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ARTICLE INFO ABSTRACT

This paper presents a multi-level aeroelastic tailoring framework for the optimisation of composite aircraft
wings. The framework is capable of structural sizing and produces detailed composite ply configurations through
robust and reliability-based design optimisation, and is demonstrated on a representative regional jet airliner
finite element wing box model. The optimisation procedure is divided into two levels. The first level optimises
the wing structure for minimum weight subject to multiple constraints including strain, buckling, aeroelastic
stability and gust response. These first level solutions are then fed into the second level to be further optimised
for robustness or reliability by considering uncertainties in material properties at ply level. Both the principles of
robust and reliability-based design optimisation can also be used in combination to ensure a balance between the
robustness and reliability of the structural performance. In order to keep computations to an acceptable cost, the
second level optimisation employs the Polynomial Chaos Expansion method to approximate the effect of
probabilistic uncertainty on structural performance. In comparison to the original benchmark wing, the fra-
mework produces an overall weight reduction of 32.1%, despite a 1.5% increase from the first to the second level
optimisation that accounts for stochastic design variations.

Keywords:

Aeroelastic tailoring
Uncertainty quantification
Reliability based design
Robust design
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1. Introduction

The design of aeroelastically-tailored aircraft structures—intended
for maximum performance and minimum weight—remains a challen-
ging multidisciplinary optimisation problem. Although the possibility,
and the consequent benefits, of aeroelastic tailoring through composite
materials have been around since the early 1980s, most of the designs
proposed by the research community have been based on the so-called
‘black metal’ approach, which does not exploit anisotropy fully. This
somewhat conservative attitude is at odds with the elastic tailoring
capabilities offered by composite materials, which, by allowing
bending-torsion stiffness coupling terms to be modified, lend them-
selves to innovative design solutions for improved aeroelastic perfor-
mance.

A significant amount of work can be found in the literature con-
cerning the design and optimisation of aeroelastically-tailored compo-
site wing structures. Typically, research has focused on optimising
wings for minimum structural weight, subject to multiple constraints

including stress [1,2], strain [3], buckling [4], aeroelastic response
[1,5-7] and gust response [8]. All of these studies report of modifica-
tions of the wing’s composite panels to design for passively coupled
bending-torsional deformations.

Concurrently, considerable efforts have been devoted to develop the
aeroelastic tailoring design process to improve both its accuracy and
computational efficiency. In particular, in order to circumvent the
computational cost associated with detailed, high fidelity wing re-
presentations, some authors adopted simplified models, while others
recurred to efficient optimisation techniques. Examples of the former
case include: Refs. [?,9-12], which approximated composite lifting
surfaces as cantilever plates and optimised for aeroelastic stability,
neglecting the effects on structural weight; and Refs. [3,7,13-16],
which used wing-box models, including skins, spar and ribs, in order to
obtain a more accurate structural and aeroelastic performance char-
acterisation. Examples of the latter case, instead, include the work by
Kuzmina and Guo [2,3] and Gasbarri et al. [17] that employed multi-
objective or hybrid optimisation procedures. In their approach, the
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optimisations are divided into stages to address multiple objectives or
constraints, which leads to enhanced computational efficiency.

Traditionally, aircraft wing structures are designed using determi-
nistic approaches for minimum structural weight, while satisfying
multiple constraints for performance and certification. Designers,
however, are aware that deterministic optimisations, being unable to
account for probabilistic uncertainties, may lead to unreliable or un-
realistic designs. There are two types of uncertainty that can be clas-
sified as ‘epistemic’ and ‘aleatory’. As described by Melchers [18], epis-
temic uncertainty is a type of uncertainty arise from limitation of
knowledge which is often due to lack of understanding about the
physics and human errors. Aleatory uncertainty is an irreducible un-
certainty which is inherent to the system or model. When dealing with
aircraft design, uncertainties may arise from human errors, geometric
and material properties, and from manufacturing processes. If one were
to design for reliability and robustness, these uncertainties should be
quantified accurately. Hence, the growing interest in improving or re-
placing deterministic optimisation procedures for robust and reliability-
based structural design methods.

Including parameter uncertainty in design optimisation implies
solving the problem with sampling or quantification methods such as
Monte Carlo Simulation (MCS) [8,19], Polynomial Chaos Expansion
(PCE) [12,16,20,21] or Stochastic Collocation [22]. MCS is the most
common and straightforward technique to quantify uncertainty in a
model; however, great computational efforts are required to produce
meaningful results. The effectiveness of PCE over MCS has been re-
ported in Refs. [12,20] in relation to plate wing models for aeroelastic
analyses, where it was shown that using a sampling methods such as
PCE reduces the number of runs required to fully characterise the
model’s uncertainty, in comparison to MCS. A finding of obvious po-
tential benefit for uncertainty-based design optimisations.

In the context of aeroelastic design of composite structures, alea-
toric uncertainty arises from a number of sources, including structural
geometry, errors in aerodynamic predictions, variability in material
properties such as material non-homogeneity, fibre misalignment, wa-
viness, wrinkling and defects, as well as manufacturing tolerances and
thickness variations. These uncertainties are to be quantified accurately
in order to produce realistic designs accounting for robustness and re-
liability. The literature reports two main methodologies for uncertainty-
based design optimisation: 1) Reliability-Based Design Optimisation
(RBDO) [12,23-25] and 2) Robust Design Optimisation (RDO) [24,26].
RBDO aims at optimising a design whilst having a particular risk or
target reliability/performance as a constraint. RDO seeks optimal de-
signs about a mean response value thereby maximising robustness via
minimisation of the sensitivity to random parameter variations [24]. A
mixed approach, which employs features of both RDO and RBDO is
thought to be a more effective means to search for robust optima that
also satisfy reliability constraints. Paiva et al. [24] used a mixed RDO-
RBDO approach for the preliminary design of aircraft wings. Their
multidisciplinary approach employs a Kriging surrogate model to ac-
count for uncertainty in parameters of flight condition.

