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Abstract The Shuttle Radar Topography Mission has long been used as a source topographic
information for flood hazard models, especially in data-sparse areas. Error corrected versions have

been produced, culminating in the latest global error reduced digital elevation model (DEM)—the
Multi-Error-Removed-Improved-Terrain (MERIT) DEM. This study investigates the spatial error structure of
MERIT and Shuttle Radar Topography Mission, before simulating plausible versions of the DEMs using fitted
semivariograms. By simulating multiple DEMs, we allow modelers to explore the impact of topographic
uncertainty on hazard assessment even in data-sparse locations where typically only one DEM is currently
used. We demonstrate this for a flood model in the Mekong Delta and a catchment in Fiji using deterministic
DEMs and DEM ensembles simulated using our approach. By running an ensemble of simulated DEMs we
avoid the spurious precision of using a single DEM in a deterministic simulation. We conclude that using an
ensemble of the MERIT DEM simulated using semivariograms by land cover class gives inundation estimates
closer to a light detection and ranging-based benchmark. This study is the first to analyze the spatial error
structure of the MERIT DEM and the first to simulate DEMs and apply these to flood models at this scale. The
research workflow is available via an R package called DEMsimulation.

Plain Language Summary A lack of accurate digital elevation models (DEMs) for flood inundation
modeling in data-sparse regions means that predictions of flood inundation are subject to substantial
errors. These errors have rarely been assessed due to a lack of information on the spatial structure of DEM
errors. In this study, we analyze the vertical DEM error and how this error varies spatially for both the
widely used Shuttle Radar Topography Mission (SRTM) DEM and an error reduced variant of SRTM called
Multi-Error-Removed-Improved-Terrain (MERIT) DEM for 20 lowland locations. We then use the spatial

error characteristics to simulate plausible versions of topography. By simulating many statistically plausible
topographies, flood models can assess the effects of uncertain topography on predicted flood extents. We
demonstrate this by using a collection of simulated DEMs in flood models for two locations. We conclude
that using an ensemble of MERIT DEMs simulated using the spatial error disaggregated by land cover class
gives flood estimates closest to that of a benchmark flood model. This study is of interest to others as our
calculated spatial error relationships can be used to simulate floodplain topography in the MERIT/SRTM data
sets through our open-source code, allowing for probabilistic flood maps to be produced.

1. Introduction

Digital elevation models (DEMs) are numerical representations of the bare-earth surface, but like all models
are a simplification of reality. The Shuttle Radar Topography Mission (SRTM; Farr et al., 2007) is a freely available
DEM covering the Earth’s surface within latitudes of +60°N and —56°S at a resolution of 3 arc sec (%90 m).
It was collected over an 11-day period in February 2000 in a mission led by National Aeronautics and Space
Administration (NASA). In late 2015, a 1 arc sec (30 m) product was released for areas outside the United
States. Various versions exist including the original nonvoid filled SRTM V1, void filled products SRTM V2, SRTM
V3, and the CGIAR Consortium for Spatial Information (CGIAR-CSI) developed version (Jarvis et al., 2008). In
the near future the NASADEM (Crippen et al., 2016), which is a reprocessed version of the original SRTM data
set, is due to be released. Other free global DEMs exist, such as Advanced Land Observing Satellite (Tadono
etal,, 2014) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (Abrams, 2000), with the
SRTM data set generally favored by geoscientists (particularly the CGIAR-CSI Version 4; Jarvis et al., 2008) due
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Table 1
Overview of SRTM Error Studies

Vegetation Terrain Spatial

Location RMSE (m) MAE (m) Land cover error error dependence Reference
Global 6 Mixed No No Yes Rodriguez et al. (2006)
Argentina 83 -0.6 Mixed No Yes No Gomez et al. (2012)
Australia 4.5 Mixed Yes No No Rexer and Hirt (2014)
Bhutan 11.3 Mountainous No Yes No Fujita et al. (2008)
China 1.5-2.6 Mixed Yes Yes No Hu et al. (2017)
China 2.26-3.61 Low relief No No No Du et al. (2016)
China —-3.49 Mixed Yes Yes No Huang et al. (2011)
China 12.44 Mixed Yes Yes No Jing et al. (2014)
Costa Rica 45 Forest Yes No No Hofton et al. (2006)
Croatia 3.8 0.2 Mixed Yes Yes No Varga and Basic¢ (2015)
Fr. Guiana 10.2 Forest Yes Yes No Bourgine and Baghdadi (2005)
Ghana 4.4-14.5 Mixed No No No Forkuor and Maathuis (2012)
Greece 25 19 Mixed No Yes No Miliaresis and Paraschou (2005)
Greece 6.4 Mixed No Yes No Mouratidis et al. (2010)
India 17.76 Mountainous No No No Mukherjee et al. (2013)
Indonesia 3.25 Mixed No No No Suwandana et al. (2012)
Mozambique 1.95 Mixed No No No Karlsson and Arnberg (2011)
Norway 6.5 Mixed Yes No No Weydahl et al. (2007)
Poland 14.74 431 Mountainous Yes Yes No Kolecka and Kozak (2014)
Thailand 7.58 Mixed No Yes No Gorokhovich and Voustianiouk (2006)
Tunisia 3.6 29 Dryland No No No Athmania and Achour (2014)
Turkey 9.8 Mixed No No No Bildirici et al. (2009)
United States 5 Low relief Yes No Yes LaLonde et al. (2010)
United States 4.07 Mixed No Yes No Gorokhovich and Voustianiouk (2006)
United States 8.6 Mixed Yes Yes Yes Shortridge and Messina (2011)
United States 7.18 Mixed No Yes No Falorni et al. (2005)
United States 6.32 3.23 Mixed Yes Yes Yes Shortridge (2006)

Note. Vertical errors from each study are reported, either as root-mean square error (RMSE) or MAE (mean absolute error). Land cover refers to the land cover class
of the location in each study. Inclusion of error assessment from vegetation or terrain or an analysis of spatial dependence is assessed on a yes/no basis. The stated
figures only give a headline, and interested readers are referred to the referenced studies for more details on the methods used. SRTM = Shuttle Radar Topography

Mission.

to greater feature resolution, reduced number of artifacts, lower noise, and better vertical accuracy (Jarihani
et al,, 2015; Rexer & Hirt, 2014; Schumann et al., 2014). Therefore, SRTM forms a crucial resource in providing
elevation data to many hazard and risk assessment models, particularly in remote and data poor locations
where high-resolution data such as LIDAR (light detection and ranging) either do not exist or are not freely
accessible. Despite calls for a concerted effort to produce a more accurate free global DEM (Schumann et al.,
2014), there is little sign that such a data set will be produced soon. Thus, the SRTM data set remains the best
option for elevation data for much of the Earth’s surface, both now and for the foreseeable future.

