-

View metadata, citation and similar papers at core.ac.uk brought to you by i CORE
provided by CLoK

2
e
RS

B
uclan

University of Central Lancashire

Article

Automatically Identifying Code Features for
Software Defect Prediction: Using AST N-grams

Shippey, Thomas, Bowes, David and Hall, Tracy
Available at http://clok.uclan.ac.uk/24433/

Shippey, Thomas, Bowes, David and Hall, Tracy (2018) Automatically Identifying Code
Features for Software Defect Prediction: Using AST N-grams. Information and Software
Technology . ISSN 0950-5849

It is advisable to refer to the publisher’s version if you intend to cite from the work.
http://dx.doi.org/10.1016/j.infsof.2018.10.001

For more information about UCLan’s research in this area go to
http://www.uclan.ac.uk/researchgroups/ and search for <name of research Group>.

For information about Research generally at UCLan please go to
http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including
Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained
by the individual authors and/or other copyright owners. Terms and conditions for use
of this material are defined in the http://clok.uclan.ac.uk/policies/

CLoK . T
Central Lancashire online Knowledge A Q
www.clok.uclan.ac.uk CLoK

https://core.ac.uk/display/161510438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://clok.uclan.ac.uk/policies/
http://www.uclan.ac.uk/research/
http://www.uclan.ac.uk/researchgroups/

Accepted Manuscript 2 p—

" INFORMATION
— AND

Automatically Identifying Code Features for Software Defect ____ SOFTWARE
Prediction: Using AST N-grams TECHNOLOGY

Thomas Shippey, David Bowes, Tracy Hall

PII: S0950-5849(18)30205-2

DOI: https://doi.org/10.1016/j.infsof.2018.10.001 —
Reference: INFSOF 6057 —

To appear in: Information and Software Technology

Received date: 20 February 2018

Revised date: 4 September 2018

Accepted date: 2 October 2018

Please cite this article as: Thomas Shippey, David Bowes, Tracy Hall, Automatically Identifying Code
Features for Software Defect Prediction: Using AST N-grams, Information and Software Technology
(2018), doi: https://doi.org/10.1016/j.infsof.2018.10.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2018.10.001
https://doi.org/10.1016/j.infsof.2018.10.001

Automatically Identifying Code Features for Software Defect
Prediction: Using AST N-grams

Thomas Shippey?®, David BowesP, Tracy Hall®

@ University of Hertfordshire
b University of Central Lancashire
¢Lancaster University

Abstract

Context: Identifying defects in code early is important. A wide range of static code metrics
have been evaluated as potential defect indicators. Most of'these mietrics offer only high
level insights and focus on particular pre-selected features of the code. None of the currently
used metrics clearly performs best in defect prediction.

Objective: We use Abstract Syntax Tree (AST) n-grams to identify features of defective
Java code that improve defect prediction performance.

Method: Our approach is bottom-up and does not rely on pre-selecting any specific features
of code. We use non-parametric testing to determine relationships between AST n-grams
and faults in both open source and commeteial systems. We build defect prediction models
using three machine learning techniquess:

Results: We show that AST n-grams are very significantly related to faults in some systems,
with very large effect sizes. The oecurrence of some frequently occurring AST n-grams in a
method can mean that the method.is up to three times more likely to contain a fault. AST
n-grams can have a large effe¢t on the performance of defect prediction models.
Conclusions: We suggest that AST n-grams offer developers a promising approach to iden-
tifying potentially defectiveicode.

1. Introduction

The aim ‘of this paper is to automatically identify features of faulty Java code and use
these features to improve defect prediction performance. Our approach is based on analysing
the Abstract-Syntax Tree (AST) for a piece of code. AST n-grams are sets of Java AST
nodes, /These AST n-grams define the low level programming constructs that have been
used in_a piece of code and the order in which these are used. We analysed the code to

Email addresses: t.shippey@herts.ac.uk (Thomas Shippey), dbowes@uclan.ac.uk (David Bowes),
t.hall3@lancaster.ac.uk (Tracy Hall)

This work was partly funded by a grant from the UK’s Engineering and Physical Sciences Research
Council under grant number: EP/L011751/1. We would like to thank our collaborator for allowing us to
use their source code, defect repository and version control systems.

