
Article

Automatically Identifying Code Features for 
Software Defect Prediction: Using AST N-grams

Shippey, Thomas, Bowes, David and Hall, Tracy

Available at http://clok.uclan.ac.uk/24433/

Shippey, Thomas, Bowes, David and Hall, Tracy (2018) Automatically Identifying Code 
Features for Software Defect Prediction: Using AST N-grams. Information and Software 
Technology . ISSN 0950-5849  

It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.1016/j.infsof.2018.10.001

For more information about UCLan’s research in this area go to 
http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to 
http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including
Copyright law.  Copyright, IPR and Moral Rights for the works on this site are retained 
by the individual authors and/or other copyright owners. Terms and conditions for use 
of this material are defined in the http://clok.uclan.ac.uk/policies/

CLoK
Central Lancashire online Knowledge
www.clok.uclan.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CLoK

https://core.ac.uk/display/161510438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://clok.uclan.ac.uk/policies/
http://www.uclan.ac.uk/research/
http://www.uclan.ac.uk/researchgroups/


 

Accepted Manuscript

Automatically Identifying Code Features for Software Defect
Prediction: Using AST N-grams

Thomas Shippey, David Bowes, Tracy Hall

PII: S0950-5849(18)30205-2
DOI: https://doi.org/10.1016/j.infsof.2018.10.001
Reference: INFSOF 6057

To appear in: Information and Software Technology

Received date: 20 February 2018
Revised date: 4 September 2018
Accepted date: 2 October 2018

Please cite this article as: Thomas Shippey, David Bowes, Tracy Hall, Automatically Identifying Code
Features for Software Defect Prediction: Using AST N-grams, Information and Software Technology
(2018), doi: https://doi.org/10.1016/j.infsof.2018.10.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2018.10.001
https://doi.org/10.1016/j.infsof.2018.10.001


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Automatically Identifying Code Features for Software Defect

Prediction: Using AST N-grams

Thomas Shippeya, David Bowesb, Tracy Hallc

aUniversity of Hertfordshire
bUniversity of Central Lancashire

cLancaster University

Abstract

Context: Identifying defects in code early is important. A wide range of static code metrics
have been evaluated as potential defect indicators. Most of these metrics offer only high
level insights and focus on particular pre-selected features of the code. None of the currently
used metrics clearly performs best in defect prediction.
Objective: We use Abstract Syntax Tree (AST) n-grams to identify features of defective
Java code that improve defect prediction performance.
Method: Our approach is bottom-up and does not rely on pre-selecting any specific features
of code. We use non-parametric testing to determine relationships between AST n-grams
and faults in both open source and commercial systems. We build defect prediction models
using three machine learning techniques.
Results: We show that AST n-grams are very significantly related to faults in some systems,
with very large effect sizes. The occurrence of some frequently occurring AST n-grams in a
method can mean that the method is up to three times more likely to contain a fault. AST
n-grams can have a large effect on the performance of defect prediction models.
Conclusions: We suggest that AST n-grams offer developers a promising approach to iden-
tifying potentially defective code.

1. Introduction

The aim of this paper is to automatically identify features of faulty Java code and use
these features to improve defect prediction performance. Our approach is based on analysing
the Abstract Syntax Tree (AST) for a piece of code. AST n-grams are sets of Java AST
nodes. These AST n-grams define the low level programming constructs that have been
used in a piece of code and the order in which these are used. We analysed the code to
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identify AST n-grams in nine open source systems and two commercial telecommunication
Java systems. We report many AST n-grams that are significantly associated with faults1

across all eleven systems. We show that including AST n-grams in defect prediction models
improves predictive performance.

Traditionally studies have focused on investigating which static features of code are
associated with defects [31]. These previous approaches are top-down, focusing on a partic-
ular pre-selected set of code features, for example features associated with coupling or size.
Many other features of code that may be fault-prone are not considered in such top-down
approaches. The performance of these traditional defect prediction models seems to have
reached a performance ceiling [49]. In response to this ceiling a new bottom-up approach to
identifying the defective features of code is emerging. This approach automatically learns
the defective features of code by analysing the semantics of the code via the Abstract Syn-
tax Tree. Wang et al. [71] built promising defect prediction models based on a subset of
AST nodes using neural networks. Pradel and Sen [55] also used a neural network to build
good defect prediction models using a sub-set of AST nodes (those based on identifiers and
literals). We extend both of these previous studies by analysing the full set of AST nodes in
relation to defects, rather than only the limited sub-set of features previously investigated.
We report important new code features related to defects. We also go further by reporting
our results at method rather than class level and evaluating our approach on an extended
set of projects including two closed source projects. We identify features of code not used
in defect prediction previously and which have large effects on the performance of defect
prediction models.

Our approach starts by serialising a Java method’s AST. For each method, a serialisation
is created by using a pre-order traversal of the AST, with the ordering being determined
by the sequence in which the nodes are visited. AST n-grams are then extracted from the
method serialisation. These AST n-grams are an n-gram2 of the serialised AST, where an
n-gram unit is a node of the AST. These AST n-grams capture the low level building blocks
that have been used in the code and, so, provide comprehensive fine grained insight into the
features of that code.

We investigate and quantify the relationship between AST n-grams and faults, by an-
swering the following research questions:

Research Question 1: Are any AST n-grams significantly associated with faulty code?

Research Question 2: What is the effect size of AST n-grams significantly associated with
faulty code?

Research Question 3: Does the inclusion of AST n-grams that are significantly associated

1We use the IEEE definition [35] of a fault being a reported defect, where a defect is a mistake in code
made by a developer which may result in a failure of the program to execute as planned.

2An n-gram is a term we have taken from computational linguistics describing a contiguous subset of a
larger sequence, normally a sequence of text or speech. In this study we have used the 92 Oracle Java nodes.
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with faults in defect prediction models improve the performance of these models?

We answered the first two research questions by analysing five different systems and, to
guard against overfitting, we added six systems for the third research question. In total there
are nine open source systems and two commercial telecommunication systems. Using the
Java AST, we extracted the AST n-grams from each system and used the SZZ [67] algorithm
to identify faulty methods. We then used non-parametric tests to identify significant rela-
tionships between AST n-grams and faults in Java methods. We calculated the effect size of
the significant relationships found. Finally, we performed defect prediction on all systems,
creating models with the AST n-grams significantly associated with faults, and models with-
out. We compared these models to determine if there was a significant difference between
the performance. As a baseline, we also compared our models, which are built with all the
possible AST nodes, with the reduced set used by Wang et al. [71]. Our approach differs
slightly from Wang et al. [71] as our analysis focuses on the type of AST nodes rather than
the contents of those nodes. Wang et al. [71] provide node content analysis for a small set of
nodes (names of methods and variables). Our analysis de-emphasises node contents as Wang
et al. [71] reported that their node content analysis produced project and developer-specific
findings are not generalisable.

Our results make three contributions:
Contribution 1. We present an automatic code analysis technique that comprehen-

sively and objectively serialises all low level code constructs used in a software system.
Specifically we introduce the concept of a method serialisation and n-gram of this serialisa-
tion called an AST n-gram. This analysis technique allows researchers and practitioners to
better understand the structure of the code in individual systems.

Contribution 2. We present important new evidence on fault-prone code constructs.
We identify relatively common code structures which can make a method four times as
likely to be fault-prone. We identify two code structures which involve identifiers which
are fault-prone across all five systems we investigate. This new evidence of fault-prone
code structures provides researchers and practitioners with new information with which to
strengthen existing defect reduction approaches.

Contribution 3. We show that the inclusion of AST n-grams in within-project software
defect prediction models significantly improves the performance of models built using source
code metrics. Performance improves when AST n-grams significantly associated with faults
are added to the models. This improvement can be up to 4.6 times that of the model con-
structed with just source code metrics. This means that we could find up to 4.6 times more
defects using AST n-grams. Our findings can improve the effectiveness of defect prediction
and also in the future could be integrated into developer IDE’s (Integrated Development
Environments) to reduce faults being initially introduced into code, or efficiently direct
testing.

The rest of this paper is structured as follows: Section 2 describes related work. Section
3 outlines how we conducted our investigation and Section 4 presents results. Section 6 we
highlight related work and we note the potential threats to validity in Section 5. In Section
7 we discuss the implications of our findings. Finally we conclude in Section 8.
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2. Background

Software defect prediction uses machine learning to determine potentially defective areas
in software code. The predictions make it possible for the developer to focus on areas of
the software system before release, reducing the time and effort of finding defects by other
means. Software defect prediction relies on three main components; dependent variables, in-
dependent variables and a model. Dependent variables are the defect data for the particular
piece of code (i.e. is it defective or not), which can be binary, or continuous. Independent
variables are the metrics which can describe the software code, how it has changed or who
changed it. Independent variables come in two forms, software code metrics; those that
can be derived from the software code itself, and process metrics; metrics that measure the
change of software code or software practices over time. The model contains the rule(s)
or algorithm(s) that predict the dependent variable from the independent variables. These
rules can be as simple as the number of independent variables in the model, or be as com-
plicated as decision trees3 and regression4 techniques. To determine the effectiveness of the
model, the variables are split into test and training sets. Where the training set is used
to create a model and that model is then used on the test set to predict potential defects.
These predictions are then investigated to determine if they are correct or not by certain
performance measures.

Previous work on features of code in relation to defects is focused on defining and evalu-
ating source code metrics (SCM) that measure particular code features. Examples of source
code metrics include - lines of code, object oriented metrics and McCabe’s complexity met-
rics. Various studies have measured source code using such metrics and looked at how the
code features measured relate to defects [6, 78, 46, 51, 33, 41, 73].

Lines of code (LOC) is a simple measure that has been commonly used to indicate where
defects are. For example, Fenton and Ohlsson [22] analysed pre and post release defects of a
large communications system. They found that LOC was good at ranking defective methods.
LOC has been used in many other studies [78, 8, 30, 76, 38] and has been reported to be
good at predicting defective code [31]. However LOC measures only one coarse grained
feature of code and so provides limited insight into potential sources of defects.

Chidamber and Kemerer (CK) developed six Object Oriented (OO) metrics to measure
the object oriented features of code (e.g. Coupling, Depth of Inheritance Trees and Weighted
Methods per class). These metrics have been successfully used in studies to identify defective
code [4, 11, 39, 15, 19]. Although, compared to LOC, the CK metrics do measure some finer
grained features of code, and also identify more of those features, they still identify only a
fixed subset of possible code features.

McCabe’s cyclomatic complexity metric [44] focuses on identifying branching structures
in code and measuring the number of logical paths though the code. Other forms of cyclo-
matic complexity have been proposed [81, 23]. Cyclomatic Complexity is another commonly

3A decision tree algorithm is one that creates a graph of decisions based on the chance of an event
happening.

4Regression analysis seeks to determine best fit of independent value(s) based on a dependent value(s).
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used metric in defect prediction studies with mixed success (e.g. studies [48, 69, 47]). How-
ever, again, when used in defect prediction Cyclomatic Complexity focuses only on a small
set of pre-determined code features likely to be related to defects.

Most of the traditional SCMs (above) have been extensively used in previous defect
prediction studies [31]. Most of these metrics suffer from being very coarse grained and
with capability to measure only a small sub-set of code features. Gray et al. [29] suggest
that the coarse grained nature of such metrics prevents machine learning techniques from
effectively differentiating between defective and non-defective methods: if one method has
the same metric values as another (say in terms of LOC), but they have not been labelled
the same in terms of their defectiveness, this will hinder the learning algorithm’s ability to
learn. Gray et al. [29] identifies many methods in the NASA datasets5 which have identical
values across a range of metrics but different defectiveness labels. This suggests that the
current commonly used set of metrics is not sufficient to differentiate methods for defect
prediction.

Complexity and size are code features commonly used in defect prediction [48, 69, 47].
Despite much effort in identifying and evaluating such features of code, there is no static
code feature which consistently identifies problematic code across systems [48, 31]. Code
features that indicate defects are usually system-specific [80]. Combinations of features
have, so far, performed most promisingly in defect prediction. For example, Shivaji et al.
[66] used combinations of static code metrics, object oriented metrics, churn metrics and
textual features while Bird et al. [11] used combinations of developer contribution network
metrics. Unfortunately, collecting data for such combinations is difficult, time consuming
and costly. Furthermore, the ability of such combinations to identify defects, relies on the
performance of each single feature included in the combination. Therefore, it is important
to be able to identify features indicative of defective code and to develop associated code
analysis techniques to identify these features.

Defect predictions are usually reported in studies at the package, class or file level of
granularity (e.g. [52], [4]). Hata et al report that predictions at this relatively high level of
granularity are not necessarily useful to developers [34] and that predictions at lower levels of
granularity are likely to be most useful to developers. Such low granularity predictions (e.g.
at method level) present developers with fewer lines of code in which to locate the predicted
defect. Locating the predicted defect is often via manual inspection and so the fewer the
lines of code to be inspected the less developer time is wasted searching for the defect. Giger
et al [26] report good predictive performance at method level using both change metrics and
source code metrics. However achieving good predictive performance at the method level
is not easy. Indeed Pascarella et al [54] replicated [26] with a release-based performance
evaluation strategy but reported poor predictive performance at method level. Despite a
growing preference for method-level defect prediction, it remains an open challenge to build
defect prediction models at method level [54]. We are amongst the few studies reporting
defect predictions at method level and the performances that we report are competitive to
studies reporting at higher levels of granularity.

5http://nasa-softwaredefectdatasets.wikispaces.com/
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3. Methodology

To identify AST n-grams of Java code which are associated with faulty methods we
collected data about which methods were faulty. We also needed to know which set of Java
AST n-grams each method contained. We used statistical techniques to identify which AST
n-grams are significantly associated with faulty and with non faulty methods of code. We
finally include the AST n-grams that are significantly associated with faulty methods of code
to defect prediction models and compare performance of those models, to models formed
with the reduced AST n-gram set proposed by Wang et al. [71].

3.1. Open Source and Commercial Datasets

The open source Java systems analysed in this study were chosen because they have
already been extensively used in defect prediction studies [31]. Although we collected
fault data ourselves, we chose Eclipse.JDT.core 3.0 because the faults for this system had
previously been mapped between the bug tracking system and the version control system
[67, 10, 40]. Using a system which had been analysed for faults previously allowed us to val-
idate our own technique for locating code that was faulty. We also analysed major releases
of ArgoUML 0.20 and AspectJ 1.7.0 because they were Java solutions to different problems
and had also been previously studied [57, 18, 72]. We also collected fault data from two com-
mercial telecommunications systems. The code, together with raw bug tracking and version
control data was provided to us by a large international telecommunications company based
in the UK. The contextual information for each system can be found in Table 1. During the
software defect prediction phase of this work, we added six more systems (shown in Table
1). We added these extra systems because we wanted to be sure that the defect prediction
results we had for the first five systems would be sustained in other open source systems.
These systems were chosen as our previous work had shown them to have sufficient defects
to perform defect prediction [65].

