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Abstract 

This paper presents comparisons between experimental and numerical studies of low-velocity 

impact damage for thermoplastic (IM7/PEEK) and thermoset (IMS65/MTM) carbon fibre 

reinforced composites. The experiments were conducted at two key impact energies (8 and 30J) 

under identical conditions allowing a systematic comparison to be made. Three LS-dyna Finite 

Element Analysis (FEA) models (standard, continuum damage mechanics (CDM) and discrete) 

were implemented, all using cohesive interface elements for delamination. The role of Mode II 

fracture toughness is highlighted. The predictive capabilities of different modelling techniques 

are compared and discussed and the CDM model gave better correlation with experiments. 

Fibre failure was predicted by the numerical approaches. The thermoplastic materials did not 

show noticeably superior behaviour to the thermoset materials and were governed by unstable 

delamination damage propagation for the same impact energy.  

Keywords: Thermoplastic; Thermoset; Composite; Low-velocity impact; Finite Element 

Analysis (FEA) 
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1. INTRODUCTION  

It is well known that low velocity impact on composites structures, such as that caused 

by runway debris during aircraft take-off and landing and dropped tools, can lead to damage in 

the form of matrix cracking, delaminations and even fibre damage.  As some of the damage 

modes can have detrimental effects on the residual strength, a great deal of attention has been 

given and remains the focus of interest by the design community regarding the susceptibility of 

laminated composites to undesirable damage development, resulting from delamination, matrix 

cracking and fibre failure. A thorough understanding of the response to low velocity impact of 

composites structures in industrial applications is, therefore, one of the major challenges in 

demonstrating reliable and safe design.   

Methods of reducing the amount of delamination in composites are numerous and one 

example is the use of toughened matrix systems. The most commonly used systems are 

thermoset (i.e. epoxy) matrices and thermoplastic (e.g. Polyether ether ketone, known as PEEK). 

PEEK has been shown by a number of researchers and suppliers to have a relatively higher 

fracture toughness and strength than conventional epoxy resins and is expected to exhibit better 

impact resistance and impact damage tolerance [Error! Reference source not found.]. Little 

attention has been given to research related to the damage behaviour and mechanisms under 

low-velocity impact of PEEK composites.  

Thermoplastics have generally been used in secondary or tertiary components (e.g. cleats) 

whereas epoxy composites are used in primary structures [Error! Reference source not 

found.]. Nonetheless, PEEK composites have seen a renewed interest in recent years, 

particularly due to their fast processing times and recyclability [Error! Reference source not 

found.] and the introduction of new fibres.  It is therefore important to establish the confidence 

and understand the differences between these two composites both experimentally and 

numerically through reliable simulations.  

Little, and often confusing, information is available in the literature concerning 

experimental investigations of true comparison between various material systems for the same 

geometry and impact parameters.  Some investigations have shown that PEEK based carbon 

composites exhibited less damage tolerant than epoxy-based carbon composites [1,6,53].   Chou 

et al [1] described UT500/PEEK and AS4/PEEK as a ‘non-compatible’ type, which is defined 

as materials having poor impact resistance under low velocities even though their Model II 

delamination resistance was quoted to be superior. Morita et al [Error! Reference source not 

found.] examined the impact resistance of AS4/PEEK and a toughened T800/3900 epoxy 

system under low and high velocity. They observed that AS4/PEEK had a lower impact 

resistance than T800/3900 in both low and high velocity impact cases. In contrast, other 
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investigations [Error! Reference source not found.] have shown that PEEK based composites 

have superior impact damage tolerance.  Dorey et al [Error! Reference source not found.] 

and Bishop [Error! Reference source not found.]  demonstrated a clear advantages of PEEK 

composites over epoxy composites under low-velocity impact (< 10 J) and showed post-impact 

(5 J) to have severe surface indentation and damage but much less extensive splitting at the 

back face than carbon/epoxy.    

Those inconsistent observational results from the literature remain a challenging hurdle 

as they give a rise to some concerns over which material performs best at given conditions.  

This represents the impetus for the present work.  

Various numerical studies have been conducted to understand low-velocity impact 

damage of composite, mainly using Finite Element Analysis (FEA) [8-Error! Reference 

source not found.] with sophisticated material models, such as ‘Continuum Damage 

Mechanics’ (CDM) and ‘discrete’ methods. CDM uses either stress- or strain-based criterion 

for damage initiations, after which the material stiffnesses are degraded by monotonic 

increasing damage variables to simulate damage propagations. A number of investigators (e.g. 

[Error! Reference source not found.]) have demonstrated the power of a three dimensional 

(3D) material model, together with Cohesive Zone Modelling (CZM) approach for the 

prediction of interlaminar damage under low-velocity impact. Others [Error! Reference 

source not found.] used similar CDM based approach to model ply damage and proposed a 

way to approximate delamination using modified cohesive crack models with a crack density 

parameter.  

The other approach for modelling intraply damage is based on a discrete approach in 

which the fibre failure is simply controlled by stress or strain or a statistically based criterion. 

This approach has been frequently used to investigate the tensile failure of laminated 

composites with and without holes [24-27]. Cohesive elements are usually inserted between 

elements of a ply to model matrix cracks, which together with the fibre damage criterion have 

proved to provide similar modelling capabilities at the ply level to fully damageable 3D CDM 

models [Error! Reference source not found.].  In the discrete approaches, elements with ‘zero’ 

stiffness are usually deleted after being completely failed in the simulation, which makes them 

detectable as clear damage ‘band’, occasionally captured in experiments. Elements with the 

same state governed by CDM methods normally are kept in the analysis, giving a continuous 

damage zone. As the aforementioned post-impact observations of Carbon/PEEK [2], it was 

expected that the CDM model is preferable for modelling Carbon/PEEK in the sense of the 

material’s post-damage behaviour, and vice versa for discrete approach and Carbon/epoxy. It 
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can be concluded from above that questions, as to which modelling approach is the most 

suitable for predicting which material system, have not been fully answered in the literature.  

