Occupancy %

0.0

0.2

0.4

0.6

0.8

1.0

ρ
(v
j
,v

k
)

σ= 5

0 20 40 60 80 100
Road Occupancy %

0.0

0.2

0.4

0.6

0.8

1.0 σ= 10

0 20 40 60 80 100
Road Occupancy %

0.0

0.2

0.4

0.6

0.8

1.0 σ= 15

(a) Value of the cost function ρ(vj ,vk) as road occupancy varies. The occupancy of road 2 is greater than
or equal to that of road 1. Three figures are given, showing the effect of varying the tunable parameter σ.
The lines in each figure indicate the chosen critical occupancy (ηcrit) as 0.2 (red), 0.4 (blue), or 0.6 (green).

0 20 40 60 80 100
Road 1 Occupancy (%)

0

20

40

60

80

100

R
oa

d
2

O
cc

up
an

cy
 (%

)

0.0

0.
1

0.2

0.
7

0.
8

0.
9

0.0

0.2

0.4

0.6

0.8

1.0

2 1

(b) Evaluation of ρ2 − ρ1 as a function of the occupancy of roads 1 and 2. The tunable parameters have
been set at σ = 10, ηcrit = 0.2, as in the numerical simulations. We overlay a contour plot to highlight what
happens when the road which will take us on the fastest route (road 2) goes above the critical occupancy
of 20%. We find that so long as the alternative road (road 1) is below 20% occupancy, the value of ρ2− ρ1
goes immediately from ≈ 0.2 to ≈ 0.7. The grey dash lines show the approximately the maximum range
of occupancies seen during simulations (approx. 66%), due to the gap left between vehicles which prevents
a road ever reaching 100% occupancy.

Figure 4.6: Relationship between the difference in occupancy based cost functions of roads
1 and 2 (ρ2 − ρ1), the tunable parameters σ and ηcrit, and the % occupancy of each road
(η).

56

Chapter 4

our numerical simulations we saw the lowest vehicle delays when α was equal to 0.85 (or

0.9 in the presence of traffic lights). In Figure 4.7 we see that this means our algorithm

will not take the road on the slower path when φ1 − φ2 > 0.2 and from Figure 4.5b this

limits the maximum value of ∆ to approximately 8.

In Figure 4.5c we observe the possible values of φ1 − φ2 in the random network. In

the random network the maximum value of φ1 − φ2 is greater than either the lattice

or spiderweb networks at slightly over 0.5. In our simulations without traffic lights the

optimal value of α was around 0.65 or 0.7, in the random network, which corresponds to

a maximum value of φ1− φ2 ≈ 0.4 and φ1− φ2 ≈ 0.5 respectively when we look at Figure

4.7. This means that all detours were potentially viable, with a maximum ∆ of 14, when

the algorithm was performing optimally with respect to reduced trip delays. However,

at these values of α we also would find that the value of ρ2 − ρ1 becomes much more

influential on how long the detour can be, for example when α = 0.7 and ρ2 − ρ1 = 0.7,

only detours where φ1 = φ2 < 0.3 will be considered.

When traffic lights are introduced to the random network we see the optimal value of

α increase to 0.95. As traffic lights increase delays, and longer detours increase the chance

of encountering a red light, this increase in α will mean that vehicles only detour when

φ1 − φ2 < 0.1 and ∆ < 4.5.

In Figure 4.5d we find that the small-world network has the largest distribution of

φ1 − φ2 and ∆ in all the networks. The maximum value of φ1 − φ2 is approximately 0.6,

and the maximum value of ∆ is 44, however, these values are spread far from the most

frequent values. The most frequent values in the small-world network are similar to those

in the random network, when φ1 − φ2 < 0.1 and ∆ ≤ 1.5. In simulations without traffic

lights we found that the small-world network was difficult to tune, however, the optimal

value of α from our results was 0.4. In Figure 4.7 we see that this value of α will cause

a vehicle to always take the alternative route when the value of ρ2 − ρ1 is greater than

0.7. This means that all detours could possibly be taken. The introduction of traffic lights

(and associated delays) increase the optimal value of α to 0.8, which would reduce the

maximum value of φ1 − φ2 considered for a detour to 0.25. Interestingly this value allows

for the most frequently occurring lengths of detour to be allowed (up to ∆ ≈ 20), but just

excludes the largest detour in the network of ∆ = 44.

Analysis of the cost functions and their relationship to α for each network indicates

that the optimal value of α is mostly dependent upon controlling the relative length of

detours a vehicle can take. However, in all of the networks it appears that an important

correlation is for the largest cluster of detours (i.e. those regions which appear red in

Figure 4.5 to be permissible when there is a large difference in occupancies between the

two roads, but for large or extreme values of ∆ to be filtered out.

4.4 Comparison with Dijkstra’s Algorithm

Next, we compare our routing algorithm against routing using only the shortest path, as

calculated using Dijkstra’s algorithm [37]. The edge weights used in this calculation are

the free-flow travel times.

57

T. Barker

0.0 0.2 0.4 0.6 0.8 1.0
1 2

0.0

0.2

0.4

0.6

0.8

1.0

2
1

0.00

0.15

0.30

0.45

0.60

0.75

0.90

 min

Figure 4.7: Contour plot of the minimum value of α (z-axis) that will ensure that the
i-th vehicle takes the road on the fastest route (road 2) over the less congested alternative
road (road 1). As the difference in the expected travel time costs of the roads (φ1 − φ2)
increases, this value of α decreases, and as the difference in occupancy costs (ρ2 − ρ1)
increases the value of α increases. The greyed out region indicates values of ρ2− ρ1 which
do not occur with our chosen cost function. Given a specific value of α, we can see from
this figure under what conditions a vehicle will reroute.

Table 4.3: Validation of DRA Compared to the Shortest Path (Dijkstra)

Network λ̂
Topology without Traffic Lights with Traffic Lights

Dijkstra DRA Dijkstra DRA

10x10 Lattice 2.3 3.5 (+52%) 2.2 4.9 (+123%)
Spiderweb 2.0 3.6 (+80%) 2.6 4.4 (+69%)
Random 1.0 1.6 (+60%) 0.7 1.0 (+43%)

Small-world (10x10) 1.6 3.4 (+127%) 1.1 2.0 (+82%)

58

Chapter 4

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.7
mins

(a) 10x10 Lattice

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
10.2
mins

(b) Spiderweb

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.7
mins

(c) Random

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.9
mins

(d) Small-world (10x10)

Figure 4.8: Change in ω̄(λ) (mean delay, measured in minutes) when varying λ (car
generation rate, measure in vehicles per second) in networks without traffic lights, when
routing using the shortest path (orange line) and the DRA (blue line - using the best
performing value of α for each network (see Table 4.2)). ω̂ (the acceptable delay threshold)
is shown by the dashed red line for each network.

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.7
mins

(a) 10x10 Lattice

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
10.2
mins

(b) Spiderweb

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.7
mins

(c) Random

1 2 3 4
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.9
mins

(d) Small-world (10x10)

Figure 4.9: Change in ω̄(λ) (mean delay, measured in minutes) when varying λ (car
generation rate, measure in vehicles per second) in networks with traffic lights, when
routing using the shortest path (orange line) and the DRA (blue line - using the best
performing value of α for each network (see Table 4.2)). ω̂ (the acceptable delay threshold)
is shown by the dashed red line for each network.

59

T. Barker

4.4.1 Simulations without Traffic Light Controlled Intersections

We start by considering the case without traffic lights at the intersections. Fig. 4.8 shows

the results of the simulations for DRA and Dijkstra for each of the network structures

considered in this chapter. In the figure, we plot the average delay ω̄(λ) (in minutes)

against λ (in vehicles per second), and observe the critical value λ̂ of the car generation

rate above which the average delay becomes greater than the congestion threshold ω̂

defined earlier for both shortest path routing and the DRA, where the control parameter

α has been tuned in the optimal regions for each network structure which were highlighted

in the previous section.

In the lattice (Fig. 4.8a), we find λ̂ = 2.3 using shortest path routing. In contrast, the

DRA keeps ω̄(λ) below ω̂ up to a maximum of λ̂ = 3.5, which represents an increase of

over 65% with respect to shortest path routing.

In the spiderweb network (Fig. 4.8b) we find that both shortest path routing and the

DRA exhibit similar performance to that seen in the lattice network. Again we notice a

notable increase of the network resilience which can sustain car generation rates of up to

3.6 cars per time step in contrast to 2 cars per time step when the shortest path is used.

A notable increase of the network resilience is observed in the random network (Fig.

4.8c) where, despite performing the least well in comparison to the other topologies, the

DRA guarantees a critical λ of approximately 1.6, higher than the threshold value for

shortest routing. A similar increase in performance is also observed in the small world

network (Fig. 4.8d) where shortest path routing enables λ̂ = 1.6, whereas the DRA was

able to perform better again, increasing this value to λ̂ = 3.4.

In summation, the DRA outperforms routing using only the shortest path in all net-

works tested here, without traffic lights present. The increase in maximum car generation

rate that the DRA exhibits over shortest path routing is 52% in the 10x10 lattice, 80%

in the spiderweb network, 60% in the random network, and a surprising 127% in the

small-world network.

4.4.2 Simulations with Traffic Light Controlled Intersections

Simulations were repeated with traffic lights present, and are reported in Fig. 4.9. Again

we find that in general, the use of the DRA algorithm presented in this chapter improves

performance and resilience of the network when contrasted to using only the shortest

path. This is clear for the lattice (Fig. 4.9a) and the spiderweb networks (Fig. 4.9b) while

in the random network (Fig. 4.9c) we find a smaller improvement (with the DRA still

outperforming shortest path routing). As also shown for the small-world network (Fig.

4.9d), the presence of traffic lights in these networks reduces the increase in performance

observed when traffic lights are not present.

Nevertheless, in terms of percentage improvements of the DRA over shortest path

routing in these networks, we find that the DRA is able to increase λ̂ by 123% in the

lattice, 69% in the spiderweb, 43% in the random network. and 82% in the small-world

network The results for both simulations with and without traffic lights are summarised

in Table 4.3. We observe that in both sets of simulations, both the DRA and shortest

60

Chapter 4

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.7
mins

(a) 10x10 Lattice

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
10.2
mins

(b) Spiderweb

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.7
mins

(c) Random

1 2 3 4 5
λ (veh/s)

0.0
60.0

120.0
180.0
240.0

ω̄
(λ

) (
m

in
s)

ω̂ =
7.9
mins

(d) Small-world (10x10)

Figure 4.10: Figures showing change in ω̄(λ) (mean delay, measured in minutes) when
varying λ (car generation rate, measure in vehicles per second) in networks with traffic
lights, when routing using DUA (orange line), LTTR (grey line) and the DRA (blue line -
using the best performing value of α for each network (see Table 4.2)). ω̂ (the acceptable
delay threshold) is shown by the dashed red line for each network.

Table 4.4: Validation of DRA Compared to DUA and LTTR

Network λ̂
Topology DUA LTTR DRA (% Diff. to DUA)

10x10 Lattice 2.2 None 4.9 (+123%)
Spiderweb 4.5 None 4.4 (-2%)
Random 1.6 None 1 (-38%)

Small-world (10x10) 2.5 None 2 (-20%)

path routing either benefit or suffer from the presence of traffic lights, with neither gaining

an advantage over the other from their presence. However, in all simulations the DRA

provides considerable improvement over routing using only the shortest path.

For the sake of completeness, we look next at the performance of other routing algo-

rithms in order to further assess the performance of the DRA and the resilience of different

network structures when DRA is used.

4.5 Comparison with Other Routing Algorithms

We compare the performance of our strategy against that of the following algorithms:

1. Dynamic User Assignment (DUA) calculated using methods presented in [41].

Vehicles are initially routed using the shortest path, and a simulation is then run

using these routes. The condition of the road network is measured in order to detect

the presence of congestion. The simulation is then re-run with a small percentage of

61

T. Barker

vehicles able to change their route to avoid the congested parts of the network. These

steps are repeated until 50 iterations are complete, and allow a user equilibrium to be

found. This routing strategy cannot be used in real-time but it provides a benchmark

for comparison with our own algorithm.

2. Live Travel Time Routing (LTTR) which is implemented by allowing vehicles

to change their routes every 15 seconds, using the current estimated travel times for

elements in the network. This was done using the options available within SUMO it-

self. This simulates routing with information available from a service which provides

high fidelity live travel times to drivers, and so can adjust their route ad-hoc.

The results of the simulations are shown in Fig. 4.10 for each of the network structures

under consideration. We observe that apart from the random and small world networks

where the DRA is outperformed by DUA, our algorithm shows better performance in all

cases when compared to the LTTR. Specifically, in the lattice (Fig. 4.10a) we observe that

the DRA outperforms both DUA and LTTR. DUA is able to keep ω̄ ≤ ω̂ up to λ = 2.2.

The DRA compares favourably with its maximum value of λ̂ = 4.9. LTTR is unable to

maintain acceptable delays, even at the lowest values of λ tested.

In the spiderweb network (Fig. 4.10b) we find that DUA and the DRA perform

comparably, although DUA outperforms the DRA by a small margin, achieving λ̂ = 4.5

compared to λ̂ = 4.4. Once again LTTR is unable to maintain acceptable delays, even at

the lowest values of λ tested.

In contrast to the lattice and spiderweb networks, we observe a significant difference in

performance between the DRA and DUA when comparing results on the random network

(Fig. 4.10c). DUA is able to achieve λ̂ = 1.6, whereas we find a critical value λ̂ = 1 when

using the DRA. In this network, LTTR is still unable to maintain acceptable delays for

any value of λ we tested.

Results from simulations in the small-world network (Fig. 4.10d) are similar to those

seen in the random network. We observe that DUA outperforms the DRA by a small

margin, maintaining reasonable delays so that λ̂ = 2.5 using DUA and λ̂ = 2 using the

DRA. LTTR is unable to maintain acceptable delays for any value of λ tested.

We find that the best benchmark for performance is DUA, rather than LTTR, which

performed poorly in all simulations, however it should be noted that DUA is a centralised

and iterative routing method, requiring a prior knowledge of all vehicles and trips, whereas

the DRA is able to route vehicles in real-time, using decentralised rules and only requiring

local occupancy data at each intersection.

We find that the performance of the DRA compared to that of DUA varies according

to the network topology. In the lattice network the DRA outperforms DUA, and in

the spiderweb the performance is comparable, however, in the random and small-world

networks, DUA outperforms the DRA by a considerable margin (when taking only λ̂ into

consideration). The percentage performance difference of the DRA compared with DUA

was an increase of 123% in the lattice, a decrease of 2% in the spiderweb, a decrease of

38% in the random network, and a decrease of 20% in the small-world network. These

results are summarised in Table 4.4.

62

Chapter 4

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
λ

 (v
eh

/s
)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 20.5 mins)

(a) 32x32 Lattice

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

λ
 (v

eh
/s

)

ω̄(α,λ) =0.0

ω̄(α,λ)≥ω̂
(ω̂ = 20.8 mins)

(b) Small-world (32x32)

Figure 4.11: Change in ω̄(α, λ) (mean delay, measured in minutes) as α (the DRA tuning
parameter) and λ (the car generation rate, measured in vehicles per second) are varied for
each network, in large networks with traffic lights present. The dashed red line (λ̂ = λ̂(α))
indicates the relationship between α and the maximum value of λ reached before ω̄(α, λ)
becomes greater than ω̂ (the acceptable delay threshold).

4.6 The Effect of Increasing Network Size

We generated larger networks in order to validate the performance of the DRA when the

network size was increased. The networks tested are a 32x32 lattice, and a small-world

network based on rewiring the 32x32 lattice, both of which contain traffic light controlled

intersections.

The results of the simulations are shown in Fig. 4.11. We notice that, as in the case of

their smaller counterparts, these networks show better resilience for certain values of the

control parameter α in the cost function at the core of our DRA with the results being

comparable to those already described for small network sizes.

Fig. 4.12 shows a comparison between four routing algorithms when applied to this

larger networks. We note again that the DRA we propose presents the best performance

while the LTTR is unable to guarantee acceptable delays. This confirms the viability and

effectiveness of the DRA when increasing network size.

63

T. Barker

1 2 3 4 5
λ (veh/s)

0.0

30.0

60.0

90.0

ω̄
(λ

) (
m

in
s)

ω̂ =
20.5
mins

(a) 32x32 Lattice

1 2 3 4 5
λ (veh/s)

0.0

30.0

60.0

90.0

ω̄
(λ

) (
m

in
s)

ω̂ =
20.8
mins

(b) Small-world (32x32)

Figure 4.12: Change in ω̄(λ) (mean delay, measured in minutes) when varying λ (car gen-
eration rate, measure in vehicles per second) in large networks with traffic lights present,
when routing using DUA (orange line), LTTR (dark grey line), the shortest path (light
grey line), and the DRA (blue line - using the best performing value of α for each network
and chosen using Fig. 4.11). ω̂ (the acceptable delay threshold) is shown by the dashed
red line for each network.

4.7 The Effect of Penetration Rate on Performance

Finally, we investigate how performance and resilience depend on the fraction of cars in

the network adopting DRA as opposed to shortest path routing. This is to assess whether

a beneficial effect can be gained even when only a fraction of the cars on the road adopt

the DRA as a routing algorithm.

We varied the percentage of vehicles using the DRA, whilst the remaining vehicles

used the shortest path.

In the lattice network (Fig. 4.13a) we find that there is a gradual reduction in the

mean delay as the percentage of vehicles using the DRA is increased. When the percentage

of vehicles reaches 90% there is a sharp reduction in delays, and performance at 90%

penetration rate is equal to performance at 100%.

Similarly in the spiderweb network (Fig. 4.13b) we observe the same improvement as

the percentage of vehicles using the DRA is increased. We find that at low penetration

rates there is an almost linear one-to-one relationship between the percentage reduction

in ω̄(λ) and the percentage of vehicles using the DRA. We observe that past 60% market

penetration the effect of the DRA increases, and at 70% there is almost a 100% reduction

in delays.

In the random network (Fig. 4.13c) we note that the effect of the DRA is less dramatic.

Increasing the market penetration rate still has an approximately linear relationship to

the reduction in ω̄(λ), however, the relationship is of the order two-to-one, meaning that

when the market penetration rate is at 80% we expect to see a 40% reduction in delays,

and so on.

In contrast to the other networks we find that the small-world network (Fig. 4.13d)

we observe a logarithmic increasing relationship between the market penetration and re-

duction in delays, between values of market penetration between 5% and 60%, showing

that even small market penetration rates can yield high reductions in delays, for example

at 30% market penetration we observe a 70% reduction in delays.

In summary, we have found that a clear beneficial effect is present even when a fraction

of the vehicles in the network adopt the DRA, and the remaining vehicles are routed using

64

Chapter 4

0 20 40 60 80 100
Market Penetration (%)

0
20
40
60
80

100

%
 re

du
ct

io
n

in
 ω̄

(λ
)

(a) 10x10 Lattice (λ = 4.8)

0 20 40 60 80 100
Market Penetration (%)

0
20
40
60
80

100

%
 re

du
ct

io
n

in
 ω̄

(λ
)

(b) Spiderweb (λ = 4.4)

0 20 40 60 80 100
Market Penetration (%)

0
20
40
60
80

100

%
 re

du
ct

io
n

in
 ω̄

(λ
)

(c) Random (λ = 1)

0 20 40 60 80 100
Market Penetration (%)

0
20
40
60
80

100

%
 re

du
ct

io
n

in
 ω̄

(λ
)

(d) Small-world (10x10) (λ = 1.8)

Figure 4.13: Percentage reduction in ω̄(λ) (mean delay), in comparison to shortest path
routing, when varying the percentage of vehicles using the DRA (vehicles not using the
DRA are following the shortest path). Simulations were performed in networks with traffic
lights, and the value of λ used varies in each network (as indicated in the sub-captions).

the shortest path. More notably, we observe again that the degree of improvement as a

function of the adoption rate depends strongly on the network structure being considered.

4.8 Discussion

In this chapter, we presented a completely decentralised method to enable co-operative

routing between vehicles.

The method demonstrates excellent results when compared with the shortest path, and

even against an iterative DUA approach in some networks. The key feature of the proposed

algorithm is that it relies on a local cost function where the relative weight between the

shortest path to destination and road congestion is determined by a control parameter α.

We convincingly showed that varying alpha has an effect on the performance of the DRA

and can enhance the resilience of the road network that becomes able to cope with higher

car generation rates for certain values of the control parameter. Simulations confirmed the

ability of the DRA to guarantee better performance than other routing strategies including

the iterative DUA where the routing problem is solved off-line. Remarkably, we showed

the effect of changing the network structure and how the performance of the algorithm

and choice of α are affected by such variations. We also showed that the observations

made for smaller networks scale up to larger networks and that the full benefits of the

DRA do not require all vehicles in the network to adopt the new routing strategy. This

latter observation can be particularly relevant in the short/medium-term where automated

vehicles will share the road network with human-driven ones. Indeed our findings show

that better routing of the automated vehicles could have beneficial effects on the network

as a whole with varying degrees of penetration rates being required depending on the

65

T. Barker

network structure.

In the next chapter, we will move to the problem of intersection control. We will

explore our own method of decentralised intersection control based on the principle of

work conservation.

66

Chapter 5

A Novel Approach to Intersection

Control

Having studied a new decentralised strategy for routing vehicles that require communica-

tion between each vehicle and the infrastructure, we now move to the problem of improving

traffic congestion by proposing a novel strategy for traffic light control.

