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Abstract 

Determining the product velocities offers one of the most direct and penetrating experimental 

probes of the dynamics of gas phase molecular photodissociation and bimolecular collision 

processes, and provides an obvious point of contact with theoretical molecular dynamics 

simulations, potential energy surfaces, and non-adiabatic couplings between such surfaces. 

This Perspective traces the development of the H Rydberg atom translational spectroscopy 

technique from a serendipitous first encounter through to the present, highlights the advances 

that make it the method of choice for studying many benchmark photofragmentation and 

photoinduced collision processes that yield H (or D) atoms amongst the products, and 

anticipates some future opportunities afforded by the technique.     
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Introduction 

A recent Perspective 1 prefacing a special issue devoted to advanced particle imaging 

highlighted the ever growing impact of velocity map imaging methods 2 in improving our 

knowledge and understanding of the dynamics of gas phase chemical reactions. It also reminds 

us of the important but unpredictable ways in which scientific advances can be stimulated by 

chance encounters between individuals with complementary interests and expertise. The 

concept of ion imaging as a way of obtaining correlated quantum state specific information 

about products formed in a molecular photodissociation process emerged from conversations 

between Dave Chandler and Paul Houston at Faraday Discussion 82 in Bristol in 1986. The 

first demonstration of the technique was reported the following year.3 

One of the present authors also contributed to a paper presented at that Discussion.4 The 

paper reported the first demonstration of another photofragment translational spectroscopy 

(PTS) method, which has also had a major impact within the reaction dynamics community. 

The birth of this method can be traced to a similarly serendipitous encounter, between Karl 

Welge and Mike Ashfold on a bus returning delegates from the 1984 Gordon Research 

Conference (GRC) on Multiphoton Processes to Logan Airport in Boston. Welge was already 

internationally renowned for his development and application of tuneable vacuum ultraviolet 

(VUV) light sources in several areas of fundamental chemical physics. Ashfold, in contrast, 

was just starting out. This was his first GRC, at which he presented detailed new insights into 

the predissociation mechanisms of gas phase water molecules gleaned from analysing and 

simulating resonance enhanced multiphoton ionization (REMPI) spectra of both H2O and 

D2O. 5  The electronic absorption of water lies in the VUV spectral region, and the 

predissociating states studied in the REMPI experiments lie at excitation energies ~10 eV.  

Hard though it may now be to believe, the predissociation products were at that time still 

unclear. Electronically excited OH(A) photofragments had been identified following 

photoexcitation at such energies.6 Analysis of their spontaneous fluorescence showed that these 

fragments were formed with high levels of rotational excitation, but quantum yield estimates 7 

suggested that they amounted to no more than 10% of the total dissociation yield. Theory 

suggested that O–H bond fission leading to ground state OH(X) products must be the main 

fragmentation pathway, but all attempts to detect such products up to that time had been 

unsuccessful. The conversation on the bus suggested a new way of settling this issue, and 

Ashfold spent the following summer as a visitor in Welge’s group at Universität Bielefeld 

helping to implement the idea. 
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The early days of H atom photofragment translational spectroscopy. 

As with the then existing PTS methods,8 the new variant recorded field-free time-of-flight 

(TOF) spectra of photofragments (H atoms in this case) formed by pulsed laser photolysis of 

the hydride molecule of interest (RH) seeded in a molecular beam, i.e. 

RH + hphot → H + R(E, v, N) ,      (1) 

where hphot is the energy of the photolysis photon. The measured H atom TOF spectra were 

then transformed using energy and momentum conservation arguments to yield a spectrum of 

the total kinetic energy release (TKER) of the H + R fragments from which the energy disposal 

in the electronic (E), vibrational (v) and sometimes even the rotational (N) quantum states of 

the partner fragment (R) can be deduced, as well as the parent bond dissociation energy 

BDE0(R–H). The novel feature was the method of detecting the H atom products, which were 

ionized at their point of creation using a two colour pulsed laser excitation scheme, 

H(n = 1) + h1 ( 1
~  = 82259 cm-1; 1 = 121.6 nm) → H(n = 2)  (2a) 

H(n = 2) + h2 ( 2
~  = 27420 cm-1; 2 = 364.6 nm) → H+ + e,  (2b) 

(where the 2 value quoted is the appropriate wavelength in air) and monitored via the TOF of 

the resulting ion.  

