
                          Nemoz, C., Ropars, V., Frit, P., Gontier, A., Drevet, P., Yu, J., ...
Charbonnier, J. B. (2018). XLF and APLF bind Ku80 at two remote sites to
ensure DNA repair by non-homologous end joining. Nature Structural and
Molecular Biology, 25(10), 971-980. https://doi.org/10.1038/s41594-018-
0133-6

Peer reviewed version

Link to published version (if available):
10.1038/s41594-018-0133-6

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer Nature at https://www.nature.com/articles/s41594-018-0133-6#Abs1. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1038/s41594-018-0133-6
https://doi.org/10.1038/s41594-018-0133-6
https://doi.org/10.1038/s41594-018-0133-6
https://research-information.bris.ac.uk/en/publications/xlf-and-aplf-bind-ku80-at-two-remote-sites-to-ensure-dna-repair-by-nonhomologous-end-joining(0d3c5b03-4962-4e2c-94ae-a124124ca3c7).html
https://research-information.bris.ac.uk/en/publications/xlf-and-aplf-bind-ku80-at-two-remote-sites-to-ensure-dna-repair-by-nonhomologous-end-joining(0d3c5b03-4962-4e2c-94ae-a124124ca3c7).html


 

1 
 

XLF and APLF bind to Ku80 on two remote sites to ensure DNA repair by 1 

non-homologous end-joining 2 
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ABSTRACT  33 

The Ku70-Ku80 (Ku) heterodimer binds rapidly and tightly to ends of DNA double-strand 34 

breaks and recruits several factors of the Non-Homologous End Joining (NHEJ) pathway 35 

through molecular mechanisms that remain unclear. Here, we describe the crystal structures 36 

of the Ku-binding motifs (KBM) of the NHEJ proteins APLF (A-KBM) and XLF (X-KBM) 37 

bound to a Ku-DNA complex. The two KBMs motifs bind on remote sites of Ku80 α/β 38 

domain. The X-KBM occupies an internal pocket formed after an unprecedented large 39 

outward rotation of the Ku80 α/β domain. We reveal independent recruitment at laser-40 

irradiated sites of the APLF-interacting protein XRCC4 and of XLF through the respective 41 

binding of A- and X-KBMs to Ku80. Finally, we show that mutations on the X-KBM and A-42 

KBM binding sites in Ku80 compromises efficiency and accuracy of end-joining and cellular 43 

radiosensitivity. A- and X-KBMs may represent two initial anchorage points necessary to 44 

build the NHEJ intricate interactions network. 45 

 46 

Keywords : DSB repair, NHEJ, X-ray crystallography, induced fit, laser micro-irradiation, 47 

super resolution microscopy, switchSENSE, microcalorimetry 48 

 49 
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INTRODUCTION  51 

 52 

In mammals the majority of DNA double-strand breaks (DSBs) is repaired by the non-53 

homologous end-joining (NHEJ) pathway 1,2. The Ku70-Ku80 heterodimer (Ku) rapidly and 54 

tightly interacts as a preformed ring with DSBs extremities in a non-sequence specific manner 55 
3. Ku serves as a hub for the recruitment of several NHEJ factors 4,5. Among them, Ku recruits 56 

the XRCC4-LIG4-XLF ligation complex through interaction with XRCC4-LIG4 6,7 and with 57 

XLF, the latter relying on a Ku-binding motif (KBM) localized at the XLF extreme C-58 

terminus (thereafter named X-KBM) 8,9 (Figure 1a and Supplementary Figure 1). The ligation 59 

complex organizes into filaments both in vitro and in cells 10-14. 60 

 61 

Interestingly, Ku interacts also with a number of accessory NHEJ factors. The APTX and 62 

PNKP-like factor (APLF) binds poly(ADP)-ribosylated proteins near DSBs sites 15,16, and has 63 

been reported to have nuclease activity 16,17
. APLF tightly interacts with Ku through a KBM 64 

(thereafter named A-KBM) that is located in its central region 9,18 (Figure 1a and 65 

Supplementary Figure 1). This interaction has been mapped to the periphery of the Ku80 von 66 

Willebrand A domain (vWA) 5. Ku-APLF interaction was shown to facilitate recruitment of 67 

the APLF-partner XRCC4 at damaged sites 9 and was proposed to stabilize the assembly of 68 

NHEJ factors around the DSB 19. Notably, an A-KBM-like domain is present at the N-69 

terminus of a recently identified inhibitor of the NHEJ pathway, CYREN(MRI), that also 70 

interacts with Ku80 20 (Figure 1a). Ku also associates with the Werner syndrome protein 71 

(WRN) that is involved in many aspects of DNA metabolism including NHEJ 21. Two motifs 72 

in the C-terminus of WRN cooperate for interaction with Ku, one being A-KBM like, and the 73 

other resembling the X-KBM present on XLF (Figure 1a). In addition, we and others showed 74 

recently that PAXX (Paralog of XRCC4 and XLF) interacts with the Ku70 subunit through a 75 

third type motif that is located in its C-terminus 22,23 (Figure 1a). Despite identification of 76 

KBMs in several NHEJ factors, their respective contribution to the efficiency of DSB repair is 77 

not fully understood. For example, the puzzling observations that KBM deletion in XLF or 78 

APLF depletion in human cells lead to null or intermediate repair defect deserve further 79 

investigations 9,24-27. 80 

 81 

The interactome of Ku thus defines a large ensemble of motifs and proteins that could 82 

potentially compete or act synergistically. However, despite important structural and 83 

biophysical studies on NHEJ complexes 28, the absence of high resolution structures of Ku-84 
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KBMs complexes limits our understanding of the roles and specificity of the different 85 

molecular interactions in the recruitment of NHEJ factors to DSBs. Mapping KBM-binding 86 

sites in structures is also needed to clarify potential competition of all the Ku interacting 87 

factors on limited positions (Supplementary figure 1).  88 

 89 

Here, we establish the structural and functional basis of Ku unique modes of interaction with 90 

two factors within the NHEJ repair pathway. We describe the first crystal structures of Ku70-91 

Ku80-DNA complex in interaction with the A-KBM (KBM of APLF) and with the X-KBM 92 

(KBM of XLF), revealing that the two KBMs occupy remote interaction sites on the Ku80 93 

vWA domain. The functional context of our structural data was determined using cell based 94 

assays to visualize the recruitment of wild-type and mutant X-KBM motifs or XLF proteins as 95 

well as of the APLF-partner XRCC4 to DSBs sites induced by micro-irradiation in wild-type 96 

or mutant Ku backgrounds. Our data provide new mechanistic insights on the function of XLF 97 

and APLF in the NHEJ process. 98 

 99 

 100 

RESULTS  101 

 102 

The KBM of APLF tightly interacts with a highly conserved site of Ku80 vWA domain.  103 

 104 

The APLF factor contains a conserved Ku binding motif (A-KBM, aa 179-192) (Figure 1a). 105 

We co-crystallized a 18-mer A-KBM peptide (aa 174-191) with a Ku form deleted for the C-106 

terminal regions (Kucc), and an hairpin DNA (hDNA) 3 (Supplementary Figure 2a). In the 107 

crystal structure at 3.0 Å resolution (Table 1), the A-KBM peptide is well defined and is 108 

positioned at the periphery of the vWA domain of Ku80 (aa T6180-C15680) (thereafter, 109 

superscript 80 stands for Ku80) (Figure 1b, and Supplementary Figure 2b). It is located at 110 

more than 50 Å from the DNA binding site of Ku80. The A-KBM adopts an extended 111 

conformation in a pocket delineated by the helices α4 and α5 and the loop located between the 112 

β-strands B and C of Ku80 (Figure 1c). The hydrophobic part of the A-KBM, located in the 113 

C-terminal part of the motif, is composed by the amino acids I185LPTWML191 and is buried in 114 

a hydrophobic pocket formed by the Ku80 residues L6880, I11280, M11580, I14980 and I15080 115 

(Figure 1d). The N-terminal part of the A-KBM contained a patch of three consecutive basic 116 

residues and an acid residue (E181RKR184 in human sequence) (Figure 1e). It forms salt 117 
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bridges and charged hydrogen bonds with respectively the side chains of D10680, D10980, 118 

Q7380 and S14580, and the main chain of K14480 and S14380.  119 

 120 

Isothermal Titration Calorimetry (ITC) showed that the interaction between A-KBM and Ku 121 

had a Kd of 33 ± 10 nM (Table 2, and Supplementary Figure 2e). We measured a nanomolar 122 

Kd for the interaction between Ku and a 18bp DNA as already reported 29  and found a similar 123 

Kd for the interaction between the A-KBM and Ku alone or Ku bound to a 18bp DNA (Table 124 

2). The interaction of the A-KBM with Kucc showed Kd and enthalpy values similar to full-125 

length Ku (KuFL). Thus, the core heterodimeric region of Ku is likely sufficient for the 126 

interaction with the A-KBM. Notably, these affinities are stronger than the ones previously 127 

reported by fluorescence polarization with a labelled A-KBM peptide (Kd of 580 nM) 9.  128 

 129 

Mapping the conservation rate of the residues at the surface of Ku80 shows that this pocket is 130 

the main conserved pocket together with the DNA binding pocket (Figure 1f). The residues 131 

L6880, Y7480 and I11280 make tight interactions with the hydrophobic part of the A-KBM 132 

motif. Mutations at these positions were reported to greatly reduce or disrupt the interactions 133 

with APLF in yeast two-hybrid experiments or in EMSA 9. We produced the Ku I112R 134 

mutant that, as expected had no residual interaction with the A-KBM motif by ITC (Table 2).  135 

 136 

 137 

X-KBM creates an outward rotation of the vWA domain and a large groove in Ku80.  138 

 139 

We then determined the crystal structures of the Ku70-Ku80-hDNA complex bound with 140 

peptides derived from the XLF X-KBM ((L281X to S299X) and (S287X-S299X) peptides) 141 

(Supplementary Figure 2c). The crystal structures at 2.8 and 2.9 Å resolution (Table 1) show 142 

an unprecedented large outward rotation of the Ku80 vWA (Figure 2a, b). This movement 143 

forms a large groove between the Ku80 vWA and the rest of the Ku heterodimer. We 144 

therefore termed this conformation the open state of Ku, in contrast to the closed state 145 

observed in the three other crystal structures reported (Ku alone (1JEQ), Ku-hDNA (1JEY) 146 

and Ku-hDNA-A-KBM (this study)). The conformational change of Ku80 vWA does not 147 

affect Ku interaction with the duplex DNA (Supplementary Figure 2d) 148 

 149 

The X-KBM is located on the Ku80 vWA face of the newly created groove in a pocket 150 

delineated by 4 strands (βA, βD, βE and βE’) and 3 helices (α2, α7’, α7”). The motif is positioned 151 
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closer to the DNA (at 12Å) than the A-KBM, though not in direct contact. We can model 152 

eight residues of the X-KBM (292KKPRGLFS299) in the crystal obtained with the 19mer or 153 

14mer X-KBM. These residues are the last eight residues of the XLF sequence. The residues 154 

296GLFS299 of the X-KBM occupy a hydrophobic pocket delineated by Ku80 residues L1280, 155 

V3780, F4180, F13580, F16480, Y22580, and L23480 (Figure 2c). In the closed state, these Ku 156 

residues are buried and mediate intramolecular contacts (Figure 2d). The X-KBM may thus 157 

stabilize a transient open conformation of Ku80 in equilibrium with the closed state under 158 

basal conditions. In addition, we observed that the Ku80 vWA opening comes along with 159 

important secondary structure changes in the linker region (R23280-E24180) that separates the 160 

vWA and the rest of the Ku heterodimer (Figure 2c, d). 161 

 162 

ITC measurements showed a moderate affinity of X-KBM for Ku, with a Kd of 4.4 ± 0.2 µM 163 

(about 200-fold weaker than the affinity of the A-KBM) (Table 2, and Supplementary Figure 164 

2f). We observed similar affinities and thermodynamic parameters for the X-KBM with a Ku-165 

DNA complex or with Kucc (Table 2). Notably, this micromolar interaction was not detected 166 

in a previous study using fluorescence polarization with labelled peptides 9. We also measured 167 

similar affinities for the interactions between XLF homodimer and Ku alone or Ku bound to a 168 

