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Abstract: In their article, Morris and Baladandayuthapani clearly evidence the

influence of statisticians in recent methodological advances throughout the bioinfor-

matics pipeline, and advocate for the expansion of this role. The latest acquisition

platforms, such as next generation sequencing (genomics/transcriptomics) and hy-

phenated mass spectrometry (proteomics/metabolomics), output raw datasets in the

order of gigabytes; it is not unusual to acquire a terabyte or more of data per study.

The increasing computational burden this brings is a further impediment against the

use of statistically rigorous methodology in the pre-processing stages of the bioinfor-
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matics pipeline. In this article I describe the mass spectrometry pipeline and use it

as an example to show that beneath this challenge lies a two-fold opportunity: (i)

Biological complexity and dynamic range is still well beyond what is captured by

current processing methodology, hence potential biomarkers and mechanistic insights

are consistently missed; (ii) Statistical science could play a larger role in optimizing

the acquisition process itself. Data rates will continue to increase as routine clinical

omics analysis moves to large-scale facilities with systematic, standardized protocols.

Key inferential gains will be achieved by borrowing strength across the sum total of

all analyzed studies, a task best underpinned by appropriate statistical modeling.

Key words: Computational Statistics; Sparse Signal Processing; Mass Spectrome-

try; Proteomics; Metabolomics

1 Introduction

Largely replacing the use of 2-D gel electrophoresis, mass spectrometry (MS) in-

terfaced to liquid chromatography (LC) or gas chromatography (GC) is now a key

multi-billion dollar industry for profiling the protein and metabolite content of tissues

and bodily fluids. Metabolites (small molecules) are the intermediates of biochemical

reactions. Their levels are determined by the properties and concentration of protein

enzymes, and hence are a consequence of many regulatory processes involving the

genome, transcriptome and proteome. While reflecting the underlying transcriptome

to some degree, proteins are also modulated by many factors such as post-translational

modifications and protein-protein interactions. Disease processes either cause or effect
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perturbations of the proteome and metabolome, hence their study is key to disease

understanding. MS is therefore utilized at all stages of biological science, translational

medicine and drug development to increase confidence in rationale.

Targeted MS approaches are utilized pervasively for drug metabolite identification and

to monitor safety markers in toxicology. More recently, untargeted global profiling of

the proteome and metabolome with MS has gained significant traction for discovery

of disease mechanism and drug targets by generating pre-clinical and clinical evidence

of their relevance to pathophysiology and phenotype, and their effect on disease and

safety implicated biological pathways when modulated. In the systems medicine

paradigm, the omics data (from MS and genomics/transcriptomics approaches such

as next-generation sequencing) feed into knowledge-base guided pathway analysis and

computational biology tools, supporting expert-guided literature review to establish

the evidence base. Complementary to this, and critical to the success of modern drug

development and diagnostics programs, untargeted MS is also key to the characteri-

zation of predictive, prognostic and mechanistic clinical biomarkers that realize early

detection of a disease process or enable patient stratification based on drug safety

or efficacy. The ultimate aim is the generation of specific assays that can accurately

and reproducibly measure the levels of biomarkers in patient populations, compatible

with use in a busy clinical environment. To date, most protein assays are gener-

ally based around antibodies, despite recent high-profile concerns with repeatability

(Baker, 2015), 2015).Targeted MS offers significant advantages and has a clear role

either to validate protein biomarkers in large clinical cohorts prior to costly antibody-

based assay development, or for the clinical assay itself, as is already the case for small

molecule analysis.



4 Andrew W. Dowsey

MS of whole proteins is still challenging, hence to reduce spectrum complexity the

dominant bottom-up methodology cuts proteins into smaller peptides prior to anal-

ysis, using an enzyme such as trypsin that cleaves at predictable positions. In untar-

geted proteomics and metabolomics, the biological sample is pre-separated by LC (or