H (and D) atoms have a pattern of energy levels familiar to all undergraduate chemists. 

To a very good approximation, the level energies only depend on the n quantum number and, 

via the Rydberg formula, the binding energy of an electron in the n = 2 level is just one quarter 

that of the electron in the n = 1 level. Thus the original experiments required just a single probe 

laser since the Lyman- photons required for excitation (2a) could be conveniently generated 

by frequency tripling near UV laser light of the requisite frequency for the threshold ionization 

step (2b). As shown in Figure 1(a), for the specific case of H2O photolysis at  = 125.1 nm, the 

method was selective for H atoms (by virtue of the resonance enhanced ionization detection), 

sensitive, and afforded sufficient energy resolution to reveal that the partner OH products were 

indeed formed mainly in their ground (X) state, mainly in their v = 0 level, and with a highly 

excited, inverted, rotational state population distribution. This energy disposal was rationalised, 

qualitatively, by considering the topographies of the relevant excited state potential energy 

surfaces (PESs).4 The observed high levels of fragment rotation explained the failure of all 

earlier efforts to monitor the OH(X) photoproducts by ‘traditional’ spectroscopy methods (e.g. 

laser induced fluorescence, LIF); the corresponding levels in the excited state of OH used in 
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the LIF detection scheme are heavily predissociated and have a negligible fluorescence 

quantum yield.  

The study also served to highlight the universality of the method: Any photoinduced R–

H (R–D) bond fission process was now potentially ripe for study, without requiring knowledge 

of a suitable and well characterised transition by which to probe the R co-fragment. The 

population distribution in the nascent R products is encoded in the H(D) atom TOF spectrum. 

Before summarising some of the many subsequent findings enabled by application of the 

technique – in studies of molecular photodissociation and of H/D atomic products from a range 

of bimolecular collision processes – we first describe the second generation variant of the 

experiment which remains the method of choice. 

H (Rydberg) atom photofragment translational spectroscopy. 

The original H2O photolysis experiment defined a new ‘gold standard’ in terms of the 

achieved photofragment velocity resolution, but this was soon surpassed with the introduction 

of the H Rydberg atom (HRA) or ‘Rydberg tagging’ variant of PTS.9,10 To appreciate the later 

advance it is first helpful to recognise the intrinsically low collection efficiency of the 

experiment. The photolysis and probe laser beams in most such photodissociation experiments 

counter-propagate with a narrow crossing angle along an axis at 90 to the molecular beam, 

and the H+ ions are detected along a TOF axis orthogonal to the plane defined by the molecular 

and laser beams, as illustrated schematically in Figure 2(a). The detected signal intensity will 

be sensitive to the photofragment recoil anisotropy – i.e. the correlation between the recoil 

velocity and the polarization vector (phot) of the photolysis photon, which is characterised by 

an anisotropy parameter, . A key limitation, however, is that only a small fraction of the 

expanding Newton sphere of H atom fragments (of order a/S, where a and S are, respectively, 

the area of the detector and the surface area of the Newton sphere with radius equal to the 

distance between the interaction region and the front face of the detector) will strike the 

detector. Typically a/S <10-3 meaning that, for an isotropic recoil velocity distribution, less 

than one in every thousand H+ ions formed in the interaction region will reach the detector. If 

anything, this analysis underestimates the total ion density created in the interaction volume, 

since one can envisage many routes whereby the photolysis and probe lasers may generate 

additional (heavier) ions. Given their mass (relative to that of the light H+ ions), it is unlikely 

that these heavier ions would appear in the measured TOF spectrum, but the Coulombic 
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interactions between all of the charged particles at early times will inevitably cause some space 

charge blurring of the photolysis-laser-induced H+ ion recoil velocity distributions of interest.  

