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ABSTRACT: A room-temperature-stable crystalline 2H-phos-

phirene (1), was prepared by treatment of an electrophilic di-

amidocarbene with tert-butylphosphaalkyne. Compound 1 is 

shown to react as a vinylphosphinidene generated via phosphirene-

phosphinidene rearrangement. Thermolysis is shown to effect C-N 

bond scission while reactions with C6Cl4O2 or (tht)AuCl affords 

formal oxidation of the phosphindene center and the phos-

phinidene-insertion into an aromatic C-C bond of a mesityl group 

respectively. The latter reaction is the first example of a phosphorus 

analog of the Büchner ring expansion reaction. 

  The remarkable reactivity of highly strained molecules has fas-

cinated the chemical community for over a century.1 In 1922, 

Dem’yanov and Doyarenko,2 reported the first preparation of cy-

clopropene and since this discovery, a myriad of strained alkenes 

with diverse architectures have been prepared. Since many have 

been shown to relieve the strain via rearrangement (Figure 1a), or 

via dimerization,3 numerous applications of these strained systems 

have emerged in disciplines ranging from synthetic chemistry to 

biological sciences.3d, 4  

Replacing one carbon atom of a cyclopropene with phosphorus 

yields a phosphirene (Figure 1b). Placement of the double bond be-

tween the carbon atoms provides a 1H-phosphirene in which the 

phosphorus center is bonded to two carbon atoms and a hydrogen 

atom.5 Alternatively, placement of the double bond between the 

phosphorous center and a carbon atom generates a 2H-phos-

phirene.6 Attempts to synthesize stable 2H-phosphirenes dates back 

to the late 1980s but remain challenging, as rearrangement to the 

thermodynamically favored 1H-phosphirene often occurs.7  In 

1987, the Regitz group isolated the first 2H-phosphirene A (color-

less liquid at room temperature) by irradiation-induced elimination 

of dinitrogen from a spirocyclic 3H-1,2,4-diazaphosphole at -40 

°C.6a Related work by Bertrand et al. described 2-phosphino-2H-

phosphirene B by treatment of an acyclic phosphinosilylcarbene 

with tert-butylphosphaalkyne (tBuC≡P) (Figure 1c).6b B is suffi-

ciently long lived in solution at -30 °C to permit spectroscopic char-

acterization, although it was found to convert to 1λ5,2λ3-diphos-

phete over 3 h at ambient temperature.  

It is also interesting to note that the literature describing the re-

activity of cyclopropene derivatives is known to involve cyclopro-

pene-carbene rearrangements (Figure 1a),3b, 3c skeletal rearrange-

ments leading to vinylidenes and vinylcarbenes, or 1,2-  

 

Figure 1. (a) Cyclopropene-carbene rearrangements. (b) 1H-Phos-

phirene-2H-phosphirene rearrangements. (c) Isolable 2H-phos-

phirenes A and B. (d) Pyrolysis of a vinylphosphirane C. (e) Büch-

ner ring expansion. (f) 2H-Phosphirene-vinylphosphinidene rear-

rangements.  
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migrations leading to cyclopropylidenes.8 Mathey et al. reported 