In the current paper, low-velocity impact response and damage behaviour of both 

Carbon/PEEK and Carbon/epoxy were investigated experimentally and numerically under 

unified conditions. FEA was conducted using a CDM approach based on a material model from 

[Error! Reference source not found.] and Weibull theory predicting ply damage [27], and a 

CZM material model [Error! Reference source not found.] for capturing delamination, to 

simulate the impact event and damage. This paper is focused on a systematic comparison 

between three LS-Dyna material models and their application and correlations with test results 

on epoxy- and PEEK-based composites material systems, having the same thickness and lay-

ups.  

2. EXPERIMENT 

Two carbon fibre material systems were considered in this study: IMS65 fibre with out-

of-autoclave epoxy MTM44-1 (designated as IMS65/MTM in the remainder of this paper) and 

IM7 fibre with PEEK thermoplastic resin (designated as IM7/PEEK). Both types of laminate 

were fabricated by 32 plies with stacking sequence of [0/90/+45/-452/+45/90/0]2S. The nominal 

ply and overall thickness were 0.125 mm and 4 mm, respectively for both material types.  The 

material properties are listed in Table 1. All impact tests were performed using an Imatek IM10 

drop-weight impact tower fitted with a 16 mm diameter hemispherical tup. The latter was 3.87 

kg in mass and was instrumented enabling force/time and force/deflection data to be collected.  

Panels were fully clamped and sandwiched by two steel rings with 100 mm internal diameter.  

Two impact energies of 8 J and 30 J were used for both laminates, with 3 specimens used per 

energy level. The post-impact specimens were examined using QinetiQ’s Non-Destructive 

Testing (NDT) techniques such as ultrasonic C-scan and X-ray Computational Tomographic 

(CT) scan, to determine the damage behaviour.   

3. NUMERICAL MODELLING  

3.1 Model Descriptions  

 Commercial software LS-Dyna was used to carry out FE analysis in this paper. Interface 

layers of cohesive elements, 0.01 mm thick, were inserted between plies with different fibre 

orientations (no delamination was observed between plies with the same fibre orientation 

[Error! Reference source not found.]). By blocking plies with the same fibre orientations, the 

32 plies were reduced to 25 ply-blocks with 24 layers in total. In the pre-processing stage, the 

impactor was placed at the top centre of the laminate and away from the surface by 0.1 mm, as 

shown in Figure 1a. The movement of peripheral nodes of the laminate was fully constrained, 
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as shown in Figure 1b. The impactor was modelled by rigid body. Translation in the Z direction 

was the only degree of freedom allowed for the impactor, and the density of the impactor was 

corrected in order to match the mass of that used in the experiment. Figure 1c shows the mesh 

used where the shaded area is a structured mesh, and the unshaded areas are used for mesh 

transition. A fully contiguous mesh was used throughout the model, and nodes were merged 

between composite plies and interface layers. A Region-Of-Interest (ROI) of diameter 60 mm 

was defined at the centre of the plate. To accurately capture delamination propagation while 

considering the computational cost, the maximum element length in ROI was set less than 0.5 

mm, which generates a total of 832,384 elements in the model. Segment-based contact was 

defined between impactor surface and top surface of the laminate model. Impact force was 

obtained from the penalty contact force generated by the contact pair. Solid elements (Type_1 

in LS-Dyna) with eight nodes and one centrally located integration point were used for the plies, 

one element through the thickness of each ply block. 3D cohesive elements (Type_19 in LS-

Dyna) were selected for use in the cohesive layers for modelling delamination. Type_19 is an 

8 noded 4 integration point cohesive element, details of which can be found in [Error! 

Reference source not found.].  

For explicitly accounting for matrix cracking in ‘high-fidelity’ modelling approaches, 

the numerical results [1436,44] show impact damage predictions were indeed improved by 

accounting for matrix cracking, but the level of improvement is limited.  Here a more practical 

approach, suitable for some industrial applications, was adopted and used since models with 

individual cracks modelled have large computational requirements, and models without cracks 

are still suitable for comparative studies between materials, as presented here.  

3.2 Material Properties and Formulations 

Table 2 summarises the LS-Dyna material models used. The first is a standard model 

(Baseline), where fibre failure is predicted using MAT_261 [28,38,40], and delamination is 

predicted using MAT_138 [Error! Reference source not found.]. The second is a user defined 

material model (UMAT) where fibre failure and delamination are predicted using, respectively, 

UMAT_44 [Error! Reference source not found.] and UMAT_50 [Error! Reference source 

not found.]. These material models are concisely described below.  