The application of probabilistic optimisation approaches such as
RBDO and RDO for the aeroelastic tailoring of composite structures has
been reported by several authors [12,23,25]. Scarth et al. [12] and
Manan et al. [23] used simplified analytical models for aeroelastic
stability with uncertainty arising from composite material properties.
These works employ a PCE model for uncertainty evaluation, together
with a singly-constrained RBDO approach, to obtain a reliable design
for maximum instability speed. In contrast, the work presented in this
paper employs a detailed finite element wing box model, together with
a PCE surrogate model for uncertainty quantification, for a multi-con-
strained aeroelastic tailoring optimisation problem. In addition, robust
and reliability-based design methods are used in combination within a
multi-level optimisation framework.
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Structural + Aero panel
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Fig. 1. Architecture, Finite Element model and aerodynamic panelling of the
benchmark composite wing.

This paper introduces a multi-level aeroelastic tailoring optimisa-
tion approach to determine minimum structural wing weight, subject to
multiple structural and aeroelastic constraints. The optimisation pro-
cedure is divided into two levels: a deterministic optimisation and a
combined implementation of robust and reliability-based design opti-
misations (RRBDO). Composite material properties and ply thickness
variations are chosen as the parameters carrying uncertainty, with
different levels of variation. A comparison between the RDO, RBDO and
RRBDO approaches for aeroelastic tailoring is presented. It is found that
the proposed multi-level aeroelastic approach enables the designer to
rapidly evaluate minimum weight solutions for composite wings and
also account for considerations of robustness and design reliability.

2. Model definition and analysis methods

A detailed Finite Element (FE) model for the high aspect ratio wing
box of a reference regional jet airliner is used for the analyses presented
in this paper. The model is shown in Fig. 1. Planform and wing box
geometry are depicted in Fig. 2 with dimensions normalised to the wing
semi-span. The structure is modelled in msc paTrRAN 2013 using CQUAD4
shell elements for the spars, ribs and skins and CBAR beam elements for
the stringers. The model comprises three spars, 30 ribs and 14 stringers.
All parts of the primary structure are made of intermediate modulus
carbon/epoxy composite (Hexcel 8552 IM7 [27]), with material prop-
erties listed in Table 1.

A total of 25471 elements and 16453 nodes are used in the struc-
tural mesh to ensure converged results. The aerodynamic panelling,
also shown in Fig. 1, is divided into two sections, with the outer wing
having a higher mesh density compared to the inner wing. The model’s
aerodynamic grid and structural mesh are coupled using a surface
spline to transfer loads from the aerodynamic grid points to the FE
nodes.

For dynamic and aeroelastic analyses, engine and fuel weight are
modelled as concentrated masses, with locations as shown in Fig. 2(a).
The fuel mass is distributed spanwise along the tank centroid line, with
point masses positioned between each spar-rib bay.

Only skin and spar sections are included in the optimisation pro-
cedures, where a total of 41 panels is created, with 11 panels for top
and bottom skins, eight panels for spar 1 and 2, and three panels for
spar 3, as shown in Fig. 2(b). As mentioned in the introduction, the
wing model is optimised for minimum weight with consideration of
robustness and reliability, when subject to multiple constraints in-
cluding strain, buckling, aeroelastic stability and extreme gust loads.
Lamination parameters and laminate thickness are chosen as design
variables and translated into stiffness components to be input into the
FE model.

2.1. Lamination parameters
Lamination parameters provide a compact and computationally

inexpensive mathematical representation for composite lay-ups and
are, therefore, adopted in this paper. In the most general case, by using
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Fig. 2. Wing geometry: (a) General dimension and location of ‘point masses’; (b) Panel partitions for skin and spar sections.

Table 1

Composite material properties (Hexcel 8552 IM7) [27].
Property Value
E, (GPa) 148.0
E; (GPa) 10.3
Gi2 (GPa) 5.90
V12 0.27
Density, p (kg m~3) 1580
Ply thickness, tply (mm) 0.183

the so-called material invariants, 12 lamination parameters and the
laminate thickness are sufficient to define the full set of stiffness coef-
ficients describing a composite stack [28]. This compact definition
greatly reduces the number of unknown variables required to specify a
stacking sequence. In addition, lamination parameters are continuous
variables and therefore lend themselves to efficient gradient-based
optimisations. The mapping between lamination parameters and lay-
ups, however, is not bi-objective. Not all sets of lamination parameters
correspond to feasible stacking sequences. Additionally, a point in la-
mination parameter space may map onto multiple stacking sequences.
For these reasons, the aforementioned gradient-based optimisations are
usually constrained to operate within feasibility regions defined by
inequalities relating the lamination parameters. Stacking sequences are
then retrieved from lamination parameters by solution of an additional
optimisation problem. An example is given by Kameyama and Fuku-
naga [29] that utilised lamination parameters as intermediate design
variables for the minimum weight optimisation of composite plate
wings subject to flutter and divergence constraints.

According to Classical Laminate Theory (CLT) [30], the relation
between generalised internal forces and generalised deformations for
symmetric laminates is given by

M3=15 ol

where A and D represent the laminate’s stretching and bending stiff-
nesses, respectively, N = {Ny, N,, Ny}" and M = {M,, M,, M,,}" are re-
sultant forces and moments per unit length, and € = {e,, ¢,, €.} and
i = {Ky, Ky, k)T are in-plane stretching terms, and bending and twist
curvatures. The stiffness components, A; and D;, can be calculated
from the stiffness invariants, {U}, and the in-plane and out-of-plane
lamination parameters, §'kA and é’kD (where k = 1, 2, 3, 4), by means of
the following equations:
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where t is the thickness of the laminate.
By defining the non-dimensional through-thickness coordinate , the
lamination parameters can be expressed in terms of ply orientation 6 as

g4 = lfl {c0s26(u), cos48 (u), sin26(u), sin46 (u)}du
234~ 5 J, ’ ’ ’ (€))

and

5[?’2,3’4] = %j_‘i {cos26(u), cos46(u), sin26(u), sin46 (u)}u? du. )
Bloomfield et al. [28] provide a comprehensive overview on the fea-
sible regions of lamination parameters. In this work, we use the in-
equalities derived by Fukunaga and Sekine [31], which describe the
feasible regions of the four in-plane and out-of-plane lamination para-
meters. These are

-1<E) <, (62)
EN*+ &<, (6b)
201 + ENEN AL ET + ED—E -2 + DA-E) <o, (60)

where k =1, 2,3,4 and j = A, D.