Preprint submitted to Information and Software Technology October 3, 2018

identify AST n-grams in nine open source systems and two commercial telecommunication
Java systems. We report many AST n-grams that are significantly associated with faults'
across all eleven systems. We show that including AST n-grams in defect prediction models
improves predictive performance.

Traditionally studies have focused on investigating which static features of code are
associated with defects [31]. These previous approaches are top-down, focusing on a partic-
ular pre-selected set of code features, for example features associated with coupling or size.
Many other features of code that may be fault-prone are not considered in suchitop-down
approaches. The performance of these traditional defect prediction models seems 'to have
reached a performance ceiling [49]. In response to this ceiling a new bottém-up approach to
identifying the defective features of code is emerging. This approach-automatically learns
the defective features of code by analysing the semantics of the codewiasthe Abstract Syn-
tax Tree. Wang et al. [71] built promising defect prediction médels based on a subset of
AST nodes using neural networks. Pradel and Sen [55] also usedia neural network to build
good defect prediction models using a sub-set of AST nodes (these based on identifiers and
literals). We extend both of these previous studies by analysing the full set of AST nodes in
relation to defects, rather than only the limited sub-sétief features previously investigated.
We report important new code features related to defeets. "We also go further by reporting
our results at method rather than class level and evaluating our approach on an extended
set of projects including two closed source projeets. We identify features of code not used
in defect prediction previously and which have'\large effects on the performance of defect
prediction models.

Our approach starts by serialising a’Javammethod’s AST. For each method, a serialisation
is created by using a pre-order trawversal of'the AST, with the ordering being determined
by the sequence in which the nodes are visited. AST n-grams are then extracted from the
method serialisation. These AST nsgrams are an n-gram? of the serialised AST, where an
n-gram unit is a node of the’AST. These AST n-grams capture the low level building blocks
that have been used in the'code and, so, provide comprehensive fine grained insight into the
features of that code.

We investigate andyquantify the relationship between AST n-grams and faults, by an-
swering the following research questions:

Research Question 1: Are any AST n-grams significantly associated with faulty code?

Research Question 2: What is the effect size of AST n-grams significantly associated with
faultyreode?

Research Question 3: Does the inclusion of AST n-grams that are significantly associated

'We use the IEEE definition [35] of a fault being a reported defect, where a defect is a mistake in code
made by a developer which may result in a failure of the program to execute as planned.

2An n-gram is a term we have taken from computational linguistics describing a contiguous subset of a
larger sequence, normally a sequence of text or speech. In this study we have used the 92 Oracle Java nodes.

2

with faults in defect prediction models improve the performance of these models?

We answered the first two research questions by analysing five different systems and, to
guard against overfitting, we added six systems for the third research question. In total there
are nine open source systems and two commercial telecommunication systems. Using the
Java AST, we extracted the AST n-grams from each system and used the SZZ [67] algorithm
to identify faulty methods. We then used non-parametric tests to identify significant rela-
tionships between AST n-grams and faults in Java methods. We calculated the effect size of
the significant relationships found. Finally, we performed defect prediction on all systems,
creating models with the AST n-grams significantly associated with faultsj and models with-
out. We compared these models to determine if there was a significant difference between
the performance. As a baseline, we also compared our models, which, are-built with all the
possible AST nodes, with the reduced set used by Wang et al./[71]. Our approach differs
slightly from Wang et al. [71] as our analysis focuses on the type.of AST nodes rather than
the contents of those nodes. Wang et al. [71] provide node content, analysis for a small set of
nodes (names of methods and variables). Our analysis de-emphasises node contents as Wang
et al. [71] reported that their node content analysis produced project and developer-specific
findings are not generalisable.

Our results make three contributions:

Contribution 1. We present an automatiescode analysis technique that comprehen-
sively and objectively serialises all low level code ‘constructs used in a software system.
Specifically we introduce the concept of a method serialisation and n-gram of this serialisa-
tion called an AST n-gram. This analysis technique allows researchers and practitioners to
better understand the structure of the codérin individual systems.

Contribution 2. We present, important new evidence on fault-prone code constructs.
We identify relatively common code structures which can make a method four times as
likely to be fault-prone. We identify two code structures which involve identifiers which
are fault-prone across all five systems we investigate. This new evidence of fault-prone
code structures provideS researchers and practitioners with new information with which to
strengthen existing.defect reduction approaches.