When compared to the algorithms described earlier in Chapter 3 we notice the following

key properties of our approach:

• The system we present is decentralised. That is, there is no traffic light controller

that knows the state of all the other traffic lights. Rather, each traffic light controller

only knows information it has measured or received from neighbouring intersections.

• The decentralised nature of the system makes it naturally scalable. In principle,

since each controller only takes as input the state of its neighbours, it does not need

to be reconfigured every time a new controller is inserted in the network.

Previous methods rely on turning ratios to determine the pressure of each phase,

however, proliferation of Vehicle-to-Infrastructure (V2I) communication means that direct

communication between vehicle and traffic light could soon be possible.

We propose a decentralised work conserving controller that communicates directly with

vehicles and with neighbouring intersections. This information allows for the controller

to know the exact incoming and outgoing lane of a vehicle. We propose two variants of

a work conserving controller, one which detects the presence of congested roads, and one

which estimates the exact capacity of neighbouring intersections and uses bounded queue

lengths to determine the pressure.

We also tackle the problem of when the stage should be changed by introducing several

stage duration algorithms. These algorithms calculate the correct green time for a stage

based on the percentage of the current queue that should be cleared in the current stage

(which for our purposes we set to 100%).

In the rest of this Chapter, after presenting the methodology for traffic intersection

control,

67

T. Barker

• We formally prove that the algorithms are always able to move vehicles whenever

the downstream intersections have available capacity. We relate this to the property

of work-conservation.

• We discuss the complexity of the algorithms. Specifically, we show that workload

for each intersection is independent of the number of intersections in the network

and that it is bounded by physical constraints such as the number of neighbouring

intersections.

• We validate our algorithms via microscopic traffic simulation. Specifically, we eval-

uate the behaviour of the algorithms in synthetic networks and under several traffic

conditions.

5.1 The Proposed Architecture

We propose that a controller is present at each traffic light controlled intersection. As

shown in the schematic architecture of Figure 5.1, controllers implement a closed loop

system around the queues at the intersections. Controllers are also able to communicate

with each other and with vehicles approaching the intersection. Essentially, the proposed

system consists of the following components:

Sensors Manager responsible for collecting data at the traffic intersection and providing

this information to the controller. Specific sensors that might be employed are

inductance loops, microwave emitters, and cameras. The types of data collected

from sensors include the queue length and vehicle speed.

Communications Manager responsible for (i) exchange of data between neighbouring

intersections and (ii) exchange of data between controllers and approaching vehicles.

In particular, neighbouring intersections share their available capacity and approach-

ing vehicles communicate their intended route to the intersection, which combined

with sensor data on the number of vehicles approaching allows the controller to

determine accurate queue lengths and demand for neighbouring intersections.

Controller responsible for implementing the algorithms described in Section 5.3.

Traffic Lights responsible for displaying the red and green lights as an output of the

controller. Traffic lights are essentially the actuators of the actions set by the con-

troller.

68

Chapter 5

Figure 5.1: Schematic diagram illustrating the architecture of the decentralized controller

presented in this chapter. The controller outputs the best stage choice (a combination of

green lights at the intersection) as the control input to the traffic lights, in an attempt to

control the queue sizes at the intersection. The controller also calculates a stage duration

for each stage. Intersections communicate with sensors, with neighbouring intersections

and also with approaching vehicles in order to gather data required to decide on the next

state of the traffic lights. The communication manager and sensors also provide the input

for the feedback loop used to adjust the stage duration.

We will assume that the necessary architecture is in place for the controller to imple-

ment the algorithms described and tested in this chapter. The controller consists of two

algorithms which are responsible for determining, at the beginning of each stage: (i) the

best combination queues to be released (i.e. the next stage) and (ii) the stage duration.

The controller is responsible for triggering a new stage calculation, and this is implemented

by means of a system clock.

5.2 Problem Formulation

Here we introduce the traffic model used throughout the chapter. For the convenience of

the reader, we also provide a list of symbols in Appendix B.2. As we will not be revisiting

the Decentralised Routing Algorithm (DRA) in the following chapters we will redefine any

notation here as specific to the intersection control algorithms.

5.2.1 Modelling Networks of Intersections

Let G = {V, E} be a directed graph, with {vi}i∈V being the set of vertices and {(va, vb)}(a,b)∈E
be the set of edges [33]. We recall that the topology of a graph can be described by its

69

T. Barker

the adjacency matrix A ∈ Rn×n.

In the context of this chapter, the vertices of the graph will physically represent in-

tersections, while the edges will physically represent roads. Edges are then directional as

defined by the direction in which traffic flows along the road. Edges which flow into an

intersection are input links to the intersection, whilst edges which flow out of an intersec-

tion are output links. We will say that two intersections (say va and vb) are (a, b) adjacent

if there is an output link of va which is an input link to vb. We also refer to adjacent

vertices as neighbours.

We consider the set of intersections denoted by V. The i-th intersection is characterized

by a set of input links l ∈ Ii and output links m ∈ Oi. A phase, denoted by j = {l,m}, is

any possible movement from an input link to an output link (this may also be referred to

as the j-th phase or j-th queue). The number of possible phases at the i-th intersection

is denoted as ni, and the set of all phases can be expressed as σi = {j1, ..., jni}.
The number of vehicles (in a queue) associated with the j-th phase, at some discrete

time step k, is denoted xji (k). We can refer to the total number of vehicles on input link

l as xli(k), and on output link m as xmi (k). Vehicles join the j-th phase at the the i-th

intersection at the rate λji (k), and can leave the j-th phase at the constant saturation rate

µji . The status of the light controlling the j-th queue is given by gj(k) ∈ {0, 1}, where 1

represents green (and 0 represents red).

In a network of intersections, we recall that output links associated with a given phase

can become full and unable to take any more vehicles. We denote cmi as the capacity of

the m-th output link associated to the phase j = {l,m}. We denote εj(x
m
i (k), cmi) as a

function which gives 1 when there is available capacity on the output link of phase j, and

0 otherwise, such that,

εj(x
m
i (k), cmi) =

{
1 if xmi (k) < cmi

0 otherwise
(5.1)

The service rate, say sji (k), for the j-th phase is the rate at which vehicles leave the

j-th queue at time step k, taking into account whether or not it has received a green light,

the saturation rate, and εj(x
m
i (k), cmi), such that,

sji (k) = gji (k) · εj(xmi (k), cmi) · µji (5.2)

The traffic lights are controlled by selecting a stage, which is a set of compatible phases.

We denote an arbitrary stage as q = {g1
i , ..., g

ni
i }, which in real terms defines what phases

receive a red or green light (i.e. the value of gji (k) for all phases). We refer to an arbitrary

stage as the q-th stage. The total number of stages is denoted as zi, and the set of all

possible stages as Pi. In our framework the control input at time k is the stage being

chosen, i.e. ui(k) ∈ Pi (note that ui(k) is an ni × 1 column vector).

The state of the intersection is an ni× 1 column vector denoted xi(k), which gives the

length of the queues at the i-th intersection (i.e. xi := [x1
i , . . . , x

ni
i]T).

We denote by Pi the zi × ni stage matrix which is the stack of all stages in Pi. The

ni × 1 column vector pqi is the transpose of the q-th row of Pi, and hence is the column

70

Chapter 5

vector representation of the q-th stage. We refer to the j-th row of the vector pqi as pq,ji ,

which is the value of gji for the q-th stage.

We also let: (i) ai(k) := [λ1
i (k), . . . , λnii (k)]T be the ni × 1 column vector of arrival

rates; (ii) Di(k) be the ni×ni diagonal matrix having on its main diagonal the saturation

rates µji ; (iii) Ei be the ni × ni diagonal matrix having the element in the j-th row and

j-th column equal to εj(x
m
i (k), cmi) m ∈ j ∀ j ∈ σ (i.e. the value of εj(x

m
i (k), cmi) for

the output link of every phase at the i-th intersection), and (iv) si(k) be the ni×1 column

vector of service rates at time step k.

Then, the dynamics for the i-th intersection in the network can be written in compact

form as,

xi(k + 1) = [xi(k) + ai(k)− si(k)]+ (5.3)

where,

si(k) = Ei(k) · (Di · ui(k)) (5.4)

(Note: [x]+ ≡ max{x, 0}. For a generic n-dimensional vector, [x]+ is a component-wise

operation.)

For example, the state space model of a junction with two queues becomes,[
x1(k + 1)

x2(k + 1)

]
=

[
x1(k)

x2(k)

]
+

[
λ1

λ2

]
−

[
ε1 0

0 ε2

]
·

([
µ1 0

0 µ2

]
·

[
pq,1i
pq,2i

])
(5.5)

Measuring the Queue Length

In the model used by Varaiya [106], it is assumed that for every phase a vehicle joins

a separate queue, and so there is no head of line blocking, whereby a vehicle belonging

to a particular phase blocks the front of a queue, with vehicles behind being part of a

different phase. This assumption is convenient, however, it is not always realistic, and

we consider several different models which affect controller design. Here we provide the

following descriptions to clarify how queue length may be measured, depending on which

definition of the queue is chosen:

All-to-One Queue The queue length is determined by the number of vehicles occupying

an edge, which may be thought of as a road. No matter what phase a vehicle belongs

to it will be included in a total queue length for the edge. An intersection with 4

input roads will have 4 queues.

Some-to-One Queue The queue length is determined by the number of vehicles occu-

pying an input link, which may be thought of as lanes within a road. No matter

what phase a vehicle belongs to it will be included in a total queue length for the

input link it occupies. An intersection with 4 input roads, each with 2 input lanes,

will have a total of 8 input links and therefore 8 queues.

71

T. Barker

One-to-One Queue The queue length is determined by the phase a vehicle belongs

to. All vehicles in a queue will make the same movement at the intersection. An

intersection with 12 phases will have 12 queues, no matter how many input links at

the intersection.

It is conceivable that we may wish to measure the number of vehicles, the edge occu-

pancy, or some other function to determine queue lengths. If the number of vehicles is

used then this can be counted for every phase, but if occupancy is used or measured by a

sensor, then it represents the queue on an edge (all-to-one) or in a lane (some-to-one).

In order to measure queue length in the one-to-one case, it must be clear to which phase

a vehicle belongs, either due to the position of the vehicle or by V2I communication. The

most common solution found in the literature is to use or estimate the turning ratios at the

intersection, although this would only give an approximation of the current state [46,106].

These definitions provide the necessary components to design a controller which se-

lects the best stage at each time-step. We further establish the notation for the ease of

calculating the stage and stage duration. The state of the i-th intersection xi is expressed

in vector notation, as is the notation for the set of all possible stages P.

5.3 Control Algorithm Design

5.3.1 Overview

In this section, we present the main logical steps for the algorithms of the controller in

Figure 5.1. To the best of our knowledge the algorithms presented are entirely new to

the literature, although draw on the principles of work-conservation mentioned in the

literature review and studied by other researchers. In particular the concept of pressure

propagation introduced in Section 5.5.1 and studying the effect of network topology using

algorithms of this nature has not been investigated before.

We first present the Stage Selection Algorithms, which determines which stage will be

unlocked (i.e. the value of ui(k)). We present two possibilities to select the stage to be

unlocked. The algorithms differ in the information that they receive as input from nearby

controllers. Namely, we introduce:

The Congestion-Aware Stage Selection Algorithm, whereby controllers use

queue lengths to determine the stage with the maximum benefit to unlock, but do not

include any queues for which the output links are already full.

The Capacity-Aware Stage Selection Algorithm, whereby controllers calculate

the available capacity at their output links and use these capacities to calculate the max-

imum available benefit of actuating a particular stage (i.e. the stage with the maximum

number of vehicles is released, but only cars which are moving into an output link with

enough capacity are included in this calculation)

On inspection, it can be seen that the capacity-aware algorithm is simply an enhanced

version of the congestion-aware algorithm. Next, we present the stage duration algorithms,

72

Chapter 5

which calculate the length of time between subsequent stage changes. In this case, we pro-

pose three different solutions to determine the duration of each stage:

The Tmin/Tmax Stage Duration Algorithm, whereby the number of vehicles

serviced during a stage is measured, and the stage duration is lowered/raised towards a

minimum/maximum value dependent on the number of vehicles serviced.

The Proportional Stage Duration Algorithm, whereby the number of vehicles

serviced during a stage is measured, and the stage duration is adjusted using an estimation

of the error in the previous stage duration.

The Model-Based Stage Duration Algorithm, whereby the duration is calculated

so as to reduce the queue by a certain fraction of the current queue length, taking into

account the rate at which vehicles leave and enter the queue during the stage.

5.3.2 Stage Selection Algorithm Design

The stage selection algorithm maximises a utility function, denoted Jqi , which is dependent

on the stage, q, being considered. That is, the control input is chosen in a way such that

ui = max
pqi∈Pi

Jqi (pqi). (5.6)

where as defined above pqi is the vector of the q-th stage of the i-th intersection, synony-

mous with the transpose of the q-th row of the matrix of all stages, Pi.

Congestion-Aware Stage Selection

The concept behind the Congestion-Aware stage selection algorithm is to allow each in-

tersection to select a stage with the following characteristics: (i) it releases the largest

number of vehicles at the input links; (ii) it does not include vehicles with no available

capacity downstream. This concept is implemented in Algorithm 1.

The algorithm maximises the number of vehicles that are given a green light in the

selected stage, discounting any queues for which the output link has no available capacity.

The algorithm at the i-th intersection checks, for each queue, if there is available

capacity downstream. The algorithm creates a copy, P̃i, of the stage matrix, Pi, which

removes any phase from the stage matrix which has no available capacity in the output

link. Specifically, it computes,

P̃i = Pi · Ei(k) (5.7)

Matrix P̃i is used to calculate the utility function, Ji, whose q-th element is the value

of Jqi (pqi) as,

Ji = P̃i · xi (5.8)

By the construction of P̃i, the queues at intersection i that do not have available

capacity downstream are excluded in the computation of the utility function. The stage

73

T. Barker

that is returned by the algorithm is the one corresponding to the largest element of Ji.

Algorithm 1 Congestion-Aware Stage Selection Algorithm

Communication with vehicles to determine desired outgoing lane
xi ← vehicle queues
Compute Ei(k)
P̃i ← Pi · Ei
Ji ← P̃i · xi
q ← index corresponding to maximum element in the vector Ji
ui(k) = pqi
return ui(k)

Capacity-Aware Algorithm

The capacity-aware algorithm presented here calculates at each time step the total number

of vehicles that wish to use a downstream edge and compares that to the exact number of

vehicles that the downstream edge is able to accommodate. Where multiple queues share

a downstream edge during a stage, their queue lengths are then adjusted (if necessary), so

that their sum is never greater than the available capacity of the downstream edge. This

concept is implemented in Algorithm 2.

Essentially, the algorithm first computes an ni × ni matrix describing whether two

queues are both open during a given stage and using the same downstream link. We

call this matrix L̃qi (p
q
i), and we describe its computation in algorithm 3. The sum of all

elements in the j-th row of L̃qi (p
q
i) is denoted by ι̃q,ji , which is the total number of phases

sharing the output link of j-th phase during the q-th stage.

Once L̃qi is calculated, the total demand for each downstream link can be calculated

by finding the dot product of L̃qi and the vector of measured queue lengths xi. The output

is a set of queue lengths which are based on the combined demand for the output links,

which we denote x̃qi (i.e. the j-th element of x̃qi is the total demand for the output link,

m, of the j-th queue). We refer to the j-th element of x̃qi as x̃q,ji
Using the data on available capacity received from sensors and neighbouring intersec-

tions, the j-th element of x̃qi is either left equal to the total demand for the downstream

link of the j-th queue or reduced to match the available capacity, whichever is smaller.

Where multiple queues share an output link, the final demand must be split between them.

The j-th element of x̃qi is divided by the total number of queues using the downstream

edge of the j-th phase during the q-th stage (i.e. ι̃q,ji).

We define υ(x̃q,ji (k), cmi), m ∈ j as a function relating queue length for the j-th phase

and the capacity of its outgoing link m.

υ(x̃q,ji (k), cmi) =


x̃q,ji (k)

ι̃q,ji
if x̃q,ji (k) < (cmi − xmi (k))

(cmi −xmi (k))

ι̃q,ji
otherwise

(5.9)

where cmi −xmi (k) is a computation of the available number of vehicle spaces in the output

link m.

74

Chapter 5

We then denote as Υq
i (x̃

q
i) the ni×1 column vector, obtained by stacking the functions

υ(x̃q,ji (k), cmi) for each of the ni phases.

The utility function in (5.6) is finally calculated as,

Jqi (pqi) = pqi
T ·Υq

i (x̃
q
i) (5.10)

Algorithm 2 Capacity-Aware Stage Selection Algorithm

Communication with vehicles to determine desired outgoing lane

xi ← vehicle queues

for pqi ∈ Pi do

Implement algorithm 3

L̃qi (p
q
i)← getL̃(pqi)

x̃qi (p
q
i)← L̃qi · xi

for phase j ∈ σi do

Communication with neighbouring intersections

cmi ← maximum capacity of outgoing lane of j-th queue

ι̃q,ji ← sum of j-th row of L̃qi (p
q
i)

j-th element of Υq
i ← υ(x̃q,ji (k), cmi)

Jqi (pqi) = pqi
T ·Υq

i (x̃
q
i)

ui(k) = maxpqi∈Pi J
q
i (pqi)

return ui(k)

Algorithm 3 Construct L̃ Matrix from Stage

procedure getL̃(pqi)

L̃← ni × ni matrix of all 0

for queue a = 1, . . . , ni do

for queue b = 1, . . . , ni do

if a and b receive a green light under pqi then

if a and b use the same output link then

L̃(a, b)← 1

return L̃

5.3.3 Stage Duration Algorithm

The stage selection algorithm is responsible for setting a control signal, ui(k), in order to

unlock one of the stages from the set of feasible stages Pi. The stage duration algorithm is

responsible for setting the duration of the control signal. We now present three alternative

choices to determine the duration of ui(k).

At the start of each stage, the total number of vehicles the algorithm wishes to remove

from the i-th intersection is calculated. This value is a fraction of the total number of

vehicles in the queues released during the stage. We term the number of vehicles to be

removed from the i-th intersection during stage q as δqi (k), such that,

75

T. Barker

δqi (k) = η̄i · pqi · xi(k), (5.11)

where η̄i (a design parameter) is the target fraction of vehicles to remove from the

open queues during a single stage and is a constant.

Let τ qi (k) be the duration of the q-th stage computed by the controller at time step k.

We will then denote by γqi (k, k + τ qi (k)) the number of vehicles that departed during the

q-th stage (i.e. between time step k and time step k + τ qi (k), obtained by measuring the

number of vehicles that cross the stop line at the traffic light, or by communication with

the vehicles.

At the beginning of the q-th stage, a system clock is set to τ qi (k). The clock is decre-

mented at each time step, and when the system clock reaches 0 a new stage is selected.

The algorithms we propose adjust the stage duration at the end of each stage, according

to the difference between δqi (k) and γi(k, k + τ qi (k)).

The first two algorithms we propose (Tmin/Tmax and Proportional) adjust the stage

duration at the end of each stage, according to the difference between δqi (k) and γi(k, k+

τ qi (k)). The third algorithm (Model Based) sets the stage duration at the beginning of

the stage.

Tmin/Tmax Stage Duration Algorithm

When implementing the Tmin/Tmax stage duration algorithm a minimum and maximum

value is set for the duration of any given stage, which we denote τ̄min and τ̄max respectively.

The initial duration of any stage is the mean of this minimum and maximum value.

When a stage ends, its duration is adapted to reflect its performance. If the same

stage is selected on subsequent cycles then it will use this new adapted duration value.

Performance is measured against the desired number of vehicles that were to be cleared

from the intersection, δqi . If too few vehicles are cleared, then the stage duration is moved

closer to the value of τ̄max, if more vehicles were cleared then the stage duration will be

moved closer to the value of τ̄min. Further explanation can be found in algorithm 4.

76

Chapter 5

Algorithm 4 Tmin/Tmax Stage Duration Algorithm

Compute stage duration, τ qi , for stage pqi
pqi ← output from stage selection algorithm

if no green time previously calculated for stage pqi then

τ qi ←
τ̄max+τ̄min

2

System Clock ← τ qi
Target number of vehicles to service

δqi (k)← η̄i · pqi · xi(k)

while System Clock > 0 do

Wait until the System Clock reaches 0

γqi ← total vehicles departed during the stage

if γqi > δqi then

τ qi ←
τ̄qi +τ̄min

2

else if γqi < δqi then

τ qi ←
τqi +τ̄max

2

Proportional Stage Duration Algorithm

The proportional stage duration algorithm is similar to the Tmin/Tmax algorithm. The

stage duration is adjusted at the end of a stage based on the number of vehicles that were

cleared from the intersection. In order to make the adjustment, the error in the stage

duration is estimated and a proportional control algorithm is applied. The initial stage

duration for all stages is set to some starting value, denoted as τ0.

The stage duration of the q-th stage is recalculated according to an estimated error,

βqi , in the previously calculated stage duration. This error is calculated such that,

βqi =
δqi − γ

q
i

δqi
· τ qi (5.12)

On inspection, we see that this error is an estimate of the fraction of the time that

should be added or removed in order that the values of δqi and γqi are equal.

We apply a proportional control law, with gain KP , such that,

τ qi = τ qi +KP · βqi (5.13)

This stage duration algorithm gradually adjusts to changing traffic conditions. Further

explanation can be found in algorithm 5.

Model Based Stage Duration Algorithm

The model based stage duration algorithm is proposed based on the model shown in (5.3).

