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Experimental quantification of noise in linear
ultrasonic imaging

Rhodri L.T. Bevan, Jie Zhang, Nicolas Budyn, Anthony J. Croxford and Paul D. Wilcox

Abstract—An efficient procedure for experimental-based quan-
tification of statistical distributions of both the random and
micro-structural speckle noise within an ultrasonic image is
presented. This is of particular interest in the multi-view total
focusing method, which enables many images (views) of the same
region to be obtained by utilising alternative ray paths and mode
conversions. For example, in an immersion configuration, 21
separate views of the same region of a sample can be formed by
exploiting direct and skip paths. These views can be combined
through some form of data fusion algorithm, to improve defect
detection and characterization performance. However, the noise
level is different in different views and this should be accounted
for in any data fusion algorithm. It is shown that by using only
one set of experimental data from a single measurement location,
rather than numerous independent locations, it is possible to
obtain accurate noise parameters at an imaging level. This is
achieved by accounting for the spatial variation in the noise
parameters within the image, due to beam spread, directivity
and attenuation with a simple empirical correction. An important
feature of the process is the suppression of image artefacts
caused by signal responses from other ray paths with the use
of image masking. This masking process incorporates knowledge
of the expected auto-correlation length (ACL) of image speckle
noise and high amplitude cluster suppression. The expected
ACL is determined via a simple ray-based forward model of a
single point scatterer. Compared to the estimates obtained using
multiple independent locations, the speckle noise parameters
estimated from a single measurement location were within 0.4dB.

Index Terms—Noise measurement, ultrasonic imaging, ultra-
sonic transducer arrays

I. BACKGROUND

Ultrasonic inspection is utilised to detect and characterise
defects within a structure in order to ensure the standard
of manufacture and protect against failures over its lifetime.
Success of the inspection to detect a defect, when present, is
dependent on the operator’s ability to separate and distinguish
the defect signal from the background noise.

Although an ultrasonic inspection may be undertaken using
a single transducer, a more advanced approach utilises a
phased array system. The timing of transmission from indi-
vidual phased array elements can be controlled, together with
the overall firing pattern, resulting in a steered or focused
wavefront which is targeted at a desired location, improving
resolution at the focal point. However, this requires foreknowl-
edge of the potential defect location. An alternative inspection
routine for such systems, outlined by Holmes et al. [1] is
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called full matrix capture (FMC). In FMC, A-scan data from
all possible combinations of transmitter and receiver elements
from the array are recorded individually. This allows for
separation between the data capture procedure and the imaging
approach, as no physical steering or focusing is undertaken.
Instead, synthetic focusing can be achieved by applying the
necessary timing delays via the appropriate algorithm in post-
processing.

Ultrasonic imaging algorithms post-process the raw inspec-
tion data to provide visual assessment of the captured signal
data. Numerous algorithms exist, ranging from the sector B-
scan through to the total focusing method (TFM). A detailed
discussion of different imaging algorithms is beyond the scope
of this paper, for further information see [2]. The TFM is
flexible and generalisable [3]–[5] since it allows for focusing in
both transmission and reception, at all points within the image,
using the linear delay-and-sum beamforming approach. In [6],
indirect beamforming was presented for the TFM, increasing
the amount of imaging data extracted from a single FMC by
considering multiple ray paths to form additional images. This
allows for the formation of multiple views of the same region
of interest, which is termed multi-view TFM.

Noise in an ultrasonic image comes from various sources
and can be broken down into two types, namely random
and coherent noise. Whilst random noise can be suppressed
through use of repeated signal capture and averaging, coherent
noise will persist. Random noise must still be quantified to
ensure adequate suppression.

Micro-structure induced coherent noise is typically the
limiting factor in the ability to detect a defect, as such
noise displays similar spectral characteristics to that of defect
signals. This has led to significant research into improving the
signal-to-noise ratio present in the underlying data through
techniques such as adaptive beamforming [7]–[10]. Theoret-
ical work on micro-structure induced noise on an imaging
level was undertaken by Burckhardt [11] for B-scan imaging
with emphasis on compounding. Spatial compounding, as a
means of suppressing speckle noise was also investigated
experimentally by Trahey et al. [12]. Experimental work by
Wagner et al. [13], examined the statistical properties of
ultrasonic speckle as a means of deducing underlying material
(tissue) properties for medical diagnosis. Another method of
suppression (adaptive speckle reduction filter) was considered
by Crawford et al. [14], for medical B-scan imaging, although
complete suppression is not possible.

There is significant research interest in utilising data fusion
for non-destructive evaluation (NDE) [15]–[17]. Data fusion is
the procedure of combining multiple datasets to provide more
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insight and knowledge than possible from a single source or
image. In the context of the current paper, the interest is in data
fusion applied to multi-view TFM images of the same region
of a component. It is advantageous to account for differing
signal-to-noise ratios in the images being fused to avoid the
procedure reducing resolution and detectability, the inverse of
its intended goal. The focus of the paper is quantifying the
noise levels and associated statistical distributions present in
different TFM images from different views. It is a necessary
step for determining the inspection limit for any conventional
array inspection as well as in providing reliable signal to noise
estimates for data fusion.