Contribution 3,~We'show that the inclusion of AST n-grams in within-project software
defect prediction-maodels significantly improves the performance of models built using source
code metrics! Performance improves when AST n-grams significantly associated with faults
are added to thesmodels. This improvement can be up to 4.6 times that of the model con-
structed ‘with just source code metrics. This means that we could find up to 4.6 times more
defectssusing AST n-grams. Our findings can improve the effectiveness of defect prediction
and algo in the future could be integrated into developer IDE’s (Integrated Development
Environments) to reduce faults being initially introduced into code, or efficiently direct
testing.

The rest of this paper is structured as follows: Section 2 describes related work. Section
3 outlines how we conducted our investigation and Section 4 presents results. Section 6 we
highlight related work and we note the potential threats to validity in Section 5. In Section
7 we discuss the implications of our findings. Finally we conclude in Section 8.

3

2. Background

Software defect prediction uses machine learning to determine potentially defective areas
in software code. The predictions make it possible for the developer to focus on areas of
the software system before release, reducing the time and effort of finding defects by other
means. Software defect prediction relies on three main components; dependent variables, in-
dependent variables and a model. Dependent variables are the defect data for the.particular
piece of code (i.e. is it defective or not), which can be binary, or continuous. Andependent
variables are the metrics which can describe the software code, how it has ehanged,or who
changed it. Independent variables come in two forms, software code metries; those that
can be derived from the software code itself, and process metrics; metrics that measure the
change of software code or software practices over time. The model contains the rule(s)
or algorithm(s) that predict the dependent variable from the independent variables. These
rules can be as simple as the number of independent variables in the model, or be as com-
plicated as decision trees® and regression® techniques. To determine-the effectiveness of the
model, the variables are split into test and training sets®, Where the training set is used
to create a model and that model is then used on thedest set to predict potential defects.
These predictions are then investigated to determinéif they are correct or not by certain
performance measures.

Previous work on features of code in relation to defects is focused on defining and evalu-
ating source code metrics (SCM) that measure partieular code features. Examples of source
code metrics include - lines of code, object oriented metrics and McCabe’s complexity met-
rics. Various studies have measured souree codé using such metrics and looked at how the
code features measured relate to defects [6, 78, 46, 51, 33, 41, 73].

Lines of code (LOC) is a simple measure that has been commonly used to indicate where
defects are. For example, Fenton and Ohlsson [22] analysed pre and post release defects of a
large communications system<, They, found that LOC was good at ranking defective methods.
LOC has been used in many other studies [78, 8, 30, 76, 38] and has been reported to be
good at predicting defectiveycode [31]. However LOC measures only one coarse grained
feature of code and s6,provides limited insight into potential sources of defects.

Chidamber and Kemerer (CK) developed six Object Oriented (OO) metrics to measure
the object orientedifeatures of code (e.g. Coupling, Depth of Inheritance Trees and Weighted
Methods per ¢lass)., These metrics have been successfully used in studies to identify defective
code [4, 11,393,15,/19]. Although, compared to LOC, the CK metrics do measure some finer
grained features of code, and also identify more of those features, they still identify only a
fixed,subsetrof possible code features.

MeCabe’s cyclomatic complexity metric [44] focuses on identifying branching structures
in code,and measuring the number of logical paths though the code. Other forms of cyclo-
matic complexity have been proposed [81, 23]. Cyclomatic Complexity is another commonly

3A decision tree algorithm is one that creates a graph of decisions based on the chance of an event
happening.
4Regression analysis seeks to determine best fit of independent value(s) based on a dependent value(s).

4

used metric in defect prediction studies with mixed success (e.g. studies [48, 69, 47]). How-
ever, again, when used in defect prediction Cyclomatic Complexity focuses only on a small
set of pre-determined code features likely to be related to defects.