3.2.1 Translaminar failure models (Fibre Failure) 

Two models (MAT_261 and UMAT_44) are implemented in this study where the 

MAT_261 model, [28,38,40], is based on Continuum Damage Mechanics (CDM) and can take 

into account damages associated with both matrix and fibre. As the overall stiffness degradation 

of a laminate due to matrix failure as the results of low-velocity impact is significantly smaller 

compared to that of delamination and fibre failure [Error! Reference source not found.], the 
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matrix failure modes were deactivated leaving only fibre failure modes being active. The 

damage propagation, beyond initial failure was defined by energy absorbed and corresponding 

fracture toughness 

The UMAT_44 material model uses a Weibull statistically based tensile ( 011  ) fibre 

failure criterion [Error! Reference source not found.]. The survival probability (Pi) of a 

specimen with volume V under a stress of σi is represented by: 
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where
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where N is the total number of elements. In scaled tensile tests, the
unit and m can be 

experimentally derived from plotting a least squares fit from a plot of  against V and )ln(  

against )ln(V , respectively [12].  When the probability of survival of a specimen satisfies: 
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Equation 3 

tensile failure occurs and the element with the highest stress is deleted.  The Weibull criterion 

is evaluated again in the next time increment for progressive failure [Error! Reference source 

not found.].  For fibre compressive failure (when 011  ), the failure criterion used is: 

111 
fc

fc
S

f


 Equation 4 

where
fcf  is an indicator for fibre compressive failure, 

11 and fcS are the compressive stress 

and strength in fibre direction, respectively. The UMAT_44 model was applied in conjunction 

with element deletion option (elements are removed after failure via the standard LS-Dyna 

deletion procedure). 

3.2.2 Interlaminar failure  

The two LS-Dyna material models: MAT_138 [Error! Reference source not found.] 

and UMAT_50 [Error! Reference source not found.] used for delamination modelling are 

based on similar cohesive formulation. The UMAT_50 model was validated by experiments 

[Error! Reference source not found.]. Both models follow a bilinear traction displacement 
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law, with a strength based initiation criterion and an energy based propagation criterion. There 

are four input parameters required to characterise the constitutive law, namely initial penalty 

stiffness, K, strength (maximum tractions), 𝜎𝐼
𝑚𝑎𝑥 and 𝜎𝐼𝐼

𝑚𝑎𝑥, and the critical energy release 

rates in Mode I and II, i.e. 𝐺𝐼𝐶 and 𝐺𝐼𝐼𝐶, which follows Griffith’s theory that fracture toughness 

is equal to the area under the traction-displacement jump relationship.   

A unique feature of UMAT_50 is regarding the enhancement effect of compressive stress 

on shear properties, which increases the Mode II delamination initiation and propagation due 

to through-thickness compressive stress [48]. The Mode II traction and critical energy release 

rate are enhanced as: 

{
𝜎𝐼𝐼𝑛

∗ = 𝜎𝐼𝐼
∗ − 𝜂𝜎𝐼

𝐺𝐼𝐼𝐶𝑛 = 𝐺𝐼𝐼𝐶
∗ (

𝜎𝐼𝐼𝑛
∗

𝜎𝐼𝐼
∗ )

       𝑤hen 𝜎𝐼 < 0 Equation 5 

where 
*

IIn and IICnG are the enhanced Mode II strength and critical energy release rate 

and 𝜂  is a material-dependent enhancement, see Table 1 for typical material properties used in 

the present work. It is noted that the enhancement factor used in this study is 0.3 which 

empirically derived from previous studies [Error! Reference source not found.]. The damage 

onset under mixed-mode loading is assumed to be controlled by a quadratic damage initiation 

law. In order to simulate damage growth under mixed-mode after damage onset, a fracture 

energy-based mixed-mode criterion B-K law was adopted, as shown below, see for instance 

[47]: 

 

𝐺𝐶 = 𝐺𝐼𝐶 + (𝐺𝐼𝐼𝐶𝑛 − 𝐺𝐼𝐶) (
𝐺𝐼𝐼

𝐺𝐼 + 𝐺𝐼𝐼
)

𝛽

 Equation 6 

where GC and β is the mixed-mode energy release rate and B-K law exponent, respectively.  In 

order to avoid element inversion during the impact loading, element deletion procedure was 

activated when MAT_138 model was implemented and hence additional contact was therefore 

defined between adjacent ply surfaces alongside each cohesive layer. The numerical models 

studied are summarised in Table 2 together with the impact cases.  The models will be referred 

to as: Baseline, CDM and Discrete.  

4. ANALYTICAL APPROACH 

4.1 Critical threshold impact force 

It is known that delamination propagation in composites tends to develop at a critical 

impact load and the theoretical critical force (
crP ) is given by [49]:  
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Equation 7 

 

where E is the effective Young’s modulus of the laminate; h and  are the thickness and Poisson 

ratio of the laminate. Readers are referred to reference [49] for more details of this analytical 

approach. 

5. RESULTS  

5.1 Comparison between experimental data 

Figure 2 and Figure 3 show the results for the IM7/PEEK and IMS65/MTM materials 

tested under 8 J impact energy, and Figure 4 and Figure 5 are for the same materials tested 

under 30 J impact. Graphs are plotted for experimental and numerical results (by Baseline and 

CDM models) of force history, force-displacement curves, and delamination area.  

Figure 6a and Figure 6b show comparisons between maximum energy absorbed, and 

Figure 6c shows the variation of the damage diameter with absorbed energy for both material 

and impact cases. Note that the straight lines drawn are not meant to imply a linear relationship 

between the energy and the predictions but are used to help the readers visualise the various 

trends of the various materials and models. The damage size was measured from the C-scan 

and the area of damage was converted into an equivalent damage diameter. Although the use 

of equivalent damage diameter masks any details about the shape of delaminated areas in the 

individual plies and the location of the highest area, it, nonetheless, gives a simple measure for 

comparison of the maximum size of the damage. 