GC for volatile metabolites), to reduce complexity. Each small interval of elution out

of the LC or GC column is ionized before mass analysis to determine the mass-to-

charge ratio (m/z) of each of its constituent molecules. Each abundant biochemical

appears as multiple mass spectral features with different charge states, adducts, losses

or modifications, each with an intensity proportional to its abundance. Quantification

of absolute abundance is non-trivial in untargeted MS as there is no accurate method

to universally predict the scaling factor between a features intensity and its abun-

dance. Nevertheless, since this coefficient is stable for each feature in well-controlled

experimental conditions, comparison of relative intensity across biological samples

can be used to quantify changes in relative abundance. Each feature is also observed

as a series of peaks at increasing m/z due to the presence of natural isotopes such as

13C. The relative intensity of these peaks (the isotope distribution) is characteristic

of the underlying molecular formula and can give a putative identification for that

biochemical, but given that many metabolites and peptides share the same molecular

formula, further mass analysis is necessary to identify definitively. In data-dependent

acquisition (DDA), the most intense features are selected by a second low-resolution

mass spectrometer for collision-induced fragmentation by a noble gas, with the m/z of

these fragment ions captured by a third mass spectrometer. The resultant fragmen-

tation patterns are predictable, enabling the routine identification of peptides by this

method. Metabolite identification may require further rounds of fragmentation to in-

crease specificity, and may include comparison with authentic biochemical standards.
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DDA has been the workhorse approach for years, but limitations include biased and

incomplete coverage due to intensity-dependent selection, and co-selection leading to

chimeric fragmentation spectra that are difficult to interpret. In recent years, Data

Independent Acquisition (DIA) strategies have emerged which mitigate these issues

by using one or multiple broad selection windows that cover the mass range. In this

approach fragmentation data is available for all successfully ionized and fragmented

biochemicals, but due to the wide selection windows used many biochemicals are

fragmented together. Unlike DDA, the fragment elution profiles are available, how-

ever, and so in theory fragments with matching elution profiles can be clustered back

together by the bioinformatics pipeline.

2 Bioinformatics challenges

As stated by Morris and Baladandayuthapani, Driven by the computational chal-

lenges of high dimensionality and out of convenience, many commonly used standard

analysis approaches are reductionistic (not modeling the entire data set), ad hoc

and algorithmic (not model-based), stepwise and piecemeal (not integrating informa-

tion together in a statistically efficient way or propagating uncertainty through to

the final analysis). This succinctly describes the pervasive approach in proteomics

and metabolomics MS. There are a number of commercial (e.g. Nonlinear Dynamics

Progenesis, Waters Coorporation) and academic packages (e.g. MaxQuant (Cox and

Mann, 2008) for proteomics, XCMS (Tautenhahn et al., 2012) for metabolomics) avail-

able. However, their approach is to take a series of deterministic, self-contained steps

(Bessant, 2016) e.g. peak detection; clustering of peaks into quantitative features;
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matching features across samples under chromatographic deformation; identification

by pattern matching of fragments against databases of theoretically or experimentally

derived spectra; grouping of peptides of a protein (protein inference), or adducts of

a metabolite (metabolite inference); modeling associated quantifications to infer pro-

tein quantification; differential analysis across experimental conditions. Raw data is

invariably converted to a symbolic representation at an early stage, so: (1) statistical

evidence is lost from one stage to the next, thus errors propagate and amplify; (2)

once detailed structure inherent in the raw data is gone, it is no longer possible to de-

tect or quantify overlapping spectral signals; (3) since peaks are detected in isolation

with no higher-level knowledge, numerous features are never even detected, despite

informative evidence across the experiment as a whole.

In the beginning, these issues were more or less irrelevant since the mainstays of pro-

teomics MS analysis (life sciences research) and metabolomics (organic chemistry)

predominantly used simplified model systems defined and manipulated within tightly

controlled experimental environments. Bioinformatics methodology for MS, how-

ever, continues to be fundamentally reliant on these characteristics. In biomedical

research, despite stringent control of confounding factors in experimental design, a

step-change in complexity and heterogeneity is evident within typical disease mod-

els and clinical samples. The field has acknowledged this challenge, but has tackled

it mainly by improving the instrumentation. The introduction of the Orbitrap in-

strument (Hu et al., 2005),where ions are trapped electrostatically in orbit around

a central electrode to induce a current capturing the frequency of oscillation of all

ions simultaneously, yielded a step-change in performance due to its high resolution;

in Orbitrap data less signals overlap, therefore more data can be interpreted by the

bioinformatics tools. The resolution of other vendors instrumentation, mainly based
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on time-of-flight analyzers (Chernushevich et al., 2001), where ions are subjected to an

accelerating voltage and drift down a field-free flight tube in a duration quadratically

related to m/z, has now narrowed or eliminated this gap - particularly when consid-

ered together with additional resolving power through extremely fast cycle times or

third-dimension separations using ion mobility. Nevertheless, this comes at a cost;

current-generation instrumentation retail from $0.5 to $1 million. Furthermore, three

significant problems remain: (1) The rate of data output has increasing tremendously

