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We present a semiclassical approach to n-point spectral correlation functions of quantum systems
whose classical dynamics is chaotic, for arbitrary n. The basic ingredients are sets of periodic orbits
that have nearly the same action and therefore provide constructive interference. We calculate
explicitly the first correlation functions, to leading orders in their energy arguments, for both unitary
and orthogonal symmetry classes. The results agree with corresponding predictions from random
matrix theory, thereby giving solid support to the conjecture of universality.

I. INTRODUCTION

According to the Bohigas-Giannoni-Schmit (BGS)
conjecture, put forward 30 years ago [1] (see also [2, 3]),
highly excited energy levels of generic chaotic systems
have universal local spectral statistics. This universal-
ity is captured by the random matrix theory (RMT) ap-
proach to quantum chaos: such statistics are expected
to agree with those of the Gaussian Ensembles, the par-
ticular ensemble (unitary, orthogonal or symplectic) be-
ing determined by the overall symmetries of the system
[4]. For spinless particles, the unitary class corresponds
to systems with broken time-reversal symmetry (TRS),
while the orthogonal class corresponds to systems with
preserved TRS.

Obtaining spectral statistics for a specific system
should be possible within the semiclassical approxima-
tion, by using the periodic orbit theory of the Gutzwiller
trace formula [5] and ergodic properties of long orbits.
Indeed, progress in this direction was made early on in
[6, 7], deriving the leading term in (ε1 − ε2)−1 of the 2-
point spectral correlation function R2(ε1− ε2) by consid-
ering only interference of an orbit with itself (so-called
‘diagonal approximation’). For time-reversal invariant
systems also interference between mutually time-reversed
orbits was taken into account.

Interference between orbits which are not identical up
to time reversal was expected to give higher-order contri-
butions, as conjectured and supported numerically in [8].
This interference started to be accounted for perturba-
tively in the work of Sieber and Richter [9, 10], providing
the next-to-leading term of R2. It was suggested that
the mechanism producing systematic interference is the
existence of ‘encounters’ in long orbits, regions of phase
space where the orbit comes very close to itself, up to
time reversal. This theory allowed the calculation of R2

for all universality classes, at all orders of perturbation
theory [11–13] and even beyond perturbation theory [14–
16].

However, it is the semiclassical derivation of all n-point
correlation functions, denoted Rn, which would embody
the full BGS conjecture. This has so far remained a chal-
lenge because it involves multiplets of correlated periodic
orbits with n different energies. An exception is [17]
where a variant of the diagonal approximation also ac-

counting for non-perturbative effects was evaluated for
the unitary symmetry class, however leaving out pertur-
bative contributions due to encounters. (See also [18]
for the standard diagonal approximation.) Interestingly,
the analogous problem has evolved more rapidly in the
transport setting [19–26], where the semiclassical calcu-
lation of counting statistics requires multiplets of corre-
lated scattering trajectories, but all at the same energy
(but energy correlations in scattering have also been con-
sidered [27, 28]). We also note that for quantum graphs
an understanding of higher-order correlation functions
has been achieved in [29, 30].

In this work we present substantial progress in the
semiclassical calculation of Rn, both for systems with
and without TRS. First, we derive a set of diagrammatic
rules that reduces the problem to the counting of certain
diagrams which in turn, following previous works [13, 23],
we relate to factorizations of permutations. This allows,
in principle, any finite order in perturbation theory to be
obtained for all symmetry classes. We then present the
explicit calculation of the leading orders for the first cor-
relation functions, and show that the results agree with
corresponding predictions from random matrix theory.

II. SPECTRAL CORRELATION FUNCTIONS

A. Definition

Let ρ(E) denote the system’s density of states. This
can be divided into the smooth Weyl part ρ̄, related to
the volume of the energy shell in phase space, and a fluc-
tuating part, ρ(E) = ρ̄(E) + ρfl(E). Then

Rn(ε) =
1

ρ̄n

〈
n∏
i=1

ρ

(
E +

εi
ρ̄

)〉
(1)

is the n-point correlation function expressed in terms
of dimensionless energy differences εi. The brackets de-
note an average with respect to E, over an interval small
enough to neglect variations of ρ̄.

It is easy to relate Rn(ε) to a similar quantity, defined
in terms of only the fluctuating part of the spectral den-
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sity,

R̃n(ε) =
1

ρ̄n

〈
n∏
i=1

ρfl

(
E +

εi
ρ̄

)〉
. (2)

Since by definition ρfl has a vanishing average, we obtain

R̃1 = 0. Thus, we have, for example,

R2(ε1, ε2) = 1 + R̃2(ε1, ε2) (3)

and

R3(ε1, ε2, ε3) = 1+

3∑
j=1

3∑
k>j

R̃2(εj , εk)+R̃3(ε1, ε2, ε3). (4)

B. Results from random matrix theory

Correlation functions for the Gaussian ensembles have
long been studied within random matrix theory, using
different methods (see, e.g. [31–34]). In the regime of
large matrices, the calculation of Rn for the Gaussian
Unitary Ensemble reduces to the calculation of n × n
determinants,

Rn(ε) = det

(
sin[π(εi − εj)]
π(εi − εj)

)
. (5)

For example,

R2(ε1, ε2) = 1−
(

sin[π(ε1 − ε2)]

π(ε1 − ε2)

)2

(6)

= 1 +
2

π2(ε1 − ε2)2
− 2 cos[2π(ε1 − ε2)]

π2(ε1 − ε2)2
. (7)

In general, Rn(ε) can be divided into oscillatory and
non-oscillatory terms, the former containing trigonomet-
ric functions of the variables εi− εj , and the latter being
a Laurent polynomial in these variables.

The semiclassical approach we employ here, based on
the Gutzwiller trace formula, is only able to address the
non-oscillatory terms. More refined approaches, based
on the so-called Riemann-Siegel look-alike formula, have
been employed in order to derive the oscillatory terms.
We believe the approach presented here may be adapted
to this more general setting.

Systems with time-reversal symmetry are modeled by
the Gaussian Orthogonal Ensemble. In that case the
correlation functions are expressible as 2n×2n Pfaffians,

Rn(ε) = Pf

(
D(εi − εj) S(εi − εj)
−S(εi − εj) I(εi − εj)

)
, (8)

Here the matrix consists of 2×2 blocks labelled by i, j =
1 . . . n, and the entries involve the functions

S(x) =
sin(πx)

πx
(9)

and

D(x) =

∫ 1

0

duu sin(πux), I(x) = −
∫ ∞

1

du

u
sin(πux).

(10)
These correlations can also be divided into oscillatory

and non-oscillatory terms, but the latter are now infinite
series in the variables (εi − εj)−1. For example, the non-
oscillatory terms for R2 in this class are

Rno
2 (ε1, ε2) = 1− 1

π2(ε1 − ε2)2
+

3

2π4(ε1 − ε2)4
+· · · (11)

Explicit formulas for n > 2 will be given later, see Eqs.
(49) and (53).