Current practice in the design and optimisation of composite lami-
nates is to restrict the design space to balanced and symmetric lay-ups,
to enable feasible manufacture. One of the reasons is that non-sym-
metric laminates tend to warp upon cool down from curing tempera-
ture, and unbalanced laminates have shear-extension coupling. For
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balanced laminates, the lamination parameters §3j and £/ vanish and
hence, the bend-twist coupling stiffness, D4 and Dy, are zero. This
effect reduces the influence of anisotropy (bend-twist coupling) on the
response of composite structures [32], thereby reducing the design
spaces for aeroelastic tailoring. In order to avoid this limitation, non-
balanced, symmetric laminates are considered in this work. This deci-
sion results in nine design variables for each composite panel in the
wing box model (eight lamination parameters plus one laminate
thickness), giving a cumulative total of 369 design variables for each
level of optimisation.

2.2. Aeroelastic analysis

The aeroelastic stability of the wing box is assessed using msc
NASTRAN’S SOL 145, which employs the frequency matching ‘p-k’ method
to predict the flutter speed, V;. Further details can be found in [33].
Structural frequencies, as well as their modal amplitudes and damping,
are obtained from the analysis as functions of air speed. The flutter
speed for each mode is found from the value at which the damping
become negative. A total of 12 modes are considered in the flutter
analysis to allow for an adequate representation of the aeroelastic be-
haviour.

2.3. Gust response

The optimisation of composite wings for gust load alleviation has
been explored by various researchers [3,8,34,35]. As specified by
aeronautical authorities (CS-25 [36]), the dynamic gust load conditions
for an aircraft consists of discrete gust and continuous turbulence (or
continuous gust). For discrete gust load, the gust velocity varies in
deterministic manner which is represented using ‘1-cosine’ gust profile.
For continuous gust load, the gust velocity is assumed to vary in a
random manner. The deterministic method employs ‘worst-case’ at-
mospheric gust approach where there is an idealised ‘discrete’ event
that the aircraft encounters during flight time. Herein, the deterministic
method is used to analyse the wing’s response in terms of root bending
moment (RBM) due to worst-case gust scenario [8,20]. The variation in
air velocity, in the direction normal to the aircraft path, is shown in
Fig. 3. The expression governing the ‘I-cosine’ gust is given by

Ve
V() = a4 1—cosﬂt ,
2 Ly

)

where Vj, is the peak or design gust velocity, L, is the gust length and V
is the flight speed. In this work, the gust length is chosen to vary from
18 m to 216 m. The design gust velocity and flight speed are set to
20 ms~! and 253 ms™, respectively. MSC NASTRAN’S SOL 146 is used to
evaluate the wing box dynamic aeroelastic response to discrete gusts.

Composite Structures 208 (2019) 101-113

3. Multi-level aeroelastic tailoring

A multi-level optimisation method is proposed for the aeroelastic
tailoring of the composite wing box of a reference regional jet airliner
and the various optimisation methodologies, algorithms and strategies
are detailed in this section.

The objective of the optimisation process is to minimise structural
weight, subject to multiple constraints, including strength and aero-
elastic stability. Thickness and lamination parameters of the wing box
composite panels are used as design variables. The design’s robustness
and reliability, when considering stochastic variations of composite ply
material properties and thickness, are also assessed.

The optimisation framework comprises two levels, as illustrated in
Fig. 4. matLAB’s implementation of the Particle Swarm Optimisation
(PSO) algorithm and msc nNastran are used to solve the optimisation
problem. PSO is a heuristic search method based on simple analogues of
collaborative behaviour and swarming in biological populations [37].
Similar to a Genetic Algorithm (GA), PSOs perform population-based
searches that depend on exchanges of information between individuals
for search progression. PSO is reported to be computationally more
efficient than GAs, because the algorithm requires fewer function eva-
luations [38].

The PCE, as presented by [23,12], is used as a non-sampling-based
method to quantify model uncertainty and create surrogate models for
robust and reliability-based design optimisation. The PCE method is
developed such that the model is assumed to be a black-box with un-
known inner structures. The method is straightforward as the model
response of random value y is represented by random vector x rather
than the distribution density function.

In the first level optimisation, the wing structure is subjected to a
static manoeuvre load and optimised for minimum weight with strain,
buckling, flutter and gust response constraints. The load distribution
due to the aerodynamic loading is obtained from a trim analysis per-
formed with msc NAsTRAN’s SOL 144. The static manoeuvre load case is
run at a Mach 0.82, cruise altitude 10, 000 m and acceleration 2.5 g. Fuel
load is included to provide a realistic representation of the wing model.
A weighted cost function is used to account for the influence of multiple
constraints.

Results from the first level are fed to the second level to optimise the
design further for robustness and reliability. The effect of uncertainties
on flutter response is considered in terms of probability (of failure)
density functions (PDF). To keep computational time to acceptable le-
vels, the effect of uncertainties on other first level constraints is not
quantified explicitly. However, for consistency, first level responses are
imposed as design constraints in the second level.

Lg

L

g

Fig. 3. ‘I-cosine’. discrete gust representation (xg is the flight travel distance).
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Fig. 4. The multi-level optimisation approach.

3.1. First level: Deterministic optimisation

The first level optimisation problem is formulated as follows:

minixmize Jooj (W (), fi cost X)),

subject to: Strain Failure Index, FI(x) <1 (Max. Strain),
Buckling critical load factor, A(x) > 1,
Flutter speed, V;(x) > 1.151 (V = Design dive speed),

Wing Root Bending Moment, max(RBM (x, L)) <
maX(RBMBenchmark (Lg) )a

where

x = [§4,.L 80,

D
10

D
-’§4 ) [panel,l’-n,[panel,41],

(8

e x is vector containing the design variables.
e 1 is the lowest buckling load factor (ten modes are computed to

account for mode switching).

e FI is the strain Failure Index defined as

13 3 €.
FI = max 2 = <1,
Ex,allowable Ey, allowable Exy, allowable

)]

where {e} = {g, ¢, ey} = {€} + z{x} are the strain components
through the laminate’s thickness, z, & allowable = Ey,allowable = 710044 €
and Exy,allowable = 45004 e.

The flutter speed, V4, is calculated from a conventional V-g plot as
per §2.2, assuming Mach 0.82 and flight dive velocity, Vp, at
10, 000 m. Since 12 modes are considered, V; is assumed to be the
lowest of 12 values at which the damping factor equals zero.