This limitation can be overcome if, rather than ionizing the H(D) atom products, the 

energy of the photon used in step (2b) is reduced slightly – e.g. to 2
~  ~27410 cm-1 – so that the 

excitation from the n = 2 level now populates a high n Rydberg state of the neutral atom. An 

additional suitably timed probe laser pulse is now required, since the Lyman- frequency (1) 

is no longer equal to 32. Ions are still formed in the interaction region, but can be removed 

using a small DC field. This DC field,10 and the fluctuating fields associated with the proximal 

charged particles,11 are both thought to contribute to the l- and ml -state mixing that is required 

in order that the lifetimes of the high n Rydberg states prepared by the resonance enhanced two 

photon excitation extend to the values deduced by experiment. The Rydberg tagged atoms are 

still ultimately detected as ions, but are only field ionized just before reaching the detector (i.e. 

after they have separated into their respective velocity sub-groups). Space charge broadening 

is no longer a first order impediment to product velocity resolution, so the photolysis and probe 

laser powers can be increased, with consequent benefits to signal intensity.   

Applications in studies of molecular photodissociation processes 

The Rydberg tagging method has provided new and detailed insights into the dissociation 

dynamics of numerous hydride molecules and radicals. These data have been central to 

recognising commonalities in the photofragmentation behaviour of families of molecules – that 

can be traced to similarities in the topographies of, and the non-adiabatic couplings between, 

the PESs sampled en route from the initial photoexcitation to the asymptotic products. The 

cross-sections for absorption to excited states formed by electron promotion to a * 

antibonding orbital localised around the R–H bond of interest are often weak, but data 

generated by HRA-PTS studies allied with complementary theory 12,13 have promoted the now 

widespread recognition of the importance of such states in excited state bond fissions.14-18 Here 

we highlight just a few examples.   

HRA-PTS experiments have provided exquisitely detailed information concerning the 

energy disposal in the OH fragments formed in the photolysis of H2O and its various 

isotopomers, at many different VUV wavelengths. 19 - 21  These data provide text-book 

illustrations of the increasing diversity of the couplings between excited states populated upon 

tuning to shorter wavelengths – reflecting the greater range of available fragmentation 

pathways at higher excitation energies. Figure 1(b), which shows TKER spectra derived from 
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H atom TOF measurements following photolysis of jet-cooled H2O molecules at  = 123.94 

nm, serves to illustrate the current ‘state-of-the-art’.22 Both the VUV photolysis photons for 

step (1) and the Lyman- photons for step (2a) were provided by resonant four wave difference 

frequency generation in a cell filled with Kr gas. Features associated with formation of H atoms 

in tandem with numerous different v, N levels of the OH(A) and OH(X) partners are clearly 

resolved. The energy resolution achieved ((TKER)/TKER ~0.3% at TKER = 10000 cm-1) 

even allows population in different -doublet states of the OH(X) products to be distinguished. 

Analyses of such spectra also provide a direct determination of the parent dissociation energy, 

e.g. BDE0(H–OH) = 41145 cm-1. 23 

The Rydberg tagging method has provided similarly detailed insights into photoinduced 

S–H bond fission in H2S at UV (200-250 nm) 24 and VUV (157.6 nm 25 and 121.6 nm 26) 

excitation wavelengths, and N–H and C–H bond fissions in, respectively, NH3 
27 and CH4.28,29 

The NH2 and CH3 fragments formed following excitation to the respective first excited singlet 

states of NH3 and CH4 (both of which have 3s Rydberg character in the Franck-Condon region 

but gain increasing * antibonding valence character upon stretching the bond that eventually 

breaks) are formed with substantial rotational excitation and, in both cases, the product recoil 

anisotropy varies with the extent of this rotational excitation.  