18bp DNA (Table 2). These data show that in absence of DNA or with a short DNA protected 169 

by Ku ring, XLF and its X-KBM interact similarly with Ku. 170 

 171 

EMSA analyses confirmed an interaction between XLF and Ku complexed with a 50bp DNA 172 

in the µM range (Supplementary Figure 3a-b). Competitions experiments showed that the X-173 

KBM peptide (pXLF) competes in the µM range with the XLF protein and that the A-KBM 174 

peptide (pAPLF) does not displace XLF, supporting remote sites of interactions (Figure 2e 175 

and Supplementary Figure 3c, d). Also, the C-terminus of PAXX (pPAXX) does not compete 176 

with XLF binding, in agreement with previous studies that report an interaction between 177 

PAXX C-terminus and Ku70 subunit 22,23 (Supplementary Figure 3e).   178 

 179 

 180 

 181 

The outward rotation of the vWA domain of Ku80 is mediated by Glu133. 182 

 183 

To evaluate if the outward rotation of Ku80 observed in the crystal structure with the X-KBM 184 

peptide was present in solution, we performed SAXS analyses. The SAXS data with the A-185 
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KBM peptide were comparable with those of the Ku-hDNA sample without any peptide 186 

(respective Rg of 53.1Å and 53.7) (Figure 2f). We measured an increase of the Rg to 59.0Å in 187 

presence of the X-KBM, corresponding to the opening of Ku80 observed in the crystal 188 

(Figure 2f). Comparison of the Dmax values provided further corroboration for the opening of 189 

the Ku molecule with an increase of 30 Å. 190 

 191 

The acid residue E13380 buried in Ku80 is well positioned to act as a spring facilitating the 192 

Ku80 opening (Figure 2c, d). The glutamate E13380 is buried in the closed conformation of 193 

the Ku80 vWA and its pKa value is estimated by the PDB2PQR-2.0 server 30 at a value of 9.1, 194 

far from the normal pKa of 4.5 for a glutamate in solvent. The outward rotation of Ku80 vWA 195 

should be energetically facilitated by the solvation of this Glu following the displacement of 196 

Ku80 residues V23680, F23780 and I24080 away from E13380 carboxylate function (Figure 2d). 197 

Multiple sequence alignments show that E13380 position and the residues surrounding are 198 

well conserved in mammalian and saurian and that Ku70 has no equivalent buried acidic 199 

residue at this position (Supplementary Figure 4a-b).  200 

 201 

Molecular bases of the specificities of A-KBM and X-BKM motifs binding to Ku80.  202 

 203 

The A-KBM and X-KBM present sequence similarities with a basic patch in their N-terminus 204 

followed by a hydrophobic patch 9 (Supplementary Figure 1). Comparison of the crystal 205 

structures of Ku bound to these two motifs suggests that the high affinity of the A-KBM relies 206 

on the tryptophan W189A in place of the Leu297X in X-KBM. Thus, we used ITC to measure 207 

the interaction of the X-KBM motifs with the mutation L297W (LW) or with a non-208 

conservative L297E mutation (LE). The (LW) peptide has a Kd of 0.12 ± 0.03 µM, an 209 

interaction 40-fold tighter than wild-type X-KBM (Table 2 and Supplementary figure 2g). 210 

The LE mutant presents no detectable interaction with Ku (Table 2). Competition experiments 211 

with Ku saturated with the A-KBM showed that the X-KBM (L297W) no longer interacts 212 

with Ku, suggesting that the sole L297W mutation is able to redirect the X-KBM towards the 213 

A-KBM binding site on Ku80 (Table 2). 214 

 215 

Then live cell imaging was used to monitor the recruitment of CFP-fused A-KBM and X-216 

KBM fragments to DSBs sites induced with laser micro-irradiation. Under conditions of 217 

similar damage yield (Supplementary Figure 5e), the A-KBM motif transfected in U2OS cells 218 

was strongly recruited but the W189G mutation impaired both its nuclear localization and 219 
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recruitment to laser sites (Figure 3a-b), as reported 9,18. X-KBM live recruitment was impaired 220 

by L297E mutation but not L297W mutation (Figure 3c), corroborating ITC data. We then 221 

used U2OS cells expressing an inducible shRNA against Ku80 31 (Supplementary Figure 5a) 222 

that were complemented with wild-type or I112R mutant Ku80 (Supplementary Figure 5c-d). 223 

The I112R mutation impaired A-KBM recruitment, as expected, but not that of X-KBM 224 

(Figure 3d, e). Notably, I112R Ku80 mutant specifically lowered the recruitment of L297W 225 

X-KBM (compare Figures 3c and 3f). Conversely, APLF knock-down boosted the 226 

recruitment of the LW mutant peptide above that of wild-type X-KBM (Figure 3g and 227 

Supplementary Figure 5b for control of shAPLF efficiency). Together, these data in cells 228 

support that the LW mutation redirects the X-KBM fragment to the APLF-binding site in 229 

Ku80 and point out the W189 residue as a key determinant for APLF specific interaction with 230 

Ku80. 231 

 232 

 233 

 X-KBM mutations impair XLF recruitment and XRCC4-XLF filament stability. 234 

 235 

We then investigated the properties of the interaction between full-length XLF protein and 236 

Ku. We first used the SwitchSENSE approach 32 in which oligonucleotide nanolevers labelled 237 

with a fluorescence probe are bound to a gold surface (Supplementary Figure 3f). Ku bound 238 

onto 48bp DNA nanolevers with a Kd in the nM range as already reported 29 and a long 239 

dissociation time (Supplementary Figure 3g). Wild-type XLF onto the Ku-DNA complex 240 

showed a rapid kon (4.7 ± 1.7 105 M-1s-1) followed by a rapid dissociation (koff = 0,09 ± 0,004 241 

s-1) and a corresponding Kd of 0.19 ± 0.07 µM (Figure 4a). This affinity is about 10 fold 242 

stronger than the one measured by ITC with a smaller DNA and may reflect additional 243 

interactions of XLF with DNA emerging from Ku ring as observed with PAXX 22. LW and 244 

LE mutants showed a 2.3- and 5.1-fold weaker affinity than WT protein, respectively (Kd of 245 

0.45 ± 0.26 µM for LW and Kd of 0.98 ± 0.15 µM for LE) (Supplementary Figure 3h). As 246 

compared with ITC and recruitment data with X-KBM LW mutant peptide, this suggests that 247 

the LW mutation cannot redirect the XLF protein to the APLF binding site in Ku80. 248 

 249 

We then measured the recruitment of the CFP-tagged full-length XLF protein (CFP-XLF) 250 

expressed in human XLF-defective BuS cells (SV40T-transformed, telomerase immortalized 251 

fibroblasts derived from the XLF-deficient P2 patient - homozygous C622T nonsense mutant 252 

(R178X)) 33 (Figure 4b). Wild-type XLF showed a rapid mobilization to irradiated nuclear 253 
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sites, as reported 34. Both LE and LW mutations impaired to various extents XLF protein 254 

recruitment (Figure 4b), again indicating that LW mutation cannot redirect the XLF protein to 255 

the APLF binding site in Ku80. In addition, we observed an important reduction of the 256 

recruitment of G296W, S299E or F298G XLF mutants in the extreme C-terminus 257 

(Supplementary Figure 5f-h). We also questioned the contribution of APLF-XRCC4 complex 258 

to XLF recruitment by expressing L115D XLF mutant unable to interact with XRCC4 35,36. 259 

We measured an efficient recruitment of L115D XLF to laser-induced DSBs that was 260 

insensitive to APLF knock-down but impaired with the XLF L115D/L297E XLF double 261 

mutant (Supplementary Figure 5i). Together, these data support a major role for Ku80 262 

interaction with L297 and extreme C-terminal residues for XLF recruitment at DSBs in cells. 263 

 264 

Multi-color super-resolution localization microscopy (STORM) allows characterizing 265 

formation of XRCC4-XLF filaments close to Ku foci and DSBs ends 14. On DSBs induction 266 

with the radiomimetic drug neocarzinostatin, extended XLF filaments close to Ku80 foci were 267 

observed in XLF complemented BuS cells, whereas cells harboring (LE) and (LW) mutants 268 

showed slightly smaller and more punctuated XLF structures (Figure 4c and Figure 4d-e for 269 

quantification). In contrast to these data, evaluation of the effect of mutations in the X-KBM 270 

on cell radiosensitivity showed that (LW) or (LE) XLF mutants were associated with 271 

respectively no or minor radiosensitization, compared to high radiosensitivity of BuS cells 272 

and full restoration of radioresistance on expression of wild-type XLF (Figure 4f). 273 

 274 

 275 

APLF and XLF binding to Ku80 promote DSB repair and cell survival to IR.  276 

 277 

Finally, we questioned the discrepancy between subnormal cell survival and defective XLF 278 

recruitment and filaments formation associated with mutations in X-KBM. The outward 279 

rotation in Ku80 upon X-KBM binding more likely relies on E13380, the equivalent position 280 

of which in Ku70 is a methionine (M167) (Supplementary Figure 4b). Therefore, we designed 281 

E133M mutant in Ku80 and Q162E mutation that may alter the charge environment of E133 282 

(Supplementary Figure 5c). E133M or Q162E mutation in Ku80 negatively impacted X-KBM 283 

recruitment but not that of control A-KBM (Supplementary Figures 6a and 6b). This result 284 

further supports the independent binding sites on Ku80 of the A-KBM and X-KBM motifs 285 

and validates E133 and Q162 positions in Ku80 as key residues for X-KBM binding.  286 

 287 
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Then, mutations in the Ku80 binding sites for X- and A-KBM were combined in the 288 

I112R/E133M Ku80 double mutant (Supplementary Figure 5d). This combination of 289 

mutations clearly impaired the recruitment of both CFP-(X- and A-KBM) peptides (Figures 290 

5a and 5b) while the recruitment of the mutant CFP-Ku fusions was preserved 291 

(Supplementary Figure 6c-d). We also measured the recruitment of the APLF partner XRCC4 292 

and of XLF, expressed as CFP-tagged full-length proteins (Figure 5c-d). Strikingly, only the 293 

double E133M/I112R mutation strongly but not completely impaired the recruitment of both 294 

proteins (Figure 5c-d). This result supports the independent binding of APLF-XRCC4 and 295 

XLF proteins on Ku80. 296 

 297 

Ku80 mutants expressed in U2OS cells had no detectable impact on XLF filaments 298 

(Supplementary Figure 6e-f) but lowered end-joining efficiency on a linear plasmid 299 

transfected in U2OS cells (Figure 5e). To assess repair accuracy, we used an assay in which 300 

GFP expression from a cassette integrated in cells relied on the loss of a DNA fragment 301 

between two cut sites (modified from 37) (Figure 5f), reported to be favoured upon NHEJ 302 

inhibition 38,39. Strikingly, we observed an increase in fragment loss with the three Ku80 303 

mutants (Figure 5f), indicating that loose APLF-XRCC4 or XLF interactions with Ku80 304 

promote genomic instability. Finally, the combination of E113M and I112R Ku80 mutations 305 

had a strong impact on cell radiosensitivity with an additive effect of both mutations (Figure 306 

5g). These results indicate that APLF-XRCC4 and XLF interactions with Ku80 cooperate to 307 

promote cell survival to IR. 308 

 309 

 310 

DISCUSSION  311 

 312 

Here, we show that each of the A- and X-KBM binds Ku independently of other APLF or 313 

XLF protein domains. This is in contrast with the absence of binding reported for the isolated 314 

X-KBM in recent studies with fluorescent polarization 9,40 that may be due to lower 315 

sensitivity, steric hindrance by the fluorescence probe or differences in the Ku constructs 316 

used. Therefore, the present results rule out the conclusion that Ku-XLF interaction 317 

necessarily needs XLF binding to DNA (even though DNA could stabilise the interaction, as 318 

deduced from our switchSENSE data) or to DNA-PKcs 40.  319 

 320 
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Despite the A-KBM and X-KBM motifs have important sequence similarities (Supplementary 321 

figure 1), they target different regions of Ku80 with different modes of actions, a more rigid 322 

one for the A-KBM and an induced fit one for the X-KBM. In contrast to the L297W X-KBM 323 

peptide, the (LW) full-length XLF mutant protein cannot be redirected to the APLF-binding 324 

site on Ku80. This may be explained by steric constraints either intrinsic to the protein 325 

structure or due to interactions with other partners in the NHEJ complex. It was reported that 326 

a X-KBM in WRN protein functions cooperatively with an A-KBM located upstream (1403-327 