For the gust constraint, six different values of L, as indicated in
indicated in §2.3 are used in order to compute the maximum RBM.
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Table 2
Mean and standard deviation for the parameters carrying uncertainties.
E; (GPa) G, (GPa) toly (M)
Mean, u 148.0 5.90 1.83 x 1074
Std Dev., o 14.8 0.59 1.83 X 106

The values are selected within the gust gradient distance range (H)
of 9 m to 107 m (gust length is twice of gust gradient distance) as
specified by European Aviation Safety Agency (EASA). Six values
are sufficient to find the critical response for each load quantity.

Finally, the objective function in Eq. (8) is given as
W (x)

%enchmark

fobj = + fi,cost (X)’

(10)

where W is the wing structural weight (skins and spars only); f; .. (X) is
a cost penalty function defined to account for constraint violations as

Vf_Vf,Design RBM A_lDesign
fi,cosl =wr X + Wg X + WEIG X
Vf,DeSign RBMBenchmark ADesign
FI-F. IDesign
+t W X |——— |,
Fi IDesign (]_ ])

and where

Weonstr = {Wconstri € [0, 1]: Z Weonstr; = 1, constr; € {f, g, EIG, FI}}

constrj
(12)

is the set of weighting coefficients relative to each of the constraints,
and the subscript ‘Design’ denotes desired or allowable values. The
design constraints are included in the objective function in the form of
cost penalty function. So that, the trade-off between minimum struc-
tural weight and optimum constraints values are accounted towards the
improved design solution.

By variation of the weighting coefficients, a Pareto front of opti-
mised solutions is obtained. Following the averaging principle defined
in [39], the overall best deterministic design is chosen as the Pareto
point minimising the expression (£—5), where

w A
Wmin /lmin

Vi

Vf,max

RBM
RBMmin

FI
Floae'

T = + + +

13

and where the subscripts min and max indicate the minimum and
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maximum values obtained for each parameter from all possible
weighting combinations.

3.2. Second level: Robust and reliability-based design optimisation

The need for a multi-level optimisation strategy is justified by
considerations of computational feasibility. Evaluating full wing box
designs, for multiple performance/constraint metrics and by means of
finite element models, can be costly and take many minutes per at-
tempted solution. Aiming to quantify the effect of parameter un-
certainty on the robustness and reliability of optimised designs, one
would have to run a statistically relevant number of stochastic varia-
tions for every tentative solution trialled by the optimiser. This re-
quirement makes “all-at-once”, single level approaches computationally
impractical. A potential alternative to alleviate the computational
burden is to recur to metamodels or surrogate models to approximate
system behaviour with functions that are quick to interrogate and
evaluate. However, training the surrogates to capture a variety of re-
sponses to multiple parameters is similarly computationally expensive
and impractical.

To overcome these limitations, the approach adopted in this work is
to run a deterministic optimisation first and then pass the output to a
second level, to account for uncertainty. In the second level, PCE is used
to quantify the effect of uncertainties on some responses only, using the
optimised values of the remaining ones as design constraints. This ap-
proach guarantees that the second level output, i.e. the final optimised
design, is robust and reliable in terms of chosen responses, whilst still
meeting all of the constraints imposed on and met by the deterministic
optimum.

Reliability-Based Design Optimisation and Robust Design
Optimisation are the two main methodologies reported in the literature
for probabilistic design optimisation [23-26,40]. In this work, aleatory
variations in material stiffness and ply thickness are considered. In
particular, and unless stated otherwise, longitudinal and shear mod-
ulus, E; and Gy, respectively, are assumed to be random variables with
coefficient of variation (COV) equal to 0.1. The COV for ¢, is assumed
to be 0.01. Specific means and standard deviations are given in Table 2.
For completeness, additional numerical analyses have been performed
to test the effectiveness of the proposed computational framework, as
well as the generality of the ensuing results and conclusions. These tests
demonstrated that the framework could be used for any set of random
parameters, but the results are not included herein for the sake of
brevity.

(a) (b)
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Fig. 5. Changes in the Probability Density Functions of a generic design response due to (a) Reliability-Based Design Optimisation (RBDO) and (b) Robust Design
Optimisation (RDO). RBDO minimises P;, whilst RDO minimises the response variance around a target mean value.
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3.2.1. Reliability-based design optimisation (RBDO)

In RBDO, the goal is for a structure to achieve a target performance
whilst attaining a prescribed level of design reliability [24]. Reliability
is measured in terms of probability of failure, P, i.e. constraint viola-
tion, or occurrence of a particular response. P; is calculated as the area
between the PDF and the target design constraint as shown in Fig. 5(a).

Aircraft designers aim to minimise aircraft weight subject to stress
and other constraints, and aeroelastic tailoring helps to meet this ob-
jective. The reliability of the designs can be improved by minimising Pr
[23,40], that is by shifting the failure PDF to the right and/or shrinking
it. The generalised form of the RBDOs performed in this work is ex-
pressed as

minimize fj,, (W (%, p), P:(X, D)),
X

subject to: 8. p) <0,

g,x,p) <0,

x;, < X < Xy, a4

where f, . is the objective function; g, (x) is the reliability constraint;
g,(x) is the vector set of design constraints for which a reliability target
is not established; p is a vector of constant parameters that do not vary
in the optimisation; and X is bound between lower and upper limits, x|,
and xy.

The objective function is defined as an aggregate of the structural
weight and the probability of failure

3 w P
frbdo =Wy X — + Wp X ——,
det allow

(15)

where Wy is the structural weight from the deterministic optimisation,
and wy and wp, are weighting coefficients chosen so that wy + wp, = 1.
Here, the reliability constraint takes the form

&c = Pr—Puow, (16)

where Py is the allowable probability of failure. In our case, the
probability of exceeding the design flutter speed.