NH3 photolysis at ~216 nm, for example, yields H + NH2( X
~

) fragments. The latter are 

formed in many different rotational levels, that span the entire range of available energies, Eav 

(defined as the difference between (hphot + Eint(NH3)) and BDE0(H–NH2)).27 In all populated 

levels, however, the rotational angular momentum is concentrated about the a-inertial axis of 

the fragment. This specific angular momentum partitioning, and the product state dependent 

recoil anisotropies, can be understood by recognising the competing nuclear motions during 

the dissociation. First, we recognise that excitation with linearly polarised light aligns the 

parent molecule in the laboratory frame and, if dissociation occurs on a timescale shorter than 

that required for this alignment to be scrambled by parent rotation, this alignment will reveal 

itself as an anisotropy of the product recoil velocities. The equilibrium geometries of the ground 

and first excited states of NH3 are, respectively, pyramidal and planar, and the parent transition 

moment, , is directed along the C3 rotation axis. Intuitively, therefore, we might anticipate a 

negative recoil anisotropy parameter (i.e. that the departing H atoms recoil preferentially 

perpendicular to ), and such is indeed observed for the least rotationally excited NH2( X
~

) 

products. But the planar  pyramidal change in equilibrium geometry upon excitation prepares 
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molecules with out-of-plane bending vibrational motion orthogonal to the N–H bond fission 

coordinate. Any such out-of-plane motion will carry through into the dissociation products, in 

the form of a-axis rotation in the NH2 product and orbital angular momentum of the H about 

the NH2 – to the extent that the H atoms formed in association with the most rotationally excited 

NH2( X
~

) products exhibit a positive recoil anisotropy (i.e., their recoil velocities are 

preferentially aligned parallel to  and thus phot).27  

As noted above, the Rydberg tagging method offers exceptional TOF resolution, but low 

collection efficiencies. Thus the fact that the technique has been extensively applied to advance 

our understanding of the photofragmentation dynamics of small hydride molecules like H2O, 

NH3 and CH4, should be no surprise. The radical fragments in these cases are sufficiently light, 

and their quantum states sufficiently separated in energy, that the challenge of working with 

small signals is more than compensated by the unprecedented resolution of the different H + 

R(E, v, N) product channels. This advantage starts to decline as we move to larger molecules 

that dissociate to yield heavier fragments, the quantum states of which cannot be fully resolved 

even by this high resolution PTS method. Even resolving the product vibrational states can 

reveal much about the fragmentation dynamics, however, as evidenced by UV photolysis 

studies of, for example, small polyatomic radicals like methyl,30,31 ethyl,32 vinyl 33 and allyl,34 

and  heteroatom containing molecules like pyrrole,35 imidazole,36 phenol,37 thiophenol,38 and 

their substituted analogues.39-41 The latter studies have encouraged some detailed comparisons 

of the fragmentation dynamics of these and related molecules following photoexcitation in the 

gas phase and when immersed in (weakly interacting) solvents.42 They have also served to 

stimulate many complementary advances in the theoretical treatment of non-adiabatic 

transitions in excited state molecules.43-49 

Applications in studies of bimolecular collision processes 

The Rydberg tagging method has had similar impact in advancing studies of bimolecular 

collision processes in the gas phase. Again, Welge’s group blazed the trail, with ground 

breaking studies of the hydrogen exchange reaction H + D2 → HD + D at selected collision-

energies.10,50 The experiment involved two pulsed molecular beams – one of D2, the other of 

HI seeded in a rare gas – propagating parallel to, but displaced from, each other as illustrated 

in Figure 2(b). Linearly polarized UV photolysis of HI yields H atoms with two narrowly 

defined velocity distributions (since the partner iodine atoms can be formed in their ground or 

excited spin-orbit state). This defined time zero for the encounters of interest. These velocity 
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sub-groups recoil at right angles to the beam propagation axis, but in orthogonal directions. 

Thus by appropriate choice of the photolysis laser wavelength and polarization, H atoms with 

a single, tightly-defined spread of velocities can be arranged to intersect the beam of D2 

molecules, resulting in H + D2 encounters with exquisitely controlled collision energies, Ecoll. 