1412) in binding Ku complexes 40 (Figure 1a). Our structural data allow proposing the first 328 

model of Ku interacting with the tandem sequence of the WRN A-KBM and X-KBM, 329 

including the central linker (Supplementary Figure 4c). This model now awaits validation by 330 

the crystal structure of the tandem motif of WRN on Ku. 331 

 332 

XRCC4 and XLF organize into filaments both in vitro and in cells 10-14 and can also assemble 333 

as sliding sleeves-like structures on broken DNA in vitro even without Ku 41. In this study, 334 

cells containing single or double mutations on the A-KBM and/or X-KBM binding sites of 335 

Ku80 show intact filaments while mutations on the X-KBM of XLF induce a slight reduction 336 

in the filaments size. These data suggest that interactions additional to Ku80-XLF may 337 

participate in filament formation, like the XLF C-terminal DNA-binding domain that spans 338 

the X-KBM 42.  339 

 340 

How is NHEJ ligation complex assembled at broken DNA? APLF FHA domain interacts with 341 

XRCC4 17,26 and XLF establishes head to head contact with XRCC4 10-13. Here, we show that 342 

the two remote APLF- and XLF-KBM binding sites in Ku80 promote the independent 343 

recruitment of XRCC4 and XLF at broken DNA and that disruption of XRCC4-XLF 344 

interaction (through L115D mutation) does not compromise XLF recruitment. Destabilisation 345 

of APLF or XLF interactions with Ku80 impairs repair efficiency and cell survival to DSBs 346 

and also favours genome instability associated with distal end-joining. These effects are most 347 

likely explained by loose assembly of the NHEJ apparatus at break ends. Therefore, we 348 

propose a model in which APLF and XLF KBMs represent two initial anchorage points for 349 

the rapid and independent recruitment of APLF-XRCC4 and XLF on Ku (Figure 5h). After 350 

initial recruitment, interactions additional to Ku80-XLF contacts may stabilize XLF at DBS 351 

sites (Figure 5h): our recruitment data show a stable interaction of XLF at DSB sites in cells 352 

that differs from the rapid dissociation from Ku-DNA observed in vitro by switchSENSE; 353 

also, although XRCC4 is dispensable for XLF initial recruitment, it has been shown to 354 
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stabilize XLF at damaged sites 34. Thus, additional contacts stabilizing XLF may include 355 

XLF-DNA 34,42,43 and/or XLF-XRCC4 interactions, including filaments formation 10-14 and/or 356 

interaction with the LIG4 BRCT1 domain 44. In addition, after XRCC4 recruitment through 357 

APLF binding to Ku, XRCC4 may also stabilize in turn APLF at damaged sites since FHA 358 

mutants of APLF that do not interact with XRCC4 show a reduced retention after laser micro-359 

irradiation 18. Moreover, links with DNA-PK may further properly stabilize and/or position 360 

the NHEJ ligation complex at DSBs (Figure 5h): Ku directly interacts with the XRCC4-LIG4 361 

complex 7 through either XRCC4 45 or LIG4 6 and DNA-PKcs also directly contacts XRCC4 362 
46-48. Intimate links between the DNA-PK and ligation complexes are illustrated by the 363 

requirement of an intact XLF-XRCC4-LIG4 complex to ensure optimal DNA ends synapsis 364 
49,50.  365 

 366 

The intricate network linking end-recognition and ligation NHEJ complexes may allow 367 

compensation of partially defective individual components. Indeed, we found that separate or 368 

even combined Ku80 mutations do not completely abolish XRCC4 and XLF recruitment and 369 

do not radiosensitize cells as much as XLF complete defect that abolishes all XLF functions 370 

in NHEJ 51. In that view, only a mild, if any, repair defect in human cells has been associated 371 

with X-KBM deletion 27 or APLF depletion 9,24-26: in case of individual absence of XLF C-372 

terminal tail or of APLF, the other intact partner would still bind to Ku80 and be able, 373 

although with a slower kinetics, to recruit the other components to achieve ligation.  374 

 375 

Finally, our present study adds a new aspect to the DNA-PK-ligation complex interaction 376 

network that is the swing of the Ku80 vWA domain upon XLF binding (Figure 5h). From our 377 

structural and mutagenesis approaches, we propose that the outward swing of the vWA 378 

domain of Ku80 is mainly dependent on the conserved acidic residue E133
80

. Although this 379 

swing does not impact the A-KBM binding site nor the DNA binding domain, it exposes a 380 

large groove between the vWA and the ring domain of Ku80 that may non-exclusively 381 

reinforce XRCC4-LIG4 and/or XLF interaction with Ku or attract yet unknown components. 382 

Interestingly, XLF deficiency impacts on the activity of the Ku partner terminal 383 

deoxynucleotidyl transferase during V(D)J recombination 52. Mutagenesis studies on the 384 

conserved positions that delineated the unmasked surface of this groove will help to define 385 

precisely the role of this swing in the NHEJ reaction. 386 

 387 
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In conclusion, the present data further substantiate the emerging model that several NHEJ 388 

factors bearing a limited repertoire of KBMs recognize a limited number of KBM-binding 389 

sites on Ku 16. The complex regulation of Ku sites occupancy by NHEJ factors during the 390 

repair process deserves further investigations. 391 

 392 

ACCESSION CODES.  Crystal structures are deposited at the pdb with the following codes 393 
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 568 

FIGURE LEGENDS  569 

 570 

Figure 1. Crystal structure of the APLF KBM (A-KBM) bound to the Ku80 vWA 571 

domain. 572 

 (a) Positions of the A-KBM (magenta) and X-KBM (blue) motifs in APLF, XLF, WRN and 573 

CYREN. The C-terminal domain of PAXX contains a P-KBM that interacts with Ku70 574 

subunit. NTD: N-terminal domain. (b) Overall view of the quaternary complex 575 

Ku70/Ku80/hDNA/(APLF peptide). The A-KBM (magenta) binds at the periphery of the 576 

Ku80 (light green) vWA domain. The Ku70 subunit and hDNA are represented respectively 577 

in orange and red. The hairpin part of the DNA has been removed for clarity. (c) The N-578 

terminal part of the A-KBM motif has an extended conformation whereas the C-terminal 579 

residues form a turn. (d-e) Zoom of the interactions made by (d) the hydrophobic patch and 580 

(e) the basic patch of the A-KBM. (f) The A-KBM binding site is delineated by conserved 581 

residues of Ku80 vWA domain. The binding site is represented in surface mode with amino 582 

acids colored according to their conservation rate: red (highly conserved) to white (not 583 

conserved)). The conservation rate was measured using sequences of metazoan Ku80. The 584 

orientation is the same as in (c).  585 

 586 

Figure 2. Crystal structure of the XPLF KBM (X-KBM) bound to the Ku80. 587 

(a) Crystal structure of the quaternary complex Ku70-Ku80-DNA-(X-KBM peptide). The X-588 

KBM (blue) binds in an internal site of the Ku80 subunit created upon an outward rotation of 589 

the vWA domain. The Ku80 vWA opening creates a large groove between the Ku80 vWA 590 

and the rest of the heterodimer. (b) The crystal structure of Ku70/Ku80/DNA in presence of 591 

the A-KBM is shown with the same orientation. (c-d) Comparison of the X-KBM binding site 592 

in presence of X-KBM (c) or A-KBM (d)  peptides. The X-KBM interacts with Ku80 residues 593 

involved in Ku intramolecular contacts in the closed state of Ku observed with the A-KBM or 594 

with no peptide. The last GLFS residues of the X-KBM interact with the bottom of the groove 595 

formed in the open state. The glutamic acid presents an atypical hydrophobic environment 596 

and could be at the origin of the vWA instability. The X-KBM residues occupy the position of 597 
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the helix 236-241 of Ku80 in the closed conformation and some X-KBM side chains (R295X, 598 

L297X and F298X) mimic the intramolecular interactions made by Ku80 residues with the 599 

vWA domain. (e) Gel shift assay with XLF and Ku in presence of a 50bp DNA with a FAM 600 

in 5’and competition with pXLF containing the X-KBM motif. The arrow indicates the XLF-601 

Ku-DNA complex. Uncropped gel image is shown in Supplementary Data Set 1. (f) The pair 602 

distributions P(r) obtained in solution by SAXS analysis indicates an opening of the 603 

Ku70/Ku80/DNA complex with higher Dmax and Rg in presence of the X-KBM (blue line) 604 

compared to the Ku/DNA complex without peptide (grey line) and to the A-KBM complex 605 

(magenta line). Values deduced from SAXS analysis are reported beside the curves. 606 

 607 

 608 

Figure 3. Life cell imaging of A-KBM and X-KBM recruitment after nuclear micro-609 

irradiation. 610 

(a) Wild-type (WT) and mutant CFP-(A-KBM) behaviour at 0 s and 50 s after laser nuclear 611 

micro-irradiation. The white rectangle and arrows mark irradiated areas. Magnification: X40.  612 

(b) Dynamics of wild-type and mutant CFP-(A-KBM) at laser-induced damage sites in U2OS 613 

cells. Mean values of relative fluorescence with s.e.m. were calculated from data obtained in 614 

several individual cells: n=23 and 19 cells for WT and mutant A-KBM, respectively). p 615 

values at last time point were calculated using unpaired two-tailed t-test: WT vs W189G 616 

p<0.0001. (c) Dynamics of wild-type and mutant CFP-(X-KBM) at laser-damaged sites as in 617 

b). n=27, 21, and 24 cells for WT, L297E and L297W X-KBM, respectively. p values at last 618 

time point : WT vs L297W p=0.8574; WT vs L297E p=0.0021. (d-e) Dynamics of CFP-(A-619 

KBM) (d) and (X-KBM) (e) at laser damaged sites in cells expressing wild-type or I122R 620 

mutant Ku80 as in b). n=20, 13 cells for A-KBM in WT or I122R Ku80, and n=48 and 39 621 

cells for X-KBM in WT or I122R  Ku80, respectively. p values at last time point : (d) WT vs 622 

I112R p=0.0002; (e) WT vs I112R p=0.5692 (f-g) Dynamics of wild-type and mutant CFP-623 

(X-KBM) at laser-damaged sites in cells expressing I112R mutant Ku80 (f) or treated with a 624 

shAPLF (g) as in b). n=26, 28, and 21 cells for WT, L297E and L297W X-KBM in (f), and 625 

n=15 cells for each of WT, L297E and L297W X-KBM in (g). p values at last time point : (f) 626 

WT vs L297W p=0.023; WT vs L297E p=<0.0001; (g) WT vs L297W p=0.0144; WT vs 627 

L297E p=0.2654. 628 

 629 

 630 
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Figure 4. Biophysical and cellular analyses of XLF mutants in X-KBM. 631 

(a) SwitchSENSE kinetic analysis of the WT XLF interaction with Ku-DNA complexes. 632 

Solid grey lines represent raw data (from 1 to 8 µM; light grey to dark grey; averages of 633 

triplicates). Global fitting was performed, following a single-exponential function (solid 634 

orange lines) yielding kinetic rate constants; kON=4.7 ± 1.7 105 M-1s-1 and kOFF = 9.1 ± 0.4 10-2 635 

s-1 for XLF(wt). (b) Dynamics of wild-type and mutant CFP-XLF at laser-damaged sites in 636 

BuS cells as in Figure 3b. n=20 cells for WT, L297E and L297W XLF. p values at last time 637 

point : WT vs L297W p=0.0093; WT vs L297E p<0.0001. (c) Representative super-resolution 638 

images of WT, L297E mutant, and L297W mutant BuS nucleus, with XLF and Ku displayed 639 

in green and magenta, respectively (scale = 2500 nm). Right: zoomed-in areas (scale = 250 640 

nm). (d) Representative pair correlation function calculated from the 8x8 µm2 center square of 641 

one XLF nucleus image of WT (green), L297E (red), and L297W (blue) mutants. WT XLF 642 

shows bigger correlation radius (arrow). (e) Statistics of XLF foci size. Each plot represents 643 

the average XLF foci size (indicated as radius translated from the correlation radius) in one 644 

nucleus. Box’s height displays the s.d. with the mean value labelled in the middle. n=116, 95, 645 