Errors in the SRTM data set were characterized in a large-scale study carried out by Rodriguez et al. (2006),
where ground truth data were collected and analyzed, with an absolute height error of ~6 m found. Sub-
sequently, localized studies have been carried out, mostly focused on vertical error, as outlined in Table 1.
Errors stem from vegetation, (Carabajal & Harding, 2006; Hofton et al., 2006; LaLonde et al., 2010; Shortridge,
2006; Shortridge & Messina, 2011; Weydahl et al., 2007), steep relief (Falorni et al., 2005; Shortridge & Messina,
2011), an inability to resolve features in urban areas (Farr et al., 2007; Gamba et al., 2002), proximity to metallic
objects Becek (2008), speckle noise (Farr et al., 2007; Rodriguez et al., 2006), and striping caused by instrument
setup (Sampson et al., 2016; Tarekegn & Sayama, 2013; Walker et al., 2007). Error removal has tended to focus
on vegetation removal (Baugh et al.,, 2013; Loughlin et al., 2016; Su et al., 2015; Zhao et al., 2018). However,
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the recent release of the Multi-Error-Removed-Improved-Terrain (MERIT) DEM (Yamazaki et al., 2017) saw the
most comprehensive error removal from the SRTM by separating absolute bias, stripe noise, speckle noise,
and tree height bias, with significant improvements over SRTM reported particularly in flat regions. Yet, as far
as the authors are aware, only a handful of studies have quantified the spatial structure of vertical errors of
the SRTM DEM (LaLonde et al., 2010; Rodriguez et al., 2006; Shortridge, 2006; Shortridge & Messina, 2011) and
none for the MERIT DEM (Table 1).

Characterization of the MERIT/SRTM spatial error structure is interesting in its own right but crucial if
MERIT/SRTM is to be used to simulate DEMs for the purposes of flood risk assessment. With a perfect DEM, and
assuming, for simplicity, a perfect flood model, one run of the model would be required, after which each pixel
would be classified either dry (probability = 0) or wet (probability = 1). An imperfect DEM introduces a source
of uncertainty about whether a pixel is inundated and hence a range of probabilities between 0 and 1. In flood-
plains and river deltas, where topography is near flat, this uncertainty could be large, because small variations
in the DEM could lead to large changes in inundation. DEM uncertainty can be assessed in a deterministic
or stochastic way, by generating candidate DEMs that are consistent with the MERIT/SRTM DEM and its spa-
tial error structure, running the flood model over each candidate and aggregating the results. Simulating
candidates of the DEM does not create a single true DEM, where the truth refers to the true observed mea-
surement, but instead provides a bound within which the true elevation value is likely to be found. Stochastic
simulation of DEMs using the spatial error structure is a relatively well known idea in geostatistics (e.g., Fisher,
1998; Fisher & Tate, 2006; Hunter & Goodchild, 1997; Kyriakidis et al., 1999), with realizations of the DEM found
to greatly affect surface derivatives (e.g., slope; Darnell et al., 2008; Davis & Keller, 1997; Hengl et al., 2008;
Holmes et al., 2000; Oksanen & Sarjakoski, 2005; Veregin, 1997). Yet these studies have not analyzed the wealth
of global DEM data now available (i.e., SRTM). In addition, DEM simulation has only been used sparingly in
flood studies, with only Wilson and Atkinson (2005) using the approach with a hydrodynamic model. Several
others (Fereshtehpour & Karamouz, 2018; Leon et al., 2014) have used DEM simulation to estimate coastal
flood inundation using the bathtub approach, whereby pixels are inundated when their elevation is lower
than a storm surge level and the pixels are hydrologically connected.

The quality and resolution of topographic data has long been recognized as a key control on flood inunda-
tion (Horritt & Bates, 2002) and the wetting/drying of a domain (Bates, 2012; Neal et al., 2011). Despite the
recognition of the importance of topography, flood model evaluation has tended to focus on other hydraulic
parameters (Wechsler, 2007) owing to the lack of DEMs available. Studies that do evaluate the influence of
topography on model results tend to use a high-resolution DEM and resample to various coarser resolutions,
thus testing the influence of model resolution over the quality of the initial DEM (Fewtrell et al., 2011; Horritt
& Bates, 2001; Komi et al., 2017; Neal et al., 2009; Sanders, 2007; Saksena & Merwade, 2015; Savage, Bates,
etal.,, 2016; Savage, Pianosi, et al., 2016), concluding that higher resolutions generally give more accurate pre-
dictions. For most of the world, high-resolution DEMs are unavailable; thus, a global DEM must be used. SRTM
remains the most widely used topography input to flood models in areas where a high-resolution DEM does
not exist owing to better accuracy and ease of accessibility over other global DEMs (Yan et al., 2015). Rarely do
studies in such data-sparse areas compare flood extent estimates given by different global DEMs. Examples of
studies that do compare flood estimates using different global DEMs usually compare Advanced Spaceborne
Thermal Emission and Reflection Radiometer with SRTM (Bhuyian & Kalyanapu, 2018; Jarihani et al., 2015) or
more recently SRTM with MERIT (Chen et al., 2018). In areas where a global DEM is the best source of topo-
graphic information, we are limited to the small number of global DEMs available and thus are restricted in
the number of DEMs we can use. DEM simulation allows for multiple realizations of a DEM to be produced,
thus allowing modelers to produce many flood maps given the topographic error. To refine our goal to sim-
ulate DEMs for flood models, we focus our study on floodplains, specifically large river deltas, as these areas
are of most interest to flood modelers. Deltaic regions form one of the most flood prone areas in the world,
with this expected to increase in the future (Hallegatte et al., 2013; Syvitski et al., 2009).