The D atom products were then Rydberg tagged after a short, user-defined time delay and their 

TOFs (and thus velocities) determined at different scattering angles to yield the first 

rovibrational state resolved differential cross-sections (DCSs) for the products of a bimolecular 

reaction. The success of these experiments encouraged more Rydberg tagging studies of the H 

+ D2 reaction at other Ecoll values,51-53 and of other isotopic variants of the hydrogen exchange 

reaction (e.g. H + HD,52,54, D + H2 
55). Such data have provided a huge stimulus for high level 

theoretical studies of the H3 PES and the nuclear motions it supports – studies that have 

identified reactive resonances and resonances associated with quantum bottleneck states, and 

have sought to identify definitive signatures for geometric phase effects.56,57  

A variant of this experiment enabled dynamical studies of the H*(n) + D2 → HD + D*(n′) 

reaction (where H*(n) is a Rydberg excited H atom), and comparison with the analogous H+ + 

D2 ion-molecule reaction.58-61 As in the H + H2 ground state reaction studies (vide supra), the 

atomic reactants were formed with a tightly-defined velocity distribution by linearly polarized 

UV photolysis of HI. These H atoms were then Rydberg tagged at a well-defined time and 

location just before intersecting the beam of D2 molecules and the rotationally resolved product 

distribution was derived from the TOF distributions of the Rydberg atoms (RAs) measured at 

a number of different scattering angles. 

Similar studies followed not only for isotopic variants of this reaction,62,63 but also for the 

inelastic scattering of hydrogen RAs with N2 64 and O2,64,65 at more than one collision energy. 

The H*(n = 46) + O2(v = 0, N = 1, 3) studies revealed some propensity for very large translation 

to vibration energy transfers. For example, >90% of the incident kinetic energy must transfer 

into product vibration in order to form the back scattered O2(v′ = 8) products observed at Ecoll 

= 1.55 eV.65 (Backwards is here defined relative to the incident direction of the H*(n = 46) 

atoms). Such observations can be understood, qualitatively at least, by invoking an initial 

charge transfer from the (proton) core to the O2. But more recent studies for H*(n = 46) atom 

scattering off HD(v = 0, J = 0) molecules at Ecoll = 0.5 eV, for example, run counter to this 

conclusion. Analysis of the latter data revealed contributions from elastic/inelastic and reactive 

processes yielding, respectively, H*(n′) + HD(v′, J′), and both H*(n′) + HD(v′, J′) and D*(n′) 

+ HH(v′, J′) products.62 (A bold font here identifies the incident Rydberg atom, and bold italic 
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font is used to identify that atom in the products). The angular distribution of the total H2 

product yield shows preferential forward/backward scattering – in marked contrast to that 

predicted for the corresponding ion-molecule reaction. The validity, or otherwise, of neglecting 

the coupling between the ion core and the Rydberg electron in such RA–molecule collisions 

remains an open question. 

We now highlight other instances where Rydberg tagging methods have been used to 

derive high resolution speed and angular distributions of H(D) atom products from prototypical 

bimolecular reactions.66 The reaction of electronically excited O(1D) atoms with H2 molecules, 

for example, is important in atmospheric chemistry and is frequently touted as a text-book 

example of a reaction occurring via an insertion mechanism.67 Analysis of structure in the TOF 

spectra of the H atom products measured (after Rydberg tagging) at different scattering angles 

allowed determination of the OH (v′, N′) product state resolved DCSs at one collision energy 

(Ecoll = 1.3 kcal mol-1, 0.056 eV) 68 and investigation of how the reaction dynamics are affected 

by rotational excitation 69 and deuteration of the molecular reactant.70-72 The state resolved 

DCSs derived from these studies are consistent with an insertion mechanism at low Ecoll, but 

reveal the growing importance of a rival abstraction mechanism at higher collision energies.  