104 nuclei for WT, L297E, and L297W. The two-sample unpaired t-test between WT and 646 

L297E is p=10-13 while that between WT and L297W is p=0.03. (f) Cell survival of BuS cells 647 

complemented with vector (EV) or WT or mutated XLF. y axis is log scale. Error bars 648 

represent s.d., n=5 to 6 independent experiments. p values were calculated using unpaired 649 

two-tailed t-test: WT vs EV p=1.788e-06 ; WT vs LW p=0.068 ; WT vs LE p=0.021. 650 

Significant p-values are indicated as follows: *p< 0.05, **p < 0.01, ***p < 0.001. 651 

 652 

Figure 5. Effects of Ku80 mutations in APLF and XLF binding sites. 653 

(a-b) Dynamics of CFP-(A-KBM) (a) and (X-KBM) (b) at laser damaged sites as in Figure 654 

3b, in U2OS cells expressing wild-type or I112R/E133M mutant Ku80. n=20 and 9 cells for 655 

WT and mutant Ku80 in (a) and n=48 and 11 cells for WT and mutant Ku80 in (b). p values 656 

at last time point: (a) WT vs I112R/E133M p=0.001; (b) WT vs I112R/E133M p=0.0111. (c-657 

d)  Dynamics of CFP-XRCC4 (c) and XLF (d) at laser-damaged sites in cells expressing wild-658 

type, I112R, E133M or I112R/E133M mutant Ku80. n=38, 27, 28, and 24 cells for WT, 659 

E133M, I112R and I112R/E133M Ku80 conditions in (c) and n=24, 26, 20 and 23 cells for 660 

I112R, WT, I112R/E133M and E133M Ku80 conditions in (d). p values at last time point: (c) 661 

WT vs E133M p=0.532; WT vs I112R p=0.0133; WT vs I112R/E133M p=0.0048; (d) WT vs 662 

I112R p=0.246; WT vs E133M p=0.0048; WT vs I112R/E133M p=0.0248. (e) End-joining 663 

activity in U2OS cells expressing mutated or WT Ku80. Error bars represent s.d., n=4 664 
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independent experiments. p values were calculated using unpaired two-tailed t-test: WT vs 665 

E133M p=0.0004; WT vs I112R p=0.0052; WT vs I112R/E133M p=0.0002. (f) Distal end-666 

joining in U2OS cells containing mutated or WT Ku80. Error bars represent s.d., n=7 667 

independent experiments. p values were calculated using unpaired two-tailed t-test: WT vs 668 

E133M p=7.49 e-05; WT vs I112R p=2.21 e-06; WT vs I112R/E133M p=4.05 e-06. (g) 669 

Survival of U2OS cells expressing WT or mutated Ku80. y axis is log scale. Error bars 670 

represent s.d., n=7 to 10 independent experiments. p values were calculated using unpaired 671 

two-tailed t-test: WT vs I112R p=1.47 e-06 ; WT vs E133M p=6.32 e-05 ; WT vs 672 

I112R/E133M p=2.52 e-13 ; I112R vs E133M p=0.011. Significant p-values are indicated as 673 

follows: *p< 0.05, **p < 0.01, ***p < 0.001. (h) Model for APLF and XLF KBMs function 674 

during NHEJ.  675 
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Table 1 Data collection and refinement statistics 676 

 Ku-pAPLF 
(PDB 6ERF) 

Ku-pXLF 
(PDB 6ERH) 

Ku-pXLFs 
(PDB 6ERG) 

Data collection    
Space group P1 P21 P21 
Cell dimensions :    
             a, b, c (Å) 98.9, 140.8, 150.3 111.8, 118.9, 128.2 111.7, 114.3, 127.2 

             α, β, γ (°) 68.6, 80.8, 81.2 90.0, 93.1, 90.0 90.0, 93.1, 90.0 
Resolution (Å) 49.5-3.0 (3.28-3.0) 49.01-2.8 (3.16-2.8) 50-2.9 (3.09-2.9) 
Anisotropy resolution limits (Å)§ 2.9, 3.9, 3.3 2.7, 4.4, 3.4 2.8, 3.8, 3.0 
Resolution limit overall (Å)§ 3.15 3.11 3.0 

Rmerge  0.056 (0.79)  0.164 (1.35) 0.171 (2.48) 
Rmeas 0.072 (0.93) 0.182 (1.47) 0.182 (2.56) 
Rpim 0.051 (0.66) 0.094 (0.76) 0.068 (0.94) 
I/σ (I) 11.8 (1.3) 9.1 (1.5) 9.7 (1.0) 
CC1/2

 0.99 (0.60) 0.997 (0.60) 0.996 (0.51) 
Completeness (spherical, %)§  66.5 (14.3) 51.3 (8.5) 72.9 (21.0) 
Completeness (ellipsoidal, %)§ 92.1 (70.1) 92.4 (69.6) 94.6 (68.5) 
Redundancy 3.4 (3.5) 7.1 (6.9) 14.0 (14.2) 

Refinement    
Resolution (Å) 49.47-3.01 49.38-2.8 48.76-2.9 
No. reflections 90993 41644 51644 
Rwork / Rfree 0.209/0.227 0.225/0.252 0.218/0.244 
No. Atoms  35410 18810 18989 
     Protein 33225 16649 16821 
     DNA 2178 2118 2133 
     SO4

2- 0 10 15 
     Water  
B factors (Å2)             
   Protein 
   DNA 

7 
 
112 
201 

33 
 
76 
109 

20 
 
94 
126 

R.m.s. deviations     
     Bond lengths (Å) 0.008 0.007 0.008 
     Bond angles (°) 0.96 0.95 0.95 

*Values in parentheses are for highest-resolution shell. § Values from STARANISO, Global Phasing Ltd. 677 
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 678 

Table 2 : Interactions measured by microcalorimetry between Ku70/Ku80, A-KBM, X-KBM and XLF 679 

 680 

 
Protein in the 
measurement cell 

Ligand in the 
syringe 

Kd 

(µM) 
ΔH 
(kcal.M-1) 

Remarks 

1 KuFL pAPLF 0.033 ± 0.01 -13.3 ± 0.1 A-KBM (APLF 174-191) 

2 KuFL DNA 18bp 0.0041 ± 0.0007 +5.3 ± 0.2 DNA18bp versus Ku 

3 KuFL+DNA-18bp pAPLF 0.023 ± 0.002 -16.0 ± 0.4 in presence of DNA18bp 

4 KuCC pAPLF 0.020 ± 0.002 -18.4 ± 0.7 Ku without Cter domains 

5 KuFL I112R pAPLF NI(a) NI Ku80 mutant on APLF site 

6 KuFL pXLF 4.4 ± 0.2 -2.8 ± 0.2 X-KBM (XLF 281-299) 

7 KuFL +DNA-18bp pXLF 2.4 ± 0.1 -8.1 ± 0.6 in presence of DNA18bp 

8 KuCC pXLF 2.2 ± 0.9 -3.1 ± 1.2 Ku without Cter domains 

9 KuFL XLF 1.0 ± 0.1 -9.0 (b) XLF versus Ku 

10 KuFL+DNA-18bp XLF 2.35 ± 0.1 -8.1 ± 0.6 XLF versus Ku/DNA18bp 

11 KuFL pXLF(LW) 0.12 ± 0.03 -12.1 ± 2.0 X-KBM (L297W) 

12 KuFL pXLF(LE) NI NI X-KBM (L297E)  

13 KuFL+pAPLF pXLF(LW) NI NI L297W in presence of A-KBM  

 681 
(a) NI means no interaction; (b) The enthalpy value was deduced from the first injection point in absence of lower plateau;  682 
The thermograms and isotherms of titration of the experiments corresponding to lines 1, 6 and 11 are presented in Supplementary Figure 2e-g. 683 
Interactions in lines 1, 4, 6, 8, 9, 11 were measured in triplicate, and the mean value with standard deviation is reported. Interactions in lines 2, 3, 684 
4, 6, 10 were measured in duplicate, and the mean value with variation between min and max values is reported.  685 
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 686 
ONLINE METHODS 687 

 688 

DNA preparation  689 

The 500 bp linear dsDNA molecules were amplified from the 3516-4016 region of pBR322 690 

plasmid with biotinylated primers (5’-bGGATCTCAACAGCGGTAA-3’ and 5’ 691 

bCTTTATCCGCCTCCATCC-3’). DNA fragments were purified on a MiniQ anion exchange 692 

column with a chromatography SMART system (GE Healthcare), ethanol precipitated and 693 

resuspended in a 10 mM Tris-HCl, pH 7.5, 1 mM EDTA buffer. 694 

 695 

Oligonucleotides for ITC and EMSA 696 

CN1 34bp : CGCGCCCAGCTTTCCCAGCTAATAAACTAAAAAC 697 

CN2 21bp : GTTTTTAGTTTATTGGGCGCG 698 

CN3 18bp up : GTTATCCGAGCGTGAGAC 699 

CN4 18bp down : GTCTCACGCTCGGATAAC 700 

NLB48 : TAG TCG TAA GCT GAT ATG GCT GAT TAG TCG GAA GCA TCG AAC 701 

GCT GAT 702 

MM 50bp up :  FAM-TAAATGCCAATGCTGCTGATACGTACTCGGACTGATTCGGAACTGTAACG 703 

MM 50bp do : CGTTACAGTTCCGAATCAGTCCGAGTACGTATCAGCAGCATTGGCATTTA 704 

 705 

Peptides and Proteins:  706 

The synthetic peptides containing the KBM and XLM motifs were purchased from Genecust 707 

at 95% purity, and the concentrations of the stock peptide solutions were determined by 708 

amino acid composition. The oligonucleotides used for ITC and crystallization were 709 

synthesized by Sigma-Aldrich and Eurogentec.  710 

The full length Ku70(1-609)/Ku80(1-732) heterodimer and a truncated version of the 711 

heterodimer deleted Ku70(1-544)/Ku80(1-551) were cloned in the Multibac vectors with a 712 

10-His tag and a TEV site on the Ku80 N-terminus 53. Each plasmid was integrated in a 713 

Yellow Green Protein (YFP) containing bacmid by transformation in EMBACY E.coli stain 714 

(kind gift from Imre Berger, Bristol University). The resulting recombinant bacmids were 715 

used to transfect Sf21 insect cells giving the V0 virus generation. After amplification, stocks 716 

of viruses were titrated by the dilution limit method using YFP as marker for infected cells 717 

and Mac Grady table. Production was initiated in Sf21 cells culture by infection with 718 

baculovirus at MOI of 5x10-3. Insect cells were collected 5-6 days after the infection (3-4 days 719 
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after the proliferation arrest). Cells were sonicated and the supernatant was incubated with 720 

Benzonase (300 units for 30 min at 4°C). The Ku heterodimer was purified on a NiNTA-721 

Agarose affinity column (Protino, Macherey Nagel) with a 1M NaCl wash step to remove 722 

DNA excess. The eluted Ku was then bound onto an anion exchange column (Resource Q, 723 

GE Healthcare) equilibrate with buffer Q (20 mM Tris pH 8.0, 50 mM NaCl, 50 mM KCl, 10 724 

mM β-mercaptoethanol). Final yield of the Ku heterodimer was typically 35 mg of purified 725 

heterodimer by liter of culture. The full length 10-His tagged XLF protein was produced in 726 

insect cells with a similar protocols with a yield of 50mg of purified protein by L of culture. A 727 

truncated version of XLF(1-224) was also produced in E. coli  . 728 

 729 

Crystallization of the Ku70/Ku80/hDNA complexes with A-KBM and X-KBM peptides 730 

 The DNA used in this study is the hairpin DNA previously used by Walker et al 3. It was 731 

obtained using HPLC-purified oligonucleotide of 34 and 21 nucleotides (see oligonucleotides 732 

above). The oligonucleotides were annealed and added in 1.1-fold molar excess to Ku 733 

heterodimer. The peptides containing the A-KBM motif (18mer, 174-192), the long X-KBM 734 

motif (19mer, 281-299) or the short X-KBM motif (13mer 287-299) were added respectively 735 

with a 1.1, 2 and 2 fold excess. Crystallization screenings on the KuCC-hDNA-peptides were 736 

performed on the HTX platform (EMBL, Grenoble) with an automatic visualization at 4°C. 737 

