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Abstract 

The isolated bladder shows autonomous micromotions, which increase with bladder 

distension, generate sensory nerve activity, and are altered in models of urinary 

dysfunction. Intravesical pressure resulting from autonomous activity putatively reflects 

three key variables; the extent of micromotion initiation, distances over which 

micromotions propagate, and overall bladder tone. In vivo, these variables are 

subordinate to the efferent drive of the central nervous system. In the micturition cycle 

storage phase, efferent inhibition keeps autonomous activity generally at a low level, 

where it may signal “state of fullness” while maintaining compliance. In the voiding 

phase, mass efferent excitation elicits generalized contraction (global motility initiation). 

In lower urinary tract dysfunction, efferent control of the bladder can be impaired, for 

example due to peripheral “patchy” denervation. In this case, loss of efferent inhibition 

may enable unregulated micromotility, and afferent stimulation, predisposing to urinary 

urgency. If denervation is relatively slight, the detrimental impact on voiding may be low, 

as the adjacent innervated areas may be able to initiate micromotility synchronous with 

the efferent nerve drive, so that even denervated areas can contribute to the voiding 

contraction. This would become increasingly inefficient the more severe the 

denervation, such that ability of triggered micromotility to propagate sufficiently to 

engage the denervated areas in voiding declines, so the voiding contraction increasingly 

develops the characteristics of underactivitybecomes increasingly underactive. In 

summary, reduced peripheral coverage by the dual efferent innervation (inhibitory and 

excitatory) impairs regulation of micromotility initiation and propagation, potentially 

allowing emergence of overactive bladder and, with progression, detrusor underactivity. 



Introduction 

Urodynamic testing in a healthy human demonstrates low detrusor pressure during 

filling, with no large phasic contractions and overall high compliance. The voiding phase 

is characterised by an adequate flow, generated by an increase in pressure of suitable 

amplitude. Bladder emptying should be complete and achieved in a reasonable time 

scale. Detrusor overactivity (DO) is defined by the International Continence Society 

(ICS) as the presence of phasic bladder contractions during filling which may be 

spontaneous or provoked (1). Detrusor underactivity (DUA) is a contraction of reduced 

strength and/or duration, resulting in prolonged bladder emptying and/or a failure to 

achieve complete bladder emptying within a normal time span. The recognition that 

these may co-exist in the same person is established (2); originally this situation was 

termed “detrusor hyperactivity with impaired contractile function”, but in ICS 

standardised terminology it signifies the presence of both DO (overactivity during 

storage) and DUA (underactivity during voiding) (Figure 1). 

 

Attempting to explain the underlying pathophysiological processes for DO and DUA to 

co-exist in the same person requires an insight into how pressure is generated within 

the bladder, since both DO and DUA are observations characterised by their pressure 

changes seen during urodynamics (1). In DO, these are involuntary increases of 

pressure during storage, in DUA inadequate voluntary increases of pressure during 

voiding. Thus, the increases of intravesical pressure may have different origins in these 

two co-existing pathologies, the basis of which are potentially crucial when seeking to 

understand the pathophysiology of lower urinary tract dysfunction.  

Autonomous bladder micromotility 

The recognisable existence of autonomous bladder activity, and the associated 

micromotions (3, 4), suggests this is a physiological property, which may contribute to 

key storage phase symptoms such as urgency (5). Recent years have seen extensive 

research into the concept of autonomous bladder activity, and the associated 

micromotions (3, 4) and how they may contribute to key storage phase symptoms such 



as urgency (5). Micromotions have now been comprehensively catalogued during 

experiments in which the bladder is isolated from the host animal and placed under 

physiological conditions. Several research groups haveThis has been evaluated this in 

small animal species (e.g. mouse, rat, guinea pig), using organ baths with transmural 

perfusion (6-8). Arterial perfusion methods have also been developed to evaluate the 

same properties in the bladder of large animals such as the pig (9, 10). It is also 

possible to detect discrete contractile units within the overall force generation using 

frequency analysis of contractions in isolated muscle strips (11), which can be altered 

by extrinsic pharmacological influences (12).  

Micromotions in the isolated bladder have the following properties (Figure 2); 

• They can be focal or propagating; 

• Contractions may involve a varying amount of the bladder wall, in some cases 

over 50% of the total area (8); 

• They generate phasic fluctuations of intravesical pressure, which are 

superimposed on any tonic contraction elicited by agonist exposure; 

• They are enhanced by stimulation (either by increasing the intravesical volume or 

by extrinsic application of agonists);  

• Exaggerated micromotions are seen in animal models of lower urinary tract 

pathologies, for example the isolated bladder from a rat which has previously had 

a period of partial bladder outlet obstruction (BOO) (8) and following spinal cord 

injury (13) 

• The distortions resulting from the autonomous micromotions generate afferent 

nerve activity (14, 15).  