System Release KLOC Total Methods
EJDT 3.0 292 13,885
ArgoUML 0.20 273 12,330
AspectJ 1.7.0 353 21,980
T1 - 52 3,914
T2 - 36 4,896

JMRI 2.4 550 19,861
SocialSDK 1.1.8.2015 69 10,183
GenoViz 5.4 193 8,489
JBoss Reddeer 1.2 38 6,475
K Framework 3.6 39 5,297
JMOL 6 225 2,269

Table 1: The 11 systems analysed in this paper. The T2 and T1 release number is the revision number
before the systems were put into production.
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3.2. Identifying which methods are faulty

For each of the systems we compiled a dataset of faulty methods. We found which
methods were faulty at the time of release by finding the fault insertion and fix points. To
identify faulty methods we used the SZZ approach as it has been used in many previous
studies [16, 24, 40, 41, 74, 79]. SZZ is a fault linking algorithm described by Śliwerski,
Zimmermann, and Zeller [67]. SZZ was based on work by Cubranic and Murphy [16] and
Fischer et al. [24], who inferred links between Bugzilla defect reports with CVS commit
messages. The SZZ algorithm matches the fault fix described in a bug tracking system
with the corresponding commit in a version control system that ‘removed’ the fault. By
backtracking through the version control records, it is possible to identify earlier code changes
which ended up being ‘fixed’. It is assumed that the earlier code changes inserted the fault.
The method of code is therefore labeled as faulty between the time the fault was inserted and
the time it was fixed. Using this technique it is possible to identify for a particular snapshot
of the code base, which methods are faulty and which are not. If there are multiple changes
multiple times in the past, we assume that the fault inducing change is the one immediately
before the defect report. The method is marked as defective if the version snapshot lies
between the fault inducing commit and the fault fixing commit and there is no change
between these two commits. The tool we have created tracks individual lines throughout
the history of the project to determine which methods are defective at a particular time.
More details about our tool can be found in [65].

There will be defective methods which have not yet been reported. It is therefore im-
portant to carry out the fault mapping after sufficient time has passed for users to report
most faults. It is unlikely that all defects will be reported and therefore there will be false
negatives. Kim et al. [42] suggests that as long as the number of false negatives and false
positives is less than 20% in total, defect prediction can be carried out [42]. This is an
important point, early work by Zimmermann et al. [79] only managed to map about 50% of
faults reported in the bug tracking systems to changes in the code base. Later Bird et al. [10]
improved the mapping by removing some of the constraints that Zimmermann had intro-
duced, for example the requirement to have matching bug IDs in a predefined format. The
implementation of SZZ used in this paper was improved slightly from the original. It has a
higher weighting for those numbers found in commit messages that are in the bug database
and takes into account the “Fix for” prefix. The implementation was verified by manually
checking ALL bug links found for EJDT 3.0. Table 2 shows that the implementation used
in this study has 80% recall and 99% precision.

Alencar da Costa et al [17] recently evaluated the SZZ variants used in studies and our
variant falls into Alencar da Costa et al’s L-SZZ category. This is because not only does
our tool use annotation graphs to achieve line mappings and is aware of meta changes but
also identifies the largest bug introducing change. Approaches in the L-SZZ category are
currently most mature in identifying bug introducing changes.

Table 3 shows the defectiveness of each of the systems studied in our experiment. The
levels of fault-proneness varies across all systems. T2 has the highest fault density with over
12% defective methods, followed by the second telecommunications system T1 with around
9%. AspectJ has only 19 methods faulty out of a potential 21,980 and so has a very low

7
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This Paper Zimmermann et al. [79]
True Positive 727 483
False Positives 5 2
Total Positives 732 485
Total Negatives 151 398

Recall 80% 53%
Precision 99% 100%

Table 2: Checking the bug-links for false positives. Zimmermann has similar precision but lower recall.
Precision is the proportion of correctly classified bug-links from all those bug-links classified (TP/(TP+FP ))
and recall is the proportion of bug-links correctly classified from all possible correct bug-links (TP/(TP +
FN))

System Version Total Methods Faulty Methods % Faulty
T2 198468 4,896 612 12.5
T1 198468 3,914 360 9.2
EJDT 3.0 13,885 589 4.24
ArgoUML 0.20 12,330 42 0.34
AspectJ 1.7.0 21,980 19 0.09
JMOL 6 2,269 294 12.96
GenoViz 5.4 8,489 827 9.63
K Framework 3.6 5,297 421 7.95
SocialSDK 1.1.8.2015 10,183 754 7.40
JMRI 2.4 19,861 1,385 6.97
JBoss Reddeer 1.2 6,475 416 6.42

Table 3: Table to show the fault density of each of the datasets. N.B. Tables have been presented in order
of percentage faulty.

fault-proneness of 0.09%.

3.3. Extracting the Java AST n-grams

For each of the systems investigated, each file in the project was compiled using the Oracle
JDK which builds an AST. Each method in a class was turned into a method sequence using
a modified version of the standard Oracle Java pretty printer6. A method sequence is a list
of AST nodes in order of when they are visited by the pretty printer, which is a pre-order
depth first traversal. The pretty printer uses a visitor pattern to transforms the source code
by applying styling rules (e.g. appropriate indents and spacing), which can make it easier
for people to view. We modified the pretty printer so when it visits a node on the AST,
it will store that node in a sequence. This means that the order in which code constructs
are visited is maintained. For example, we would transform the piece of Java source code
in Figure 1 into the method sequence in Figure 2. This method was used to transform all

6PrettyPrinter.java is found in tools.jar of the Oracle JDK
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System Version Total Sequences Avg
Sequence

Length

Sequence
σ

Max
Sequence

Length
T1 198468 3,914 19.73 21.88 351
T2 198468 4,896 24.00 25.87 386
EJDT 3.0 13,885 55.47 129.64 4,802
ArgoUML 0.20 12,330 36.04 68.61 2,989
AspectJ 1.7.0 21,980 37.79 75.18 2,644

Table 4: Table to show the sequence statistics for each of the systems analysed. The minimum sequence
length for all systems was three. A sequence of length three is found for zero argument empty constructors
e.g. public Foo() N.B. Tables have been presented in order of percentage faulty.

public void cloneForMethod () {

int x = 10;

for(int i = 0; i < x; i++) {

System.out.println(x*i);

}

}

Figure 1: The code that is transformed in Figure 2 using the Pretty Printer.

methods in the five systems to create a database of method sequences. Table 4 shows how
many methods were transformed into method sequences and the average length of these
method sequences. Method sequence lengths vary across the system, with EJDT 3.0 having
the longest average by around 20 nodes. The commercial systems have both a lower average
sequence length and maximum sequence length. This is because the company has a policy
of keeping both classes and methods as short as possible.

From our method sequences, we can extract n-grams, which we call “AST n-grams”. We
extract from each method AST n-grams which are 1-gram, 2-gram and so on, up until the
maximum length of n-grams. For example, we want to extract the AST n-grams from an
example sequence (M) [A; A; C; D; E] where the maximum AST n-gram length is three.
In total the set CS contains 11 AST n-grams. Figure 3 shows the AST n-grams in set CS.
For this study we have set the maximum AST n-gram length to seven. This is because as
an AST n-gram length gets longer, there is an exponential increase in the number of AST n-

METHOD; MODIFIERS; PRIMITIVE_TYPE; BLOCK; VARIABLE; MODIFIERS;

PRIMITIVE_TYPE; INT_LITERAL; FOR_LOOP; VARIABLE; MODIFIERS;

PRIMITIVE_TYPE; INT_LITERAL; LESS_THAN; IDENTIFIER; IDENTIFIER;

EXPRESSION_STATEMENT; POSTFIX_INCREMENT; IDENTIFIER; BLOCK;

EXPRESSION_STATEMENT; METHOD_INVOCATION; MEMBER_SELECT;

MEMBER_SELECT; IDENTIFIER; MULTIPLY; IDENTIFIER; IDENTIFIER;

Figure 2: The code from Figure 1 transformed into a node sequence.

9
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CS = {(A), (A; A), (A; A; C), (A; C), (A; C; D), (C), (C; D), (

C; D; E), (D), (D; E), (E)}

Figure 3: The possible set of 11 AST n-grams (with a maximum n-gram of three) taken from an example
method sequence A; A; C; D; E

Faulty Non-Faulty Total
N-gram 32,493 7,750 40,243
(%) 80.74 19.26 -
No N-gram 230,681 4,311,566 4,542,247
(%) 0.05 95.5 -
Total 263,174 4,319,316 4,582,490

Table 5: Contingency Table for AST n-gram METHOD INVOCATION MEMBER SELECT in EJDT 3.0

grams available. The limit of seven nodes prevented potential computational problems when
we came to analysing the results. We do not extract the contents of the AST n-grams as
our analysis is at the type level of granularity rather than the instance level of granularity.
This means that our results are less influenced by the particular coding idiosyncrasies of
individual developers in individual projects. Our aim is to present results that are more
likely to be generalisable.

3.4. Analysing the AST n-grams

To find which AST n-grams are related to faults we compare the ratio of n-grams in non
faulty code to the number of n-grams in faulty code. In this study we compare the number of
instances of an AST n-gram. An n-gram is marked as faulty if it appears in a faulty method
at the chosen snapshot. As the distribution of AST n-grams is non-normal we used the non-
parametric Fisher’s exact test to determine if an AST n-gram was significantly associated
with a fault. Fisher’s exact test determines if there are non-random associations between two
categorical variables. In our case, the classifications are the presence or absence of a n-gram
and faulty or not. To clarify our statistical analysis, we provide a worked example using
EJDT 3.0. In EJDT 3.0 there is a 2.65% chance of any AST n-gram being defective. This
is determined by dividing the number of faulty AST n-gram instances over all AST n-gram
instances. The contingency table (Table 5) is for the AST n-gram METHOD INVOCATION
MEMBER SELECT. This AST n-gram is the start of a method call. Our null hypothesis
is that METHOD INVOCATION MEMBER SELECT appears in the same proportion of
faulty n-grams as non-faulty n-grams. Our alternate hypothesis is that the AST n-gram
appears in a greater proportion of faulty n-grams than non-faulty n-grams. When the
Fisher’s exact test is applied to the contingency table in Table 5 we get a p-value of 0.0.
This is below our α of 0.001. This means there is evidence to reject the null hypothesis. We
would conclude that the start of a method call in EJDT 3.0 is significantly associated with
faults. We set our α to 0.001 as we wanted to reduce the amount of false positives when
analysing the potential significant n-grams.

10
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We have calculated the effect sizes for the AST n-grams significantly associated with
faults using an odds-ratio [14]. The odds-ratio will quantify how strongly the presence of an
AST n-gram will be associated with a fault. The odds-ratio has a range of zero to infinity.
If the odds-ratio is less than one, then the n-gram may be more associated with non-faults.
When the odds-ratio is one then that means that the AST n-gram does not have any effect
on the fault proneness of the code. The greater the amount away from one, the greater the
effect that the AST n-gram has on the association with faults.

3.5. Defect Prediction using the AST n-grams

3.5.1. Building the defect prediction models

To answer RQ3, we carried out defect prediction using the AST n-grams. To show that
the significant AST n-grams were having an effect, we created basic defect prediction models
without the AST n-grams. These models were created with the default set of static code
metrics calculated by the program JHawk7. These metrics include lines of code (LOC),
variable declarations and Halstead metrics. In total there are 27 method level metrics and
the full list of software code metrics used can be found in Appendix A. We then added the
AST n-grams significantly associated with faults, up until a maximum of 200 n-grams. We
chose a maximum 200 AST n-grams due to computational constraints. Adding attributes
to models has an exponential computational time costs when building the model. These
increased costs vary from learner to learner with high costs associated with, for example,
Random Forest learners but minimal cost increases associated with Na ive Bayes.

In total, we had 11 metric datasets per classifier for each system, one metric dataset with
just JHawk metrics, and then 10 more metric datasets with AST n-grams significantly asso-
ciated with faults as additional attributes. When we added the AST n-grams as attributes
to the models, we used the binary presence of an n-gram, not the number of n-grams in a
method. We used the binary value rather than total as binary values are standard in defect
prediction. Our approach of adding AST n-grams to a base of existing source code metrics
increases the information available to the defect prediction model. Increasing information
diversity has been previously shown to improve predictive performance (e.g. [31]) and in-
crementally adding information to the model is being increasingly used in defect prediction
research (e.g. [12]).

3.5.2. Training the models using AST n-grams

To determine which AST n-grams to add as attributes to our initial baseline model, we
calculated the top 200 most occurring AST n-grams significantly associated with faults at
the 99.9% level only from methods in the training set for each run and fold. We calculated
the significant AST n-grams in only each training set to make sure that when testing our
models they did not have any prior knowledge of the significant AST n-grams. For each
run and fold, we created 10 models per classifier to compare with the original model. From
zero up to 50 n-grams, we added an additional 10 significant n-grams to the metric dataset
and trained the model on this new dataset, after 50 we increased the additional number of

7We used JHawk version 5.0 to conduct our study
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Number of Significant N-grams
Model # JHawkMetrics 10 20 30 40 50 75 100 125 150 175 200
0 X × × × × × × × × × × ×
1 X X × × × × × × × × × ×
2 X X X × × × × × × × × ×
3 X X X X × × × × × × × ×
4 X X X X X × × × × × × ×
5 X X X X X X × × × × × ×
6 X X X X X X X × × × × ×
7 X X X X X X X X × × × ×
8 X X X X X X X X X × × ×
9 X X X X X X X X X X × ×
10 X X X X X X X X X X X ×
11 X X X X X X X X X X X X

Table 6: The number of significant n-grams in each of the 11 comparison metric datasets.

AST n-grams by 25 until we reached 200. So the first model would be trained using the
initial JHawk metrics only, then second model uses the JHawk metrics plus the top ten
most occurring AST n-grams significantly associated with faults in the training set and the
third model would have the top 20 and so on, until 50 AST n-grams. After 50 n-grams,
the models would be trained with an additional 25 AST n-grams, so the next model after
50 is 75 n-grams, then 100, then 125 and so on. Until the last comparison model had
the top 200 most frequently occurring AST n-grams that were significantly associated with
faults in that particular training set. Our analysis suggests that generally the more n-grams
provided the more defect prediction performance improves. However this is not always the
case and identifying the particular combinations of n-grams that work best for particular
data sets/projects improves performance most. Song et al [68] also notes the need to tailor
features to projects to achieve good predictive performance. Table 6 shows how many AST
significant n-grams are in each of the 11 models.

3.5.3. Cross validation scheme

Each dataset was split into ten stratified folds to perform cross validation. Each fold was
held out in turn to produce a test set and the other folds were used to produce the training
set. Using stratified cross validation ensures that there are instances of the defective class
in each test set, thus reducing the likelihood of classification uncertainty. The classifiers
were trained using the training sets and the test set then used to evaluate the model. This
experiment was repeated 100 times for each classifier and system dataset. We chose 100,
instead of the more common 10 times, as Mende [45] reports that using 10 experiment
repeats results in an unreliable final performance figure. This meant that we determined
the top 200 AST n-grams that are significantly associated with faults in 1,000 training sets
and computed 33,000 models per system8.

8100 runs * 10 folds * 3 classifiers * 11 datasets = 33,000 models
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3.5.4. Classifier selection

We created our models using three classifiers: Näıve Bayes, J489, and Random Forest.
Bayes classifiers are simple probabilistic classifiers based on applying Bayes’ theorem. Näıve
Bayes is the most popular Bayes classifier. Näıve Bayes is called naive since every feature
(module) is assumed to be fully independent. Näıve Bayes will produce models based on the
combined probabilities of a dependent variable being associated with the different indepen-
dent variables. J48 and Random Forest use decision tree learning. Decision tree learning
uses a decision tree as a predictive model to map observations to a target value. Decision
trees that only take a finite set of values are called classification trees. The J48 classifier
builds decision trees based on the information gain of attributes. At a node in the tree, the
J48 algorithm will chose the attribute of the data that most effectively splits the set into
subsets enriched in one class or another. The split is based upon the attribute with the
highest normalised information gain. This then repeats on the smaller subsets until the tree
is built. Random Forest is an ensemble technique which aggregates the predictions made
by a collection of decision trees. Each of the trees is said to be randomised as they train
on a subset of available features. The mode classification across all individual classifiers is
taken as the final prediction for each test vector (method). We chose these three classifiers
because they are popular modelling classifiers according to Hall et al. [31]. We built the
models using a Java implementation of Weka10 using the default options for each classifier.