Most of the traditional SCMs (above) have been extensively used in previous defect
prediction studies [31]. Most of these metrics suffer from being very coarse grained and
with capability to measure only a small sub-set of code features. Gray et al. [29] suggest
that the coarse grained nature of such metrics prevents machine learning techniques from
effectively differentiating between defective and non-defective methods: if on€ method has
the same metric values as another (say in terms of LOC), but they have not been labelled
the same in terms of their defectiveness, this will hinder the learning algerithm’s ability to
learn. Gray et al. [29] identifies many methods in the NASA datasets®swhich have identical
values across a range of metrics but different defectiveness labels,”Thisssuggests that the
current commonly used set of metrics is not sufficient to differéntiate methods for defect
prediction.

Complexity and size are code features commonly used in defect prediction [48, 69, 47].
Despite much effort in identifying and evaluating such features.-of code, there is no static
code feature which consistently identifies problematic @ede across systems [48, 31]. Code
features that indicate defects are usually system-specific [80]. Combinations of features
have, so far, performed most promisingly in defect\prediction. For example, Shivaji et al.
[66] used combinations of static code metrics,Yobjectroriented metrics, churn metrics and
textual features while Bird et al. [11] used gombinations of developer contribution network
metrics. Unfortunately, collecting data for 'sueh ‘combinations is difficult, time consuming
and costly. Furthermore, the ability of su¢hcombinations to identify defects, relies on the
performance of each single feature includedrin the combination. Therefore, it is important
to be able to identify features indicative of defective code and to develop associated code
analysis techniques to identify/theseifeatures.

Defect predictions are usually reported in studies at the package, class or file level of
granularity (e.g. [52], [4))"Hata et al report that predictions at this relatively high level of
granularity are not negessarilypuseful to developers [34] and that predictions at lower levels of
granularity are likely to.be most useful to developers. Such low granularity predictions (e.g.
at method level) present developers with fewer lines of code in which to locate the predicted
defect. Locating the predicted defect is often via manual inspection and so the fewer the
lines of code to be inspected the less developer time is wasted searching for the defect. Giger
et al [26] report'good predictive performance at method level using both change metrics and
source code metrics. However achieving good predictive performance at the method level
is notweasy. Indeed Pascarella et al [54] replicated [26] with a release-based performance
evaluation strategy but reported poor predictive performance at method level. Despite a
growing preference for method-level defect prediction, it remains an open challenge to build
defect prediction models at method level [54]. We are amongst the few studies reporting
defect predictions at method level and the performances that we report are competitive to
studies reporting at higher levels of granularity.

Shttp://nasa-softwaredefectdatasets.wikispaces.com/

5

3. Methodology

To identify AST n-grams of Java code which are associated with faulty methods we
collected data about which methods were faulty. We also needed to know which set of Java
AST n-grams each method contained. We used statistical techniques to identify which AST
n-grams are significantly associated with faulty and with non faulty methods of code. We
finally include the AST n-grams that are significantly associated with faulty methods of code
to defect prediction models and compare performance of those models, to models formed
with the reduced AST n-gram set proposed by Wang et al. [71].

3.1. Open Source and Commercial Datasets

The open source Java systems analysed in this study were chaesen because they have
already been extensively used in defect prediction studies [31}<Although we collected
fault data ourselves, we chose Eclipse.JDT.core 3.0 because the faults for this system had
previously been mapped between the bug tracking system and the=version control system
[67, 10, 40]. Using a system which had been analysed for faults previously allowed us to val-
idate our own technique for locating code that was faulty. We also analysed major releases
of ArgoUML 0.20 and AspectJ 1.7.0 because they weére Jawva-solutions to different problems
and had also been previously studied [57, 18, 72]. Wealsorcollected fault data from two com-
mercial telecommunications systems. The code, together with raw bug tracking and version
control data was provided to us by a large international telecommunications company based
in the UK. The contextual information for each system can be found in Table 1. During the
software defect prediction phase of thistwerk, we added six more systems (shown in Table
1). We added these extra systems because.we wanted to be sure that the defect prediction
results we had for the first five systems would be sustained in other open source systems.
These systems were chosen as eur previous work had shown them to have sufficient defects
to perform defect prediction465}.

Systein Release KLOC Total Methods
EJDT 3.0 292 13,885
ArgoUML 0.20 273 12,330
AspectJ 1.7.0 353 21,980
T1 - 52 3,914
T2 - 36 4,896
JMRI 2.4 550 19,861
SocialSDK 1.1.8.2015 69 10,183
GenoViz 5.4 193 8,489
JBoss Reddeer 1.2 38 6,475
K Framework 3.6 39 5,297
JMOL 6 225 2,269

Table 1: The 11 systems analysed in this paper. The T2 and T1 release number is the revision number
before the systems were put into production.