C. Semiclassical Approximation

A semiclassical approach to the problem is justified
since we consider high-lying states. This must start
from the celebrated Gutzwiller trace formula [4, 5], which
asymptotically as ~ → 0 relates ρfl to the isolated and
unstable periodic orbits of the classical dynamics:

ρfl(E) ≈ 1

π~
Re
∑
p

FpT
prim
p eiSp(E)/~, (12)

where Sp and T prim
p are the action and primitive period

of the orbit p, respectively, while Fp is a stability factor.
(Following the notaton of [16], this involves the mon-
odromy matrix and includes the complex Maslov phase
factor). The primitive period coincides with the period
Tp, unless the orbit involves multiple repetitions of a
shorter orbit, in which case the period of the shorter orbit
has to be used. However, for any given range of periods
the number of orbits involving repetitions of shorter ones
is negligible compared to the overall number of orbits,
hence we can replace T prim

p by Tp without affecting the
final result of our theory. Making this replacement and
introducing the Heisenberg time

TH = 2π~ρ̄ (13)

we thus write (12) as

ρfl(E) ≈ 1

TH

(∑
p

FpTpe
iSp(E)/~ + c.c.

)
. (14)

To compute correlation functions, the infinite sum (14)

must be inserted into R̃n, leading to multiple sums over

periodic orbits. For example, R̃2(ε1, ε2) is approximated
by

2

T 2
H

Re

〈∑
p,q

FpF
∗
q TpTqe

i(Sp(E1)−Sq(E2))/~

〉
, (15)

where Ej = E + εj/ρ̄. Crucially, the contributions from
most pairs of orbits will oscillate rapidly as the energy is
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varied and are washed out by the energy average. This
can only be avoided if the action difference is small, giving
the exponent a chance of being stationary with respect
to small changes in E.

In general, inserting the trace formula (14) into R̃n(ε),
Eq. (2), we obtain a multiple sum over periodic orbits.
For each orbit sum we have to take into account the
possibility that the action appears with a positive sign
(corresponding to the initial term in Eq.(14)), or with a
negative sign (corresponding to the complex conjugated

term). It is thus useful to split R̃n(ε) into contributions

R̃J,K(ε) where J actions contribute with a positive sign,
and K = n − J actions contribute with a negative sign.
In terms of these auxiliary quantities, we have

R̃n(ε) =

n∑
J=0

R̃J,n−J(ε) (16)

To obtain a concrete formula for R̃J,K(ε) we first con-
sider the case that the first J actions, associated to the
energy increments ε1, . . . , εJ contribute with a positive
sign. We denote the corresponding orbits by p1, . . . , pJ
and assemble them into a set P . The remaining K ac-
tions, associated to increments εJ+1, . . . , εn and orbits
from Q = {q1, . . . , qK}, contribute with a negative sign.
With the notation

ηk = εJ+k. (17)

for the latter increments we obtain

RJ,K(ε, η) =
1

TnH

〈∑
P,Q

FPF
∗
QTPTQe

i∆S/~

〉
, (18)

with the action difference

∆S =

J∑
j=1

Spj (E + εj/ρ̄)−
K∑
k=1

Sqk(E + ηk/ρ̄). (19)

In order to write the multiple sums in compact form, we
have also defined collective stability factors and period
products as FP =

∏
p∈P Fp and TP =

∏
p∈P Tp.

To obtain R̃J,K(ε) we have to consider all ways of split-
ting the n orbits into J orbits for which the action is
taken with a positive sign and K orbits where it is taken
with a negative sign. This can be done by summing over
all permutations of the n energy increments. This oper-

ation turns R̃n into a symmetric function of all energy
increments; in the following it will be denoted by the op-
erator Symn. However summing over all permutations is
actually too much as this also involves exchanges among
the J energy increments associated to positive signs in
the exponent, and among the K increments associated
to negative signs. To compensate this we have to divide
out the number J !K! if such exchanges and write

R̃J,K(ε) =
1

J !K!
Symn

[
RJ,K(ε, η)

]
, (20)

Given R̃J,K(ε) we can then access R̃n(ε) using (16).
Here, the extreme cases J = 0 and J = n are not allowed
in practice, as in these cases all orbits contribute with
the same sign to ∆S. Hence the absolute value of the
action difference can never be small and the associated
contributions vanish after averaging over the energy. The
simplest examples are thus

R̃2(ε1, ε2) = R̃1,1(ε1, ε2), (21)

and

R̃3(ε1, ε2, ε3) = R̃1,2(ε1, ε2, ε3) + R̃2,1(ε1, ε2, ε3)

= 2ReR̃1,2(ε1, ε2, ε3). (22)

As already argued, averaging over the energy annihi-
lates every summand apart from those with small action
differences, i.e. almost identical cumulative actions of
P and Q. The simplest and important case of identical
orbits will be discussed in the next subsection. The gen-
eral mechanism behind non-trivial action correlations has
been analyzed extensively in previous works [9–14, 16].
This is that each q-orbit must follow closely (up to time
reversal) a certain p-orbit for a period of time. However it
can switch to be close to a different p-orbit (or a different
part of the same p-orbit) in what is called an encounter.
An `-encounter is a region where ` stretches of p-orbits
run nearly parallel (i.e. close in phase space) or anti-
parallel (i.e. mutually time-reversed). The q-orbits then
differ from the p-orbits by differently connecting the end-
points of these encounter stretches. (See Figures 1 and 2
for illustrations.) Outside the encounters the q-orbits are
nearly equal to the p-orbits. In the following the orbit
parts outside the encounters are referred to as links.

D. Diagonal Approximations

The simplest contribution to the average in (18) comes
from the so-called diagonal approximation. For systems
without TRS, this approximation accounts for the case
that all orbits are pairwise equal, i.e. P = Q (for n =
2 this was considered in [6, 7]). This situation is only
possible for J = K and hence even n.

We start by considering two orbits p and q that are
identical apart from having two slightly different ener-
gies Ep = E + ε/ρ̄ and Eq = E + η/ρ̄. We can neglect
differences between the periods Tp and Tq, and between
the stability factors Fp and Fq. For the actions (whose
difference will be divided by ~→ 0) we a have to be more
careful and Taylor expand to linear order, using

∂

∂ε
Sp(E + ε/ρ̄) =

Tp
ρ̄
. (23)

This leads to S(Ep) ≈ S(E) + εTp/ρ̄ and thus ∆S ≈
(ε − η)Tp/ρ̄. The contribution of two identical orbits to
RJ,K can now be evaluated using the Hannay-Ozorio de
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Almeida sum rule [6]. In the notation of [16] this rule
can be written as∑

p

|Fp|2f(Tp) ≈
∫ ∞

0

dT

T
f(T ) (24)

where f represents any function of an orbit that depends
only on its period.