The model based algorithm calculates the stage duration required to clear the queues

by the given proportion, η̄i, taking into account the arrival rate ai and departure rates Di

of vehicles. For a single intersection of arrival rate λ, departure rate µ, and current queue

77

T. Barker

Algorithm 5 Proportional Stage Duration Algorithm

Compute stage duration, τ qi , for stage pqi
Traffic light enters state pqi
if no green time previously calculated for stage pqi then

Assign predetermined value
τ qi ← τ0

System Clock ← τ qi
Target number of vehicles to service
δqi (k)← η̄i · pqi (k) · xi(k)
while System Clock > 0 do

Wait until the System Clock reaches 0

γqi ← total vehicles departed during the stage
Estimated error in current green time

βi ←
δqi−γ

q
i

δqi
· τ qi

τ qi ← τ qi +KP · βi

length x, then the period of time, τ , required to clear the required number of vehicles,

η̄ · x, is given by,

τ =
η̄ · x
µ− λ

(5.14)

where µ−λ is the real rate at which the queue length is reduced, and η̄ ·x is the amount the

queue needs to be reduced by, hence the result it the time required to do this. As µ−λ→ 0

the time required increases and vice-versa. In this model, it is assumed that λ ≤ µ, and

can, therefore, we cannot have a negative value of τ . In practice, this assumption is

reasonable, as vehicles cannot join a queue faster than space is being made available.

For the i-th intersection using stage pqi , we find that the time required can be given

by,

τ qi (k) =
δqi (k)

pqi · ((Di(k) · pqi
T

)− ai(k))
(5.15)

Note that we do not account for congested downstream links in this algorithm, hence

the use of the saturation rates in Di over the service rates si.

Moving averages are computed for the values of µji and λji over a chosen time window.

In contrast to the previous methods, the stage duration is calculated at the beginning of

a stage. An overview of this method can be found in Algorithm 6.

78

Chapter 5

Algorithm 6 Model Based Stage Duration Algorithm

Compute stage duration, τ qi , for stage pqi
Traffic light enters state pq

Target number of vehicles to service

δqi (k)← η̄i · pqi (k) · xi(k)

Di ← mean departure rates for queues

ai ← mean arrival rates for queues

τ qi ←
δqi (k)

pqi ·((Di(k)·pqi
T

)−ai(k))

5.4 Properties of the Controller

5.4.1 Work Conservation

To better characterise the controller, we introduce a definition of efficiency, or work con-

servation for a policy, ui. This notion is formalized with the following definition.

Definition 1. Let ui be a policy for intersection i and let xji > 0 for some j = 1, . . . , ni.

Assume that some capacity is available to the nearby intersections. The policy is said

to conserve work for intersection i if the only stages that can be unlocked are those with

available capacities downstream.

The definition above implies that a sufficient condition for the policy to move vehicles is

to have available capacity downstream. Our interest in work conservation is then motivated

by the fact that, intuitively, a loss of work for a policy is an indicator of inefficiency in the

road network.

Our main result on work conservation can be stated as follows.

Theorem 1. Both the congestion-aware and the capacity aware controllers are work pre-

serving.

Proof. We prove this by contradiction, by assuming that the congestion-aware and the

capacity-aware controllers are not work preserving. More precisely, we assume that the

policy set by the controllers can unlock a stage, say pqi with no available capacity down-

stream, even if other stages have available capacity.

Congestion-aware controller. Since, by contradiction, this controller is not work

preserving, this means that, for at least one intersection in the network, say intersection

i, the corresponding policy, ui set by means of Algorithm 1 or 2 unlocks a service stage,

say pqi , that has no available capacity downstream, even if other queues have available

capacities. That is, pqi is characterized by the fact that:

• xji > 0 for at least some of the queues unlocked during stage pqi ;

• the capacities downstream to xji ’s are equal to 0.

Recall the following steps from Algorithm 1

• compute P̃ixi;

79

T. Barker

• pick q as the index corresponding to the biggest element of the above vector.

Thus, since pqi is chosen by Algorithm 1, it means that q is the index corresponding

to the largest element of P̃ixi. However, since there is no capacity downstream, then,

by construction, the q-th element of P̃ixi is equal to 0. Therefore, it follows that all the

other elements of P̃ixi are all equal to 0. This, however, can happen only if the elements of

matrix P̃i are equal to 0. Now, all the elements of this matrix are set to 0 by the algorithm

only if all the queues downstream the intersection are at their maximum capacity, i.e. if

the queues downstream intersection i have no available capacity. This is, however, a

contradiction as our argument was based on the fact that the controller picked stage pqi
even if other stages had available capacity.

Capacity-aware controller. The proof for the capacity-aware controller follows

exactly the same steps as the proof for the congestion-aware controller. It is therefore

omitted here for the sake of brevity.

5.4.2 Complexity of the algorithms

We remark here that the complexity of implementing these algorithms network-wide is

O(1) in terms of the number of intersections in the network. The complexity of the

algorithms computed at each intersection is dependent on the number of queues managed

by that intersection, as well as the number of possible stages to be compared.

In regards to the stage selection algorithms:

• The congestion-aware stage selection algorithm is a sequence of O(1) and O(n)

operations, where n is the number of queues at the i-th intersection, and therefore

has overall O(n) complexity.

• The capacity-aware stage selection algorithm is O(m× n) complex, where m is the

number of possible phases zi and n is the number of queues at the i-th intersection,

ni. The computation of L̃ is O(n2
i), however, it only ever needs to be calculated

once for each stage if it is stored in memory.

The stage duration algorithms:

• The Tmin/Tmax and proportional stage duration algorithm are O(n) complex,

where n is the number of queues at the i-th intersection, ni. Specifically it is the

calculation of δqi which is O(n) complex.

• The model based algorithm is O(n2) complex, specifically the calculation of Di−Ai,
where n is the number of queues at the i-th intersection, ni.

The number of queues at an intersection is physically limited. Take for example a

4-way intersection with 3 lanes per road direction (allowing 3 ’straight-on’ lanes and 1

right and left turn lane respectively). This would results in 36 queues (ni = 36) and could

operate using 4 possible stages (zi = 4). The computational complexity is therefore low.

80

Chapter 5

5.5 Developing an Advanced Algorithm to Address ‘Head-

of-line-blocking’

In Chapter 6 section 6.2, we show results for numerical validation of the above algorithms.

We find that our intersection controller performs well in the lattice and random networks,

but is disappointing in the small-world network (for further details, refer to Figures 6.3, 6.4,

and 6.6). Observations of behaviour in the small-world network highlighted two possible

causes,

Head-of-Line Blocking is a problem caused when the first vehicle in a queue cannot

enter the next lane and blocks cars behind it which would otherwise be able to move

on to the next intersection.

Short Road Blocking was a problem where busy short roads were unable to release

their traffic due to sharing a junction with a busy long road. If another intersection

needed the short road as an output link, it was never able to clear traffic, despite

there being a high demand in the network for that link.

Short road blocking has been addressed in the literature by using measures such as road

occupancy, rather than the number of vehicles, to calculate queue sizes. Road occupancy

is normalised and therefore a short road which is full will have the same queue size as a

long road which is full.

Here we propose a solution, termed the Pressure Propagating Controller (PPC),

which addresses both short road blocking and head of line blocking. Our solution requires

intersections to propagate queue lengths to downstream intersections. The advantages of

our solution are:

• Shorter queues may extend their queues to account for upstream traffic at another

intersection.

• Longer queues are still prioritised if a short road is not blocking upstream traffic, but

the increase in pressure from an additional vehicle decreases the longer the queue is.

• Intersections downstream prioritise clearing links which are needed by vehicles caus-

ing head-of-line blocking.

5.5.1 The Pressure Propagating Controller

The PPC uses the same architecture found in Section 5.3. The key additions to the

algorithm are:

• A vehicle’s weight in a queue is inverse to its position in a lane (i.e. the further away

from the stop-line it is, the less it increases the pressure of the queue it has joined).

• Intersections propagate the total number of vehicles waiting in a lane to the next

intersection. The direction of propagation is in the direction that the first vehicle

wishes to go (i.e. information is passed between neighbouring intersections on the

number of vehicles being blocked).

81

T. Barker

• Information is propagated downstream by each intersection in the same manner, so

that propagated pressures are cumulative. The direction of propagation from each

input link is dictated by the intersection and done in the direction of travel of the

first vehicle in an input links queue.

• Propagation ends when an output link is empty, or a cycle is formed (the input link

of the original intersection is an output link of a downstream intersection).

The PPC uses a combination of queues at the intersection and the queues propagated

from upstream intersections to pick the stage for the intersection. The result is that the

stage selection algorithm:

• Releases the most potential pressure on the network due to head of line blocking.

• Conserves work by avoiding the servicing of empty queues or queues which have

nowhere to go (due to congestion).

• Puts high pressures on downstream links which are causing traffic blockages further

upstream.

The PPC communicates with neighbouring intersections. At every intersection, and

for every lane, the intersection checks for any non-empty queues, and notes the turning

movement of the vehicle at the front of the lane. The turning movement informs the current

intersection what the next intersection (and lane) of that vehicle will be. Intersections

pass both their own queue length to that lane, as well as any queue lengths received from

previous intersections (see Figure 5.2). We refer to these cumulative queue lengths being

passed to downstream intersections as the pressure propagation.

There are two conditions which halt pressure propagation:

• If the first vehicle in an input link wants to turn into an empty lane.

• If the propagating pressure from input link l forms a cycle and l becomes an output

link for another intersection.

5.5.2 The Pressure Propagating Controller Stage Selection Algorithm

The purpose of this algorithm is to prioritise vehicles which are at the front of a queue,

and which may, therefore, be blocking vehicles behind. Less priority is given to vehicles if

they are far back in a queue, as it is assumed that they may not be able to move into their

desired output link either due to a vehicle ahead of them or due to the output link having

become congested. Intersections also prioritise the first vehicle in each input link by taking

its route and asking the next intersection downstream to prioritise the stage which will

make space available for that vehicle. Here we provide an overview of the algorithm, and

further details will be presented elsewhere.

The PPC Stage Selection Algorithm is based on the congestion-aware algorithm of

Section 5.3.2, however, it differs in three main ways from the cap-aware algorithm.

82

Chapter 5

i = 1 i = 2

i = 3 i = 4

Lane pressure
= 3 + 3
= 6

Lane pressure = 3

Lane pressure = 3

Lane pressure
 = 3 + 3 + 3
 = 9

Lane pressure
 = 0

Lane pressure = 3

Figure 5.2: The pressure in each lane (in this case the queue length) is propagated towards
the next lane in the direction of the first vehicle in the queue. Propagation is continuous
until an empty lane is reached (which can be seen for i = 2), or the pressure re-enters the
original lane, which would create a cycle.

83

T. Barker

• A vehicles contribution to queue length is inversely proportional to its position on

an input link

• For the purpose of stage selection, congestion is detected using equation (5.1) and

real-time capacity is not considered

• Actual queue lengths are propagated downstream in the direction of travel the first

vehicle on an input link

More specifically, let Bli be the set of all vehicles on input link l at the i-th intersection,

and Bji be the set of all vehicles assigned to phase j at the i-th intersection (s.t. Bji ⊂
Bli ⇐⇒ l ∈ j).

We denote by b = {l,m} the b-th vehicle in a queue, which has an input link, l, and

an output link, m. We denote by ybl (k) the position of the b-th vehicle in the queue on

input link l (i.e. ybl = 1 for the vehicle at the front of input link l, ybl = 2 for the second

vehicle in the queue, etc.).

We denote the position ranked queue length for the j-th phase as x̄ji , and calculate it

such that,

x̄ji =
∑
b∈Bji

1

ybl
, l ∈ j (5.16)

The vehicle at the front of the queue on input link l is denoted as b∗l (k) (i.e. y
b∗l
l =

1). The PPC stage selection algorithm combines position ranked queue lengths with

propagated pressures from upstream intersections. The sum of pressures propagated from

upstream intersections to input link l is denoted as r̄li(k). The combined queue length for

the j-th phase, used to find the optimal stage at each intersection is denoted as x̂ji (k) =

x̄ji (k) + r̄li(k), l ∈ j. We refer to the ni × 1 column vector which is the stack of all x̂ji (k)

as x̂i(k).

The pressure generated by input link l at time step k is the number of vehicles on

input link l at time step k. We denote the pressure to be propagated as rl,mi (k) = r̄li(k) +

xli(k), m ∈ b∗l (k). Pressure is always propagated in the direction of travel of the vehicle

at the front of the queue on input link l.

The utility function for the q-th stage is calculated as Jqi (pqi) = x̂Ti (k) · Ei(k) · pqi .
Algorithm 7 provides further explanation and also clarifies the logic which halts the

propagation of pressure along the network.

5.6 Discussion

In this chapter, we presented several decentralised algorithms for intersection control which

rely on V2I communication to allow intersections to pick the best stage and stage duration

at a given time step. These algorithms are intended to maximise the flow of vehicles

through the network, and minimise delays to vehicles in the network. We have created 2

stage selection algorithms based on the principle of work-conservation (with accompanying

84

Chapter 5

Algorithm 7 Pressure Propogation Stage Selection Algorithm
For every intersection
for i ∈ V do

For every phase associated with the intersection
for j in σi do

Calculate the position ranked queue length
x̄ji ←

∑
b∈Bj

i

1

yb
l

, l ∈ j

Retrieve upstream pressures for the input link of the j-th phase
r̄li(k)← pressure from upstream links into input link l
if r̄li(k) contains pressures propagated from input link l (i.e. a cycle has formed) then

break
else

Calculate the overall pressure for the phase
x̂ji (k) = x̄ji (k) + r̄li(k), l ∈ j
Get the output link of the vehicle at the front of input link l
if input link l has an empty queue then

rl,mi (k) = 0
else

b∗l (k)← first vehicle in queue on input link l
rl,mi (k) = r̄li(k) + xli(k), m ∈ b∗l (k)

For every intersection
for i ∈ V do

Ei(k) is computed by the intersections
Jqi (pqi) = x̂Ti (k) · Ei(k) · pqi
return Jqi (pqi)

stage duration algorithms) and presented another algorithm which attempts to counter

some of the problems observed in the simulations which now follow.

In Chapter 6 we will present results from simulations in synthetic networks, where we

have tested each of these algorithms in combination. In Chapter 7 we show preliminary

results for our algorithms from simulations of the city of Luxembourg.

85

Chapter 6

Numerical Validation of our

Intersection Control Algorithms in

Synthetic Networks

Here we present results from numerical simulations of the intersection control algorithms

introduced in the previous Chapter. The results are divided over two sections:

In Section 6.2 we compare fixed cycle scenarios, with a mode stage duration of 31

seconds or 15 seconds, with the congestion-aware (algorithm 1) and capacity-aware (al-

gorithm 2) stage selection algorithms in combination with Tmin/Tmax (algorithm 4),

proportional (algorithm 5), and model-based (algorithm 6) stage duration calculation. A

variety of parameters were tested, varying the maximum stage durations and starting stage

durations in the controlled schemes. The resulting figures show the comparison of several

scenarios, which are detailed in Table 6.2. These scenarios allow for the easy comparison

of various combinations of stage selection and stage duration algorithm.

In Section 6.3 we compare the Pressure Propagating Controller (PPC) with two algo-

rithms from the literature. Furthermore, we contrast these results with our findings from

the congestion-aware and capacity-aware algorithms to draw conclusions about which in-

tersection control strategy provides the best performance.

6.1 Simulation Methodology

Simulations were performed using Simulation of Urban Mobility (SUMO), which is an open

source software platform suitable for microscopic traffic simulation [12]. Extensions were

developed in Python which enabled the testing of our stage selection and stage duration

algorithms. The intersection controller connects to the simulation through the SUMO API

TraCI, and can request data such as the queue lengths, and also set the traffic lights in the

simulation (see Figure 6.1). The system clock for each intersection is handled externally

to SUMO, and will cause a stage change when it reaches 0.

87

T. Barker

SUMO

TraCI
Stage

Settings
Sensor
Data

Intersection Controller

(Microsimulation)

(SUMO API)

Stage Selection
Algorithm

Stage Duration
Algorithm

Intersection Clock

Figure 6.1: Simulation architecture demonstrating how the traffic microsimulation (written

in C), connected to our intersection controller with its stage selection and stage duration

algorithms via the SUMO API (TraCI).

We tested the controllers across 3 synthetic network topologies: a lattice network, a

random network, and a small-world network. The random and small-world networks were

created by rewiring the lattice network (following the same methodology mentioned in

Chapter 4). This enabled us to keep the number of nodes and edges constant in each

network, whilst varying the topology.

Table 6.1 shows the number of nodes, edges and traffic light controlled intersections

in each network. Rewiring of the lattice network results in fewer or greater number of

traffic lights required in the network (nodes that go from 3 or more undirected edges to 2

or fewer undirected edges no longer require traffic lights, and vice versa).

Figure 6.2 shows an analysis of the betweenness centrality of nodes in the networks. In

the lattice network (Figure 6.2a). we find a high number of nodes with a high betweenness

centrality, offering many shortest paths throughout the network, especially for cars moving

through the centre of it. In the random network (Figure 6.2b) we observe fewer nodes

with a high betweenness centrality, meaning there are fewer short routes between each

node and more points where bottlenecks might occur. In the small-world network (Figure

6.2c) there is a clear central node with a high betweenness centrality, whilst nodes on the

periphery have a very small betweenness centrality. This can be seen as a way of going

from homogeneously loaded to heterogeneously loaded

In each simulation, cars were generated for a period of 1 hour at a constant rate

ranging from 0.5 to 5 vehicles per second. The trips were generated at randomly between

two nodes with a minimum distance of 900m for any given trip, and routes were calculated

according to Dijkstra’s algorithm [37]. The simulation was ended after 2 hours even if some

vehicles had not completed their journeys. In order to avoid severely delayed vehicles from

failing to register their trip duration (if they had not completed their journey when the

simulation ended) any active vehicles in the network at the end of the simulation were

88

Chapter 6

(a) Lattice (b) Random (c) Small-world

Figure 6.2: Comparison of betweeness centrality in the networks. Larger and darker nodes
have a higher betweeness centrality in the network.

forced to complete their journey, and the time they had spent in the network was taken

as the trip duration. For each simulation, a total of 5 simulations were run at every car

generation rate with a different set of trips, in order to approximate any error in our

results.

Statistics were recorded for the number of vehicles in the network, and the individual

trip time and wait time of each vehicle.

Table 6.1: Network Parameters

Topology Nodes Edges Traffic Lights

Lattice 140 440 100

Random 140 440 101

Small-world 140 440 92

6.1.1 Method for Estimating the Capacity of Roads

The purpose of a work-conserving intersection controller is to avoid servicing empty roads.

However, in the presence of spill-over or gridlock in the outgoing lanes, a work conserving

intersection controller can still be susceptible to a loss of work if green lights are given to

vehicles with nowhere to go. Here we develop the concept of outgoing lane capacity and

its computation.

The capacity is an estimate of the number of vehicles which can be accommodated

by an outgoing lane. The estimate is based upon the length of the road, the length of a

vehicle, and the average gap between vehicles when stopped. There are numerous possible

methods for calculating the value, for example:

• Taking the position of the last vehicle in the queue, and calculating using the re-

89

T. Barker

maining length of road behind that vehicle.

• Assigning a nominal capacity for each road and a nominal capacity-requirement per

vehicle.

• Estimating capacity as a function of road density or occupancy.

However, the key requirements for our estimation were that:

• The estimation should never be above 0 when the road is full (i.e. it should be

conservative)

• The estimation should be feasible through estimated values that might be picked up

by sensors in the road, or by cameras.

In order to fulfil these requirements, it was decided to use a simple estimation of road

length, divided by the mean vehicle length and a constant vehicle gap. The vehicle gap

could then be adjusted to ensure conservative estimates of capacity, and ensure good

operation of the intersection controller.

cji =

⌊
bRoad Lengthc

Mean Vehicle Length + Vehicle Gap

⌋
(6.1)

6.1.2 Performance Metrics Used to Evaluate the Algorithms

We consider 3 metrics when assessing the performance of our queue unlocking controller

and method of stage duration calculation:

• Mean network flow

• Mean trip duration

• Mean waiting time

We consider network flow as the measure of how much traffic can be routed through

the network and is measured in vehicles per hour. The higher the network flow the higher

the capacity of the network. It is calculated such that,

Network Flow =
Num. Completed Journeys

Time Period (Hours)
(6.2)

Mean trip time is measured in minutes and is the average time elapsed between a

vehicles departure and arrival. A reduced travel time represents a tangible benefit to

an individual driver, and so we compare the mean travel time achieved with increasing

numbers of vehicles wishing to use the network.

The mean waiting time is measured in minutes and is calculated as the average time for

which a vehicle is stopped (involuntarily) during its journey. A high waiting time would

likely be perceived as undesirable by the driver, even if it correlated to higher network

flow and a reduced average travel time.

90

Chapter 6

Table 6.2: Selection of Controllers and Parameters Compared in the Figures on Synthetic
Networks

Scenario Uncontrolled Controlled Parameters

Parameters Stage Selection Algorithm Stage Duration Algorithm

Tmin/Tmax Proportional Model Based

Fixed Cycle η̄i Tmin Tmax KP T0 Tmin Tmax

A 31 Congestion-Aware 1 5 55 0.15 30 5 55
B 15 Congestion-Aware 1 5 25 0.15 15 5 25
C 31 Capacity-Aware 1 5 55 0.15 30 5 55
D 15 Capacity-Aware 1 5 25 0.15 15 5 25

We also consider the critical car generation rate, which is the rate at which the number

of vehicles entering the network causes the network to become severely congested and enter

a state of gridlock. We find that this critical car generation rate is significantly modified

when comparing fixed-interval traffic lights and our intersection controller.