3.5.5. Predictive performance

We calculated each model’s performance using four different measures: precision, recall,
f-measure and Matthew’s correlation coefficient (MCC). See Table 7 for definitions of these
measures. Precision, recall and f-measure were chosen as they are very commonly published
in defect prediction papers, and have a range of 0 to 1, with 0 being no better than random
prediction and 1 being perfect prediction. MCC was chosen because it is easy to understand
and includes all four components of the confusion matrix. MCC has a range of -1 to 1, with
1 being perfect prediction and -1 being total disagreement. An MCC score of 0 means the
performance is no better than a random prediction.

We will statistically compare what effect the addition of AST n-grams has on our models.
Our hypothesis is that models trained using AST n-grams will perform better than ones that
do not contain AST n-grams significantly associated with faults. We used the Wilcoxon
signed-rank test to compare the differences in performance measurements from the 100 runs
of the models with the significant AST n-grams to those without. We have used the Wilcoxon
signed-rank test as our data does not follow the normal distribution and is paired. Our data
is paired as we have calculated the performance measurement for each run and fold (and
the methods in each run and fold are always the same). We calculated the effect size of
each test using Cliff’s delta. We again have used Cliff’s delta as our data is not normally
distributed. We calculated the effect size to show the level of impact the AST n-grams had
on the performance of our models. Cliffs delta(d) gives a score between -1 and 1, with ± 1

9J48 is the Weka implementation of the C4.5 algorithm.
10Weka version 3.7.12
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Measure Defined as Description

Recall (R) TP
TP+FN

Proportion of defective
units correctly classified

Precision (P ) TP
TP+FP

Proportion of units cor-
rectly predicted as defec-
tive

F-measure 2×R×P
R+P

Harmonic Mean of preci-
sion and recall

Matthews Correlation
Coefficient (MCC)

TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

A correlation coefficient
between the observed
and predicted binary
classifications. Also
known as the φ coeffi-
cient

Table 7: Performance measures used in this study.

being the largest effect size. If d is less than 0.147 the effect is negligible, d above 0.147 and
lower than 0.33 the effect is small, bigger than 0.33 and lower than 0.474 the effect size is
medium and d value over 0.474 is considered large [60].

4. Results

In total there were 306,924 different AST n-grams found across the five systems we
used to perform research questions 1 and 2. In all five of these systems there are AST
n-grams significantly associated with faults. Our results will highlight which AST n-grams
are significant across the five systems and which AST n-grams appear most in individual
systems. We will highlight the AST n-grams which have the biggest effect sizes. Finally,
along with the addition of six further projects we will show that our defect prediction
performance improves when AST n-grams are added.

4.1. RQ1- Are any AST n-grams significantly associated with faulty code?

There are 6,411 AST n-grams11 significantly associated with faults in at least one of
the systems at the 99.9% level. Of these AST n-grams, 95% are significantly associated
with faults in only one of the systems. The two commercial systems share around 7% of
the same AST n-grams significantly associated with faults. Figure 5 shows that only two
AST n-grams are significantly associated with faulty methods across all five systems. Had
the association been random we would have expected 0.03515× 0.0196× 0.0265× 0.0036×
0.0027 = 0.00007219945 AST n-grams to be significantly associated with faults in all sys-
tems. The two AST n-grams which are significantly associated with faults in all five systems

11We refer to the number of AST n-gram types rather than the number of AST n-gram instances through-
out the Results Section
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try {

String n = bundle.getString(name[i]);

if (n != null && n.length () > 0) {

result[i] = n;

} else {

result[i] = name[i];

}

} catch (MissingResourceException e) {

result[i] = name[i];

}

Figure 4: The red portion of the text is the AST n-gram VARIABLE; MODIFIERS; IDEN-
TIFIER; METHOD INVOCATION; MEMBER SELECT; IDENTIFIER. MODIFIERS; IDENTIFIER;
METHOD INVOCATION MEMBER SELECT; IDENTIFIER; will be part of the same code, but does
not have the VARIABLE kind, which starts the line.

is greater than would be expected by chance (0.000312% > 0.00000000031%). These two
n-grams are: VARIABLE; MODIFIERS; IDENTIFIER; METHOD INVOCATION; MEMBER SELECT

IDENTIFIER and MODIFIERS; IDENTIFIER; METHOD INVOCATION; MEMBER SELECT; IDENTIFIER.
Example code of these AST n-grams is found in Figure 4, shown in red. Both of these n-
grams are examples of a method call and are related to one another. This shows that
methods with method calls could be more likely to be faulty across systems. Both of the n-
grams have an odds ratio of 1.95, meaning that a method has nearly double chance of being
faulty when it has a method call, compared to methods without a method call. Methods
that do not contain method calls are less likely to be faulty across systems. This makes
sense as these methods are likely to be methods such as getters, setters or interface methods
and will be less fault prone.

Table 8 shows that EJDT has the most AST n-grams significantly associated with faults
(4,745) however, T2 has the largest by percentage (3.15%). ArgoUML has the least number
of AST n-grams associated with faults (328). In EJDT more than 12% of the AST n-grams
are significantly associated with faults. There does not seem to be a relationship between
the number of unique AST n-grams and the number of AST n-grams that are significantly
associated with faults.

System Unique
AST

n-grams

Sig AST
n-grams

%

T2 29,147 919 3.15
T1 18,351 359 1.96
EJDT 3.0 178,780 4,745 2.65
ArgoUML 90,499 328 0.36
AspectJ 165,005 448 0.27

Table 8: Table to show the total number of AST n-grams and AST n-grams significantly associated with
faulty methods for each system (α = 0.01). N.B. Tables have been presented in order of percentage faulty.
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Figure 5: A Venn diagram to show the distribution of fault-prone AST n-grams between the systems. In
total 2 AST n-grams are significantly associated with faults in all five systems.

Table 9 shows the top five most fault-prone AST n-grams in each system. Identifiers and
method calls appear often in the 25 AST n-grams shown. These n-grams include IDENTIFIER
and METHOD INVOCATION. Some of these AST n-grams have very low odds-ratio, indicating
that they may not impact the overall faultiness of a method very much. However, some of
the ratios are still quite large. For example, IDENTIFIER METHOD INVOCATION has an odds
ratio of 1.56, meaning it could impact the faultiness of a method around 56% more than a
method without this n-gram.

In each of the systems there are AST n-grams that are significantly associated with faults
and that appear only in faulty methods. Table B.16 shows the n-grams which appear most
often but only in faulty methods. All of the n-grams are around six or seven nodes in length,
but appear infrequently. In the two commercial systems, the n-grams tend to appear around
20 times or less, in ArgoUML and AspectJ, the n-grams appear less than 10 times. This
suggests possible differences between commercial and open source systems.

4.2. RQ2 - What is the effect size of AST n-grams significantly associated with faulty code?

A relatively high number of AST n-grams have a very large effect on the fault-proneness
of methods. For example, in EJDT the AST n-gram BREAK; CASE; INT LITERAL;

EXPRESSION STATEMENT; METHOD INVOCATION; IDENTIFIER appears only in faulty meth-
ods, so will have an odds-ratio of infinity. This AST n-gram will be linked to a piece of
code in a switch statement. Over 1,000 other AST n-grams appear only in faulty methods
in EJDT. Most of these exclusively faulty AST n-grams occur infrequently with those in
EJDT appearing on average around 15 times. The same phenomenon is also present in
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TAST n-gram Total
N-grams

Faulty
N-grams

%
Faulty

Odds-
Ratio

T2 3.15

IDENTIFIER 39,371 7,361 18.70 1.09

IDENTIFIER; IDENTIFIER 10,958 2,233 20.38 1.21

IDENTIFIER; METHOD INVOCATION 4,439 1,101 24.80 1.56

VARIABLE; MODIFIERS; IDENTIFIER 5,296 1,057 19.96 1.18

METHOD INVOCATION; IDENTIFIER 4,676 915 19.57 1.15

T1 1.96

IDENTIFIER; IDENTIFIER 6,541 991 15.15 1.14

IDENTIFIER; IDENTIFIER; IDENTIFIER 1,762 298 16.91 1.30

IDENTIFIER; METHOD INVOCATION; MEMBER SELECT;
IDENTIFIER

1,758 293 16.67 1.27

IDENTIFIER; EXPRESSION STATEMENT; 1,531 275 17.96 1.40

IDENTIFIER; VARIABLE; MODIFIERS; IDENTIFIER; VARIABLE;
MODIFIERS; IDENTIFIER

1,265 236 18.66 1.46

EJDT 3.0 2.65

MEMBER SELECT 90,007 21,440 23.82 1.31

MEMBER SELECT; IDENTIFIER 71,051 16,267 22.89 1.24

EXPRESSION STATEMENT 38,603 7,816 20.25 1.06

PARENTHESIZED 29,105 6,403 22.00 1.18

IF; PARENTHESIZED 19,325 4,390 22.72 1.23

ArgoUML 0.20 0.36

METHOD INVOCATION 54,926 505 0.92 1.19

MEMBER SELECT; IDENTIFIER 34,309 328 0.96 1.24

EXPRESSION STATEMENT 22,257 219 0.98 1.27

EXPRESSION STATEMENT; METHOD INVOCATION 15,166 172 1.13 1.47

EXPRESSION STATEMENT; METHOD INVOCATION;
MEMBER SELECT

10,808 114 1.05 1.37

AspectJ 1.7.0 0.27

MEMBER SELECT 92,366 630 0.68 1.27

METHOD INVOCATION 83,991 550 0.65 1.22

MEMBER SELECT; IDENTIFIER 73,475 527 0.72 1.34

METHOD INVOCATION; MEMBER SELECT 64,647 492 0.76 1.42

METHOD INVOCATION; MEMBER SELECT; IDENTIFIER 51,380 395 0.77 1.43

Table 9: Table showing the five most faulty AST n-grams in each system.
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if ((row != -1) && (c.size() > row)) {

c.remove(row);

Model.getCoreHelper ().setTaggedValues(tab.getTarget (),

c);

model.fireTableChanged(new TableModelEvent(model));

}

}

Figure 6: The red portion of text is an example of the AST n-gram EXPRESSION STATEMENT;
METHOD INVOCATION; MEMBER SELECT. This method was faulty in the ArgoUML system in class
TabTaggedValues.java. This class is a table view of a UML models elements tagged values.

SourceTypeBinding t = (SourceTypeBinding) i.next();

ContextToken tok = CompilationAndWeavingContext.enteringPhase(

CompilationAndWeavingContext.

WEAVING_INTERTYPE_DECLARATIONS , t.sourceName);

weaveInterTypeDeclarations(t);

}

Figure 7: The red portion of text is an example of the AST n-gram IDENTIFIER;
METHOD INVOCATION; MEMBER SELECT. This method was faulty in the AspectJ system in class
AjLookupEnvironment. This class overrides the default EJDT LookupEnvironment.

ArgoUML, AspectJ and the two commercial systems. In these systems the mean number
of times an exclusively faulty n-gram occurs is lower than EJDT at around 5, 2, 6 and
7 respectfully. Such infrequently occurring fault-prone AST n-grams contribute relatively
little to the overall faultiness of a system.

However, many AST n-grams with a relatively large effect on fault-proneness do appear
more frequently. Such AST n-grams are likely to have more impact on the overall faultiness
of a system. Table 10 show fault-prone AST n-grams that appear more than two standard
deviations away from the mean number of faulty n-grams in all five of the systems studied in
this paper. For example, those n-grams chosen for EJDT will be only those n-grams which
have over 1,032 faulty n-grams (84.43 + (2 × 473.91)). These n-grams will have a greater
impact on the overall faultiness of a system.

Figures 8, 6 and 7 show source code examples of AST n-grams with the highest effect
size for the open source systems. The underlined red text highlights which source code is
covered by the AST n-gram. The methods that have been chosen for these code examples
are methods that have been identified as faulty12. Figure 9 shows an example method from
EJDT to highlight the AST n-gram with the largest effect size for each of the commercial
telecommunications systems. We are unable to publish source code from these systems for
commercial reasons.

12It is important to note that the red text that is highlighted may not be the cause of the fault in the
method
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AST n-gram Total
N-grams

Defective
N-grams

% De-
fective

Odds
Ratio

ArgoUML 0.20

EXPRESSION STATEMENT;
METHOD INVOCATION

15,166 172 1.15 1.47

METHOD INVOCATION; IDENTIFIER 9,876 108 1.11 1.42

EXPRESSION STATEMENT;
METHOD INVOCATION; MEMBER SELECT

10,808 114 1.07 1.37

EXPRESSION STATEMENT 22,257 219 0.99 1.27

MEMBER SELECT; IDENTIFIER 34,309 328 0.97 1.24

AspectJ 1.7

IF; PARENTHESIZED 16,008 142 0.89 1.65

IF 16,008 142 0.89 1.65

IDENTIFIER; METHOD INVOCATION;
MEMBER SELECT

22,812 201 0.88 1.64

IDENTIFIER; METHOD INVOCATION 27,377 233 0.85 1.59

IDENTIFIER; METHOD INVOCATION;
MEMBER SELECT; IDENTIFIER

18,678 158 0.85 1.57

EJDT

MEMBER SELECT; MEMBER SELECT;
MEMBER SELECT; MEMBER SELECT

2,479 1,093 44.09 3.29

MEMBER SELECT; MEMBER SELECT;
MEMBER SELECT

3,658 1,533 41.91 3.01

CHAR LITERAL 3,090 1,188 38.45 2.61

MEMBER SELECT; IDENTIFIER;
MEMBER SELECT; IDENTIFIER

7,010 2,274 32.44 2.01

ASSIGNMENT; MEMBER SELECT; IDENTIFIER 4,598 1,487 32.34 2

T2

NEW CLASS 2,567 664 25.87 1.65

IDENTIFIER; METHOD INVOCATION 4,439 1,101 24.8 1.56

IDENTIFIER; VARIABLE; MODIFIERS;
IDENTIFIER

2,986 651 21.8 1.32

IDENTIFIER; IDENTIFIER 10,958 2,233 20.38 1.21

IDENTIFIER; VARIABLE; MODIFIERS 3,751 753 20.07 1.19

T1

NEW CLASS; IDENTIFIER 968 220 22.73 1.88

NEW CLASS 1,079 228 21.13 1.71

IDENTIFIER; VARIABLE; MODIFIERS;
IDENTIFIER; VARIABLE; MODIFIERS;
IDENTIFIER

1,265 236 18.66 1.46

IDENTIFIER; IDENTIFIER;
EXPRESSION STATEMENT

1,095 203 18.54 1.45

IDENTIFIER; VARIABLE; MODIFIERS;
IDENTIFIER; VARIABLE; MODIFIERS

1,297 236 18.2 1.42

Table 10: Table to show the AST n-grams with the greatest odds ratios and also appear in over two standard
deviations from the mean in all five systems.
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this.contents[localContentsOffset ++] = (byte) nameIndex;

descriptorIndex =

constantPool.literalIndex(

codeStream.methodDeclaration.binding.declaringClass.signature ())

;

this.contents[localContentsOffset ++] = (byte) (descriptorIndex >>

8);

Figure 8: The red portion of text is an example of the AST n-gram MEMBER SELECT; MEM-
BER SELECT; MEMBER SELECT; MEMBER SELECT. This is a part of a longer method that was
faulty in the EJDT 3.0 system in class ClassFile.java. This class represents a class file wrapper on bytes.

public Expression getExpression () {

if (expression == null) {

setExpression(new SimpleName(getAST ()));

}

return expression;

}

Figure 9: The red portion of text is an example of the AST n-gram NEW CLASS; IDENTIFIER which has
the largest effect size for T2 and T1. This method was taken from a method in EJDT 3.0. We are unable
to show code from the T2 or the T1 system.

Figure 8 highlights an example of AST n-gram with the highest effect size in EJDT.
This n-gram is a long message chain, with four different object requests. In this case too,
the result of this long message chain has been used as a variable in a method call. Long
message chains have been identified in the past as a problem [25, 32]. Figures 6 and 7 also
show examples of message chains as these AST n-grams had the highest effect sizes for these
two systems.