3.2.2. Robust design optimisation (RDO)

RDO aims at optimising a structure placing the targeted perfor-
mance around a mean value and maximising robustness by minimising
sensitivity to random parameter variations [24]. This aim is achieved
by minimising the variance and optimising the mean of the response in
question, as illustrated in Fig. 5(b). The generalised form of the RDOs
performed in this work is

minixmize a0 (W (X, P), i (X, p), 0r (X, p)),
subject to: g, (e (X, P), 0 (X, P)) <

USL or glower(,uf (X, P), Uf(X, P)) > LSL,
gd(X, p) <0,

x;, < X < Xy, 7)

where f,, is the objective function defined in terms of weight,
weighting coefficients ({ww, w,, wo}: wy + w, + w;, = 1), mean re-
sponse, ., and standard deviation, of,

He—HMget
Het

Ot
+w, X —,

w
f;d0=WWxW—+WMX

det Odet (18)

and where g, = pi; + nogand g, = Uy—not are design constraints
used to define the solution’s robustness. These constraints are bounded
by their upper and lower statistical limits, USL and LSL, which are given
as functions of the mean and standard deviation of the deterministic
optimisation design, p,,, and oge, as

USL = pye; + NOget and LSL = iy —NGgets 19

entailing that feasibility is maintained within n standard deviations of
the optimised mean. In this work, n = 6 in line with a 60 design
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philosophy [41].

3.2.3. Robust and reliability design optimisation (RRBDO)

A combined approach, mixing robust and reliability-based design
optimisations (RRBDO), is thought to be more comprehensive than
RBDO and RDO individually. Particularly when, as in the case of
aeroelastic tailoring, design reliability and robustness are sought to-
gether. An RRBDO approach is expected to: (a) improve on RDO solu-
tions by bringing additional reliability; and (b) improve on RBDO with
increased robustness. In aeroelastic terms, RRBDO should ensure
minimum mean weight with mean constrained responses, such as
flutter or stresses, all close to the boundary of failure. Mathematically,
this is obtained by combining RDO and RBDO constraints as follows:

minixmize odo (W (X, D), 1; (X, P), 0¢ (X, P)),
subject to: g, (%, p)<O,
8upper (W1 (X, ), 01 (X, P)) <
USL  Or  Goyer (¢ (X, P), 0t (X, P)) > LSL,

gd(x’ P) S O’
X, < X < Xu, (20)
where the objective function, f .., is
w
=wy— + + ,
fl"rbdo w Wt fi,cost fé,cost (21)

and the cost penalty functions, 5.90 and f, . are defined as

He—Hget Of Pr
fl.cost =w, X =1+ Wy X and fz,cost =wp X )
et Odet Pallow
(22)
where  wy,w,,w, and wp are the weighting factors

(fww, Wy, Wy, Wpl: Wy + Wy, + Wy + wp, = 1) and all other quantities
retain the meaning defined in §3.2.1 and §3.2.2.

4. Stochastic modelling

For reasons of the computational cost arising from the effects of
random parameters variations in optimisation algorithms, sampling
methods or stochastic modelling techniques are needed to evaluate
model performance quickly. Monte Carlo Simulations [8,19], Poly-
nomial Chaos Expansion [12,16,20,21] and Stochastic Collocation [22]
are popular tools for uncertainty quantification. MCSs are simple but
require a large number of sample analyses for accurate estimations,
which is computationally expensive. Other techniques, such as the
perturbation method and PCE, have been introduced to overcome this
limitation and provide an alternative to MCS. In the context of aero-
elastic tailoring, Castravete & Ibrahim [42] investigated the influence of
uncertain bending and torsional stiffness on the flutter behaviour of a
wing using both MCSs and a perturbation method. Their results show a
good correlation between the two techniques and a computational ad-
vantage for the latter. Similar results were presented by [20,12] using
PCE.

The method of choice for our work is PCE, which was derived from
the Weiner-Askey Chaos Expansion [21,43]. The PCE model for any
second-order random process (i.e. any process with finite variance),
u(6), can be written as

0

Y Y annBi, ), 8, ©)]

=1 =1

u(®) = aoly + 2, ayTif¢, (O)] +

=1

+ 20 20 20 @ Blg (6). 4,(6). 4,0 + ..
=1 b=1 =1 (23)

where T,[¢; (6), ...,Q’ip (6)] is the polynomial chaos of order p in the in-
dependent random variables {( (6), ... (6)}, the a terms are
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deterministic expansion coefficients and 6 is the random character of
the quantity involved. The random variables can be modelled using
different types of polynomials as described in [12,43]. For example, if
¢} =1{¢,(6),....§,,(8)}" is a set of standard Gaussian random variables
with zero mean and unit variance, I, can be expressed with n-dimen-
sional Hermite polynomials [43] as

§pe—3 111}

— (1 \Pes )
L[, (0), «...§;, (6)] = (=1)Pe2 FAONEAGC)

(24)

Eq. (23) is often written as

u® =, BHE©),

i=0

(25)

where there is a one-to-one correlation between I, [¢; (6), ...,{ip (6)] and
$,({(6)) and between the § and the a terms. For instance, the 2-di-
mensional expansion of a 3rd order PCE model based on the Gaussian
input ¢ = {¢, {,}' can be written as (see [20])

Usra = By + BiS + Body + By (GP=1) + Bi$i 6 + Bs($-1) + By(§P-3¢8)
+ 57(§12{2_§2) + Bg({22§1_{1) + Bg({;_3§2)7

where the terms 5, are unknown coefficients to be calculated using a
computed test data set. In this work, the flutter speed, V4, is sampled at a
series of N points in the design space of the Gaussian material proper-
ties. Using Eq. (25), one can write a set of simultaneous equations such
that

(i} = [$1{B} + {e},

where {e} is the simplification error due to the truncation of expansion.
As proposed in [44], a least-squares linear regression model can be used
to determine the expansion coefficients. In particular {8} is found by
minimisation of € such that

(26)

(27)

N
€ = min e |,
2]
and hence
B = @Y7 M} (29)

The resulting coefficients are then fed back to Eqn. (27) to emulate the
system response for any combination of random variables and to esti-
mate the statistical properties of the system at reduced computational
cost.

A general overview of the PCE method is illustrated in Fig. 6. The
Latin Hypercube Sampling (LHS) technique [44] is employed to span
the sampling space uniformly, so that a relatively small number of
samples is sufficient to construct a surrogate model of acceptable fi-
delity.

