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Abstract 

Cannabis use is a heritable trait that has been associated with adverse mental health outcomes. In 

the largest genome-wide association study for lifetime cannabis use to date (N=184,765), we 

identified 8 genome-wide significant independent single nucleotide polymorphisms in 6 regions. All 

measured genetic variants combined explained 11% of the variance. Gene-based tests revealed 35 

significant genes in 16 regions, and S-PrediXcan analyses showed that 21 genes had different 

expression levels for cannabis users versus non-users. The strongest finding across the different 

analyses was CADM2, which has been associated with substance use and risk-taking. Significant 

genetic correlations were found with 14 of 25 tested substance use and mental health traits, 

including smoking, alcohol use, schizophrenia, and risk-taking. Mendelian randomization analysis 

showed evidence for a causal positive influence of schizophrenia risk on cannabis use. Overall, our 

study gives new insights about the etiology of cannabis use and its relation with mental health. 
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Cannabis is a widely used psychoactive substance and its use is associated with various 

adverse (mental) health outcomes, including psychosis and schizophrenia 1-3. Successful prevention 

and intervention efforts aimed at reducing cannabis use, misuse, and related outcomes require a 

better understanding of why some people use cannabis whereas others do not. Lifetime cannabis 

use, defined as any use of cannabis during lifetime, is a heritable trait: a meta-analysis of twin studies 

estimated the heritability to be approximately 45% 4. Twin studies have shown there is substantial 

overlap in the genetic factors influencing cannabis use and those underlying problematic cannabis 

use (abuse/dependence) 5,6. 

Several genome-wide association studies (GWASs) have tried to identify genetic variants 

underlying cannabis use phenotypes 7-11. Recently, Demontis et al. 11 performed the largest GWAS for 

cannabis use disorder to date with a discovery sample of 2,387 cases and almost 50,000 controls, 

plus a replication sample of 5,501 cases and ~300,000 controls. They found one genome-wide 

significant risk locus for cannabis use disorder, a single nucleotide polymorphism (SNP) that is a 

strong marker for CHRNA2 expression. Their follow-up analyses showed that cannabis dependent 

individuals had a decreased expression of this gene in the cerebellum as well as in other brain 

regions. 

The largest GWAS of lifetime cannabis use to date is from the International Cannabis 

Consortium (ICC) and is based on a sample size of 32,330 individuals in the discovery sample along 

with 5,627 individuals in the replication sample 10. Although no individual SNPs reached genome-

wide significance, gene-based tests identified four genes significantly associated with lifetime 

cannabis use: NCAM1, CADM2, SCOC, and KCNT2. Notably, NCAM1 has previously been linked to 

other substance use phenotypes (e.g. 12,13), and following publication of the manuscript, CADM2 was 

found to be associated with alcohol consumption 14, personality 15, reproductive succes and risk-

taking behavior 16 in other GWASs. These results indicate that CADM2 may play a role in a broader 

personality profile of sensation seeking and risk taking behaviour in general. In the current paper we 
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present a GWAS of lifetime cannabis use on a substantially larger sample, providing more power to 

identify genetic variants. 

As mentioned, cannabis use has been linked to a variety of mental health outcomes, 

including substance abuse and dependence and psychiatric disorders 3. In particular, the relationship 

between cannabis use and schizophrenia has been the subject of intensive research and debate. It 

has long been established that the prevalence of cannabis use is higher in schizophrenia patients 17,18. 

A substantial body of evidence supports the hypothesis that cannabis use increases the risk for 

developing psychoses and schizophrenia 19, but other hypotheses (i.e. schizophrenia increases the 

use of cannabis, or the association is due to (genetic) pleiotropy) have also been posed. Previous 

studies have shown that genetic risk factors for cannabis use and schizophrenia are positively 

correlated 20,21. However, a genetic correlation does not provide insight in the direction of causation. 

With Mendelian randomization it is possible to examine the causality of the association between 

cannabis use and schizophrenia, and recently it has become possible to apply this method using 

summary statistics from GWASs 22. Previous MR studies have investigated the link between lifetime 

cannabis use and schizophrenia, but findings were inconsistent. Vaucher et al. 23 tested for causal 

effects from cannabis use to schizophrenia and found evidence for a causal influence of cannabis use 

on schizophrenia risk. Gage et al. 24 tested bi-directional effects and found weak evidence for a causal 

effect of cannabis use on schizophrenia and much stronger evidence for a causal effect in the other 

direction. The results from our GWAS provide more power to examine the causal association 

between cannabis use and schizophrenia. 

In the present study, we performed the largest GWAS for lifetime cannabis use to date. We 

increased the sample size substantially by meta-analysing GWAS results from the ICC study 

(N=35,297), along with new data from UK-Biobank (N=126,785) and 23andMe (N=22,683). The 

combined sample size of this study was N=184,765, a five-fold increase in sample size compared to 

the previous largest GWAS on lifetime cannabis use. We tested the association of millions of SNPs 

with lifetime cannabis use, and estimated the heritability of lifetime cannabis use based on all SNPs. 
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Tests of association for individual genetic variants were complemented with gene-based tests of 

association and S-PrediXcan analysis. The latter was used to identify genes with differential 

expression levels in cannabis users versus non-users. We further estimated the genetic correlation of 

lifetime cannabis use with other traits, including use of other substances and mental health traits, 

such as schizophrenia. Lastly, we performed bi-directional two-sample Mendelian randomization 

analysis to examine whether there was evidence for a causal relationship from cannabis use to 

schizophrenia and vice versa.  

 

Results 

 

Genome-wide association meta-analysis  

The meta-analysis resulted in 8 independent genome-wide significant SNP associations (linkage 

disequilibrium [LD] R2<0.1, window size 250 kb) on chromosomes 3, 7, 8, 11, 16, and 17 (Table 1, 

Supplementary Table S1, and Figure 1). The top SNP and 2 other independent associations were 

located in CADM2 on chromosome 3 (rs2875907, p=9.38e-17; rs1448602, p=6.55e-11; rs7651996, 

p=2.37e-09). Other hits were located in ZNF704, SDK1, NCAM1, RABEP2/ATP2A1, and SMG6 (Figure 

2). All SNPs combined explained 11% (h2
SNP=0.11, SE=0.01) of the individual differences in lifetime 

cannabis use. Supplementary Figure S1-S3 and Table S2 provide information on results of the 

individual GWASs (ICC, UK-Biobank, and 23andme).  