Relationship of micromotions to intravesical pressure 

A very pertinent observation is the fact that the amplitude of micromotion activity does 

not necessarily correlate with the amplitude of associated pressure change within the 

bladder lumen. Specifically, small movements can generate obvious pressure changes 

(9). Conversely, quite large movements may be associated with only small pressure 

fluctuations, which would be below the threshold considered detectable within the 

clinical setting (e.g. 0.5 cm H2O) (9) .  



We hypothesised that three fundamental properties determine how intravesical pressure 

is affected by intrinsic bladder micromotility.  

• If micromotions are absent they clearly cannot influence pressure, so the first key 

property is the initiation of autonomous contractile activity.  

• Secondly, if the movements are initiated but confined to a very small area, their 

effect on pressure is likely to be negligible. Thus the extent and rate of 

micromotion propagation is a key factor.  

• Thirdly, it is clear that non-contracting parts of the bladder with low intrinsic tone 

could dissipate wall tension generated from adjacent micromotions. This would 

mean that micromotion contractions would in effect be damped, and thus 

attenuate intravesical pressure changes, even for relatively large localised 

movements.  

In summary, the ability of micromotility to generate intravesical pressure changes is 

determined by the initiation and propagation of the micromotions, and the overall 

contractile tone of the bladder wall.  

It is important to understand how micromotions are initiated and there is now clear 

recognition of several functional influences within the bladder wall potentially able to 

generate or modulate detrusor activity, including interstitial cells and the urothelium. The 

suburothelium, which includes a functional syncytium of interstitial cells connected by 

gap junctions, expresses Ca2+ waves which influence the spontaneous contractions of 

subjacent muscle (16, 17). The presence of niflumic acid-sensitive Ca2+-activated Cl- 

channels (Anoctamin-1) on interstitial cells modulates the frequency of muscle 

contractions in young rodents (18). Interstitial cell inhibition may thus be a means to 

reduce initiation of micromotility. Adrenergic stimulation to lower the overall muscle tone 

of the bladder wall reduces the phasic pressure fluctuations in the bladder (19), possibly 

by reducing overall tone of the bladder wall. Finally, propagation of electrical activity is a 

well-characterised feature of isolated bladder physiology (20), which is probably 

mediated by gap junctions (21). gGap junction blockade, with agents such as 18β-

glycyrrhetinic acid, attenuates propagation and consequently leads to reduction of 

amplitude of the micromotions and associated pressure fluctuations (22). This 

congruent reduction in the intravesical pressure changes detected with individual 



micromotions by manipulation of micromotion initiation, microcontraction propagation 

and general bladder tone at any given moment are key factors determining whether 

autonomous bladder activity results in proportionate intravesical pressure fluctuations. 

In several species, phasic pressure changes can be seen during the storage phase of 

normal healthy animals. These are generally termed non-voiding contractions (NVCs) 

(23), or non-micturition contractions, and altered frequency or amplitude of such activity 

is seen with bladder filling, especially at higher bladder volumes (24). Alterations are 

clearly evident in animal models. For example, NVCs have been evaluated in spinal 

canal stenosis (a model of detrusor underactivity (25)), and irritant instillation (a model 

of detrusor overactivity (26)). Furthermore, changes in expression of NVCs can 

influence the transition from storage to voiding phase (27). Thus, insight into the 

intracellular pathways (for example role of protein kinase C (28)) and intercellular 

communication (for example electrical propagation (20, 21)) potentially provide direct 

insight into urodynamic properties and lower urinary tract dysfunction.  

Regulation and dysregulation of bladder micromotility in vivo 

Normal regulation of micromotility 

In the intact animal, the autonomous behaviour of the lower urinary tract is subordinate 

to the imposed behaviour determined by the efferent innervation. Clearly, excitatory 

efferent innervation is responsible for generating a globalised bladder contraction at the 

time of voiding. In a well-innervated bladder, the simultaneous activation of all efferent 

nerves results in synchronised contraction of all parts of the bladder wall. Thus, 

micromotion initiation, and by inference the bladder wall tone, are maximal for efficient 

expulsion of urine.  

Rodents exhibit NMCs NVCs during the storage phase, which can be observed 

urodynamically in conscious, anaesthetised and decerebrate animals (19, 29, 30). 

Importantly, the NMCs NVCs become substantially enhanced in amplitude when the 

brain-stem becomes non-functional, and this appears to be a result of loss of tonic 

central inhibition of autonomous activity arising in the bladder wall (19). This is probably 

the explanation for the high prevalence of DO in many patients with neurological 

disease. Thus, understanding of the expression of storage phase micromotions requires 



consideration of the efferent inhibitory CNS influences that reduce peripheral 

micromotility. Precisely where such influences may be active needs further research, 

and may be within the peripheral ganglia or the bladder wall, where they may serve to 

reduce initiation and/or propagation of micromotility, or general bladder tone. Overall, 

efferent inhibition appears to down-regulate the extent of localised activity without 

eliminating it altogether.  

In theory, varying the strength of efferent inhibition could be a feature of the intermittent 

awareness of bladder filling state people normally experience during the storage phase. 