The overall aim is to determine an efficient and robust way
of quantifying noise and its spatial variation within each image
using as few defect-free FMC datasets as possible. Apart from
a very simple model of random noise, the main motivation for
the work is to avoid the need to have a complex physics-
based model of coherent noise. To do this, the noise is firstly
characterised using many FMC datasets to understand the
noise distributions and how many parameters are needed to
describe them; these are termed the ”true” noise parameters.
It is then assessed whether it is possible to accurately recover
the true parameters from a lesser number of FMC datasets.

In the following section, the multi-view TFM algorithm
is outlined. The remaining sections outline the theoretical
approach for experimental characterisation of the random
and coherent material noise together with the procedure for
extracting this information from example data.

II. EXPERIMENTAL CONFIGURATION AND MULTI-VIEW
TFM IMAGING METHOD

The multi-view TFM algorithm [6] extends the standard
TFM. As in the standard method, it utilises a ray-based model
of wave propagation. The use of different ray paths and
wave modes enables different views of the same physical
region to be generated from a single FMC dataset. The
inspection configuration considered here is shown in figure
1a, with the region of interest (ROI) highlighted in green.
In this work, the ROI extent is between x=[50mm,85mm]
and z=[2mm,24.5mm]. This configuration is common across a
range of industries for the inspection of welds in safety-critical
components, with the ROI containing the weld. Although the
work of Zhang et al. was applied to a contact inspection, the
terminology of direct view, half-skip and full-skip to represent
three ray path cases are equally relevant to an immersion setup.
In the case of a skip view, the ray includes a reflection off
the backwall of the specimen. In a half-skip view, this occurs
once (either in transmit or receive), whilst in the full-skip
case, both the transmit and receive rays include this backwall
reflection. Since the ray can mode convert between transverse,
T , and longitudinal, L, at a material boundary, these three
cases are subdivided further to account for all possible mode
combinations along the ray path. This is demonstrated in figure
1 for rays originating at the transmitter element Tx, travelling
to the focus point and returning to the receiving element Rx.

As the transmit ray path may be different from the receive
path, the notation used in this paper is as follows: A dash is

(a) Inspection setup

(b) Direct (c) Half-skip (d) Full-skip

Fig. 1. (a) Immersed oblique inspection setup and multi-view ray path
examples of a (b) direct (T-L), (c) half-skip (TL-L) and (d) full skip (TL-
LL) view

used to separate the transmit (left hand side) from the receive
path (right). For example, TL− L (figure 1c) denotes a half-
skip view with the transmit path containing two legs inside the
specimen, the first is a transverse mode from the frontwall to
the backwall, the second leg is the longitudinal mode from
the backwall to the focus point. On the return path, there
is only one leg (direct) of longitudinal mode. This notation,
when applied to an immersed inspection, does not include the
water leg of either the transmit or receive paths, as only the
longitudinal mode is possible on this leg, so is implicit.

Considering all potential mode conversions and allowing
for a maximum of one backwall reflection per path, there are
6 possible paths L, T , LL, LT , TL, TT . For each path,
the intersection(s) at the interface(s) can be determined via
Fermat’s principle [18]. The total travel time τ is the sum
of the outbound and inbound travel times. The 6 potential
paths for the transmit and receive rays result in 36 possible
TFM images for an immersed specimen, only 21 of which are
unique due to reciprocity (i.e. TL− L ≡ L− LT ).

Post data collection, the raw FMC data is filtered and Hilbert
transformed in the frequency domain using a Gaussian window
function centred at the phased array centre frequency and -
40dB half-bandwidth of 90% relative to the centre frequency.
The image is then generated using the summation of the time-
delayed data

I(r) =
n∑

i=1

n∑
j=1

aij f̃ij(τij(r)) (1)
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where r represents the image pixel location, f̃ij the filtered,
Hilbert-transformed FMC data with i denoting transmitter
element, j the receiver element and n the number of elements
in the phased array. aij denotes an optional apodisation term.
The standard TFM applied here utilises uniform weighting,
a = 1.

In this work, an immersed copper specimen was inspected
using the experimental setup (figure 1a and table I). Copper
was selected for its high grain noise at the ultrasonic frequency
of interest, making it a suitable material to assess noise
characterisation capabilities. The probe consisted of a 5MHz
linear 1D phased array with 128 elements and pitch of 0.3mm.
The copper sample measured 200 × 300 × 26.5mm in the x, y
and z directions respectively. The experimental properties were
determined by measuring the water temperature and material
thickness. From the water temperature, the water velocity is
determined. The material velocities were calculated from the
backwall signal response.