 

Gene-based test of association and expression 

Gene-based tests of associations in MAGMA25 identified 35 genes genome-wide significantly 

associated with lifetime cannabis use (see Figure 3, Table 2, Supplementary Figure S4, and 

Supplementary Table S3). These genes were located in 5 regions that were already identified in the 

SNP-based analysis (including those containing CADM2 and NCAM1) and in 11 different regions 

(Supplementary Figure S5).  
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S-PrediXcan analysis26 revealed 133 Bonferroni-corrected significant associations across 

tissues targeting 21 unique genes (Supplementary Table S4-S5). Eight genes were also significant in 

the gene-based test, whereas 13 were novel. For genes identified in multiple tissues, directions of 

effects were largely consistent across tissues (Supplementary Figure S6). Again, the most significant 

finding was CADM2; genetic variants associated with increased liability to use cannabis are predicted 

to upregulate expression levels of CADM2 in 8 (non-brain) tissues, including whole blood (Z=5.88, 

p=4.17e-09). Of note, although CADM2 is expressed more widely in brain compared with other 

tissues (Supplementary Figure S7), the top SNP rs2875907 regulates the expression of CADM2 only in 

non-brain tissues (Supplementary Figure S8). Exploration of S-PrediXcan results in UK-Biobank data 

(https://imlab.shinyapps.io/gene2pheno_ukb_neale/) showed that CADM2 expression is significantly 

associated with multiple traits, including increased risk-taking, BMI, and reduced feelings of anxiety. 

Similar to the SNP- and gene-based tests of association, the S-PrediXcan analysis detected a strong 

signal in a high-LD region at 16p11.2. Supplementary Table S3 provides an overview of all genes that 

were identified in the gene-based test of association and the S-PrediXcan analyses, along with 

information about the gene-product and previously identified associations with the gene. 

 

Genetic correlations with other traits 

Using our GWAS results and those of other GWASs, we estimated the genetic correlation of lifetime 

cannabis use with 25 traits of interest, including substance use, personality, and mental health 

phenotypes. Fourteen traits were significantly genetically correlated with lifetime cannabis use after 

correction for multiple testing (Figure 4 and Supplementary Table S6). Positive genetic correlations 

were found with substance use phenotypes, including smoking and alcohol use and dependence, as 

well as with mental health phenotypes, including ADHD and schizophrenia. Furthermore, positive 

genetic correlations were found with risk-taking behaviour, openness to experience, and educational 

attainment, as well as a negative correlation with conscientiousness.  
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Causal association between cannabis use and schizophrenia: Two-sample Mendelian randomization 

A positive genetic correlation was found between genetic risk factors for cannabis use and 

schizophrenia (rg=0.24, SE=0.03, p<0.01). To examine whether there was evidence for a causal effect 

of cannabis use on schizophrenia risk and vice versa we performed bi-directional two-sample 

Mendelian randomization (MR) analysis22. In our main analysis (Inverse Variance Weighted [IVW] 

regression analysis) we found some weak (non-significant) evidence for a causal influence of lifetime 

cannabis use on schizophrenia risk, but only for the genetic instrument containing SNPs associated 

with cannabis use under the p-value threshold 1e-05. The IVW regression odds ratio was 1.10 (95% 

confidence intervals [CIs] 0.99-1.21, p=0.074). We found stronger evidence for a causal positive 

influence of schizophrenia risk on lifetime cannabis use, the IVW regression odds ratio being 1.16 

(95% CIs 1.06-1.27, p=0.001; see Table 3, Supplementary Table S7-S9, and Supplementary Figure S9-

S10 for details).  

 We performed 4 sensitivity analyses that rely on distinct assumptions regarding instrument 

validity, to determine the robustness of these findings. The sensitivity analyses showed a consistent 

pattern supporting weak evidence for a causal effect of cannabis use on schizophrenia and strong 

evidence for a causal effect of schizophrenia on cannabis use (Table 3). As an exception, the evidence 

provided by MR-Egger SIMEX for a causal relation from schizophrenia risk to cannabis use, was very 

weak. However, since the Egger intercept was not significantly different from 0 (Supplementary 

Table S10), indicating no pleiotropic effects for the SNPs included in the genetic instruments27, it is 

likely that this method simply lacked power to be able to reject the null hypothesis of no causal 

effect28. 

 

Discussion 

 

SNP- and gene-based tests revealed several SNPs and genes strongly associated with lifetime 

cannabis use. Overall, 11% of the variation in the phenotype was explained by the combined effect of 

SNPs, which amounts to approximately 25% of twin-based heritability estimates 4. CADM2 and 
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NCAM1, both identified in the original ICC meta-analysis 10, were among the strongest findings in the 

SNP-based and gene-based tests. The CADM2 gene (Cell Adhesion Molecule 2) is a synaptic cell 

adhesion molecule and is part of the immunoglobulin superfamily. Interestingly, CADM2 has 

previously been identified in GWASs of other behavioural phenotypes, including alcohol consumption 

14, processing speed 29, and number of offspring and risk-taking behavior 16. A large-scale phenome-

wide scan showed that CADM2 was associated with various personality traits, with the risk variant 

being associated with reduced anxiety, neuroticism and conscientiousness, and increased risk-taking 

15. Taken together, these findings suggest that risk variants in CADM2 are associated with a broad 

profile of a risk-taking, optimistic, and care-free personality 15. Cannabis use has previously been 

associated with related personality traits, including high levels of impulsivity and novelty seeking 30,31. 