3.2. Identifying which methods are faulty

For each of the systems we compiled a dataset of faulty methods. We found which
methods were faulty at the time of release by finding the fault insertion and fix points. To
identify faulty methods we used the SZZ approach as it has been used in many previous
studies [16, 24, 40, 41, 74, 79]. SZZ is a fault linking algorithm described by Sliwerski,
Zimmermann, and Zeller [67]. SZZ was based on work by Cubranic and Murphy [16] and
Fischer et al. [24], who inferred links between Bugzilla defect reports with C¥'S commit
messages. The SZZ algorithm matches the fault fix described in a bug tracking system
with the corresponding commit in a version control system that ‘removed’ the fault. By
backtracking through the version control records, it is possible to identify earlier,code changes
which ended up being ‘fixed’. It is assumed that the earlier code changes inserted the fault.
The method of code is therefore labeled as faulty between the time thefaultswas inserted and
the time it was fixed. Using this technique it is possible to identify for a particular snapshot
of the code base, which methods are faulty and which are notaIf there are multiple changes
multiple times in the past, we assume that the fault inducing.change is the one immediately
before the defect report. The method is marked as defective.if the version snapshot lies
between the fault inducing commit and the fault fixing commit and there is no change
between these two commits. The tool we have created. tracks individual lines throughout
the history of the project to determine which methods are defective at a particular time.
More details about our tool can be found in [65]

There will be defective methods which dave'hot yet been reported. It is therefore im-
portant to carry out the fault mapping after sufficient time has passed for users to report
most faults. It is unlikely that all defects will be reported and therefore there will be false
negatives. Kim et al. [42] suggests.that asilong as the number of false negatives and false
positives is less than 20% in total, defect prediction can be carried out [42]. This is an
important point, early work by Zimmermann et al. [79] only managed to map about 50% of
faults reported in the bug tracking systems to changes in the code base. Later Bird et al. [10]
improved the mapping by removing some of the constraints that Zimmermann had intro-
duced, for example the requirement to have matching bug IDs in a predefined format. The
implementation of SZZtised in this paper was improved slightly from the original. It has a
higher weighting4or these numbers found in commit messages that are in the bug database
and takes into“account’the “Fix for” prefix. The implementation was verified by manually
checking ALL bug links found for EJDT 3.0. Table 2 shows that the implementation used
in this stidy has'80% recall and 99% precision.

Alencar da/Costa et al [17] recently evaluated the SZZ variants used in studies and our
variantefalls into Alencar da Costa et al’s L-SZZ category. This is because not only does
our togl use annotation graphs to achieve line mappings and is aware of meta changes but
also identifies the largest bug introducing change. Approaches in the L-SZZ category are
currently most mature in identifying bug introducing changes.

Table 3 shows the defectiveness of each of the systems studied in our experiment. The
levels of fault-proneness varies across all systems. T2 has the highest fault density with over
12% defective methods, followed by the second telecommunications system T1 with around
9%. Aspect] has only 19 methods faulty out of a potential 21,980 and so has a very low

7

This Paper Zimmermann et al. [79]

True Positive 727 483
False Positives 5 2
Total Positives 732 485
Total Negatives 151 398
Recall 80% 53%
Precision 99% 100%

Table 2: Checking the bug-links for false positives. Zimmermann has similar precisionybut lower recall.
Precision is the proportion of correctly classified bug-links from all those bug-links classified (T'P/(T P+ F P))
and recall is the proportion of bug-links correctly classified from all possible correct) bug-links (T'P/(TP +
FN))

System Version Total Methods Faulty, Methods % Faulty
T2 198468 4,896 612 12.5
T1 198468 3,914 360 9.2
EJDT 3.0 13,885 589 4.24
ArgoUML 0.20 12,330 42 0.34
AspectJ 1.7.0 21,980 19 0.09
JMOL 6 2,269 294 12.96
GenoViz 5.4 8489 827 9.63
K Framework 3.6 5,297 421 7.95
SocialSDK 1.1.8.2015 10,183 754 7.40
JMRI 2.4 19,861 1,385 6.97
JBoss Reddeer 1.2 6,475 416 6.42

Table 3: Table to show the fault density of éach of the datasets. N.B. Tables have been presented in order
of percentage faulty.

fault-proneness of 0.09%.

