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S1 Coherence between seismometer recordings in active source
experiments
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Figure S1: Magnitude of the coherence between the inner and outer tripod-mounted seismometers
for the experiments described in Section 5.1 of the main manuscript (and in Figure 7). The
coherence is very high at high frequencies, and drops significantly only at the lowest frequencies.
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Figure S2: Magnitude of the coherence between the tripod-mounted seismometer and buried
seismometer for the spring-source experiments described in Section 5.2 of the main manuscript
(and in Figure 10). The coherence behaviour is similar to that in Figure S1.
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S2 Noise response
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Figure S3: Amplitude of vertical displacement of the tripod-mounted seismometer driven by
ambient noise, normalised by the displacement of a seismometer buried directly underneath the
tripod. This figure corresponds to the ambient noise experiments described in Section 5.2 of the
main manuscript (and in Figure 9).

S3 Finite element modelling
We use the finite-element software FEniCS (Logg et al., 2012; Alnæs et al., 2015) to model
the elastic deformation of a regolith with a Young’s modulus profile of the form:

E = A

(
b+ z

rf

)k

(1)

A = Er

(
ρgrf

σr

)k

(2)

b = σc0
ρgrf

(3)

The variational form of the elasticity problem (neglecting the body forces due to grav-
ity) is: ∫

V
σ(u) : ε(v)dV =

∫
∂V

T · vdS (4)

In this example, we set T = 0. The center of the foot is located at the top/front/left
corner of the domain. A no-slip condition is applied to the bottom boundary of the domain,
while the front and left faces are constrained to have zero-velocity perpendicular to their
faces to satisfy the symmetry of the problem. The part of the top face in contact with
the foot is allowed to slip freely, as per the boundary conditions in Sneddon (1946). The
other boundaries are allowed to deform freely.

The domain is chosen to be a square prism with edge length 128 times the radius of
the foot, and depth 256 times the radius of the foot. Initially, there are 16 and 32 cells in
the horizontal and vertical directions. Cells within 128 foot-radii of the center of the foot
are then refined (splitting each cell into 8), and then progressive further refinement steps
are performed for cells within 64, 32, 16, 8, 4 and 2 foot radii.
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