NCAM1 (Neural Cell Adhesion Molecule 1) also encodes a cell adhesion protein and is 

member of the immunoglobulin superfamily. The encoded protein is involved in cell-matrix 

interactions and cell differentiation during development32. NCAM1 is located in the NCAM1-TTC12-

ANKK1-DRD2 gene cluster, which is related to neurogenesis and dopaminergic neurotransmission. 

This gene cluster has been associated with smoking, alcohol use, and illicit drug use12,33-35 and has 

been implicated in psychiatric disorders, such as schizophrenia and mood disorders36,37.  

A putatively novel finding comprises the 16p11.2 region (identified in the SNP and gene-

based tests of association and in S-PrediXcan analysis). Deletions and duplications in this region have 

previously been reported to be associated with autism and schizophrenia38,39, while a common 

16p11.2 inversion underlies susceptibility to asthma and obesity40. The inversion explains a 

substantial proportion of variability in expression of multiple genes in this region, including TUFM 

and SH2B140. Given the high LD in this region and high levels of co-expression of the differentially 

expressed genes, follow-up studies will be needed to determine which genes are functionally driving 

the association with cannabis use. 

Several of the top genes from the gene-based and/or S-PrediXcan analyses have previously 

shown an association with other traits, including schizophrenia (e.g., TUFM, NCAM1), BMI or obesity 
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(e.g. SH2B1, APOBR, ATXN2L), alcohol use (e.g. ALDH2), intelligence and cognitive performance 

(CNNM2, CCDC101), and externalizing and impulsive phenotypes (e.g. CADM2; see Supplementary 

Table S3). Interesting is also the association with HTR1A; this gene has been implicated in alcohol and 

nicotine co-dependence41, BMI42, psychiatric disorders43,44, and antipsychotic pharmacological 

treatment response45.  At the phenotypic level, associations between cannabis use and psychiatric 

disorders2 and use of other substances30 are well-established.  

There are two previous studies that found significant SNP associations for a cannabis use 

phenotype. Sherva et al. (2016, 46) found 3 SNPs significantly associated with cannabis dependence. 

In our results only one of the SNPs was available (rs77378271) and was not significantly associated 

with lifetime cannabis use (p=.144). The other 2 SNPs (rs143244591 and rs146091982) or their high 

LD proxies were not available in our data. The SNPs rs77378271 and rs146091982 were located in 

genes CSDM1 and SLC35G1 respectively, and neither of those were significant in our gene-based 

results (p=0.96 and p=0.49, respectively). Demontis et al.11 found one independent significant signal 

at chromosome 8 to be associated with cannabis dependence (with top SNP rs56372821, a strong 

eQTL for CHRNA2). Neither the SNP (p=0.55) nor the gene (p=0.52) was significantly associated with 

lifetime cannabis use in our study. The protein encoded by CHRNA2 is a subunit of certain nicotinic 

acetylcholine receptors and Demontis et al.11 provide three potential biological explanations for the 

link between cannabis intake and CHRNA2. However, it is possible that while CHRNA2 is associated 

with cannabis dependence, it does not play a role in the initial stages of cannabis use, which are 

more related to personality and risk-taking behaviours and less to the actual effects of cannabis 

intake on the brain.   

The genetic correlation analyses revealed genetic overlap of cannabis use with a broad 

range of traits, including positive associations with substance use and mental health phenotypes. 

Furthermore, positive genetic correlations were found with risk-taking behaviour, openness to 

experience, and educational attainment, as well as a negative correlation with conscientiousness. 

The range of correlations suggests that genetic liability to lifetime cannabis use should be viewed in a 
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broader context of personality and mental health traits. Specifically, the substantial genetic 

correlations with risk-taking behaviour and openness to experience may indicate that liability to start 

using cannabis is an indication of one’s personality. The positive genetic correlation between lifetime 

cannabis use and educational attainment was unexpected and in contrast to a previous study that 

found a negative genetic correlation between cannabis dependence and educational attainment 11.  

We therefore investigated phenotypic associations of cannabis use with household income and fluid 

intelligence using UK-Biobank data. Within Caucasian participants of UK-Biobank (N=438,870), 

categorically rated household income was higher among lifetime cannabis users compared to non-

users (χ2[4]=2243, p=2.2e-16). Cannabis users also scored higher on fluid intelligence 

(t[50,856]=25.13, p<2e-16). These findings are in agreement with observations by Patrick et al.47, 

who showed that cannabis use is associated with higher childhood family social economic status 

(SES) in a survey of US families. Possibly, environments more often experienced by those with higher 

SES backgrounds, such as universities, increase accessibility to cannabis, explaining how a positive 

correlation between lifetime cannabis use and educational attainment in our study could arise.  

We also found a significant genetic correlation between cannabis use and schizophrenia 

(rg=0.24), which is in line with previous findings20,21, indicating that genetic risk factors for cannabis 

use and schizophrenia are positively correlated. As for the causal direction of this correlation, we 

found weak evidence for a causal link from cannabis use to schizophrenia and much stronger 

evidence for a causal link from schizophrenia to cannabis use. This suggests that individuals with 

schizophrenia have a higher risk to start using cannabis. These results are in contrast with results 

from a MR study by Vaucher et al.23, who found strong evidence for a causal effect from cannabis use 

to schizophrenia (causality in the other direction was not tested). However, our findings are in line 

with a MR study by Gage et al.24 who used genetic instruments similar to ours and also found weak 

evidence for a causal effect of cannabis use to schizophrenia and much stronger evidence for a causal 

effect in the other direction. Our findings may indicate that individuals at risk for developing 

schizophrenia experience prodromal symptoms or negative affect that make them more likely to 
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start using cannabis to cope or self-medicate48. The lack of strong evidence of a causal influence of 

cannabis use on schizophrenia may be due to the lower power of the instrumental variables. The 

instrumental variable based on schizophrenia SNPs explained 3.38% of variance in liability to 

schizophrenia. For cannabis use, the genetic instruments explained 1.12% and 0.15% of the variance 

in cannabis use for SNPs included with p<1e-05 and p<5e-08, respectively.  

The results of our study should be interpreted in view of its strength and limitations.  