Here we quantify the spatial error structure in the SRTM and MERIT DEMs for 20 lowland locations. Using
the fitted error covariance function, we simulate plausible versions of the MERIT and SRTM DEMs, creating
a catalog of possible DEMs. We then demonstrate the impact of using an ensemble of simulated DEMs in a
flood inundation context for two locations in Fiji and Vietnam. While the spatial error structure was calculated
for 20 locations, the effects were assessed on flood models of two locations due to data availability and the
complexity of building each flood model. In a world of increasing computer power, but a lack of detailed data
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Figure 1. Study site locations and visualization of surface error maps for An Giang Province in the Vietnamese Mekong Delta. MERIT =
Multi-Error-Removed-Improved-Terrain; LIDAR = light detection and ranging; SRTM = Shuttle Radar Topography Mission.

sets, this powerful approach can be used throughout natural hazard modeling to understand how errors in
the DEM can impact hazard assessment.

2. Methods

2.1. Data Preparation and Visualization

To calculate the errors for the SRTM DEM and MERIT DEM for floodplains, ground truth data are needed. We
use LIDAR data as ground truth data for 20 different sites distributed across the globe. In the absence of GPS
ground truth data, we use LIDAR data owing to its low vertical error (<20 cm at all sites), availability, and spatial
coverage.

Ideally, we would use LIDAR data collected at the same time as the SRTM product, but the available LIDAR was
typically collected 6-14 years after SRTM (see the supporting information for details). Using Google Earth™
and the yearly satellite images, we checked whether the land use had changed between the SRTM and LIDAR
collection period and found no significant differences over land pixels for any of the study sites. Subsidenceis a
major challenge for many of the world’s deltas (Higgins, 2016; Schmidt, 2015), with subsidence rates for some
of the study sites documented in the supporting information. Subsidence rates change the land elevation
between SRTM and LIDAR collection dates but were ignored in this study as they fall well within the vertical
error of SRTM.

The next stage is to calculate the arithmetic mean of the LIDAR values that fall within each MERIT/SRTM pixel
to determine the vertical error. We make the assumption that each MERIT/SRTM pixel is the integration of
its interior topography so we use the arithmetic mean of LIDAR elevation values. This overcomes problems
associated with using the elevation of grid cell centers to represent elevation as this often does not accurately
represent the hydrography of floodplains (Moretti & Orlandini, 2018). We use the least manipulated SRTM
(3-arc sec SRTM v1 nonvoid) product (Farr et al., 2007) and the MERIT DEM (Yamazaki et al., 2017) as both are
the same resolution and use the same grid. Analysis was performed using the raster package of Hijmans et al.
(2016) in the statistical computing environment R (R Core Team, 2017). In total, we analyzed over 5,100 km?
of floodplains or an area approximately the size of the U.S. state of Delaware.
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We produced surface error maps of MERIT-LIDAR and SRTM-LIDAR with an example from the Mekong Delta
shown in Figure 1. Such maps are useful in allowing us to visualize the spatial location of the errors and com-
pare these to satellite imagery and land cover maps to assess the possible causes. Additional surface error
maps for the other study sites are available in the supporting information. Gray pixels indicate areas where
either MERIT/SRTM or LIDAR pixels are missing or are water bodies. The water body mask was delineated using
the Global Water Surface water occurrence map (Pekel et al., 2016). A water occurrence threshold of 90% was
used based on trial and error, with such pixels not contributing to the estimation of the MERIT/SRTM-LIDAR
spatial error structure.

2.2. Estimating the Variogram

For each study site, we fit a semivariogram to the difference map (i.e,, SRTM/MERIT-LIDAR), using those pix-
els not excluded by missing values or by the water body mask (see section 2.1). We assume stationarity and
isotropy, with these assumptions based on directional semivariograms and semivariogram maps (example in
the supporting information). Geostatistical analysis are implemented using gstat in R (Pebesma, 2004).

If s and s’ are the vectors of spatial coordinates and X is value of SRTM/MERIT(s)-LIDARC(s) (in other words the
vertical error), then the semivariogram (y(h)) is defined as

y(h) = %IE [(X(s) = X(H1?].  where|ls—s'|| = h, )

where h (or the lag is measured in decimal degrees. As this study intends to use the semivariograms to
simulate other places, we need to fit the semivariograms. There is no best semivariogram model to fit semi-
variograms, so one must be careful to choose a model that captures the main spatial features avoiding over
fitting (Goovaerts, 1997). Inspection of the empirical semivariograms suggested that a double-exponential
shape would capture the main spatial features. Therefore, the chosen model to fit the semivariograms has the
parametric form

r(h) = o} {1 —exp(=h/a,)} + o3 {1 — exp(—h/a,)]}. 2

where (a,, a,) represent the range, 012 the near component fitted with an exponential model, and af the far
component again fitted with an exponential model. To fit equation (2), we proceeded in two stages. First, we
fitted an exponential semivariogram using only pixels within 0.005 decimal degrees (~500 m) of each other
(i.e., the near component). This gives an estimate of the near range parameter, a,. Then we fitted the sum of
two exponential semivariograms with specified ranges a, and a, = 10 a, to pixels within 0.01° (~1,000 m) of
each other (i.e., the far component). From this we can calculate the sill and range values. The sill refers to the
semivariance value at which the semivariogram levels off and is the marginal standard deviation. The range
is the distance at which the semivariogram effectively reaches the sill value. The cutoff values were chosen
based upon visual inspection of the resultant semivariograms and fall within the values previously calculated
by Rodriguez et al. (2006), Shortridge (2006), LaLonde et al. (2010), and Shortridge and Messina (2011) in their
empirical semivariograms.