4.3. RQ3: Does the inclusion of AST n-grams significantly associated with faults in software
defect prediction models help improve their predictive performance?

Yes. The inclusion of AST n-grams significantly associated with faults can result in sig-
nificant improvements on a models predictive performance. In some cases, these increases
are very large. Figure 10 shows how MCC performance changes as AST n-grams significantly
associated with faults are added to the 11 systems studied13. In all 11 systems MCC has
improved due to the inclusion of AST n-grams and in nine of the 11 systems, these improve-
ments are seen across all three classifiers. The biggest increase in median MCC performance
can be seen in EJDT, where J48 has risen by around 0.39, from 0.19 to around 0.58 (213%).
In percentage terms, the biggest median increase was in T1 using logistic regression, where
MCC increased by just over 3,900% (0.0007 to 0.27) from the baseline model. The biggest
increase over all performance measures was seen in Reddeer, where the median precision of

13Line plots for the three other performance measures are found in the Appendix
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the logistic regression model median went from 0 to 0.52 (a percentage increase could not be
calculated). The biggest median percentage increase across all performance measures was
for the recall in T1 using logistic regression. The median increased by just below 12,000%
(0.002 to 0.22).

SocialSDK T1 T2
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Figure 10: A line plot to show the change in MCC across all the 11 systems when different levels of N-grams
are added to the baseline models.

In the majority of cases, MCC increases as a greater number of AST n-grams are added.
For example, in EJDT, the addition of 10 AST n-grams significantly associated with faults
significantly improves the MCC median from 0.19, when using no AST n-grams, to 0.37 (a
97% increase)14. When 20 AST n-grams are added, the MCC median increases again by
around 0.1 (3%), these increases continue and when 200 AST n-grams significantly associated
with faults are added, the median MCC has risen just over 212% (0.40) on the original
baseline model MCC median (0.19). Table 11 shows that on average over all the systems,
adding 10 AST n-grams improves MCC by around 47%, 50 n-grams by around 131% and
200 n-grams 238%. These improvements are also seen in recall (58%, 322% and 574%),
precision (24%, 29% and 49%) and f-measure (49%, 222% and 391%).

Despite the poor performance of the models in some of the systems, most notably Ar-
goUML and AspectJ, AST n-grams can make a significant impact. For example, there is an
increase with ArgoUML and Logistic, where MCC raises from around 0.03 to around 0.10
when 75 AST n-grams are added, then stays steady until 200. This could suggest that there
was an AST n-gram that has a large effect added in the 50-75 bracket. Similarity, systems

14Significant at the 99% level with Cliffs D effect size of 0.97.
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N-grams Recall % Precision % F-measure % MCC %
10 0.03 58.00 0.04 23.82 0.03 49.33 0.03 47.37
20 0.07 124.93 0.04 22.87 0.05 92.42 0.05 61.67
30 0.10 178.86 0.08 34.34 0.08 129.90 0.07 91.39
40 0.11 263.94 0.07 33.82 0.09 189.63 0.09 122.74
50 0.12 321.94 0.06 28.54 0.10 221.62 0.09 131.32
75 0.13 404.48 0.09 38.53 0.12 284.77 0.11 172.33
100 0.14 449.52 0.10 39.65 0.13 311.65 0.12 189.34
125 0.15 456.57 0.10 41.72 0.13 321.04 0.12 196.69
150 0.15 494.20 0.11 45.38 0.14 344.82 0.13 211.35
175 0.16 545.04 0.11 46.57 0.15 372.26 0.13 224.83
200 0.17 573.66 0.12 49.31 0.15 390.58 0.14 237.68

Table 11: Average changes in the performance measures when AST n-grams significantly associated with
defects are added to the base line models

K, Reddeer, SocialSDK and T1 have an MCC which is around 0 using the baseline metrics
and the Logistic model. The inclusion of n-grams, allows the logistic models performance
increase to around 0.20. AspectJ with J48 sees an increase in MCC from 0 to around 0.20
by the time 75 AST n-grams have been added. AspectJ had on average only 69 significant
n-grams in each run and fold, so we were unable to get results beyond a maximum of 75
n-grams for this system. The poor performance of AspectJ and ArgoUML is probably due
to the very low proportion of defective methods (see Table 3) in the systems, which is a
known problem [3].

Figure 12 plots the median effect size of the change between the defect prediction perfor-
mance measure MCC with no n-grams and the different numbers of significant AST n-grams.
The highest effect sizes are found in EJDT, JMRI and SocialSDK, where Cliff’s D reacts
the maximum 1. In JMOL it reaches this maximum after 30 AST n-grams using both Naive
Bayes and logistic regression. Generally, the more AST n-grams that are added to the model,
the greater the effect on the models. In all of the systems, the AST n-grams have eventually
a large effect on at least one of the classifiers. In six of the systems, the AST n-grams have
a large effect on all of the classifiers. The AST n-grams have at least a small effect on MCC
in all of the classifiers in nine of the 11 systems, AspectJ and ArgoUML being the only
two systems to miss out. Similar effect sizes are seen for the other performance measures15.
Table 12 shows that at the when 200 AST n-grams significantly associated with faults are
added to the models, the performance measure they have the most effect on is recall, with
an average median effect size of 0.80, whilst the lowest effect is on precision, with an average
median effect size of 0.43. If we look at all the different n-gram levels, then recall is still has
the largest average effect sizes with a Cliffs D value of 0.56, whilst AST n-grams only have a
small effect on the precision (0.25). 200 AST n-grams have the largest effect on the logistic
classifier performance, with an average effect size of around 0.80. Naive Bayes and J48 have
an average large effect size of 0.66 and 0.57 respectfully when 200 AST n-grams are added.

15The line plots for the other performance measures are found in the appendix

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Over all the AST n-grams, the average median effect sizes for the classifiers come down to
0.51, 0.45 and 0.40 respectfully, which is around the large effect threshold.

SocialSDK T1 T2
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Figure 11: A line plot to show the change in MCC across all the 11 systems when different levels of N-grams
are added to the baseline models when using the reduced Wang et al. [71] AST node set.

Measure J48 Logistic Naive Bayes All
Recall 0.6450 0.8975 0.8492 0.7973
Precision 0.3373 0.6115 0.3483 0.4324
F-measure 0.6678 0.8862 0.7347 0.7629
MCC 0.6267 0.8118 0.6952 0.7112

Table 12: The average Cliff’s D effect score for all the systems when 200 AST n-grams significantly associated
with faults are added to the base line models (d<0.147 Negligible, d<0.33 = small, d<0.474 = medium,
d>0.474 large [59])

4.3.1. Comparing the performance of the full set to Wang et al. [71] reduced set

Figure 11 shows that using the reduced set that Wang et al. [71] proposed does not
achieve the same results as the full set. Firstly, for most of the systems, the number of
AST n-grams found in the systems is lower than that for models built with the full set of
available nodes. In most cases, the median MCC performance across systems does not rise
as dramatically as with the full available AST nodes, or does not rise at all. For example,
J48’s median MCC in EJDT only rises around 0.04 from the baseline of 0.19 to a 50 AST
n-grams MCC of 0.23. This 22% rise is significant (at the 99% level), however this has only

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
k reddeer SocialSDK

ArgoUML genoviz jmol jmri

EJDT T1 T2 AspectJ

10 20 30 40 50 75 100 125 150 175 200 10 20 30 40 50 75 100 125 150 175 200 10 20 30 40 50 75 100 125 150 175 200

10 20 30 40 50 75 100 125 150 175 200 10 20 30 40 50 75 100 125 150 175 200 10 20 30 40 50 75 100 125 150 175 200 10 20 30 40 50 75 100 125 150 175 200

10 20 30 40 50 75 100 125 150 175 200 10 20 30 40 50 75 100 125 150 175 200 10 20 30 40 50 75 100 125 150 175 200 10 20 30 40 50 75

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

AST n−grams

M
ed

ia
n 

E
ffe

ct
 S

iz
e 

(u
si

ng
 C

lif
fs

 D
)

Classifier J48 Logistic NaiveBayes

Figure 12: A line plot to show the level of effect on the performance measure MCC when AST n-grams are
added to our models. The three grey straight lines are the effect size indicators (d<0.147 Negligible, d<0.33
= small, d<0.474 = medium, d>0.474 large [59])
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a small effect size (0.31). This rise is 0.26 (114%) less than what is achieved using the full
sets 50 AST n-grams significantly associated with faults and 0.35 less (156%) less than the
full sets 200 AST n-grams (both significant at the 99% level). Overall, median MCC is 0.07
(38%) higher using the full set, compared the Wang et al. [71] reduced set across all the
systems and classifiers. Recall is on average 0.08 (45%) higher using the full set, precision
0.08 (22%) higher and f-measure 0.08 (39%) higher. Table 13 shows the difference16 in
performance measures across all of the AST n-gram levels. MCC and recall perform much
better in the full set of AST nodes, by performing on average up to 472% and 279% better
than the reduced set respectfully. On average, precision is less impacted by the reduction
of the AST nodes, where there is minimal difference in the performance of our models built
with the two different AST node sets between 0-50 n-grams and then an increase of up to
64% between 50 and 150 AST n-grams significantly associated with faults.

Recall Precision F-measure MCC
N-grams Change % Change % Change % Change %
10 0.01 0.00 0.02 0.00 0.02 0.00 0.02 6.62
20 0.02 4.82 0.02 0.00 0.02 5.32 0.03 12.55
30 0.04 20.68 0.03 1.59 0.05 14.17 0.05 21.04
40 0.06 45.80 0.02 0.00 0.06 16.58 0.05 34.24
50 0.10 69.96 -0.00 -0.47 0.07 25.85 0.07 35.20
75 0.08 22.71 0.07 2.76 0.10 18.32 0.10 33.58
100 0.09 194.72 0.05 11.11 0.08 159.20 0.08 91.31
125 0.22 452.86 0.16 66.44 0.27 323.81 0.23 223.04
150 0.20 472.41 0.14 64.02 0.26 259.29 0.20 279.47

Table 13: Median changes between the models built using the full set of AST nodes vs the reduced Wang
et al. [71] set (Full set - reduced set).

Figure 13 shows a line plot of the effect of reducing the number of available AST nodes
on the performance measure MCC across the systems, where a score of 1 means that the full
set is performing better than the reduced set, 0 there is no effect of using the full set or the
reduced set and -1 means the reduced set is performing better than the full set. The effect
of using the full set over the reduced set is normally greater. In EJDT, T2, AspectJ and
SocialSDK for all classifiers the effect on the performance of MCC when using the full set
of AST nodes is very large compared to using the reduced set. In some instances, the there
is a small effect in the favour of using the reduced set. For example, in GenoViz, logistic
regression never goes above zero and stays at an average of -0.15. Overall, the effect on the
performance of the model is greater if we use the full set compared to the reduced. Table
14 shows the median effect sizes over the 11 systems for each of the four effect sizes and
classifiers. There is on average, a large effect on the change in recall (0.67) and f-measure
(0.51), a medium effect on the change in MCC (0.41) and a negligible effect in the change
in precision (0.12).

16The difference is the full set minus the reduced set
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Figure 13: A line plot to show the level of effect on the change of the performance measure MCC between
the full AST node set vs Wang et al. [71]’s reduced set. The three grey straight lines are the effect size
indicators (d<0.147 Negligible, d<0.33 = small, d<0.474 = medium, d>0.474 large [59])
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column J48 Logistic Naive Bayes All
Recall 0.4874 0.6533 0.8727 0.6711
Precision 0.1748 0.0891 0.1016 0.1218
F-measure 0.5141 0.5646 0.4461 0.5082
MCC 0.4948 0.3187 0.4103 0.4080

Table 14: The average Cliff’s D effect score for all the systems between the changes in using the full set
and Wang et al. [71]’s reduced set of AST nodes (d<0.147 Negligible, d<0.33 = small, d<0.474 = medium,
d>0.474 large [59])

5. Threats to Validity

There are threats to validity in the research presented in this paper which fall into the
categories of internal, external and construct validity.

5.1. Internal Validity

An internal threat is the small number of faults reported for both ArgoUML and AspectJ.
These small datasets create the problem that it may be difficult to generate statistically
significant results. It is always difficult to generate significant results with small sets of data.
A small number of faults is typical of many software systems and we feel it is a particular
strength that our technique is able to find significant results in the systems despite a small
number of faults. The technique we show does find significant results and also finds some
of the same significant AST n-grams as those found in the systems with larger numbers of
reported faults.

The processing power available to us meant that we had to limit the maximum length
of an AST n-gram. Limiting the length of an AST n-gram to seven means that we have
not investigated possible significant AST n-grams that are over this length. There could be
frequently occurring longer significant AST n-grams that are significantly associated with
faulty code. With greater processing power, longer AST n-grams could be analysed.

The statistical evaluations used could be a threat to the results published in this paper.
We have used significance testing which has its critics [20]. We have tried to alleviate
the problems that occur with statistical testing by having a large alpha value (0.001) and
by using non-parametric tests. Also, we do not say that the AST n-grams are definitely
associated with faults, just that there is evidence to suggest that the faulty AST n-grams
appear in a greater number of faults than that could be given by chance. There could be
some AST n-grams that have been designated as significantly associated with faults that
do not have an overall effect. We have tried to overcome this threat by including the effect
sizes of all the AST n-grams with sufficient evidence to reject our null hypothesis. We do
not assume that the AST n-gram is the root cause of any fault that has occurred in any of
the systems, just that they appear to be in a higher number of faulty methods than could
have happened by chance.

We have not controlled for programming confounds which result in different AST n-
grams being extracted from the source code. For example, we have not controlled for the
developer experience of the developers from either the open source or commercial projects
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or the coding guidelines put in place by the company. At the communications company,
there is a guideline that all methods and classes must be kept as short as possible, this could
have impacted on the number of n-grams we could have extracted from their code.

5.2. External Validity

An external threat is the number of systems chosen to analyse. The technique shown
in this paper may only work for these systems and may not translate to smaller or larger
systems. Our technique works on systems with a high or low number of identified faults and
both commercial and open source systems. We have shown that the AST n-grams signifi-
cantly associated with faults in all of the systems can have an impact on the performance of
defect prediction models. The technique itself could be easily applied to other Java systems.
The commercial systems may not be representative to other open source or commercial sys-
tems, however it is very difficult to analyse this as it is extremely difficult to gain access to
commercial fault data.

Another external threat is that we have only extracted AST n-grams from the Java
programming language. We have not extracted code constructs from other programming
languages such as C/C++ or Python. There may not be AST n-grams significantly associ-
ated with faults nor might they help improve software defect prediction performance when
added to the baseline models in these languages. The technique could be applied to other
programming languages with the use of specific AST parsers and this is future work.

5.3. Construct Validity

Repository mining to find faulty code in systems is an inexact science. Latent defects may
not have been discovered and may lie dormant in the code base. Faults may also have been
fixed but not reported properly in the commit message. SZZ relies on good commit messages
and the technique may have not been able to find all the possible fault fix points. We have
performed a manual inspection to investigate if our implementation of SZZ is accurate. As
we report, our implementation is able to achieve both high recall and high precision.There
also may be changes in a reported fix, that were not actually part of the fix, which could
lead to certain methods being misclassified as faulty. This could introduce a lot of noise
into our datasets and could lead to inaccurate defect prediction. At present, there is no way
of consistently determining in the commit messages which changes were part of the fix and
which changes were not.

The use of Git may have meant some of the defect links or insertion points may not
have the correct dates. This is because Git is a distributed versioning system. This means
that each developer using Git to develop the system has its own local repository that it will
control. Defect fixes or insertion points could have been made locally and not pushed to the
central repository for a while after these changes have taken place. The insertion point or
defect fix would be the point the developer’s local repository was committed to the main
central repository. Although this will mean that the insertion points and defect fix may have
happened sooner, these fixes would not have been available to build the distributed system
until they were committed to the central repository. Therefore, for the main build of the
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system, where a developer commits their local changes to the central repository would be
where the defect fix or insertion point is for the main build of system.