TABLE I
EXPERIMENTAL PROPERTIES

Probe vertical standoff 30.0 mm
Probe inclination angle 12.4 ◦

Water velocity 1471.3 m/s
Instrument delay 630 ns
Copper thickness 26.5 mm
Copper L velocity 4755.9 m/s
Copper T velocity 2288.5 m/s

An example of the 21 multi-view TFM images obtained
from a single FMC dataset from the copper specimen is
presented in figure 2. This copper sample contains no defects,
thus any signal response is due to either the material itself
or signals associated with the frontwall (z = 0) and backwall
(z = 26.5mm) features. In the L-L view, it is apparent that
strong signals are coincident with both the backwall and the
frontwall locations. In the L-T view however, an imaging
artefact is present as a horizontal region of high amplitude,
located at z=17mm below the array. Artefacts such as this
are due to a signal response from another ray path (in this
case the L-L backwall) appearing in the current view and
reconstructing at the wrong point. In the T-T view, the ROI to
the right of the probe is contaminated with the signal from the
second frontwall reflection. The impact of imaging artefacts
in the region of interest can be reduced through adjustment
of the experimental setup, although complete elimination of
artefacts in all views is challenging in practice. As imaging
artefacts are themselves coherent, their presence will impact on
the quantification of the coherent grain noise, thus a procedure
to mask their presence will be presented in section III-C.

To determine the true noise characteristics at every position
in every TFM image, without making any prior assumptions
about its spatial variation within an image, it is necessary to
utilise multiple independent defect-free FMC datasets. Here,
such independent data is used to provide a benchmark to which
more efficient noise-estimation techniques are compared. The
measurement independence of different FMC datasets was
assessed at the imaging level using the Pearson correlation
coefficient. Multiple measurements were undertaken along a

traverse in the y-direction (perpendicular to the array) along
the copper block. The Pearson coefficient was determined for
every possible y location combination using

ρp(X,Y) =
E[XY]− E[X]E[Y]√

E[X2]− [E[X]]2
√
E[Y2]− [E[Y]]2

(2)

where X and Y denote two image samples and E is the
expectation. These ρp(X,Y) coefficients are then categorised
based on the y translation distance between them. Figure 3
shows a box plot of the correlation coefficients for every
possible combination. In the box plot, the red line indicates
the median correlation coefficient, the blue box denotes the
interquartile range (25th to 75th quartile) for the location
combination in question and the whiskers represent ±2.7s
from the median, where s is the standard deviation. The
crosses denote outliers. The traverse was 46mm in length,
with an incremental distance of 1mm. From the figure, it
can be seen that the Pearson coefficient rapidly diminishes to
low values as the spacing between measurements is increased.
The conservative option of a 15mm offset between sampling
locations was chosen, as this is also the array element length
in the y-direction.

III. IMAGE NOISE CHARACTERISATION

Since image noise contains both coherent and incoherent
contributions it is necessary to examine them individually.
Sources of random, incoherent, noise include thermal and
electrical instrumentation noise. Whilst the effect of random
noise can be suppressed through use of repeated signal capture
and averaging, it is necessary to quantify the random noise
present in order to assess the suppression required.

Once the random noise within an image is adequately
suppressed, the defect-free images will then be dominated by
coherent noise, with this consisting of speckle noise due to
the micro-structure and image artefacts as shown in figure 2.
In this paper, the focus is on the ability to detect defects in
artefact-free regions within a TFM image. Therefore the char-
acterisation of noise in each view requires (a) random noise
assessment (b) identification of regions containing artefacts
and (c) identifying a suitable parameterisation that describes
the speckle noise in the artefact-free part of the region of
interest.

A. Random noise
Quantification of the random noise level requires a mini-

mum of two FMC datasets captured under identical instrumen-
tal setups at the same position on a sample. The two successive
FMC datasets after being filtered and Hilbert transformed can
be written as

f̃
(1)
ij (t) = f̃

(0)
ij (t) + ñ

(1)
ij (t) (3)

f̃
(2)
ij (t) = f̃

(0)
ij (t) + ñ

(2)
ij (t) (4)

where f̃ (0)ij (t) is the underlying random-noise-free FMC data
and the ñ(b)ij (t) is the realisation of random noise present in
dataset b. Hence the differenced data is

gij(t) = f̃
(2)
ij (t)− f̃ (1)ij (t) = ñ

(2)
ij (t)− ñ(1)ij (t) (5)
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L-L L-T T-T

LL-L LL-T LT-L

LT-T TL-L TL-T

TT-L TT-T LL-LL

LL-LT LL-TL LL-TT

LT-LT LT-TL LT-TT

TL-LT TL-TT TT-TT

Fig. 2. Experimental example of the 21 unique TFM views (in dB) for immersed defect-free copper sample, considering only direct, half-skip and full-skip
ray paths. The plot markings are consistent with figure 1a