The crystals of Kucc-hDNA-pAPLF were reproduced and optimized in the laboratory at 20 °C 738 

using the sitting drop method by mixing 1.5µL of the 20 mg/mL Ku-DNA-peptides 739 

complexes with 1.5 µL of the solution containing 13% polyethylene glycol (PEG) 3350, 150 740 

mM NaNO3, and 100 mM Bis-Tris-Propan (pH 6.5). The crystals (100x150x1000µm) grew in 741 

5-6 hours and were frozen in a solution of the mother liquor with 20% glycerol. The Kucc-742 

hDNA-pXLF and Kucc-DNA-pXLFs complexes were crystallized at 20 °C by mixing 1.5µL 743 

of the 7 mg/mL complex solution with 1.5 µL of a solution containing 18% polyethylene 744 

glycol (PEG) 3350, 150 mM Na2SO4, and 100 mM Bis-Tris-Propane (pH 8,5). The crystals 745 

(100x200x50µm) grew in 5-6 days and were frozen with 20% glycerol.  746 

 747 

Determination of the crystal structures 748 

Diffraction data were collected at the Proxima 1 and Proxima 2 beamlines at the synchrotron 749 

SOLEIL. The datasets were indexed and integrated using the XDS package 54, the XDSME 750 

package (XDS Made Easier, https://github.com/legrandp/xdsme) and the CCP4 suite 55. The 751 

crystals present a highly anisotropic diffraction (between 2.85Å and 4.25Å resolution 752 

according to the axes). The anisotropy of Kucc-hDNA-pAPLF crystals was treated with the 753 
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STARANISO program (http://staraniso.globalphasing.org/). The software performs an 754 

anisotropic cut-off of merged intensity data, a Bayesian estimation of the structure 755 

amplitudes, and applies an anisotropic correction to the data. The structure of the Ku70/80-756 

hDNA-pAPLF was determined by molecular replacement with the program MOLREP using 757 

the structure of Ku70/80 (pdb 1JEY) without the DNA coordinates 3. Four molecules of Ku 758 

were consecutively positioned. Electron density for the hDNA was clearly visible in the 759 

position previously reported by Walker. Refinement was performed using BUSTER 56 and 760 

PHENIX 57. The models were built with Coot 58. After DNA building, an electron density was 761 

visible on the Ku80 vWA near the Ku80 amino acids identified by Grundy et al by 762 

mutagenesis. The final statistics are presented below. In the final model, the following regions 763 

of Ku70/Ku80 are not visible: Ku70 1-33, 535-544 and Ku80 1-5, 170-181, 190-191, 543-764 

551.. The quality of the model was assessed using Molprobity 59. 765 

The crystal structures of the Ku70/80-hDNA complexed with the long and short pXLF were 766 

solved by molecular replacement. Firstly, the coordinates of Ku70/80 and the hairpin DNA 767 

present in pdb 1JEY were used as model. We positioned two molecules in the asymmetric 768 

unit with clear electron density except on the vWA region of Ku80 (region aa 6 to 242). We 769 

then performed the molecular replacement with the same coordinates deleted of the Ku80 770 

vWA region. The electron density for the secondary structure elements of the Ku80 vWA was 771 

clearly visible though at a different position than in 1JEY. A second molecular replacement 772 

step was performed to position the vWA domain of the two Ku80 molecules in the 773 

asymmetric unit. The structure of the Ku70/80-DNA-short pXLF was solved in a similar 774 

manner. An electron density was visible in an internal position of Ku80 vWA that could be 775 

attributed to pXLF. The final statistics are presented in Table1. In the final model with the 776 

long pXLF, the following regions of Ku70/Ku80 are not visible (Ku70 1-34, 535-554 and 777 

Ku80 543-544). In the final model with the short pXLF, the following regions of Ku70/Ku80 778 

are not visible (Ku70 1-34; 535-554 and Ku80 171-194, 300-301, 542-544).  779 

An additional electron density was observed in the long and short pXLF complex structures 780 

located close to the extreme N-terminus of Ku80 and to the hairpin DNA. This electron 781 

density was successfully modeled with the first missing residues of Ku80, the TEV site 782 

sequence preceding (ENLYFQG) and seven histidines from the 10-His tag. To evaluate the 783 

influence of the tag present on the N-terminus of Ku80 on the Ku-XLF interaction, we 784 

prepared a digested form of Ku with the TEV protease (KuTEV) and measured by ITC its 785 

interaction with the X-KBM. The ITC shows that thermodynamic parameters of the KuTEV are 786 
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similar to the Ku and that the tag does not significatively influence the binding of the XLF 787 

motif.  788 

 789 

 790 

 791 

Small-angle Xray scattering: Several data of Kucc-hDNA complex with a protein-DNA ratio 792 

(1:1.2) were collected alone or in presence of pXLF or pAPLF peptides. Data were collected 793 

on the SWING beamline (SOLEIL synchrotron) at a 1.8m sample-detector distance. The 794 

complexes were prepared at 1.0, 3.0 and 5mg/mL and spun for 10 minutes at 13000 rpm prior 795 

to SAXS analysis to eliminate aggregates. Volumes of 40µL of each sample and buffer (20 796 

mM Tris pH 8.0, 150mM NaCl, 5mM β-mercaptoethanol) were injected into the SAXS 797 

capillary cell and collected continuously, with a frame duration of 0.5 s and a dead time 798 

between frames of 0.5 s. Data reduction to absolute units, frame averaging and subtraction 799 

were done using FOXTROT 60, a dedicated home-made application. All subsequent data 800 

processing and analysis steps were carried out with PRIMUS and other programs of the 801 

ATSAS suite 61. The program GNOM 62 was used to compute the pair-distance distribution 802 

functions, P(r).  803 

 804 

Isothermal titration Calorimetry (ITC) 805 

Interactions between Ku70/80 wild-type and Ku70/80cc and the different peptides containing 806 

the KBM and XLM motifs were determined by isothermal titration calorimetry (ITC) using a 807 

VP-ITC calorimeter (Malvern). Prior to measurements, all solutions were degassed under 808 

vacuum. The reaction cell of the ITC (volume 1.8 mL) was loaded with Ku heterodimers 809 

alone or complexed with DNA or peptides for competition experiments. Proteins were 810 

extensively dialyzed against buffer I (20 mM Tris, pH 8.0, 150 mM NaCl, and 5 mM β-811 

mercaptoethanol). Peptides and DNA were prepared at high concentrations. The syringe (290 812 

µL) was filled with the different peptides at concentration between 20 µM to 200 µM. The Ku 813 

heterodimer present in the cell was titrated by automatic injections of 6-10μL of the different 814 

peptides. Enthalpy ΔH (in kcal.mol-1), stoichiometry of the reaction N, and association 815 

constant Ka (in M-1) were obtained by nonlinear least-squares fitting of the experimental data 816 

using the single set of independent binding sites model of the Origin software provided with 817 

the instrument. The free energy of binding (ΔG) and the entropy (ΔS) were determined using 818 

the classical thermodynamic formula, ΔG = - RT ln(Ka) and ΔG = ΔH - TΔS. All binding 819 
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experiments were performed in duplicate or triplicate at 25°C. Control experiments were 820 

performed with peptides injected into the buffer to evaluate the heat of the dilution.  821 

 822 

EMSA:  823 

Binding reactions (10 µL) were performed by incubating the annealed oligonucleotides 824 

(oligonucleotides used in this study are listed in Table Sxx and indicated in the figure 825 

legends) at a final concentration of 25 nM, with the indicated final concentrations of proteins 826 

in 75 mM KCl, 10 mM Tris (pH 7.5), 0.5 mM EDTA, 0.5 mM DTT, 0.5 mg/mL acetylated-827 

BSA, and 5% glycerol. Reactions were incubated at room temperature for 1 hr and 828 

fractionated by 6% PAGE (29%/1% [w/v] Acrylamide:Bis-acrylamide) in 0.53 standard Tris-829 

borate-EDTA (TBE) buffer at 80 V for 45 min to 1 hr. After electrophoresis, DNA was 830 

visualized using a ChemiDoc MP imaging system (Bio-Rad), either by direct detection of the 831 

fluorescently labeled DNA (FAM) or after staining with 0.2 mg/mL EtBr. Data were 832 

processed and quantified with the Image Lab software version 5.2.1 (Bio-Rad).  833 

 834 

switchSENSE measurements :  835 

All switchSENSE measurements were carried out on a DRX 2400 instrument, using a multi-836 

purpose 48bp chip (both Dynamic Biosensors GmbH; Planegg, Germany). The sample and 837 

running buffer was Tris 10mM pH 7.4, 140mM NaCl, 0.05% Tween20, 50µM EDTA, 50µM 838 

EGTA. In all kinetics experiments, complementary DNA to the strand immobilized on the 839 

chip was first hybridized on the measurement electrodes. On top of the 48bp complementary 840 

to the chip, this DNA carried a 32bp-overhang hybridized with its 32bp complementary 841 

strand. Second, the Ku70/80 protein was associated at 100nM for 3min (reaching saturation) 842 

to the immobilized dsDNA. Finally, the association and dissociation of the XLF protein was 843 

measured using triplicates of each concentration, at a flow rate of 2mL/min. For each mutant, 844 

the surface was not regenerated in between concentrations – Ku does not dissociate in the 845 

timescale of the XLF measurement, and XLF fully dissociates for each concentration. The 846 

electrodes were only regenerated between the measurements of different mutants of XLF. 847 

Kinetics values were determined using Origin software. 848 

 849 

Cell lines and cell culture 850 

U2OS human osteosarcoma cells and immortalized BuS cells (derived from an XLF-851 

deficient patient, gift from Jean-Pierre de Villartay, Institut Imagine, Paris, France) were 852 

grown in DMEM and RPMI, respectively. Media were supplemented with 10% fetal calf 853 
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serum (Eurobio), 125 U/ml penicillin and 125 µg/ml streptomycin. Cells were maintained at 854 

37°C in a 5% CO2 humidified incubator. Cell lines were tested negative for mycoplasma by 855 

PCR. All culture media and antibiotics were from Invitrogen. When necessary (conditional 856 

expression of shRNA against Ku80), doxycyclin (Sigma-Aldrich) was added to the medium at 857 

a 4 µg/ml final concentration. 858 

 859 

Expression vectors 860 

See Supplementary Data Set 1 861 

 862 

Cell transfection and transduction 863 

Production of lentiviral particles in HEK-293T cells and transduction of U2OS and BuS 864 

cells were performed as previously described 31. Transduced cells were used as populations 865 

without clonal selection, except when indicated otherwise. 866 

 867 

Plasmid recircularization assay 868 

U2OS cell populations expressing wild-type or mutated Ku80 protein were seeded to near 869 

confluence in 6-well plates and incubated overnight at 37°C. Cells were then transfected with 870 

1 µg BamHI-linearized pEGFP-N1 plasmid (Clontech) and 1 µg pmCherry-C1-3NLS circular 871 

plasmid as a transfection control (gift from Dyche Mullins (Addgene #58476), 63). Cells were 872 

split 24 h later, incubated at 37°C for two additional days and analyzed by flow cytometry on 873 

a Fortessa X-20 (BD Biosciences). For each cell population, the integrated GFP fluorescence 874 

signal was normalized to mCherry signal. End-joining activity was set to 100% for Ku80-WT 875 

expressing cells. Results were plotted as the mean values of four independent experiments 876 

±s.d. 877 

 878 

Distal End-Joining assay 879 

U2OS-EJ5 cells (a kind gift from Jeremy Stark, City of Hope, Duarte, USA) containing 880 

one integrated copy of a GFP reporter cassette which allows to measure rejoining of two 881 

tandem I-SceI cut sites separated by a ~1.8-kb insert, were modified as follows. The cells 882 

were first transduced with lentiviruses produced from pLV-tTR-KRAB and pLV3-Tet-RFP-883 