2.3. DEM Simulation
Here we outline the theory that allows us to use the MERIT or SRTM data sets and a specified semivariogram
of MERIT/SRTM-LIDAR to simulate candidate true DEMs for the purposes of risk assessment.

Ideally, we would construct a statistical model covering both the true DEM and observations on the true
DEM. Typically, this model might be a multivariate Gaussian distribution, in which the observations might
be a subset of the true DEM plus noise, where the noise is probabilistically independent of the true DEM.
Then we would condition the true DEM on the observations and use samples from the conditional (or poste-
rior) distribution of the true DEM as candidates in a simulation-based approach to computing the inundation
probabilities for each pixel of the hazard map.

Specifying the full covariance structure over both the true DEM and the observations is demanding. Under
some conditions, it also turns out to be unnecessary. These conditions are described in Rougier and
Zammit-Mangion (2016; Theorem 3). In essence, the prior variance matrix of the true DEM has to be far larger
than the error variance matrix of the observations. In this case, if there is an observation for every pixel, then
the posterior expectation of the true DEM is approximately equal to the observations, and the posterior vari-
ance matrix of the true DEM is approximately equal to the measurement error variance (i.e., it inherits the
spatial structure of the error). This plug-in approach is very intuitive and quite widely used, so it is reassuring
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to know that it is approximately correct under an acceptable assumption about a large prior uncertainty. Of
course, the reverse of this assumption is that one can reduce posterior uncertainty much further with a smaller
prior uncertainty for the true DEM, but only at the cost of quantifying the prior uncertainty in terms of a prior
variance matrix.

An alternative method to the geostatistical approach that we use to estimate the spatial dependence structure
is to use copula functions. Copula functions allow for a relaxation of the assumption of Gaussian dependence
and can overcome deficiencies in geostatistical procedures where quality is a function of observation density
and the semivariogram model. Studies have outlined copula-based methods to predict groundwater quality
parameters (Bardossy & Li, 2008), hydraulic conductivity (Haslauer et al., 2012), and soil properties (Marchant
et al.,, 2011), which then can be stochastically simulated. As far as the authors are aware a copula-based
method has not been applied for DEM simulation.

We can implement this plug-in approach by using either the MERIT DEM or SRTM DEM as the observations
and simulating candidate DEMs by adding simulations from the semivariogram of MERIT-LIDAR, where we
are treating the LIDAR observations as true.

2.4. Flood Inundation

Now we can simulate candidates of the true DEM; we can run flood models using multiple DEMs, thus allow-
ing us to explore the impact topographic uncertainty has on inundation extent. To do this, we built two flood
inundation models using LISFLOOD-FP version 6 (Neal et al., 2012). One model covered a section of An Giang
Province in the Vietnamese Mekong Delta and the other a 15-km reach of the Ba catchment in Fiji. The An
Giang model uses hydrographs from Chau Doc and Vam Nao gauging stations as the upstream boundary
condition, while the downstream boundary is set as the water level height from the Long Xuyen gauge, with
all these records available from the Mekong River Commission (MRC). We chose to simulate the year 2001.
This particular year was selected for several reasons. First, the flood was severe with estimated damages at
over USD 200 million and approximately 300,000 homes damaged in the Viethamese Mekong Delta (Chinh
etal, 2016). While the return period of the 2001 flood is unknown, Le et al. (2007) estimated that the moder-
ately larger flood in 2000 had a return period of 20 years. Second, after the floods of 2000 and 2001, and with
the shift from low dikes (0—-2 m) to high dikes (>3.5 m) to facilitate triple rice cropping (Kontgis et al., 2015),
extensive flood prevention structures have been built in An Giang. The expansion of paddies protected from
high dikes in An Giang has risen from <10,000 ha in 2000 to >140,000 in 2011 (Duc Tran et al., 2018), with
these structures being recognized as being important in protecting against damaging floods (Chapman et al.,
2016). Considering that SRTM was acquired in 2000, the flood prevention structures have changed the topog-
raphy represented in SRTM, with flood studies analyzing later periods needing to update dike information
(DucTran et al., 2018; Dung et al., 2011; Triet et al., 2017). Even though the 2011 flood was hydrologically simi-
lar to that of the 2000 flood, 71% of An Giang was flooded in 2000 compared to 30% in 2011 (Dang et al., 2016;
Mekong River Commission, 2011), with flood prevention structures found to be the main cause of hydrologi-
cal alterations (Dang et al., 2016). Third, we were restricted by the availability of gauge data. Geometry data for
the channels were gathered from the Global Width Database for Large Rivers (GWD-LR) river width database
(Yamazaki et al., 2014) and bathymetry from a 2008 survey conducted by the MRC with cross sections approx-
imately every 250 m. The channel was assumed to have a rectangular shape, with bathymetry values assigned
by interpolating the cross sections. Manning’s friction parameters (Chow, 1959) were set as 0.03 for the chan-
nel and 0.05 for the floodplain, which are both realistic and performed well in a larger Mekong flood model
built with LISFLOOD-FP.

For the Ba model,we estimated a 50-year hydrograph using the regional flood frequency analysis approach
of Smith et al. (2015), utilizing meteorological data from the Fiji Meteorological Office. The downstream water
level boundary condition at the coast was set at 0 m, even though this value is highly uncertain as heavy rain-
fall is likely to occur at the same time as a storm surge to compound flooding (Wahl et al., 2015; Zscheischler et
al., 2018). As the domain size of the Ba reach model is comparatively small, the river width was estimated from
Google Earth™ imagery. The river depth was estimated such that the river conveyed the 1- in 2-year return
period before going out of bank. While this bankfull discharge value varies considerably around the world, a
return period of 2 years is a generally accepted average value (Pickup & Warner, 1976; Williams, 1978), with a
return period of 2 years being found in similar rivers in Fiji (Terry, 2007; Terry et al., 2002). Finally, Manning’s
friction parameters were set as 0.035 for the channel and 0.04 for the floodplain based on typical values for
agricultural floodplains.
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Figure 2. Semivariograms for each study site for the difference between MERIT-LIDAR and SRTM-LIDAR. The sill is the
marginal standard deviation, in meters, and the range is the distance, in meters, at which the correlation between two
points drops to 0.05. Note that Roanoke and Savannah (bottom) have a different y axis, as for these locations the SRTM
semivariograms have a significantly larger sill value. SRTM = Shuttle Radar Topography Mission; MERIT =
Multi-Error-Removed-Improved-Terrain; LIDAR = light detection and ranging.