It is hypothesised that the noise is normally distributed in
the real and imaginary components of gij(t). Examining only
the real component initially, if the noise distribution in a
single dataset is N(0, σ2

ij(t)), then the distribution in gij(t) is
N(0, 2σ2

ij(t)), following the difference of independent normal
distributions [19]. It is assumed that no bias is present in the
data due to the element combination pair or the sample time
itself, therefore σij(t) is assumed to be constant and equal to
σm. If a bias is present, then the random noise would need

to be assessed based on an individual matrix component level.
Assuming gij(t) contains uncorrelated, independent data, then
every real component of the A-scan in the dataset will have
the same normal distribution with variance 2σ2

m. This is also
the case for the imaginary component. Probability plots of the
real and imaginary components of gij(t) are shown in figure
4. The probability plot assesses the discrete dataset against
a theoretical distribution, in this case a normal distribution. If
the discrete (empirical) cumulative distribution function (CDF)
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Fig. 3. Box plot of the Pearson correlation coefficient against traverse y-
distance between combination. For each combination, the red line denotes the
median correlation value, the blue box is the interquartile range and whiskers
signify data extent

is a realisation of the theoretical distribution, the probability
plot will be a straight line along y = x if the theoretical
CDF is used on the y-axis. However it is usual to label the
equivalent quantile information on the y-axis rather than the
theoretical CDF values. The expected relationship is denoted
by the dashed black line. The theoretical (normal) distribution
parameter, σm, is obtained from the maximum likelihood
estimator of the variance of gij(t)

σm =

√√√√ 1

4n2T

n∑
i=1

n∑
j=1

∫ T

t=0

|gij(t)|2 (6)

where T is the time period in each A-scan in gij(t). The data
points in figure 4 denote amplitudes of the real and imaginary
components of time samples from every A-scan within the
FMC. From the figure, both components of gij(t) are seen to
be normally distributed and they are both found to have the
same variance.

(a) (b)

Fig. 4. Normal distribution probability plots for (a) real and (b) imaginary
components of residual random noise after the subtraction of two consecutive
filtered and Hilbert-transformed FMC datasets

At the imaging level, the random noise is dependent on
the algorithm employed. With uniform apodisation in equation
1 and the assumption that each A-scan contains independent
noise distributions with the same noise variance due to the
lack of bias, the resulting image will have random noise with
normally-distributed real and imaginary components IR =
N(0, σ2) and II = N(0, σ2) where σ2 = n2σ2

m. This means

that, assuming IR and II are independent, the TFM image
noise intensity |I| = |IR + iII | has a Rayleigh distribution
[20]

R(σ) =
|I|
σ2

exp−|I|
2

2σ2
(7)

A more practical measure of the image noise intensity is the
Root Mean Square (RMS) noise level, IRMS = σ

√
2, which

can be estimated from N samples as IRMS =
√

1
N

∑N
k=1 |I|2.

After Na averages, the single A-scan variance is σ2
m/Na.

Therefore, for a desired IRMS the number of averages required
is

Na =
2n2σ2

m

I2RMS

(8)

with the standard deviation σm obtained from equation 6. In
this work, Na = 20.

B. Coherent grain noise

Speckle noise is due to interactions of the transmitted signal
with the micro-structure of the material. As such, it is inherent
to the specimen and cannot be suppressed by averaging. As
the transmitted signal interacts with the grains (of random
size and distribution), back-scattered signals result at the grain
boundaries. The grains are too numerous and small to be re-
solvable at ultrasonic wavelengths, resulting in a superposition
of signals that form a speckle pattern. In ultrasonic imaging,
speckle noise intensity is Rayleigh distributed [13] as shown
in figure 5a which shows a Rayleigh distribution probability
plot for image intensity in a region of coherent speckle. Due
to the nature of speckle noise, multiple independent FMCs are
required to calculate its statistical properties at any one image
location. In figure 5a, the image intensity values are obtained
from a 3mm x 3mm windowed region (625 pixels) in the L-L
view centred at the centroid of the ROI with values taken from
9 independent FMCs (5625 data points in total).

In figure 5b, the RMS intensity values are plotted for the
whole L-L view ROI, using the 9 independent FMC datasets,
and it can be seen that the result is not spatially uniform.
One approach to determining the spatial-distribution would be
to make no prior assumptions and simply acquire sufficient
independent FMC datasets to provide an accurate estimation
of the RMS intensity at every image point. However, this
would be time-consuming and impractical in many cases since
it requires multiple independent measurements to be obtained
from a defect-free sample (or from multiple identical defect-
free samples). It is therefore hypothesised that an adequate
approximation to the underlying spatial variation in RMS
speckle intensity in the artefact-free region of a view can be
achieved through the use of a 2D linear fit on a log (dB) scale,
also shown in the figure. This empirical approach is chosen
based on signal attenuation rather than beam spread being
the dominant amplitude loss mechanism at the propagation
distances of interest. The spatial speckle variation within the
image is assessed relative to the centroid, r̄, of the ROI. The
planar correction, which is applied independently for each
view, is determined by fitting



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2018.2874720, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

6

(a)

(b)