The technique described in this paper has focused on fault granularity at method level.
This association means that there are AST n-grams within a faulty method, but are not
actually the cause of the fault. This could skew the results in favour of AST n-grams
that are in frequently occurring methods. The statistical test chosen helps to mitigate this
limitation as the AST n-gram has to be in significantly more of the defective methods than
it is expected to. Also, an AST n-gram could be missed as it is not located within a method.
This AST n-gram could be a code structure outside a method, such as in the fields of a Java
class.

6. Related Work

There is a huge body of related work in relation to software defect prediction. Various
different metrics have been identified and examined to see if they have positive effects on
various models. In this section we will compare our work to the less tradition source code
metrics, software patterns and also to work being carried out that involves the use of the
AST.

6.1. Source Code Metrics

Some defect prediction studies have used less traditional SCMs, most have been based
on analysing the text of the code. One such approach is the use of metrics based on a lexical
analysis of text in the code [75]. This lexical analysis uses identifiers as indicators of a
method being defective, but has problems due to the differences between spoken languages.
Binkley et al. [9], use a language processing based defect prediction measure called a QALP
score [9]. The QALP score measures the similarity between a method’s comments and its
source code using a vector space model. The results showed that the QALP score is helpful
in predicting defects in files. Mizuno et al. [50] used spam filtering techniques to create a
defect detection technique. This technique treated source code as text files and used the
text mining techniques used in spam filtering to identify problematic patterns in the text.
The technique was able to classify more than 75% of methods correctly. Abebe et al. [1]
improved the detection of defects by using lexicon bad smells (LBS) in conjunction with
software structure metrics. Lexicon bad smells are poor quality use of identifier names in
software code. Poor quality lexicon for identifiers has been shown to be associated with the
introduction of faults [13]. Examples of lexicon bad smells are short terms used as identifiers
(e.g abbreviation or acronym) and meaningless terms (e.g. foo and bar). Shivaji et al. [66] go
further and investigate code features using a modified version of the bag-of-words approach
(BOW+ [63]) to identify a sub-set of code features based on operators such as !=, ++ and
&&. Overall these previous approaches have shown promise in terms of defect prediction but
have not been fully exploited. Our approach goes further and analyses the comprehensive
set of low level code features based on the abstract syntax tree.

Complexity and size are code features commonly used in defect prediction [48, 69, 47].
Despite much effort in identifying and evaluating such features of code, there is no static
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code feature which consistently identifies problematic code across systems [48, 31]. Code
features that indicate defects are usually system-specific [80]. Combinations of features
have, so far, performed most promisingly in defect prediction. For example, Shivaji et al.
[66] used combinations of static code metrics, object oriented metrics, churn metrics and
textual features while Bird et al. [11] used combinations of developer contribution network
metrics. Unfortunately, collecting data for such combinations is difficult, time consuming
and costly. Furthermore, the ability of such combinations to identify defects, relies on the
performance of each single feature included in the combination. Therefore, it is important
to be able to identify features indicative of defective code and to develop associated code
analysis techniques to identify these features.

6.2. Coding Patterns

Software patterns in the past have been used to warn programmers against bad coding
practices. Fowler and Beck [25] coined the phrase “software code smell” to indicate a pattern
in the code that could relate to a deeper problem within a software system. These smells are
not indicators of problems on their own, but could point to an underlying problem within
the system. Fowler and Beck [25] presented 22 code smells and suggested that they are a
hint to decide where and when the software code should be refactored. Some of the ‘code
smells’ have been shown to be a problem in software engineering and are a cause of faults
within a software system [32]. Code clones have been shown to be sometimes bad [36] or
sometimes not so bad [43, 64, 28, 56] at identifying defects in a software system. Zhang et al.
[77] investigated all the 22 code smells to see if there was evidence that they actually caused
trouble within software systems. They found four papers that investigated the association
between code smells and defects. Large classes and long methods have been significantly
associated with software faults [76]. This has also been seen in defect prediction studies
that have used LOC to show that the greater the LOC, the more chance a defect is to
appear. Shotgun surgery was also significantly associated with software faults, but data
classes, refused bequest and feature envy were all shown to not be significantly associated
with software faults [76, 32].

The AST n-gram technique could have a potential advantage over the code smell ap-
proach. The AST n-gram technique does not rely on a human definition of a defective code
structure and will produce an unbiased list of all the possible coding constructs that have
the potential to introduce defects into a software system. Gil and Maman [27] introduced
27 micro-patterns that are based on a variety of programming practices in Java. Destefa-
nis et al. [21] showed that the presence of anti-micro-patterns caused an increment of the
fault-proneness in classes in Eclipse. Micro-patterns are based at class level, whilst our AST
n-gram approach is based at method level.

6.3. The use of the Abstract Syntax Tree (AST)

The use of the AST has featured in previous work on code analysis. ASTs have been
used extensively in code clone detection techniques. A code clone is where two pieces of code
in a software system are identical or similar. A lexer breaks down the text of the source
code into a sequence of tokens [61] and then these tokens of two pieces of code are compared
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to find the clones. This technique was used to make two prominent code cloning tools -
CCFinder [37] and CP-Miner [62]. The AST is used for clone detection by processing the
trees with either tree-matching methods or structural metrics [62]. The AST has been used
in many techniques [7, 70, 58] which have reported good precision and recall [61] showing
that this approach is effective at differentiating features of code.

Previous work identifying code constructs have also used ASTs. Nguyen et al. [53]
examine changes at the AST level. Allamanis and Sutton [2] mine for code idioms using the
AST in combination with nonparametric Bayesian probabilistic tree substitution grammars.
The approaches above are different to ours. Although Allamanis and Sutton [2] use AST
code snippets, they prune the potential list of AST trees using natural language processing.
We did not use this method as we did not want to bias the discovery of potential defective
AST n-grams.

Wang et al. [71] used the AST to extract semantic features of source code. They lever-
aged a deep belief network to automatically learn semantic features from tokens that were
extracted from the AST. The authors show that by using semantic features taken from
the AST they are able to improve software defect prediction both within project and cross
project compared to using the original metric datasets. We do not determine semantic fea-
tures from the AST, but use the AST to create a sequence of each method in a software
system. Wang et al. [71] extracted information from only three different types of nodes from
the AST - method/class invocations, declaration nodes and control flow nodes, we have
included all possible nodes available in the AST. This was to avoid biasing the discovery
of AST n-grams significantly associated with faults. We have performed defect prediction
at the method level compared to the file level in Wang et al. [71]’s approach. In addition,
our final results show that our approach achieves better defect prediction results when we
include a greater number of potential AST nodes.

Pradel and Sen [55] use deep learning to develop a framework for code analysis at the
AST level. They particularly investigate the relationship between defects and identifiers
and literals in code. Pradel and Sen’s name-based bug detection yields 132 programming
mistakes in real-world JavaScript code.

7. Discussion

Our technique identifies all the code features of a software system, creating an impartial
list of coding constructs, called AST n-grams, used in the development of five different
software systems. Our findings contribute important new information on the nature of the
code used in systems and on the faults in that code. Previous work uses only a small number
of selected metrics as independent variables to defect prediction models. Our work offers
future researchers a comprehensive set of metrics covering all of the features of code used in
a system.

7.1. Fault-Prone Code Constructs

Some fault-prone AST n-grams which appear frequently in code are related to coding
constructs previously identified as potentially problematic.
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The AST n-grams: METHOD INVOCATION; MEMBER SELECT and MEMBER SELECT; IDENTIFIER

are significantly associated with faults. These AST n-grams relate to the message chain code
smell. The message chain code smell was identified as a problem by Fowler and Beck [25] and
has also been reported to have a small but significant effect on faults [32]. A message chain
will introduce coupling. High coupling makes the software harder to maintain as changes
undertaken in one part of the chain, will impact on other parts of the chain. The other
parts of the chain could become defective if they are not modified to reflect the change. The
longer the chain, the more changes are needed and therefore there is a higher chance of a
defect occurring. Our results show that kinds associated with message chains could effect
the chance of that method being defective. Our findings add further evidence confirming
the problem of message chains within code.

The IDENTIFIER kind occurs in many of the frequently occurring AST n-grams that are
significantly associated with fault-prone code. Identifiers are frequently changed and could
easily be coded incorrectly. Research into lexicon bad smells has focused on the bad use
of identifiers and the language of identifiers within code [1, 13, 5]. Lexicon bad smells are
where developers have used short terms (e.g abbreviation or acronym) or meaningless terms
(e.g. foo and bar) as identifiers. Poor quality lexicon for identifiers has been shown to be
associated with the introduction of faults [13]. Lexicon bad smells have been able to improve
defect prediction when used alongside traditional source code metrics [1]. Arnaoudova et al.
[5] found that identifier terms with high entropy had a greater chance of being faulty. Our
results suggest that there is a relationship between identifiers in code and defects.

Our results also show that there are many fault-prone coding constructs which have not
been identified previously. Our results could explain the current ceiling of defect predictors
[48]. Over-dependence on commonly used single metrics such as cyclomatic complexity
or using popular object oriented metrics as independent variables in defect prediction will
restrict predictive performance to only a sub-set of defects. There are many more coding
structures that could be exploited as independent variables in defect prediction. Using
many different code features as independent variables in defect prediction has been shown
to perform well [31, 66]. Our results provide future researchers and practitioners with a
potentially powerful new set of independent variables to use in defect prediction.

We also plan to investigate whether the performance of our models using AST n-grams
is improved when metrics in addition to basic static code metrics are used. In particular
it would be useful to establish whether the addition of churn metrics to the base model
improves performance. Churn metrics have been shown to be helpful to the performance of
defect prediction models and so we also plan to build our models based only on the analysis
of churned code, i.e. only the code involved in changes. Varying the base model on which
AST n-grams are added offers further possibilities of increasing predictive performance.

7.2. The Effect That AST N-Grams Have on the Fault-Proneness of Methods

Our results identify many AST n-grams that occur frequently in systems and which
have a significant effect on fault-proneness. Many of these AST n-grams occur in over a
thousand methods. The effect that these AST n-grams have on fault-proneness varies up
to over 300% in the case of some regularly occurring EJDT AST n-grams. Focusing defect
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reduction activities on these AST n-grams is likely to significantly reduce the number of
defects in systems.

There are many infrequently occurring AST n-grams which appear to be highly fault-
prone in each of the five systems. Some AST n-grams always appear faulty. Where such
AST n-grams occur developers must be highly suspicious of these methods. Each of these
AST n-grams occurs very rarely (sometimes only in one or two methods). Their effect on
overall system defectiveness may be minimal. However the cumulative number of these AST
n-grams is likely to have a significant effect on overall system fault-proneness. Identifying
these AST n-grams and ensuring code efficacy could prove cost effective for developers.

Our results also suggest possible differences between commercial and open source sys-
tems. Different AST n-grams relate to faults differently between systems. In the two com-
mercial systems, we discussed AST n-grams that were always faulty with the developers. The
developers described that they were having problems with methods that created anonymous
classes within them. This could explain the number of AST n-grams significantly associated
with faults containing the kind NEW CLASS. Our AST n-gram analysis helped confirm to the
developers that the problems that they were experiencing were impacting of faults. Whereas
in EJDT, not only do AST n-grams that are always faulty appear more often, with one AST
n-gram appearing over 200 times and only in faulty methods, but the AST n-grams in EJDT
3.0 appear to be linked to switch statements. Our results suggest that it is very important
that the project context of faults is understood as the faulty features of projects are likely
to vary.

8. Conclusion

We demonstrate AST n-grams as a promising new approach to identifying defects in
code. Our approach is based on a comprehensive analysis of the low level features of Java
code via the abstract syntax tree. Our approach allows us to analyse many more low level
features of code than conventional fault analysis studies. Previous studies are usually based
on analysing a single code feature or a sub-set of code features in relation to faults. Such
previous approaches have the limitation that they are only ever able to identify the sub-set
of defects that relate to the code features analysed.

We have shown that there are many AST n-grams of Java code that are significantly
associated with faulty code. Our AST n-grams range from one to a maximum of seven kinds
in length, showing that problematic AST n-grams can be small. The AST n-grams signif-
icantly associated with faults tend to be local to specific systems with very few occurring
across systems. In terms of answering our research questions:
Research Question 1: Are any AST n-grams significantly associated with faulty
code? Our results identify individual AST n-grams that are significantly associated with
faults. AST n-grams that we found significantly associated with faults have resonance
with findings in previous fault analysis studies. For example we report that the AST n-
grams: METHOD INVOCATION; MEMBER SELECT and MEMBER SELECT; IDENTIFIER are signif-
icantly associated with faults. These AST n-grams relate to the Message Chain code smell
which has been previously reported to have a small but significant effect on faults [32]. Our
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results show that IDENTIFIER occurs in many of the frequently occurring AST n-grams that
are significantly associated with fault-prone code. It seems that it is very easy for develop-
ers to get identifiers wrong. This finding, again, relates to previous findings on the textual
analysis of code in relation to faults [75]. Our results show that there are hundreds of new
unexplored AST n-grams that have not been analysed before in defect prediction.

RQ2 - What is the effect size of AST n-grams significantly associated with
faulty code? There are many AST n-grams in each of the five systems we investigated which
have a very large effect on faults. The AST n-grams which have the largest effect on faults
tend to occur infrequently in systems (e.g. in less than 10 times in a system). When these
AST n-grams do appear, many appear only in faulty methods, the effect size of such AST
n-grams is very large. Individually these AST n-grams are likely to have only a minimal
effect on overall system defectiveness. However we also report some frequently occurring
AST n-grams that have large effect sizes. Many of these AST n-grams occur over 1,000
times and have effect sizes of over 300% making a method three times as likely to contain a
defect than one that does not have that particular AST n-gram. Identifying AST n-grams
in individual systems with high effect sizes could likely be a particularly cost-effective way
for developers to reduce defects in their systems.

RQ3: Do Significant AST n-grams help Improve Defect Prediction Perfor-
mance? The inclusion of the most common AST n-grams significantly associated with faults
can help improve the performance of our defect prediction models. For some models, adding
AST n-grams significantly associated with faults had a very large effect on the performance
of the models. When we added more AST n-grams to the models, the better the defect
prediction models performed. However, sometimes this was not the case, and it seems that
it was dependent on the significant AST n-grams that were used. For example, for some
models we could get some significant increases when we added 20 significant n-grams, but
these increases diminished when we added any more. We compared the performance of our
models, with models created using Wang et al. [71]’s reduced set. Whether you were using
the full set, or the reduced set performance in the defect prediction results can be improved.
Our full set, performed on average better than using the smaller set, sometimes with large
effects. In small instances, the smaller set of available AST nodes performed better than
the full set, but still improved the defect prediction results. Further work is needed to help
improve our defect prediction by implementing a better strategy of selecting which AST
n-grams to use.

There are various potential uses for AST n-grams which could contribute to the reduction
of defects in code. AST n-grams could be used as independent variables in defect prediction
models. The best sub-set of AST n-grams could be identified for individual systems. AST n-
grams significantly associated with faults could be integrated into an IDE to form warnings
to developers. These warnings could identify methods high in fault-prone code structures.
The developers could then change the code or make special effort to ensure it is performing
correctly. The top 1% of AST n-grams significantly associated with faults could be used as
a starting point for such warnings. AST n-gram information could also be used in testing.
Most of the AST n-grams significantly associated with faults are located in a relatively small
number of methods. Directing test effort to these methods could effectively and efficiently
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reduce defects.
Future work will also include analysing why the technique works better on some systems

than others. Whilst this is not uncommon in defect prediction studies, further work planned
involves analysis into why some systems experience larger improvements or decreases in
performance. Our results show that the AST n-grams can have a significant improvement
on the performance of models that are built with just source code metrics, however other
metrics have proven very successful at improving defect prediction performance. Future
work will include the comparison to metrics such as process metrics.