For each location, we built four models—one at 90-m resolution using the SRTM DEM, another at 90-m res-
olution using the MERIT DEM, a further 90-m version using resampled LIDAR, and a final 30-m resolution
model built using LIDAR data to act as a benchmark model. These four models are the deterministic models
used in our analysis. We make the assumption that the LIDAR based model will make the best flood simu-
lation as it is based on the most accurate topographic data, so is deemed a benchmark. In the absence of
validation data, we further assume that this benchmark model is the closest to the true situation. A 30-m res-
olution was chosen for the LIDAR model based on available computational resources. Next we used the SRTM
and MERIT models and replaced the DEMs with simulated DEMs, consequently forming our DEM ensembles.
Three sets of DEM ensemble models were built—one by simulating the MERIT DEM using an average MERIT
semivariogram, another by simulating the MERIT DEM by MERIT land cover semivariograms, and a final by
simulating the SRTM DEM by SRTM land cover semivariograms. In this case an average semivariogram refers
to the average semivariogram parameters across all 20 locations or in other words a representative flood-
plain semivariogram. For the An Giang model, each DEM ensemble contained 200 DEMs, and for the Ba model
each ensemble contained 500 DEMs. All other flood model parameters were kept the same, thus allowing
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Figure 3. Burdekin semivariograms by land cover. SRTM = Shuttle Radar Topography Mission; MERIT =
Multi-Error-Removed-Improved-Terrain.

us to determine how topography alone impacts the simulated inundation extent. The maximum inundation
extent for the model runs using the simulated DEMs was converted to a binary wet/dry map. Subsequently,
these maps were merged together to create an inundation probability map, whereby (based on the simu-
lated DEMs), we can delineate pixels we are most confident would flood. In this case, inundation probability
refers to the percentage of occasions when a particular pixel is inundated, so in a deterministic model this is
either 0% or 100%, while for the DEM ensembles the probability can take any value between this range. We
checked that the number of simulations were adequate for the probability to converge by taking a subset of
simulated DEMs and producing inundation probability maps.

3. Results and Discussion

In this section we present and discuss results of the three components of our analysis: semivariograms,
DEM simulation, and flood inundation. As each component builds on the previous we decide to present our
findings in this particular way.

3.1. Semivariograms

First, we plot the empirical and fitted semivariograms for each study site (Figure 2). Our fitting procedure is
appropriate as the fitted semivariograms align well with the empirical results. The excellent fit of the semi-
variograms further justifies our choice to not use copula functions as the spatial error structure is effectively
estimated by our choice of semivariogram model. Broadly speaking, all locations have similar semivariograms
for the MERIT DEM, with these often having considerably different semivariogram parameter values than the
SRTM equivalents (Figure 2). For example, the sill values for the MERIT DEM are markedly lower at the Mekong,
Roanoke, and Savannah sites. Across all study sites, the MERIT DEM has lower sill values (0.7-2.2 m) compared
to SRTM (1.0-4.8 m) and larger range values as well (308-4,364 m compared to 298-1,931 m). A detailed
table of fitted semivariogram parameter values can be found in the supporting information. Lower sill values
mean that the DEM is more accurate, and a larger range means that the error is more spatially dependent.

As all sites are floodplains with a similar topography, differences in semivariogram parameters are likely
to come from another source. As noted earlier, vegetation has a large influence on DEM error; thus, we
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Figure 4. Simulation by land cover. (a) land cover map of Ba, Fiji, using the CCl data. (b) Semivariograms by land cover for Ba, Fiji. (c) DEM of Ba, Fiji, separated by
land cover class. (d) Workflow for DEM simulation by land cover. SRTM = Shuttle Radar Topography Mission; MERIT = Multi-Error-Removed-Improved-Terrain; DEM
= digital elevation model.

produce semivariograms by land cover class. We take land cover class data from the Climate Change Insti-
tute (CCl) land cover data set (http://maps.elie.ucl.ac.be/CCl/viewer/). The CCl land cover data set has annual
records from 1992 to 2015, with our analysis using records from 2000 as this was the year of SRTM acquisition.
In total, there are 38 land cover class and subclasses. To calculate the semivariograms, we first resampled the
CCl land cover data set from its 300-m resolution to the resolution of the MERIT DEM. Therefore, each MERIT
pixel had an associated land cover class. We then selected land cover classes with over 600 pixels to produce
semivariograms that fitted well, with this threshold chosen by trial and error. Here we plot results for the Bur-
dekin site as for this location there are several land cover types with a sufficient number of pixels for analysis
(Figure 3). Semivariogram parameters values for all 20 land cover types found for sites in this study can be
found in the supporting information.

Comparing the surface error map with satellite imagery suggests that the areas of largest error for the Bur-
dekin are vegetated with mangroves. The semivariograms in Figure 3 corroborate this theory with mangroves
having the largest semivariance. Evergreen tree cover also has a large error, followed by the categories of
shrubland. Irrigated cropland has the lowest error, suggesting that land cover with lower vegetation heights
has less error. Furthermore, embankments tend to have larger errors as evidenced in our surface error maps.
Therefore, we can deduce that the similarity between semivariograms is influenced by the land cover class,
with land cover classes with higher vegetation heights having a greater influence. Despite some vegeta-
tion removal in the MERIT DEM, vegetation artifacts remain a key source of error but are a considerable
improvement on the SRTM product.