Fig. 5. Coherent grain noise in L-L view using 9 independent FMCs a)
Rayleigh distribution probability plot for 3mm x 3mm box. b) Spatial variation
of RMS intensities (dB) for whole ROI

c(r) = m(r− r̄) + k (9)

to the image intensities (dB) where m denotes the gradients of
the fitted plane and k the intensity at the centroid. In the case
of multiple FMC datasets, each r is associated with multiple
image intensities (one from each dataset), which contribute to
the normalisation and fitting process as additional data points.
The re-scaled image intensities are then determined using the
planar weighting

Ic(r) =
|I(r)|

10
c(r)−k

20

(10)

By accounting for the spatial variation, the speckle can be
modelled as a single Rayleigh distribution, allowing for pixel
information over the whole ROI to be combined, with the
Rayleigh parameter determined using

σ =

√
1

2A

∫
A

|Ic(r)|2dr (11)

where A is the image area.
Using the L-L view as an example, the combined pixel

data for the 9 FMC datasets before and after applying the
planar correction is shown in the probability plot in figure 6
for the complete ROI of the view. Also shown in the figure is
a measure for quantitatively assessing the quality of fit to the

specified probability distribution. The red dashed lines denote
the steepest gradient line which keeps all data to the right and
the minimum gradient line which keeps all data to the left, the
lines in both cases passing through the origin. A smaller range
between the red lines indicates a better fit. The quality of fit is
assessed by the difference in gradient between the bounding
lines using the parameter b = 20log10(ξU/ξL), where ξU
and ξL are the gradients of the upper and lower bounding
lines respectively. From figure 6 it can be seen that the plane
adjusted intensities are a good fit to the expected y = x
(black dashed-line) Rayleigh distribution with b = 0.8dB,
whilst the non-corrected data displays obvious deviation and
a worse fit of b = 5.3dB. This validates the use of 2D planar
weighting as a means of accounting for the spatial variation
in the speckle. A possible use of the noise characterisation
procedure is to estimate the false call rate (FCR) in an image
for a given detection threshold, i.e. the probability that noise
in a defect-free component exceeds the detection threshold.
In the remainder of the paper, a maximum allowable FCR
of 0.01% is considered, which is equivalent to a detection
threshold set at 4.3σ (equivalent to 10dB above the RMS
noise level) for Rayleigh distributed speckle noise. In figure
6, this detection threshold level is indicated by ξ. Using the
bounding fit line with the lower gradient from the bounding
fit assessment enables a conservative estimate to be made of
the threshold, ξU , needed to guarantee that the FCR does not
exceed a certain level.

C. Image feature detection

The modelling of the spatial variation across the image as a
2D plane assumes gradual changes only within the image and
does not account for the presence of artefacts which would
distort the plane correction c(r). Thus, prior to fitting of this
plane to complete images, pixels associated with unwanted
features or artefacts must be removed.

As previously noted in the description of the multi-view
TFM method in section II, artefacts due to signal responses
from other ray paths may be present in the region of interest.
Signal responses of features (e.g. backwall) may also be
present. For grain noise quantification, both can be deemed
features that need to be masked. Feature detection is a common
approach used by numerous disciplines to facilitate computer
vision [21]–[23], although only modest research has been con-
ducted on ultrasound feature detection, with the focus being
on medical imaging [24]–[26]. Seo and Yen [27] developed
a medical imaging grain-feature suppression technique called
the dual apodization with cross-correlation (DAX) method.
It has since been adapted by Lardner et al. for NDE [28].
Auto-correlation has been previously utilised for the study of
random noise properties within medical B-scan imaging by
Wagner et al. [13]. Follow on research examined the auto-
correlation length for coherent speckle in medical imaging
[29], although not from the perspective of feature detection.

It is hypothesised that grain speckle can be separated
from unwanted coherent noise features using a physics-based
detection method incorporating a combination of the properties
of local auto-correlation and cluster suppression.
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(a)

(b)

Fig. 6. Probability plot of image intensities L-L view from 9 independent
FMC datasets, of a) original data and b) with spatial-correction

1) Image auto-correlation: Image auto-correlation is the
process of comparing all pixel values in an image (subset)
with an identical version of the image (subset) that has been
translated by a given directional vector. In mathematical terms,
the auto-correlation function (ACF) is defined as

Q(q) =

∫
A

Ī(r)Ī(r− q)dr (12)

where Q(q) denotes the value of the auto-correlation function
when the translated image has been shifted by q = [a, b] and
Ī = Ic − 1

A

∫
A
Ic(r)dr. To utilise the ACF, it is necessary to

normalise the result. Since only the magnitude of correlation
is of concern, the function employed is

Q̄(q) =
‖Q(q)‖
‖Q00‖

(13)

where Q00 denotes the auto-correlation function with no trans-
lation between images. Thus the ACF will range between [0,1],

with higher values denoting a greater correlation between the
two images. The ACF analyses the shape of patterns within the
image, rather than the values themselves. To quantify the in-
formation in the ACF, the scalar auto-correlation length (ACL)
quantity, h, is defined as the maximum distance an image
can be translated whilst maintaining a correlation coefficient
greater than a given threshold, with the threshold specified
here as 1/e [30], [31].