6.2 Numerical Analysis of the Congestion-Aware and Capacity-

Aware Stage Selection Algorithms

In Figures 6.3, 6.4 and 6.6, we show the network flow, mean trip duration and mean wait

time for simulations the lattice, random and small-world networks. These figures show the

high-level performance of the fixed-interval and controlled scenarios, such as the effect on

the critical car generation rate. In Figures 6.5 and 6.7 we show more detailed comparison

of small variations in algorithm performance.

We find that our proposed intersection controller greatly improves the performance of

the lattice and random networks, but that in the small-world network the fixed-interval

traffic lights perform better (except for very low car generation rates). Specifically this

relates to higher peak network flow, and shorter trip duration and waiting times.

6.2.1 Flow Through The Network

We find that whilst the network remains uncongested, the mean flow (in vehicles per

hour) increases linearly with the car generation rate, up to some threshold value. Once

the threshold value is reached the mean flow decreases as the car generation rate increases,

indicating that the network has become congested and is unable to function properly (see

Figure 6.3).

Lattice network

We find that in the fixed-interval case we reliably produce a peak flow through the network

of around 5000 cars per hour when using 31 second intervals (Figures 6.3a and 6.3g), and

91

T. Barker

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(a) Scenario A - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(b) Scenario A - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(c) Scenario A - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(d) Scenario B - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(e) Scenario B - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(f) Scenario B - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(g) Scenario C - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(h) Scenario C - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(i) Scenario C - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(j) Scenario D - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(k) Scenario D - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(l) Scenario D - Small-world

Figure 6.3: Car generation rate (vehicles per second) plotted against mean flow through
the network (vehicles per hour). Results are shown for Scenarios A to D (by row) and
three network topologies (by column). The stage selection algorithm and stage duration
parameters are specified by the Scenario. The lines shown are for Tmin/Tmax (purple),
Proportional (maroon) and Model Based (blue) stage duration algorithms. Fixed-cycle
control is shown in black. Standard deviation between simulation runs is shown by the
shaded region.

92

Chapter 6

a slightly lower peak flow of around 4800 when using 15 second intervals (Figures 6.3d

and 6.3j). Comparing the 31-second fixed-interval with the combination of capacity-aware

stage selection and proportional stage duration in Scenario D, we see that the overall

increase in peak flow is 110%.

Random network

We find that using a fixed-interval traffic light controller we reliably produce a peak flows

through the network of around 2100 cars per hour when using 31 second intervals (Fig-

ures 6.3b and 6.3h), and a slightly higher peak flow of around 2700 when using 15 second

intervals (Figures 6.3e and 6.3k). Comparing the 15-second fixed-interval with the com-

bination of capacity-aware stage selection and Tmin/Tmax stage duration (Scenario D)

demonstrates an 85% increase in maximum network flow during the simulation.

Small-world network

In the small-world network, we find that the maximum flows we can achieve are lower

than in both the lattice and random networks. Specifically, the maximum network flow

under a fixed-interval scheme is 1900 vehicles per hour, when using an interval of 31 sec-

onds (Figures 6.4c and 6.3h) or 15 seconds (Figures 6.4f and 6.3l). Comparing either

the 15 or 31-second fixed-interval schemes with the combination of capacity-aware stage

selection and Tmin/Tmax stage duration (Scenario D) demonstrates a 16% increase in

maximum network flow during the simulation. However, in these simulations, the mean

flow dropped dramatically after the maximum flow was reached, and the fixed cycle con-

troller demonstrated greater performance for all simulations above a car generation rate

of 0.7.

6.2.2 Mean Trip Duration

We find that the mean trip duration undergoes small variations as the car generation rate

is varied, up to some critical car generation rate (see Figure 6.5). Past the critical car

generation rate, we find large increases in the mean trip duration, indicative of congestion

and gridlock in the network (see Figure 6.4). This corresponds to the reduction in flow

seen in Figure 6.3. We find that the parameters of the stage duration algorithm impact on

the mean trip duration, even at low car generation rates below the threshold value. Here

we present the mean trip durations found prior to congestion, and the car generation rate

at which we begin to observe very large trip durations.

Lattice network

We find that for a fixed-interval scheme of 30 second intervals there is a mean trip duration

of 4.5 to 5 minutes up to a car generation rate of 1.6 (Figures 6.4a and 6.5a). We observe

that for a 15 second cycle there is a slightly higher mean trip duration of 5.75 to 6.75

minutes for car generation rates up to 1.6 (Figures 6.4d and 6.5d). Comparing the best

93

T. Barker

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(a) Scenario A - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(b) Scenario A - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(c) Scenario A - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(d) Scenario B - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90
M

ea
n

Tr
ip

 D
ur

at
io

n

(e) Scenario B - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(f) Scenario B - Small-world

(g) Scenario C - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(h) Scenario C - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90
M

ea
n

Tr
ip

 D
ur

at
io

n

(i) Scenario C - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(j) Scenario D - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(k) Scenario D - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
Tr

ip
 D

ur
at

io
n

(l) Scenario D - Small-world

Figure 6.4: Car generation rate (vehicles per second) plotted against mean trip duration
(minutes). Results are shown for Scenarios A to D (by row) and three network topologies
(by column). The stage selection algorithm and stage duration parameters are specified
by the Scenario. The lines shown are for Tmin/Tmax (purple), Proportional (maroon)
and Model Based (blue) stage duration algorithms. Fixed-cycle control is shown in black.
Standard deviation between simulation runs is shown by the shaded region.

94

Chapter 6

[-1ex]

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0
M

ea
n

Tr
ip

 D
ur

at
io

n

(a) Scenario A - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(b) Scenario A - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(c) Scenario A - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(d) Scenario B - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(e) Scenario B - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(f) Scenario B - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(g) Scenario C - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(h) Scenario C - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0
M

ea
n

Tr
ip

 D
ur

at
io

n

(i) Scenario C - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(j) Scenario D - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(k) Scenario D - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(l) Scenario D - Small-world

Figure 6.5: Close-Up of Figure 6.4 showing performance differences at car generation rates
below the critical threshold. Car generation rate (vehicles per second) plotted against
mean trip duration (minutes). Results are shown for Scenarios A to D (by row) and
three network topologies (by column). The stage selection algorithm and stage duration
parameters are specified by the Scenario. The lines shown are for Tmin/Tmax (purple),
Proportional (maroon) and Model Based (blue) stage duration algorithms. Fixed-cycle
control is shown in black. Standard deviation between simulation runs is shown by the
shaded region.

95

T. Barker

performing fixed-interval scheme with our best performing intersection controller, we find

that in uncongested conditions we reduced tip duration by 22-25 %.

Random network

We find that for a fixed-interval scheme of 30 seconds there is a mean trip duration of 6.5

to 7 minutes up to a car generation rate of 0.7 (Figures 6.4b and 6.5b). We observe that

for a 15 second cycle there is a slightly lower mean trip duration of 5.5 to 6.5 minutes for

car generation rates up to 0.9 (Figures 6.4e and 6.5e). Comparing the best performing

fixed-interval scheme with our best performing intersection controller, we find that in

uncongested conditions we reduced trip duration by 36-38%.

Small-world network

We find that for a fixed-interval scheme of 30 seconds there is a mean trip duration of 6.75

to 7.5 minutes up to a car generation rate of 0.6 (Figures 6.4c and 6.5c). We observe that

for a 15 second cycle there is a slightly lower mean trip duration of 5.5 to 6.25 minutes

for car generation rates up to 0.6 (Figures 6.4f and 6.5f). Comparing the best performing

fixed-interval scheme with our best performing intersection controller, we find that in

uncongested conditions below a car generation rate of 0.7 we reduced tip duration by

32-36%. However, past this point, the benefit is lost, and the network becomes congested

creating high trip durations than for a fixed-interval scheme.

Summary of mean trip duration results

In all simulations, there were only minor differences observed due to the Stage Selection

Algorithm. In contrast, the different Stage Selection Algorithms exhibited individual

behaviours at car generation rates below the critical rate. In the lattice network, we

observe that the model based controller usually exhibits the lowest trip duration for the

smallest car generation rates and that the trip duration increases with the car generation

rate. The proportional algorithm behaves quite differently, giving higher trip durations

for lower car generation rates, which decrease and then increase again as the critical car

generation rate is approached (see Figure 6.5j). The Tmin/Tmax algorithm provides trip

durations somewhere in between the two.

This behaviour may be explained due to the responsiveness of the algorithms. The

model based algorithm predicts the stage duration before it begins, whereas the other

algorithms are adaptive based on historical performance. If the initial stage duration for

the Tmin/Tmax and proportional algorithms is too low or high for the car generation rate,

it will take some time to adapt. It will also perform best when it starts the simulation with

a stage duration which is approximately optimum for the level of traffic in the simulation

(probably some car generation rate between 0 and the critical rate).

96

Chapter 6

6.2.3 Mean Waiting Time

Figures 6.6 and 6.7 show the mean waiting time for vehicles in the network. The waiting

time corresponds to the mean trip time results in each network, and increases in the

waiting time are most likely the biggest contributor to increases in trip time.

Lattice network

We find that for a fixed-interval scheme of 30 seconds there is a mean wait time of 2.25 to

2.75 minutes up to a car generation rate of 1.6 (Figures 6.6a and 6.7a). We observe that

for a 15 second cycle there is a slightly higher mean wait time of 3.25 to 4.25 minutes for

car generation rates up to 1.6 (Figures 6.6d and 6.7d). Comparing the best performing

fixed-interval scheme with our best performing intersection controller, we find that in

uncongested conditions we reduced wait time by 56-54%.

Random network

We find that for a fixed-interval scheme of 30 seconds there is a mean wait time of 4.0

to 4.25 minutes up to a car generation rate of 0.7 (Figures 6.6b and 6.7b). We observe

that for a 15 second interval there is a slightly lower mean wait time of 2.75 to 3.75

minutes for car generation rates up to 0.9 (Figures 6.6e and 6.7e). Comparing the best

performing fixed-interval scheme with our best performing intersection controller, we find

that in uncongested conditions we reduced wait time by 64-67%.

Small-world network

We find that for a fixed cycle scheme of 30 seconds there is a mean wait time of 3.75 to

4.5 minutes up to a car generation rate of 0.6 (Figures 6.6c and 6.7c). We observe that

for a 15-second cycle there is a slightly lower mean wait time of 2.75 to 3.25 minutes for

car generation rates up to 0.6 (Figures 6.6f and 6.7f), but this also increases sharply past

this point. Comparing the best performing fixed-interval scheme with our best performing

intersection controller, we find that in uncongested conditions we reduced wait time by

64-69%. However, this reduction is mitigated when we pass the critical car generation rate

for our intersection controller.

Summary of mean waiting time results

Qualitatively the mean wait time for fixed-interval and our various intersection controllers

matched the mean trip duration. This result is unsurprising, as reduced stopping should

result in reduced travel time.

97

T. Barker

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(a) Scenario A - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(b) Scenario A - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(c) Scenario A - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(d) Scenario B - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90
M

ea
n

W
ai

t T
im

e

(e) Scenario B - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(f) Scenario B - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(g) Scenario C - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(h) Scenario C - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90
M

ea
n

W
ai

t T
im

e

(i) Scenario C - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(j) Scenario D - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(k) Scenario D - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0

30

60

90

M
ea

n
W

ai
t T

im
e

(l) Scenario D - Small-world

Figure 6.6: Car generation rate (vehicles per second) plotted against mean wait time
(minutes). Results are shown for Scenarios A to D (by row) and three network topologies
(by column). The stage selection algorithm and stage duration parameters are specified
by the Scenario. The lines shown are for Tmin/Tmax (purple), Proportional (maroon)
and Model Based (blue) stage duration algorithms. Fixed-cycle control is shown in black.
Standard deviation between simulation runs is shown by the shaded region.

98

Chapter 6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(a) Scenario A - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(b) Scenario A - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(c) Scenario A - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(d) Scenario B - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(e) Scenario B - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(f) Scenario B - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(g) Scenario C - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(h) Scenario C - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(i) Scenario C - Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(j) Scenario D - Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(k) Scenario D - Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

M
ea

n
W

ai
t T

im
e

(l) Scenario D - Small-world

Figure 6.7: Close-up images of Figure 6.6 showing in more detail the performance of the
algorithms when the mean wait time is less than 5 minutes (which we consider to mean
the network is not congested).

99

T
.

B
arker

Table 6.3: Summary of controller performance in the synthetic scenarios. The mean trip duration and mean wait time are taken for results below
the critical car generation rate when the network remains uncongested. The best results in the lattice network were gained when using the capacity-
aware stage selection algorithm and the proportional stage duration algorithm in Scenario D. The best results in the random network were gained
from the congestion-aware stage selection algorithm and the Tmin/Tmax stage duration algorithm in Scenario B.

Fixed-Interval Work-Conserving
Interval Tmin/Tmax Proportional Model Based

Metric 15 31 A B C D A B C D A B C D

Lattice

Peak Flow 4800 5000 8000 9800 8000 10000 8700 10250 8700 10500 7000 9800 7000 10000
Mean Trip Duration 5.75-6.75 4.5-5.0 4.25-4.5 3.5-3.75 4.25-4.5 3.5-4.0 4.25-4.75 3.5 4.25-4.75 3.5-3.75 4.25-5.5 3.25-4.0 4.25-5.25 3.25-4.0

Mean Wait Time 3.25-4.25 2.25-2.75 1.75-2.0 1.0-1.25 1.75-2.0 1.0-1.25 1.75-2.25 1.0 1.5-2.25 1.0 2.0-3.0 1.0-1.5 2.0-2.5 1.0-1.5
Crit. Rate 1.6 1.6 2.5 3.0 2.4 3.0 2.7 3.1 2.7 3.2 2.2 3.0 2.0 3.0

Random

Peak Flow 2700 2100 4100 5000 4200 4900 4000 5000 4200 5000 3000 4200 4000 4600
Mean Trip Duration 5.5-6.5 6.5-7.0 4.25-4.75 3.5-4.0 4.25-4.75 3.5-4.0 4.5-4.75 3.5-4.0 4.5-4.75 3.5-4.0 4.5-5.5 3.5-4.0 4.5-5.5 3.5-4.25

Mean Wait Time 2.75-3.75 4.0-4.25 1.5-2.0 1.0-1.25 1.5-2.0 1.0-1.25 2.0 1.0-1.25 2.0 1.0-1.25 2.0-2.75 1.0-1.5 2.0-3.0 1.0-1.5
Crit. Rate 0.9 0.7 1.3 1.5 1.3 1.5 1.2 1.5 1.2 1.4 1.0 1.3 1.1 1.4

Small-world

Peak Flow 1900 1900 1100 1000 1900 2200 1600 1000 2000 1900 900 1000 1600 1900
Mean Trip Duration 5.5-6.25 6.75-7.5 12.75 3.75 4.5-5.0 3.75-4.0 4.5 3.75 4.5-5.0 3.75-4.0 30 3.75 5.0 3.75

Mean Wait Time 2.75-3.25 3.75-4.5 10.25 1.0 1.75-2.25 1.0 1.75 1.0 1.75-2.25 1.0 25 1.0 2.25 1.0
Crit. Rate 0.6 0.6 0.5 0.5 0.6 0.6 0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.5

100

Chapter 6

Table 6.4: Flow comparison between best fixed cycle and best controlled simulation in
synthetic networks.

Network Fixed-Interval Work-Conserving
(Interval) (Stage Duration - Scenario) % Change

Lattice 5000 (31) 10500 (Proportional - D) +110%
Random 2700 (15) 5000 (Tmin/Tmax or Proportional - B) +85%

Small-world 1900 (15) 2200 (Tmin/Tmax - D) +16%

Table 6.5: Mean trip duration comparison between best fixed cycle and best controlled
simulation in synthetic networks.

Network Fixed-Interval Work-Conserving
(Interval) (Stage Duration - Scenario) % Change

Lattice 4.5-5 (31) 3.5-3.75 (Proportional - D) -22% to -25%
Random 5.5-6.5 (15) 3.5-4.0 (Tmin/Tmax or Proportional - B) -36% to -38%

Small-world 5.5-6.25 (15) 3.75-4.0 (Tmin/Tmax - D) -32% to -36%

6.2.4 Discussion of Congestion-Aware and Capacity-Aware Algorithm

Performance

The decentralised intersection controller shows clear improvement over the fixed interval

scheme in the scenarios tested, see Tables 6.4 to 6.6 for a summary of the improvements.

In the lattice and random networks, we find that a fixed cycle is outperformed by our

intersection controller both in terms of the maximum flow in the network and in reducing

the mean trip duration. In the small-world network, we find that an improvement is

only observed for very low car generation rates below 0.6 vehicles per second. At higher

car generation rates all controlled and uncontrolled schemes deteriorate in performance,

however, the controlled schemes do this at a faster rate.

We observe that in all the synthetic networks, the best results were achieved with

parameters that encouraged shorter stage durations (scenarios B and D - see Table 6.3).

In particular, the flow in the lattice network is maximised when combining the propor-

tional stage duration with capacity-aware stage selection algorithm, and parameters from

scenario D. In the random network the best performance is found when combining the

proportional or Tmin/Tmax stage duration algorithm with the congestion-aware stage

selection algorithm, and parameters from scenario B.

Shorter stage durations offer the advantage of allowing the intersection to more fre-

Table 6.6: Mean wait time comparison between best fixed cycle and best controlled sim-
ulation in synthetic networks.

Network Fixed-Interval Work-Conserving
(Interval) (Stage Duration - Scenario) % Change

Lattice 2.25-2.75 (31) 1.0 (Proportional - D) -56% to -64%
Random 2.75-3.75 (15) 1.0-1.25 (Tmin/Tmax or Proportional - B) -64% to -67%

Small-world 2.75-3.25 (15) 1.0 (Tmin/Tmax - D) -64% to -69%

101

T. Barker

Table 6.7: Critical car generation rate comparison between best fixed cycle and best
controlled simulation in synthetic networks.

Network Fixed-Interval Work-Conserving
(Interval) (Stage Duration - Scenario) % Change

Lattice 1.6 (31) 3.2 (Proportional - D) +100%
Random 0.9 (15) 1.5 (Tmin/Tmax - D) +67%

Small-world 0.6 (15) 0.6 (Tmin/Tmax - D) 0%

quently select the next stage. Once a queue has been emptied, the next stage should be

selected as quickly as possible in order to maintain work-conservation at the intersection.

If a full queue can be emptied somewhere between 5 and 25 seconds, then in Scenarios B

and D this value will be settled on faster.

Also, we find that the network topology has a clear impact on the performance of the

network under all controlled and uncontrolled schemes. In the lattice network, we observe

a much higher network flow than in the random network. This result is not surprising when

we compare this with the betweenness centrality of the networks (Figure 6.2). We observe

that the lattice network has many nodes with a relatively even betweenness centrality, but

in the random network, the shortest paths are concentrated through only a few nodes.

The flow in the network is clearly related to the betweenness centrality, as networks with

many possible shortest paths will be less prone to congestion.

The mean trip duration clearly correlates with the network flow. When the network

becomes congested and the flow stops increasing in proportion to the increasing demand,

we see simultaneous drops in network flow and increases in the mean trip time. Similarly,

we find that the mean waiting time directly correlates with the mean trip time, showing

that reducing waiting time at traffic lights will have a direct impact on travel times. We

term the car generation rate at which the mean trip duration increases non-linearly in

relation to the car generation rate a ’critical’ car generation rate (see Table 6.7).

In many of the Figures, we observe some oscillations in the results. Using Figure 6.3a

as an example, we see the proportional stage duration scheme sees a dip in the mean

flow between car generation rates of 2.6 and 2.8, and that past 2.8 the mean flow drops

significantly. We also see that there is a corresponding increase in the standard deviation

between simulations runs at this point. This indicates that at values near to the critical

car generation rate there is some instability between simulation runs and that different

combinations of routes may induce or avoid congestion in the network (which is responsible

for the reduction in mean flow and increase in trip duration). As further evidence of this,

we see that as the car generation rates increase away from the threshold value, the standard

deviation between runs decreases.

102

Chapter 6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(a) Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow
(b) Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

M
ea

n
Fl

ow

(c) Smallworld

Figure 6.8: Car generation rate (vehicles per second) plotted against mean flow through
the network (vehicles per hour) in the 3 network topologies. Intersection controllers shown
are OBB (dark blue), Gregoire et. al. (orange), and PPC (dark green). For comparison
we include the 15 second fixed-cycle controller, and the best performing controller from
our results in section 6.2 (this is either the proportional (maroon) or Tmin/Tmax (purple)
stage duration algorithm from Scenario D depending on the network topology).

6.3 Numerical Analysis of the Pressure Propagating Con-

troller

The PPC was tested alongside two decentralised backpressure algorithms based on the

current literature. A backpressure controller uses the difference in length between the

queue on the input link and the queue on the output link to calculate the ”pressure” of

any particular phase. Stages are selected by minimising pressure at the intersection.

The backpressure algorithms selected were:

Occupancy Based Backpressure (OBB) , which is a backpressure controller where

queue length on a link is measured as the occupancy of the road.

Gregoire et. al. [46] which is congestion-aware backpressure controller. The Gregoire

et. al. algorithm is similar to the OBB algorithm, however, it has modifications

which make it less susceptible to deadlocks.

