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ABSTRACT
In this paper we investigate the impact of frame rate varia-

tion on HEVC video compression, and demonstrate that high
frame rates (60+ fps) can lead to increased perceptual quality,
notably in high bitrate environments. In order to quantify con-
tent dependence, a novel way of partitioning video sequences
into categories is proposed. Results show that rate-quality
performance is improved at higher frame rates for video se-
quences with camera motion, whereas lower frame rates are
favorable in sequences with complex motion (e.g. dynamic
textures). We calculate that 60 fps and 120 fps are optimal
choices of frame rate at bitrates of 3 Mbps and 7 Mbps re-
spectively, demonstrating that increased frame rates are both
feasible and desirable, given current broadcast data rates.

Index Terms— High frame rates, HFR, HEVC, Video
Compression, Immersive Video

1. INTRODUCTION

Frame rates have remained static for a number of years, and in
the case of cinema, are unchanged since the 1920’s [1]. The
most recent UHDTV standard ITU-R BT.2020-2 [2] supports
extended video parameters compared to its predecessor [3],
including frame rates up to 120 fps. However, frame rates in
current UHDTV formats rarely exceed 60 fps, while dynamic
range, bit-depth and spatial resolution are all extended.

Higher frame rates have though recently stimulated inter-
est in the broadcast [4, 5] and virtual reality [6] communities,
due to a number of clear benefits: the visibility of tempo-
ral aliasing artefacts is diminished [7–12]; there is a reduc-
tion in perceptible motion blur [10–14]; viewer stress levels
are reduced (signified by a lower blinking frequency) [15];
increased realism, smoother motion, improved depth percep-
tion for both expert [16] and non-expert [17] viewers; and an
increase in perceptual quality [18], at least up to 240 fps [19].

To assess the feasibility of high frame rates, a rate-quality
analysis scrutinizing the role of frame rate in video compres-
sion is required. In previous work, low spatial (CIF) and tem-
poral resolutions (up to 30 fps), and outdated compression
standards (H.264/AVC), were considered [20, 21]. A frame
rate selection method up to 60 fps was recently presented [22].

The authors acknowledge BBC R&D and EPSRC for funding through
EPSRC iCASE award 12440623 and grant EP/M000885/1 respectively.

This paper investigates for the first time, the influence of
frame rate (up to 120 fps) on HEVC video compression. All
the video sequences in the recently published BVI-HFR video
database [18] were encoded, and subsequent analysis demon-
strates that the clear perceptual benefits associated with high
frame rates are accessible at current data rates. Our results
establish that content dependency related to motion exists.

2. METHODOLOGY

The BVI-HFR video database [18] contains 22 unique un-
compressed video sequences at HD resolution (1920×1080)
and 120 fps. Each video sequence has further been temporally
down-sampled by averaging frames to 60, 30 and 15 fps - re-
sulting in a total of 88 sequences. Subjective evaluations (in
the form of MOS scores) are provided for each sequence.

The middle three-seconds of each of the 88 sequences was
encoded using the HEVC [23] reference codec (HM 16.4) at
five quantization parameters (QP): 22, 27, 32, 37, 42; and us-
ing three common compression modes: All Intra, Low Delay
and Random Access [24] (1320 encoded sequences in total).

The SQF quality metric [25] has been validated on data
that contains variations in frame rate and QP levels, and is
used here to predict the quality of the compressed sequences:

SQF = Q̂
(
1− 1 /

[
1 + ep̂(Q−ŝ)

])
(1)

where Q̂ is the MOS score of the uncompressed sequence, Q
is the PSNR of the compressed sequence, and ŝ, p̂ are model
parameters. The parameter ŝ is calculated using a linear com-
bination of features. A value of p̂ = 0.34 is suggested [25].