Since this is an area-based feature detection method, to
provide local information it is necessary to subdivide the
overall TFM image. In essence, a point within the original
TFM image is associated with a box window function, centred
on that point. The local ACL of the image at that point is
determined from the ACF of the region of the image within
the box window.

To separate the grain noise response from that of an
unwanted feature, the experimental ACL is compared to its
expected ACL, hs. Then

h/hs > 1 (14)

defines locations within the image that contain unwanted
features and hence need to be masked. In the presence of
speckle-only noise it is assumed that h/hs ≤ 1. The expected
value hs is determined using the assumption that at any
image point, the expected ACF of the measured speckle
pattern is similar to the ACF of the imaging point spread
function (PSF). With a forward model [32] based on the
work of Schmerr [33], the PSF for each view can be pre-
computed for a given inspection setup. The model assumes a
point scatterer and accounts for beam spread, directivity and
transmission/reflection coefficients. The ACF of the PSF is
calculated and the expected ACL, hs, is then computed. This
procedure is repeated at different locations throughout each
view, although the sampling can be relatively coarse due to
gradual variation in hs. hs is also used to specify the box size
for calculation of h, with the hs value at a point within the
TFM image (for a given view) determining the local box size
for that point to be used in the calculation of h for that view.

The local image autocorrelation function is given for both
the experimental and forward model at representative points in
the L-L and T-T views in figure 7. The first two example points
([50mm,15mm] and [70mm,20mm]) are artefact free regions
in the L-L and T-T views respectively. For this example, the
box size is fixed at 3mm by 3mm, rather than using the hs
value, to demonstrate the concept. In general, the predicted
ACL values are found to be somewhat larger than those
measured from speckle, hence a threshold based on h/hs > 1
tends to be somewhat conservative. In the last case, figures
7g-7i, an artefact is present in the T-T view, resulting in a
significantly higher experimental ACL (h = 1.44mm).

2) Cluster suppression: Although the ACF method in the
previous section examines local image properties, it is area-
based, thus smoothing out details. To complete the mask,
high-intensity cluster suppression (HICS) is introduced. It is
assumed that if the image data is not Rayleigh distributed, this
is due to the presence of a stronger signal response from an
unwanted feature, thus making the near-Rayleigh distribution
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7. Local image autocorrelation using a 3mm x 3mm box. (a)-(c)
Exp TFM, Exp ACF (h = 0.50mm) and Expected ACF (hs = 0.68mm)
respectively for box centred at [50mm,15mm] in L-L view (d)-(f) same
as previous, but with box centred at [70mm,20mm] in T-T view, h =
0.49mm, hs = 0.61mm (g)-(i) box centred at [65mm,10mm] in T-T view,
h = 1.44mm, hs = 0.54mm. The ACF is thresholded at 1/e for visual
identification of the ACL

tail-heavy (figure 8c). The procedure entails examining an
image for clusters of high intensity values, and masking them.

The steps of the iterative procedure are as follows, starting
from the set of points, S , remaining after performing the ACF
masking method:

1) Fit a 2D plane to the non-masked image points (equation
9), where r ∈ S

2) Apply planar weighting (equation 10)
3) Fit Rayleigh distribution to non-masked region of Ic(r)

using equation 11
4) From the Rayleigh CDF, calculate the P th percentile

value p
5) Find and mark the set of points T = {S : |Ic(r)| > p}
6) If the ratio of the set sizes T and S falls below the

expected percentage (100-P), then iteration is complete
7) For each point in S , determine fraction of its neighbours

also marked or masked, using box function defined by
±hs

8) Remove point with largest fraction from S and iterate

The HICS procedure requires one arbitrary parameter P ,
to represent the information present within the tail of the
distribution, with P = 99 specified here. A development
of an example mask is presented in figure 8 for the TT-TT
view ROI. After the initial ACF masking (figures 8(c)-(d))
10% of the ROI has been masked. The cluster suppression
(figures 8(e)-(f)) completes the process, by removing a further
3% of the ROI. The complete mask has eliminated the issue

of a tail-heavy near-Rayleigh distribution without removing
more information than necessary. The bounding fit range b
has reduced from the non-masked 17.4dB to 8.1dB in the
ACL masking stage and finally to 1.1dB in the ACL + HICS
masking stage. Each mask is constructed based upon a single
FMC dataset. It is worth noting that while the mask can be
determined for any data set, it needs to be determined from an
undamaged sample for a real inspection and then fixed during
the inspection otherwise it will potentially mask signals from
defects as well as artefacts.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Masking of the TT-TT view ROI. Rayleigh probability plots are
accompanied by their respective non-masked ROI, c.f. figure 2. a)-b) No-
mask, c)-d) ACF only mask, e)-f) ACF and HICS mask

The effect of image masking on the bounding fit range b
is summarised in table II for all 21 views, which also shows
the percentage of the ROI masked in each view. In 50% of
the views, less than 1.1% of the ROI is masked. In the worst
case, T-T required 18.2% of the image to be masked, due to
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TABLE II
MASK PERFORMANCE FOR ROI FOR ALL 21 TFM IMAGE VIEWS