The F + H2 reaction has also long been regarded as a benchmark system – a prototypical 

exothermic reaction, with an ‘early’ transition state favouring direct abstraction of an H atom 

and backward scattering of the HF products.73 Interest in this reaction was heightened by early 

predictions that it should support reactive scattering resonances,74,75 i.e. short-lived, quasi-

bound quantum states that are formed and decay during the course of the evolution from 

reactants to H + HF products. Detecting and characterising these resonances should provide a 

particularly direct probe of the transition state region of the PES for the reaction. Crossed 

molecular beam (CMB) experiments of the F + H2 reaction, with mass spectrometric product 

detection, afforded the first experimental demonstration of such a resonance – a striking 

forward scattered peak for the HF(v′= 3) products.76  

CMB methods coupled with Rydberg tagging of the H (and D) atom products have since 

enabled determination of rovibrational product state resolved DCSs for the reaction of F atoms 

with H2(v = 0) at Ecoll = 0.52 kcal mol-1 (0.023 eV) 77 and H2(v = 1, J = 0) at energies in the 

range 0.4 to 2.0 kcal mol-1 (0.017-0.087 eV),78 and for the D atom products arising in the 

reaction of F atoms with HD(v = 0, J = 0) and HD(v = 1, J = 0) at various energies in the 

respective ranges Ecoll = 0.9-1.5 kcal mol-1 (0.039-0.065 eV) 79,80 and 0.2-0.8 kcal mol-1 (0.009-

0.035 eV).81 In each case, the measurements were complemented by 3-D quantum dynamics 

http://dx.doi.org/10.1063/1.5047911


11 
 

calculations on the best available PES yielding a ‘whole’ that is greater than the sum of the 

parts. The measurements ultimately serve to test and validate the accuracy of the ab initio PES, 

while the calculations provide insights and interpretations for the experimental observations 

and allow prediction of hitherto unobserved phenomena. 

The data for the F + H2(v = 0, 1; J = 0) reaction shown in Figure 3 illustrate the merits of 

this fusion of high level experiment and theory. Figure 3(a) shows TOF spectra of the (Rydberg 

tagged) H atom products formed at a low collision energy, Ecoll = 0.023 eV, with and without 

the stimulated Raman (SR) pumping used to pre-excite a fraction of the H2 reagent molecules 

to their v = 1; J = 0 level. These data were measured at laboratory scattering angles that 

approximate to the backward (180o, relative to the F atom beam) and forward (0o) directions in 

the centre of mass frame. These TOF spectra show structure that reveals the rovibrational state 

population distributions in the HF partner. HF(v′ = 2) products from F + H2(v = 0, J = 0) 

collisions are clearly evident at both scattering angles, whereas HF(v′ = 3 and 4) products are 

only visible from the F + H2(v = 1; J = 0) reaction, and only in the backward direction. 

Rovibrational product state resolved DCSs for the reaction of F atoms with H2(v = 0, J = 

0) and H2(v = 1, J = 0) molecules at Ecoll = 0.023 eV derived from measurements at many 

scattering angles are shown in Figure 3(b), along with the corresponding theoretical 

predictions. Clearly, the agreement between experiment and theory is excellent. The forward 

scattered HF(v′= 2) product peak, which theory identifies as a Feshbach resonance in the F + 

H2(v = 0) reaction path, is absent in the F + H2(v = 1) reaction, though back-scattered HF(v′ = 2, 

3 and 4) products are clearly discernible from this latter reaction.77 The vibrationally adiabatic 

potentials (VAPs) shown in Figure 3(c) provide a qualitative rationale for the observed product 

state distributions, and their dependence on reagent vibration.79 The asymptotic energy of the 

F + H2(v = 0, J = 0) reaction is below that of the H + HF(v′ = 3) products, but the VAP shows 

a shallow well in the H….HF(v′= 3) coordinate and the reaction probability will increase 

whenever Ecoll matches with one of these post-barrier Feshbach resonance states. The decay of 

one such resonance is responsible for the forward peaking HF(v′ = 2) products in Figure 3(b). 

The asymptotic energy of the F + H2(v = 1; J = 0) reactants, in contrast, lies well above that of 

the H + HF(v′ = 4) products – which rules out the possibility of similar reactive resonances in 

F + H2(v = 1; J = 0) collisions and explains the preponderance of back scattered HF products. 