The PPC requires all intersections to be synchronised for the propagation stage, and

so a fixed stage duration was used for analysis. The same stage duration was used for all

controllers tested here.

We chose the Gregoire et. al. algorithm because it is the first back-pressure algorithm

in the literature (to our knowledge) that takes into account the effect of downstream con-

gestion and uses a normalised back pressure to avoid gridlock situations that are possible

with some algorithms.

Results for network flow, trip duration, and wait time are found in Figures 6.8, 6.9

and 6.10.

6.3.1 Flow Through The Network

In Figure 6.8 we observe the mean flow in the network for these simulations.

103

T. Barker

Lattice network

In the lattice network (Figure 6.8a) the PPC achieves a peak mean flow of around 10150

vehicles per hour, at a car generation rate of 3.1. This outperforms the OBB and Gregoire

algorithms which achieve peaks of 9750 and 9300 respectively. This is a slightly lower

performance than the best controller tested in the previous section. In those simulations,

the capacity-aware stage selection combined with proportional stage duration achieved a

peak flow of 10600 vehicles per hour at a car generation rate of 3.2. All of the algorithms

outperform a fixed-cycle controller by a minimum of 81%.

Random network

In the random network (Figure 6.8b) we find that the performance of the PPC, OBB and

Gregoire algorithms are similar, although the best performance is given by OBB which

achieves a peak flow through the network of 5500 vehicles per hour. The 3 algorithms

outperform not only the fixed-cycle controller but also the best capacity-aware controller

we tested in the random network. In this case the OBB increases flow 9% over our

capacity-aware controller but is only giving an improvement of 1% over the PPC.

Small-world network

In the small-world network (Figure 6.8c the PPC shows the best performance of all of

the algorithms tested. The PPC achieves a peak flow of 2900 vehicles per hour. The

Gregoire algorithm performs comparably well but falls short at 2850 vehicles per hour.

The maximum flow achieved by the PPC represents a 29% increase in peak flow over

that achieved using our best capacity-aware algorithm tested previously and 53% over the

fixed-cycle controller.

Summary of flow results

The backpressure algorithms show increased flow in the random and small-world networks

over the algorithms tested previously, but our previous algorithms perform better in the

lattice network. Unlike the lattice network, the random and small-world networks consist

of a mix of road lengths. The Gregoire algorithm is designed to perform better in networks

with a mix of road lengths, and the algorithm clearly works. The design of our PPC

algorithm seems to further increase traffic flow in these networks.

6.3.2 Mean Trip Duration

In Figure 6.9 we see mean trip duration for the simulations. As in our previous analysis,

we find that an increase in trip duration corresponds to a sudden decrease in flow through

the network. In contrast to the previous intersection controllers, we observe a strictly

monotonically increasing trip duration in relation to increasing car generation rate. We

have used the decrease in network flow as an indicator of congestion in the network, and

we comment on the car generation rate at which this occurs, as well as commenting on

trip duration.

104

Chapter 6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

30.0

60.0

90.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(a) Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

30.0

60.0

90.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(b) Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

30.0

60.0

90.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(c) Smallworld

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(d) Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(e) Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

2.0

3.0

4.0

5.0

6.0

7.0

8.0

M
ea

n
Tr

ip
 D

ur
at

io
n

(f) Small-world

Figure 6.9: Car generation rate (vehicles per second) plotted against mean trip duration
(minutes). Intersection controllers shown are OBB (dark blue), Gregoire et. al. (orange),
and PPC (dark green). For comparison we include the best performing fixed-cycle con-
troller, and the best performing controller from our results in section 6.2 (this is either the
proportional (maroon) or Tmin/Tmax (purple) stage duration algorithm from Scenario D
depending on the network topology).

105

T. Barker

Lattice network

In the lattice network (Figures 6.9a and 6.9d) we find that the PPC achieves a mean

trip duration of 3 minutes at the lowest car generation rate. This is the lowest mean trip

duration achieved by any algorithm tested here. Comparing the mean trip duration for the

PPC to that of our capacity-aware controller for car generation rates below 3.2 (i.e. prior

to the onset of congestion), we find that the PPC gives the lowest mean trip duration up to

a car generation rate of approximately 1.8. Past this value, the capacity-aware algorithm

provides a lower mean trip duration. The OBB and Gregoire algorithms still outperform

the fixed-cycle controller, reducing the mean trip duration by up to 1 minute, however,

they are outperformed by our own algorithms in this network.

Random network

In the random network (Figures 6.9b and 6.9e) we again observe that the PPC provides

the lowest mean trip duration for any of the algorithms for the lowest car generation rates.

The PPC gives a mean trip duration of 3.25 minutes, which is 0.25 minutes less than that

for the next best performing algorithm, OBB. All of our algorithms again outperform

fixed-cycle control, and aside from small variations in trip duration during uncongested

conditions the performance of our algorithms is comparable.

Small-world network

In the small-world network (Figures 6.9c and 6.9f) we find that the trip duration increases

quickly with car generation rate for all algorithms. At the lowest car generation rate

tested the OBB and PPC provide the lowest mean trip duration around 3.5 minutes,

however, similar results are found for the other algorithms. In Figure 6.9c we observe

that our capacity-aware algorithm from the previous section is easily outperformed by the

PPC, OBB, and Gregoire algorithms. Specifically, the PPC outperforms the fixed-cycle

controller in terms of a lower mean trip duration for all car generation rates.

Summary of mean trip duration results

We observe that when compared with algorithms in the previous section, only the PPC

provides any performance benefits in the lattice network. Specifically, PPC provides the

lowest mean trip duration for car generation rates below 1.8. In the random network, we

observe an even stronger improvement of both the PPC and OBB algorithms over our

previous capacity-aware controller in terms of mean trip duration.

Finally, we find that in the small-world network all three algorithms are able to out-

perform our capacity-aware algorithm. We find that at some car generation rates below

a value of 1 the PPC appears to be outperformed by the Gregoire algorithm, but that

at others it outperforms them. In Figure 6.9c we see that in the long term PPC has the

lowest mean trip duration.

106

Chapter 6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

30.0

60.0

90.0

M
ea

n
W

ai
t T

im
e

(a) Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

30.0

60.0

90.0

M
ea

n
W

ai
t T

im
e

(b) Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

30.0

60.0

90.0

M
ea

n
W

ai
t T

im
e

(c) Small-world

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

1.0

2.0

3.0

4.0

5.0

M
ea

n
W

ai
t T

im
e

(d) Lattice

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

1.0

2.0

3.0

4.0

5.0

M
ea

n
W

ai
t T

im
e

(e) Random

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Car Generation Rate

0.0

1.0

2.0

3.0

4.0

5.0

M
ea

n
W

ai
t T

im
e

(f) Small-world

Figure 6.10: Car generation rate (vehicles per second) plotted against mean wait time
(minutes). Intersection controllers shown are OBB (dark blue), Gregoire et. al. (orange),
and PPC (dark green). For comparison we include the best performing fixed-cycle con-
troller, and the best performing controller from our results in section 6.2 (this is either the
proportional (maroon) or Tmin/Tmax (purple) stage duration algorithm from Scenario D
depending on the network topology).

107

T. Barker

6.3.3 Mean Waiting Time

In Figure 6.10 we can see the mean wait time for the simulations. As was observed in the

simulations in the previous section, we find that wait time correlates almost exactly with

trip duration.

Lattice network

In the lattice network (Figures 6.10a and 6.10d) we find that the mean wait time correlates

strongly with the mean trip duration. As with mean trip duration, we find that the best

performance is given by the PPC at the lowest car generation rate, where the mean wait

time is around 0.75 minutes. This reflects a reduction in wait time to around 33% of that

obtained using the fixed-cycle controller. Between a car generation rate of 1.5 and 3.2 our

previous capacity-aware algorithm gives the lowest mean wait time in the network. The

PPC and our capacity-aware algorithm beat both the OBB and Gregoire algorithms.

Random network

In the random network (Figures 6.10b and 6.10e) we observe that the PPC gives the lowest

mean wait time at the lowest car generation rate, however the OBB gives the lowest mean

wait time for car generation rates between 0.8 and 1.6. All of our algorithms outperform

fixed-cycle control.

Small-world network

In the small-world network (Figures 6.10c and 6.10f) we find that the lowest mean wait

times are achieved by the PPC and the Gregoire algorithms. In comparison to the fixed-

cycle scheme we find that all algorithms reduce wait time by at least 50% at the lowest

car generation rate, when compared to the fixed-cycle scheme, however only the new

algorithms presented here (OBB, Gregoire and PPC) are able to consistently beat the

fixed-cycle at all car generation rates.

Summary of mean waiting time results

In general, we find that that mean trip duration correlates with trip duration for all of the

algorithms. An interesting property of the PPC can be observed by studying Figures 6.9d

and 6.10d. We find that the wait time forms a larger part of trip duration in the PPC

than our capacity-aware controller (this can easily be observed by noting that the green

and maroon lines cross at different car generation rates in the two figures). This indicates

that the average road speed is higher using the PPC, and the wait times for some vehicles

must be pushed higher due to this.

6.4 Discussion

In Tables 6.8, 6.9, 6.10 and 6.11 we compare the performance metrics for all of the al-

gorithms presented in this chapter. We use the best case of fixed-interval control and

108

Chapter 6

capacity-aware control for comparison.

The results indicate that the peak capacity of a network can be increased and the mean

trip time reduced using decentralised traffic-responsive intersection control algorithms,

rather than fixed-cycle schemes.

The results also show that different algorithms may be appropriate for use in different

network topologies and with different aims for the network. For example, in the small-

world network, the Gregoire and PPC control outperformed all other algorithms in terms

of maximum flow through the network, mean trip duration, and mean wait time. In

the lattice network, we observed the highest flow in the network using a capacity-aware

controller, but we could achieve shortest trip durations for some car generation rates using

the PPC.

These results indicate that an optimal control strategy might include a combination of

control algorithms, which are switched according to the network topology and/or traffic

conditions.

In the next chapter, we present a preliminary investigation into the performance of

these controllers when simulated in a real-world scenario of the city of Luxembourg.

109

Table 6.8: Flow comparison between OBB, Gregoire, PPC, best fixed-interval and best
Capacity-Aware intersection control

Network OBB Gregoire PPC Fixed-Interval (best) Capacity-Aware (best)
Lattice 9770 9282 10147 5172 10618

Random 5529 5364 5513 2747 5104
Small-world 2665 2845 2923 1878 2220

Table 6.9: Trip duration comparison between OBB, Gregoire, PPC, best fixed-interval
and best Capacity-Aware intersection control

Network OBB Gregoire PPC Fixed-Interval (best) Capacity-Aware (best)
Lattice 3.75-4.5 3.75-4.5 3-4.5 4.5-5 3.5-3.75

Random 3.75-4.5 3.75-4.5 3-4.5 5.5-6.5 3.5-4
Small-world 3.9-12 3.5-12 3.9-14 5.5-6.25 3.75-4

Table 6.10: Mean wait time comparison between OBB, Gregoire, PPC, best fixed-interval
and best Capacity-Aware intersection control

Network OBB Gregoire PPC Fixed-Interval (best) Capacity-Aware (best)
Lattice 1.25-1.5 1.25-2 0.75-1.75 2.25-2.75 1

Random 1.25-2 1.25-2.5 0.75-2.25 2.75-3.75 1-1.25
Small-world 1.25-9.25 1.25-8.5 1-10 2.75-3.25 1

Table 6.11: Critical car generation rate comparison between OBB, Gregoire, PPC, best
fixed-interval and best Capacity-Aware intersection control

Network OBB Gregoire PPC Fixed-Interval (best) Capacity-Aware (best)
Lattice 2.9 3 3.1 1.6 3.2

Random 1.7 1.7 1.7 0.9 1.5
Small-world 0.8 1.1 1.1 0.6 0.6

Chapter 7

Preliminary Numerical Validation

of Intersection Control Algorithms

in a Real-World Scenario

The results from validation of the intersection control strategies across differing synthetic

network topologies in Chapter 6 showed that network topology and loading had a signifi-

cant impact on the performance of the algorithms. Here we look at a real-world scenario,

with time-varying traffic loads a topology based on the road layout of the city of Luxem-

bourg.

We perform a similar analysis to that found in the previous chapter, firstly testing

a combination congestion-aware and capacity-aware stage selection algorithms with var-

ious stage duration algorithms and various parameter combinations. We compare these

results with the Occupancy Based Backpressure (OBB), Gregoire, and Pressure Propagat-

ing Controller (PPC) algorithms. The results presented are to be taken as a preliminary

investigation of the controller’s performance on a more realistic network and under more

realistic loads, and are therefore subject to far wider deviations than in the synthetic

networks.

7.1 Luxembourg Scenario

The Luxembourg SUMO Traffic (LuST) Scenario is a scenario based on the city of Luxem-

bourg. It was created by Codeca et al [24] (https://github.com/lcodeca/LuSTScenario).

The scenario depicts 24 hours of transport in the city of Luxembourg. The network in-

cludes traffic light locations, roundabouts, a bypass around the city, as well as residential

streets. Further details of the topology are given in Table 7.1. The scenario includes

24 hours of simulated traffic demands, which include through traffic (i.e. highway only

traffic), internal traffic, and traffic travelling between internal and external locations (en-

tering or exiting at the edges of the network). The traffic demand was generated using the

ACTIVITYGEN program which is included as part of the traffic simulator Sumo. ACTIV-

ITYGEN takes information about the network, such as work and residential zones, and

111

T. Barker

generates traffic demands using an activity-based traffic generation model. The scenario

also includes bus routes and a mix of vehicles types. The demand has observable peaks

during rush hours, consistent with expected traffic demands.

We use an 11-hour subset of the full demand for the purposes of our simulations

(see Figure 7.3). Unlike in our synthetic networks, where the car generation rate was

constant, in these simulations the car generation rate varies. The mean car generation

rate throughout the entire simulation is less than 2.5 vehicles per time step, but when

taking into account shorter time periods (such as between 8-9am), the car generation rate

is much higher at 5.6 cars per time step.

We use a subset of the full 24-hour period because it includes hours during which

there is little traffic demand (i.e. early hours) and also a heavy traffic jam towards the

late afternoon, which causes all vehicles to be at a stand still and provides little useful

comparison for any traffic light algorithms (as all vehicle delays will tend towards infinity).

The LuST scenario was chosen as a test scenario because it was both a reasonable

representation of a real European city, including the generated traffic demand which the

authors claim was calibrated using available statistics, and also because its scale means

that the simulations can be run in a reasonable time frame and produce a manageable

amount of data. Other scenarios such as TAPASCologne [105] were considered, but their

immense scale requires considerably more time and computing power, and it was not clear

what could be learned from purely increasing the size of the city being tested.

Table 7.1: Luxembourg Network Topology

Topology Junctions Joining Edges Traffic Lights

Luxembourg 2112 5969 201

112

Chapter 7

Figure 7.1: The Luxembourg network as visualised in the traffic simulator SUMO

Figure 7.2: Luxembourg Network

113

T. Barker

4 6 8 10 12 14
Simulation Hour

0

1

2

3

4

5

6

V
eh

ic
le

s p
er

 ti
m

e
st

ep

Figure 7.3: Traffic demand in the Luxembourg scenario. Blue bars show the mean car

generation rate for each hour, whilst the orange line indicates the mean car generation

rate throughout the 11-hour period. Morning rush-hour is visible at hour 8, and a lunch

time rush-hour is visible at hour 13.

7.1.1 Simulation Set-Up

The scenario is given with two sets of routes, one determined via Dijkstra’s algorithm and

another with a Dynamic User Equilibrium (DUE) determined using Gawron’s method [41].

The nature of our simulation will change the equilibrium in the network, and so we have

not used the DUE routes. Instead, we have used a one-shot dynamic routing method,

which does not give a stochastic user equilibrium, however it allows vehicles to plan at

the start of their journey to avoid unnecessary congestion. We also use several SUMO

processing options which are recommended for running the scenario, and these options

are detailed in Table 7.2. These parameters allow for vehicles to be discarded when they

wait longer than 10 minutes to begin their journey, or ’teleport’ to the next road in their

journey when they have yielded for longer than 10 minutes. These processing options are

useful in complicated scenarios such as this, which can become unrealistically grid-locked

due to a single stuck vehicle. We record statistics for the number of vehicles that do

not start their journey or are teleported. These values are low and comparable across all

simulations. The usefulness of teleportations during simulations and their possible impact

on the results is discussed further in Section 7.4.

We find that for all simulations around 1.2% of vehicles do not start their journey due

to a delayed start.

114

Chapter 7

Table 7.2: Luxembourg Simulation SUMO Simulation Parameters

Parameter Value

ignore-junction-blocker 20
time-to-teleport 600

max-depart-delay 600

7.2 Numerical Validation of Congestion-Aware and Capacity-

Aware Stage Selection in the Luxembourg Scenario

Here we present results obtained for each simulation of 13-hours of traffic demand. We

present results on the average flow through the network, mean trip duration, and mean

wait time.

7.2.1 Mean Flow Through the Luxembourg Network

In Figure 7.4 we observe the mean flow in the network for the duration of the simulation.

We find that the best performance is given by the congestion-aware and capacity-aware

stage selection algorithms when combined with the Tmin/Tmax stage duration algorithm

in scenarios B and D. Both give an average flow through the network of 11228 vehicles per

hour. In comparison to the best performing fixed-cycle controller, this is a 0.6% increase

in flow over the fixed interval scheme. The error bars show deviation in flow between

hours, which is large because the flow through the network varies significantly over the

11-hour period.

7.2.2 Mean Trip Duration for All Vehicles

In Figure 7.5 we present the mean trip duration for all vehicles in the network. We find

that where our intersection controller increased the flow in the network, it also reduced

the mean travel time in the network. In absolute terms, we see a 1.4-minute reduction

in the mean trip duration when comparing a 15-second fixed-cycle controller with the

Tmin/Tmax stage duration algorithm in scenarios B and D. This is equivalent to a 15%

reduction in the mean trip duration. The error bars show the deviation in mean trip

duration for all trips taken over the 11-hour period. Due to the large number of vehicles,

varied journeys distances and changing network conditions over the 11-hour period, we

see that there is a large deviation in mean trip duration between vehicles (and again for

mean wait time which we show in Figure 7.6), however, we reiterate that these results are

preliminary investigations, which show the overall effect of the intersection controllers on

mean trip duration.

7.2.3 Mean Wait Time for All Vehicles

In Figure 7.6 we see the mean wait time in the network. We find that where our intersection

controller reduced trip duration, there is usually a corresponding decrease in the wait

115

T. Barker

1 2 3 4
Control Algorithm

6400
7400
8400
9400

10400
11400
12400
13400
14400
15400
16400

N
et

w
or

k
Fl

ow

(a) Scenario A

1 2 3 4
Control Algorithm

6400
7400
8400
9400

10400
11400
12400
13400
14400
15400
16400

N
et

w
or

k
Fl

ow

(b) Scenario B

1 2 3 4
Control Algorithm

6400
7400
8400
9400

10400
11400
12400
13400
14400
15400
16400

N
et

w
or

k
Fl

ow

(c) Scenario C

1 2 3 4
Control Algorithm

6400
7400
8400
9400

10400
11400
12400
13400
14400
15400
16400

N
et

w
or

k
Fl

ow

(d) Scenario D

Figure 7.4: Mean flow during the simulation for (1) Fixed-cycle (2) Tmin/Tmax (3)
Proportional (4) Model based stage duration. Flow is measured in vehicles per hour.
Note that the y-axis begins at 11000 vehicles per hour. The error bars show standard
deviation over the 13-hour simulation, which reflects that some hours will have had much
higher or lower flows than the mean.

116

Chapter 7

1 2 3 4
Control Algorithm

0
2
4
6
8

10
12
14
16
18

M
ea

n
Tr

ip
 D

ur
at

io
n

(a) Scenario A

1 2 3 4
Control Algorithm

0
2
4
6
8

10
12
14
16
18

M
ea

n
Tr

ip
 D

ur
at

io
n

(b) Scenario B

1 2 3 4
Control Algorithm

0
2
4
6
8

10
12
14
16
18

M
ea

n
Tr

ip
 D

ur
at

io
n

(c) Scenario C

1 2 3 4
Control Algorithm

0
2
4
6
8

10
12
14
16
18

M
ea

n
Tr

ip
 D

ur
at

io
n

(d) Scenario D

Figure 7.5: Mean trip duration during the simulation for (1) Fixed interval (2) Tmin/Tmax
(3) Proportional (4) Model based stage duration. Time is measured in minutes. The
error bars show standard deviation in trip duration for all vehicles. Given the size of the
network and the vehicle loading this reflects that many vehicles experience longer journeys
and hence much longer or shorter trip durations than the mean.

117

T. Barker

1 2 3 4
Control Algorithm

0
1
2
3
4
5
6
7
8

M
ea

n
W

ai
t T

im
e

(a) Scenario A

1 2 3 4
Control Algorithm

0
1
2
3
4
5
6
7
8

M
ea

n
W

ai
t T

im
e

(b) Scenario B

1 2 3 4
Control Algorithm

0
1
2
3
4
5
6
7
8

M
ea

n
W

ai
t T

im
e

(c) Scenario C

1 2 3 4
Control Algorithm

0
1
2
3
4
5
6
7
8

M
ea

n
W

ai
t T

im
e

(d) Scenario D

Figure 7.6: Mean wait time during the simulation for (1) Fixed interval (2) Tmin/Tmax
(3) Proportional (4) Model based stage duration. Time is measured in minutes. The error
bars show the standard deviation in wait time for all vehicles. This reflects that many
vehicles experienced much longer wait times than the mean.