Gaussian Variable
(,(0,1))

LHS (sampling)

Gaussian Samples =
(2t eoes 20) Model definition

[Const‘ruct‘ Hermite} [Samplc Rosponso} [

Output response
(PDF)

A
Calculate emulated J

Basis Polynomial (Vi1 oo Vi) output response
Polynomial Basis Linear Regression Expansion Coefficients
(W(21), -, (2n)) Model (Bos -, Bp)

Fig. 6. Overview of the stochastic modelling process using Polynomial Chaos
Expansion.
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The use of PCE to quantify uncertainty in the optimisation proce-
dure provides a significant reduction in the number of sample runs
required in comparison to MCS. A convergence study measuring accu-
racy of the uncertainty quantification versus the number of samples
proves that 30 sample runs are sufficient for the PCE method to con-
verge, which is a 100x less than MCS. The PCE method requires only 6/
1000 of the total run time of the MCS. The analysis were conducted on a
quad-core Intel Core i7-3770S-CPU @ 3.10 GHz with 8 CPUs and 32 GB
RAM. Fig. 7 shows a comparison of the flutter speed distribution ob-
tained from 5000 MCS runs and using PCE models of different order
(with random composite material properties as defined in §3.2). An
adequate agreement is obtained using 1st, 2nd and 3rd order PCE with
30 samples, with a small discrepancy observed for a 4th order PCE due
to an insufficient number of sample runs. These results suggest that
sufficiently accurate uncertainty quantifications can be obtained using
low order PCE models, i.e. 3rd order, and a small number of sample
runs, which contains overall computational cost.

5. Results and discussion

Results obtained using the optimisation framework detailed in
previous sections are presented herein, where the benchmark wing
model is tailored deterministically as per §3.1 using different combi-
nations of the weighting factors for each of the responses in the cost
function. An ideal deterministic optimum is then selected from the
Pareto front generated. Subsequently, by following the methods de-
tailed in §3.2, RBDO, RDO and RRBDO are employed to optimise the
design for added reliability and/or robustness with minimal structural
weight penalty. The effect of uncertainties is quantified for flutter speed
and weight. All of the other responses of the deterministic design are
kept in the second level optimisation as additional design constraints
(g,) to ensure no deterioration in performance from the first level op-
timisation.

Henceforth, it is assumed that the random parameters are Gaussian
continuous variables. Hermite polynomials are used to construct the
polynomial basis in the stochastic model. Thirty LHS sample runs have
proven to be sufficient for the analysis.

5.1. Case study I

5.1.1. First level: Deterministic optimisation

A total of 20 optimisation runs is performed, with the weighting
factors for each of the responses (as defined in Eq. (11)) assuming va-
lues in [0, 1]. These values are chosen using LHS to respect Eq. (12) and
are shown in Table 3.

Table 4 presents a summary of the results. In comparison to the
benchmark wing, the optimisation reduces structural weight by at least
16.4% (DET9) and up to a maximum of 35.7% (DETS). Interestingly, the
lightest solution has a buckling load factor equal to one, suggesting that
buckling resistance is critical for minimum weight designs.

Intuitively, cost penalties are incurred when the optimiser is tasked
with satisfying multiple constraints. Indeed, the cost function reaches
its lowest values for singly constrained optimisations (DET11 to
DET14), with the relative reserve factors converging approximatively to
the design allowable. A clear example is DET12, for which w, = 1 and
RBM/RBMgenchmark iS minimum. Similarly, the lowest flutter speed is
obtained when w; = 1, i.e. for DET11. Although, it is noted that V;
varies marginally across optimisations, the largest value deviating only
8.1% from Vjpesign (DET9).

Further insight into the results can be gained from Fig. 8, where the
constraints values of the optimised solutions (for different set of
weighting factor) are plotted against the corresponding weighting
factor. In theory, the higher the weighting factor, the closer the re-
sponse should be to its allowable value. This proves to be the case here,
which gives confidence into the validity of the underlying calculations.

The overall best design is derived from the Pareto fronts of Fig. 8, by
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Fig. 7. Flutter speed responses obtained using MCS and PCE: (a) MCS and PCE using polynomials of different order; (b) MCS and 3rd order PCE using different
number of sample runs.

Table 3

Weighting coefficient values used for deterministic optimisation runs.

Run Weighting coefficients
wg Wg WEIG WEL
DET1 0.3655 0.3785 0.1164 0.1396
DET2 0.3347 0.2375 0.3102 0.1176
DET3 0.0654 0.3063 0.2832 0.3451
DET4 0.1227 0.2073 0.1127 0.5572
DETS 0.1568 0.7270 0.0804 0.0358
DET6 0.3061 0.4243 0.1713 0.0983
DET7 0.1724 0.1069 0.2595 0.4611
DET8 0.5348 0.0863 0.3324 0.0464
DET9 0.1828 0.1574 0.3638 0.2960
DET10 0.2546 0.4689 0.0721 0.2044
DET11 1.0000 0.0000 0.0000 0.0000
DET12 0.0000 1.0000 0.0000 0.0000
DET13 0.0000 0.0000 1.0000 0.0000
DET14 0.0000 0.0000 0.0000 1.0000
DET15 0.7500 0.1250 0.0625 0.0625
DET16 0.1250 0.7500 0.0625 0.0625
DET17 0.1250 0.1250 0.7500 0.0000
DET18 0.0500 0.3000 0.0500 0.6000
DET19 0.8000 0.1000 0.0500 0.0500
DET20 0.4000 0.4000 0.1000 0.1000
Table 4
Deterministic optimisation results at different weighting factors.
Run w Vi RBM i FI ficost 2
WBenchmark ~ ViDesign ~ RBMBenchmark
DET1 0.669 1.007 0.004 1.006 0.823 0.030 4.974
DET2 0.646 1.001 0.145 1.042 0.601 0.095 45.284
DET3 0.681 1.019 0.032 1.057 0.993 0.030 13.426
DET4 0.676 1.009 0.043 1.022 0976 0.026 16.486
DET5 0.647 1.007 0.030 1.062 0.859 0.033 12.472
DET6 0.698 1.026 0.026 1.020 0.913 0.031 11.395
DET7 0.683 1.015 0.201 1.029 0935 0.062 61.986
DET8 0.643 1.001 0.207 1.000 0.589 0.038 63.235
DET9 0.836 1.081 0.180 1.008 0.915 0.071 56.143
DET10 0.654 1.001 0.039 1.029 0.922 0.037 15.195
DET11 0.681 1.000 0.088 1.052 0.725 0.000 29.121
DET12 0.661 1.008 0.003 1.024 0.758 0.003 4.741
DET13 0.709 1.030 0.450 1.001 0.740 0.001 133.535
DET14 0.736 1.048 0.030 1.212 1.000 0.000 12.897
DET15 0.663 1.006 0.321 1.000 0.763 0.060 96.381
DET16 0.772 1.059 0.012 1.095 0.783 0.036 7.646
DET17 0.712 1.036 0.086 1.002 0.860 0.016 28.682
DET18 0.645 1.007 0.037 1.010 1.000 0.012 14.737
DET19 0.646 1.001 0.005 1.408 0.878 0.028 5.778
DET20 0.663 1.006 0.012 1.028 0.952 0.015 7.546
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means of the averaging principle defined in Eq. (13). The best design
solution is selected from a Pareto point whose give the lowest value for
¥—5. DET1 is found to be the Pareto point to be used as the starting
point for the second level optimisation. The corresponding wing box
sizing parameters are shown is Fig. 9, where they are also compared to
the benchmark model. Naturally, thickness values are discontinuous
and multiples of t,,. For simplicity, blending constraints were not ap-
plied at this stage of the study. However, in order to prevent sharp
changes of thickness, no more than two plies were allowed to be
dropped between adjacent panels.