The contribution of identical orbits can now be evalu-
ated as

1

T 2
H

∑
p

|Fp|2T 2
p e
i(ε−η)Tp/ρ̄~ =

1

T 2
H

∫ ∞
0

dTTei(ε−η)T/ρ̄~

= − 1

4π2(ε− η)2
, (25)

where the integral is regularized by adding a small posi-
tive imaginary part to ε. For sets of orbits P and Q that
coincide pairwise a factor of this type is obtained for each
pair of orbits. For time-reversal invariant systems the re-
sult of (25) must be multiplied by 2 to account for pairs
of mutually time-reversed orbits leading to

− 1

2π2(ε− η)2
. (26)

For n > 3 there is also the possibility of partial diago-
nal approximations, in which only a few orbits coincide,
i.e. we may have P ′ = Q′ with P ′ ( P and Q′ ( Q.
The simplest such example is at n = 4 and J = K = 2
meaning that P consists of two orbits p1, p2 and Q con-
sists of two orbits q1, q2. In this case R2,2(ε, η) contains a

contribution, denoted by R
(0)
2,2 from P , Q in which no two

orbits are the same. In addition there is a contribution
from P,Q that share one orbit,

− 1

4π2

(R(0)
1,1(ε2, η2)

(ε1 − η1)2
+
R

(0)
1,1(ε2, η1)

(ε1 − η2)2

+
R

(0)
1,1(ε1, η2)

(ε2 − η1)2
+
R

(0)
1,1(ε1, η1)

(ε2 − η2)2

)
, (27)

obtained by multiplying diagonal terms − 1
4π2(εj−ηk)2 as-

sociated with two coinciding orbits with off-diagonal con-

tributions R
(0)
1,1 accounting for the two remaining orbits.

For each contribution, the off-diagonal factor must in-
volve the energy increments not appearing in the diago-
nal factor. A final contribution arises from the case that
all orbits coincide pairwise.

III. SEMICLASSICAL DIAGRAMMATICS

Using once more (23) we can rewrite (18) as

RJ,K(ε, η) =
(−1)K

(2πi)n

J∏
j=1

∂

∂εj

K∏
k=1

∂

∂ηk
AJ,K(ε, η), (28)

where AJ,K(ε, η) stands for the energy average

AJ,K(ε, η) =

〈∑
P,Q

FPF
∗
Qe

i∆S/~

〉
. (29)

In this Section we consider the situation when there are
no coinciding orbits, i.e. we treat the quantity R

(0)
J,K(ε, η),

and the analogously defined A(0)
J,K(ε, η).

The quantity ∆S has two contributions. The first one
we have already met: the orbits have slightly different
energies. This contribution can be approximated by

J∑
j=1

Tpj εj/ρ̄−
K∑
k=1

Tqkηk/ρ̄. (30)

The second contribution depends on the separation be-
tween the orbit stretches taking part in the encounters.
For an encounter e involving `e stretches, there are `e−1
relative separations. For a system with two degrees of
freedom, each of these can be decomposed into two com-
ponents, pointing along the direction of the stable and
unstable manifolds, denoted by se,m and ue,m. The sec-
ond contribution to the action difference is then obtained
as
∑
e

∑`e−1
m=1 se,mue,m. For details of the derivation, and

the definition of se,m and ue,m, we refer to [13] (based on
[37, 38] for le = 2).

In the semiclassical limit the correlation functions are
dominated by pairs of orbits with action differences at
most of the order ~. As a consequence the separations
in the relevant encounters are very small and the p and
q-orbits are very close inside the encounters as well as
outside. As a consequence we can approximate FQ ≈ FP
and hence FPF

∗
Q ≈ |FP |2.

The sum over the set of correlated trajectories, Q, can
now be replaced by an integral over an ergodic probability
density, w(s, u), determining the likelihood of encounters
with given action difference. For the simplest correlation
function, requiring only two orbits, this was done in detail
in [13] (see the appendix of [35] as well as [36] for the
formulation using derivatives as in Eq. (28)) and yields
(in our present notation)∑

struc

cstruc
(−1)V

(−2πi(ε− η))L−V
, (31)

as a semiclassical approximation to A(0)
1,1(ε, η). Here V is

the total number of encounters and L is the total number
of ‘links’, trajectory pieces connecting encounters.

The summation in (31) is over the possible topolog-
ical structures that the encounters can produce. These
structures are characterized by the number of encounters,
the number of stretches belonging to each encounter, the
way the encounter stretches are distributed among the
orbits, and their ordering along the orbits. For time-
reversal invariant systems they also depend on whether
the encounter stretches point in the same direction or are
time reversed. We will later see that the structures can
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be conveniently described in terms of permutations. The
factor cstruc avoids overcounting due to some subtleties
of the definition of structures that will be discussed at a
later stage.

In the present situation of more general values of J and
K, an analogous calculation can be performed. Previous
works [16] have established that for orbits of periods Tpj a
suitable probability density to find encounters associated
to a given structure and with given stable and unstable
separations is given by

w(s, u) =

∏
j Tpj

∫
dt∏

e Ω`e−1te
. (32)

Here Ω is the volume of the energy shell,

te =
1

λ
ln

c2

minm |se,m|minn |ue,n|
(33)

is the duration of the encounter e, λ is the Lyapunov
exponent of the system, and c is a constant that will be
irrelevant for the final result.

∫
dt denotes a multiple

integral over all times at which the orbits in Q traverse
the encounters, reckoned from a reference traversal. Now
the sum over Q for each given P can be replaced by an
integral over the density w(s, u). Finally, the remain-
ing sum over P is evaluated using the Hannay-Ozorio
de Almeida sum rule (24). The contribution to the sum〈∑

P,Q FPF
∗
Qe

i∆S/~
〉

from each structure is

∫ ∞
0

dTp1
Tp1

...

∫ ∞
0

dTpJ
TpJ

∫ ∏
e

`e−1∏
m=1

dse,mdue,mw(s, u) exp

 i

~

 J∑
j=1

Tpj εj

ρ̄
−

K∑
k=1

Tqkηk
ρ̄

+
∑
e

`e−1∑
m=1

se,mue,m

 .

Luckily, this expression factorizes nicely into contribu-
tions associated to encounters and links. The divisors Tpj
cancel with the corresponding factors in w(s, u). After-
wards the integrals over orbit periods and the integrals
over encounter traversal times in w(s, u) can be trans-
formed into integrals over link durations, which we again
denote by t. The only contribution of a link to the action
difference is due to the different energy increments. A
link that belongs to the orbit pj of P and the orbit qk of
Q gives a contribution t(εj−ηk)/ρ̄ to ∆S. If we integrate
and incorporate as a factor the inverse of the Heisenberg
time, we obtain

T−1
H

∫
dteit(εj−ηk)/(~ρ̄) = − 1

2πi(εj − ηk)
. (34)

The contribution of each encounter to
∑J
j=1 Tpj εj/ρ̄−∑K

k=1 Tqkηk/ρ̄ depends on the numbers of stretches it
involves that form part of the different orbits. We assume
that the encounter involves `j stretches of each of the

orbits pj , and after changing connections it involves ˜̀k
stretches of each of the orbits qk (with

∑
j `j =

∑
k
˜̀
k =

`). Then its contribution to the above sum can be written

as (
∑
j `jεj −

∑
k
˜̀
kηk)te/ρ̄.