Questions remain, however. Careful inspection of the DCSs shown in Figure 3(b) reveals a 

small forward peaking HF(v′ = 4) yield from the F + H2(v = 1; J = 0) reaction. The relative 
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importance of this feature increases rapidly with increasing Ecoll, but the dynamical origin of 

these products has still to be established.78 

CMB methods coupled with Rydberg tagging of the H atom products have also been 

applied to the Cl + HD(v = 1, J = 0)) → DCl(v′) + H reaction.82 The DCl products are 

predominantly back-scattered, but the differential cross-section for forming back-scattered 

DCl(v′ = 1) products shows clear maxima at Ecoll = 2.4 and 4.3 kcal mol-1 (0.10 and 0.19 eV). 

Again, quantum dynamics calculations on an accurate PES suggest that these features may be 

attributed to very short lived dynamical resonances trapped in the post-barrier well on the 

H….DCl(v′ = 2) VAP arising from bond-softening, i.e. from dynamical effects reminiscent of 

those outlined for the F + HD(v = 1, J = 0) reaction in Figure 3.  

The benefits of Rydberg tagging in experiments of this type are not limited to three atom 

reactions. CMB studies of the OH + D2 83,84 and OH + HD 85 reactions have been reported with 

Rydberg tagging of the D atom products. In the former reaction, for example, DCSs have been 

determined at Ecoll = 0.25, 0.28 and 0.34 eV, along with the Ecoll dependence of the DCS in the 

backward direction. The DCSs are dominated by backward scattering, consistent with a direct 

rebound mechanism, and show clear peaks consistent with formation of HOD products with, 

respectively, one and two quanta of O–D stretching vibration. These experimental findings are 

reproduced well by contemporary theory using the best available PESs for the OH + H2 

system.84,86  Theory can also predict how vibrational excitation of the OH reactant would 

manifest in the HOD product vibrations 86 – a challenge that, in the case of this particular 

reaction, has yet to be addressed by experiments.   

A prospective view 

Most photodissociation dynamics studies of small gas phase molecules reported to date 

have employed UV excitation wavelengths. This choice has some logic, in as much that the 

photoexcitation populates (relatively) low lying excited electronic states and only a small 

number of fragmentation pathways are energetically accessible. Thus the electronic structure 

and molecular dynamics calculations required to guide interpretation of data from such 

experiments (including adequate treatment of non-adiabatic effects) are often tractable. This 

complementarity between experiment and theory becomes increasingly challenged as we move 

to shorter excitation wavelengths, and the range of excited states, non-adiabatic couplings and 

fragmentation pathways all increase. But there are also practical reasons for the historic bias in 

favour of UV excitations. The sources of suitably intense, pulsed VUV radiation suitable for 
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photodissociation dynamics experiments have traditionally been limited to excimer lasers (e.g. 

ArF at 193 nm, or the F2 laser at 157.6 nm). Only recently, with the advent of efficient table-

top four wave sum and difference frequency schemes and dedicated FEL-based VUV sources 

like that at the DCLS (Dalian Coherent Light Source) 21, 87  has it become realistic to 

contemplate conducting molecular photodissociation experiments at any user selected 

excitation wavelength longer than ~50 nm, i.e. at wavelengths below the LiF cut-off and above 

the ionization limit of almost all molecules. Thus we can anticipate many more carefully 

targeted molecular photofragmentation and photoionization studies at these shorter excitation 

wavelengths, and that H/D Rydberg tagging methods will play a central role in probing the 

dynamics of photoinduced dissociations yielding electronically excited R co-fragments, or R+ 

co-fragments in the case of dissociative ionization processes, or multiple fragments when 

exciting at energies above the three body dissociation limit.  

The UV photolysis of hydrogen halide molecules has already featured in this Perspective: 