the pyrolysis of a vinylphosphirane C, leading to a vi-

nylphosphinidene intermediate, which subsequently convert to 

phosphapropyne (Figure 1d).9 These observations prompt the ques-

tion: does the strained C2P ring in phosphirenes undergo analogous 

reactions of cyclopropene-carbene rearrangements, affording a 

phosphirene-phosphinidene rearrangement (Figure 1b) offering ac-

cess to a reactive phosphinidene?  It is noteworthy that aside from 

the phosphinidene transfer reagents,4b, 10 the most commonly used 

strategies for generation of extremely reactive phosphinidenes in-

volve the thermolysis or photolysis of suitable precursors, includ-

ing cyclic oligophosphines,11 P-substituted phosphiranes,12 phos-

pha-Wittig reagents,13 dibenzo-7-phosphanorbornadiene,14 and 

(phosphino)phosphaketene.15 In the present work, we report the 

preparation of a 2H-phosphirene 1, and its thermally or chemically 

induced rearrangements (Figure 1f). Of particular interest is that 1 

reacts via an elusive vinylphosphinidene intermediate inserting into 

a C-N bond or an aromatic C-C bond of a mesityl group. The latter 

reaction represents the first phosphorus analog of the Büchner ring 

expansion (Figure 1e).16 

Reaction of the highly electrophilic cyclic diamidocarbene (Mes-

DAC)17 with an equimolar portion of tBuC≡P at room temperature 

in benzene resulted in consumption of the starting material within 

10 min (Figure 2a). Compound 1 was isolated as a white powder in 

88% yield. The 31P NMR spectrum of 1 displays a sharp signal at 

133.6 ppm, which is more downfield than A (71.7 ppm)6a or B (48.1 

ppm).6b Single crystals of 1 (Figure 2b) suitable for an X-ray dif-

fraction study were grown by slow vapor diffusion of pentane into 

a saturated CH2Cl2 solution. These data confirmed the formulation 

as (MesDAC)(tBuC=P) in which the C2P three-membered ring ap-

pears to be a scalene triangle with the C(1)-P, C(2)-P, and C(1)-

C(2) bond lengths of 1.913(4) Å, 1.656(4) Å, and 1.461(5) Å, re-

spectively. The C(1)–P–C(2) angle (47.7(1)°) is more acute than 

those of C(2)-C(1)-P (56.9(2)°) and C(1)-C(2)-P (75.4(2)°). The 

bond lengths of C(1)-P (1.882(9) Å) and C(2)-P (1.635(9) Å) in 

Regitz’s 2H-phosphirene tungsten pentacarbonyl complex are 

shorter compared to those of 1, while the C(1)-C(2) bond length 

(1.48(1) Å) is longer.6a  It is interesting to note that  2H-phospha-

silirenes18 and 2H-phosphagermirenes19 have been prepared by an 

analogous reaction of silylene or germylene with phosphaalkynes. 

Nonetheless, 1 is the first crystallographically characterized free 

2H-phosphirene. 

 

Figure 2. (a) Synthesis of 1. (b) POV-ray depiction of the molecu-

lar structure of 1 with H atoms omitted for clarity. C, black; N, blue; 

O, red; P, orange. (c) Isosurface of the HOMO and LUMO of 1 

(isovalue = 0.05). 

 

The bonding in 1 was probed with density functional theory 

(DFT) calculations, coupled with natural bond orbital (NBO) anal-

ysis (M06-2X/TZVP//M06-2X/Def2-SVP). The C(1) (0.18 a.u.) 

and P (0.61 a.u.) atoms are positively charged, while the C(2) atom 

is negatively charged (-0.38 a.u.). The Wiberg bond indices (WBIs) 

of C(1)-C(2), C(1)-P and C(2)-P are 1.09, 0.83, and 1.69, respec-

tively, demonstrating the multiple bond nature of C(2)-P. Moreo-

ver, the HOMO primarily involves the degeneratebonding orbitals 

of the C2P ring, whereas the LUMO is principally the C(2)-P π*-

antibonding orbitals (Figure 2c). This stands in contrast to the ob-

servation for acyclic phosphaalkenes where the HOMO is the C-P 

π orbital.20  

A toluene solution of 1 was heated at 110 °C for 12 h. The 31P 

NMR spectrum showed that 1 quantitatively converted into a new 

species 2 (72.5 ppm) (Figure 3a). Slow evaporation of a saturated 

toluene solution of 2 allowed for the formation of single crystals 

suitable for an X-ray diffraction study. 2 was determined to be a 

rearrangement product, in which the 2H-phosphirene moiety un-

derwent a ring-expansion reaction to form a rare example of a sta-

ble 1,2-dihydro-1,2λ3-azaphosphete (Figure 3b).21 The C(2)-P bond 

distance (1.835(7) Å) becomes significantly longer than in 1 

(1.656(4) Å) and is in the range for C-P single bonds.22 Concomi-

tantly, the C(1)-C(2) bond shortens from 1.461(5) Å in 1 to 

1.360(9) Å in 2.  

 

Figure 3. (a) Proposed reaction pathway for thermolysis of 1. (b) 

POV-ray depiction of the molecular structure of 2 with H atoms 

omitted for clarity. C, black; N, blue; O, red; P, orange. 

   



 

 

 

Figure 4. (a) Reactions of 1 with 3,4,5,6-Tetrachloro-1,2-benzo-

quinone leading to 3 and 4. POV-ray depiction of the molecular 

structures of (b) 3 and (c) 4 with H atoms omitted for clarity. C, 

black; N, blue; O, red; P, orange; Cl, green. 

 

The formation of 2 can be formally viewed as an insertion of a 

transient phosphinidene center into a C-N bond (Figure 3a), alt-

hough the precise mechanistic picture may be more complicated. 

The electronic ground state of the vinylphosphinidene is a triplet 

similar to that previously reported for arylphosphinidenes.12 This 

has been attributed to the absence of π-donor substituents.15a, 23 The 

P-C(2) and C(1)-C(2) distances are computed to be 1.782 Å and 

1.396 Å, respectively while the Mulliken spin density of the vi-

nylphosphinidene is computed to be primarily localized at P center 

(1.72), consistent with the diradical nature of P. Subsequent reac-

tion of this transient phosphinidene with the proximal C-N bond 

affords 2. 

 

Figure 5. (a) Reaction of 1 with (tht)AuCl affording 5. (b) POV-

ray depiction of the molecular structure of 5 with H atoms omitted 

for clarity. C, black; N, blue; O, red; P, orange; Au, yellow; Cl, 

green. 

 

Figure 6. Free energy reaction profile (kcal/mol) for the formation 

of 5. In the 3D structures, selected bond lengths are given in ang-

stroms. 

 

Efforts to chemically induce phosphirene-phosphinidene rear-

rangement were undertaken (Figure 4a). The reaction of 1 with a 

stoichiometric amount of 3,4,5,6-tetrachloro-1,2-benzoquinone (o-

O2C6Cl4),10c, 24 in CH2Cl2 showed the formation of a single product. 