The results of our study are important. We provide new evidence and information on
coding structures which are good predictive markers for faults. Companies spend large
budgets on finding and fixing defects. Using our findings to reliably identify even a few
extra defects early in development could save significant resources.
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Appendix A. JHawk Metrics Used

Metric Description

Cyclomatic Complexity McCabes cyclomatic Complexity for the method.
Number of Arguments Number of Arguments
Number of Comments The number of Comments associated with the method.
Number of Comment Lines The number of Comment Lines associated with the method.
Variable Declarations The number of variables declared in the method.
Variable References The number of variables referenced in the method.
Number of statements The number of statements in the method.
Number of expressions The number of expressions in the method.
Max depth of nesting The maximum depth of nesting in the method.
Halstead length The Halstead length of the metric.
Halstead vocabulary The Halstead vocabulary of the method.
Halstead volume The Halstead volume of the method.
Halstead difficulty The Halstead difficulty of the method.
Halstead effort The Halstead effort of the method.
Halstead bugs The Halstead prediction of the number of bugs in the

method.
Total depth of nesting The total depth of nesting in the method.
Number of casts The number of class casts in the method.
Number of loops The number of loops (for, while) in the method.
Number of operators The total number of operators in the method.
Number of operands The total number of operands in the method.
Class References The classes referenced in the method.
External methods The external methods called by the method.
Local methods The local methods called by the method.
Exceptions referenced The exceptions referenced by the method.
Exceptions thrown The exceptions thrown by the method.
Modifiers The modifiers (static, public etc) applied to the signature of

the method.
Lines of Code The number of lines of code in the method.

Table A.15: The JHawk metrics extracted for each method in each of the five systems studied in this paper.
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Appendix B. ON-LINE APPENDIX

41



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix C. Performance Measure Line Plots
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Figure C.14: A line plot to show the change in recall as the AST n-grams significantly associated with faults
are added to the baseline models.
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Figure C.15: A line plot to show the change in precision as the AST n-grams significantly associated with
faults are added to the baseline models.

SocialSDK T1 T2

jmol jmri k reddeer

ArgoUML AspectJ EJDT genoviz

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

0 50 100 150 200 0 20 40 60 0 50 100 150 200 0 50 100 150 200

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.2

0.3

0.4

0.5

0.6

0.0

0.1

0.2

0.3

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Number of N−grams in Model

M
ed

ia
n 

F
_m

ea
su

re

Classifier J48 Logistic NaiveBayes

Figure C.16: A line plot to show the change in f-measure as the AST n-grams significantly associated with
faults are added to the baseline models.
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ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

AST n-gram No.
N-grams

T2

METHOD INVOCATION; MEMBER SELECT;
IDENTIFIER; METHOD INVOCATION; IDENTIFIER;
NEW CLASS; IDENTIFIER

19

METHOD INVOCATION; MEMBER SELECT;
IDENTIFIER; METHOD INVOCATION; IDENTIFIER;
NEW CLASS

19

MEMBER SELECT; IDENTIFIER;
METHOD INVOCATION; IDENTIFIER; NEW CLASS;
IDENTIFIER; METHOD INVOCATION

18

IDENTIFIER; METHOD INVOCATION; IDENTIFIER;
PLUS; IDENTIFIER; STRING LITERAL; IDENTIFIER;

18

EXPRESSION STATEMENT; METHOD INVOCATION;
MEMBER SELECT; IDENTIFIER;
METHOD INVOCATION; IDENTIFIER; NEW CLASS

18

T1

NEW CLASS; IDENTIFIER; EXPRESSION STATEMENT;
ASSIGNMENT; MEMBER SELECT; IDENTIFIER;
NEW CLASS

13

METHOD INVOCATION; IDENTIFIER; IDENTIFIER;
TRY; BLOCK; EXPRESSION STATEMENT;
METHOD INVOCATION

9

METHOD INVOCATION; IDENTIFIER; IDENTIFIER;
TRY; BLOCK; EXPRESSION STATEMENT

9

NEW CLASS; IDENTIFIER; IDENTIFIER;
EXPRESSION STATEMENT; ASSIGNMENT;
MEMBER SELECT; IDENTIFIER

8

NEW CLASS; IDENTIFIER; IDENTIFIER;
EXPRESSION STATEMENT; ASSIGNMENT;
MEMBER SELECT

8

EJDT 3.0

BREAK; CASE; INT LITERAL;
EXPRESSION STATEMENT; METHOD INVOCATION;
IDENTIFIER

220

IDENTIFIER; BREAK; CASE; INT LITERAL;
EXPRESSION STATEMENT; METHOD INVOCATION;
IDENTIFIER

205

INT LITERAL; EXPRESSION STATEMENT;
METHOD INVOCATION; IDENTIFIER; BREAK

164

INT LITERAL; EXPRESSION STATEMENT;
METHOD INVOCATION; IDENTIFIER; BREAK; CASE

163

CASE; INT LITERAL; EXPRESSION STATEMENT;
METHOD INVOCATION; IDENTIFIER; BREAK

163

ArgoUML 0.20

METHOD INVOCATION; MEMBER SELECT;
IDENTIFIER; METHOD INVOCATION; IDENTIFIER;
MEMBER SELECT; IDENTIFIER

6

METHOD INVOCATION; MEMBER SELECT;
IDENTIFIER; METHOD INVOCATION; IDENTIFIER;
MEMBER SELECT

6

IDENTIFIER; METHOD INVOCATION; IDENTIFIER;
MEMBER SELECT; IDENTIFIER;
EXPRESSION STATEMENT; METHOD INVOCATION

6

IDENTIFIER; METHOD INVOCATION; IDENTIFIER;
MEMBER SELECT; IDENTIFIER;
EXPRESSION STATEMENT

6

MEMBER SELECT; IDENTIFIER;
METHOD INVOCATION; IDENTIFIER;
MEMBER SELECT; IDENTIFIER;
EXPRESSION STATEMENT

6

AspectJ 1.7.0

NULL LITERAL; GREATER THAN; MEMBER SELECT;
IDENTIFIER; INT LITERAL; BLOCK; FOR LOOP

2

GREATER THAN; MEMBER SELECT; IDENTIFIER;
INT LITERAL; BLOCK; FOR LOOP; VARIABLE

2

GREATER THAN; MEMBER SELECT; IDENTIFIER;
INT LITERAL; BLOCK; FOR LOOP

2

LOGICAL COMPLEMENT; METHOD INVOCATION;
IDENTIFIER; BLOCK; RETURN; NULL LITERAL; IF

2

PARENTHESIZED; METHOD INVOCATION;
MEMBER SELECT; IDENTIFIER; BLOCK; RETURN IF

2

Table B.16: Table showing the top five AST n-grams that only appear in faults in each system.
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Figure C.17: A line plot to show the change in recall as the Wang et al. [71] set of AST n-grams significantly
associated with faults are added to the baseline models.
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Figure C.18: A line plot to show the change in precision as the Wang et al. [71] set of AST n-grams
significantly associated with faults are added to the baseline models.
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Figure C.19: A line plot to show the change in f-measure as the Wang et al. [71] set of AST n-grams
significantly associated with faults are added to the baseline models.
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Figure C.20: A line plot to show the level of effect on the performance measure recall when AST n-grams
are added to our models. The three grey straight lines are the effect size indicators (d<0.147 Negligible,
d<0.33 = small, d<0.474 = medium, d>0.474 large [59])
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Figure C.21: A line plot to show the level of effect on the performance measure precision when AST n-grams
are added to our models. The three grey straight lines are the effect size indicators (d<0.147 Negligible,
d<0.33 = small, d<0.474 = medium, d>0.474 large [59])
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Figure C.22: A line plot to show the level of effect on the performance measure F-measure when AST
n-grams are added to our models. The three grey straight lines are the effect size indicators (d<0.147
Negligible, d<0.33 = small, d<0.474 = medium, d>0.474 large [59])
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Figure C.23: A line plot to show the level of effect on the performance measure MCC when AST n-grams
using the reduced Wang et al. [71] set are added to our models. The three grey straight lines are the effect
size indicators (d<0.147 Negligible, d<0.33 = small, d<0.474 = medium, d>0.474 large [59])
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Figure C.24: A line plot to show the level of effect on the performance measure recall when AST n-grams
using the reduced Wang et al. [71] set are added to our models. The three grey straight lines are the effect
size indicators (d<0.147 Negligible, d<0.33 = small, d<0.474 = medium, d>0.474 large [59])
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Figure C.25: A line plot to show the level of effect on the performance measure precision when AST n-grams
using the reduced Wang et al. [71] set are added to our models. The three grey straight lines are the effect
size indicators (d<0.147 Negligible, d<0.33 = small, d<0.474 = medium, d>0.474 large [59])
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Figure C.26: A line plot to show the level of effect on the performance measure F-measure when AST
n-grams using the reduced Wang et al. [71] set are added to our models. The three grey straight lines are
the effect size indicators (d<0.147 Negligible, d<0.33 = small, d<0.474 = medium, d>0.474 large [59])
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Appendix C.1. Raw Data for Model Performance