Important strengths of this study include the analyses of the largest population sample to date which 

has led to a substantial increase in power to identify genetic variants associated with lifetime 

cannabis use. The association analyses were complemented with several follow-up analyses to 

further investigate the genetic basis of cannabis use and the extent to which the genetic aetiology of 

cannabis use overlaps with that of other complex phenotypes. Strong genetic correlations across a 

wide spectrum of traits are observed, confirming that lifetime cannabis use is a relevant measure of 

an individual’s vulnerability.  

Our study also has several limitations. First, lifetime cannabis use was analyzed as a 

dichotomous measure combining experimental and regular users in a single group. Additionally, the 

different samples varied substantially regarding the age of the participants, the prevalence of 

cannabis use, and the country’s policies regarding cannabis use. All these factors may introduce 

heterogeneity which may reduce the power to detect genetic associations. Secondly, power of some 

analyses may have been limited. For example, the MR analysis from cannabis to schizophrenia was 

based on an instrument of only 5 SNPs, and the summary statistics of some traits used for the 

genetic correlation analyses in LD-score regression (e.g. cannabis dependence) were based on a small 

sample size. Finally, some regions identified in the SNP-based analyses did not appear in the gene-

based analyses. In particular, inspection of the region around rs9773390 (in ZNF704) showed that the 

top SNP in this region was isolated, and that the SNP was only available in two of the three datasets 

(not in UK-Biobank). SNPs in LD with the top SNP that were included in all three datasets were not 

genome-wide significant. Thus, this result may not represent a robust association.  
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In summary, our GWAS of lifetime cannabis use, which is the largest to date, revealed 

significant SNP and gene associations in 16 regions, 14 of which have not been previously implicated 

in cannabis use. The most promising candidates for future functional studies are CADM2, NCAM1, 

and multiple genes located at 16p11.2. Our findings further indicated a causal influence of 

schizophrenia on cannabis use and substantial genetic overlap between cannabis use and use of 

other substances, mental health traits, and personality traits, including smoking and alcohol use, 

schizophrenia, ADHD, and risk-taking.  
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Online Methods 

 

Samples 

Data from three sources were obtained: ICC, 23andMe, and UK-Biobank (total N=184,765). We used 

existing GWAS summary statistics from the ICC, based on data from 35,297 individuals of European 

ancestry from 16 cohorts from Northern America, Europe, and Australia10. Details regarding ethical 

approval and informed consents of the ICC cohorts can be found in the supplementary material of 

the original ICC paper10. The overall sample included 55.5% females and the age ranged between 16 

and 87 years with a mean of 35.7 years. An average of 42.8% of the individuals had used cannabis 

during their lifetime. The second set of results was derived from the personal genetics company 

23andMe Inc.. Data were available for 22,683 individuals of European Ancestry who provided 

informed consent and answered surveys online according to a human subjects protocol approved by 

Ethical & Independent Review Services, a private institutional review board. The sample included 

55.3% females and the age ranged between 18 and 94 years with a mean of 54.0 years. Within the 

sample, 43.2% had used cannabis during their lifetime. The third sample was obtained from UK-

Biobank. Data were available for 126,785 individuals of European ancestry. The sample included 

56.3% females and the age ranged between 39 and 72 years with a mean of 55.0 years.  Within the 

sample, 22.3% had used cannabis during their lifetime. Ethical approval for UK-Biobank data 

collection procedures has been provided by the North West Multi-centre Research Ethics Committee 

(MREC), the National Information Governance Board for Health & Social Care (NIGB), and the 

Community Health Index Advisory Group (CHIAG). 

 

Phenotype and covariates 

For all participants, self-report data were available on whether the participant had ever used 

cannabis during their lifetime: yes (1) versus no (0). Measurement instruments and phrasing of the 

questions about lifetime cannabis use differed across the samples. For the ICC study this has been 
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described for each cohort in the original paper10. As part of their online questionnaire, 23andMe 

used the following phrase to examine lifetime cannabis use: ‘Have you ever in your life used the 

following: Marijuana?’. The UK-Biobank – as part of an online follow-up questionnaire - asked: ‘Have 

you taken CANNABIS (marijuana, grass, hash, ganja, blow, draw, skunk, weed, spliff, dope), even if it 

was a long time ago?’.  

 

Genotyping and imputation 

Genotyping was performed on various genotyping platforms and standard quality control checks 

were performed prior to imputation. Genotype data were imputed using the 1000 Genomes phase 1 

release reference set49 for ICC and 23andMe, and the Haplotype Reference Consortium reference 

set50 for the UK-Biobank sample. Information about samples, genotyping, imputation, and quality 

control is summarized in Supplementary Table S11 and S12. After quality control, the ICC sample 

comprised 35,297 individuals and 6,643,927SNPs, the 23andMe sample 22,683 individuals and 

7,837,888 SNPs, and the UK-Biobank sample 126,785 individuals and 10,827,718 SNPs. 

 

Statistics 

All statistical tests were two-sided and -unless stated otherwise- we used the conventional p-value of 

0.05 for significance testing. When necessary, Bonferroni correction for multiple testing was applied. 

Randomization and blinding procedures do not apply to our study design.  

 

Genome-wide association analyses and meta-analysis 

We conducted the GWASs in 23andMe and UK-Biobank samples separately. Associations between 

the binary phenotype and SNPs were tested using a logistic regression model accounting for the 

effects of sex, age, ancestry, and genotype batch (and age2 in the UK-Biobank sample). The GWAS for 

UK-Biobank was performed in PLINK 1.951 and for 23andMe using an internally developed pipeline. 

We then meta-analysed the GWAS results from ICC, 23andMe, and UK-Biobank. Prior to conducting 
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the meta-analysis, additional quality control of the summary statistics of each study was conducted 

in EasyQC52. Because of varying GWAS methods and sample characteristics (Supplementary Table 

S11), slightly different quality control criteria were used for the 3 samples (Supplementary Table 

S12). All 3 samples were aligned with the Haplotype Reference Consortium panel using the EasyQC R-

package52, to ensure that rs-numbers and chromosome-basepair positions referred to the exact same 

variants and to correct for strand effects. Variants were deleted if they had a minor allele frequency 

(MAF) diverging more than 0.15 from that in the reference panel. 