HAWKER ET AL.


http://maps.elie.ucl.ac.be/CCI/viewer/

Water Resources Research 10.1029/2018WR023279

C)

d)

11°N

] @ Upstream

An Giang Province b)12 Generated DEM Profiles

Study
Area

Boundary
Downstream

Boundary

Height (m)

el - - - Cross-Section 0

(See b)) 0 2 6 10 14 18

1048°E  105E  1052°E  1054°E  105.6°E Cross Section Distance (km)
LIDAR 30m LIDAR 90m MERIT SRTM
100 100 100 100
Inundation Probability %
LIDAR Extent MERIT Landcover MERIT Average SRTM Landcover

0 50 100150200 0 20 40 60 80100 0O 20 40 60 80100 0O 20 40 60 80100

LIDAR elevation (m) Inundation Probability %

B MERIT/SRTM | Residential

Figure 5. Flood Inundation study for a selected area of An Giang Province, Vietnam. (a) Study site location. (b) A cross-sectional profile through the study site
showing elevation of the MERIT DEM (black line) and elevations of 10 randomly selected simulated DEMs (colored lines). (c) Maximum inundation extent for
cases when a single DEM is used (MERIT, SRTM, and LIDAR at 30 and 90 m). (d) Maximum inundation extent for DEM ensembles simulated by land cover (MERIT
and SRTM) and by an average semivariogram (MERIT). DEM = digital elevation model; MERIT = Multi-Error-Removed-Improved-Terrain; LIDAR = light detection
and ranging; SRTM = Shuttle Radar Topography Mission.

3.2. DEM Simulation

Based on our calculated semivariograms, we can simulate plausible ensembles of the MERIT and SRTM DEMs,
thus allowing modelers to move beyond using a single DEM to using a catalog of DEMs. In our initial analysis,
we have calculated semivariograms for 20 locations to estimate an average floodplain semivariogram for both
the MERIT and SRTM DEMs. With the number of locations, we also estimated semivariograms by land cover
type, resulting in 20 out of the 38 land cover classes and subclasses of the CCl data set having estimated
semivariograms. The exact land cover classes covered are outlined in the supporting information. These land
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Figure 6. Maximum flood extents for a 50-year return period event for Ba, Fiji. Red Lines show roads and the orange polygons residential areas, both extracted
from the OpenStreetMap™ database. Areas of interest highlighted by white dashed boxes in the LIDAR model. Extent of LIDAR is marked in the LIDAR extent map
in green. Gray background is where MERIT/SRTM is present. LIDAR = light detection and ranging; SRTM = Shuttle Radar Topography Mission; MERIT =
Multi-Error-Removed-Improved-Terrain.

cover semivariogram estimates allows us to simulate DEMs by land cover class with the workflow outlined
in Figure 4. For one to simulate by land cover class they first need to extract DEM pixels by land cover class,
then apply the associated land cover semivariograms to those pixels and repeat for the number of land cover
classes. When a land cover class does not have a semivariogram, we revert to the average semivariogram.
This approach makes our method more relatable to other locations, with these semivariograms available for
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Table 2
Flood Mdel Skill Scores for Both An Giang and Ba
DEM csl Hit rate Miss rate False alarm
An Giang
LIDAR 90 m 0.36 0.97 0.03 0.22
MERIT 0.26 0.55 0.45 0.15
SRTM 0.24 0.27 0.73 0.02
MERIT land cover 0.11-0.44 0.20-0.75 0.26-0.80 0.00-0.54
MERIT average 0.19-0.39 0.20-0.58 0.42-0.79 0.00-0.27
SRTM land cover 0.12-0.36 0.21-0.54 0.46-0.79 0.00-0.26
Ba
LIDAR 90 m 0.90 0.92 0.08 0.07
MERIT 0.77 0.78 0.22 0.04
SRTM 0.58 0.60 0.41 0.06
MERIT land cover 0.60-0.87 0.61-0.91 0.09-0.39 0.03-0.12
MERIT average 0.59-0.87 0.60-0.95 0.05-0.40 0.03-0.40
SRTM land cover 0.46-0.55 0.47-0.57 0.43-0.53 0.04-0.09

Note. Skill scores assessed include critical success index, hit rate, miss rate,
and false alarm rate. When a DEM ensemble is used, a range of the score is
given. DEM = digital elevation model; LIDAR = light detection and ranging;
MERIT = Multi-Error-Removed-Improved-Terrain; SRTM = Shuttle Radar Topography
Mission.

both MERIT and SRTM. We simulate reasonable versions of the DEM as highlighted by the cross-sectional
profiles in Figure 5, but one should always inspect the simulated DEMs to gauge whether these estimations
are reasonable. Finally, one should only use these semivariograms on floodplain locations as we have not
tested on terrain with steep relief so cannot be confident with the relationships.

3.3. Flood Inundation

The simulated DEMs are subsequently used in flood models for two locations— An Giang and Ba. (Figures 5
and 6). We use these two sites to demonstrate the impact of topographic uncertainty on flood predictions
for two reasons. First, we believe they represent end members of floodplains, as the Ba floodplain is small
and constrained within a valley, whereas the An Giang floodplain is large and is not constrained by valley
sides. Furthermore, we were restricted by the data availability (e.g., flow data) to build the flood models. DEM
ensembles are simulated for the MERIT and SRTM using the average floodplain semivariograms and semivari-
ograms disaggregated by land cover as discussed in section 3.2. By using an ensemble of simulated DEMs we
can produce flood inundation probability maps, whereby the inundation probability refers to the number of
ensemble members in which the pixel in question is flooded. For example, if a pixel was flooded in 300 DEMs
in an ensemble of 500 DEMs then the inundation probability would be 60%.