To obtain the contribution to A(0)
J,K(ε, η) must also take

into account the remaining part of the action difference

given by
∑
e

∑`e−1
m=1 se,mue,m, the density w(s, u) as well

as factors T `H that will altogether compensate the factor
inserted in the link contribution. When all of this is taken
into account we arrive at a factor

T `H

∫
d`−1s d`−1u

1

Ω`−1te
exp

[
i
∑
m

umsm/~ +
(∑

j

`jεj −
∑
k

˜̀
kηk

)
te/(ρ̄~)

]
≈ 2πi

(∑
j

`jεj −
∑
k

˜̀
kηk

)
(35)

arising from every encounter (where we suppressed the
subscripts e of `, s, and u).

As in previous works, the above integral is computed
by expanding the te-dependent part of the exponential
into a power series. Contributions relevant in the semi-
classical limit arise only from the linear term in that ex-
pansion. They can be calculated by noting that the fac-
tor te is canceled by the divisor te in front of the expo-
nential, and furthermore using

∫
dudseius/~ = 2π~ and

ρ̄ = Ω
(2π~)2 . By contrast, the integral of the leading term

in the expansion leads to a result that vanishes after av-

eraging over the energy, and the higher-order terms are
negligible in the semiclassical limit.

The factor (35) associated with an encounter can also
be written in a slightly different but equivalent and tech-
nically advantageous way. To do so we single out one
of the ` points where the orbit enters this encounter as
the ‘first’. Say this point (and the preceding link) be-
longs to a certain pj and a certain qk. If we assign to the
encounter a factor

2πi(εj − ηk) (36)
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and sum over all choices of first stretches, we obtain the
same result as (35), since in this sum each index j arises

`j times and each index k arises ˜̀k times. Hence, these
two ways of dealing with the encounter factor are equiv-
alent. However, this second method (assigning to the
encounter a quantity which depends on its ‘first’ stretch
and then summing over all possible first stretches) is more
convenient, because the encounter factors become inverse
to link factors and just compensate the links that are the
first to arrive at the encounter.

In line with the above discussion, let Mjk be the num-
ber of times orbits pj and qk run together in a link but are
not the first ones to arrive at an encounter. Then each of
these Mjk links gives a factor − 1

2πi(εj−ηk) , see (34). The

encounter contributions (36) are cancelled apart from a
factor −1 per encounter. Altogether, summation over
structures thus gives the semiclassical approximation

A(0)
J,K(ε, η) =

∑
struc

∏
jk

cstruc
(−1)V

(−2πi(εj − ηk))Mjk
(37)

=
∑
struc

(−1)L

(2iπ)L−V

∏
jk

cstruc z
Mjk

jk . (38)

Here we have denoted the number of encounters by V , the
number of links by L, and used that

∑
jkMjk = L− V .

We have also introduced

zjk =
1

εj − ηk
. (39)

The quantity cstruc will be discussed properly in the next
Sections; in particular, it depends on whether the system
is time-reversal invariant or not.

Finally R
(0)
J,K(ε, η) can be accessed from these results

by performing the derivatives given in (28). If we absorb
these derivatives in

DJ,K =
(−1)K

(2πi)n

J∏
j=1

∂

∂εj

K∏
k=1

∂

∂ηk
, (40)

we can write our semiclassical result for R
(0)
J,K(ε, η) as

DJ,K

[
A(0)
J,K

]
. (41)

IV. STRUCTURES AND PERMUTATIONS,
FOR BROKEN TRS

In order to formalize the concept of a structure, it
is useful to introduce permutations [11–13, 19–22]. We
number the encounter stretches in P , from 1 to L, in such
a way that inside the encounters the trajectories in Q go
from the beginning of stretch i to the end of stretch i+1.
The beginning of the final stretch of each encounter is
then connected to the end of the initial one. This map-
ping can be expressed by a permutation σ. It is useful to

reduce the freedom in ordering the encounters by requir-
ing that longer ones come first. In this way, we associate
with the set of encounters a permutation σ whose cycles
are

σ = (12 · · · `1)(`1 + 1 · · · `1 + `2) · · · , (42)

where `1 ≥ `2 ≥ · · · are the encounter sizes.
On the other hand, we associate with P the permuta-

tion π which takes i to j if there is a link from the end of
stretch i to the beginning of stretch j. Successive appli-
cation of π hence yields the encounter stretches included
in each of the orbits of P . Thus, clearly the cycles of π
correspond to the orbits in P .

Finally, we associate with trajectories Q the permuta-
tion ρ which is the product ρ = πσ. (Here products of
permutations are defined such that when they are applied
to a number the right-most factor is applied first.)

Applying this product to the index of the start point
of an encounter stretch leads first to the end point it
is connected to along Q, and then to the start point of
the stretch following the next link. Repeated application
thus enumerates the start points in the order they are
visited by Q. The cycles of ρ are therefore in one-to-one
relation to the orbits in Q.

Notice that there is still freedom in the relative order
of encounters of the same size. Also, we must choose the
first stretch in each encounter, which will be labelled by
the smallest number. These different choices do not al-
ter the permutation σ, but may alter π and ρ. We will
take into account all possible such choices. It is crucial to
make sure that this does not lead to overcounting of the
contributions to the correlation function. If we denote
the number of encounters with ` stretches by v`, there
are v`! ways of ordering these encounters. To avoid over-
counting, we thus have to divide out v`!. (Note that we
could equivalently have left the ordering of encounters
completely unspecified, and then divided by the facto-
rial V ! of the overall number of encounters.) As already
described earlier, we take into account all choices of a
first stretch inside each encounter. However we have al-
ready modified the contribution of the encounter such
that summation over all these choices leads to the cor-
rect encounter factor derived from semiclassics. Hence
no further corrections are necessary and the factor cstruc

in (41) has to be chosen as

cstruc =
1∏
` v`!

. (43)

The example in Figure 1 can help visualize the per-
mutations we have introduced. In the first diagram, the
encounter permutation is σ = (123), the permutation as-
sociated with the black orbit (the only member of P ) is
π = (132), and the permutation associated with the three
colored (grey) orbits (forming Q) is ρ = πσ = (1)(2)(3).
This diagram has only one possible choice of permuta-
tions, because changing the first stretch does not change
either of the permutations.
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FIG. 1. (color online) Correlated periodic orbits. Encounters
are grossly exaggerated. Orbits in set P are depicted in black
lines, orbits in Q in colored/grey lines. Left diagram has
J = 1, K = 3; only one structure is possible. Middle diagram
has J = K = 2; two structures are possible, one of them
is shown. Right diagram also has J = K = 2; only one
structure.

In the second diagram, with the labels shown in the
figure, we have σ = (12)(34), π = (14)(23) and ρ =
(13)(24). However, there is an equivalent choice of the
permutations π and σ: π = (13)(24) and ρ = (14)(23).
Here the labels of the stretches 3 and 4 are exchanged.
This leads to a different structure that has to be taken
into account separately.