3.3. Eztracting the JavayAST n-grams

For each of the systeins investigated, each file in the project was compiled using the Oracle
JDK which builds an"AST. Each method in a class was turned into a method sequence using
a modified version”of the standard Oracle Java pretty printer®. A method sequence is a list
of AST nodes in order of when they are visited by the pretty printer, which is a pre-order
depthefirst traversal. The pretty printer uses a visitor pattern to transforms the source code
by applying styling rules (e.g. appropriate indents and spacing), which can make it easier
for people to view. We modified the pretty printer so when it visits a node on the AST,
it will store that node in a sequence. This means that the order in which code constructs
are visited is maintained. For example, we would transform the piece of Java source code
in Figure 1 into the method sequence in Figure 2. This method was used to transform all

6PrettyPrinter.java is found in tools.jar of the Oracle JDK
8

System Version Total Sequences Avg Sequence Max

Sequence o Sequence

Length Length

T1 198468 3,914 19.73 21.88 351
T2 198468 4,896 24.00 25.87 386
EJDT 3.0 13,885 55.47 129.64 4,802
ArgoUML 0.20 12,330 36.04 68.61 2:989
AspectJ 1.7.0 21,980 37.79 75.18 2,644

Table 4: Table to show the sequence statistics for each of the systems analysed. The minimum sequence
length for all systems was three. A sequence of length three is found for zero argumeént, empty constructors
e.g. public Foo() N.B. Tables have been presented in order of percentage faulty

public void cloneForMethod () {
int x = 10;
for(int i = 0; i < x; i++) {
System.out.println(x*i);

Figure 1: The code that is transformedvin Figure2 using the Pretty Printer.

methods in the five systems to create a database of method sequences. Table 4 shows how
many methods were transformed into.method 'sequences and the average length of these
method sequences. Method sequence lengths vary across the system, with EJDT 3.0 having
the longest average by around 20 nodes. The commercial systems have both a lower average
sequence length and maximumessequence length. This is because the company has a policy
of keeping both classes and methods as short as possible.

From our method sequénces;we can extract n-grams, which we call “AST n-grams”. We
extract from each methdd AST n-grams which are 1-gram, 2-gram and so on, up until the
maximum length of s-grams.” For example, we want to extract the AST n-grams from an
example sequenceA M) [A; A; C; D; E] where the maximum AST n-gram length is three.
In total the set,('Scontains 11 AST n-grams. Figure 3 shows the AST n-grams in set C'S.
For this study we have set the maximum AST n-gram length to seven. This is because as
an AST n-gram length gets longer, there is an exponential increase in the number of AST n-

METHOD ; "M@DIFIERS; PRIMITIVE_TYPE; BLOCK; VARIABLE; MODIFIERS;
PRIMITIVE_TYPE; INT_LITERAL; FOR_LOOP; VARIABLE; MODIFIERS;
PRIMITIVE_TYPE; INT_LITERAL; LESS_THAN; IDENTIFIER; IDENTIFIER;
EXPRESSION_STATEMENT; POSTFIX_INCREMENT; IDENTIFIER; BLOCK;
EXPRESSION_STATEMENT; METHOD_INVOCATION; MEMBER_SELECT;
MEMBER_SELECT; IDENTIFIER; MULTIPLY; IDENTIFIER; IDENTIFIER;

Figure 2: The code from Figure 1 transformed into a node sequence.

CsS = {(A), (A; A), (A; A; C), (A; C), (A; C; D), (C), (C; D), (
c; D; E), (D), (D; E), (E)}

Figure 3: The possible set of 11 AST n-grams (with a maximum n-gram of three) taken from an example
method sequence A; A; C; D; E

Faulty Non-Faulty Total
N-gram 32,493 7,750 40,243
(%) 80.74 19.26 -
No N-gram | 230,681 4,311,566 | 4,542,247
(%) 0.05 95.5 -
Total 263,174 4,319,316 | 4,582,490

Table 5: Contingency Table for AST n-gram METHOD_INVOCATION MEMBERSELECT in EJDT 3.0

grams available. The limit of seven nodes prevented potentialeemputational problems when
we came to analysing the results. We do not extract the centents of the AST n-grams as
our analysis is at the type level of granularity rather.tham the instance level of granularity.
This means that our results are less influenced by the.particular coding idiosyncrasies of
individual developers in individual projects. Our aim is to present results that are more
likely to be generalisable.