All the measured properties increased with increasing the impact energies but the rate of 

increase depended upon the property and the material tested. For instance, for the IMS65/MTM 

material, as the energy increases from 8 to 30 J (i.e. an increase in energy by 3.75 fold), the 

absorbed energy, maximum impact load, maximum deflection, damage diameter increased by 

factor of 3.49, 2.27, 1.93 and 2.15, respectively. A similar trend was observed in the case of 

IM7/PEEK material.  

For IMS65/MTM laminates under both 8 J and 30J impact the measured force histories 

(Figure 3a and Figure 5a) and damage sizes (Figure 3c and Figure 5c), were found to be more 

consistent, compared to IM7/PEEK laminates, as shown in Figure 2a and Figure 4a. An 

experimental scatter in the IM7/PEEK results was found in load history and damage size, for 

both energy cases. The measured damage size was related to the first significant load drop in 

the force time history and amount of energy absorbed. For instance, at 8 J impact energy, the 

damage size varied from 6mm to 24mm, and at 30 J the diameter ranges from 48 mm to 63 mm.   

5.2 Impact Force 
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The critical force causing delamination 
crP  for IM7/PEEK can be calculated from Eq.7, 

to be ~7.4 kN. The maximum measured forces in the 8 J impact are close to the theoretical 

threshold value, therefore it is possible that in some of the tests there will be no unstable 

delamination propagation. As the delamination is too small to affect the global stiffness of the 

plate, the force history of this case exhibits a nearly perfect half sines wave shape. In the rest 

of the cases, delaminations are large enough to degrade the stiffness of the plate and cause 

vibration when the plate suddenly changes its state, giving a significant load drop in each curve, 

as shown in Figure 2a.  

The scatter in the delamination area measured in IM7/PEEK under 8 J impact may be 

attributed to an existence of an energy threshold for rapid growth of delamination. In order to 

verify this hypothesis, simulations were conducted under the impact energies below and above 

8 J to try to understand the relation between impact energies and delaminations. The two energy 

levels chosen were 6 J and 10 J. These verification models used the CDM modelling approach. 

The results showed that the delamination diameters increase linearly with increasing impact 

energies giving 5.4 mm, 7.4 mm and 9.4 mm delamination diameter from 6 J, 8 J and 10 J 

impact models, respectively. These additional modelling results are very much in line with the 

trend of experiment results in [Error! Reference source not found.]. The delamination 

diameter of the IM7/PEEK 8 J case is ~23 mm and significantly larger than the predicted 10 J 

case. Experimental observations, verification models and those studies in [Error! Reference 

source not found.] may indicate that the linear relation between delamination area and impact 

energy may be attributed to material behaviour of IM7/PEEK not being captured in the models 

using the material properties provided in Table 1.  

A comparison between the experimental and simulation results of force-histories for the 

IMS65/MTM laminate at 8 J impact is made in Figure 3. The predicted maximum load from 

baseline model is slightly higher than that predicted from the CDM model. Both predictions 

were greater than that measured from the tests and do not show any significant load drops on 

the curves. The load (
crP ) of the IMS65/MTM was calculated to be ~ 5.3 kN which is close to 

the experimental results, as shown in Figure 3. It can be seen from Eq.7 that the critical force 

is proportional to
IICG . Neglecting the minor differences in ply properties between the two 

materials (see Table 1), the critical load (
crP ) for the IM7/PEEK can be expected to be higher 

than that for the IMS65/MTM, by a factor of ~1.4. Comparing the experimental critical loads 

of both laminates, the ratio is ~1.2 (= 6.7/5.5) and lower than the theoretical ratio. Although the 

critical load in the form a significant load drop in force history is not captured in the numerical 

model, the load level when delamination starts to propagate can be extracted from post-
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processing of the FEA simulations. Figure 7 shows a normalised (simulation results were 

divided by mean experimental critical load) critical load of all models under 30 J impact. 

Figure 8 shows a comparison between the predicted and measured maximum force for 

all cases. In general, except for the IMS65/MTM at 8 J case, all predicted maximum forces are 

within an acceptable range. The experimental data indicated that the IM7/PEEK exhibited 

larger maximum force than the IMS65/MTM material.  Most of the models captured the same 

trend.  The analytical critical loads predicted from Eq(6) are 7.4 kN and 5.3 kN for the IM7 and 

the IMS65 materials, respectively. These analytical values are slightly higher than the 

predictions of the FE models. Table 4 gives a summary of the predicted results for both 

materials and both impact energies. 

It should be noted here that none of the models used here considered matrix cracking and 

their potential effects on creating more delamination and on absorbing some of the impact 

energy. The role played by matrix cracks and their influence on the impact response of 

composites was discussed in Abisset et al [Error! Reference source not found.].  The 

predicted delamination load, using the Eq.7, was some 20% higher than the measured loads. 

They attributed that to the presence of transverse cracks prior to delamination where these 

cracks help the occurrence of delamination by creating stress concentration at the interfaces.   