First, we evaluate the flood models by calculating four commonly used skill scores: critical success index (CSI),
hit rate, miss rate, and false alarm rate (Horritt & Bates, 2001; Sampson et al., 2015; Stephens et al., 2014;
Table 2). The CSI measures the fraction of correctly predicted events, penalizing for both misses and false
alarms. This is an adjustment of the proportion correct score for the quantity being forecast (Wilks, 2011). CSI
scores range from 0 indicating no skill to 1, which is a perfect score. The hit rate is the rate of correctly pre-
dicted inundated pixels. Conversely, the miss rate measures pixels that are not predicted in the model but are
flooded in the observations (i.e,, model underprediction). The false alarm rate refers to incidences where the
model predicts flooding, but the observed floodplain state is dry (i.e., model overprediction). In this analysis,
the LIDAR model at 30 m was assumed to be the observation. To allow for direct comparison to the 90-m res-
olution that the other models were run at, the 30-m data were resampled using bilinear interpolation. The
LIDAR model at 90 m had the best performance for both sites. However, the LIDAR model at 90 m for An Giang
had only a marginally better CSI score than the MERIT and SRTM models, with this primarily due to a rela-
tively high false alarm rate. Out of the global DEMs, MERIT performs better than SRTM. It is noticeable that
there is a marked difference in performance of the two flood models, with An Giang model performing poorly
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(maximum CSI of 0.36) and the Ba model performing very well (maximum CSI of 0.90). This goes to highlight
the difficulty in modeling small-magnitude events in areas where the floodplain is not constrained (An Giang).

In Table 2 we give the range of skill scores for each member of the DEM ensembles. We can conclude that
using DEM ensembles of simulated DEMs improves model performance as it allows for the bounds of error
in the DEM to be explored. Skill scores can vary considerably. For example, the CSl in Ba is 0.77 for the MERIT
model, 0.58 for SRTM, and ranges from 0.60 to 0.87 for the DEM ensemble of MERIT simulated using land cover
semivariograms. The hit rate and miss rate have particularly large ranges for DEM ensembles using MERIT com-
pared to the ensemble using SRTM simulated by land cover semivariograms. We deduce that this is likely to
be a feature of the DEM simulation process that is making the generated DEMs more noisy. From the semivari-
ograms presented earlier (Figure 2), we know that SRTM is noisier than MERIT as indicated by the shorter-range
values. A noisier DEM indicates that the neighboring pixels are more different, thus making flow, or connec-
tivity, more unlikely. We suggest that the noisiness (lack of connectivity) results in the SRTM underpredicting
flooding at both test sites (Figures 5 and 6). So by simulating the MERIT DEM we can unintentionally make
the DEM noisier, thus reducing connectivity and thus flooding. Conversely, the DEM simulation process can
correct some of the key pixels that control connectivity and thus the inundation extent.

To further understand the flood inundation results, we visualize the flood inundation maps in Figures 5 and 6.
The simulations using an ensemble of DEMs bracket the predicted extent of the benchmark LIDAR model and
deterministic MERIT and SRTM models, with the MERIT simulation being closer to the benchmark for both case
studies. Areas of higher inundation probability are generally closer to that of the benchmark LIDAR model. For
the An Giang case study, the ensemble of simulated DEMs activates floodplain flow pathways that are present
in the higher-resolution LIDAR data but are not in MERIT/SRTM. These flow pathways are switched on/off by
using an ensemble of DEMs, with inundation extent varying significantly. The large variation in inundation
extent is also a result of the unconfined floodplain environment of the delta meaning it is difficult to limit the
flood. In the MERIT land cover DEM ensemble, the higher inundation probabilities (light blue) more closely
align with the LIDAR benchmark model, even though there is still some overprediction in the middle of the
domain similar to the deterministic MERIT model (Figure 5). Nevertheless, the DEM ensemble models do cap-
ture the flooding in the top right of the domain, which is not present in the deterministic MERIT model. For the
Ba case study, the variation in inundation extent is more constrained with a larger area with higher inundation
probability. This is due to the confined river valley setting meaning the large flood fills the valley floor.

In Figure 6 we explore what impact the differing estimated inundation extents can have on exposed assets
by adding in roads and residential areas from the OpenStreetMap™ (https://planet.openstreetmap.org)
database. We choose to include asset data so when we compare model results we can determine what
the actual impacts might be. This adds a qualitative component to the more traditional skill score metrics.
Research into the presentation of flood hazard maps is extensive and outside the scope of this study, so
we encourage interested readers to consult the literature (Alfonso et al.,, 2016; Di Baldassarre et al., 2010;
Hagemeier-Klose & Wagner, 2009; Meyer et al., 2012). We can see that some assets are inundated (highlighted
by white dashed boxes in Figure 6) in the LIDAR models but are not in the MERIT and SRTM models. In this
situation, we have the luxury of a high-resolution benchmark model, but in most data-sparse areas a deci-
sion maker would be presented with either the deterministic MERIT or SRTM simulations, thereby missing
some at-risk assets in this case. By using a DEM ensemble, these assets that have been missed have a rela-
tively high inundation probability (~50-70%). Thus, if you presented these maps to a decision maker, they
would be at least aware that these assets may in fact be at risk and could allocate resources as they see fit.
In other words, by using an ensemble of DEMs we get closer to the true situation (with the assumption that
the benchmark model is the true flood) and avoid the spurious precision in flood estimates from using a sin-
gle DEM and allowing risk assessors to identify pivotal locations where (often) limited resources can be used
most effectively.

To determine which DEM simulation method is most effective at estimating inundation extent, we produce
density plots for both An Giang and Ba (Figure 7). This plot type was chosen over a more conventional his-
togram as it normalizes the difference in inundated area, which is particularly apparent in the An Giang
example. In this analysis we make the assumption that the LIDAR 30-m benchmark model is the true flood
situation in the absence of any flood observation data. Pixels in the LIDAR model are compared to their coun-
terparts in the DEM ensemble for each DEM simulation approach. Pixels are binned into two categories: (1)
correctly predicted (blue) when both pixels are inundated and (2) incorrectly predicted (red) when pixel in
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either the LIDAR or DEM ensemble model is not inundated. The corresponding inundation probability for the
pixel in question is then plotted against the density of observations. This allows us to visualize the distribution
of inundation probability for correctly and incorrectly predicted pixels. The dashed lines show the mean of
this distribution. We can see that the DEM ensemble simulated using the MERIT DEM and using the fitted land
cover semivariograms give the inundation extent closest to that of the LIDAR (indicated by blue dashed line).
This is less apparent for Ba as the mean inundation probability value is just 0.3% more than the DEM ensemble
of MERIT using the average floodplain semivariogram. The difference in the distributions in Figure 7 not only
highlights the challenge of flood inundation estimation in unconstrained floodplains such as for the An Giang
case but also indicates that we cannot take a probability threshold value to delineate pixels that we can be
confident will flood. In other words, this distribution is location dependent. For a floodplain environment like
the Ba case study, our DEM simulation approach is more effective as the variation in topography simulated
in the DEM ensemble has less impact than an environment like An Giang. Lastly, the MERIT DEM simulation
consistently predicts inundation closer to the LIDAR model, so we would recommend using the MERIT DEM
simulated using land cover semivariograms.