The new product 3, isolated in 85% yield, showed a 31P NMR sig-

nal at 214.7 ppm, which is consistent with values determined for 

trivalent dioxaphospholes.24-25 An X-ray diffraction study con-

firmed the formulation of 3 as (MesDAC)(tBuCP(O2C6Cl4)) (Figure 

4b). Altering the stoichiometry to a 1:2 ratio of 1:o-O2C6Cl4 or 

treatment of 3 with another equivalence of o-O2C6Cl4 gave product 

4 in 88 and 90% yields respectively. Compound 4 exhibits a 31P 

NMR signal at -1.2 ppm. This shift is significantly down-field com-

pared to those of 1 (133.6 ppm) and 3 (214.7 ppm). A single crystal 

X-ray diffraction study of 4 unambiguously revealed it to be (Mes-

DAC)(tBuCP(O2C6Cl4)2 (Figure 4c), the penta-coordinated phos-

phorus center was produced by the Ramirez reaction.26 The prod-

ucts 3 and 4 can be formally viewed as the sequential oxidation 

products of the vinylphosphinidene center induced by o-O2C6Cl4. 

Indeed, the approach of o-O2C6Cl4 toward the C2P ring in 1 results 

in the transition state of phosphirene-phosphinidene rearrangement 

with the activation barrier of 22.5 kcal/mol (See SI), leading to the 

formation of 3 (-43.5 kcal/mol) 

 Transition-metal complexes are capable of inducing ring open-

ing of cyclopropene derivatives.27 Moreover, the group of Mathey 

investigated the cycloaddition reactivity of transient vi-

nylphosphinidene tungsten complexes.28 Thus we probed the stoi-

chiometric reaction of 1 with (tht)AuCl (Figure 5a). Stirring the re-

agents in CH2Cl2, rapidly led to the formation of a single product 5 



 

 

(11.1 ppm) which was isolated as a white powder in 89% yield, as 

observed by 31P NMR. The 1H NMR spectrum of the isolated prod-

uct, 5 (CDCl3), showed a diagnostic doublet integrating for one 

proton (JP-H = 39.6 Hz) in the alkene region (δ = 6.26 ppm). Layer-

ing pentane onto a concentrated fluorobenzene solution of 5 al-

lowed for the formation of single crystals suitable for an X-ray dif-

fraction study. Surprisingly, 5 was shown to contain a newly 

formed phosphorus-containing seven-membered ring arising from 

the insertion of a phosphinidene into one of the mesityl groups (Fig-

ure 5b). At the same time, the phosphorus atom is coordinated to a 

AuCl fragment. The C6P seven-membered ring adopts a boat con-

figuration with the presence of alternating C-C and C=C bonds and 

a pyramidalized phosphorus center. Compound 5 is a tricyclic sys-

tem with a 2,3-dihydro-1H-1,3-azaphosphole ring fused to both the 

C6P ring and the DAC ring.  

The formation of 5 was further investigated via DFT calculations 

(SMD-M06-2X/Def2-TZVP//M06-2X/Def2-SVP). Interestingly, 

simple coordination of 1 with AuCl affords an intermediate IN1 

(7.8 kcal/mol) with a singlet ground state (the triplet of IN1 is 25.6 

kcal/mol higher in energy), in which the C1-P separation has been 

significantly elongated to 2.558 Å in comparison with 1 (1.919 Å). 

This phenomenon is mainly attributed to the donation of electron 

density from the HOMO of 1 to the strongly Lewis acidic Au cen-

ter. Subsequently, a transition state TS1 involving a phosphirene-

phosphinidene rearrangement and an electrophilic attack of a me-

sityl ring by the phosphorus center is identified with an activation 

barrier of 19.7 kcal/mol, leading to the dearomatization of the me-

sityl group and the formation of a zwitterionic intermediate IN2 

(5.9 kcal/mol). The following addition of phosphinidene to one of 

the aromatic C-C bond via TS2 (13.6 kcal/mol)  gives phosphirane 

AuCl IN3 (5.4 kcal/mol). Finally, the cleavage of the C-C bond is 

achieved in TS3 (8.0 kcal/mol) to form 5 (-4.7 kcal/mol). Notably, 

this observed ring expansion pathway is similar to the pathway ob-

served for the Büchner ring expansion in which carbene intermedi-

ates stepwise split aromatic C-C bonds.16a 

In summary, we have reported the full characterization of an iso-

lable free 2H-phosphirene.  This species (1) is shown to react via a 

phosphirene-phosphinidene rearrangement, via an unprecedented 

vinylphosphinidene intermediate. Both the thermolysis of 1 and the 

reaction of 1 with (tht)AuCl proceed through a transient vi-

nylphosphinidene intermediate that undergoes C-N and aromatic 

C-C bond activations to give compounds 2 and 5, respectively. The 

latter reaction is, to our knowledge, the first example of a phospho-

rus analog of the Büchner ring expansion. These results provide 

access to an elusive and reactive vinylphoshpinidene. The reactiv-

ity of 1 with other electrophiles and more detailed mechanistic 

studies are the subjects of ongoing research. 
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