5.3 Delamination 

Given that the interfacial properties of IMS65/MTM are significantly lower than the 

IM7/PEEK, the delamination damage in IMS65/MTM can be expected to initiate at a lower 

force level.  In fact its damage sizes are only slightly smaller than the IM7/PEEK laminate (see 

Figure 6c). These observations imply that the GIIC used for the IM7/PEEK material, as shown 

in Table 1, taken from the literature [Error! Reference source not found.], in which the 

fracture toughness was measured under static condition may not be suitable for these impact 

simulations. Therefore, additional simulations were performed using a lower GIIC value to 

directly correlate the experimental observations. The GIIC value of 1.5 N/mm instead of 2.2 

N/mm was selected and compared with original simulation, and the force history results with 

corresponding delamination predictions are shown in Figure 9. It can be seen that the use lower 

GIIC value for the CDM models gives better correlation with experimental results compared to 

that given in Table 1. Similar observations and approach were also reported and adopted in 

[3262], in which impact damage prediction of IM7/PEEK laminate was significantly improved 

when GIIC was reduced from 2 N/mm to 0.4 N/mm for 20 J impact. They measured GIIC, using 

ENF method, for carbon/PEEK materials and showed that the values ranged from 1.9 N/mm, 

for stable (ductile) crack growth at low strain rate, to 0.4 N/mm, corresponding to unstable 

crack propagation at high strain rate [Error! Reference source not found.]. 
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In addition, the projected delamination shape of the IMS65/MTM laminate appears to be 

somewhat irregular, and the delamination shapes of the IM7/PEEK cases are closer to circular 

and appear to be less repeatable than the IMS65/MTM laminates. These repeatable 

delaminations with irregular shapes for the two given impact energies in the IMS65/MTM 

laminate are shown in Figure 5c.  The highly directional behaviour, especially at 30 J (Figure 

5c), may be attributed to the existence of strong interaction between delamination and matrix 

cracks.  

Similar observations regarding the shape of damage areas of thermoset and thermoplastic 

carbon composites laminates were observed by Nezhad et al [Error! Reference source not 

found.]. They attributed that to bending matrix cracks at the bottom most [0o] ply and the larger 

strain to failure beyond the yielding of the PEEK.  Another study showed that the fracture 

surface of the PEEK composite for pure mode I to pure mode II have cusps caused by the higher 

amount of matrix plasticity. In contrast, in epoxy composites the fracture surfaces of lower 

modes are completely flat indicating brittle cleavage fracture. Hackles appear with higher 

mode-mixity in an epoxy composite, whereas no hackle formation is observed in PEEK [Error! 

Reference source not found.].  

The equivalent damage diameter is underestimated by the baseline models for the 

IMS65/MTM in the 8J case but is overestimated, by a factor of up to 2, in 30 J case. It is worth 

mentioning that this large overshoot of the prediction in this case came from over predicted 

delaminations at interfaces near mid-plane of the laminate where delamination propagated to 

the boundary of the plate.  As the mesh size becomes coarse (see Figure 1), the prediction tends 

to be less accurate for the baseline model.  

The use of reliable input data is crucial for the all the models. Given that the predicted 

delamination areas are overestimated in both models under 30 J impact for the IMS65/MTM, 

the current interfacial properties of the IMS65/MTM material, taken from [Error! Reference 

source not found.], may be slightly different to those of the panels, and the formulation 

governing the propagation of the delamination could be affected.  However, data available on 

IMS65/MTM are quite sparse.   

5.4 Comparison between Numerical Models 

5.4.1 Baseline and CDM Models 

All models gave good predictions for maximum impact force and maximum deflection 

for both materials in both 8 J and 30 J impact cases (see from Figure 2 to Figure 5). Difference 

between the baseline and CDM model came from the application of cohesive formulations 

MAT_138 and UMAT_50.  However, the impact energy absorbed and damage areas were 

generally under-predicted and the degree of correlation depended upon the types of modelling 
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approach (see Figure 6). In general, the CDM models gave better predictions for energy 

absorption in most of the cases compared to the baseline models, but the predictions are all 

lower than the experimental results, except for the IMS65/MTM at 30 J case.   

The numerical results from the baseline and CDM models, regardless of their accuracy, 

gave highly consistent results that can be fully explained by the theories and formulations used 

in the study. Due to lower interfacial properties, the delamination areas in the IMS65/MTM 

under both 8 J and 30 J impacts are higher than those in the IM7/PEEK. 

The numerical models predicted the delamination to be spread throughout the thickness 

of the laminates. Figure 11 shows an example of the results of the distribution of delamination 

size from the CDM and Baseline FE models for 8 and 30 J impact, where the impacted surface 

is that at the top.  A study of delaminations through the thickness shows the following features: 

▪ The number of delaminated surfaces depends on the type of materials, impact energy 

and the type of models used. For the 30 J impact, and for IMS65/MTM material, the 

number of delaminated surfaces are 19 and 22 using, respectively, CDM (UMAT) and 

Baseline models.  For the IM7/PEEK materials, the numbers are 14 and 19 for the CDM 

and Baseline models, respectively. 

▪ Generally, especially for the high impact energy, delaminated sizes are not uniform 

through the thickness, with the maximum area (largest diameter) occurring close to the 

middle section of the panels. For the IMS65/MTM materials, the maximum 

delamination took place at interfaces 13 and 14 whereas for the IM7/PEEK materials, 

the maximum is at interface 11. 

• The number of delaminated area increases with increasing the impact energy.  

• As a result of using an enhancement of the critical energy release rate, Eq.5, the 

delamination was reduced (suppressed) near in the impacted surfaces for the 

IM7/PEEK (Interfaces 24-21 at 30J impact and Interfaces 24-16 at 8 J impact).  

Experimental results are not available at the present to validate this behaviour.    