ISceI-GRLBD to allow inducible expression and nuclear translocation of the I-SceI yeast 884 

meganuclease. The resulting cells were then transduced with lentiviruses prepared from 885 

pLVTHM2-shKu80. A positive clone enabling doxycyclin-dependent conditional knockdown 886 

of Ku80 expression and subsequent cell death was isolated. These cells were further 887 
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transduced with lentiviruses produced from pLV3-HA-Ku80-shR-(WT or mutants) plasmids 888 

to replace, in the presence of doxycyclin, endogenous Ku80 expression by expression of the 889 

various Ku80 constructs described in the study. To perform Distal End-Joining assay, the 890 

different U2OS-EJ5 modified cell populations were seeded onto 6-well plates and incubated 891 

at 37°C for 24 h. Dexamethasone (Sigma-Aldrich) was then added to a final concentration of 892 

250 nM. Cells were washed 24 h later, further incubated at 37°C for two to three days and 893 

analyzed by flow cytometry on a Fortessa X-20 analyzer (BD Biosciences). The fraction of 894 

GFP-positive cells was measured and normalized to 100% for Ku80-WT expressing cells. 895 

Results were plotted as the mean values of seven independent experiments ±s.d. 896 

 897 

Ionizing irradiation and cell survival analysis 898 

Three to six thousand cells per well were seeded in 6-well plates. Plated cells were 899 

exposed 24 h later to various doses of X-ray using a Faxitron RX-650 device (130 kV, 5 mA, 900 

dose rate 0.5 Gy.min-1). Six to seven days later, cells were washed with PBS, stained 10 min 901 

with crystal violet (0.1% aqueous solution). Stained cells were extensively washed with water 902 

and plates were air dried. Staining was dissolved with 10% acetic acid solution and absorption 903 

was measured at 570 nm (Ultrospec-3000 spectrophotometer, Pharmacia Biotech). Results 904 

were plotted as mean values of 5-10 independent experiments ±s.d. using Microsoft Excel 905 

software. 906 

 907 

Live-cell microscopy and micro-irradiation 908 

U2OS or BuS cells were seeded in 35-mm glass-bottom culture dishes (MatTek) two 909 

days prior laser irradiation. Experiments were carried out with a Zeiss LSM-710 confocal 910 

laser scanning microscope equipped with a coherent chameleon Vision-II tunable laser (690-911 

1080 nm), a 40X/1.3 oil immersion objective and a heated environmental chamber set at 37°C 912 

in 5% CO2 atmosphere. ECFP was excited using biphotonic laser at 800 nm (1.5% of 913 

maximum power). Confocal image series were recorded with a frame size of 512×512 pixels. 914 

Nuclei micro-irradiation was carried out at 800 nm at 20% of maximum power (mean max 915 

power was 3070 mW) in rectangle of 15 µm2 area during 50 µs pixel dwell time. Before and 916 

after micro-irradiation, confocal image series of one mid z-section were recorded at 1.94 s 917 

time interval (typically 9 pre-irradiation and 40-45 post-irradiation frames). For evaluation of 918 

the recruitment kinetics, fluorescence intensities of the irradiated region were corrected for 919 

total nuclear loss of fluorescence over the time course and normalized to the pre-irradiation 920 

value. Data from micro-irradiation of individual cells obtained in several independent 921 
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experiments performed on different days were averaged, analyzed and displayed using 922 

PRISM software. p values at last time point were calculated using unpaired Student’s t-test. 923 

 924 

Protein extraction and immunoblotting 925 

Sub-confluent cells from 60-mm culture dishes were harvested and washed with PBS. 926 

Pellets were resuspended in 100 µl of lysis buffer (50 mM HEPES.KOH pH 7.5, 450 mM 927 

NaCl, 1% Tritin-X100, 1 mM EDTA, 1 mM DTT, protease-phosphatase Halt Inhibitor 928 

cocktail (Pierce, Thermo Scientific)) and processed by four freeze/thaw cycles. After 929 

centrifugation at 14000 g for 10 min, protein concentration was measured in the supernatant 930 

with the Bradford assay (Bio-Rad). Proteins from 50 µg of cell extracts were separated in 4-931 

15% Mini-Protean TGX precast polyacrylamide gels (Bio-Rad) and transferred to PVDF 932 

membrane (Millipore). Immunoblotting analysis was performed with the following 933 

antibodies: anti-Ku70 monoclonal antibody (clone N3H10 from NeoMarkers), anti-Ku80 934 

monoclonal antibody (clone 111 from Thermo Fisher Scientific), anti-DNA-PKcs monoclonal 935 

antibody (clone 18.2 from Abcam), anti-XLF polyclonal antibody (Bethyl Laboratories), anti-936 

APLF polyclonal antibody (SK3595, kind gift from K.W. Caldecott, University of Sussex, 937 

Brighton, UK, see 25), anti-β-Actin monoclonal antibody (clone AC-15 from Ambion). 938 

 939 

Cell culture and preparation for super-resolution imaging 940 

BuS cells were grown in RPMI medium with 10% FBS and 100 U/mL Penicillin-941 

Streptomysin. For super-resolution imaging, cells were cultured on glass coverslips for 24 942 

hours, followed by serum starvation for 48 hours. The cells were then released into full 943 

medium for 4 hours so that most of the cells were in G1 phase. 944 

The synchronized cells were then washed twice with PBS, and permeabilized with 0.5% 945 

Triton X-100 in CSK buffer (10 mM Hepes, 200 mM Sucrose, 100 mM NaCl, and 3 mM 946 

MgCl2, pH=7.4) for 10 minutes 64. Cells were then fixed with paraformaldehyde (4%) for 20 947 

mins, and blocked in block solution (2% glycine, 2% BSA, 0.2% gelatin, and 50 mM NH4Cl 948 

in PBS) overnight at 4°C. 949 

Fixed cells were then immunostained with validated monoclonal antibodies: XLF was stained 950 

with XLF-antibody (3D6, NBP2-03275, NOVUS) for 1 hour at room temperature, followed 951 

by Alexa Fluor 647 conjugated goat-anti-mouse 2nd antibody staining (ab 150115, abcam) for 952 

30 minutes at room temperature. Cells were then stained with Alexa Fluor conjugated anti-953 

Ku80 antibody (EPR3467, ab202659, abcam) for 1 hour at room temperature. 954 
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Cells were then mounted onto microscope glass slide, and imaged with freshly mixed imaging 955 

buffer (1 mg/mL glucose oxidase, 0.02 mg/mL catalase, 10% glucose, and 100 mM 956 

cycteanube (MEA)). 957 

 958 

Microscope and Single-Molecule Localization imaging 959 

Super-resolution imaging was performed on a custom-built optical imaging platform based on 960 

a Leica DMI 300 inverse microscope, equipped with a 488 nm (OBIS, Coherent) and a 639 961 

nm laser line (MRL-FN-639-800, CNI). Laser lines were reflected into an HCX PL APO 63X 962 

NA=1.47 OIL CORR TIRF Objective (Zeiss) by a penta-edged dichroic beam splitter 963 

(FF408/504/581/667/762-Di01-22x29), and the emitted fluorescence was further extended by 964 

a 2X lens tube (Diagnostic Instruments), filtered by single-band filters (Semrock FF01-531/40 965 

and FF01-676/37 for Alexa Fluor 488 and Alexa Fluor 647, respectively), and collected onto 966 

a sCMOS camera (Prim95B, Photometrics). A 405 nm Laser line (MDL-III-405-150, CNI) 967 

was also equipped to reactivate Alexa Fluor 647 fluorophores. 968 

For super-resolution imaging, the 488 and 639 laser lines were adjusted to ~ 1.0 and 1.5 969 

kW/cm2, and a Highly Inclined and Laminated Optical sheet (HILO) illumination mode for 970 

sample excitation. Alexa Fluor 488 and Alexa Fluor 647 were sequentially exited and their 971 

emitted fluorescence was also sequentially collected by switching the single-band filters in a 972 

filter wheel. The emitted photons were collected onto a sCMOS camera (Photometrics Prime 973 

95B), and a minimum of 2000 frames at 33 Hz were recorded for each image stack. 974 

 975 

Reconstruction from Single-Molecule Localization image to super-resolution image 976 

Each image of the image stack was first of all box-filtered with the box size of 4 times of the 977 

FWHM of a 2D gaussian point spread function (PSF). Considering the patterned noise for 978 

sCMOS camera construction, each pixel was weighted by the inverse of its noise variance 979 

during filtering. The low-pass filtered image was then extracted as the background from the 980 

raw image. The local maximums of the image were then recognized and segmented into 981 

single PSFs for 2D gaussian fit. 982 

2D gaussian fit of each individual PSF was performed by GPU using the Maximum 983 

Likelihood Estimation (MLE) algorithm. Briefly, the likelihood function of each pixel was 984 

constructed by convolving the Poisson distribution of the shot noise governed by the photons 985 

emitted from fluorophores nearby, and the gaussian distribution of the readout noise of the 986 

camera itself 65. The offsets, variance, and analog-to-digital conversion factor of each pixel of 987 

the camera was calibrated beforehand. The position, amplitude, sigma, and background of 988 
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each individual 2D gaussian PSF were addressed by maximizing the likelihood function of 989 

each pixel given its readout digital value. The fitting accuracy was estimated by Cramér-Rao 990 

lower bound (CRLB) and the accuracy of Alexa Fluor 488 and Alexa Fluor 647 in this work 991 

are ~ 17 and 13 nm, respectively. 992 

 993 

Alignment of images of different colors 994 

Mapping of the two colors was performed using a polynomial mapping algorithm. Briefly, a 995 

spatially separated and broad-spectrum fluorescent bead (TetraSpec, ThermoFisher) slide was 996 

imaged on both color channels. Mass centers of each same bead but in different channels were 997 

recorded pairwise. The coefficient of each term in a 2nd order polynomial function was 998 

optimized by training the polynomial regression using all the recorded bead’s centers. The 999 

optimized polynomial function was then used for two color channels alignment. We note that 1000 

choosing the proper order of polynomial function for optimization depends on the number of 1001 

training beads, and higher order but not enough trainees would lead to overfit. 1002 

 1003 

Pair-Correlation analysis 1004 

Coordinates localized within ~2.5 times of the averaged localization uncertainty, and from 1005 

consecutive frames were considered as artificial blinking and grouped as one coordinate. This 1006 

coordinate was calculated by taking the 1/var weighted average of all the coordinates within 1007 

the group, where var is the localization uncertainty of each coordinate. The grouped 1008 

coordinates were then rendered onto a pixelized image of 5 nm/pixel, and the pair-correlation 1009 

was performed on this image by series 2D Fourier and inverse Fourier transfers 66. 1010 

The correlation was then fitted into two correlation terms: the correlation among coordinates 1011 

within localization uncertainty, and that among the coordinates that form a cluster/molecular 1012 

assemble/filament. Considering the size of XLF ‘clusters’ is not randomly distributed, we 1013 

fitted the second term into a normal distribution and interpret the fitted sigma as the apparent 1014 

radius of the averaged XLF ‘cluster’ radius (Figure XC) across the image. 1015 

 1016 

Data availability  1017 

Crystal structures are deposited at the pdb with the following codes Ku-DNA-pAPLF (6ERF), 1018 

Ku-DNA-pXLF (6ERH) and Ku-DNA-pXLFshort (6ERG) 1019 

Source data for figures 3, 4 and 5 are available with the paper online 1020 

Other data that support the findings of this study are available from the corresponding author 1021 

upon reasonable request. 1022 
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Supplementary Figure 1 

(a) Scheme of the interactions between Ku70-Ku80 and the NHEJ factors containing an A-KBM (APLF, CYREN), an X-KBM (XLF) 
and both KBMs (WRN). The interaction of PAXX with Ku70 through its C-terminus is also represented. (b-d) Logo motif of the A-
KBM, X-KBM and PAXX motifs obtained from multiple sequences alignment of these proteins as indicated (Crooks, G.E. et al., 
WebLogo: a sequence logo generator. Genome Res 14, 1188-90 (2004)). 