The last diagram also has σ = (12)(34), but it admits
four different choices of the remaining permutations: π =
(123)(4), ρ = (134)(2); π = (124)(3), ρ = (143)(2); π =
(132)(4), ρ = (1)(234); π = (142)(3), ρ = (1)(243).

The permutation σ is fixed once the encounter sizes
are known, and the equation σ = π−1ρ can be seen as a
factorization of σ. As in the final two examples above,
different choices of first stretch inside each encounter pro-
duce different structures if they lead to different factor-
izations. On the other hand, if we exchange e.g. 1 ↔ 3,
2↔ 4 in the middle diagram of Figure 1 this simply ex-
changes the encounters and does not lead to a different
factorization or structure.

The calculation of A(0)
J,K requires factorizations of spe-

cific permutations, of the kind seen in Eq.(42). In these
factorizations, the first factor, π−1, must have J cycles,
while the second factor, ρ, must have K cycles, respec-
tively corresponding to the orbits of P and Q. The fac-
torization must take place in the group of permutations
of L symbols (the number of links), and σ must have V
cycles (the number of encounters). Notice that σ cannot
have fixed points, since encounters have size at least 2.
Therefore, for a given order in perturbation theory, i.e.
for a fixed value of L−V , there exist only a finite number
of factorizations.

Each structure is then characterized by (i) a choice of
the permutations σ, π and ρ subject to these require-
ments, but crucially also (ii) one choice of assigning the
J (K) cycles of π (ρ) to the J (K) orbits in P (Q).

V. STRUCTURES AND PERMUTATIONS, FOR
PRESERVED TRS

The structures arising for time-reversal invariant sys-
tems can also be described in terms of permutations. In
this case we also have to account for the different direc-
tions of motion. The resulting permutations will describe
the connections of the orbits in P and Q as well as their
time-reversed versions.

To define the encounter permutations σ, we arbitrar-
ily single out one preferred direction of motion inside
each encounter. We then label the stretches in that di-
rection of motion (belonging either to the orbits of P
or their time-reversed versions) by consecutive integers.
The time-reversed version of each stretch, going opposite
to the preferred direction, is indicated by the same inte-
ger but with an overbar. So the start of stretch a has the
same position (but opposite sense of motion) as the end
of stretch a, and the end of stretch a coincides with the
beginning of stretch a (again up to sense of motion).

The permutation σ maps the start point of each stretch
to the endpoint it is connected to within Q, i.e., after
switching connections.

As before, the connections of the stretches in the pre-
ferred direction are indicated by cycles (12 · · · `1)(`1 +
1 · · · `1 + `2) · · · . If a stretch connects the start of a to
the end of b, its time-reversed will connect the start of the
time-reversed of b, denoted by b̄, to the end of ā. Hence
each cycle is accompanied by one with all elements barred
and reversed in order, leading to

σ = (12 · · · `1)(`1 + 1 · · · `1 + `2) · · ·
· · · (`1 + `2 · · · `1 + 1)(¯̀

1 · · · 2̄1̄).
(44)

The permutation π determines how the end points of
encounters are connected to start points through links.
π may map indices with bars to indices without or the
other way around; this happens for example if the link
returns to the same encounter but with opposite sense
of motion, or if it leads to a different encounter but the
preferred directions of motion in these encounters are not
aligned. Similarly as above, if π maps a given end point
to a given start, a→ b, it induces the opposite mapping
between the time-reversed versions of these points, b̄→ ā.
(Note that we define a = a.) Hence a cycle of the form,
say, (abc̄) will be accompanied by a second cycle of the
form (cb̄ā). This is the only restriction on the form of π.

As inside each encounter of P (or its time-reversed)
every start point is connected to the end point with the
same index, application of π enumerates the start points
in the order of traversal by P and its time reversed.
Hence every cycle of π will correspond to a periodic orbit
in P or its time reversed. Pairs of cycles like (abc̄) and
(cb̄ā) describe mutually time-reversed orbits.

In analogy to systems without time-reversal invariance,
the product ρ = πσ maps the start point of each en-
counter stretch to the start point of the stretch following
along Q or its time-reversed. The cycles of ρ come in
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pairs where one cycle describes an orbit in Q and the
other one describes its time-reversed version. (The rela-
tion between the cycles of ρ is more complex than for σ
and π, and it does not lead to any further constraints on
the factorizations used.)

In the permutations thus defined, the orbits and their
time-reversals are treated on equal footing. For each pair
of time-reversed orbits described by π there are two pos-
sible choices for the orbit to be included in P . Similarly
for each pair of orbits described by ρ there are two choices
for the orbit to be included in Q. Hence, if we want to
sum over all choices for P and Q, we have to include a
factor 2J+K , where J is the number of orbits in P (half
the number of cycles in π) and K is the number of or-
bits in Q (half the number of cycles in ρ). On the other
hand, for every choice of P,Q we take into account all 2V

ways of fixing preferred directions inside the encounters.
To avoid overcounting, we have to divide out 2V . To-
gether with the division by

∏
` v`! explained earlier, we

thus need a factor

cstruc =
2J+K−V∏

` v`!
. (45)

VI. LEADING ORDERS, BROKEN TRS

Our diagrammatic rule, Eq.(41), can be used for both
unitary and orthogonal universality classes. By con-
structing the simplest diagrams explicitly (or finding the
relevant factorizations), it is possible to obtain the first
orders in perturbation theory.

For the unitary class, corresponding to broken time-
reversal symmetry, the leading order approximation to
Rn, stemming from the diagonal approximation, has
been obtained by Nagao and Müller [17]. It turns out
that this ‘approximation’ is in exact agreement with the
prediction from random matrix theory. Here we show
that the first few perturbative corrections indeed vanish
for the simplest functions.

FIG. 2. (color online) Diagram giving the leading contribu-
tion to R3 (encounters are grossly exaggerated). There is one
orbit, depicted by a dashed line, correlated with two others,
depicted by a full line. (Figure from [16].)

A. 2-point function

The 2-point function has already been the subject of
many papers, the closest one to the present approach
being [13]. We discuss it again briefly.

The difference between the present approach and the
one in [13] is in the concept of structure and in the way
the encounter stretches are numbered. Since there is only
one orbit in the set P , it made sense in [13] to just num-
ber the stretches in the order they were visited by that
orbit (the same convention was also used in [21]). As a
result, this set was always represented by the permuta-
tion Ploop = (12 · · ·L) and structures were identified with
factorizations of this permutation in which one of the fac-
tors was also a single-cycle permutation, representing the
single-orbit set Q.

In this work, we are fixing the encounter permutation
to be of the form of Eq. (42). Therefore, neither of
the single-cycle permutations representing P or Q need
be given by (12 · · ·L). Instead, we define structures in
terms of factorizations of σ into single-cycle factors.