5.4.2 Comparison between CDM and Discrete Models at 30 J 

Figure 5a shows experimental and numerical force-displacement curves for the 

IMS65/MTM laminate under 30 J impact. The correlation between measured and predicted 

curves is reasonable in terms of the maximum displacements and maximum loads. It can be 

seen that the overall plate stiffness of the discrete model (Figure 5b) has the highest stiffness 

among other models. Although, delamination propagation was not traceable from the force 

history curves in numerical models, the predicted critical loads could be extracted from the 

corresponding impact force as delamination starts to grow in the simulation. A critical force in 
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IMS65/MTM in the discrete model at 30 J case corresponds to a plateau of the force-

displacement curve; a clear stiffness decrease can be seen after the critical load has been reached, 

as shown in Figure 5b. This clear stiffness change found in the discrete model is not observed 

in the baseline and CDM model. 

Figure 10 compares the force history for 30 J impact using CDM and discrete modelling 

approaches for the IMS65/MTM.  In general, the impact responses between the two approaches 

within one material system are similar, and their differences are fairly consistent across the two 

laminates. It seems there are more force oscillations in the discrete model, which may be due 

to the brittle-like failure behaviour of plies in UMAT_44. As the fibre damage propagation is 

controlled by a continuous bi-linear law in the CDM models, the force oscillations appear to be 

less. The global plate stiffness from the beginning of impact is consistently lower in the CDM 

model than in the discrete model for both laminates. This behaviour may be related to the 

compressive damage evolution applied in the CDM approach affecting the compressive failure 

behaviour under the impactor. As the impactor rebounds, Figure 4b and Figure 5b show a 

positive final displacement in the CDM model for both laminates, which indicates irreversibly 

damaged elements in compression.  This positive displacement, representing permanent 

damage, is an agreement with test data.  

In Figure 10 it can be seen that a load drop in the CDM model leads to a stiffness 

reduction in the force-displacement curve when the impact force reaches 12 kN. This load drop 

may indicate the commencing of stiffness degradation scheme in CDM approach. In contrast, 

the force in the discrete models continues to increase without any significant load drop. Due to 

the fracture energy based damage propagation criterion in CDM model, energy absorbed in 

both laminates are higher than that using discrete method.  

5.4.3 Fibre Damage  

Fibre failure was predicted by the FE models developed in the present work. Fibre failure 

is a crucial failure mode and the energy required to cause such a mode of failure is much larger 

than that for delamination and for matrix cracking.  Figure 10 shows the development of fibre 

direction stress of the bottom most (0o) ply at different stages in IMS65/MTM 30 J impact 

models in the discrete and CDM approaches. It can be seen that the stress field of the discrete 

model is localised and tensile failure occurs much earlier than that in the CDM model. The 

failed and deleted elements in the discrete model consist of a narrow ‘failure band’ which is 

similar to a realistic fibre breakage, and the crack propagates as stresses at crack tips exceed 

the strength level. 

In the CDM model, due to the inclusion of compressive failure formulation, the 

deflection of the plate is less localised due to the deformation of compressively damaged 
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elements, and the stress field in elements subjected to tension is more smeared, and the damaged 

elements are still under moderate stress before complete failure.  For all the CDM models, once 

the tensile failure onset criterion is reached and the stiffness of the damaged elements starts to 

degrade, the stress concentration tends to migrate to adjacent healthy elements and even to 

neighbouring plies; as a result, it is difficult to generate a band of completely failed elements 

as shown in the discrete model. These numerical results suggest that the CDM models may 

provide reasonable end results, but detailed failure behaviour such as the tensile failure in the 

bottom most plies during impact of the laminate is not captured as realistically as the discrete 

model using simple stress-based criterion.  

5.5 Further Discussion 

Reasons for the experimental scatter and disagreements between test and modelling for 

the IM7/PEEK results are not fully understood but the following qualitative arguments are 

relevant in providing plausible explanations.  

5.5.1 Elastic perfectly plastic behaviour 

The PEEK material, as a pure resin, behaves in ductile manner with stress strain curves 

akin to elastic perfectly plastic material [Error! Reference source not found.].  After reaching 

the yield stress, the stress exhibits a constant plateau with increasing strain, which implies that 

the material will deform extensively while the load (stress) remains virtually constant.  This 

behaviour could give a rise to unstable damage/delamination behaviour.  The current models 

do not take into account this aspect of failure of the PEEK material.   

5.5.2 Effects of crystallinity 

The effect of degree of crystallinity was initially thought to be a major factor causing 

differences. It is known [56,58] that the degree of crystallinity in PEEK plays a major role in 

the response of PEEK-based materials to mechanical loading.  Measurements have been made 

in the present work of the degree of crystallinity of the PEEK materials tested here using 

thermal analysis methods (DSC) [Error! Reference source not found.].  The results showed 

that there was no clear correlation between the degree of crystallinity and impact data in this 

study.  

5.5.3 Uncontrolled delamination propagation 

 Some of the previous work on PEEK composites had shown that damage can be 

developed in an uncontrolled fashion. Experimental work reported in [Error! Reference 

source not found.] on 2.5 mm thick laminates made of (45/03/45/02)s lay-up showed that the 

damage area for PEEK material varies considerably between tests for the same impact energy, 

when compared with carbon/epoxy laminates.  For an impact energy of 7 J, the damage area in 

the PEEK laminates ranged from around 2 cm2 to 6 cm2 whereas that for the epoxy laminate 
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was consistently around 6.2 cm2.  Modes of failure played a major role in the damage area 

creation.   Unstable delamination propagation in PEEK materials has been observed by Brunner 

et al [Error! Reference source not found.].  Nezhad et al [Error! Reference source not 

found.] presented experimental results showing that for the same lay-up and the thickness, 

impact energy, the damage areas exhibited in the PEEK carbon laminates were larger than those 

of epoxy carbon laminates.  