As to reduce time complexity, only the middle 3s of
each sequence (originally 10 seconds in length) was encoded.
Moss et al. [26] have shown similarity in MOS scores be-
tween these two video lengths - assuming that the sequences
are temporally consistent. A Mann-Whitney U test1 reports
no significant (p < 0.05) difference in temporal informa-
tion [27] (U = 3546, p = 0.34), motion activity intensity [25]
(U = 3565, p = 0.36) and motion direction activity [25] (U =
3378, p = 0.14) between the middle 3s of the video sequences
and the remaining 7s (thus ensuring independent samples).
These results validate our approach of using the MOS scores
from the 10s video sequences for Q̂ in Eq. 1.

1As normality cannot be assumed (verified by the Kolmogorov-Smirnov
test), an independent samples t-test nor a multivariate ANOVA can be used.



5 10 50 100

Bitrate (Mbps)

10

20

30

40

50

60

70

80

S
Q

F

All Intra

15 fps
30 fps
60 fps
120 fps

0.5 1 5 10

Bitrate (Mbps)

20

30

40

50

60

70

80

S
Q

F

Low Delay

0.5 1 5 10

Bitrate (Mbps)

20

30

40

50

60

70

80

S
Q

F

Random Access

Fig. 1: Rate-quality curves for the tested frame rates and compression modes, showing the average over all 22 sequences in the BVI-HFR video database.

3. RESULTS AND ANALYSIS

3.1. Overall Performance

Table 1 reports the internal distribution of bits by the HM en-
coder per frame, over the range of tested frame rates. For
All Intra mode, the number of bits increases in all areas with
frame rate, suggesting that the increased spatial complexity
associated with increased frame rates is harder to encode (due
to a reduction in motion blur [18]). For Low Delay and Ran-
dom Access modes, the use of motion prediction dramatically
decreases the number of bits (as intra coding generally con-
sumes less bits than inter coding). At higher frame rates,
the increased temporal correlation between frames leads to
smaller motion vectors that more accurately represent motion
in the scene [18] - signified by the reduction in bits consumed
by coding residuals as frame rates increase.

Table 1: Average number of bits (kb) consumed by the HM encoder per
frame. R = Residual Coding, MP = Motion Prediction, I = Intra Direction,
MI = Merge Index, MS = Mode Signaling, P = Partitioning and O = Other.

All Intra
Frame Rate R MP I MI MS P O

15 345 - 24 - - 6 1
30 378 - 27 - - 7 1
60 415 - 30 - - 8 2

120 459 - 34 - - 9 2
Low Delay

15 81 5 3 2 3 3 0
30 76 5 3 3 3 4 1
60 70 5 3 3 3 4 1

120 67 4 3 3 3 4 1
Random Access

15 75 4 4 2 2 3 0
30 70 5 4 2 2 3 0
60 67 4 4 2 2 3 0

120 66 4 4 2 2 3 1

Fig. 1 shows rate-quality curves for all tested frame rates,
QP values and compression modes. Each data point is the
average of the 22 unique sequences in the BVI-HFR video
database. Higher frame rates exhibit improved rate-quality
performance at high bitrates and low QP values for all modes.

The rate-quality curves in Fig. 1 can be used to predict
frame rates which maximize perceptual quality as a function
of bitrate. This is achieved by fitting an exponential curve to
the rate-quality data of each sequence (between the minimum
and maximum bitrates for all frame rates). (Pareto-) Optimal
frame rates then lie on the convex hull of these fitting curves.
We define a transition point as the bitrate at which the opti-
mal frame rate changes. Fig. 2 shows the distribution of these
transition points, and results indicate a quasi-linear relation-
ship between average bitrate and the optimal frame rate.

3.2. Quantifying Content Dependence

The spread of the transition points in Fig. 2 is fairly large,
indicating as expected, a degree of content dependence in
optimal frame rate selection. Ma et al. [20] propose a method
for relating the source statistics of sequences with frame rate
variations to rate-quality performance, and therefore optimal
frame rates. However during informal testing on the BVI-
HFR video database, unexpected and inconsistent results
were observed - assumed to be due to the model being based
on H.264/AVC and low frame rates up to 30 fps. Therefore
in order to quantify content dependence, we propose a novel
way to separate the sequences up into different categories.
Table 2: The proposed groupings of the sequences in the BVI-HFR database,
where bold indicates camera motion. DFD values are shown in brackets.