System Measure SigFrags Recall Precision F-Measure MCC
ArgoUML J48 0 0.00 0.04 0.00 0.01
AspectJ J48 0 0.02 0.32 0.04 0.08
EJDT J48 0 0.12 0.36 0.18 0.19
genoviz J48 0 0.10 0.46 0.16 0.18
jmol J48 0 0.19 0.46 0.27 0.23
jmri J48 0 0.28 0.57 0.38 0.37
k J48 0 0.13 0.87 0.23 0.32
reddeer J48 0 0.08 0.52 0.14 0.19
SocialSDK J48 0 0.04 0.47 0.07 0.12
T1 J48 0 0.11 0.44 0.16 0.17
T2 J48 0 0.33 0.52 0.40 0.35
ArgoUML Logistic 0 0.01 0.22 0.02 0.04
AspectJ Logistic 0 0.03 0.63 0.05 0.12
EJDT Logistic 0 0.15 0.43 0.22 0.23
genoviz Logistic 0 0.07 0.58 0.12 0.17
jmol Logistic 0 0.08 0.44 0.14 0.14
jmri Logistic 0 0.12 0.37 0.18 0.18
k Logistic 0 0.02 0.27 0.04 0.06
reddeer Logistic 0 0.00 0.00 0.00 0.00
SocialSDK Logistic 0 0.01 0.20 0.03 0.04
T1 Logistic 0 0.00 0.06 0.00 0.01
T2 Logistic 0 0.16 0.47 0.23 0.21
ArgoUML NaiveBayes 0 0.16 0.25 0.16 0.16
AspectJ NaiveBayes 0 0.24 0.32 0.27 0.25
EJDT NaiveBayes 0 0.43 0.22 0.29 0.26
genoviz NaiveBayes 0 0.29 0.33 0.31 0.24
jmol NaiveBayes 0 0.31 0.26 0.28 0.16
jmri NaiveBayes 0 0.28 0.26 0.27 0.21
k NaiveBayes 0 0.19 0.27 0.22 0.17
reddeer NaiveBayes 0 0.16 0.24 0.19 0.15
SocialSDK NaiveBayes 0 0.05 0.19 0.08 0.06
T1 NaiveBayes 0 0.14 0.12 0.13 0.06
T2 NaiveBayes 0 0.25 0.30 0.27 0.17
ArgoUML J48 10 0.00 0.09 0.01 0.02
AspectJ J48 10 0.02 0.32 0.04 0.08
EJDT J48 10 0.28 0.54 0.36 0.37
genoviz J48 10 0.11 0.49 0.17 0.19
jmol J48 10 0.21 0.51 0.29 0.26
jmri J48 10 0.35 0.59 0.44 0.42
k J48 10 0.13 0.87 0.23 0.32
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reddeer J48 10 0.15 0.85 0.25 0.33
SocialSDK J48 10 0.04 0.47 0.07 0.11
T1 J48 10 0.12 0.51 0.18 0.21
T2 J48 10 0.35 0.57 0.43 0.38
ArgoUML Logistic 10 0.01 0.26 0.02 0.05
AspectJ Logistic 10 0.03 0.63 0.05 0.12
EJDT Logistic 10 0.27 0.49 0.34 0.34
genoviz Logistic 10 0.05 0.58 0.09 0.14
jmol Logistic 10 0.19 0.38 0.25 0.19
jmri Logistic 10 0.16 0.45 0.24 0.24
k Logistic 10 0.02 0.27 0.04 0.06
reddeer Logistic 10 0.00 0.00 0.00 -0.00
SocialSDK Logistic 10 0.01 0.20 0.03 0.04
T1 Logistic 10 0.02 0.27 0.03 0.05
T2 Logistic 10 0.20 0.45 0.27 0.23
ArgoUML NaiveBayes 10 0.16 0.26 0.17 0.16
AspectJ NaiveBayes 10 0.24 0.32 0.27 0.25
EJDT NaiveBayes 10 0.47 0.25 0.33 0.30
genoviz NaiveBayes 10 0.33 0.33 0.33 0.25
jmol NaiveBayes 10 0.52 0.28 0.36 0.25
jmri NaiveBayes 10 0.42 0.28 0.33 0.28
k NaiveBayes 10 0.19 0.27 0.22 0.17
reddeer NaiveBayes 10 0.17 0.25 0.20 0.16
SocialSDK NaiveBayes 10 0.05 0.19 0.08 0.06
T1 NaiveBayes 10 0.37 0.16 0.22 0.15
T2 NaiveBayes 10 0.34 0.28 0.31 0.20
ArgoUML J48 20 0.00 0.09 0.01 0.02
AspectJ J48 20 0.03 0.33 0.04 0.08
EJDT J48 20 0.31 0.52 0.38 0.38
genoviz J48 20 0.14 0.45 0.21 0.21
jmol J48 20 0.23 0.52 0.32 0.29
jmri J48 20 0.33 0.58 0.42 0.41
k J48 20 0.13 0.87 0.23 0.32
reddeer J48 20 0.15 0.84 0.26 0.34
SocialSDK J48 20 0.02 0.33 0.04 0.07
T1 J48 20 0.15 0.53 0.22 0.25
T2 J48 20 0.35 0.57 0.43 0.38
ArgoUML Logistic 20 0.01 0.26 0.02 0.05
AspectJ Logistic 20 0.03 0.62 0.05 0.12
EJDT Logistic 20 0.27 0.46 0.34 0.33
genoviz Logistic 20 0.05 0.55 0.09 0.14
jmol Logistic 20 0.23 0.41 0.29 0.24
jmri Logistic 20 0.42 0.46 0.44 0.40
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k Logistic 20 0.02 0.27 0.04 0.06
reddeer Logistic 20 0.00 0.04 0.00 0.01
SocialSDK Logistic 20 0.01 0.50 0.03 0.07
T1 Logistic 20 0.05 0.19 0.07 0.06
T2 Logistic 20 0.22 0.44 0.29 0.24
ArgoUML NaiveBayes 20 0.16 0.26 0.17 0.16
AspectJ NaiveBayes 20 0.24 0.32 0.27 0.25
EJDT NaiveBayes 20 0.58 0.23 0.32 0.32
genoviz NaiveBayes 20 0.42 0.32 0.36 0.28
jmol NaiveBayes 20 0.55 0.28 0.37 0.26
jmri NaiveBayes 20 0.60 0.29 0.39 0.35
k NaiveBayes 20 0.19 0.27 0.22 0.17
reddeer NaiveBayes 20 0.17 0.24 0.20 0.16
SocialSDK NaiveBayes 20 0.05 0.19 0.08 0.06
T1 NaiveBayes 20 0.44 0.18 0.25 0.18
T2 NaiveBayes 20 0.43 0.26 0.32 0.20
ArgoUML J48 30 0.00 0.08 0.01 0.01
AspectJ J48 30 0.03 0.33 0.05 0.08
EJDT J48 30 0.33 0.57 0.41 0.41
genoviz J48 30 0.15 0.42 0.22 0.20
jmol J48 30 0.25 0.55 0.33 0.31
jmri J48 30 0.36 0.60 0.45 0.43
k J48 30 0.15 0.87 0.25 0.33
reddeer J48 30 0.16 0.82 0.26 0.34
SocialSDK J48 30 0.12 0.60 0.19 0.24
T1 J48 30 0.15 0.53 0.23 0.25
T2 J48 30 0.36 0.58 0.44 0.40
ArgoUML Logistic 30 0.01 0.25 0.02 0.05
AspectJ Logistic 30 0.03 0.66 0.05 0.12
EJDT Logistic 30 0.30 0.49 0.37 0.36
genoviz Logistic 30 0.06 0.54 0.11 0.16
jmol Logistic 30 0.26 0.43 0.32 0.26
jmri Logistic 30 0.43 0.46 0.44 0.40
k Logistic 30 0.03 0.50 0.06 0.11
reddeer Logistic 30 0.00 0.09 0.01 0.01
SocialSDK Logistic 30 0.02 0.69 0.03 0.10
T1 Logistic 30 0.06 0.22 0.09 0.07
T2 Logistic 30 0.26 0.46 0.33 0.28
ArgoUML NaiveBayes 30 0.16 0.26 0.17 0.16
AspectJ NaiveBayes 30 0.24 0.32 0.27 0.25
EJDT NaiveBayes 30 0.61 0.19 0.29 0.29
genoviz NaiveBayes 30 0.44 0.30 0.36 0.28
jmol NaiveBayes 30 0.55 0.29 0.38 0.27
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jmri NaiveBayes 30 0.63 0.28 0.39 0.36
k NaiveBayes 30 0.23 0.24 0.24 0.17
reddeer NaiveBayes 30 0.27 0.23 0.25 0.19
SocialSDK NaiveBayes 30 0.16 0.28 0.20 0.16
T1 NaiveBayes 30 0.47 0.18 0.26 0.20
T2 NaiveBayes 30 0.49 0.26 0.33 0.22
ArgoUML J48 40 0.00 0.06 0.01 0.01
AspectJ J48 40 0.03 0.33 0.06 0.09
EJDT J48 40 0.38 0.60 0.46 0.46
genoviz J48 40 0.14 0.42 0.21 0.20
jmol J48 40 0.25 0.55 0.34 0.31
jmri J48 40 0.37 0.61 0.46 0.44
k J48 40 0.15 0.87 0.25 0.34
reddeer J48 40 0.17 0.79 0.27 0.34
SocialSDK J48 40 0.19 0.57 0.28 0.30
T1 J48 40 0.15 0.49 0.22 0.24
T2 J48 40 0.38 0.60 0.46 0.42
ArgoUML Logistic 40 0.01 0.25 0.02 0.04
AspectJ Logistic 40 0.03 0.66 0.05 0.12
EJDT Logistic 40 0.34 0.51 0.40 0.39
genoviz Logistic 40 0.07 0.54 0.12 0.16
jmol Logistic 40 0.26 0.43 0.32 0.26
jmri Logistic 40 0.43 0.46 0.44 0.40
k Logistic 40 0.03 0.52 0.06 0.11
reddeer Logistic 40 0.00 0.09 0.01 0.01
SocialSDK Logistic 40 0.08 0.46 0.13 0.15
T1 Logistic 40 0.09 0.29 0.13 0.12
T2 Logistic 40 0.26 0.45 0.33 0.27
ArgoUML NaiveBayes 40 0.16 0.26 0.17 0.16
AspectJ NaiveBayes 40 0.24 0.32 0.27 0.25
EJDT NaiveBayes 40 0.66 0.20 0.31 0.31
genoviz NaiveBayes 40 0.46 0.29 0.36 0.28
jmol NaiveBayes 40 0.55 0.29 0.37 0.27
jmri NaiveBayes 40 0.64 0.27 0.38 0.35
k NaiveBayes 40 0.25 0.24 0.24 0.18
reddeer NaiveBayes 40 0.26 0.24 0.25 0.20
SocialSDK NaiveBayes 40 0.20 0.31 0.24 0.20
T1 NaiveBayes 40 0.47 0.18 0.26 0.20
T2 NaiveBayes 40 0.49 0.26 0.34 0.22
ArgoUML J48 50 0.00 0.04 0.00 0.01
AspectJ J48 50 0.04 0.33 0.06 0.09
EJDT J48 50 0.40 0.64 0.49 0.49
genoviz J48 50 0.15 0.42 0.22 0.21
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jmol J48 50 0.25 0.55 0.34 0.31
jmri J48 50 0.39 0.62 0.48 0.46
k J48 50 0.15 0.85 0.25 0.33
reddeer J48 50 0.18 0.78 0.29 0.35
SocialSDK J48 50 0.19 0.56 0.28 0.29
T1 J48 50 0.15 0.51 0.23 0.24
T2 J48 50 0.38 0.62 0.47 0.43
ArgoUML Logistic 50 0.01 0.21 0.02 0.04
AspectJ Logistic 50 0.03 0.67 0.05 0.12
EJDT Logistic 50 0.37 0.53 0.44 0.42
genoviz Logistic 50 0.06 0.52 0.11 0.16
jmol Logistic 50 0.28 0.44 0.34 0.27
jmri Logistic 50 0.42 0.47 0.44 0.40
k Logistic 50 0.03 0.46 0.06 0.11
reddeer Logistic 50 0.01 0.24 0.03 0.05
SocialSDK Logistic 50 0.06 0.43 0.10 0.12
T1 Logistic 50 0.12 0.30 0.17 0.15
T2 Logistic 50 0.29 0.49 0.36 0.31
ArgoUML NaiveBayes 50 0.16 0.25 0.17 0.16
AspectJ NaiveBayes 50 0.25 0.32 0.28 0.25
EJDT NaiveBayes 50 0.67 0.19 0.30 0.31
genoviz NaiveBayes 50 0.46 0.29 0.36 0.28
jmol NaiveBayes 50 0.55 0.29 0.37 0.27
jmri NaiveBayes 50 0.62 0.29 0.40 0.36
k NaiveBayes 50 0.30 0.24 0.26 0.20
reddeer NaiveBayes 50 0.27 0.23 0.25 0.19
SocialSDK NaiveBayes 50 0.19 0.31 0.23 0.19
T1 NaiveBayes 50 0.46 0.18 0.26 0.20
T2 NaiveBayes 50 0.50 0.28 0.35 0.24
ArgoUML J48 75 0.00 0.03 0.00 0.01
AspectJ J48 75 0.06 0.71 0.11 0.20
EJDT J48 75 0.43 0.67 0.52 0.52
genoviz J48 75 0.17 0.42 0.24 0.22
jmol J48 75 0.21 0.58 0.30 0.29
jmri J48 75 0.30 0.66 0.41 0.42
k J48 75 0.17 0.76 0.28 0.34
reddeer J48 75 0.18 0.77 0.29 0.35
SocialSDK J48 75 0.17 0.58 0.26 0.29
T1 J48 75 0.17 0.50 0.25 0.26
T2 J48 75 0.38 0.64 0.48 0.44
ArgoUML Logistic 75 0.03 0.43 0.05 0.10
AspectJ Logistic 75 0.04 0.43 0.07 0.11
EJDT Logistic 75 0.40 0.55 0.46 0.45
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genoviz Logistic 75 0.07 0.51 0.12 0.16
jmol Logistic 75 0.16 0.58 0.24 0.25
jmri Logistic 75 0.23 0.58 0.33 0.34
k Logistic 75 0.05 0.47 0.09 0.13
reddeer Logistic 75 0.05 0.48 0.08 0.13
SocialSDK Logistic 75 0.09 0.40 0.14 0.16
T1 Logistic 75 0.15 0.35 0.21 0.19
T2 Logistic 75 0.32 0.50 0.38 0.33
ArgoUML NaiveBayes 75 0.16 0.25 0.17 0.16
AspectJ NaiveBayes 75 0.18 0.30 0.22 0.20
EJDT NaiveBayes 75 0.66 0.20 0.30 0.31
genoviz NaiveBayes 75 0.48 0.28 0.35 0.28
jmol NaiveBayes 75 0.51 0.33 0.40 0.29
jmri NaiveBayes 75 0.55 0.36 0.43 0.39
k NaiveBayes 75 0.34 0.23 0.28 0.21
reddeer NaiveBayes 75 0.25 0.23 0.24 0.18
SocialSDK NaiveBayes 75 0.24 0.35 0.29 0.25
T1 NaiveBayes 75 0.46 0.19 0.26 0.20
T2 NaiveBayes 75 0.52 0.29 0.37 0.26
ArgoUML J48 100 0.00 0.02 0.00 0.01
EJDT J48 100 0.44 0.67 0.53 0.52
genoviz J48 100 0.17 0.42 0.24 0.22
jmol J48 100 0.21 0.57 0.30 0.29
jmri J48 100 0.32 0.66 0.43 0.43
k J48 100 0.19 0.75 0.30 0.35
reddeer J48 100 0.19 0.74 0.29 0.35
SocialSDK J48 100 0.26 0.63 0.37 0.38
T1 J48 100 0.20 0.51 0.28 0.28
T2 J48 100 0.39 0.64 0.48 0.44
ArgoUML Logistic 100 0.03 0.46 0.06 0.11
EJDT Logistic 100 0.42 0.58 0.48 0.47
genoviz Logistic 100 0.08 0.49 0.13 0.16
jmol Logistic 100 0.17 0.60 0.26 0.27
jmri Logistic 100 0.23 0.57 0.33 0.33
k Logistic 100 0.06 0.51 0.11 0.15
reddeer Logistic 100 0.05 0.52 0.10 0.15
SocialSDK Logistic 100 0.09 0.44 0.15 0.17
T1 Logistic 100 0.17 0.39 0.23 0.22
T2 Logistic 100 0.31 0.51 0.39 0.33
ArgoUML NaiveBayes 100 0.16 0.25 0.17 0.16
EJDT NaiveBayes 100 0.64 0.21 0.31 0.32
genoviz NaiveBayes 100 0.49 0.28 0.35 0.28
jmol NaiveBayes 100 0.51 0.33 0.40 0.29
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jmri NaiveBayes 100 0.54 0.35 0.43 0.39
k NaiveBayes 100 0.36 0.24 0.29 0.22
reddeer NaiveBayes 100 0.25 0.24 0.24 0.19
SocialSDK NaiveBayes 100 0.36 0.35 0.35 0.30
T1 NaiveBayes 100 0.46 0.19 0.27 0.21
T2 NaiveBayes 100 0.53 0.29 0.37 0.26
ArgoUML J48 125 0.00 0.03 0.00 0.01
EJDT J48 125 0.45 0.68 0.54 0.54
genoviz J48 125 0.18 0.44 0.25 0.23
jmol J48 125 0.21 0.60 0.30 0.30
jmri J48 125 0.32 0.66 0.43 0.43
k J48 125 0.19 0.72 0.30 0.35
reddeer J48 125 0.19 0.75 0.29 0.35
SocialSDK J48 125 0.27 0.61 0.37 0.38
T1 J48 125 0.22 0.53 0.31 0.31
T2 J48 125 0.40 0.64 0.49 0.45
ArgoUML Logistic 125 0.04 0.48 0.06 0.12
EJDT Logistic 125 0.44 0.61 0.51 0.50
genoviz Logistic 125 0.08 0.49 0.14 0.17
jmol Logistic 125 0.19 0.61 0.29 0.30
jmri Logistic 125 0.24 0.58 0.33 0.34
k Logistic 125 0.08 0.49 0.13 0.17
reddeer Logistic 125 0.05 0.47 0.09 0.14
SocialSDK Logistic 125 0.11 0.46 0.17 0.19
T1 Logistic 125 0.17 0.39 0.23 0.22
T2 Logistic 125 0.32 0.50 0.39 0.33
ArgoUML NaiveBayes 125 0.16 0.25 0.17 0.16
EJDT NaiveBayes 125 0.62 0.22 0.33 0.33
genoviz NaiveBayes 125 0.50 0.28 0.36 0.28
jmol NaiveBayes 125 0.51 0.34 0.40 0.30
jmri NaiveBayes 125 0.55 0.35 0.43 0.38
k NaiveBayes 125 0.36 0.24 0.29 0.22
reddeer NaiveBayes 125 0.24 0.25 0.24 0.19
SocialSDK NaiveBayes 125 0.37 0.35 0.36 0.31
T1 NaiveBayes 125 0.45 0.20 0.27 0.21
T2 NaiveBayes 125 0.53 0.30 0.38 0.27
ArgoUML J48 150 0.00 0.03 0.00 0.01
EJDT J48 150 0.49 0.73 0.58 0.58
genoviz J48 150 0.19 0.44 0.26 0.24
jmol J48 150 0.21 0.59 0.30 0.30
jmri J48 150 0.32 0.68 0.43 0.44
k J48 150 0.20 0.69 0.31 0.34
reddeer J48 150 0.19 0.75 0.29 0.35
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SocialSDK J48 150 0.26 0.60 0.36 0.37
T1 J48 150 0.21 0.52 0.30 0.30
T2 J48 150 0.40 0.63 0.49 0.45
ArgoUML Logistic 150 0.04 0.48 0.06 0.12
EJDT Logistic 150 0.44 0.64 0.52 0.52
genoviz Logistic 150 0.09 0.49 0.15 0.17
jmol Logistic 150 0.21 0.63 0.31 0.31
jmri Logistic 150 0.25 0.61 0.35 0.36
k Logistic 150 0.09 0.54 0.15 0.19
reddeer Logistic 150 0.05 0.48 0.09 0.14
SocialSDK Logistic 150 0.12 0.51 0.20 0.22
T1 Logistic 150 0.18 0.41 0.25 0.23
T2 Logistic 150 0.33 0.50 0.39 0.34
ArgoUML NaiveBayes 150 0.16 0.25 0.17 0.16
EJDT NaiveBayes 150 0.61 0.25 0.36 0.35
genoviz NaiveBayes 150 0.51 0.28 0.36 0.28
jmol NaiveBayes 150 0.51 0.34 0.40 0.30
jmri NaiveBayes 150 0.55 0.35 0.43 0.39
k NaiveBayes 150 0.37 0.24 0.29 0.22
reddeer NaiveBayes 150 0.23 0.25 0.24 0.19
SocialSDK NaiveBayes 150 0.39 0.36 0.37 0.32
T1 NaiveBayes 150 0.44 0.20 0.28 0.21
T2 NaiveBayes 150 0.53 0.30 0.38 0.27
ArgoUML J48 175 0.00 0.03 0.00 0.01
EJDT J48 175 0.49 0.73 0.58 0.58
genoviz J48 175 0.19 0.43 0.26 0.24
jmol J48 175 0.22 0.59 0.31 0.30
jmri J48 175 0.32 0.69 0.44 0.45
k J48 175 0.20 0.70 0.30 0.34
reddeer J48 175 0.19 0.75 0.30 0.35
SocialSDK J48 175 0.26 0.61 0.36 0.37
T1 J48 175 0.22 0.53 0.31 0.31
T2 J48 175 0.40 0.63 0.49 0.45
ArgoUML Logistic 175 0.04 0.48 0.06 0.12
EJDT Logistic 175 0.46 0.64 0.53 0.53
genoviz Logistic 175 0.09 0.49 0.16 0.18
jmol Logistic 175 0.23 0.63 0.33 0.33
jmri Logistic 175 0.26 0.62 0.36 0.37
k Logistic 175 0.11 0.55 0.17 0.21
reddeer Logistic 175 0.05 0.48 0.09 0.14
SocialSDK Logistic 175 0.13 0.50 0.21 0.23
T1 Logistic 175 0.21 0.42 0.27 0.25
T2 Logistic 175 0.34 0.51 0.40 0.35