5.5.4 Testing methods for fracture toughness 

Values of GIc and GIIc are normally obtained from testing 0 unidirectional samples.  

Hiley [Error! Reference source not found.] discussed the phenomenon of the ‘R-curve effect’ 

for mode I dominated loading where the toughness increases with crack length which 

introduces problems when generating structural data. This effect is attributed to fibre bridging 

which is an artefact of testing 0 laminates and will not occur in practice where delaminations 

occur at non-zero ply interfaces, in which nesting and consequently fibre bridging is negligible. 

Tests conducted on 0/5 ply interfaces have been used to eliminate fibre bridging but to still 

characterise the toughness of unidirectional ply interfaces.  Also, in real structures, 

delaminations appear between plies of different orientation, while most tests are done on 

unidirectional specimens. Ideally, delamination testing should be carried out on 

multidirectional laminates, which have a thicker resin rich zone. 

Early work [63] on measuring GIIc for thermoset and thermoplastic composites using 

ENF technique showed that, while epoxy-based composites exhibited a small scatter (less than 

10%)) the AS4/PEEK composites showed a wide scatter, reaching 20%. The 20% scatter was 

more obvious in the GIIc corresponding to the start of nonlinearity in the load-displacement 

curve. Brittle and toughened epoxies fail by hackle formation but very tough matrix systems 

(PEEK) fail by extensive shear yielding. Tanaka et al [Error! Reference source not found.] 

reported a scatter in the start of nonlinearity of the curves of around 45%.  Currently, there is 

no consensus on test methods and available test data show a large scatter. Common test 

geometries show unstable delamination growth. 

5.5.5 Visco-elastic and plastic and dynamic effects 

The visco-elastic and visco-plastic behaviour of PEEK materials is widely recognised 

[65], and consequently, one of the key differences between the behaviour of epoxy-based and 

PEEK-based composites is that strain rate effects could be influential.  A study made in [Error! 

Reference source not found.] has shown that static and dynamically loaded PEEK and epoxy 

based samples exhibited comparable energy absorptions.  However, the impacted laminates, 

especially the PEEK-based, showed larger extensions of delaminations and, at the same time, 

smaller amounts of fibre fracture. The variation in the dominant damage modes with impact 
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velocity implies a clear rate-sensitivity of the material, a probable consequence of the 

viscoelastic nature of the PEEK matrix. Recent work by Sun [Error! Reference source not 

found.] has also indicated the importance of strain rate on the impact response.    

6. CONCLUSIONS 

A comparative study has been carried out on thermoset and thermoplastic based carbon 

fibre composites panels where their behaviour was studied experimentally and numerically 

under low impact velocity, at two key impact energies (8 J and 30 J). A Standard (baseline) 

model and two improved material (continuum damage mechanics (CDM) and discrete) models 

using LS-DYNA code were implemented.  The models were designed to provide medium-

fidelity prediction with reasonable computational cost.   

The three numerical models gave generally reliable predictions of the measured 

maximum impact force and the maximum central deflection of the panels.  The baseline model 

was shown to give less favourable correlation with test data than the CDM model when 

predicting the damage (delamination) area and the energy absorbed.  The discrete model also 

underestimated the measured maximum impact force, due to its fibre failure assumption and 

gave lower predictions than those of the CDM model, at 30J.  

The experimental data on thermoplastic panels seem to exhibit large variation in the 

damage development and unstable damage growth compared with the thermoset panels.   

The use of manufacturer’s data on fracture toughness for Mode II (2.2 N/mm) of the 

thermoplastic materials leads to an underestimation of the energy absorbed and damage size.  

Similar observation was recently made in [Error! Reference source not found.]. There is a 

need to understand the susceptibility of this material to uncontrolled damage development and 

strain rate effects [Error! Reference source not found.].    Nonetheless, there was a clear trend 

between the energy absorbed and delamination size at a given impact energy.  

Experimental results showed the projected delamination areas observed in the thermoset 

material are highly directional, which indicates strong interaction between matrix cracks and 

delaminations and suggests that modelling of the matrix cracks may be required for high-

fidelity numerical predictions [Error! Reference source not found.].  

Detailed microscopic experimental data describing the amount and the location of the 

different damage modes are unavailable and future work is required for a deeper understanding 

of this aspect.   
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9. TABLES AND FIGURES 

Table 1: Mechanical properties of IM7/PEEK and ISM65/MTM [30-Error! Reference source not 

found.]. It is noted that the fracture toughness value are quoted in N/mm for consistency with cohesive 

element formulation (1 N/mm = 1000 J/m2)  

Lamina properties IM7/PEEK IMS65/MTM 

Density (Kg/m3) 1596 1552 

Longitudinal modulus E1 (GPa) 170 175.9 

Transverse modulus E2 (GPa) 10 8.1 

In-plane shear modulus G12 (GPa) 5.5 4.4 

Minor Poisson’s ratio 0.0158 0.0147 

Through-thickness shear modulus G23 (GPa) 3.355 2.718 

Through-thickness Poisson's ratio u32 0.49 0.49 

Longitudinal tensile strength XT (MPa) 2900 3289 

Longitudinal compressive strength XC (MPa) 1310 1595 

Transverse tensile strength YT (MPa) 60 56 

Transverse compressive strength YC (MPa) 250 193 

Fracture toughness for longitudinal (fibre) tensile failure 

(kJ/m2) 
100 90 

Fracture toughness for longitudinal (fibre) compressive 

failure (kJ/m2) 
80 80 

Weibull modulus (m) 41 41 

Interface properties IM7/PEEK IMS65/MTM 

Density (kg/cm3) 1320 1180 

Modulus (GPa) 100 100 

Transverse and normal failure stress (MPa) 80 60 

Interlaminar shear failure stress (MPa) 100 80 
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Interface fracture toughness for opening mode (N/mm) 1.6 0.38 

Interface fracture toughness for shear mode (N/mm) 2.2 1.14 

B-K exponential β* 2.3 2.3 

Enhancement factor η** 0.3 0.3 

(*) used in Eq.6 in this paper        (**)  used in Eq.5 in this paper 

 
Table 2: Material models used for impact simulations. 