(5-20Gb per dataset is now not uncommon), which continues to discourage software

developers from using the raw data for more than just simple peak detection; (2)

Ionization efficiency has not improved with cycle time, hence less ions are recorded

within each spectrum; nosier peaks are more difficult to extract. (1) The distribu-

tion of biomolecular signals across m/z is markedly non-uniform since the molecules

are largely composed of protons and neutrons that are approximately one atomic

mass unit in mass. Hence signals cluster together and often continue to overlap,

while unfragmented molecular isomers will always overlap in MS. Morris and Bal-

adandayuthapani assert that statisticians understand the profound effect of sampling

design decisions and that Statistical expertise in the experimental design and low-

level processing stages are equally if not more important than end stage-modeling. I

am in agreement but would go further and suggest that statisticians could also have a

strong influence on the design and operation of the instruments themselves. Spectral

acquisition is optimized for visual interpretation, while existing bioinformatics tools

aim to mirror that visual interpretation. There is the opportunity for statistical mod-

elers to work with instrument engineers to optimize based on minimizing inferential

uncertainty based on jointly-constructed generative models of MS formation.

Since few MS bioinformatics tools propagate uncertainty or borrow strength within
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or across steps, inaccuracies and incorrect decisions cascade and amplify downstream.

This contrasts with the development of probabilistic models for next-generation se-

quencing (Glaus et al., 2012; Li and Dewey, 2011), which has moved the field from

differential gene expression towards the more challenging goal of robust compara-

tive analysis of gene isoforms (transcripts). Probabilistic models are used to infer

isoform-level abundances and their differences. However, in MS proteomics the anal-

ysis of protein isoforms (Webb-Robertson et al., 2014), which include protein species

heterogeneity at DNA-level (allelic variations), RNA-level (alternative isoforms) and

protein-level (post translational modifications - PTMs), is still in its infancy: Most

protein inference methodology considers only the most consensus abundance pattern

per protein, which is hoped to be representative (Serang and Kll, 2015). In studies

on eukaryotes of higher complexity (most animals and plants for example), shared

peptides are the norm rather than the exception, and in many cases peptides unique

to a single protein isoform do not exist. This is a significant challenge for protein

assay development by targeted MS, as peptides used for quantification need to be (i)

unique in that type of biological sample, (ii) offer sufficiently sensitive detection on

the MS, and (iii) be recoverable from the biological sample in a highly reliable and

reproducible manner. Current resources for targeted MS curate useful peptide data

regarding specificity of the peptide and its fragments. However, there is currently

a lack of critical data on peptide recovery and quantitative reproducibility which

is required for optimal peptide selection and rapid and robust assay development.

Alongside these developments, in 2014 two teams published high-profile drafts of the

human proteome (Kim et al., 2014; Wilhelm et al., 2014) potentially a gold mine

for translational medicine. While the drafts attain wide protein identification cover-

age, they also underline the statistical challenges facing current methodology, which
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is only just beginning to deal with false-discovery rate issues in studies of this scale

(Serang and Noble, 2012). Moreover, at present the draft proteomes only include

simple quantitative information, of limited utility to clinical biomarker discovery.

In clinical samples there are also a number of confounding factors that are difficult

to avoid and challenging to downstream statistical modeling and Intregromics (Mor-

ris and Baladandayuthapani, section 6.2), such as (i) interaction between multiple

disease processes, (ii) decoupling between disease sites and sampling sites such as

biofluids, and (iii) the aggregation of multiple latent endotypes exhibiting similar

phenotype, such as in asthma. The integration of quantitative outputs from pro-

teomics and metabolomics into rigorous statistical models for pre-clinical and clinical

trial design (e.g. mixed-effects models, survival/frailty models), clinical prediction

models (e.g. logistic regression) and latent endotype models (e.g. factor analysis,

Bayesian networks) is reliant on their appropriate and accurate statistical handling.