We applied genomic control to the three GWAS files prior to meta-analysis. Inflation due to 

stratification was estimated using LD-score regression, which can differentiate inflation due to 

population stratification from that due to real signal. The intercept was used to correct the standard 

errors (SEs) of the estimated effect sizes as follows: 𝑆𝐸𝐺𝐶 =  √𝐿𝐷𝑆𝐶 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ∗  𝑆𝐸2. The 

intercepts were b0= 1.005 (SE=0.007) for ICC, b0=1.004 (SE=0.007) for 23andMe, and b0=1.022 

(SE=0.008) for UK-Biobank. We then performed a fixed effects meta-analysis based on effect sizes 

(log odds ratios [OR]) and standard errors in METAL53. We applied the conventional p-value threshold 

of 5e-08 as indication of genome-wide significance. The meta-analysis was performed on 11,733,371 

SNPs that passed quality control. The combined sample size of the meta-analysis was 184,765 

individuals, although the sample size varied per SNP due to differential missingness across samples.  

Manhattan and QQ-plots for the GWAS, meta-analysis, and gene-based test results were 

created using the R-package qqman54. Regional plots were created using LocusZoom55, with varying 

window size for optimal visualization. 

 

Gene-based test of association  

Testing associations on the level of protein-coding genes can be more biologically meaningful and is 

more powerful (lower multiple testing burden) than testing solely on the level of SNPs. Gene-based 

analysis was used to test associations for the combined effect of SNPs  in protein-coding genes taking 

into account LD between the SNPs and the size of the gene. The analysis was conducted in MAGMA 
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(v 1.6) 25, which uses the 1000 Genomes reference-panel (phase 3, 2012) to control for LD. SNPs were 

mapped to genes if they were located in or within 10 kb from the gene, such that 5,710,956 SNPs 

(49%) could be mapped to at least one of 18,293 protein-coding genes in the reference panel. The 

significance threshold was set at p<2.74e-06 (Bonferroni corrected p-value for 18,293 tests). 

 

Identification of genes with differential expression levels between cannabis users and non-users  

We used S-PrediXcan to integrate eQTL (expression quantitative trait loci) information with our 

GWAS summary statistics to identify genes of which genetically predicted expression levels are 

associated with cannabis use26. Briefly, S-PrediXcan estimates gene expression weights by training a 

linear prediction model in samples with both gene expression and SNP genotype data. The weights 

are then used to predict gene expression from GWAS summary statistics, while incorporating the 

variance and co-variance of SNPs from an LD reference panel. We used expression weights for 48 

tissues from the GTEx Project (V7) and the DGN whole blood cohort generated by Gamazon et al.56, 

and LD information from the 1000 Genomes Project Phase 357. These data were processed with beta 

values and standard errors from the lifetime cannabis use GWAS meta-analysis to estimate the 

expression-GWAS association statistic. We used a transcriptome-wide significance threshold of 

p<1.92e-07, which is the Bonferroni corrected threshold when adjusting for all tissues and genes (i.e. 

N=259,825 gene-based tests in the GTEx and DGN reference sets). 

 We used the GTExPortal (https://www.gtexportal.org/home/; GTEx Analysis Release V7)58 to 

obtain gene expression levels of CADM2 across tissues. We used the same portal to plot a multi-

tissue eQTL comparison of the top SNP rs2875907. The multi-tissue eQTL plot shows both the single-

tissue eQTL p-value and the multi-tissue posterior probability from METASOFT59.  

 

SNP-based heritability analysis 

The proportion of variance in liability to cannabis use that could be explained by the aggregated 

effect of the SNPs (h2
SNPs) was estimated using LD-Score regression analysis60. The method is based on 
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the premise that an estimated SNP effect-size includes effects of all SNPs in linkage disequilibrium 

(LD) with that SNP. A SNP that tags many other SNPs will have a higher probability of tagging a causal 

genetic variant compared to a SNP that tags few other SNPs. The LD score estimates the amount of 

genetic variation tagged by a SNP within a specific population. Accordingly, assuming a trait with a 

polygenic architecture, SNPs with a higher LD-score have on average stronger effect sizes than SNPs 

with lower LD-scores. When regressing the effect size from the association analysis against the LD 

score for each SNP, the slope of the regression line provides an estimate of the proportion of 

variance accounted for by all analysed SNPs60. For this analysis, we included 1,179,898 SNPs that 

were present in all cohorts and the HapMap 3 reference panel. Standard LD scores were used as 

provided by Bulik-Sullivan et al.60 based on the Hapmap 3 reference panel, restricted to European 

populations61. 

 

Genetic correlations with other substances and mental health phenotypes 

We used cross-trait LD-Score regression62 to estimate the genetic correlation between lifetime 

cannabis use and 25 other traits using GWAS summary statistics. The genetic covariance is estimated 

using the slope from the regression of the product of z-scores from 2 GWASs on the LD score. The 

estimate represents the genetic covariation between the 2 traits based on all polygenic effects 

captured by SNPs. Summary statistics from well-powered GWASs were available for 25 relevant 

substance use and mental health traits, including nicotine, alcohol and caffeine use, schizophrenia, 

depression, bipolar disorder, and loneliness (Supplementary Table S6). To correct for multiple testing 

we adopted a Bonferroni corrected p-value threshold of significance of 0.002 (0.05/25). LD scores 

were based on the HapMap 3 reference panel, restricted to European populations.  

 

Causal association between cannabis use and schizophrenia: Two-sample Mendelian randomization 

We performed two-sample Mendelian randomization analyses (MR)22 to examine whether there was 

evidence for a causal relationship from cannabis use to schizophrenia and vice versa. Analyses were 
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performed with the R package of database and analytical platform MR-Base63 and with the gsmr R 

package which implements the GSMR (Generalized Summary-data based Mendelian Randomization) 

method64. 