Damage 

modes 

Material models 

LS-Dyna standard LS-Dyna user-defined(UMAT) 

Fibre failure 
MAT_261 

(CDM) 

UMAT_44 

(Discrete) 

Delamination 
MAT_138 

(Cohesive formulation) 

UMAT_50 

(Advanced cohesive formulation) 

 

Table 3: Cases of numerical modelling with the corresponding material models used and their element 

deletion scheme. 

 Material models IM7/PEEK IMS65/MTM 

8J 30J 8J  30J 

Baseline($) MAT_261/MAT_138 X 

CDM MAT_261/UMAT_50 X(*) X 
X 

Discrete UMAT_44/UMAT_50 --- X --- 

($) Element deletion Enabled. 

(X) Models using input data in Table 1. 

(*) Models using input data in Table 1 in addition to other reduced values for GIIC.  

(---) No model used 

Table 4: A summary of the predicted results for the maximum contact force, maximum displacement 

and energy absorbed for all cases performed for both lay-ups. 

 

Model type 

Energy absorbed (J) Max force (N) Max displacement (mm) 

Material Material Material 

IMS/MTM IM7/PEEK IMS/MTM IM7/PEEK IMS/MTM IM7/PEEK 

At impact energy = 8 J 

CDM 3.27 3.16 6511 6843 2.01 1.81 

Baseline 3.80 3.306 5921 6397 2.07 1.94 

 At impact energy = 30 J 

CDM 18.03 14.02 11742 13534 4.45 4.17 

Baseline 17.69 13.50 12771 14081 4.56 3.87 

Discrete 11.22 10.76 14148 13672 4.13 3.88 
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(a) 

 
(b) (c) 

Figure 1: (a) three-dimensional overview of the impact model; (b) Detailed axisymmetric view of the 

impact model, the left zoom-in view shows position between impactor and laminate model and the 

right zoom-in view shows the boundary condition of peripheral nodes of the laminate; (c) In-plane 

mesh distribution of both plies and cohesive layers.  
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(a) (b) 

  

(c) 

  
(d) (e) 

Figure 2: (a) and (b) showing a comparison between measured and predicted load history s and force 

displacement curves for the IM7/PEEK material under 8 J impact, (c) C-scanned specimens with 

damage shape, (d) and (e) predicted delamination size predicted by baseline and CDM models. Note 

that the outer diameter in (c), (d) and (e) is 100 mm. 
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(a) (b) 

 
(c) 

  
(d) (e) 

Figure 3 (a) and (b) showing comparison between measured and predicted load history s and force 

displacement curves for the IMS65/MTM material under 8 J impact, (c) C-scanned specimen with 

damage shape, (d) and (e) predicted delamination size predicted by baseline and CDM models, 

respectively. Note that the outer diameter in (c), (d) and (e) is 100 mm 
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(a) (b) 

  
(c) 

  
(d) (e) 

Figure 4  (a) and (b) showing a comparison between measured and predicted load history s and force 

displacement curves for the IM7/PEEK material under 30 J impact, (c) C-scanned specimens with 

damage shape for samples 1 and 3, (d) and (e) predicted delamination size predicted by baseline and 

CDM models. Note that the outer diameter in (c), (d) and (e) is 100 mm 
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(a) (b) 

 
(c) 

  
(d) (e) 

Figure 5  (a) and (b) showing  a comparison between measured and predicted load history s and force 

displacement curves for the IMS65/MTM material under 30 J impact, (c) C-scanned specimen with 

damage shape, (d) and (e) predicted delamination size predicted by baseline and CDM models, 

respectively. Note that the outer diameter in (c), (d) and (e) is 100 mm 
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(a) (b) 

 
(c) 

Figure 6  Comparison between measured and predicted results for maximum energy absorbed for (a) 

IM7/PEEK and (b) IMS65/MTM materials. (c) Variation of the average damage diameter with 

absorbed energy for the IM7/PEEK and IMS65/MTM panels. 

 

 
Figure 7: Comparison of normalised critical load (Pcr) for both materials under 30J impact. 
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(a) (b) 

Figure 8: Comparison between the predicted and measured maximum impact load for IM7/PEEK and 

IMS65/MTM laminates at 8 and 30J. 

 
 

 

Figure 9 Comparison of predicted delamination of IM7/PEEK under 8 J and 30 J impact simulations 

using two different GIIC values. 

 

 

 



30 

 
(a) 

 
(b) 

Figure 10: Progression of fibre direction stress at bottom ply of (a) discrete model and (b) 

CDM model during impact simulation for IMS65/MTM material at 30 J impact. 

 

 

 
(a) (b) 

Figure 11: Distribution of predicted delamination along the interfaces of the IM7/PEEK and 

IMS65/MTM panels under (a) 8 J and (b) 30 J impact energy, using the Baseline and CDM (UMAT) 

models. 

 