 
 

 



 
 

Supplementary Figure 2 

(a) SDS gel showing purified Ku and XLF proteins as indicated. FL: full-length; cc: C-terminal truncation. (b) Electron density of 
peptide pAPLF. (c) Electron density of peptide pXLF. (c) DNA interactions with Ku in presence of X-KBM of XLF. Ku70-Ku80-
hDNA-X-KBM (colored) compared to Ku70/Ku80/hDNA (PDB 1JEY, grey). Front view of Ku70-Ku80-hDNA-X-KBM showing the 
major deviation of hDNA molecules because of the conformational change of Ku80. (d-e) ITC analyses: representative 
thermograms and isotherms of titration corresponding to selected measurements from Table 2, as indicated. 



 
 

 



 
 

Supplementary Figure 3 

(a-e) EMSA analyses: (a, b) Gel shift assays with XLF and Ku at 20nM (a) or 200nM concentrations (b) in presence of a 50bp DNA 
with a FAM in 5’. (c) pXLF interaction with DNA as a control of the competition experiment in Figure 2e. (d-e) The pAPLF and 
PAXX Cter do not compete with the Ku-XLF complex. (f-h) switchSENSE analyses: (f) Scheme of the switchSENSE 
measurement flow: 1) Ku is bound to an 80bp nanolever with a fluorescent probe at position 48; 2) A washing step removes non-
specifically bound Ku molecules; 3) XLF is then injected for real-time associations and dissociations at different concentrations 
followed by normalized changes in the fluorescence. (g) Binding kinetics of the Ku protein on the 80mer double-stranded DNA prior 
to the interaction with XLF, shown as changes in the dynamic response upwards (between 0 and 4µs). The dynamic response 
reflects the speed of the switching DNA, which decreases upon binding of the Ku analyte. The dissociation is represented only for 
one minute, to show that no dissociation of Ku from the DNA occurs while the XLF kinetics is measured. (h) Kinetic analyses of 
(LW) and (LE)XLF interactions. Solid grey lines represent raw data (from 1 to 8 µM; light grey to dark grey; averages of triplicates). 
Global fitting was performed, following a single-exponential function (solid orange lines) yielding kinetic rate constants; kON = 4.9 ± 
0.5 104 M-1s-1 and kOFF = 4.8 ± 0.5 10-2 s-1 for XLF(LE) and kON = 1.9 ± 1.1 105 M-1s-1and kOFF = 8.4 ± 0.6 10-2 s-1 for XLF(LW). 



 
 



 
 

Supplementary Figure 4 

(a) Variations among the sequence motifs observed for the C-terminal tail of XLF and for the seven positions of the Ku80 XBM 
pocket in various clades of the eukaryotic phylogenetic tree. 10 clades are represented summarizing the properties of 60 
Mammalia, 36 Sauria, 31 Neopterygii, 62 Ecdysozoa, 9 Lophotrochozoa, 5 Cnidaria, 150 Fungi, 5 Ciliophora and 4 Dictyostellida 
sequences of XLF and Ku80. For each clade, web logos of the last 25 C-terminal amino-acids of XLF sequences are represented 
on top and the web logo of the X-KBM site positions is squared in green. A red star indicates the clades in which the position of 
Ku80 E133 was conserved as an acidic residue whereas a grey star points out that the acidic character of the residue was not 
maintained and was generally switched to a hydrophobic residue as observed in Ku70. (b) Superimposition of human Ku70 and 
Ku80 structures (PDB: 1JEQ) colored in orange and green, respectively, and focused on the region surrounding Ku80 E133 
position in the X-KBM site. The red star points out the location of Ku80E133. Residues labelled and shown as sticks are the spatial 
neighbours of Ku80 E133. The side chain of Ku80 E133 is buried in the hydrophobic core of Ku80 and is not involved in any 
hydrogen bond or salt-bridge interaction resulting in a predicted pKa above 9.1 in the absence of XLF. (c) Molecular modelling of 
the interaction between Ku80 and the C-terminus of WRN containing an A-KBM in tandem with a X-KBM. The position of WRN 
motifs were deduced from the crystal structures presented here with APLF and XLF KBMs. The orientation of the KBMs and the 
size of the linker between WRN KBMs are compatible with a simultaneous binding of both WRN motifs to Ku80. 



 
 

 



 
 

Supplementary Figure 5 

(a-d) Western blot of U2OS cell extracts. (a) Whole cell extracts of U2OS shKu80 (U2OS-Ku80KD) cells treated with doxycyclin for 
the indicated time were denatured and separated on 10% SDS-PAGE gel followed by electrotransfer on membrane. The 
membranes were blotted with the antibodies as indicated. (b) Whole cell extracts of U2OS shAPLF cells expressing WT or mutant 
CFP-X-KBM as indicated were processed as in (a). (c) Whole cell extracts of U2OS-Ku80KD cells treated with doxycyclin for 7 days 
and expressing WT or mutant HA-Ku80 as indicated were processed as in (a). (d) Whole cell extracts of U2OS-Ku80KD cells treated 
with doxycyclin for 7 days and expressing WT or mutant HA-Ku80 as indicated were processed as in (a). Uncropped blot images 
are shown in Supplementary Data Set 1. (e) Wild-type (WT) or mutant CFP-(A-KBM) and mCherry-Ku70 simultaneous behaviour 
after 800 nm pulsed-laser nuclear micro-irradiation assessed in U2OS cells by live cell-imaging at 0 s and 50 s post-irradiation. The 
white rectangle and arrows mark irradiated areas. (f-h) Dynamics of wild-type (WT) and mutant CFP-tagged full-length XLF at 
laser-damaged sites in BuS cells. Images were obtained at 1.94 s intervals and fluorescence intensities at the damage sites and in 
undamaged area were quantified. Mean values of the relative fluorescence with SEM were calculated from 20 independent 
measurements for each of WT and G296W XLF in (f), from 45, 40 and 20 independent measurements for each of WT, S299A and 
S299E XLF in (g) and from 45, 36, 20 and 20 independent measurements for each of WT, F298G, F298G/S299A, and 
F298G/S299E XLF in (h), respectively. p values at last time point: (f) WT vs G296W p<0.0001; (g) WT vs S>A p=0.2785; WT vs 
S>E p<0.0001. (h) WT vs F>G p<0.0001; WT vs FS>GA p<0.0001; WT vs FS>GE p<0.0001. (i) Dynamics of L115D and 
L115D/L233E CFP-tagged full-length mutant XLF at laser-damaged sites in BuS cells as in (f). Mean values of the relative 
fluorescence with SEM were calculated from 11 independent measurements for each of L115D±shAPLF and L115D/L233E XLF
conditions. p values at last time point: L115D vs L115D±shAPLF p=0.6113; L115D vs L115D/L233E p=0.0002. 



 
 

 

Supplementary Figure 6 

(a-b) Dynamics of CFP-(A-KBM) (a) and (X-KBM) (b) at laser damaged sites in U2OS cells expressing wild-type (WT), E133M or 
Q162E mutant Ku80 as in Figure 3 b). Mean values of the relative fluorescence with SEM were calculated from 20, 23 and 22 
independent measurements for A-KBM with WT, E133M or Q162E mutant Ku80 in (a) and from 48, 29 and 29 independent 
measurements for X-KBM with WT, E133M or Q162E mutant Ku80 in (b), respectively. p values at last time point: (a) WT vs E133M
p=0.831; WT vs Q162E p=0.59519; (b) WT vs E133M p=0.0003; WT vs Q162E p=0.0111. (c-d) Dynamics of wild-type (WT) and 



 
 

mutant CFP-Ku80 at laser damaged sites in U2OS cells. Mean values of the relative fluorescence with SEM were calculated from 
25, 24, 20 and 15 independent measurements for WT, I112R, E133M and Q162E mutant Ku80 in (c) and from 25 and 26 
independent measurements for WT or I112R/E133M mutant Ku80 in (d), respectively. p values at last time point: (c) WT vs Q162E
=0.9252; WT vs I112R p=0.2734; WT vs E133M p=0.1101. (d) WT vs I112R-E1333M p=0.5362. (e-f) Analysis of XLF foci in U2OS 
cells by super-resolution. (e) Statistics of XLF foci size: each plot represents the average XLF foci size (indicated as radius 
translated from the correlation radius) in one nucleus. Box’s height displays the standard deviation with the mean value labelled in 
the middle. 87, 110, 64, and 79 nuclei were taken in account for WT, E133M, I112R, and E133M-I112R double-mutant,
respectively. The p-values were obtained by the t-test; (f) Statistics of the Cross-Pair-Correlation between Ku and XLF: Ku and XLF 
were stained with antibodies labelled by different fluorophores (Alexa488 conjugated rabbit anti-Ku80, abcam198586, Alexa647 
conjugated goat anti-mouse secondary + Mouse anti-XLF, NBP2-03275), and dual-colour super-resolution imaging was performed 
to examine the cross-correlation between Ku and XLF foci within each nucleus. Each plot represents the cross-correlation 
amplitude calculated across one nucleus. Box’s height displays the standard deviation with the mean value labelled in the middle. 
83, 107, 57, and 72 nuclei were taken in account for WT, E133M, I112R, and E133M-I112R mutants respectively. The p-value were 
obtained by the t-test.  1 



 

Expression vectors 

All lentiviral vectors derived from pLVTHM (Addgene plasmid #12247) and pLV-tTR-

KRAB-Red (Addgene plasmid #12250) plasmids. Both were gifts from Didier Trono 1. 

The pLVTHM2 vector was obtained by digesting pLVTHM with PmeI/SpeI and 

inserting the PBXS linker (i.e. preannealed PBXS-F/PBXS-R pair of oligonucleotides) in 

order to remove the GFP coding sequence. To generate lentiviral vectors for conditional 

expression of shRNA, pLVTHM2 was digested with MluI/ClaI and the following pairs of 

preannealed oligonucleotides were inserted by ligation: shKu80-F/shKu80-R (target sequence 

designed by Denis Biard, CEA-DSV, France, personal communication) or shAPLF-

F/shAPLF-R (target sequence from 2) to knockdown the expression of Ku80 or APLF, 

respectively. 

The pLV-tTR-KRAB vector was obtained from pLV-tTR-KRAB-Red by replacing the 

DsRed coding sequence by the XBES linker at XmaI/SpeI restriction sites. 

The pLV-Red vector derived from pLV-tTR-KRAB-Red by replacing the tTR-KRAB 

coding sequence by the PEKBBMX linker at PmeI/XmaI restriction sites. 

The pLV3 vector derived from pLV-tTR-KRAB-Red through the following 

modifications: first, the NsiI/Kpn2I fragment was replaced by the nPNk linker. The tTR-

KRAB coding sequence was then removed by PmeI/XmaI digestion and replaced by the 

PEKBBMX linker. Finally, the IRES-DsRed fragment was removed by PmeI/SpeI digestion 

and replaced by the PKXMBBES linker. 

 

To express ECFP-tagged A-KBM (APLF P177 to E193) or X-KBM (XLF S287 to S299) 

motifs, the A-KBM linker or X-KBM linker, respectively, was inserted into the 

Acc65I/BamHI restriction sites of the pECFP-C1 plasmid (Clontech) and the AgeI/BamHI 

fragment (ECFP-A-KBM or ECFP-X-KBM) was subcloned into the Kpn2I/BamHI restriction 

sites of pLV3. The ECFP-tagged A-KBM-W189G, X-KBM-L297W and X-KBM-L297E 

expressing vectors were obtained by amplifying by PCR the corresponding cDNAs using the 

pECFP-A-KBM or pECFP-X-KBM plasmid as a template, as well as CMV-F as forward 

primer and Bam-A-KBM-W189G-R, XLF-L297W-Bam-R or XLF-L297E-Bam-R as reverse 

primer, respectively. The PCR fragments were digested with AgeI/BamHI and inserted into 

Kpn2I/BamHI restriction sites of pLV3. 