MR utilizes genetic variants strongly associated with an exposure variable as an ‘instrument’ 

to test for causal effects of the exposure on an outcome variable. This approach minimizes the risk of 

spurious findings due to confounding or reverse causation present in observational studies, provided 

that the following assumptions are met: 1) the genetic instrument is predictive of the exposure 

variable, 2) the genetic instrument is independent of confounders, and 3) the genetic instrument is 

not directly associated with the outcome variable, other than by its potential causal effect through 

the exposure (i.e. there is no directional pleiotropy)65. Two-sample MR refers to the application of 

MR methods to well-powered summary association results estimated in non-overlapping sets of 

individuals22 in order to reduce instrument bias towards the exposure-outcome estimate. 

Bi-directional causal effects were tested between lifetime cannabis use and schizophrenia. 

We used genetic variants from our cannabis GWAS as well as those from the largest schizophrenia 

GWAS66 to serve as instruments (gene-exposure association). For lifetime cannabis use we used 2 

genetic instruments; 1) an instrument including all independent genetic variants that were genome-

wide significantly associated with lifetime cannabis use (p<5e-08; 5 SNPs), and 2) an instrument 

including independent variants with a more lenient significance threshold (p<1e-05; 69 SNPs). For 

schizophrenia we used one genetic instrument,  including independent genetic variants that were 

genome-wide significantly associated with schizophrenia (instrument p<5e-08; 109 SNPs). 

Information on the included SNPs in the genetic instruments is provided in Supplementary Table S7.  

Genetic variants were pruned (R2<0.001) and the remaining genetic variants (or proxies 

[R2≥0.8] when an instrumental SNP was not available in the other GWAS) were then identified in 

GWAS summary-level data of the outcome variable (gene-outcome association). Note that not all 

independent SNPs identified in the exposure dataset have been included in the analyses, because not 
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all exposure SNPs or their proxies were also available in the outcome dataset and because some 

SNPs were palindromic (see Supplementary Table S7). 

Evidence for both a gene-exposure and a gene-outcome association suggests a causal effect, 

provided that the MR assumptions are met. To combine estimates from individual genetic variants 

we applied Inverse-Variance Weighted (IVW) linear regression67. In addition, 4 sensitivity analyses 

more robust to horizontal pleiotropy were applied, each relying on distinct assumptions regarding 

instrument validity: Weighted Median68, MR-Egger SIMEX27, Weighted Mode69, and Generalized 

Summary-data based Mendelian Randomization (GSMR)64. These sensitivity analyses rely on 

orthogonal assumptions, making their inclusion important for triangulation. The Weighted Median 

approach provides a consistent estimate of the causal effect even when up to 50% of the weight 

comes from invalid instruments68. MR-Egger regression applies Egger’s test to MR instruments that 

consist of multiple genetic variants27,28. MR-Egger provides a consistent estimate of the causal effect, 

provided that the strength of the genetic instrument (the association between SNPs and exposure) 

does not correlate with the effect the instrument has on the outcome (i.e. the InSIDE assumption:  

Instrument Strength Independent of Direct Effect). This is a weaker assumption than the assumption 

of no pleiotropy. MR-Egger may, however, be biased when the NOME (NO Measurement Error) 

assumption is violated – i.e. the assumption that the SNP-exposure associations are known rather 

than estimated. Violation of NOME can be quantified with the I2 statistic, which ranges between 0 

and 1. A value below 0.9 indicates a considerable risk of bias. This bias can be corrected for with MR-

Egger simulation extrapolation SIMEX70. Since I2 ranged between 0.7-0.9 for our analyses, we report 

results from MR-Egger SIMEX in Table 3. The Weighted Mode methods can produce an unbiased 

result, as long as the most common causal effect estimate is a consistent estimate of the true causal 

effect: the Zero Modal Pleiotropy Assumption (ZEMPA)69. Finally, we performed GSMR, a method 

which leverages power from multiple genetic variants while accounting for LD between these 

variants64. Because GSMR accounts for LD, genetic variants that were included in GSMR instruments 

were pruned at a higher threshold of R2<0.05 (instead of R2<0.001 for the other MR analyses). Zhu et 
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al. (2018, 64) showed that the gain of power from including SNPs in higher LD than 0.05 is limited. 

GSMR also allows extra filtering for SNPs that are suspected to have pleiotropic effects on both the 

exposure and the outcome (HEIDI filtering). 

To calculate variance explained (R2) by the instrument, first we selected a single SNP to 

obtain an estimate of the phenotypic variance, var(y). Assuming effect sizes are normally distributed, 

we used the quantile function of the student t-distribution to transform the p-value of the SNP 

association into an estimate of t, t .̂ The number of degrees of freedom and N were based on the 

effective sample size (4/(1/cases+1/controls)). The effective sample sizes were estimated at 

N=130,072 for schizophrenia and N=180,934 for cannabis use. The corresponding value of r was 

calculated using the formula  t=r / (sqrt[(1- R2)/(N-2)] and obtained the R2 that corresponds to t with 

the online tool http://vassarstats.net/rsig.html. Subsequently, we approximated the variance of the 

phenotype y using var (y)=(2*MAF*(1-MAF)*β2)/ R2 in which MAF denotes the Minor Allele 

Frequency and  β the effect size of the specific SNP. Finally, we used the estimated value of var (y) to 

calculate the R2 for the remaining SNPs of interest using R2=(2*MAF*(1-MAF)*β2)/var(y); and 

summed the R2 of all SNPs of interest included in the instrumental variable to obtain an estimate of 

the total R2 explained by the instrument. 