In [13] it was shown that all off-diagonal contributions
to the 2-point function cancel for systems without TRS.
We want to briefly discuss how this plays out in the lead-
ing off-diagonal order with our present conventions. As in
[11] this order is determined by a diagram involving one
3-encounter and a diagram involving two 2-encounters.
The former diagram has one structure described by the
permutations ρ = (123), π = (123), ρ = (132), and the
latter diagram has two structures with σ = (12)(34),
π = (1423), ρ = (1324) and σ = (12)(34), π = (1324),

ρ = (1423). Their contributions to A(0)
11 cancel as the

factor (−1)L∏
` v`! from Eqs. (38) and (43) is equal to −1 for

the first diagram and equal to 1
2 for both structures of

the second diagram.

B. 3-point function

The leading-order correction to the 3-point correlation
function R3 consists in a single diagram, where P con-
tains a single orbit with a single 2-encounter, correlated
with two orbits in the set Q, see Figure 2. This possibility
has a single structure, associated with σ = (12), π = (12),
ρ = (1)(2), i.e. the factorization (12) = (12) · (1)(2). One
of the orbits in Q is always the first to arrive at the en-
counter, so the semiclassical contribution is proportional
to either z11 = (ε1 − η1)−1 or z12 = (ε1 − η2)−1. In any
case, it depends only on two variables. When we act with
the operator D12 ∝ ∂3/∂ε1∂η1∂η2, as required by (41),
the final result vanishes. The same happens if the single
orbit is taken as the only element of Q and the two orbits
are included in P .

This mechanism is quite general. According to (41), we
must take derivatives with respect to all energies. But
when a structure contains an orbit which participates in
only one encounter, and it is the first one to arrive at
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FIG. 3. (color online) Diagrams depicting correlated periodic orbits contributing to the third order perturbation theory
calculation of R3 (encounters are grossly exaggerated). In every case we have one orbit, in black, correlated with two others,
in red and green (grey).

σ π ρ = πσ mult.
(a) (1234) (1243) (142)(3) 3

(1234) (1342) (1)(243) 1
(b) (1234) (1234) (13)(24) 1
(c) (123)(45) (12534) (15)(243) 5

(123)(45) (12435) (14)(253) 1
(d) (123)(45) (13425) (1524)(3) 4

(123)(45) (14352) (1)(2534) 2
(e) (123)(45) (12345) (1324)(5) 3

(123)(45) (12354) (1325)(4) 3
(f) (12)(34)(56) (146235) (136)(245) 6

(12)(34)(56) (145236) (135)(246) 2
(g) (12)(34)(56) (162453) (14)(2635) 18

(12)(34)(56) (162354) (13)(2645) 6
(h) (12)(34)(56) (162345) (13526)(4) 24

(12)(34)(56) (162435) (14526)(3) 24

TABLE I. Structures associated to the diagrams of Figure
3. Encounters are represented by a permutation σ, the black
orbit by π and the other orbits by ρ. The structures marked
in grey give contributions that vanish after taking derivatives.

that encounter, the quantity
∏
jk z

Mjk

jk is independent of
the energy of that orbit, and the derivative vanishes.

The above contribution involved L − V = 1, and a
simple argument involving the parities of permutations
shows that for systems without TRS every second value
of L − V does not have any associated diagrams. (The
parity of a permutation with L elements and C cycles is
given by (−1)L−C . Hence the parities of π, ρ and σ are
given by (−1)L−J , (−1)L−K and (−1)L−V ; using ρ = πσ
one can then show that L− V must be even if J −K is
even and odd otherwise.) Hence the next correction to
R3 arises from L−V = 3. In Figure 3, we sketch the cor-
related sets of periodic orbits that are important in this
case. There are two diagrams with a single 4-encounter.
One of them has four possible choices of permutations,

while the other admits a single choice. There are three
diagrams (altogether 18 choices of permutations) with a
2-encounter and a 3-encounter, and three other diagrams
(altogether 80 choices) with three 2-encounters.

In Table I we present all the permutations/structures
that the diagrams in Figure 3 may have. The diagrams
allow for different choices of permutations that can give
different contributions. In the table we are displaying
one representative choice for each contribution, and we
give the number of overall choices with the same contri-
bution in the final column. For example the additional
choices of permutations for diagram (a) are π = (1324),
ρ = (143)(2) and π = (1423), ρ = (132)(4). The contri-
butions marked in grey are proportional to z3

11 and hence
vanish after taking derivatives. Notice how in all these
structures the permutation ρ has a cycle involving only
numbers which begin a cycle in σ.

The contributions of the remaining structures in Ta-

ble I to A(0)
1,2 are proportional to z2

11z12 or to z11z
2
12, de-

pending on how the energy increments η1 and η2 are as-
signed to the orbits. The result after symmetrization
is proportional to N (z2

11z12 + z11z
2
12). Here N is the

sum over structures taking into account the multiplici-

ties in the table as well as the weight (−1)L∏
` v`! arising from

(38) and (43), with V the total number of permuted el-
ements. The latter weight gives a minus sign for dia-
grams (c) and (e), and a factor 1

6 for diagrams (f) to
(h). It is easy to read off Table I that N is equal to
N = 3 + 1− 5− 4− 3 + 1 + 3 + 4 = 0, as expected.

C. 4-point function

The leading order correction to the 4-point correlation
function has L − V = 2. Let us consider separately the

quantities A(0)
1,3 and A(0)

2,2.
The former has two different contributing diagrams.

One diagram has a single 3-encounter and only one pos-
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σ π ρ = πσ mult.
(a) (123) (13)(2) (12)(3) 1

(123) (12)(3) (1)(23) 1
(123) (1)(23) (13)(2) 1

(b) (12)(34) (134)(2) (123)(4) 2
(12)(34) (143)(2) (124)(3) 2
(12)(34) (1)(234) (132)(4) 2
(12)(34) (1)(243) (142)(3) 2

(c) (12)(34) (13)(24) (14)(23) 1
(12)(34) (14)(23) (13)(24) 1

TABLE II. Structures contributing to T1,2. The structures
marked in grey give contributions that vanish after taking
derivatives.

sible structure; this is the first diagram shown in Figure
1. The other diagram has two 2-encounters, hence σ =
(12)(34), and three choices of permutations: π = (1234),
ρ = (13)(2)(4); π = (1342), ρ = (1)(23)(4); π = (1432),
ρ = (1)(24)(3). All of these have vanishing contribu-
tions. These arise from derivatives of terms proportional
to z1kz1k′ (where k, k′ = 1, 2, 3), which must vanish as
at least one of the choices 1, 2, 3 for the second index is
absent.

The case of A(0)
2,2 is a bit more complicated. We are

displaying the relevant permutations in Table II. Several
choices, marked in grey, lead to results that vanish after
taking derivatives. One relevant contribution arises from
the factorization (123) = (13)(2) · (12)(3). With two
orbits inside P and two orbits inside Q, there are four
ways to assign the cycles of π and ρ to orbits, and one can
show that the overall contribution is −2z11z22 − 2z12z21.
Further contributions arise from a different diagram, and
the two factorizations (12)(34) = (143)(2) · (123)(4) and
(12)(34) = (132)(4) · (134)(2). Taking into account the
four different ways of assigning cycles to orbits, as well
as the factor 1∏

` v`! = 1
2 , the contribution from each of

these choices is z11z22 + z12z21. We thus see that all
contributions sum to zero.