118

Chapter 7

time, however, the absolute reduction in trip duration may be greater than the reduction

in waiting time, indicating an overall improvement in road speed across the network.

When comparing a 15-second fixed-cycle controller with the Tmin/Tmax stage duration

algorithm in scenarios B and D, we see a reduction in wait time from 1.3 minutes to 0.7

minutes or a 46% reduction in waiting time. As with mean trip duration, the deviation

shown by the error bars is caused by the large distribution of differing vehicles journeys

across the network, but these results are intended to give a preliminary overview of the

potential performance gains of our intersection controller.

7.3 Numerical Validation of the Propagating Pressure Con-

troller in the Luxembourg Scenario

Simulations were run for the PPC, OBB and Gregoire algorithms in order to compare them

with fixed-cycle control, and our other stage selection and stage duration algorithms. As

the Luxembourg network is much larger than the synthetic networks tested in Chapter 5 it

contains many intersections which do not have traffic light control, and these intersections

halt the propagation of pressure in our PPC. For this reason, we tested two versions of

the PPC on the Luxembourg network:

1. Only traffic light controlled intersections have an intersection controller. These in-

tersections measure queues and propagate pressures as per the algorithm. If the next

intersection downstream does not have an intersection controller (i.e. traffic lights),

then propagation is halted.

2. All intersections have an intersection controller. These controllers measure queue

lengths and propagate pressures through the network, however, only intersections

which have traffic lights can use these measurements for stage selection and traffic

light control.

In this section, we first compare the two versions of the PPC, before comparing all of

the algorithms tested in the Luxembourg network against each other.

7.3.1 Comparing the Two Versions of the PPC

The results from simulations of the PPC are shown in Figure 7.7 and summarised in Table

7.3.

In Figure 7.7b we observe that the mean trip duration for all journeys is 9.4 minutes

when only traffic light controlled intersections propagate pressures and that this is reduced

to 8.7 minutes when all intersections can propagate the pressures.

In Figure 7.7c we find that the mean wait time is 2 minutes for the traffic light only ver-

sion of the PPC stage selection algorithm, and reduces to 1.4 minutes when it is extended

to all intersections.

Overall these results demonstrate that communication between all intersections is

preferable for the performance of the PPC, rather than only at traffic light controlled inter-

sections. However, even when all intersections have the ability to propagate queue lengths,

119

T. Barker

1 2
Control Algorithm

6500
7500
8500
9500

10500
11500
12500
13500
14500
15500
16500

N
et

w
or

k
Fl

ow

(a) Flow

1 2
Control Algorithm

0
2
4
6
8

10
12
14
16
18

M
ea

n
Tr

ip
 D

ur
at

io
n

(b) Trip Duration

1 2
Control Algorithm

0
1
2
3
4
5
6
7
8

M
ea

n
W

ai
t T

im
e

(c) Wait Steps

Figure 7.7: Network flow, mean durationwait time during the simulation for (1) Occupancy
Based Backpressure (2) Gregoire Capacity Aware (3) PPC Stage Selection (traffic light
controlled intersections only) (4) PPC State Selection (at all intersections). Error bars
reflect standard deviation from the mean. Due to this being a simulation of varied traffic
loading over 13-hours with different routes and route lengths the error bars show that the
flow from hour to hour, and the experience of many vehicles, differs significantly from the
mean.

Table 7.3: Summary of controller performance in the Luxembourg scenario. Pressure
Propagating Stage Selection and comparison stage selection algorithms.

Metric PPC (traffic light only) PPC (all intersections)

Mean Flow 11159 11194
Mean Trip Duration 9.4 8.7

Mean Wait Time 2.0 1.4

the results are not as promising as found with the Capacity-Aware and Congestion-Aware

stage selection algorithms in combination with the Tmin/Tmax stage duration algorithm.

120

C
h

ap
ter

7

Table 7.4: Summary of controller performance in the Luxembourg scenario for Fixed-Cycle, Congestion-Aware and Capacity-Aware Stage Selection.

Uncontrolled Controlled
Fixed-Cycle Tmin/Tmax Proportional Model Based

Metric 15 31 A B C D A B C D A B C D

Mean Flow 11157 11132 11211 11228 11211 11228 11194 11215 11196 11214 11133 11207 11136 11208
Mean Trip Duration 9.3 9.8 8.2 7.9 8.2 7.9 8.5 8.2 8.4 8.2 9.7 8.4 9.7 8.3

Mean Wait Time 1.3 1.7 0.9 0.7 0.9 0.7 1.1 0.9 0.9 0.8 1.9 1.0 1.9 0.9

Table 7.5: Summary of controller performance in the Luxembourg scenario for all algorithms.

Metric Congestion-Aware Capacity-Aware PPC Occupancy-Based Gregoire
Tmin/Tmax Tmin/Tmax (all intersections) Backpressure Capacity Aware

(τmin = 5, τmax = 25) (τmin = 5, τmax = 25)

Mean Flow 11228 11228 11194 11218 11215
Mean Trip Duration 7.9 7.9 8.7 8.2 8.2

Mean Wait Time 0.7 0.7 1.4 0.7 0.7

121

T. Barker

1 2 3 4 5
Control Algorithm

6500
7500
8500
9500

10500
11500
12500
13500
14500
15500
16500

N
et

w
or

k
Fl

ow

(a) Flow

1 2 3 4 5
Control Algorithm

0
2
4
6
8

10
12
14
16
18

M
ea

n
Tr

ip
 D

ur
at

io
n

(b) Trip Duration

1 2 3 4 5
Control Algorithm

0
1
2
3
4
5
6
7
8

M
ea

n
W

ai
t T

im
e

(c) Wait Steps

Figure 7.8: Network flow, mean durationwait time during the simulation for (1) Occupancy
Based Backpressure (2) Gregoire Capacity Aware (3) PPC Stage Selection (traffic light
controlled intersections only) (4) PPC State Selection (at all intersections). Error bars
reflect standard deviation from the mean. Due to this being a simulation of varied traffic
loading over 13-hours with different routes and route lengths the error bars show that the
flow from hour to hour, and the experience of many vehicles, differs significantly from the
mean.

7.3.2 Comparison of Best Performing Controller in the Luxembourg

Network

Results comparing our congestion-aware and capacity-aware controllers, with the PPC,

Gregoire and OBB algorithms is found in Figure 7.8. In these figures, the PPC has been

implemented so that all intersections propagate pressures.

In Figure 7.8a we observe that the mean flow in the network is similar for all of the

algorithms (see Table 7.5 for exact figures). In Figures 7.8b and 7.8c we observe that the

PPC stage selection algorithm performs considerably less well than the other algorithms.

We find that both the OBB and Gregoire algorithms achieve a mean trip duration of 8.2

minutes and a wait time of 0.7 minutes. This wait time is equal to that found for our

congestion-aware and capacity-aware stage selection algorithms, however, we reduce the

mean trip duration by 0.3 minutes using our algorithms.

7.4 Discussion of the Real World Scenario

In the Luxembourg scenario, we do not observe the same drastic improvement as in the

synthetic scenarios over the best controlled and uncontrolled schemes. Furthermore, the

PPC performs the least well of all the algorithms (in fact it is not notably better than

even the fixed-cycle controller). We believe that this may be caused by the Luxembourg

scenario operating in a region past the critical generation rate for all scenarios. Fine tuning

of the loading may provide cases where the PPC outperforms the other controllers or at

least outperforms the fixed-cycle.

We observe that whilst a reduction in trip duration correlates with a reduction in the

waiting time, the reduction in duration can be often greater than the reduction in wait

time. This indicates that the intersection controller also contributes to the total flow of

vehicles along roads, presumably maintaining a greater average road speed throughout the

122

Chapter 7

network.

It is notable that in Figure 7.8 there is no discernible difference in performance between

congestion-aware and capacity-aware stage selection algorithms. We would have expected

the more sophisticated Capacity-Aware stage selection to perform better, however, as we

found in the synthetic networks there does not seem to be a significant advantage to using

it. Given the much simpler implementation of Capacity-Aware stage selection, it seems

that this would be the preferable algorithm to use.

7.4.1 Investigating the Final State of the Stage Duration Algorithms

In order to understand the variation between the stage duration algorithms, we show a

histogram of the final green times for all of the intersections in the Luxembourg network

in Figure 7.9. Results are shown for scenario D, where all 3 controllers outperformed the

fixed interval control. We observe three distinct distributions of stage durations for each

algorithm.

• In the Tmin/Tmax algorithm we see that the largest group of stage durations are

at the minimum value of 5 seconds (around 36% of all stage durations). There is

a fat-tailed distribution of stage durations up to the maximum value of 25 seconds.

The second largest group is 10 seconds, which is equivalent to a stage being selected

and reduced once (possibly to a local optimum).

• In the proportional algorithm, which is not bounded, we find that the distribution

has a very long tail, with a minimum green time of 0 seconds, and a maximum

green time of 93 seconds. Around 10% of the green times are 15 seconds, which

may indicate that these stages were either never selected or were already at a local

optimum at the end of the simulation.

• The model based algorithm has 96% of the stage durations set at 5 seconds, and the

rest at 25 seconds.

Understanding the stage duration algorithms, and looking at the distributions of their

green times, it appears that the performance may be related to how responsive the stage

durations are to changes in the system.

• The model based stage duration is very responsive to changes in the system. Using

constantly updated rates of inflow and outflow, combined with the current queue

length, it selects the stage duration at the beginning of the stage. This means it

will adapt faster to the current traffic conditions, but it may be too responsive and

does not calculate an error in the green time as with the other two stage duration

algorithms.

• The proportional and Tmin/Tmax stage duration algorithms have some hysteresis.

They will only gradually change to match growing or shrinking queue lengths. As

proportional stage durations are unbounded above 0 they can become very long,

which may give poor performance if the traffic conditions change suddenly.

123

T. Barker

• The Tmin/Tmax stage duration is not as responsive as the model based (it will go

from Tmin to 95% of Tmax in 6 stages), but will respond much faster than the

proportional algorithm and is bounded. The Tmin/Tmax algorithm allows for stage

durations to adjust to changing conditions, but slowly enough that small perturba-

tions in the queue lengths don’t make large changes to the green times.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
0

100

200

300

400

500

600

700

800

900

Figure 7.9: Histogram of green times for the three stage duration controllers in scenario

D: Tmin/Tmax (purple), Proportional (maroon), and Model Based (blue).

7.4.2 The Magnitude and Effect of Teleportations on the Simulation

The effect of teleporting in SUMO, which happens when vehicles collide or are stuck in

one place for too long, is discussed here, as it must be considered whether it can affect

the realism of the simulations. Teleportation can be switched off but it is often necessary

for stopping small simulation artefacts causing unrealistic gridlocks and bottlenecks. As

teleportation may hide cases where vehicles yield for a long time due to the controller

behaviour rather than simulation errors, we provide details of teleportations for compar-

ison. Table 7.6 summarises these statistics. We find that the number of teleportations

per vehicle ranges between 0.004 and 0.007, or in other words between 4 and 7 of every

1000 vehicles teleported once during their trip. The percentage of trips which were can-

celled ranges between 0.83% and 1.46%, or in real terms between 1341 and 2359 vehicles

cancelled their journeys due to waiting too long.

We find that in general, the number of teleportations is lower for better-performing

algorithms, which indicates that the algorithm is performing well, rather than benefiting

from unrealistic simulation behaviour. However, there are some discrepancies. Occupancy

Based Backpressure and Gregoire Capacity-Aware have the lowest number of telepor-

tations (4 and 4.2 per 1000 vehicles respectively) but did not perform as well as the

Capacity-Aware and Congestion-Aware stage selection when combined with Tmin/Tmax

stage duration (4.7 and 4.5 teleportations per 1000 vehicles). Occupancy Base Backpres-

sure also had a lower percentage of cancelled trips (0.83% compares with 0.9 and 1.1%).

124

Chapter 7

The question this raises is whether a difference of 82 additional teleportations (0.7

per 1000 vehicles) and 111 additional vehicle trips (0.07% of the total trips) is enough to

yield a significant difference in the mean trip duration. During the Congestion-Aware &

Tmin/Tmax simulation 159558 vehicles completed journeys. If we assume that the actual

travel time for all of the vehicles less the 82 extra that teleported was 8.2 minutes and that

the teleportations reduced the travel time of the affected vehicles to 0, then we find that

the average travel time would still be 8.196 minutes. We can, therefore, assume that this

is not responsible for the algorithm’s performance. Similarly in order for the difference

in travel to to have occurred due to the additional vehicle trips, either the 111 vehicles

must have added a total of 800 hours to the total travel time for all vehicles, or their

own journeys must have taken 439 minutes on average (in which case they would have

teleported due to waiting). It therefore, seems unlikely that the improved performance of

our algorithm is due to an artefact of the simulation.

It is notable that the algorithms with the longest mean trip duration (using Model

Based stage duration algorithms) had the lowest number of emergency stops. These kinds

of secondary considerations are overlooked when considering the efficiency of the network,

and consideration should be given to whether algorithms which can lead to short stage

durations might lead to accidents if implemented in a real-world network.

125

T
.

B
arker

Table 7.6: Statistics for the number of emergency stops, teleports and cancelled trips in the simulations. Simulations are ordered by mean trip
duration (lowest to highest)

Simulation Emergency Stops Teleports Teleports per 1000 vehicles Cancelled Trips % Cancelled Trips

Congestion-Aware & Tmin/Tmax (τmin = 5, τmax = 25) 766 752 4.7 1452 0.9
Capacity-Aware & Tmin/Tmax (τmin = 5, τmax = 25) 802 711 4.5 1777 1.1
Occupancy Based Backpressure (15s Fixed Interval) 811 670 4.2 1341 0.83

Gregoire Capacity-Aware (15s Fixed Interval) 787 632 4 1547 0.96
Capacity-Aware & Proportional (Kp = 0.15, τ0 = 15) 778 812 5.1 2245 1.39

Congestion-Aware & Tmin/Tmax (τmin = 5, τmax = 55) 666 801 5 2070 1.28
Capacity-Aware & Tmin/Tmax (τmin = 5, τmax = 55) 701 788 5 1838 1.14

Congestion-Aware & Proportional (Kp = 0.15, τ0 = 15) 735 771 4.9 2236 1.39
Capacity-Aware & Model Based (τmin = 5, τmax = 25) 588 786 4.9 1765 1.1
Capacity-Aware & Proportional (Kp = 0.15, τ0 = 30) 693 794 5 2359 1.46

Congestion-Aware & Model Based (τmin = 5, τmax = 25) 549 860 5.4 1603 0.99
Congestion-Aware & Proportional (Kp = 0.15, τ0 = 30) 625 931 5.9 2328 1.44

Propagating Pressure (15s Fixed Interval) 683 1107 7 1803 1.12
Congestion-Aware & Model Based (τmin = 5, τmax = 55) 312 921 5.8 2093 1.3
Capacity-Aware & Model Based (τmin = 5, τmax = 55) 367 949 6 1553 0.96

126

Chapter 8

Conclusions and Future Work

The purpose of this thesis was to explore control strategies for reducing congestion in

road networks, expand them in the direction of decentralised strategies, and present some

analysis of the effect of topology and scale on the performance of these algorithms. We

have presented several such algorithms in routing and intersection control and explored

various network topologies with each.

In the first instance, we proposed that a simple vehicle routing algorithm, which en-

couraged vehicles to take an alternative route if the occupancy of the next road on the

shortest path was above a threshold value. The aim of the algorithm was to prevent the

onset of congestion as vehicles would perform load balancing collaboratively, and that by

finding the correct value for a tuning parameter would balance an individual vehicle’s to

take the shortest route, against the desire of all vehicles to avoid a congested network with

large delays.

The results showed that network topology had a large impact on the capacity of the

network, even when the number of edges in the network was constant. In the lattice

and spiderweb networks, we found that by taking alternative paths based only on the

occupancy of the next road we gained a drastic improvement over routing using only the

shortest path. The algorithm is not sophisticated and extremely easy to implement, but

the load balancing was pronounced across the network for vehicles only using shortest

travel time calculations to find their route (there were no dynamic travel times available

to the vehicles). However, when applied to networks with random or small-world degree

distributions we found that the performance dropped, especially in comparison to a Dy-

namic User Equilibrium (the distribution we expect when users are allowed to pick their

own routes).

We presented an analysis of the finding that in some networks a clearly optimal value

of the tuning parameter α could be identified, and what this indicated about the behaviour

of the algorithm. We found that we could demonstrate logical reasons behind the optimal

value for each network, and the behaviour this would elicit in the vehicles.

The findings of Chapter 4 indicate that a simple load balancing by individual vehicles

is sufficient in some cases to prevent gridlock in the network. The finding is significant

as methods in the literature generally consider that only a central controller is able to

drive traffic towards a more optimal state. As more data becomes available there will

127

T. Barker

undoubtedly be more significant indicators than occupancy which could be used to balance

against estimated travel times in the network.

In our chapters on intersection control, we explored a decentralised algorithm based

on the principle of work-conservation, which had been shown to be effective in the lit-

erature. We developed our own modular control algorithms based on this principle and

tested them on both synthetic networks and a real-world example of Luxembourg. Our

algorithms demonstrate excellent performance compared to fixed-cycles with very little

tuning. Interestingly we also found that different algorithms had qualitatively different

properties, with some giving shorter minimum trip durations, but other algorithms able

to provide a higher maximum flow through the network.

We also found that in our real-world scenario the most sophisticated algorithm (Prop-

agating Pressure Control) performed the least well of our selected algorithms. This ran

counter-intuitive to our expectations from results in the synthetic networks and high-

lighted the issue of translating results from synthetic networks into reality. However, our

results were not completely surprising, in that an algorithm which had been promising in

the lattice and random networks gave the best performance in the Luxembourg network.

Working on the ideas in this thesis has led to many ideas and scenarios which we were

not able to test or develop due to time and resources. There has also been a huge amount

of development over the last 4 years in the news and research surrounding connected and

driverless vehicles which have given some more context to this area of study.

In the realm of vehicle routing, there are a huge number of cost functions which could be

incorporated into a decentralised routing algorithm. An algorithm in the real-world might

make it’s way to drivers through a service which delivers real-time traffic information such

as Google Maps [87]. Instead of drivers tending towards a user equilibrium (based on taking

the fastest travel time each time), then additional cost functions (such as occupancy) can

be incorporated into the routing decision.

It would also be desirable to explore which observable metrics in the road network

have the highest impact on reducing congestion. A genetic algorithm or similar could be

used to explore a combination of numerous metrics.

In the context of intersection control, we would like to explore the impact of intersection

control on route choice, as it has been suggested that traffic signals may have the effect

of destabilising route choice models in a way not represented in our models. It would be

interesting to study if a controller such as the PPC had the effect of causing drivers to

switch to routes of “higher-pressure” if they were serviced more frequently by traffic lights.

A further area which we would like to develop is the comparison of synthetic scenarios

with the real-world scenarios. The synthetic networks, whilst contrived in some respects,

produce results that are easily comparable. The topologies are clearly defined and the

loading on the network is homogeneous. The Luxembourg scenario in Chapter 7, whilst

realistic in the sense of being a real road network, and loading that could be considered

realistic, presents more challenges. We also found that in such a large network with such a

broad range of trip lengths and network conditions there is a significant deviation between

vehicle trips and the data is much harder to interpret. The results are also very specific

128

Chapter 8

to the network in question.

A comparison with a centralised traffic-responsive strategy such as SCOOT in both

the synthetic and Luxembourg networks would be desirable to determine how close our

decentralised strategies are able to come to matching a centralised one, however the im-

plementation of this is beyond the scope of this thesis due to both funding and time

constraints.

In summary, this thesis has delivered the algorithms and numerical analysis it promised

in the hope of finding control strategies which are more effective than those currently in

use, while also being feasible to implement with current technology.

129

Abbreviations

BPR Beareau of Public Roads.

CSO Constrained System Optimal.

CTM Cell Transmission Model.

DRA Decentralised Routing Algorithm.

DSO Dynamic System Optimal .

DTA Dynamic Traffic Assignment .

DUA Dynamic User Assignment .

DUE Dynamic User Equilibrium .

GPS Global Positioning System.

ITS Intelligent Transportation Systems.

LTTR Live Travel Time Routing.

LWR Lighthill, Whitham and Richards.

O-D Origin-Destination .

OBB Occupancy Based Backpressure.

PPC Pressure Propagating Controller.

SO System Optimal .

SSO Static System Optimal .

SUE Static User Equilibrium .

TSP Travelling Salesman Problem.

UE User Equilibrium .

131

T. Barker

V2I Vehicle-to-Infrastructure .

V2V Vehicle-to-Vehicle.

VRP Vehicle Routing Problem.

132

Glossary

Congestion The antithesis of Free-Flow.

Dynamic System Optimal The System Optimal (SO) when the network is time-

varying.

Dynamic User Equilibrium The User Equilibrium (UE) when the network is time-

varying.

Dynamic User Assignment See Dynamic Traffic Assignment (DTA).

Dynamic Traffic Assignment Allocation of routes to vehicles in time-varying networks

in order to reflect driver route choice patterns (i.e. for simulation), or to attempt to

best route traffic.

Free-Flow Traffic is able to flow without obstruction. The flow along a road will increase

linearly with an increase in traffic density or velocity.

Macroscopic Model of road networks based on flows along road and in and out of inter-

sections.

Microscopic Model of road networks based on calculation of individual movements of

vehicles.