 

Data availability 

General information on study design and data availability are included in the Life Sciences Reporting 

Summary. Summary statistics based on the UK-Biobank and ICC samples and full results from the top 

10,000 SNPs based on all three subsamples (i.e. including the 23andMe sample) will be available via 

LDhub (http://ldsc.broadinstitute.org/gwashare/). Codes and scripts are available upon reasonable 

request. Full summary statistics can only be provided after permission by 23andMe.   
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Tables 

   

 

Table 1. Association results of 8 independent SNPs that are significantly associated with lifetime cannabis use 

SNP rs Chr Gene BP A1 A2 Freq A1 N β SE p-value Direction 

rs2875907 3p12.1 CADM2 85,518,580 A G 0.352 181,675 0.070 0.009 9.38e-17 +++ 

rs1448602 3p12.1 CADM2 85,780,454 A G 0.756 184,765 -0.062 0.010 6.55e-11 --- 

rs7651996 3p12.1 CADM2 85,057,349 T G 0.477 184,765 0.049 0.008 2.37e-09 +++ 

rs10085617 7p22.2 SDK1 3,634,711 A T 0.416 184,765 0.046 0.008 2.93e-08 +++ 

rs9773390 8q21.13 ZNF704 81,565,692 T C 0.933 44,595 -0.171 0.029 5.66e-09 --? 

rs9919557 11q23.2 NCAM1 112,877,408  T C 0.614 180,428 -0.055 0.009 9.94e-11 --- 

rs10499 16p11.2 RABEP2, 

ATP2A1 

28,915,527 A G 0.651 179,767 0.053 0.009 1.13e-09 +++ 

rs17761723 17p13.3 SMG6 2,107,090 T C 0.346 184,765 0.047 0.009 3.24e-08 +++ 

Independent hits were defined as R2<0.01, window size 250 kb. The p-value threshold was set at p<5e-08 (conventional 

genome-wide significant threshold; significance was tested two-sided).  Chromosomal region (Chr), gene the SNP is 

located in or the nearest gene (within 500kb; Gene), base pairs location SNP on Hg19 (BP), allele 1 (A1), allele 2 (A2), 

frequency of allele 1 (Freq A1), number of individuals for which variant was included (N), beta coefficient of the effect 

allele A1 (β), standard error (SE).  

Direction per sample: allele A1 increases (+) or decreases (-) liability for cannabis use, or sample did not contribute to this 

SNP (?). Order of samples: ICC, 23andMe, UK-Biobank. Independent SNPs were selected as SNPs with linkage 

disequilibrium R2<0.1 using a window size of 250 kB.  

SNP rs9773390 was not present in UK-Biobank sample and its effect is rather isolated (see Figure 1b and 2); it might not 

represent a robust association. 
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Table 2. Genes significantly associated with lifetime cannabis use, as identified in the MAGMA 

and/or S-PrediXcan analyses 

Locus Top genes BP start BP stop #SNPs Z p-value 

1p36.31 KLHL21 6,640,784 6,672,958 96 4.81 7.65e-07 

 PHF13 6,663,756 6,694,093 84 4.61 1.99e-06 

2p12 LRRTM4 76,969,849 77,754,502 3621 5.19 1.03e-07 

3p12.1 CADM2 85,003,133 86,128,579 4287 8.96 1.59E-19 

4p16.3 MSANTD1 3,240,766 3,283,465 231 4.59 2.22e-06 

5q12.3 HTR1A 63,245,875 63,268,119 64 4.57 2.41e-06 

6p12.1 

 

BEND6 56,814,773 56,897,450 252 5.22 2.60e-08 

KIAA1586 56,906,343 56,925,023 58 5.09 1.75e-07 

RAB23 57,046,790 57,092,112 86 5.86 2.32e-09 

6q21 REV3L 111,610,234 111,814,421 539 4.61 1.99e-06 

6q25.3 ARID1B 157,093,980 157,536,913 1344 5.59 1.15e-08 

8q24.3 
ADGRB1 

143,535,377 143,636,369 275 4.71 1.23e-06 

10q24.32-33 

 

 

NEURL 
103,493,890 103,592,552 17 5.22 1.83e-07 

BORCS7 
104,603,967 104,634,718 87 4.72 1.19e-06 

AS3MT 104,624,183 104,666,656 177 5.54 1.53e-08 

CNNM2 104,673,075 104,843,344 549 4.80 8.02e-07 

NT5C2 104,842,774 104,958,063 389 4.81 7.64e-07 

11q23.2 NCAM1 112,826,969 113,154,158 1263 6.21 2.63e-10 

12q24.12 

 

 

 

BRAP 112,069,950 112,133,790 97 4.87 5.48e-07 

ACAD10 112,118,857 112,199,911 141 5.22 8.96e-08 

ALDH2 112,199,691 112,252,789 112 4.96 3.61e-07 

MAPKAPK5 112,275,032 112,336,228 195 4.87 5.58e-07 
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TMEM116 112,364,086 112,456,023 222 4.94 3.96E-07 

16p11.2/ 

16q12.1 

 

 

 

 

SBK1 28,303,840 28335170 23 5.47 4.52e-08 

NPIPB7 28,467,693 28481868 10 5.44 5.46e-08 

CLN3 28,483,600 28,510,897 62 5.84 2.56e-09 

APOBR 28,500,970 28,515,291 49 5.66 7.56e-09 

IL27 28,505,683 28,523,155 57 5.66 7.48e-09 

CCDC101 28,560,249 28,608,111 181 4.90 4.87e-07 

SULT1A2 28,603,264 28,608,391 25 5.40 6.66e-08 

SULT1A1 28,605,196 28,623,625 51 5.30 1.14e-07 

CDC37P1 28,700,176 28,701,611 31 5.26 1.42e-07 

EIF3C 28,722,782 28,747,053 14 5.37 8.08-08 

EIF3CL 28,722,785 28,747,053 23 5.47 4.55e-08 

NPIPB9 28,742,728 28,772,850 8 5.41 6.29e-08 

ATXN2L 28,829,369 28,853,558 89 5.85 2.50e-09 

TUFM 28,848,732 28,862,729 55 5.83 2.83e-09 

SH2B1 28,867,939 28,890,534 71 5.72 5.46e-09 

ATP2A1 28,884,192 28,920,830 89 5.97 1.20e-09 

NFATC2IP  
28,962,318 28,977,767 8 5.35 8.82e-08 

RABEP2 28,910,742 28,942,339 71 5.43 2.84e-08 

17p13.3 SRR 2,202,244 2,233,553 121 5.33 5.03e-08 

TSR1 2,220,972 2,245,678 90 5.59 1.12e-08 

18q11.2 C18orf8 21,078,434 21,118,311 132 5.30 5.65e-08 

NPC1 21,081,148 21,171,581 257 5.30 5.87e-08 

For the gene-based test, the p-value was set at p<2.74e-06, Bonferroni corrected p-value threshold 