Motion Sequences

Simple

bobblehead (2), bouncyball (2.7), catch (2.7),
flowers (3.7), hamster (5), golf_side (2.6), guitar_focus (2.5),

martial_arts (1.3), pond (2.5), pour (5.1), typing (2.4),
books (4.8), catch_track (3.6), cyclist (5.1),

joggers (5.7), library (2.3)

Complex
leaves_wall (7), lamppost (12.4), plasma (6.6),

sparkler (13.4), water_ripples (7.2), water_splashing (14.3)

Increased frame rates lead to clear perceptual benefits in
video sequences that contain camera motion [18], while se-
quences with complex motion (e.g. dynamic textures) are
generally more difficult to encode [28], due to (in part) the
use of linear motion vectors, the increased use of intra blocks,
and the influence of finer block partition in intra mode.
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Fig. 2: Boxplots showing the distribution of transition points (the y-axis is the optimal frame rate that we change to at the transition point). The (blue) box
shows the interquartile range (IQR) of the data, the whiskers are 1.5 IQR, the vertical (red) line is the median, and the (black) dashed line is the mean.

Therefore we propose grouping the 22 source sequences
(120 fps) in the BVI-HFR video database into those with (5)
and without (17) camera motion, and into those with simple
(16) and complex (6) motion (see Table 2). Complexity of
motion is quantified here using the displaced frame difference
(DFD) feature [25] (based on motion estimation2). We inter-
pret that a sequence contains complex motion if DFD ≥ 6.5.

Table 3: Average (µB) and average difference (δB) in bit allocation per
frame by the HM encoder (kb) between the tested frame rates (rounded).

All Intra
Category µB/δB R MP I MI MS P O

No Camera µB 439 0 32 0 0 8 2
δB 27 0 3 0 0 1 0

Camera µB 264 0 18 0 0 5 1
δB 77 0 4 0 0 1 0

Simple µB 370 0 28 0 0 7 2
δB 34 0 3 0 0 1 0

Complex µB 478 0 31 0 0 8 1
δB 50 0 6 0 0 1 0

Low Delay

No Camera µB 84 5 3 3 3 4 1
δB -3 -0 -0 0 0 0 0

Camera µB 38 2 1 2 2 2 0
δB -10 0 -1 0 0 0 0

Simple µB 38 3 2 2 2 3 0
δB -7 -0 -1 0 -0 -0 0

Complex µB 170 9 6 4 5 7 1
δB 2 -0 1 1 1 1 0

Random Access

No Camera µB 79 5 4 2 3 4 1
δB -2 -0 0 0 0 0 0

Camera µB 37 2 2 1 1 2 0
δB -6 0 -1 0 -0 0 0

Simple µB 41 3 3 1 2 2 0
δB -5 -0 -0 0 -0 -0 0

Complex µB 147 8 7 3 4 5 1
δB 2 0 1 0 0 1 0

2With an 8×8 block size, exhaustive search and a search range of 64.
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Fig. 3: Rate-quality curves for the video groupings in Random Access mode.

Table 3 reports the average (µB) and average difference
(δB) in bit allocation per frame between the tested frame rates,
for the proposed video groupings. µB and δB are defined as:

µB = (B15 +B30 +B60 +B120) /4

δB = (B120 −B15) /3
(2)

where BF is the number of bits allocated at frame rate F .
For all modes, the average number of bits is higher in

video sequences containing complex compared to simple mo-
tion, and no camera compared to camera motion. For All
Intra Mode, video sequences containing camera motion have
considerably fewer bits allocated in all areas than the other
groupings, suggesting that the associated increase in motion
blur is easier to encode (smaller valued high frequency DCT
coefficients). For Low Delay and Random Access modes, the
number of bits consumed during residual coding decreases as
frame rates increase, except for the case of complex motion.
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Fig. 4: A comparison of the average transition points between the video groupings. Error bars represent standard error of the mean.