Static System Optimal The SO when the network is not time-varying.

Static User Equilibrium The UE when the network is not time-varying.

System Optimal The optimal distribution of vehicles to minimise total travel time in

the network.

User Equilibrium The equilibrium reached when no vehicles can change their route for

a faster journey.

Vehicle to Infrastructure Communication Communications protocol enabling vehi-

cle communication with road infrastructure (e.g. traffic lights).

133

Appendices

135

Appendix A

Futher Details of Optimal Control

Models from Section 2.3.2

A.1 Papagerogiou Model of Network Nodes

A static model of network nodes can be constructed, which describes the splitting of traffic

at each intersection towards destination nodes.

The total flow qnj leaving node n and destined for node j is the sum of the flows

destined for node j flowing on each of the input links m to node n, additionally any traffic

flow originating from node n for node j must be included. Mathematically this is expressed

as,

qnj =
∑
m∈In

QmΓmj + dnj , n ∈ N, j ∈ Sn (A.1)

where In is the set of links entering node n, Qm is the traffic volume leaving link m,

Γmj is the proportion of flow exiting link m which is destined for node j (output compo-

sition rate), and dnj is the traffic demand from node n to node j.

The splitting rate, βmnj , is the proportion of traffic travelling along road m from node

n to node j,

βmnj =
qmnj
qnj

(A.2)

The input composition rate, γmj , is the proportion of flow into link m destined for

node j, such that,

γmj =
qmnj
qm

= βmnj ·
qnj
qm

(A.3)

A.2 Papageorgiou Model of Network Links

Network links are dynamic models which describe the transformation of input flows and

composition rates (qm, γmj) from the node models into output flows and composition rates

137

T. Barker

of the links (Qm, Γmj).

The state space form can broadly be expressed as,

Y(k) = G[x(k),U(k)] (A.4)

x(k + 1) = F[x(k),U(k)] (A.5)

Where the output vector, Y, comprises the output flows and composition rates, and

the input vector , U, comprises the input flows and composition rates. The state vector,

x, is model dependent.

Physical constraints such as capacity can be expressed as inequalities,

H[x(k),U(k)] ≤ 0 (A.6)

A.3 Kachroo Link-Based Model

The link based model closely follows work laid out by Papageorgiou. The conservation of

flow gives the following formulation for the change of traffic density over time, ρ̇m, which

is related to the difference between input flow, qm, and output flow, Qm. The output

flow in turn is related to traffic density, ρm (and road specific constants such as the jam

density, κm, and the maximum inflow, qmax,m), which is common in many models in the

literature.

ρ̇m(t) =
1

∆m
(qm(t)−Qm(t)) (A.7)

Qm(t) = qmax,m(1− exp
ρm
κm) (A.8)

The composition rates are then expressed using either (i) a time delay model s.t.

Γmj(t) = γmj(t − τ), where delay, τ is related to link travel time or (ii) a first order

filter model s.t. Γ̇mj(t) = vm
∆m

(γmj − Γmj), where vm = Qm
ρm

. Kachroo recommends use

of the filter model; the delay model creates an infinite dimensional system, and the filter

model reflects some propagation of the composition rate along the link, which is seen as

representative of real system behaviour.

The measurement function is given by assuming that travel time on a link is given by,

h(x) =
∑
i∈M

∆i · ρi
Qi

, (A.9)

where M is the set of all links in the network.

138

Chapter A

A.4 Kachroo Route-Based Model

Kachroos route-based model uses changes in destination based densities to directly calcu-

late composition rates, such that,

ρ̇mj(t) =
1

∆m
(γmj(t) · qm(t)− Γmj(t) ·Qm(t)), (A.10)

where,

Γmj(t) =
ρmj(t)

ρm(t)
(A.11)

The form of the measurement function is given as,

h(x) =

(∑
i∈M

∆i

)
·

(∑
j∈Si

ρij

)
Qi

, (A.12)

where M is the set of all links in the network, and Si is the set of destination nodes

reachable via link i.

139

T. Barker

140

Appendix B

Notation

B.1 Routing Notation Reference (Chapter 4)

B.1.1 Network Topology

Symbol Description Definition

Q a bounded region Q ∈ R2

G the graph representing the road network G = {V,E}

V the set of m vertices representing junctions V = {1, 2, ...,m}

E
the set of edges representing the roads

connecting junctions
-

vj the j-th junction vj , j ∈ V

(vj , vk)
an arbitrary road between two junctions vj and

vk
(vj , vk) ∈ E

141

T. Barker

B.1.2 Vehicle Properties

Symbol Description Definition

t a continuous time step -

N number of vehicles -

I the set of all vehicles I = {1, 2, ..., N}

si starting position of the i-th vehicle si ∈ Q, i ∈ I

pi(t) the position of the i-th vehicle at time step t pi(t) ∈ Q, i ∈ I

di the destination of the i-th vehicle di ∈ Q, i ∈ I

B.1.3 General Routing Algorithm Description

Symbol Description Definition

J
(j,k)
i

utility function for the i-th vehicle to take the

road (vj , vk) ∈ Ej
J

(j,k)
i = αT ·Φ(j,k)

i

Φ
(j,k)
i

a vector of cost functions associated with the

i-th vehicle taking road (vj , vk)
-

αT
a vector of coefficients associated with each

cost function
-

The road taken is given by,

min
(vj ,vk)∈Ej

J
(j,k)
i (B.1)

142

Chapter B

B.1.4 Metrics

Symbol Description Definition

D(vj , vl)
the shortest travel time between two vertices in

the network
-

Di
minimum expected travel time for the i-th

vehicle
Di = D(si,di)

Ti the actual travel time for the i-th vehicle Ti = T (si,di)

ωi delay experienced by the i-th vehicle ωi = Ti −Di

D̄i the mean expected travel time for all vehicles D̄ = 1
N

∑N
i=1Di

T̄ the mean travel time measured for all vehicles T̄ = 1
N

∑N
i=1 Ti

ω̄(λ)
the mean delay experienced by all vehicles at

vehicle generation rate λ
ω̄ = T̄ − D̄

λ
the vehicle generation rate (number of vehicles

entering the network at each time step)
-

ω̂ the acceptable delay threshold ω̂ = β · D̄

β

the acceptable ratio between minimum

expected travel time for a vehicles journey, and

the actual delay it experienced

β ∈ R+, β ≥ 0

λ̂
maximum car generation rate before delays go

over the acceptable threshold
λ̂ = max{λ : ω̄(λ) ≤ ω̂}

We denote the number of cars entering the network at every time step as λ, and consider

that the mean delay is a function of this, i.e. ω̄ = ω̄(λ). We further define delay as

acceptable if it is less than some delay threshold, termed ω̂, where,

ω̂ = β · D̄, β ∈ R+, β ≥ 0 (B.2)

and note that ω̄ ≤ ω̂ implies that,

T̄ ≤ (1 + β)D̄, β ≥ 0 (B.3)

where β is the acceptable ratio between the minimum expected travel time for a vehicles

journey, and the actual delay it experienced.

143

T. Barker

B.1.5 Road Properties

Symbol Description Definition

L(j,k)(t)
the number of vehicles currently using road

(vj , vk)
-

C(j,k)
the maximum number of vehicles that can fit

onto road (vj , vk)
-

η(j,k)(t)
the percentage of space on road (vj , vk)

occupied by vehicles
η(j,k)(t) = L(j,k)(t)

C(j,k)

B.1.6 Chosen Cost Functions

Symbol Description Definition

φ
(j,k)
i the travel time based cost function φ

(j,k)
i = φ(di, vj , vk)

0 ≤ φ(j,k)
i ≤ 1

ρ(j,k) the occupancy based cost function ρ(j,k) = ρ(η(j,k)(t))

0 ≤ ρ(j,k) ≤ 1

α the tuning parameter in our routing algorithm α ∈ (0, 1]

We calculate J
(j,k)
i s.t.,

J
(j,k)
i =

[
α (1− α)

] [φ(j,k)
i

ρ(j,k)

]
(B.4)

Note that by tuning the control parameter α we can make the vehicle routing choice more

or less sensitive to distance or congestion respectively.

144

Chapter B

B.2 Intersection Control Notation Reference (Chapter 5)

B.2.1 Intersection Topology

Symbol Description Definition

V the set of intersections in the network -

i the i-th intersection i ∈ V

Ii the set of input links of the i-th intersection -

l a single input link l ∈ Ii

Oi the set of output links of the i-th intersection -

m a single output link m ∈ Oi

j

a phase - any allowable movement from an

input link l to an output link m (this may be

referred to as the j-th phase or j-th queue)

j = {l,m}

ni number of phases at the i-th intersection -

σi the set of all phases at the i-th intersection σi = {j1, ..., jni}

145

T. Barker

B.2.2 Queuing Process at Time Step k

Symbol Description Definition

k a discrete time step k = 0, 1, ...

xji (k)
number of vehicles queueing for the j-th phase

at the i-th intersection
-

xli(k)
number of vehicles queueing on the l-th input

link at the i-th intersection
-

xmi (k)
number of vehicles queueing on the m-th

output link at the i-th intersection
-

λji (k)
arrivals to the j-th phase at the i-th

intersection
-

µji
the saturation rate at which vehicles can

depart from the queue (a constant)
-

gji (k)

the status of the traffic light for the j-th phase

at the i-th intersection (1 indicates green, 0

indicates red)

gji (k) ∈ [0, 1]

cmi

capacity of the m-th output link a the i-th

intersection (considered a physical property of

the link)

-

εj

function relating the number of vehicles in the

m-th output link to the capacity of the m-th

output link, where m ∈ j
εj = εj(x

m
i (k), cmi)

(see (B.5))

sji (k)
the service rate for the j-th phase at the i-th

intersection
(see (B.6))

εj(x
m
i (k), cmi) is defined s.t.,

εj(x
m
i (k), cmi) =

{
1 if xmi (k) < cmi

0 otherwise
(B.5)

The service rate is defined s.t.,

sji (k) = gji (k) · εj(xmi (k), cmi) · µji (B.6)

146

Chapter B

Symbol Description Definition

xi(k)
State of the intersection (queue size for each

phase) i.e. a ni × 1 column vector which is the
the stack of all xji (k)

-

Pi
the zi × ni stage matrix which is the stack of

all stages in Pi
-

pqi
is the transpose of the q-th row of Pi, which is

an ni × 1 column vector
-

pq,ji
refers to element the j-th row of pqi , which is a

the value of gji for the q-th stage
-

ui(k)
is the control input and is an ni × 1 column

vector
-

ai(k)
is the ni × 1 column vector of arrival rates

(λji (k)) at the i-th intersection
-

Di(k)
is the ni × ni diagonal matrix of saturation

rates (µji) at the i-th intersection
-

Ei(k)
is the ni × ni diagonal matrix of results for the

function εj(x
m
i (k), cmi), where m ∈ j, for all

j ∈ σi
-

si(k)
is the ni × 1 column vector of service rates

(sji (k)) at the i-th intersection
(see (B.7))

B.2.3 General Stage Selection Algorithm Notation

Symbol Description Definition

q
a stage - a combination of gji values for all

phases this may be referred to as the q-th stage
q = {g1

i , ..., g
ni
i }

Pi
the set of all possible stages for the i-th

intersection
-

zi the number of stages in Pi -

ui the control input derived from the set Pi ui ∈ Pi

147

T. Barker

B.2.4 Compact Form Notation

The compact form of the service rate is given s.t.,

si(k) = Ei(k) · (Di · ui(k)) (B.7)

The state space therefore becomes

xi(k + 1) = [xi(k) + ai(k)i(k)− si(k)]+ (B.8)

For example, the state space model of a junction with two queues can be expressed as,[
xj1i (k + 1)

xj2i (k + 1)

]
=

[
xj1i (k)

xj2i (k)

]
+

[
λj1i
λj2i

]
−

[
εj1 0

0 εj2

]
·

([
µj1i 0

0 µj2i

]
·

[
uj1i
uj2i

])
(B.9)

B.2.5 Capacity-Aware Stage Selection Algorithm

Symbol Description Definition

L̃qi (p
q
i)

ni × ni matrix indicating if two phases share

the same output link m during stage pqi
-

ι̃q,ji sum of the elements on the j-th row of L̃qi (p
q
i) -

x̃qi Combined queue lengths x̃qi = L̃qi (p
q
i) · xi

x̃q,ji j-th element of x̃qi relating to the j-th phase -

υ

function relating queue length for the j-th

phase and the capacity of the outgoing link m,

where m ∈ j
υ = υ(x̃q,ji (k), cmi)

(see (B.10))

Υq
i (x̃

q
i)

the ni × 1 column vector which is the stack of

the result of υ(x̃q,ji (k), cmi) for all ni phases
-

Jqi (pqi) utility function (for the q-th stage) Jqi (pqi) = pqi
T ·Υq

i (x̃
q
i)

υ(x̃q,ji (k), cmi) is defined s.t.,

υ(x̃q,ji (k), cmi) =


x̃q,ji (k)

ι̃q,ji
if x̃q,ji (k) < (cmi − xmi (k))

(cmi −xmi (k))

ι̃q,ji
otherwise

(B.10)

where m ∈ j

148

Chapter B

The control input for stage selection is found by maximising the utility function Jqi ,

ui = max
pqi∈Pi

Jqi (pqi) (B.11)

B.2.6 Pressure Propagating Controller (PPC) Stage Selection Algo-

rithm

Symbol Description Definition

Bli
the set of all vehicles on input link l at the i-th

intersection
-

Bji
the set of all vehicles assigned to phase j at the

i-th intersection
Bji ⊂ Bli ⇐⇒ l ∈ j

b
the b-th vehicle in a queue, which has an input

link and an output link
b = {l,m}

ybl (k)

the queue position of the b-th vehicle on input

link l i.e. ybl = 1 for the vehicle at the front of

input link l

-

x̄ji
the position weighted queue length of the j-th

phase at the i-th intersection
x̄ji =

∑
b∈Bji

1
ybl

b∗l (k)
vehicle at the front of of the queue on input

link l i.e. y
b∗l
l = 1

-

r̄li(k)
pressure propagated from upstream

intersections into input link l
-

x̂ji (k)
the queue length for the j-th phase, used to

find the optimal stage at each intersection

x̂ji (k) =

x̄ji (k) + r̄li(k), l ∈ j

x̂i(k)
the ni × 1 column vector which is the stack of

all x̂ji (k)
-

rl,mi (k)

pressure propagated to from input link l to

output link m pressure always propagates in

the direction of travel of the vehicle at the

front of the queue on input link l

rl,mi (k) =

r̄li(k) + xli(k), m ∈ b∗l (k)

Jqi (pqi) utility function (for the q-th stage) Jqi (pqi) = x̂Ti (k) · Ei(k) · pqi

149

T. Barker

B.2.7 General Stage Duration Algorithm Notation

Symbol Description Definition

τ qi (k) the stage duration of the q-th stage -

η̄i
target fraction of vehicles to remove from i-th

intersection during q-th stage
-

δqi (k)
target number of vehicles to remove from i-th

intersection during q-th stage
δqi (k) = η̄i · pqi · xi(k)

γqi

number of vehicles which departed from the

i-th intersection during the q-th stage (i.e.

between the current time step k, and the end

of the stage at time step k + τ qi (k))

γqi = γqi (k, k + τ qi (k))

B.2.8 Tmin/Tmax Stage Duration Algorithm

Symbol Description Definition

τ̄min minimum stage duration -

τ̄max maximum stage duration -

For the Tmin/Tmax stage duration algorithm τ qi (k + τ qi (k)) is calculated s.t.,

τ qi (k + τ qi (k)) =


τqi (k)+τ̄min

2 if δqi (k) < γqi (k + τ qi (k))

τqi (k)+τ̄max

2 if δqi (k) > γqi (k + τ qi (k))

τ qi (k) otherwise

(B.12)

B.2.9 Proportional Stage Duration Algorithm

Symbol Description Definition

βqi estimated error in stage duration (see (B.13))

Kp proportional gain -

150

Chapter B

βqi is calculated s.t.,

βqi =
δqi (k)− γqi (k + τ qi)

δqi (k)
· τ qi (k) (B.13)

For the Proportional stage duration algorithm τ qi (k + τ qi (k)) is calculated s.t.,

τ qi (k + τ qi (k)) = τ qi · β
q
i ·Kp (B.14)

151

Bibliography

[1] M. Abdoos, N. Mozayani, and A. L. C. Bazzan, “Holonic multi-agent system for

traffic signals control,” Engineering Applications of Artificial Intelligence, vol. 26,

no. 5-6, pp. 1575–1587, 2013.

[2] K. Aboudolas, M. Papageorgiou, and E. Kosmatopoulos, “Store-and-forward based

methods for the signal control problem in large-scale congested urban road net-

works,” Transportation Research Part C: Emerging Technologies, vol. 17, no. 2, pp.

163–174, 2009.

[3] K. Aboudolas, M. Papageorgiou, A. Kouvelas, and E. Kosmatopoulos, “A

rolling-horizon quadratic-programming approach to the signal control problem

in large-scale congested urban road networks,” Transportation Research Part C:

Emerging Technologies, vol. 18, no. 5, pp. 680–694, 2010.

[4] K. Aghabayk, M. Sarvi, and W. Young, “A State-of-the-Art Review of Car-

Following Models with Particular Considerations of Heavy Vehicles,” Transport

Reviews, vol. 35, no. 1, pp. 82–105, 2015.

[5] R. Allsop, “SIGSET: A Computer Program for Calculating Traffic Signal Settings,”

Traffic Engineering & Control, vol. 13, no. 2, pp. 58–60, 1971.

[6] R. E. Allsop, “SIGCAP: A computer program for assessing the traffic capacity of

signal-controlled road junctions,” Traffic Engineering and Control, vol. 17, no. 819,

pp. 338–341, 1976.

[7] M. K. Ardakani and L. Sun, “Decremental algorithm for adaptive routing

incorporating traveler information,” Computers & Operations Research, vol. 39,

no. 12, pp. 3012–3020, dec 2012.

[8] J. Aslam, S. Lim, and D. Rus, “Congestion-aware Traffic Routing System

using sensor data,” in 2012 15th International IEEE Conference on Intelligent

Transportation Systems, 2012, pp. 1006–1013.

[9] T. Barker, G. Russo, and M. Di Bernardo, “A modular intersection controller with

adaptive stage selection and duration algorithms,” in 5th IEEE International Con-

ference on Models and Technologies for Intelligent Transportation Systems, MT-ITS

2017 - Proceedings, 2017, pp. 786–791.

153

T. Barker

[10] A. L. C. Bazzan, “A Distributed Approach for Coordination of Traffic Signal

Agents,” Autonomous Agents and Multi-Agent Systems, vol. 10, no. 1, pp. 131–164,

2005.

[11] A. L. C. a. Bazzan, M. a. de Brito do Amarante, and F. B. B. Da Costa,

“Management of Demand and Routing in Autonomous Personal Transportation,”

Journal of Intelligent Transportation Systems: Technology, Planning, and

Operations, vol. 16, no. 1, pp. 1–11, 2012.

[12] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo (Simulation of

Urban Mobility),” in The Third International Conference on Advances in System

Simulation, 2011, pp. 55–60.

[13] M. G. Bell, “Hyperstar: A multi-path Astar algorithm for risk averse vehicle

navigation,” Transportation Research Part B: Methodological, vol. 43, no. 1, pp.

97–107, jan 2009.

[14] M. G. Bell, V. Trozzi, S. H. Hosseinloo, G. Gentile, and A. Fonzone, “Time-

dependent Hyperstar algorithm for robust vehicle navigation,” Transportation

Research Part A: Policy and Practice, vol. 46, no. 5, pp. 790–800, jun 2012.

[15] M. E. Ben-Akiva, S. Gao, Z. Wei, and Y. Wen, “A dynamic traffic assignment

model for highly congested urban networks,” Transportation Research Part C:

Emerging Technologies, vol. 24, pp. 62–82, 2012.

[16] S. Box and B. Waterson, “An automated signalized junction controller that learns

strategies by temporal difference reinforcement learning,” Engineering Applications

of Artificial Intelligence, 2012.

[17] D. Braess, A. Nagurney, and T. Wakolbinger, “On a Paradox of Traffic Planning,”

Transportation Science, vol. 39, no. 4, pp. 446–450, 2005.

[18] Cebr, “The future economic and environmental costs of gridlock in 2030,” INRIX,

Tech. Rep. July, 2014.

[19] I. Chabini and S. Lan, “Adaptations of the A* algorithm for the computation of

fastest paths in deterministic discrete-time dynamic networks,” IEEE Transactions

on Intelligent Transportation Systems, vol. 3, no. 1, pp. 60–74, mar 2002.

[20] C. S. Chang, Performance Guarantees in Communication Networks. London:

Springer-Verlag, 2000.

[21] J. Cheng, W. Wu, J. Cao, and K. Li, “Fuzzy Group Based Intersection Control via

Vehicular Networks for Smart Transportations,” IEEE Transactions on Industrial

Informatics, vol. 3203, no. c, pp. 1–1, 2016.

[22] A. Chow, “System optimal traffic assignment with departure time choice,” Ph.D.

dissertation, University of London, 2007.

154

Chapter C

[23] R. Claes, T. Holvoet, and D. Weyns, “A decentralized approach for anticipatory

vehicle routing using delegate multiagent systems,” IEEE Transactions on Intelligent

Transportation Systems, vol. 12, no. 2, pp. 364–373, 2011.

[24] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST) Scenario:

24 hours of mobility for vehicular networking research,” IEEE Vehicular Networking

Conference, VNC, pp. 1–8, 2016.