HI(DI) photolysis is the favoured route to forming H(D) atom reactants with well-defined 

velocity distributions for inelastic and reactive gas phase scattering studies. Similar 

considerations have guided the choice of HI(DI) photolysis as the source, and Rydberg tagging 

as the probe, for studies of the inelastic scattering of H(D) atoms off well-characterised metal 

surfaces at collision energies in the range 1-3 eV. 88 , 89  These experiments, along with 

complementary modelling, have shown that incident KE is lost in exciting electron-hole pairs, 

with an efficiency that depends much more on the coupling to phonon modes (i.e. to the ratio 

of the masses of the incident and the surface metal atoms) than on the detailed electronic 

structure.89 The H(D) atom sticking probability is deduced to be greater for near normal 

incidence collisions – consistent with a mechanism whereby accommodation involves the 

incident atom first penetrating the surface then resurfacing.88  

HBr photolysis at 212.8 nm has been used to demonstrate spin-polarized HRA TOF 

spectroscopy.90,91 These studies show how, by appropriate choice of experimental geometry 

and laser polarizations for the double resonant excitation scheme (2), it is possible to fully 

determine the (velocity dependent) spin distribution of the H atom product – which can be a 

sensitive reporter of the non-adiabatic dynamics involved in its formation.    

Looking forward, with the advent of dedicated FEL-based VUV radiation sources, we can 

anticipate that short wavelength photolysis of HI(DI), for example, will find use as a source of 

H(D) atoms with hyperthermal translational energies in the range of 5-8 eV. The inelastic and 

reactive scattering of H(D) atoms at such high collisional energies should offer many new 
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insights into non-adiabatic dynamics (e.g., geometric phase effects) involving excited state 

PESs. 

This Perspective is not intended to be a comprehensive review but, for completeness, we 

note a couple of limitations of the Rydberg tagging method. First, it is (mainly) limited to 

probing H and D atoms. A similar two photon, two colour double resonance excitation scheme 

has been used to prepare high n Rydberg states of atomic oxygen, and to monitor the KE 

distributions (by TOF methods) of O(3P) atom products from the 355 nm photodissociation of 

NO2 92 and, in a CMB study, from the CN + O2 reaction.93 High n Rydberg states of O and S 

atoms have also been prepared by single (VUV) photon excitation, and used in PTS studies of 

the O(3P2) atoms resulting from 193 nm photolysis of SO2 and the S(3P2) products of the 202.3 

nm photodissociation of CS2.94 These are rare exceptions, however. The second limitation of 

all Rydberg tagging methods is the (necessarily high) energy of the probe photons. The act of 

focussing the probe beam(s) into a small interaction region can – particularly in the case of 

larger molecules – cause unintended (but often unavoidable) photochemistry additional to that 

which they are intended to probe. These caveats aside, it is clear that Rydberg tagging methods 

have made, and will continue to make, very substantial contributions to advancing our 

knowledge and understanding in many areas of photoinitiated molecular reaction dynamics.   
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Figure Captions 

Figure 1 

(a) The first TKER spectrum of H+OH products from the photodissociation of jet-cooled H2O 

molecules at  = 125.1 nm using H+ ion detection. (Adapted from ref. 4 by permission of the 

Royal Society of Chemistry (RSC). (b) TKER spectrum of the same products formed by 123.94 

nm photolysis of jet-cooled H2O molecules, derived from a HRA-TOF spectrum measured 

along the axis parallel to phot (adapted from Ref. 22, copyright 2008 National Academy of 

Sciences.). 

Figure 2 

Schematic showing the molecular beam and detection (TOF) axes for (a) standard 

photodissociation and (b) crossed-beam reactive scattering experiments employing Rydberg 

tagging to detect the H atom products. The photolysis and tagging lasers in both cases are 

incident along the axis perpendicular to the plane of the figure. 

Figure 3 

(a) TOF spectra of (Rydberg tagged) H atom products from the F + H2(v = 0, J = 0) (blue) and 

F + H2(v = 1, J = 0) (red) reactions at Ecoll = 0.023 eV. The data were recorded at laboratory 

scattering angles that approximate the backward (180o, relative to the F atom beam) and 

forward (0o) directions in the centre of mass frame. (b) Contour plots comparing the 

experimentally derived (left) and the calculated (right) rovibrational product state resolved 

DCSs for the F + H2(v = 0, J = 0) and F + H2(v = 1, J = 0) reactions at this collision energy 

(upper and lower rows, respectively). (c) Schematic illustration of the first few vibrationally 

adiabatic potentials for the F + H2 reaction (adapted with permission from ref. 78. Copyright 

2015 American Chemical Society). 
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