3.4. Analysing the AST n-grams

To find which AST n-grams are related to\faults we compare the ratio of n-grams in non
faulty code to the number of n-gramssin faulty code. In this study we compare the number of
instances of an AST n-gram. An‘n-gram is marked as faulty if it appears in a faulty method
at the chosen snapshot. As thé distribution of AST n-grams is non-normal we used the non-
parametric Fisher’s exact test'to determine if an AST n-gram was significantly associated
with a fault. Fisher’s exa¢ttest determines if there are non-random associations between two
categorical variables. An our case, the classifications are the presence or absence of a n-gram
and faulty or not. To"clarify our statistical analysis, we provide a worked example using
EJDT 3.0. In EJDT 3.0 there is a 2.65% chance of any AST n-gram being defective. This
is determined/by dividing the number of faulty AST n-gram instances over all AST n-gram
instances. The contingency table (Table 5) is for the AST n-gram METHOD_INVOCATION
MEMBER_SELECT. This AST n-gram is the start of a method call. Our null hypothesis
is that METHOD_INVOCATION MEMBER _SELECT appears in the same proportion of
faulty m=grams as non-faulty n-grams. Our alternate hypothesis is that the AST n-gram
appears in a greater proportion of faulty n-grams than non-faulty n-grams. When the
Fisher’s exact test is applied to the contingency table in Table 5 we get a p-value of 0.0.
This is below our a of 0.001. This means there is evidence to reject the null hypothesis. We
would conclude that the start of a method call in EJDT 3.0 is significantly associated with
faults. We set our a to 0.001 as we wanted to reduce the amount of false positives when
analysing the potential significant n-grams.

10

We have calculated the effect sizes for the AST n-grams significantly associated with
faults using an odds-ratio [14]. The odds-ratio will quantify how strongly the presence of an
AST n-gram will be associated with a fault. The odds-ratio has a range of zero to infinity.
If the odds-ratio is less than one, then the n-gram may be more associated with non-faults.
When the odds-ratio is one then that means that the AST n-gram does not have any effect
on the fault proneness of the code. The greater the amount away from one, the greater the
effect that the AST n-gram has on the association with faults.

3.5. Defect Prediction using the AST n-grams

3.5.1. Building the defect prediction models

To answer RQ3, we carried out defect prediction using the AST n-grams. To show that
the significant AST n-grams were having an effect, we created basic, defectsprediction models
without the AST n-grams. These models were created with the default set of static code
metrics calculated by the program JHawk”. These metrics include lines of code (LOC),
variable declarations and Halstead metrics. In total there are.2% method level metrics and
the full list of software code metrics used can be found in Appendix A. We then added the
AST n-grams significantly associated with faults, up aintil a maximum of 200 n-grams. We
chose a maximum 200 AST n-grams due to computational constraints. Adding attributes
to models has an exponential computational time“costs when building the model. These
increased costs vary from learner to learner with, high costs associated with, for example,
Random Forest learners but minimal cost increases associated with Na ive Bayes.

In total, we had 11 metric datasets per classifier for each system, one metric dataset with
just JHawk metrics, and then 10 more metrie.datasets with AST n-grams significantly asso-
ciated with faults as additional attributes. 'When we added the AST n-grams as attributes
to the models, we used the binary presence of an n-gram, not the number of n-grams in a
method. We used the binary value rather than total as binary values are standard in defect
prediction. Our approach of adding AST n-grams to a base of existing source code metrics
increases the information available to the defect prediction model. Increasing information
diversity has been previouslyshown to improve predictive performance (e.g. [31]) and in-
crementally adding.nfermation to the model is being increasingly used in defect prediction
research (e.g. [12]).