View Masked (%) b, no mask (dB) b, with mask (dB)

L-L 0.6 2.3 1.4
L-T 6.8 1.4 1.3
T-T 18.2 5.9 1.3
LL-L 3.2 3.1 1.1
LL-T 2.3 3.4 1.3
LT-L 1.1 1.7 1.8
LT-T 1.5 1.6 1.3
TL-L 0.9 2.7 1.1
TL-T 2.0 1.6 0.7
TT-L 0.1 0.8 0.8
TT-T 0.7 1.0 0.5
LL-LL 0.5 1.0 1.0
LL-LT 0.4 1.4 2.0
LL-TL 0.4 1.0 1.1
LL-TT 0.2 1.3 1.3
LT-LT 5.2 7.1 1.0
LT-TL 2.6 8.4 2.0
LT-TT 0.5 1.0 0.7
TL-LT 15.9 16.5 0.5
TL-TT 0.7 1.4 0.8
TT-TT 12.9 17.4 1.1

Median 1.1 1.6 1.1

the second frontwall reflection artefact. A minimal masking of
the ROI allows for greater use of the remaining image data,
whether as individual images or as inputs into a data fusion
algorithm.

From table II, the mask performance typically results in
a bounding fit range of 1.1dB, thus the non-masked region
of each image distribution is in excellent agreement with the
hypothesis of a Rayleigh distribution. Although the masking
process is designed to improve the bounding fit range in
general, it is possible for a view to have a minor negative
impact as in the LL-LT case in this instance. The bounding
fit range for LL-LT has risen from 1.4 to 2.0 after masking,
although this outlier has a similar fit in both instances. The
fit divergence, although negligible, is primarily due to the
artefact region containing fewer high percentile values than
expected, effecting ξL (figure 9). In views which contain a
strong artefact, such as T-T, TL-LT and TT-TT, the bounding
fit is significantly improved through use of the mask, with the
improvement ranging by up to an order of magnitude.

The advantage of the local-detection approach is that the
mask is applied to a particular image view, rather than to a
time-window within the raw scanline data as in [34]. As such,
the information masked is more targeted, with no impact on
other views.

D. Effect of reducing number of independent datasets used for
noise characterisation

In section III-B, multiple independent FMC datasets were
used to determine the statistical parameters of the speckle
noise. This section examines a more efficient means of gath-
ering these parameters, and determines the minimum number
of independent FMC datasets required.

In table III, the improvement obtained by increasing the
number of independent FMC datasets used to construct the
statistical Rayleigh parameter σ is presented. From the table it

TABLE III
STATISTICAL RAYLEIGH σ PARAMETER AND FIT PARAMETER b (BOTH IN
DB) FOR MULTI-VIEW IMAGES, RELATIVE TO THE PEAK L-L BACKWALL
FOR INCREASING MULTIPLE INDEPENDENT FMC DATASETS. THE TABLE

ALSO INCLUDES THE MEDIAN ERROR, ∆σ, (RELATIVE TO THE 9 FMC
DATASET CASE) IN σ AND THE MEDIAN BOUNDING FIT

View 1 FMC 2 FMCs 3 FMCs 9 FMCs
σ b σ b σ b σ b

(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)

L-L -52.3 1.4 -52.1 1.5 -52.0 1.4 -51.9 0.6
L-T -52.1 1.1 -52.5 1.1 -52.6 1.0 -52.4 0.9
T-T -42.6 1.6 -42.9 1.5 -42.8 1.2 -43.0 1.0
LL-L -55.7 1.0 -55.7 0.6 -55.5 0.7 -55.3 1.2
LL-T -49.7 1.7 -49.7 0.9 -49.6 0.8 -49.3 0.7
LT-L -53.7 1.8 -53.8 1.6 -53.5 1.2 -53.4 3.1
LT-T -47.8 1.3 -47.7 0.9 -47.8 0.7 -47.7 2.2
TL-L -57.2 1.5 -57.4 1.1 -57.5 0.6 -57.3 0.5
TL-T -53.5 1.0 -53.4 0.8 -53.4 0.7 -53.2 1.3
TT-L -55.6 0.8 -55.8 0.7 -55.8 0.5 -55.7 0.3
TT-T -51.8 0.6 -51.7 0.6 -51.7 0.6 -51.7 0.5
LL-LL -50.1 1.1 -49.9 0.9 -50.0 0.5 -49.9 0.6
LL-LT -58.1 2.0 -58.0 0.6 -58.0 0.5 -58.0 0.3
LL-TL -54.9 1.2 -54.8 0.8 -54.7 0.6 -54.5 1.3
LL-TT -55.4 1.3 -55.2 0.9 -55.2 0.8 -55.1 0.3
LT-LT -57.4 0.8 -57.5 0.5 -57.5 0.6 -57.5 0.5
LT-TL -51.3 1.6 -51.1 1.0 -51.1 0.9 -50.9 0.5
LT-TT -54.1 0.8 -54.1 0.9 -54.0 0.6 -54.0 0.5
TL-LT -54.7 1.1 -55.1 1.1 -55.0 0.5 -55.0 1.8
TL-TT -56.5 1.0 -56.5 1.6 -56.5 1.2 -56.4 0.8
TT-TT -52.3 1.2 -52.1 1.6 -52.0 1.0 -51.9 0.8