Fig. 3 shows rate-quality curves for each of the video
groupings in Random Access mode (Low Delay shows simi-
lar results). Video sequences with camera motion - and to a
lesser extent simple motion - show increased rate-quality per-
formance at the higher frame rates tested. On the other hand,
video sequences with no camera or complex motion show im-
proved rate-quality performance at the lower frame rates.

Optimal frame rates can be calculated from this rate-
quality data (using the method in Section 3.1). Fig. 4 shows a
comparison between the average transition points of the video
groupings, and results demonstrate clear content dependency.
For all modes, video sequences with camera motion have
higher optimal frame rates at all tested bitrates.

Video sequences containing complex motion have lower
optimal frame rates compared to the other groupings (expect
for All Intra mode, as there is no motion prediction). This
is postulated to be due to a lack of merge modes, and that
current linear motion models cannot faithfully represent un-
derlying non-linear motion. Therefore motion estimation will
either be less accurate (higher DFD), or a higher proportion of
coding units (CU) will be intra coded (see the increase in bits
consumed during residual coding with frame rate in Table 3
for complex motion). For the case of static and dynamic tex-
tures, texture masking may conceal coding artifacts and the
increased levels of temporal aliasing and motion blur associ-
ated with lower frame rates [11].

4. DISCUSSION

We have demonstrated that frame rates - higher than those
conventionally used today (60+ fps) - can be beneficial even
at relatively low data rates. However before high frame rates
become prevalent, more scrutiny is needed to further exploit
the source statistics during encoding. The relatively poor
rate-quality performance of HEVC for sequences containing
complex motion demonstrates that different motion models
or coding modes may need to be considered, in an attempt
to characterize underlying non-linear and nuanced motion.
Rate-quality performance may further be improved by nor-
malizing group of pictures (GOP) length e.g. a GOP length of
8 at 30 fps has the same temporal span as length 16 at 60 fps.

The reduction in motion blur associated with higher frame
rates [18] leads to increased spatial complexity and subse-
quently higher valued high frequency DCT coefficients. Fu-
ture intra coding methods should exploit this fact, as currently
the number of bits per frame increases by approximately 10%
when doubling frame rates in All Intra mode (Table 1).

The bitrates at which 60 and 120 fps become the optimal
choice in frame rate is on average around 3 Mbps and 7 Mbps
respectively for Low Delay and Random Access modes (from
Fig. 4). The recommended bitrate to stream a HD resolution
video on Netflix is 5 Mbps [29]. Approximately 14 of the
22 sequences (65%) in the BVI-HFR video database had an
optimal frame of at least 60 fps at this bitrate (from Fig. 2).

The following table reports the distribution of optimal
frame rates at 5 Mbps for the proposed video groupings:

Group 15 fps 30 fps 60 fps 120 fps
No Camera 0% 12% 47% 41%

Camera 0% 0% 0% 100%
Simple 0% 0% 25% 75%

Complex 0% 33% 67% 0%

These results demonstrate that high frame rates (60 fps+)
can provide clear perceptual benefits at current data rates.

In order to account for content dependency, frame rates
should ideally be selected in an adaptive manner given the
source statistics of the video sequence. However, before adap-
tive formats can be considered, the interplay between video
parameters (HDR, 4K etc.) needs to be investigated. This
will form part of our future work.

5. CONCLUSIONS

In this paper we have shown that high frame rates (60+ fps)
should be considered for future video formats, as the clear
perceptual benefits associated with increased frame rates are
accessible at current data rates. In studying the distribution of
bits during HEVC compression, we have ascertained where
the encoder exploits the source statistics of higher frame rates,
and where improvements are required - notably related to the
lack of merge modes, the motion model used and intra cod-
ing. Results show that higher frame rates are advantageous in
sequences containing simple and/or camera motion.
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