Unfortunately, this is exceptionally problematic with current pipelines, since multi-

ple confounding effects are coalesced into single measurements with complex error

distributions, non-linearity and large amounts of outliers and data missing not at

random. There are two main mechanisms for this missingness: (i) Low intensity fea-

tures are much more likely to be censored due to insensitivity in the feature detection

method; (ii) Features can be missed at random, due to a combination of technical

and informatics issues. Unfortunately these effects are mostly ignored, but mixed-

effects methodology has been presented that can compensate for these missingness

mechanisms and optionally impute the missing data (Karpievitch et al., 2009a). Nev-

ertheless, improved upstream processing with uncertainty propagation would be a

much more optimal consideration.
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3 State of play

One side effect of presenting pre-processed feature data for downstream modeling

is that the true generative model of the raw data has become obfuscated. While

it is universally acknowledged by bioinformaticians that next-generation sequencing

generates count data, it is less well understood that the same is true for most MS

instruments nb. Orbitrap and related devices output a signal that aims to be propor-

tional to the underlying ion counts. Studies have shown that the Poisson distribution

is a good fit to mass spectral noise, dwarfing other components, while isotope dis-

tributions exhibit multinomial variation (Du et al., 2008). Nevertheless, MS feature

detection approaches universally assume Gaussian noise. A Poisson model of ion-

counting statistics immediately offers two advantages: Firstly, negative counts are

unattainable. Secondly, it supports the observation that variance appears to drop as

m/z increases, which has led to approaches to estimate variance in each segment of

a spectrum (Wang et al., 2008). However, since peak width tends to increase as m/z

rises, peaks will on average decrease in intensity, assuming average peak volumes re-

main constant. A Poisson explanation would predict this heteroscedastic relationship

between intensity and variance.

We have recently demonstrated a biomarker discovery pipeline that markedly im-

proves sensitivity over state-of-the-art commercial software by operating at the raw

data level throughout, using a pipeline of (i) sparse regression with a Poisson like-

lihood, (ii) image registration to account for chromatogram alignment, and (iii)

Bayesian functional wavelet mixed-effects modeling (Liao et al., 2014). Neverthe-

less, much more needs to be done. Firstly, functional regression does not remove the

requirement for feature detection, since the derived changes need to be assigned to



The need for statistical contributions to bioinformatics at scale 11

the proteins or metabolites they relate to. Moreover, while functional regression can

have a significant effect on feature detection performance simply because the derived

differential features are much less likely to overlap than all features together, feature

extraction approaches must continue to be improved, as cataloging the identity of all

proteins/metabolites in a dataset will always remain an important use case. Given the

scale of the raw data, from a computational viewpoint the use of High Performance

Computing clusters and/or Graphical Processing Units is pertinent. From a statisti-

cal modeling viewpoint the debate is whether Bayesian computational approaches are

necessary or whether point-based methods would be sufficient, given that information

on uncertainty is already duplicated across the dataset by the sets of features relating

to the same protein or metabolite. The efficacy of the later has already been demon-

strated under the prior assumption that the spatial distribution of features is sparse

e.g. The NITPICK method (Renard et al., 2008) utilizes a non-negative extension

of the LASSO to extract whole features from MS data. More recently, an analogous

approach based on mixture modeling has also been proposed (Browne et al., 2010).

Secondly, while we found substantial amounts of significant novel differential expres-

sion on clinical DDA data, the majority of these candidate biomarkers were expressed

at too low a level to be selected for fragmentation. DIA has significant potential to

mitigate this issue, but post-hoc clustering to assign fragments to their unfragmented

parents has only been partially effective; at present identification coverage has not

greatly surpassed DDA (Tsou et al., 2015). Nevertheless, existing methodology does

not consider uncertainty. In metabolomics, the equivalent problem of clustering to-

gether metabolite adducts (metabolite modifications generated during ionization) has

been tackled successfully with a hierarchical Bayesian mixture model (Suvitaival et al.,

2014). In this approach, the chromatographic profiles of each adduct are extracted
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and their pairwise correlation calculated for input into the model.