[25] R. L. Cruz, “A calculus for network delay: Parts I and II,” IEEE Transactions on

Information Theory, vol. 37, no. I, pp. 114–141, 1991.

[26] C.S-W, “The Cost of Traffic Jams,” 2014. [Online]. Available: http://www.

economist.com/blogs/economist-explains/2014/11/economist-explains-1 [Accessed:

4th April 2017]

[27] C. F. Daganzo, “The Cell Transmission Model. Part I: A Simple Dynamic Repre-

sentation of Highway Traffic,” University of California, Berkeley, Tech. Rep., 1993.

[28] P. Dai, K. Liu, Q. Zhuge, E. H. Sha, V. Chung, S. Lee, and S. H. Son, “A Convex

Optimization Based Autonomous Intersection Control Strategy in Vehicular Cyber-

Physical Systems,” in Intl IEEE Conferences on Ubiquitous Intelligence & Comput-

ing, Advanced and Trusted Computing, Scalable Computing and Communications,

Cloud and Big Data Computing, Internet of People, and Smart World Congress,

2016, pp. 203–210.

[29] J. Dallmeyer, R. Schumann, A. D. Lattner, and I. J. Timm, “Don’t go with the ant

flow: Ant-inspired traffic routing in urban environments,” Journal of Intelligent

Transportation Systems: Technology, Planning, and Operations, vol. 19, no. 1, pp.

78–88, 2015.

[30] G. De Nunzio, G. Gomes, C. Canudas de Wit, R. Horowitz, and P. Moulin, “Arterial

Bandwidth Maximization via Signal Offsets and Variable Speed Limits Control,”

IEEE 54th Annual Conference on Decision and Control, pp. 5142–5148, 2015.

[31] Department for Transportation, “Congestion: A National Issue,” Tech. Rep.

[Online]. Available: http://www.ops.fhwa.dot.gov/aboutus/opstory.htm

[32] C. Diakaki, V. Dinopoulou, A. Kostas, M. Papageorgiou, E. Ben-Shabat, E. Seider,

and A. Leibov, “Extensions and New Applications of the Traffic-Responsive Urban

Control Strategy - Coordinated Signal Control for Urban Networks,” Transportation

Research Record, vol. 1856, pp. 202–211, 2003.

[33] R. Diestel, Graph Theory (Graduate Texts in Mathematics). Springer, 2006.

[34] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,” Theoretical

Computer Science, vol. 344, no. 2-3, pp. 243–278, 2005.

155

T. Barker

[35] K. Dresner and P. Stone, “Multiagent Traffic Management : A Reservation-Based

Intersection Control Mechanism,” in 3rd International Joint Conference on Au-

tonomous Agents and Multiagent Systems, no. July, New York, 2004, pp. 530–537.

[36] ——, “A multiagent approach to autonomous intersection management,” Journal of

Artificial Intelligence Research, vol. 31, pp. 591–656, 2008.

[37] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische

Mathematik, vol. 1, pp. 269–271, 1959.

[38] M. Elhenawy, A. A. Elbery, A. A. Hassan, and H. A. Rakha, “An Intersection Game-

Theory-Based Traffic Control Algorithm in a Connected Vehicle Environment,” in

IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol.

2015-Octob, 2015, pp. 343–347.

[39] A. Ephremides and S. Verdu, “Control and Optimization Methods In Communica-

tion Network Problems,” IEEE Transactions on Automatic Control, vol. 34, no. 9,

pp. 930–942, 1989.

[40] N. H. Gartner, “OPAC: A Demand Responsive Strategy for Traffic Signal Control,”

Transportation Research Record, vol. 906, no. January 1983, pp. 75–81, 1983.

[41] C. Gawron, “An Iterative Algorithm to Determine the Dynamic User Equilibrium

in a Traffic Simulation Model,” International Journal of Modern Physics, vol. 9,

no. 3, pp. 393–407, 1998.

[42] D. C. . Gazis, “Traffic Flow Control : Theory and Applications,” American Scientist,

vol. 60, no. 4, pp. 414–424, 1972.

[43] L. Georgiadis, M. Neely, and L. Tassiulas, “Resource allocation and cross-layer con-

trol in wireless networks,” Foundation and Trends in Networking, vol. 1, no. 1, pp.

1–144, 2006.

[44] P. G. Gipps, “A Behavioural Car Following Model for Computer Simulation,” Trans-

portation Research Part B: Methodological, vol. 15B, no. 2, pp. 105–111, 1981.

[45] R. Gordon and W. Tighe, “Traffic Control Systems Handbook,” Federal Highway

Administration, no. October, pp. 1–367, 2005.

[46] J. Gregoire, X. Qian, E. Frazzoli, A. De La Fortelle, and T. Wongpiromsarn,

“Capacity-aware backpressure traffic signal control,” IEEE Transactions on Con-

trol of Network Systems, vol. 2, no. 2, pp. 164–173, 2015.

[47] H. Guo, Z. Cao, M. Seshadri, J. Zhang, D. Niyato, and U. Fastenrath,

“Routing Multiple Vehicles Cooperatively: Minimizing Road Network Breakdown

Probability,” IEEE Transactions on Emerging Topics in Computational Intelligence,

vol. 1, no. 2, pp. 112–124, 2017.

156

Chapter C

[48] H. Guo, Z. Cao, J. Zhang, D. Niyato, and U. Fastenrath, “Routing Multiple Cars

in Large Scale Networks : Minimizing Road Network Breakdown Probability,” in

IEEE 17th International Conference on Intelligent Transportation Systems, 2014,

pp. 2180–2187.

[49] M. R. Hafner, D. Cunningham, L. Caminiti, and D. Del Vecchio, “Cooperative

Collision Avoidance at Intersections: Algorithms and Experiments,” IEEE

Transactions on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1162–1175,

sep 2013.

[50] F. L. Hall, B. L. Allen, and M. A. Gunter, “Empirical Analysis of Freeway

Flow-Density Relationships,” Transportation Research Part A: Policy and Practice,

vol. 20, no. 3, pp. 197–210, 1986.

[51] P. E. Hart and J. Nils, “Formal Basis for the Heuristic Determination of Minimum

Cost Paths,” IEEE Transactions on Systems and Cybernetics, vol. 4, no. 2, pp.

100–107, 1968.

[52] M. R. Hasan, A. L. C. Bazzan, E. Friedman, and A. Raja, “A Multiagent Solution

to Overcome Selfish Routing In Transportation Networks,” 2016 IEEE 19th Inter-

national Conference on Intelligent Transportation Systems (ITSC), pp. 1850–1855,

2016.

[53] J. Henry, J. Farges, and J. Tuffal, “the Prodyn Real Time Traffic Algorithm,”

Control in Transportation Systems, no. June, pp. 305–310, 1984.

[54] B. Heydecker, “Objectives, stimulus and feedback in signal control of road traffic,”

Journal of Intelligent Transportation Systems, vol. 8, no. 2, pp. 63–76, 2004.

[55] G. Improta and G. E. Cantarella, “Control system design for an individual signalized

junction,” Transportation Research Part B, vol. 18, no. 2, pp. 147–167, 1984.

[56] I. K. Isukapati and G. F. List, “Comparing actuated and bid-based control strate-

gies,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC,

pp. 1516–1521, 2016.

[57] O. Jahn, R. H. Mohring, A. S. Schulz, and N. E. Stier-Moses, “System-Optimal

Routing of Traffic Flows with User Constraints in Networks with Congestion,” Op-

erations Research, vol. 53, no. 4, pp. 600–616, 2005.

[58] X. Ji, C. Shao, and B. Wang, “Stochastic Dynamic Traffic Assignment Model under

Emergent Incidents,” Procedia Engineering, vol. 137, pp. 620–629, 2016.

[59] B. Jiang, “A topological pattern of urban street networks: Universality and pecu-

liarity,” Physica A: Statistical Mechanics and its Applications, vol. 384, pp. 647–655,

2007.

157

T. Barker

[60] P. Kachroo and K. Ozbay, “Modeling of Network Level Traffic Routing Problem

Using Nonlinear H Feedback Control,” Simulation, vol. 10, no. 4, pp. 159–171,

2006.

[61] V. Kanagaraj, G. Asaithambi, C. N. Kumar, K. K. Srinivasan, and R. Sivanandan,

“Evaluation of Different Vehicle Following Models Under Mixed Traffic Conditions,”

Procedia - Social and Behavioral Sciences, vol. 104, pp. 390–401, 2013.

[62] B. Kerner and H. Rehborn, “Experimental Properties of Phase Transitions in Traffic

Flow,” Physical Review Letters, vol. 79, no. 20, pp. 4030–4033, 1997.

[63] B. S. Kerner, “Physics of traffic gridlock in a city,” Physical Review E - Statistical,

Nonlinear, and Soft Matter Physics, vol. 84, no. 4, pp. 1–11, 2011.

[64] ——, “Breakdown minimization principle versus Wardrop’s equilibria for dynamic

traffic assignment and control in traffic and transportation networks: A critical

mini-review,” Physica A: Statistical Mechanics and its Applications, vol. 466, pp.

626–662, 2017.

[65] S. Krauss, “Microscopic Modelling of Traffic Flow: Investigation of Collision Free

Vehicle Dynamics,” Ph.D. dissertation, University of Cologne, 1998.

[66] T. Le, P. Kovacs, N. Walton, H. L. Vu, L. L. H. Andrew, and S. S. P. Hoogendoorn,

“Decentralized signal control for urban road networks,” Transportation Research

Part C: Emerging Technologies, vol. 58, pp. 431–450, 2015.

[67] W. Leutzbach and R. Wiedemann, “Development and Applications of Traffic Sim-

ulation Models at the Karlsruhe Intitut Fur Verkehrwesen,” Traffic Engineering &

Control, vol. 27, no. 5, pp. 270–278, 1986.

[68] M. W. Levin, H. Fritz, and S. D. Boyles, “On Optimizing Reservation-Based Inter-

section Controls,” IEEE Transactions on Intelligent Transportation Systems, vol. 18,

no. 3, pp. 505–515, 2016.

[69] H. Lieu, “Traffic-Flow Theory.” Public Roads, vol. 62, no. 4, pp. 45–47, 1999.

[70] M. J. Lighthill and G. B. Whitham, “On kinematic waves II . A theory of traffic

flow on long crowded roads,” Proceedings of the Royal Society of London. Series A,

Mathematical and Physical Sciences, vol. 229, no. 1178, pp. 317–345, 1955.

[71] S. Lim and D. Rus, “Stochastic distributed multi-agent planning and applications

to traffic,” in Proceedings of IEEE International Conference on Robotics and Au-

tomation, 2012, pp. 2873–2879.

[72] R. Ma, X. J. Ban, and J. S. Pang, “Continuous-time dynamic system optimum for

single-destination traffic networks with queue spillbacks,” Transportation Research

Part B: Methodological, vol. 68, pp. 98–122, 2014.

158

Chapter C

[73] M. Mahut, “An heuristic algorithm for simulation-based dynamic traffic

assignment,” Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.,

pp. 239–244, 2005.

[74] A. P. Masucci, D. Smith, A. Crooks, and M. Batty, “Random planar graphs and the

London street network,” European Physical Journal B, vol. 71, no. 2, pp. 259–271,

2009.

[75] D. K. Merchant and G. L. Nemhauser, “A Model and an Algorithm for the

Dynamic Traffic Assignment Problem,” Transportation Science, vol. 12, no. 3, pp.

183–199, 1978.

[76] P. Mirchandani and L. Head, “A real-time traffic signal control system: Architecture,

algorithms, and analysis,” Transportation Research Part C: Emerging Technologies,

vol. 9, no. 6, pp. 415–432, 2001.

[77] R. Mohan and G. Ramadurai, “State-of-the art of macroscopic traffic flow

modelling,” International Journal of Advances in Engineering Sciences and Applied

Mathematics, vol. 5, no. 2-3, pp. 158–176, 2013.

[78] K. Nagel and M. Schreckenberg, “A Cellular Automaton Model for Freeway Traffic,”

Journal de Physique I France, vol. 2, pp. 2221–2229, 1992.

[79] M. E. J. Newman, “The structure and function of complex networks,” Society for

Industrial and Applied Mathematics, vol. 45, no. 2, pp. 167–256, 2003.

[80] H. Papadimitriou, “the Euclidean Traveling Salesman Problem is NP-Complete,”

Theoretical Computer Science, vol. 4, pp. 237–244, 1977.

[81] M. Papageorgiou, “Dynamic Modelling, Assignment, and Route Guidance in Traffic

Networks,” Transportation Research Part B: Methodological, vol. 240, no. 6, pp.

471–495, 1990.

[82] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang, “Review

of Road Traffic Control Strategies,” Proceedings of the IEEE, vol. 91, no. 12, pp.

2043–2067, 2008.

[83] F. Perronnet, A. Abbas-turki, and A. E. Moudni, “Vehicle Routing through

Deadlock-free Policy for Cooperative Traffic Control in a Network of Intersections:

Reservation and Congestion,” in IEEE 17th International Conference on Intelligent

Transportation Systems, 2014, pp. 2233–2238.

[84] A. Philbrick, “A Short History of the Development of the Gravity Model,” Australian

Road Research, vol. 5, no. 4, pp. 40–54, 1973.

[85] J. S. J. Ren, W. Wang, and S. S. Liao, “Optimal Control Theory in

Intelligent Transportation Systems Research - A Review,” City University

of Hong Kong, Hong Kong, Tech. Rep., 2013. [Online]. Available: http:

//dblp.uni-trier.de/rec/bib/journals/corr/abs-1304-3778

159

T. Barker

[86] P. I. Richards, “Shock Waves on the Highway,” Operations Research, vol. 4, no. 1,

pp. 42–51, 1956.

[87] S. Richmond, “Google threatens satnav with real-time traffic data,” 2012.

[Online]. Available: http://www.telegraph.co.uk/technology/google/9175758/

Google-threatens-satnav-with-real-time-traffic-data.html [Accessed: 20th Septem-

ber 2016]

[88] D. I. Robertson and R. D. Bretherton, “Optimizing networks of traffic signals in real

time–The SCOOT method,” IEEE Transactions on Vehicular Technology, vol. 40,

no. 1 pt 1, pp. 11–15, 1991.

[89] D. Robertson, “TRANSYT: A Traffic Network Study Tool,” Road Research Labora-

tory, vol. 253, 1969.

[90] T. Roughgarden and E. Tardos, “How bad is selfish routing?” Proceedings 41st

Annual Symposium on Foundations of Computer Science, vol. 49, no. 2, pp. 1–26,

2000.

[91] A. Sadek, B. Smith, and M. Demetsky, “Dynamic Traffic Assignment:

Genetic Algorithms Approach,” Transportation Research Record: Journal of the

Transportation Research Board, vol. 1588, no. 971192, pp. 95–103, 1997.

[92] M. Schwager, J. Mclurkin, and D. Rus, “Distributed Coverage Control with Sensory

Feedback for Networked Robots,” Proceedings of Robotics: Science and Systems, pp.

49–56, 2006.

[93] Y. Sheffi, Urban Transportation Networks. Englewoord Cliffs: Prentice-Hall, 1984.

[94] A. G. Sims and K. W. Dobinson, “The Sydney Coordinated Adaptive Traffic (SCAT)

System Philosophy and Benefits,” IEEE Transactions on Vehicular Technology,

vol. 29, no. 2, pp. 130–137, 1980.

[95] Z. Sitavancová and M. Hájek, “Intelligent Transport Systems

Thematic Summary European Commission,” European Commission

DG Energy and Transport, Tech. Rep., 2009. [Online]. Avail-

able: http://www.transport-research.info/Upload/Documents/201002/20100215

125401 19359 TRS IntelligentTransportSystems.pdf [Accessed: 2015-1-10]

[96] H. Spiess and M. Florian, “Optimal strategies: A new assignment model for transit

networks,” Transportation Research Part B: Methodological, vol. 23, no. 2, pp. 83–

102, 1989.

[97] R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli, D. Helbing, and

C. Ratti, “Revisiting Street Intersections Using Slot-Based Systems,” PLOS ONE,

vol. 11, no. 3, pp. 1–9, 2016.

160

Chapter C

[98] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained Queueing

Systems and Scheduling Polocies for Max Throughput in Multihop Wireless Net-

works.Pdf,” IEEE Conference on Decision and Control, vol. 31, no. 1, pp. 2130–2132,

1990.

[99] M. A. P. Taylor and W. Young, Traffic Analysis: New Technology & New Solutions.

Melbourne: Hargreen Publishing Company, 1988.

[100] N. B. Taylor and B. G. Heydecker, “The effect of green time on stochastic queues

at traffic signals,” Transportation Planning and Technology, vol. 37, no. 1, pp. 3–19,

oct 2014.

[101] The Economist, “The Future of Personal Transport: The driverless, car-sharing road

ahead,” 2016. [Online]. Available: https://www.economist.com/news/business/

21685459-carmakers-increasingly-fret-their-industry-brink-huge-disruption [Ac-

cessed: 2nd April 2017]

[102] TomTom International, “TomTom European Traffic Index,” TomTom International,

Tech. Rep., 2014. [Online]. Available: http://www.tomtom.com/en gb/trafficindex/

#/ [Accessed: 2016-10-10]

[103] ——, “TomTom Traffic Index Web Page,” 2017. [Online].

Available: https://www.tomtom.com/en gb/trafficindex/list?citySize=LARGE&

continent=ALL&country=ALL [Accessed: 2016-10-10]

[104] P. Toth and D. Vigo, The Vehicle Routing Problem. Society for Industrial and

Applied Mathematics (SIAM), 2002.

[105] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas, “Generation

and analysis of a large-scale urban vehicular mobility dataset,” IEEE Transactions

on Mobile Computing, vol. 13, no. 5, pp. 1061–1075, 2014.

[106] P. Varaiya, “The Max-Pressure Controller for Arbitrary Networks of Signalized In-

tersections,” in Advances in Dynamic Network Modeling in Complex Transportation

Systems. Springer, 2013, vol. 2, ch. 2, pp. 225–244.

[107] W. S. Vickrey, “Congestion theory and transportation investment,” The American

Economic Review, vol. 59, no. 2, pp. 251–260, 1969.

[108] D. Wagner and T. Willhalm, “Speed-Up Techniques for Shortest-Path Computa-

tions,” STACS 2007, vol. 4393, pp. 23–36, 2007.

[109] N. Wagner, “The dynamic user equilibrium on a transport network : mathematical

properties and economic applications,” Ph.D. dissertation, University of Paris-Est,

2014.

[110] S. Wang, S. Djahel, and J. Mcmanis, “An Adaptive and VANETs-based Next Road

Re-routing System for Unexpected Urban Traffic Congestion Avoidance,” in IEEEE

Vehicular Networking Conference (VNC), 2015, pp. 196–203.

161

T. Barker

[111] ——, “A Multi-Agent Based Vehicles Re-routing System for Unexpected Traffic

Congestion Avoidance,” in IEEE 17th International Conference on Intelligent Trans-

portation Systems, 2014, pp. 2541–2548.

[112] S. Wang, S. Djahel, J. McManis, C. McKenna, and L. Murphy, “Comprehensive

performance analysis and comparison of vehicles routing algorithms in smart cities,”

in Global Information Infrastructure Symposium, 2013, pp. 1–8.

[113] J. G. Wardrop, “Some Theoretical Aspects of Road Traffic Research,” ICE

Proceedings: Engineering Divisions, vol. 1, no. 5, pp. 767–768, 1952.

[114] F. V. Webster, Traffic signal settings. London: H.M.S.O., 1958.

[115] D. Wilkie, J. van den Berg, M. Lin, and D. Manocha, “Self-Aware Traffic

Route Planning,” Association for the Advancement of Artificial Intelligence, pp.

1521–1527, 2011.

[116] T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli, and D. Wang, “Dis-

tributed traffic signal control for maximum network throughput,” IEEE Conference

on Intelligent Transportation Systems, Proceedings, ITSC, pp. 588–595, 2012.

[117] ——, “Distributed traffic signal control for maximum network throughput,” IEEE

Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 588–595,

2012.

[118] N. Xiao, Y. Li, Y. Luo, E. Frazzoli, Y. Wang, and D. Wang, “Vissim simulation for

extended back-pressure traffic signal control strategy,” in Proceedings of the 14th

Intelligent Transport System Asia Pacific Forum (ITS-AP), 2015.

[119] N. Xiao, E. Frazzoli, Y. Li, Y. Luo, Y. Wang, and D. Wang, “Throughput Optimal-

ity of Extended Back-pressure Traffic Signal Control Algorithm,” in Mediterranean

Conference on Control and Automation, 2015, pp. 1059–1064.

[120] J. Y. Yen, “An Algorithm for Finding Shortest Routes from All Source Nodes to a

given Destination in General Networks,” Quarterly of Applied Mathematics, vol. 27,

pp. 526–530, 1970.

[121] W. Yin and X. Yang, “A Totally Astar-based Multi-path Algorithm for the

Recognition of Reasonable Route Sets in Vehicle Navigation Systems,” in 13th

COTA International Conference of Transportation Professionals, vol. 96. Elsevier

B.V., nov 2013, pp. 1069–1078.

[122] G. Zhang, “Measuring the efficiency of network designing,” in First International

Conference, Complex, 2009, pp. 503–513.

[123] A. K. Ziliaskopoulos, “Foundations of Dynamic Traffic Assignment : The Past ,

the Present and the Future,” Networks and Spatial Economics, vol. 1, no. 3, pp.

233–265, 2001.

162