In this analysis we have deliberately chosen to change just the topography information so we can assess the
impact of topographic error on flood estimates. While it is beneficial to incorporate uncertainty analysis from
flow uncertainty to more sophisticated approaches such as compound flooding (Moftakhari et al., 2017; Wahl
etal,, 2015; Zscheischler et al., 2018) or event generation (Keef et al., 2013; Neal et al,, 2013), it would create an
unworkable parameter space, thus making it challenging to draw robust conclusions. Yet we would encourage
others to utilize such approaches and for others to investigate the contribution of topography against other
parameters in flood models.

As effective computing power continues to grow, it is increasingly possible to run multiple flood models to test
sensitivity to parameters. These have almost exclusively focused on hydraulic parameters, with topography
largely ignored due to the lack of alternative data sets. We have demonstrated that topographic uncertainty
has a large impact on inundation extent and should therefore be included in any flood hazard estimation.
These results suggest that simulating DEMs by land cover semivariograms is most appropriate.

In theory, one could take the semivariograms produced in this study to simulate floodplain MERIT or SRTM
DEM s for any location where the MERIT and SRTM data sets exist. While possible, and made available through
the R Package accompanying this work, we are reluctant to state that the relationships found in this work can
be applied globally. Yet in the absence of being able to quantify the spatial error structure for every floodplain
location (which remember would need an accurate high-resolution DEM, LIDAR) and given the similarity of the
semivariograms produced here, we cautiously suggest that the semivariograms here can be used to simulate
DEM ensembiles, especially when land cover is considered.

4. Limitations and Future Work

The method presented here is intended to give flood modelers primarily working in data-sparse areas a quick
and efficient method to simulate plausible DEMs from the MERIT and SRTM DEM:s. Ultimately, these simulated
DEMs are not necessarily a better version of MERIT/SRTM but are a realization of these products. One should
consider that the MERIT and SRTM were acquired in 2000 and have numerous errors so when choosing to use
MERIT or SRTM a modeler should ask themselves whether these DEMs are good enough for the need of their
study. If the answer is a no, but higher-quality data are unavailable or if the model resolution is prohibitive for
available computing power, our approach can at least get closer to the truth and avoid the spurious precision
of just using a single DEM. One should also consider that modeling at a higher-resolution costs substantially
more computing power, with Savage, Bates, et al. (2016) finding that halving hydraulic model resolution leads
to a 10 times increase in compute costs. Thus, even if a higher-resolution DEM is available, it may be worth
modeling at a coarser resolution to explore the sensitivity of not only the DEM but to other model parameters,
similar to the approach advocated by Savage, Pianosi, et al. (2016). While currently our work is focused on
MERIT and SRTM, we intend to expand this analysis to the Advanced Land Observing Satellite AW3D30 DEM
and when released the NASADEM. As outlined in section 2.3 our approach could be made more complex,
but we intend our work to be as accessible as possible. When using the R Package DEMsimulation created
from this work, one should remember that several of the land cover semivariograms only contain a single
semivariogram (detailed in the supporting information) so our estimated spatial error structures for these are
highly uncertain.
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5. Conclusions

This study presents a method to simulate plausible DEMs from the MERIT and SRTM DEMs. We calculated
the spatial error structure and fit semivariograms for both MERIT and SRTM by assessing against a reference
data set (LIDAR) for 20 lowland locations. We found that the MERIT is consistently more accurate than SRTM
(semivariogram sill values of 0.7-2.2 m compared to 1.0-4.8m), with the errors in MERIT being more spatially
dependent as indicated by larger range values (308-4,364 m) compared to SRTM (298-1,931 m). Further
semivariograms were produced by land cover type, showing that the spatial error structure differs by land
cover, with tree-covered areas having the largest errors. These fitted semivariograms are then used to simu-
late candidates of the MERIT and SRTM DEM, which are in turn run through a flood model to assess the impact
of topographic uncertainty on the hazard. We show that using multiple plausible DEMs avoids the spurious
precision in prediction given by deterministic models, with higher probabilities of inundation closer to that
of the truth model. By using ensembles of simulated DEMs we improved the skill of the flood predictions,
with an increase in CSI of 0.44 from 0.26 for An Giang and 0.87 from 0.77 for Ba when we consider global
DEMs. This is due to DEM simulation being able to explore the bounds of error in the DEM that enables the
true connectivity of the floodplain to be approximated. Simulating the MERIT DEM by land cover class con-
sistently gives inundation estimates closest to that of the true situation (with the assumption that the LIDAR
30-m model is the benchmark); thus, we recommend using a DEM ensemble simulated using this technique.
We further find that the distribution of inundation probability can vary considerably between floodplain loca-
tions, so one should not take a probability threshold to determine what pixels will flood. This work makes it
possible to use more than a single DEM for any floodplain location as we can now simulate plausible versions
of MERIT or SRTM using either a representative floodplain spatial error structure or by a global land cover
map. This represents a significant shift in modeling efforts where the lack of data has restricted our attempt
to understand the impact of topographic uncertainty. Future work will include adding more semivariograms
and assessing the sensitivity of topography compared to other parameters in flood models. The flexibility of
this approach means this method can be used once new DEMs are released, as this technique needs only a
DEM and a reference truth data set. The code to simulate DEMs is freely available for research and education
purposes (https://github.com/laurencehawker/DEMsimulation).
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