If you consider solely statistical contributions operating on pre-processed data, there

is a healthy amount of activity in the field. To briefly illustrate a subset, chro-

matogram alignment has been demonstrated using a Bayesian mixture model with

a Dirichlet Process prior (Benjamin et al., 2013), or Hidden Markov Models with

inference provided by either Expectation-Maximization (Listgarten et al., 2007) or

Markov-Chain Monte Carlo (MCMC) (Befekadu et al., 2011). Time-dependent in-

strumental drift and batch effects have been investigated using Surrogate Variable

Analysis (Karpievitch et al., 2009b) and corrected for by a hierarchical Bayesian

model incorporating Gaussian Process priors (Ranjbar et al., 2015). In metabolomics,

Latent Dirichlet Allocation has been utilized as a topic model to extract and cluster

common sub-patterns from fragmentation spectra (Hooft et al., 2016). These com-

mon sub-patterns are indicative of shared molecular substructures that enable some

mechanistic interpretation where a full identification is infeasible. In proteomics,

feature-based mixed-effects modeling is popular, and is used for integrated modeling

of the study design together with relationships between feature-level and protein-level

quantification. Models have been fitted using Restricted Maximum Likelihood (Choi

et al., 2014), and extended to include both M-estimation for robustness to outliers

and empirical Bayes to borrow strength across proteins (Goeminne et al., 2015). A

recent Bayesian MCMC solution includes modelling of individual peptide variance,

down-weighting the influence of unreliable peptides on the result (Freeman et al.,

2015).

One area that could see increased research focus is structured learning incorporating

protein and metabolite pathway information. Both Protein-Set Enrichment Analysis
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(Lavalle-Adam et al., 2014) and Metabolite Pathway Enrichment Analysis (Kankainen

et al., 2011) have been presented, which utilize biological knowledge-base information

in a manner analogous to GSEA (Morris and Baladandayuthapani, Section 6.1). How-

ever, it is vital to consider such approaches using early or intermediate data rather

than end-stage protein/metabolites quantifications, in order to handle the significant

uncertainties inherent in MS data, both in terms of quantifications and, in particular

for metabolomics, identifications (Rogers et al., 2009). Data-driven structure learning

and integromics has seen limited research; a notable contribution is the technique of

Latent Protein Trees, which offers a Bayesian latent factor model that establishes a

binary tree of correlations that could represent the hierarchy of peptides, proteins

and biological pathways (Henao et al., 2013). Its integration with gene expression

data was discussed in (Carin et al., 2012).

4 Conclusion

In this article I have illustrated the landscape of current bioinformatics tools for

MS, and have shown that despite the richness of information contained in modern

MS datasets, much is thrown away at the early stage of the bioinformatics pipeline

before statistical modeling is performed. There are significant opportunities to impact

the field through the development of scalable modeling techniques for pre-processing

MS data, firstly to extract far more of the biological complexity and dynamic range

that remains hidden, and secondly to optimize the acquisition process itself, which

is unnecessarily detailed for some regions of the proteome, whilst lacking for others.

Methods such as these will significantly increase our understanding of underlying
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variations in MS experiments in a clinical setting and provide an enabling pathway

ultimately leading to enhanced sensitivity and robustness of these technologies in

translational and clinical research.

The promise of clinical proteomics and metabolomics has led to the establishment

of several large-scale biomarker discovery facilities worldwide, including the Stoller

Biomarker Discovery Centre (SBDC) for proteomics at The University of Manchester,

and the UK Phenome Centres for metabolic phenotyping at Imperial College London

and the University of Birmingham. The SDBC facility, for example, combines the

latest instrumentation and techniques for robust discovery proteomics, candidate set

validation on thousands of samples, through to targeted MS of individual biomark-

ers for clinical assay development. Crucially, as these centers are underpinned by

standard operating procedures controlling collection, preparation and analysis across

thousands of samples, they will provides us with the unique opportunity to develop

statistical modeling tools that borrow strength over the sum complement of all stud-

ies analyzed, in order to characterize the biological and technical variation key to

biomarker validation and clinical assay development, across the spectrum of health

and disease, with technical bias minimized and comparability maximized.
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