∆σ 0.25 – 0.12 – 0.11 – 0.00 –
Median – 1.20 – 0.90 – 0.67 – 0.65

is evident that the increased FMC dataset count has negligible
impact on the speckle noise parameter, even in the presence
of artefacts. With only a single FMC dataset, the estimated σ
is within 0.4dB of that calculated using 9 FMC datasets for all
views, with the average error being 0.25dB and the worst being
the LT-L view. The median error in the Rayleigh parameter
(relative to the 9 FMC dataset case) decreases steadily as
the number of FMC datasets is increased. The bounding fit
parameter b also displays the same general trend, although
for the LT-L view, the expected improvement from combining
multiple FMC datasets is not as evident, due to the masking
process failing to completely remove a small artefact near the
backwall in the fifth FMC dataset.

Therefore, the number of FMC datasets required to quantify
the speckle noise is only one, as the independent information
present within an image view is sufficient to characterise the
noise, even in the presence of unwanted artefacts. The final
noise parameters, for both the random and speckle noise are
given in figure 9 for each view. Due to the number of averages
utilised, the random noise level was less than -59dB relative
to the peak backwall response from the L-L view. The FCR
0.01% speckle noise at the centre of the ROI ranged from -30
to -45dB over all 21 views.

IV. SUMMARY OF PROPOSED NOISE CHARACTERISATION
PROCEDURE FOR MULTI-VIEW TFM IMAGES

In brief, the experimental procedure entails the following
steps:

1) Pre-calculate the modelled auto-correlation lengths hs
of the PSF in each view as described in section III-C
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Fig. 9. Random and speckle noise quantities for each view image, relative to peak backwall reflection in L-L view. Dashed line is the random noise, with
points denoting speckle noise, at FCR 0.01% (RMS + 10dB). The error bars denote the speckle noise conservative fit range b

2) Collect averaged FMC from an undamaged sample and
process the data using multi-view TFM imaging algo-
rithm (equation 1). Since the random noise suppression
required cannot be assessed prior to calculation of
speckle noise, it is recommended that a conservative
choice for the number of averages is made at this stage,
e.g. 10-20

3) Determine the random noise level using the back-to-back
paired FMC approach (with no averaging) for a single
measurement location using equation 6

4) Remove image artefacts using masking procedure of
section III-C

5) Adjust non-masked points for spatial variation in
Rayleigh distribution (equations 9 and 10)

6) Determine image level Rayleigh parameter σ for each
view on non-masked points using maximum likelihood
estimation (equation 11)

7) Confirm number of averages is sufficient for random
noise suppression relative to the image speckle noise
(in view with lowest speckle noise level), if not, use
equation 8 to estimate required number of averages and
repeat steps 2-6 above

8) Assess outcome using Rayleigh probability plots on non-
masked data

V. CONCLUSIONS

A procedure for the efficient determination of ultrasonic
image noise has been proposed, which uses experimental based

characterisation to quantify the random and micro-structure
grain noise. To determine the random noise, only a pair of
FMC datasets captured in succession are required. For the
grain-induced speckle noise, instead of relying on many inde-
pendent FMC datasets from pristine samples to obtain pixel-
by-pixel noise parameters, the procedure assumes consistent
linear spatial variation within each image. This enables intra-
image information to be combined, which reduces the number
of independent FMC datasets required. This procedure was
applied to direct, half-skip and full-skip images constructed
using the multi-view TFM algorithm. To mitigate the impact
of image artefacts and unwanted features, a process was
developed which incorporated expected local auto-correlation
length and high amplitude cluster suppression. The masking
process requires the simulation of the inspection setup to
predict the expected ACL from the PSF in each image. A
simple ray-based forward model was shown to be sufficient
for this purpose, and only needs to be executed once for a
given inspection configuration. It was demonstrated that the
masking procedure was effective, with typically only 0.5%
to 3.7% (25th and 75th percentiles) of the region of interest
needing to be masked in order to leave the intensity in the
non-masked region closely following a Rayleigh distribution.

The procedure outlined is highly efficient, with only a
single FMC dataset required to obtain a good estimate of
the true noise parameters. In the example case, speckle noise
parameters estimated from a single FMC dataset for 21 multi-
view images were on average within 0.2dB of those obtained
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from 9 independent FMC datasets. Since the procedure of
noise quantification outlined in the paper is independent of
the imaging algorithm, it can also be readily applied to other
imaging algorithms for the purpose of determining the noise
component of the signal-to-noise ratio for use in a data fusion
algorithm.
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