 



To express full-length ECFP-tagged XLF protein, human XLF cDNA (a gift from Jean-

Pierre de Villartay, Institut Imagine, Paris, France) was amplified by PCR using the XLF-

Hind-F and XLF-Bam-R primers. The resulting PCR fragment was digested with 

HindIII/BamHI and inserted into pECFP-C1. The ECFP-XLF coding fragment was then 

excised with AgeI/BamHI and inserted into pLV3 at Kpn2I/BamHI restriction sites. ECFP-

XLF-L297W, -L297E, -F298G, -S299A, -S299E, -F298G-S299A, and -F298G-S299E 

mutants were expressed by PCR amplification of the corresponding XLF coding sequences 

using the pECFP-XLF vector as a template, Kpn2-MCS-F as forward primer, and XLF-

L297W-Bam-R, XLF-L297E-Bam-R, XLF-F298G-Bam-R, XLF-S299A-Bam-R, XLF-

S299E-Bam-R, XLF-FS298GA-Bam-R, or XLF-FS298GE-Bam-R, as reverse primer, 

respectively. The resulting fragments were digested with Kpn2I/BamHI and inserted into 

pLV3-ECFP-XLF to replace the XLF wild-type coding sequence. The XLF-L115D coding 

sequence was obtained by overlapping PCR mutagenesis on pLV3-ECFP-XLF template using 

ECFP-Cter-F and XLF-Bam-R oligos as outer primers, and XLF-L115D-F and XLF-L115D-

R as mutated inner primers. The PCR product (XLF-L115D) was then digested with 

Kpn2I/BamHI and inserted into pLV3-ECFP-XLF to replace the XLF-WT coding sequence. 

The XLF-L115D-L297E double mutant coding sequence was obtained as above, except that 

the XLF-Bam-R outer primer was replaced by XLF-L297E-Bam-R. 

Lentiviral vectors expressing untagged full-length XLF proteins (WT, L297W or L297E) 

were obtained by subcloning Kpn2I/BamHI fragments from the respective pLV3-ECFP-XLF 

into the pLV-Red vector. 

The ECFP-XRCC4 expressing vector was obtained by excision of a Kpn2I/BamHI 

fragment containing the XRCC4 coding sequence from the pEGFP-C1-FLAG-XRCC4 

plasmid (gift from Steve Jackson (Addgene #46959), 3). The resulting fragment was inserted 

into pLV3-ECFP-XLF to replace the XLF coding sequence. 

To obtain shRNA-resistant human Ku80 expression vector, HA-Ku80 coding sequence 

was amplified by overlapping PCR from pICE-Puro-HA-Ku80 (a kind gift from Sébastien 

Britton, IPBS, Toulouse, France) with Kpn2-HA-F and pICE-Xba-R as outer primers, and 

Ku80-shRes-F and Ku80-shRes-R as inner primers that introduce silent mutations in the 

shRNA target sequence. The resulting fragment was then inserted into pLV3 after digestion 

with Kpn2I/MluI. The Ku80-L112R expressing pLV3 vector was constructed by overlapping 

PCR from pLV3-HA-Ku80-shR using pLV-F and pLV-R oligonucleotides as outer primers 

and Ku80-L112R-F and Ku80-L112R-R as mutated inner primers. The PCR product was then 

digested with Kpn2I/MluI and inserted into pLV3. Other Ku80 single mutant constructs 



(E133M and Q162E) were obtained similarly by using the corresponding pairs of inner 

primers (Ku80-E133M-F/Ku80-E133M-R and Ku80-Q162E-F/Ku80-Q162E-R, respectively). 

The pLV3-HA-Ku80-shR-L112R-E133M double mutant expressing vector was obtained as 

above for the E133M single mutant construct, except that pLV3-HA-Ku80-shR-I112R was 

used as a template for PCR reactions. 

Expression vectors for ECFP-tagged WT or mutants Ku80 were obtained by amplifying 

the ECFP coding sequence by PCR from the pECFP-C1 plasmid with the Pme-Koz-ECFP-F 

and pme-CFP-80-R primers. The PCR fragment was then inserted at the PmeI restriction site 

in the various pLV3-HA-Ku80-shR plasmids by use of the Hot-Fusion strategy 4. 

To generate pLV3-mCherry-FLAG-Ku70 vector allowing expression of an mCherry-

tagged Ku70 protein, the FLAG-Ku70 coding sequence was amplified by PCR using Kpn2-

FLAG-F and Mlu-Ku70-R primers, digested with Kpn2I/MluI and cloned into pLV3. The 

mCherry coding sequence was then inserted at the PmeI restriction site by Hot-Fusion cloning 
5 following PCR amplification using Pme-Koz-ECFP-F and Kpn2-pme-mCh-R primers and 

the pmCherry-C1-3NLS plasmid as a template (gift from Dyche Mullins (Addgene #58476), 
6). 

The pLV3-Tet-RFP-ISceI-GRLBD lentiviral vector for conditional expression of I-SceI 

was prepared as follows : pLV3 was first modified by inserting at the PacI restriction site the 

Tet-Pac-F/Tet-Pac-R pre-annealed linker which contains two tetracyclin operator DNA 

elements. The resulting pLV3-Tet plasmid was then digested by Kpn2I/BamHI to receive the 

AgeI/BamHI fragment from the pISceI-GR-RFP plasmid (gift from Tom Misteli (Addgene 

#17654), 7) which contains the coding sequence of DsRed-ISceI-GRLBD. 

 

All oligonucleotides were purchased from Eurofins Genomics (Ebersberg, Germany). 

Restriction and modifying enzymes (Phusion and T4 DNA Ligase) were from ThermoFisher 

Scientific (Illkirch, France). All constructs were checked by sequencing (Eurofins Genomics). 

 

Oligonucleotides used as linkers (alphabetical order; sequences 5' to 3') 

A-KBM-F 

GTACC CCA ATC CTT GCC GAG AGG AAA AGA ATC CTT CCA ACT TGG ATG 

TTA GCA GAA TAG 

A-KBM-R 

GATCCTA TTC TGC TAA CAT CCA AGT TGG AAG GAT TCT TTT CCT CTC 

GGC AAG GAT TGG G 

nPNk-F CTCCATCGATCGCCATGGTGA 

nPNk-R CCGGTCACCATGGCGATCGATGGAGTGCA 



PBXS-F AAAC CGTACG GATATC T CCCGGG TC A 

PBXS-R CTAGT GA CCCGGG A GATATC CGTACG GTTT 

PEKBBMX-F 

AAACTACGGGATC GAATTC CTCGCT TCCGGA CTTCGT GGATCC ACTCTC 

CGTACG ACTGCT ACGCGT ACTTCAC 

PEKBBMX-R 

CCGGGTGAAGT ACGCGT AGCAGT CGTACG GAGAGT GGATCC ACGAAG 

TCCGGA AGCGAG GAATTC GATCCCGTAGTTT 

PKXMBBES-F 

AAACTACGG GATC TCCGGA CACCTT CCCGGG TCACTC ACGCGT CTCATT 

GGATCC CGTACG GAATTC A 

PKXMBBES-R 

CTAGT GAATTC CGTACG GGATCC AATGAG ACGCGT GAGTGA CCCGGG 

AAGGTG TCCGGA GATC CCGTAGTTT 

shAPLF-F 

CGCGTCCCC GAA GAA ATC TGC AAA GAT A TTCAAGAGA T ATC TTT GCA 

GAT TTC TTC TTTTTGGAAAT 

shAPLF-R 

CGATTTCCAAAAA GAA GAA ATC TGC AAA GAT A TCTCTTGAA T ATC TTT 

GCA GAT TTC TTC GGGGA 

shKu80-F 

CGCGTCCCC G AAC AAG GAT GAG ATT GCT TTCAAGAGA AGC AAT CTC 

ATC CTT GTT C TTTTTGGAAAT 

shKu80-R 

CGATTTCCAAAAA G AAC AAG GAT GAG ATT GCT TCTCTTGAA AGC AAT 

CTC ATC CTT GTT C GGGGA 

TetO-Pac-F TCCCTATCAGTGATAGAGATCTCCCTATCAGTGATAGAGAAT 

TetO-Pac-R TCTCTATCACTGATAGGGAGATCTCTATCACTGATAGGGAAT 

XBES-F CCGGG GGATCC CTCGAG GAATTC A 

XBES-R CTAGT GAATTC CTCGAG GGATCC C 

X-KBM-F GTACC TCA AAG GTC AAG AGG AAG AAG CCA AGG GGT CTC TTC AGT TAG 

X-KBM-R GATCCTA ACT GAA GAG ACC CCT TGG CTT CTT CCT CTT GAC CTT TGA G 

 

Oligonucleotides used as PCR primers (alphabetical order; sequences 5' to 3') 
Bam-A-KBM-

W189G-R 

CGTACGGGATC CTA TTC TGC TAA CAT CCC AGT TGG AAG GAT TCT TTT 

CCT C 

CMV-F GTAGGCGTGTACGGTGGGAGG 
ECFP-Cter-F C ATG GTC CTG CTG GAG TTC GTG 
Kpn2-HA-F CTCTGC TCCGGA GCCACC ATG TAC CCC TAC GAT GTG C 

Kpn2-FLAG-F CTCTCGTCCGGAGCCGCACC ATG GAC TAC AAG GAT G 

Kpn2-MCS-AKF-F CTCGCTTCCGGACTCAGATCTCGAGCTC 
Kpn2-pme-mCh-R GGTGCGGCTCCGGAGATCCCGTAGTTTGGACTTGTACAGCTCGTCCATGCCG 
Ku80-E133M-F GAG GCA TAT TAT GAT ATT CAC TGA CCT CAG CAG CCG ATT C 

Ku80-E133M-R GGT CAG TGA ATA TCA TAA TAT GCC TCT TCT CAA ACT TCT TTC CTA TTG 

Ku80-I112R-F C TTC CTG GAT GCA CTA AGA GTG AGC ATG GAT GTG ATT CAA C 

Ku80-I112R-R G AAT CAC ATC CAT GCT CAC TCT TAG TGC ATC CAG GAA GTC 

Ku80-Q162E-F CAT CTC CCT GGA ATT CTT CTT GCC TTT CTC ACT TGG C 



Ku80-Q162E-R GGC AAG AAG AAT TCC AGG GAG ATG TCA CAT TTC TTC AAG C 

Ku80-shRes-F 

GCT GAA AAT AAA GAC GAA ATC GCC TTA GTC CTG TTT GGT ACA GAT 

GGC 

Ku80-shRes-R GAC TAA GGC GAT TTC GTC TTT ATT TTC AGC AAA CAC CTG TCG CTG TAC 

Mlu-Ku70-R CTCTGCACGCG TCA GTC CTG GAA GTG CTT GGT GAG GGC 

pICE-Xba-R CAGCGGGTTTA TCTAGA CTGCAG ACGCGT GC 

pLV-F CCGATCACGAGACTAGCCTCGAGG 

pLV-R CCAGTCAATCTTTCACAAATTTTGTAATCCAGAGG 

pme-CFP-80-R CATGGTGGCTCCGGAGATCCCGTAGTTTGACTTGTACAGCTCGTCCATGCCG 

Pme-Koz-CFP-F 

CGATCACGAGACTAGCCTCGAGGTTTAAACGCCGCCACCATGGTGAGCAAGG

GC 

XLF-Bam-R CTCTC GGATC CTA ACT GAA GAG ACC CCT TGG CTT CTT CCT CTT GAC C 
XLF-F298G-Bam-

R CTCTC GGATC CTA ACT GCC GAG ACC CCT TGG CTT CTT CCT CTT GAC C 

XLF-FS298GA-

Bam-R CTCTCGGATC CTA AGC GCC GAG ACC CCT TGG CTT CTT CCT CTT GAC C 

XLF-FS298GE-

Bam-R CTCTCGGATC CTA CTC GCC GAG ACC CCT TGG CTT CTT CCT CTT GAC C 

XLF-Hind-F CTCTCAAGCTTCCGCCACC ATG GAA GAA CTG GAG CAA GGC CTG 
XLF-L115D-F G CGA AGT GAG CTC TCT GGC GAC CCC TTC TAT TGG AAT TTC C 
XLF-L115D-R G GAA ATT CCA ATA GAA GGG GTC GCC AGA GAG CTC ACT TCG C 
XLF-L297E-Bam-R CTCTC GGATC CTA ACT GAA CTC ACC CCT TGG CTT CTT CCT CTT GAC C 

XLF-L297W-Bam-

R CTCTC GGATC CTA ACT GAA CCA ACC CCT TGG CTT CTT CCT CTT GAC C 

XLF-S299A-Bam-R CTCTCGGATC CTA AGC GAA GAG ACC CCT TGG CTT CTT CCT CTT GAC C 

XLF-S299E-Bam-R CTCTCGGATC CTA CTC GAA GAG ACC CCT TGG CTT CTT CCT CTT GAC C 
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