For A(0)
2,2, there is also the possibility of a partial di-

agonal approximation in which one orbit from P is iden-
tical to one orbit from Q. However, the remaining non-
identical orbits would lead to a contribution proportional

to A(0)
1,1, which we have already seen to be zero.

We have checked using a computer, by explicitly pro-
ducing all required factorizations, that the next correc-
tion to R4 (with L − V = 4) vanishes. There are al-
together 49 diagrams with J = 1,K = 3 as well 121
diagrams with J = K = 2, and all contributions that do
not vanish immediately after taking derivatives mutually
cancel. We refer to the appendix for R5.

VII. LEADING ORDERS, PRESERVED TRS

The 2-point spectral correlation function has been ob-
tained semiclassically for systems with time-reversal sym-

FIG. 4. (color online) Sieber-Richter pair of orbits.

metry, but nothing of the sort has been done so far for
higher correlations. In the following, we obtain the first
few orders in perturbation theory, for the first few Rn.

A. 2-point function

As we have seen in Section II.B, the non-oscillatory
part of the RMT result for n = 2 is

Rno
2 = 1− 1

(πε)2
+

3

2(πε)4
− 15

(πε)6
+ · · · (46)

where ε = ε1 − ε2. Here the term proportional to 1
ε2

arises from the diagonal approximation evaluated in Sec-
tion II.D, see (25) with a factor arising from the sym-
metrisation analogous to (20).

The first correction comes from the so-called Sieber-
Richter pairs [9, 10], see Fig. 4, which correspond to the
factorization σ = π−1ρ with σ = (12)(2̄1̄), π = (12̄)(21̄)

and ρ = (11̄)(22̄). The contribution this gives to A(0)
1,1

is 1/(iπε), which after applying D1,1 leads to i/(2π3ε2).
However, this result vanishes after symmetrization (c.f.
Eq.(20)) as exchanging ε1 and ε2 = η1 flips the sign of ε.
Also note that in this case symmetrization is equivalent
to taking twice the real part. However, Sieber-Richter
pairs give important contributions to the spectral form
factor, defined as the Fourier transform

K(τ) =

∫ ∞
−∞

dε eiετ R̃2(ε). (47)

This apparent contradiction can be resolved as follows:
The asymptotic behavior of the two-point correlation
function can be written as a power series [16]

R2(ε) = Re

∞∑
m=2

cm

(
1

iε

)m
+ . . . (48)

where the dots represent oscillatory terms that we are ne-
glecting in our present approach. The m-th term in this
series expansion is associated to the terms proportional
to τm−1 in the spectral form factor. However the Fourier
transform has to be carried out in the complex plane, re-
quiring to take ε with a small imaginary increment that
can then be sent to zero. Even powers of τ are thus asso-
ciated to odd powers of 1

iε that would vanish after taking
the real part but give a nonzero result if the increment
is included. Our present approach could be extended to
studying the asymptotics of the spectral form factor and
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its equivalents for higher-order correlation functions by
incorporating such imaginary increments. However we
will not carry out this generalization as our emphasis is
on the correlation functions themselves.

The next order, with L − V = 2, is associated
with the appropriate factorizations of (123)(3̄2̄1̄) and
of (12)(34)(4̄3̄)(2̄1̄). The former has four such factor-

izations, each contributing z2
11/(2π

2) to A(0)
11 . The lat-

ter has twenty such factorizations, each contributing
−z2

11/(8π
2). Hence, the contribution at this order to

A(0)
1,1 is −z2

11/(2π
2). After applying D1,1 we get precisely

3/(2π4ε4), in agreement with RMT.
We have checked in the computer that at the next two

orders, given by diagrams with L−V = 3 and L−V = 4,
our semiclassical approximation also agrees with the cor-
responding RMT prediction. This is checking consistency
with [12, 13] where the spectral form factor associated to
the 2-point correlation function was treated to all orders.

B. 3-point function

As we have seen in Eq.(4), the correlation function R3

may be written as a sum containing R̃0 = 1, R̃2 and

R̃3. We have already discussed how the semiclassical

approximation recovers the non-oscillatory part of R̃2,
so we only need to address the non-oscillatory part of

R̃3. RMT prediction for this, derivable from Eq.(8), is

R̃no
3 = Sym3

[
3

2π6
w2

12w
4
13 +

1

π6
w3

12w
3
13 + · · ·

]
, (49)

where we have left out terms of higher order. Here we
have set

wjk =
1

εj − εk
. (50)

We note that the indexing here is different from zjk =
1

εj−ηk due to ηk = εJ+k, Eq. (17), and it is more conve-

nient for writing down our final results.

Remembering that R̃3 = 2ReR̃1,2 (see Eq. (22)), we

focus on R̃1,2. Just as in the case of broken TRS, the
leading order semiclassical contribution to this quantity
should come from an orbit with a single 2-encounter, cor-
related with two other orbits, see Fig. 2. However, as
we have already seen this does not actually contribute
anything because application of D1,2 to a function that
depends on only two variables returns zero.

The second correction comes from the diagrams in Fig-
ure 5, having L − V = 2. Without actually performing
any calculations, we can see that their contributions to

A(0)
1,2 are real, but after applying D1,2 we arrive at an

imaginary quantity. Since we need the real part of R̃1,2,
these diagrams do not contribute either.

Finally, the diagrams responsible for the third correc-
tion have L − V = 3. They include the ones shown in

σ π ρ = πσ mult.

(a) (1234) (1324) (141)(2) 6
(b) (1234) (1234) (131)(3) 3

(c) (1234) (1243) (14)(24) 2

(d) (1234) (1234) (11)(24) 2

(e) (123)(45) (12453) (1431)(5) 12

(f) (123)(45) (13425) (1534)(3) 8

(g) (123)(45) (14523) (1351)(5) 6

(h) (123)(45) (12534) (15)(253) 10

(i) (123)(45) (13425) (1424)(3) 8
(j) (123)(45) (13452) (1553)(3) 16

(k) (123)(45) (14235) (134)(34) 20

(l) (123)(45) (14532) (13)(344) 12

(m) (12)(34)(56) (162345) (16426)(4) 192

(n) (12)(34)(56) (164235) (1426)(45) 72

(o) (12)(34)(56) (126345) (11646)(4) 96

(p) (12)(34)(56) (124356) (11445)(6) 96
(q) (12)(34)(56) (146235) (16)(2454) 72

(r) (12)(34)(56) (142635) (146)(245) 72

(s) (12)(34)(56) (126435) (116)(363) 96

(t) (12)(34)(56) (162435) (16)(2633) 144

TABLE III. Structures that contribute to R̃12 and require
TRS. See Table I for those not requiring TRS. The table omits
structures whose contributions vanish after taking derivatives.
It shows one representative cycle for each pair of cycles related
by time reversal.