57



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ArgoUML NaiveBayes 175 0.16 0.25 0.17 0.16
EJDT NaiveBayes 175 0.61 0.27 0.37 0.36
genoviz NaiveBayes 175 0.51 0.28 0.36 0.28
jmol NaiveBayes 175 0.51 0.34 0.40 0.30
jmri NaiveBayes 175 0.54 0.36 0.44 0.39
k NaiveBayes 175 0.38 0.25 0.30 0.23
reddeer NaiveBayes 175 0.24 0.24 0.24 0.19
SocialSDK NaiveBayes 175 0.38 0.36 0.37 0.32
T1 NaiveBayes 175 0.46 0.21 0.29 0.23
T2 NaiveBayes 175 0.54 0.30 0.39 0.28
ArgoUML J48 200 0.00 0.03 0.00 0.01
EJDT J48 200 0.50 0.72 0.58 0.58
genoviz J48 200 0.19 0.44 0.26 0.24
jmol J48 200 0.23 0.60 0.32 0.32
jmri J48 200 0.33 0.69 0.45 0.45
k J48 200 0.21 0.70 0.32 0.35
reddeer J48 200 0.19 0.73 0.30 0.35
SocialSDK J48 200 0.26 0.62 0.37 0.37
T1 J48 200 0.24 0.55 0.33 0.33
T2 J48 200 0.40 0.64 0.49 0.45
ArgoUML Logistic 200 0.04 0.49 0.07 0.12
EJDT Logistic 200 0.48 0.66 0.55 0.55
genoviz Logistic 200 0.10 0.49 0.16 0.18
jmol Logistic 200 0.24 0.62 0.34 0.34
jmri Logistic 200 0.27 0.65 0.38 0.39
k Logistic 200 0.13 0.60 0.21 0.25
reddeer Logistic 200 0.06 0.48 0.11 0.15
SocialSDK Logistic 200 0.14 0.53 0.22 0.25
T1 Logistic 200 0.22 0.43 0.28 0.27
T2 Logistic 200 0.38 0.53 0.44 0.38
ArgoUML NaiveBayes 200 0.16 0.26 0.17 0.16
EJDT NaiveBayes 200 0.63 0.27 0.37 0.37
genoviz NaiveBayes 200 0.51 0.27 0.36 0.28
jmol NaiveBayes 200 0.52 0.34 0.41 0.31
jmri NaiveBayes 200 0.55 0.36 0.44 0.39
k NaiveBayes 200 0.38 0.25 0.30 0.24
reddeer NaiveBayes 200 0.24 0.24 0.24 0.19
SocialSDK NaiveBayes 200 0.39 0.36 0.37 0.32
T1 NaiveBayes 200 0.47 0.22 0.30 0.24
T2 NaiveBayes 200 0.59 0.32 0.41 0.32

Table C.17: Averages for the measurements across all 100 runs for each system and number of significant
fragments
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Appendix C.2. Significant fragments

System Measure SigFrags Recall Precision F-Measure MCC
ArgoUML J48 0 0.00 0.04 0.00 0.01
AspectJ J48 0 0.02 0.32 0.04 0.08
EJDT J48 0 0.12 0.36 0.18 0.19
genoviz J48 0 0.10 0.46 0.16 0.18
jmol J48 0 0.09 0.43 0.15 0.15
k J48 0 0.13 0.87 0.23 0.32
reddeer J48 0 0.08 0.52 0.14 0.19
SocialSDK J48 0 0.04 0.47 0.07 0.12
T1 J48 0 0.11 0.44 0.16 0.17
T2 J48 0 0.33 0.52 0.40 0.35
ArgoUML Logistic 0 0.01 0.22 0.02 0.04
AspectJ Logistic 0 0.03 0.63 0.05 0.12
EJDT Logistic 0 0.15 0.43 0.22 0.23
genoviz Logistic 0 0.07 0.58 0.12 0.17
jmol Logistic 0 0.04 0.46 0.07 0.11
k Logistic 0 0.02 0.27 0.04 0.06
reddeer Logistic 0 0.00 0.00 0.00 0.00
SocialSDK Logistic 0 0.01 0.20 0.03 0.04
T1 Logistic 0 0.00 0.06 0.00 0.01
T2 Logistic 0 0.16 0.47 0.23 0.21
ArgoUML NaiveBayes 0 0.16 0.25 0.16 0.16
AspectJ NaiveBayes 0 0.24 0.32 0.27 0.25
EJDT NaiveBayes 0 0.43 0.22 0.29 0.26
genoviz NaiveBayes 0 0.29 0.33 0.31 0.24
jmol NaiveBayes 0 0.22 0.34 0.27 0.19
k NaiveBayes 0 0.19 0.27 0.22 0.17
reddeer NaiveBayes 0 0.16 0.24 0.19 0.15
SocialSDK NaiveBayes 0 0.05 0.19 0.08 0.06
T1 NaiveBayes 0 0.14 0.12 0.13 0.06
T2 NaiveBayes 0 0.25 0.30 0.27 0.17
ArgoUML J48 10 0.00 0.00 0.00 0.00
AspectJ J48 10 0.00 0.00 0.00 0.00
EJDT J48 10 0.13 0.39 0.19 0.20
genoviz J48 10 0.12 0.42 0.19 0.18
jmol J48 10 0.10 0.45 0.16 0.16
k J48 10 0.14 0.87 0.24 0.33
reddeer J48 10 0.10 0.62 0.17 0.23
SocialSDK J48 10 0.05 0.59 0.09 0.15
T1 J48 10 0.06 0.58 0.10 0.15
T2 J48 10 0.33 0.53 0.41 0.35
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ArgoUML Logistic 10 0.00 0.00 0.00 -0.00
AspectJ Logistic 10 0.00 0.00 0.00 -0.00
EJDT Logistic 10 0.16 0.43 0.23 0.24
genoviz Logistic 10 0.06 0.56 0.10 0.16
jmol Logistic 10 0.05 0.35 0.08 0.09
k Logistic 10 0.04 0.38 0.07 0.10
reddeer Logistic 10 0.00 0.12 0.01 0.02
SocialSDK Logistic 10 0.02 0.26 0.04 0.06
T1 Logistic 10 0.04 0.42 0.08 0.11
T2 Logistic 10 0.17 0.46 0.24 0.21
ArgoUML NaiveBayes 10 0.15 0.01 0.02 0.03
AspectJ NaiveBayes 10 0.00 0.00 0.00 -0.00
EJDT NaiveBayes 10 0.44 0.23 0.30 0.27
genoviz NaiveBayes 10 0.38 0.31 0.34 0.26
jmol NaiveBayes 10 0.28 0.34 0.31 0.22
k NaiveBayes 10 0.23 0.23 0.22 0.16
reddeer NaiveBayes 10 0.17 0.24 0.20 0.16
SocialSDK NaiveBayes 10 0.05 0.19 0.08 0.06
T1 NaiveBayes 10 0.37 0.20 0.26 0.19
T2 NaiveBayes 10 0.30 0.27 0.28 0.17
ArgoUML J48 20 0.00 0.00 0.00 -0.00
AspectJ J48 20 0.00 0.00 0.00 0.00
EJDT J48 20 0.14 0.38 0.21 0.21
genoviz J48 20 0.14 0.42 0.20 0.19
jmol J48 20 0.11 0.49 0.17 0.18
k J48 20 0.14 0.86 0.24 0.33
reddeer J48 20 0.10 0.62 0.18 0.24
SocialSDK J48 20 0.05 0.57 0.09 0.14
T1 J48 20 0.07 0.56 0.10 0.15
T2 J48 20 0.34 0.53 0.41 0.36
ArgoUML Logistic 20 0.00 0.00 0.00 -0.00
AspectJ Logistic 20 0.00 0.00 0.00 0.00
EJDT Logistic 20 0.16 0.44 0.23 0.24
genoviz Logistic 20 0.07 0.58 0.12 0.17
jmol Logistic 20 0.10 0.55 0.16 0.18
k Logistic 20 0.05 0.39 0.08 0.11
reddeer Logistic 20 0.01 0.25 0.02 0.04
SocialSDK Logistic 20 0.01 0.28 0.03 0.05
T1 Logistic 20 0.04 0.38 0.07 0.10
T2 Logistic 20 0.18 0.47 0.26 0.23
ArgoUML NaiveBayes 20 0.15 0.01 0.02 0.03
AspectJ NaiveBayes 20 0.00 0.00 0.00 -0.00
EJDT NaiveBayes 20 0.44 0.23 0.30 0.27
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genoviz NaiveBayes 20 0.40 0.29 0.34 0.26
jmol NaiveBayes 20 0.29 0.35 0.32 0.23
k NaiveBayes 20 0.23 0.22 0.22 0.16
reddeer NaiveBayes 20 0.16 0.23 0.19 0.14
SocialSDK NaiveBayes 20 0.06 0.20 0.09 0.07
T1 NaiveBayes 20 0.32 0.18 0.23 0.16
T2 NaiveBayes 20 0.29 0.27 0.28 0.17
ArgoUML J48 30 0.00 0.00 0.00 0.00
AspectJ J48 30 0.00 0.00 0.00 0.00
EJDT J48 30 0.15 0.38 0.21 0.22
genoviz J48 30 0.14 0.40 0.21 0.19
jmol J48 30 0.11 0.49 0.18 0.18
k J48 30 0.14 0.85 0.24 0.33
SocialSDK J48 30 0.05 0.57 0.09 0.14
T1 J48 30 0.06 0.50 0.10 0.14
T2 J48 30 0.33 0.54 0.41 0.36
ArgoUML Logistic 30 0.00 0.00 0.00 -0.00
AspectJ Logistic 30 0.00 0.00 0.00 0.00
EJDT Logistic 30 0.16 0.44 0.23 0.25
genoviz Logistic 30 0.07 0.55 0.12 0.17
jmol Logistic 30 0.11 0.58 0.18 0.20
k Logistic 30 0.05 0.40 0.08 0.12
SocialSDK Logistic 30 0.01 0.28 0.03 0.05
T1 Logistic 30 0.04 0.38 0.07 0.10
T2 Logistic 30 0.18 0.47 0.26 0.23
ArgoUML NaiveBayes 30 0.16 0.01 0.02 0.03
AspectJ NaiveBayes 30 0.00 0.00 0.00 -0.00
EJDT NaiveBayes 30 0.43 0.23 0.30 0.27
genoviz NaiveBayes 30 0.40 0.29 0.34 0.26
jmol NaiveBayes 30 0.30 0.36 0.32 0.23
k NaiveBayes 30 0.23 0.22 0.22 0.15
SocialSDK NaiveBayes 30 0.06 0.20 0.09 0.07
T1 NaiveBayes 30 0.31 0.19 0.23 0.16
T2 NaiveBayes 30 0.28 0.27 0.27 0.16
ArgoUML J48 40 0.00 0.00 0.00 0.00
AspectJ J48 40 0.00 0.00 0.00 -0.00
EJDT J48 40 0.14 0.36 0.19 0.20
genoviz J48 40 0.14 0.40 0.20 0.19
jmol J48 40 0.11 0.47 0.17 0.17
k J48 40 0.14 0.85 0.24 0.33
SocialSDK J48 40 0.05 0.58 0.09 0.15
T1 J48 40 0.07 0.58 0.11 0.16
T2 J48 40 0.34 0.54 0.42 0.36

61



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ArgoUML Logistic 40 0.00 0.00 0.00 -0.00
AspectJ Logistic 40 0.00 0.00 0.00 -0.00
EJDT Logistic 40 0.16 0.45 0.24 0.25
genoviz Logistic 40 0.07 0.55 0.13 0.17
jmol Logistic 40 0.10 0.57 0.17 0.20
k Logistic 40 0.04 0.37 0.08 0.11
SocialSDK Logistic 40 0.01 0.28 0.03 0.05
T1 Logistic 40 0.04 0.40 0.07 0.10
T2 Logistic 40 0.18 0.47 0.26 0.23
ArgoUML NaiveBayes 40 0.16 0.02 0.03 0.04
AspectJ NaiveBayes 40 0.00 0.00 0.00 -0.00
EJDT NaiveBayes 40 0.42 0.24 0.30 0.27
genoviz NaiveBayes 40 0.40 0.29 0.34 0.26
jmol NaiveBayes 40 0.30 0.36 0.32 0.23
k NaiveBayes 40 0.22 0.22 0.22 0.15
SocialSDK NaiveBayes 40 0.06 0.20 0.09 0.07
T1 NaiveBayes 40 0.28 0.18 0.21 0.15
T2 NaiveBayes 40 0.28 0.28 0.28 0.17
AspectJ J48 50 0.00 0.00 0.00 0.00
EJDT J48 50 0.15 0.42 0.22 0.23
genoviz J48 50 0.14 0.40 0.20 0.19
jmol J48 50 0.10 0.47 0.16 0.17
k J48 50 0.16 0.88 0.27 0.36
SocialSDK J48 50 0.05 0.58 0.09 0.15
T1 J48 50 0.08 0.56 0.13 0.18
T2 J48 50 0.33 0.54 0.41 0.36
AspectJ Logistic 50 0.00 0.00 0.00 0.00
EJDT Logistic 50 0.17 0.47 0.25 0.26
genoviz Logistic 50 0.08 0.54 0.13 0.17
jmol Logistic 50 0.06 0.46 0.11 0.13
k Logistic 50 0.10 0.47 0.16 0.19
SocialSDK Logistic 50 0.01 0.28 0.03 0.05
T1 Logistic 50 0.04 0.39 0.07 0.10
T2 Logistic 50 0.18 0.48 0.26 0.23
AspectJ NaiveBayes 50 0.00 0.00 0.00 -0.00
EJDT NaiveBayes 50 0.41 0.25 0.31 0.28
genoviz NaiveBayes 50 0.40 0.29 0.34 0.26
jmol NaiveBayes 50 0.28 0.34 0.30 0.21
k NaiveBayes 50 0.24 0.24 0.24 0.17
SocialSDK NaiveBayes 50 0.06 0.20 0.09 0.07
T1 NaiveBayes 50 0.26 0.19 0.20 0.14
T2 NaiveBayes 50 0.28 0.28 0.28 0.17
AspectJ J48 75 0.00 0.00 0.00 0.00
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ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

genoviz J48 75 0.14 0.39 0.20 0.18
SocialSDK J48 75 0.05 0.57 0.09 0.14
T2 J48 75 0.34 0.54 0.41 0.36
AspectJ Logistic 75 0.00 0.00 0.00 0.00
genoviz Logistic 75 0.08 0.51 0.14 0.18
SocialSDK Logistic 75 0.02 0.28 0.03 0.05
T2 Logistic 75 0.18 0.45 0.26 0.22
AspectJ NaiveBayes 75 0.00 0.00 0.00 -0.00
genoviz NaiveBayes 75 0.40 0.29 0.34 0.26
SocialSDK NaiveBayes 75 0.06 0.20 0.09 0.07
T2 NaiveBayes 75 0.29 0.27 0.28 0.17
genoviz J48 100 0.13 0.39 0.20 0.18
SocialSDK J48 100 0.05 0.56 0.09 0.14
genoviz Logistic 100 0.09 0.49 0.15 0.17
SocialSDK Logistic 100 0.02 0.29 0.04 0.06
genoviz NaiveBayes 100 0.37 0.28 0.32 0.24
SocialSDK NaiveBayes 100 0.06 0.20 0.09 0.07
SocialSDK J48 125 0.05 0.56 0.09 0.14
SocialSDK Logistic 125 0.02 0.28 0.04 0.06
SocialSDK NaiveBayes 125 0.06 0.20 0.09 0.07
SocialSDK J48 150 0.06 0.61 0.10 0.16
SocialSDK Logistic 150 0.02 0.24 0.04 0.05
SocialSDK NaiveBayes 150 0.07 0.22 0.10 0.08

Table C.18: Averages for the measurements across all 100 runs for each system and number of significant
fragments for the Wang method
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