3.5.2. Training the;models using AST n-grams

To determineswhich AST n-grams to add as attributes to our initial baseline model, we
calculated the top 200 most occurring AST n-grams significantly associated with faults at
the 99.9% level only from methods in the training set for each run and fold. We calculated
the significant AST n-grams in only each training set to make sure that when testing our
models'they did not have any prior knowledge of the significant AST n-grams. For each
run and fold, we created 10 models per classifier to compare with the original model. From
zero up to 50 n-grams, we added an additional 10 significant n-grams to the metric dataset
and trained the model on this new dataset, after 50 we increased the additional number of

"We used JHawk version 5.0 to conduct our study

11

Number of Significant N-grams

Model # JHawkMetrics 10 20 30 40 50 75 100 125 150 175 200
0 v X X X X X X X X X X X
1 v v X X X X x X X X X X
2 v v vV X X X X X X X X X
3 v v o v vV X X X X X X X X
4 v v Vv vV vV X x X X X X X
5 v v Vv Vv v vV x X X X X X
6 v v v v v v v X X X X X
7 v v v v v v v Y X X X X
8 v v v v v v v Y v X X X
9 v v v v v v v Y v va X X
10 v v v v v v v Y v v v X
11 v v v v v v v v v v v

Table 6: The number of significant n-grams in each of the 11 comparison metric datasets.

AST n-grams by 25 until we reached 200. So the first ' model would be trained using the
initial JHawk metrics only, then second model uses the JHawk metrics plus the top ten
most occurring AST n-grams significantly associated, with faults in the training set and the
third model would have the top 20 and so onj umtil 50 AST n-grams. After 50 n-grams,
the models would be trained with an additional(25 AST n-grams, so the next model after
50 is 75 n-grams, then 100, then 125 and\soyon. Until the last comparison model had
the top 200 most frequently occurring AST n-grams that were significantly associated with
faults in that particular training set==Qur analysis suggests that generally the more n-grams
provided the more defect predictien performance improves. However this is not always the
case and identifying the particular eembinations of n-grams that work best for particular
data sets/projects improves-performance most. Song et al [68] also notes the need to tailor
features to projects to achieve good predictive performance. Table 6 shows how many AST
significant n-grams ar€ in each of the 11 models.

3.5.8. Cross validation seheme

Each dataset was,split into ten stratified folds to perform cross validation. Each fold was
held out in _turn to produce a test set and the other folds were used to produce the training
set. Using stratified cross validation ensures that there are instances of the defective class
in each test set, thus reducing the likelihood of classification uncertainty. The classifiers
were ‘trained using the training sets and the test set then used to evaluate the model. This
experiment was repeated 100 times for each classifier and system dataset. We chose 100,
instead” of the more common 10 times, as Mende [45] reports that using 10 experiment
repeats results in an unreliable final performance figure. This meant that we determined
the top 200 AST n-grams that are significantly associated with faults in 1,000 training sets
and computed 33,000 models per system?®.

8100 runs * 10 folds * 3 classifiers * 11 datasets = 33,000 models
12

3.5.4. Classifier selection

We created our models using three classifiers: Naive Bayes, J48”, and Random Forest.
Bayes classifiers are simple probabilistic classifiers based on applying Bayes’ theorem. Naive
Bayes is the most popular Bayes classifier. Naive Bayes is called naive since every feature
(module) is assumed to be fully independent. Naive Bayes will produce models based on the
combined probabilities of a dependent variable being associated with the different indepen-
dent variables. J48 and Random Forest use decision tree learning. Decision trée learning
uses a decision tree as a predictive model to map observations to a target values, Decision
trees that only take a finite set of values are called classification trees. The J48 classifier
builds decision trees based on the information gain of attributes. At a néde in the tree, the
J48 algorithm will chose the attribute of the data that most effectively splits the set into
subsets enriched in one class or another. The split is based upon thewattribute with the
highest normalised information gain. This then repeats on the smaller subsets until the tree
is built. Random Forest is an ensemble technique which aggregates the predictions made
by a collection of decision trees. Each of the trees is said te-beyrandomised as they train
on a subset of available features. The mode classification across-all individual classifiers is
taken as the final prediction for each test vector (method). We chose these three classifiers
because they are popular modelling classifiers according t6 Hall et al. [31]. We built the
models using a Java implementation of Weka!® using the default options for each classifier.

3.5.5. Predictive performance

We ca