of p<0.05 adjusted for 18,293 tests. For the S-PrediXcan analysis, p< 1.92e-07, Bonferroni corrected 
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p-value threshold of p<0.05 adjusted for 259,825 tests. The MAGMA statistical test is based on 

multiple regression. Significance was tested two-sided in both analyses. Genes that were significant 

only in the S-PrediXcan analysis are hightlighted in grey. Location in base pairs (hg19) at beginning 

and end of gene (BP start/stop), number of SNPs included in the gene (#SNPs), test-statistic for the 

test of association (Z). 

The CDC37P1 gene was significant in two different tissues; information presented here is based on 

the association with the smallest p-value. For full results, see Supplementary Table S4. 
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Table 3. Results of the bidirectional two-sample Mendelian randomization analysis between lifetime cannabis use and schizophrenia including results of 4 

sensitivity analyses 

 Cannabis-Schizophrenia  

(p<5e-08, 5 SNPs) 

Cannabis-Schizophrenia  

(p<1e-05, 69 SNPs*) 

Schizophrenia-Cannabis  

(p<5e-08, 109 SNPs**) 

 B SE (B) OR p B SE (B) OR p B SE (B) OR p 

IVW 0.039 0.158 1.04 0.806 0.091 0.051 1.10 0.074 0.151 0.046 1.16 0.001 

Weighted Median -0.048 0.105 0.95 0.649 0.069 0.049 1.07 0.156 0.163 0.049 1.17 0.001 

MR-Egger SIMEX -0.044 0.190 0.96 0.827 0.106 0.110 1.11 0.340 0.071 0.293 1.07 0.810 

Weighted  Mode -0.084 0.125 0.92 0.536 0.016 0.071 1.02 0.823 0.315 0.178 1.37 0.080 

GSMR after HEIDI 

filtering 

- - - - 0.192 0.080 1.21 0.017 0.237 0.038 1.27 5.36e-10 

Significant results (p<0.05; tested two-sided) are shown in bold. Inverse Variance Weighted regression analysis (IVW); MR-Egger simulation extrapolation 

(SIMEX); Generalized Summary-data-based Mendelian Randomization (GSMR; HEIDI outlier analysis detects and eliminates from the analysis instruments 
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that show significant pleiotropic effects on both risk factor and disease); risk coefficient representing the change in outcome for a one-unit increase in the 

exposure variable (B); standard error of the B (SE [B]); odds ratios represent the odds of schizophrenia for lifetime cannabis users versus non-users (when 

cannabis is the exposure) or the odds of lifetime cannabis use for those with a schizophrenia diagnosis versus those without (when schizophrenia is the 

exposure) (OR); p-value (p). *Number of SNPs in instrument was 74 for the GSMR analysis; ** Number of SNPs in instrument was 102 for the GSMR analysis. 
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Figure captions 

 

Figure 1. a) QQ-plot of the distribution of the -log 10(p-values) observed for the SNP associations 

with lifetime cannabis use against those expected under the null hypothesis 

Expected -log 10(p-values) under the null hypothesis are indicated by the red line. Genomic inflation is 

indicated with λ in the plot. There was no evidence for population stratification (LD score regression 

b0=1.00, SE=0.007).  

b) Manhattan plot for the SNP-based GWAS meta-analysis 

Results are based on N=184,764 individuals and NSNPs=11,733,371 SNPs. The SNP with the lowest p-

value per independent (R2<0.1, window size 250 kb) genome-wide significant locus is annotated (red 

circle with rs-number). The red line represents the conventional genome-wide significance threshold 

of p<5e-08. The statistical test comprised linear regression; significance was tested two-sided.  
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Figure 2. Regional plots of the genome-wide significant SNPs 

Underlined in yellow are the genes that were significant in the gene-based test (tested two-sided; 

p<2.74e-06, Bonferroni corrected p-value threshold of p<0.05 adjusted for 18,293 tests); underlined 

in green the genes that were identified in the S-PrediXcan analysis only (p<1.92e-07, Bonferroni 

corrected p-value threshold of p<0.05 adjusted for 259,825 tests). Colors of the dots indicate the 

level of LD (blue for low and red for high LD) with the lead SNP (purple; independent defined as 

R2<0.1, window size 250 kb). 
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Figure 3. a) QQ-plot of the distribution of the -log10(p-values) for the gene-based association with 

lifetime cannabis use against those expected under the null hypothesis 

 Expected -log 10(p-values) under the null hypothesis are indicated by the red line. Genomic inflation 

is indicated with λ. The gene-based test was performed in MAGMA, which uses multiple regression 

(tested two-sided).  

b) Manhattan plot for the gene-based test of association 

The red line represents the genome-wide significance threshold of p<2.74e-06, (Bonferroni corrected 

p-value threshold of p<0.05 adjusted for 18,293 tests; NSNPs=5,710,956 were mapped to at least one 

gene). The top-gene (with the lowest p-value) per locus is annotated (red circle with gene symbol).  
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Figure 4. Genetic overlap between lifetime cannabis use and other phenotypes 

Blue dots represent point estimates of the genetic correlation, blue error bars represent 95% 

confidence intervals and red asterisks indicate significant associations after correction for multiple 

testing (two-sided p<0.002, Bonferroni corrected p-value threshold of p<0.05 adjusted for 25 tests). 

 

 

MDD=Major Depressive Disorder; ADHD=Attention Deficit Hyperactivity Disorder; BMI=Body Mass 

Index 

 

 