5.1.2. Second level: Reliability-based design optimsation (RBDO)

Following on from the first level, DET1 is further optimised for re-
liability, assuming stochastic variations of material properties (E; and
Gy2) and composite ply thickness (t,y). The aleatoric parameters are
assumed to have the properties reported in Table 2. The PCE method is
used for uncertainty quantification, utilising 30 data samples selected
using LHS. Reliability is evaluated in terms of the probability of failure,
P;, of trialled designs to exceed the minimum flutter speed
(Vf/Vf,Design > 1)

The RBDO objective function is formulated in terms of structural
weight and probability of failure as indicated by Eq. (15). The allowable
probability of failure is set to be equal to the probability of failure of
DET1. Hence, Byow = 8.5 X 1073, Eleven combinations of the weighting
factors, ww and wp,, are used, as indicated in Table 5.

A design is deemed to be more reliable than the baseline when the
probability of failure, or the occurrence of flutter at the design speed, is
reduced. To ensure overall design feasibility, first level responses, for
which the effect of uncertainties is not evaluated (strain, buckling and
gust wing root bending moment), are imposed here as optimisation
constraints.

RBDO results are summarised in Table 5. For all combinations of
weighting coefficients, the wing box is lighter that the benchmark and
the values of P; are lower than By.. Except, of course, for RUN 1, for
which wp, = 0. The minimum value is obtained for RUN 10, for which
Py =2.448 X 1077,

Fig. 10(a) shows that reductions of P; are due to the flutter PDFs
shifting to the right. However, increases in mean flutter speed are ac-
companied by greater standard deviations, suggesting that reliability is
obtained at the expense of robustness. Fig. 10(b) shows the structural
weight PDFs resulting from RBDO. It is interesting to note that the
distribution of the structural weight obtained for RUN 2 has a lower
mean value compared to the deterministic design. This result indicates
that it is possible to minimise structural weight whilst improving design
reliability. However, all of the other runs have lower probability of
failure and higher mean structural weight, demonstrating that a weight
penalty is generally necessary for greater reliability.

The overall best RBDO design is chosen again based on an averaging
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Fig. 8. Pareto plots for (a) Flutter constraint against weighting, wt, (b) RBM constraint against weighting, w, (c) Buckling constraint against weighting, wg;g and (d)

Strain constraint against weighting, wg;.

principle, in this case, by accounting for the contributions of structural
weight and probability of failure at different weighting factor. In par-
ticular, the ideal design is picked to be the one having
X = W/Wpin + P/Ptmin closest to two. This condition is met by RUN 10
in Table 5, which is 31.8% lighter than the benchmark model and only
1.3% heavier than the best deterministic design.

5.1.3. Second level: Robust design optimisation (RDO)

DET1 is now optimised for robustness following the procedure de-
scribed in §3.2.2. In particular, we seek a wing box configuration of
minimal weight and whose flutter speed distribution, arising from un-
certainties in material properties, has mean as close as possible to the
deterministic value and minimum standard deviation.

Results are presented in Table 6 and Fig. 11. All design solutions are
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characterised by weight reductions in comparison to the benchmark
model, mean flutter speeds above the target design value. An increase
in robustness is demonstrated by smaller standard deviations in com-
parison to both DET1 and the RBDO solutions. The minimum reduction
from oger = 2.766 occurs for RUN 1 (w, = 0) and is 2.6%; the maximum
one being 24.9% and occurring for RUN 3 (w, = 1). Having used V;pgr1
as an optimisation target, mean flutter speeds cluster uniformly around
it. Conversely, all but one RDO solutions have similar or greater weight
in comparison to the best deterministic optimum, thus suggesting that
an increase in design robustness is likely to be achieved at the expense
of weight. Interestingly, some RDO solutions are also sufficiently reli-
able but these are substantially heavier than their RBDO counterparts.

The overall best RDO design corresponds to RUN 8 and is chosen as
the minimiser of X-3, with X = W/Whin + t¢/ts nin + 0t/Otmin. In
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Table 5
RBDO solutions obtained using different weighting factors for structural weight and probability of failure.
Run Weightings Responses
ID ww wpg w HE of Py z
WBenchmark V§, Design
1 1.00 0.00 0.669 1.010 2.654 8.500x 10-3 34711.896
2 0.90 0.10 0.658 1.013 3.176 2.100x 10~3 8576.629
3 0.80 0.20 0.678 1.019 3.684 6.623x 1075 271.485
4 0.70 0.30 0.739 1.026 6.244 4.833x 10-5 198.478
5 0.60 0.40 0.689 1.034 5.938 5.001x 10~6 21.469
6 0.50 0.50 0.679 1.015 3.046 2.645x 10~4 1081.317
7 0.40 0.60 0.729 1.025 5.706 9.974x 10-6 41.840
8 0.30 0.70 0.689 1.021 3.805 8.318x 106 35.016
9 0.20 0.80 0.682 1.023 4.087 2.929% 10-6 12.968
10 0.10 0.90 0.682 1.023 3.974 2.448x 1077 2.037
11 0.00 1.00 0.679 1.017 3.451 2.010x 10~ 821.843
comparison to the overall best RBDO solution, RUN 8 features lower Table 6

structural weight and mean flutter speed, and smaller standard devia-
tion.