Figure 1 and Table I, not requiring time-reversal symme-
try. Table III shows the remaining 20 diagrams, which
do require time-reversal symmetry. We are only display-
ing choices of permutations whose contributions do not
vanish after taking derivatives. Note that the cycles of
σ, π and ρ come in pairs related by time reversal; the
table shows one representative cycle for each such pair.
The contributions of these diagrams are all proportional
to z2

11z12 + z11z
2
12. This has to be multiplied with the

multiplicities as well as the factor

2J+K−V∏
` v`!

(−1)L

(2πi)L−V
(51)

arising from Eqs. (38) and (45), leading to the overall

FIG. 5. (color online) Diagrams contributing to R̃12. There
is one orbit, depicted by a full line, correlated with two others
depicted by dashed lines. (Figure from the online appendix
of [14].)
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σ π ρ = πσ mult.
(a) (123) (13)(2) (12)(3) 1
(b) (12)(34) (134)(2) (123)(4) 4

(c) (12)(34) (14)(23) (13)(24) 1

(d) (12)(34) (12)(34) (11)(33) 1

TABLE IV. Structures that contribute to R̃22 for systems
with TRS. Structures whose contributions vanish after taking
derivatives are omitted. The table shows one representative
cycle for each pair of cycles related by time reversal.

result

1

(iπ)3
(z2

11z12 + z11z
2
12). (52)

After taking derivatives according to (40) we recover the
desired correlation function given in (49). Here the factor
2 from (22) and the divisor J !K! = 2 from (20) mutually
cancel.

C. 4-point function

The non-oscillatory part of R̃4 is predicted by RMT,
according to Eq.(8), to be

R̃no
4 = Sym4

[
1

8π4
w2

12w
2
34 −

3

8π6
w4

12w
2
34

]
+ · · · , (53)

where we included only terms up to order six. Note that
Sym4 sums over all permutations of indices, including
permutations that leave the argument unchanged.

The term of order four, w2
12w

2
34/π

4, comes from the
diagonal approximation, in which the orbits are identi-
cal (or mutually time reversed) two by two. This term
involves factors − 1

2π2w
2
12 and − 1

2π2w
2
34 arising from the

pairs according to (26), as well as a factor 1
4 analogous to

(20) and a factor 2 accounting for the two ways in which
the p and q orbits can be paired.

It turns out that R̃1,3 only contributes to R̃4 with
terms of order seven, so it doesn’t need to be considered
in the context of the above prediction.

We still have to take into account R̃2,2. This quantity
allows for a partial diagonal approximation, see Eq.(27).
This in fact reproduces the term of order six in (53).
Here a factor 3

4π2w
4
12 arises from the pairs of orbits con-

tributing to the term proportional to ε−4 in R̃2, and the
factor − 1

2π2w
2
34 accounts for coinciding or mutually time

reversed orbits. The factor 1
4 from (20) is compensated

because for the two p orbits we have two choices of which
is included in the diagonal pair and which is included in
the pair of orbits differing in encounters, and the same
choice arises for the q orbits.

We are left with R̃(0)
2,2, in which no two orbits are equal.

The semiclassical approximation of order six is based on
the diagrams in Table IV where we have included only

choices of permutations that give non-vanishing contri-
butions after taking derivatives. However these are all
proportional to

∑
j,j′,k,k′ z

3
jkz

3
j′k′ and thus vanish after

symmetrization, as exchanging εj with ηk, or εj′ with ηk′
flips the sign.

In conclusion, the semiclassical approximation to R4

agrees with the prediction from random matrix theory,
up to the sixth order in perturbation theory.

We refer to the appendix for R5.

VIII. CONCLUSIONS

We have developed a semiclassical approach that al-
lows the calculation of the non-oscillatory terms of arbi-
trary spectral correlation functions of quantum chaotic
systems. Using this approach, we have provided very
strong evidence in favour of the Bohigas-Giannoni-
Schmit conjecture that all local spectral statistics of such
systems are described by those of random matrices taken
from the appropriate Gaussian ensembles.

It still remains a challenge to show this agreement to
all orders in perturbation theory. We believe it should
be possible to adapt a powerful method originally intro-
duced in the scattering context [25, 26], based on using
and explicitly evaluating some specific matrix integrals
that encode the semiclassical approximation. Also the
connection between semiclassics and the nonlinear sigma
models of RMT [13, 16] may provide useful insight.

Another problem still open is the semiclassical deriva-
tion of the oscillatory terms of the higher correlation
functions. This is probably amenable to treatment us-
ing the theory developed here.

SM is grateful for support from the Leverhulme Trust
Research Fellowship RF-2013-470. MN was supported by
grants 303634/2015-4 and 400906/2016-3 from CNPq.

Appendix A: 5-point function

We want to briefly discuss the diagrams relevant for
the 5-point correlation function, both for systems with
and without TRS.

1. Broken TRS

The 5-point function is determined by diagrams with
J = 1, K = 4 as well as J = 2, K = 3 (which are trivially
related to the diagrams where J and K are swapped).
In either case there are no contributing diagrams for
L−V = 1 or 2. For L−V = 3 we obtain a large number
of diagrams which are omitted here. However their con-

tributions to A(0)
2,3 all vanish upon differentiation and/or

they include one factor wjk whose indices do not appear
in any of the other factors. Upon taking derivatives this
factor appears cubed. It then vanishes after symmetriza-
tion as it is odd under exchanging indices. As L−V = 3
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corresponds to the 8th order in wjk this shows that all
off-diagonal contributions up to this order vanish. The
partial diagonal contributions vanish as well as they are

based on off-diagonal contributions to R̃3 which have al-
ready been shown to give zero. As desired this leaves
only the diagonal approximation.

2. Preserved TRS

For time-reversal symmetric systems the RMT predic-
tion (in leading order) can be brought to the form

R̃no
5 = Sym5

[
− 3

4π8
w2

12w
4
13w

2
45 −

1

2π8
w3

12w
3
13w

2
45

]
+ · · · .

(A1)
Again all exclusively off-diagonal contributions up to

8th order in wjk vanish. For J = 1, K = 4 the situation
is exactly as without TRS, and there are no additional
diagrams requiring TRS. For J = 2, K = 3 there is one

additional diagram with L − V = 2 and two structures
including σ = (12)(34), π = (12)(34), ρ = (11)(3)(4).
However their contributions vanish after taking deriva-
tives. For L−V = 3 there are also further diagrams, but
their contributions all vanish due to either of the reasons
discussed for broken TRS.

The contribution in (A1) arises from the leading par-
tial diagonal term. Here three orbits are arranged ac-

cording to one of the diagrams contributing to R̃3, and
two orbits coincide up to time reversal. If the indices
1,2,3 are associated to the former orbits and 4, 5 to the
latter orbits our previous results (26) and (49) entail fac-
tors 3

2π6w
2
12w

4
13 + 1

π6w
3
12w13 and − 1

2π2w
2
45 multiplying to

(A1). There are further combinatorial factors but they
cancel (a 2 to remove the 1

2 from (20) included in the first

factor, 1
J!K! = 1

12 as the factor from (20) arising in the
present case, 2 choices to select the p orbit contributing
to the diagonal approximation, and 3 choices for the q
orbit).
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