5.1.4. Second level: Robust and reliability-based design optimisation
(RRBDO)

RBDO and RDO results show the following trends: 1) As expected,
RBDO solutions tend to be more reliable and less robust than RDO ones,
and vice versa; 2) Mean flutter speeds are close to but consistently
above the design allowable. With RBDO, these values are also con-
sistently above the mean flutter speed of the overall best deterministic
design (DET1). While, with RDO, they are uniformly distributed around
it; 3) Reliability or robustness are generally achieved at the expenses of
weight, the latter imposing greater penalties. An RRBDO approach is
thought to be able to provide a better compromise between weight and
design robustness and reliability. Results are presented in Table 7 and
Fig. 12.

Notably, most flutter speed PDFs cluster closely, with mean values
approximatively 1% above the allowable. Similarly, all runs result in
probabilities of failure below PBy,y. The lowest value is 2.344 x 107*
which is a 97.2% improvement in comparison to the deterministic de-
sign. In terms of robustness, RRBDO results, although generally worse,
are comparable with RDO solutions (o4 € [2.077, 2.694] Vs
Ofrrbdo € [2.555, 2.788]). A slight increase in minimum structural weight
is observed for RRBDO designs in comparison to both RDO and RBDO

RDO solutions obtained using different weighting factors for weight, flutter
speed mean and standard deviation.

Run Weightings Responses
ID ww Wy Wy w HE of z
Wgenchmark Vi, Design

1 1.000 0.000 0.000 0.669 1.010 2.694 3.350
2 0.000 1.000 0.000 0.669 1.009 2.668 3.337
3 0.000 0.000 1.000 0.782 1.065 2.077 3.284
4 0.750 0.125 0.125 0.666 1.004 2.564 3.277
5 0.125 0.750 0.125 0.669 1.009 2.598 3.304
6 0.125 0.125 0.750  0.802 1.061 2.088 3.318
7 0.500 0.250 0.250 0.739 1.047 2.564 3.435
8 0.250 0.500 0.250 0.639 1.004 2.352  3.132
9 0.250 0.250 0.500 0.800 1.051 2.570 3.537
10 0.340 0.330 0.330 0.669 1.009 2,632  3.320

The increase in structural weight is thought to be due to the increase in
mean flutter speed and the decrease in its standard deviation. These
variations are necessary to shift flutter PDFs to the right and to shrink
them, which enhances design reliability and robustness. In conclusion,
RBBDO results further support the finding that a weight penalty is ne-
cessary to impart some level of robustness and reliability to the design.
The overall best RBBDO solutions is RUN 7 with a normalised structural
weight of 0.679.
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Fig. 10. PDF plots of RBDO solutions for different weighting factors: (a) Flutter speed and (b) Structural weight.
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Fig. 11. PDF plots of RDO solutions: (a) Flutter speed and (b) Structural weight.

Table 7
RRBDO solutions for different weighting values for weight, flutter speed mean and standard deviation, and probability of failure.
Run Weighting coefficients Responses
ID ww Wy Wy Wpg w HE of P z
WBenchmark Vf,Design
1 1.000 0.000 0.000 0.000 0.669 1.011 2.788 8.359x 1073 38.812
2 0.000 1.000 0.000 0.000 0.669 1.010 2.683 7.989x 1073 37.190
3 0.000 0.000 1.000 0.000 0.679 1.015 2.727 2.344x 10~4 4.086
4 0.000 0.000 0.000 1.000 0.669 1.010 2.561 8.126x 10~3 37.728
5 0.250 0.250 0.250 0.250 0.669 1.010 2.663 8.214x 10-3 38.144
6 0.500 0.250 0.125 0.125 0.669 1.010 2.688 8.264x 1073 38.364
7 0.250 0.500 0.125 0.125 0.679 1.014 2.555 2.446x 10~4 4.063
8 0.250 0.125 0.125 0.500 0.669 1.010 2.741 8.011x 1073 37.306
9 0.125 0.250 0.500 0.125 0.669 1.010 2.633 7.993% 103 36.886
10 0.100 0.300 0.300 0.300 0.669 1.009 2.584 7.790% 103 36.000
051 o
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6. Conclusions

A multi-level optimisation approach for the robust and/or relia-
bility-based aeroelastic tailoring of a wing box structure is presented.
The optimisation objective is to minimise weight subject to multiple
constraints, including strength, buckling and flutter margin. The

Flutter speed, Vi/V Design

Fig. 12. PDF plots of RRBDO solutions.
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procedure accounts for stochastic variations in input material design
parameters. Based on grounds of computational cost, surrogate mod-
elling with Polynomial Chaos Expansion is preferred to Monte Carlo
Simulation for the quantification of the effect of uncertainties on
structural weight and flutter speed. The results presented in this paper
support the following conclusions:
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Polynomial Chaos Expansion is capable of quantifying the effects of
uncertainties with sufficient accuracy and fewer model runs in
comparison to Monte Carlo Simulations, thus enabling probabilistic
design optimisation of a full Finite Element wing box model.
Reliability-based optimisation shows that reducing the model’s
probability of failure entails a weight penalty and a loss of design
robustness.

Optimising for robustness successfully reduces the design sensitivity
to stocastic variations at the cost of additional weight. Robust de-
signs can also be sufficiently reliable, but generally at a greater
weight penalty in comparison to designs optimised for reliability
only.

In general, the model can be optimised for minimal weight and a
desired level of reliability or robustness or both. However, enhanced
reliability and robustness result in a weight penalty in comparison to
the deterministic optimum design.

Simultaneous robust and reliability-based design optimisation suc-
cessfully provides the best compromise between weight, reliability
and robustness.

In comparison to the benchmark wing, the framework produces an
overall weight reduction of 32.1% for the test case considered, with
a 1.5% increase from the first to the second level optimisation to
account for stochastic design variations.

Results follow the same pattern when the coefficient of variations of the
aleatoric parameters is changed.
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