Generally, an individual is not aware of the bladder filling state, but sporadically they 

perceive sensations which are categorised as first sensation of filling, normal desire to 

void and strong desire to void in urodynamic terminology (31). This could reflect a 

general suppression of micromotions by efferent inhibition, corresponding with the 

overall time where people are not specifically aware of their bladder, and occasions in 

which a transient reduction of efferent inhibition could allow slightly increased 

expression of motility. These occasions of transient increase in motility might then 

generate afferent stimulation (14, 15) proportionate to the bladder volume (32), and 

hence enhanced sensory reporting of filling state. Since this low level motility would be 

asynchronous, there would be little detectable pressure change, and the compliance of 

the bladder would be unaffected.  

Overactive bladder and detrusor overactivity 

A common feature of many lower urinary tract dysfunctions is the presence of 

denervation. In fact, the patchy denervation pattern seen in DO was suggested to be a 

general defining feature (33), and has been described in idiopathic (34), obstructive (35) 

and neurogenic (36) detrusor overactivity. This patchy nerve loss pattern has been 

mapped in three-dimensional image reconstructions and shows a consistent anatomical 

arrangement throughout the length of detrusor muscle bundles (37). Implicitly, the loss 

of local innervation would prevent the effects of efferent influences during storage and 

voiding (Figure 3). Where efferent inhibitory influence is impaired, denervated areas 

would be better able to express spontaneously their autonomous micromotility during 

the storage phase. This may lead to DO if the condition of the bladder wall in terms of 



motility propagation and tone support the spread of excitation and transmission of force. 

Alternatively, increased amplitude of localised motility with minimal effect on pressure 

may be another pattern, as has been described in some women with urinary urgency in 

the absence of DO (38). This situation may signify increased initiation, with short 

propagation and/ or low tone.  

The symptoms associated with altered micromotions would be affected by the extent of 

preservation of afferent nerves. If afferents are well preserved, the increased 

micromotility would result potentially in increased filling sensation. If the afferent 

innervation is impaired along with the efferent, then reduced sensation may occur.  

In prenatal and neonatal rodents, large amplitude micromotions help expel urine from 

the bladder when neuronal innervation is not yet complete (16). This activity can 

contribute to a spinal cord to bladder reflex where voiding can be initiated by perigenital 

stimulation (39, 40). In infants, voiding is also partly reflexive, occurring when the 

bladder is full (41). After neuronal innervation is complete, reflex activity and 

micromotions disappear but can re-emerge in pathologies including spinal cord injury 

and chemical cystitis. This has been demonstrated in whole bladder sheet preparations 

where single-unit afferent nerve firing and tension are simultaneously recorded (Figure 

4). With spinal cord transection, supraspinal inhibition is removed (42) and large 

amplitude micromotions develop that can stimulate afferent nerves (15) to trigger reflex 

voiding as well as the local release of neuropeptides. These large amplitude 

micromotions require overdistension, as they are prevented by urinary diversion (17), 

and an intact mucosa, as its removal abolishes this activity (43). In chemical irritation 

with acetic acid, where overdistension does not occur and large amplitude micromotions 

do not develop, afferents are sensitized such that low amplitude micromotions can 

stimulate afferent firing (Figure 4B-C). A safe and effective treatment to inhibit 

micromotions has not yet been demonstrated. However, there are indicators that the 

main drugs used clinically to treat overactive bladder can influence this type of activity. 

For example, 3-adrenergic receptor agonists (44, 45) and antimuscarinics (11, 44) 

reduce non-voiding contractions in a rodent model of storage overactivity.. However, the 

sensitivity of afferent nerves can be dampened with botulinum neurotoxin (46) and 3-



adrenergic receptor agonists (A. Kanai, unpublished observations), and these can be 

surmised to treat micromotion-driven bladder overactivity.  

Micromotions in patients with detrusor underactivity 

DUA is a complex and poorly understood urodynamic observation, but it is worth 

considering how the initiation and propagation of bladder micromotions are likely to be 

relevant factors for pressure generation during voiding. In a normal bladder with full 

efferent innervation, voiding is associated with powerful excitation and reduced 

inhibition, so that initiation and tone will be high in the entire organ. For the fully-

innervated bladder, propagation may not be a particular consideration in voiding. 

However, in those individuals with denervation, the ability to initiate contractions will be 

reduced in the denervated areas; thus denervated areas may only contract if there is 

propagation of excitation from a neighbouring innervated area, possibly via interstitial 

cells that are also present between detrusor muscle bundles. The potential for 

propagation of micromotions to recruit contraction in denervated areas during voiding 

may allow compensation for some loss of innervation. Thereby, people with the patchy 

denervation pattern characteristic of DO could maintain seemingly normal voiding, even 

though compensatory mechanisms are involved. Voiding in such people would 

comprise direct efferent stimulation of innervated areas, and indirect stimulation of 

denervated areas, as a result of propagation of excitation from neighbouring innervated 

areas (Figure 3). Consequently, the effect of a small extent of denervation will be 

modest, since denervated areas could deliver some contribution to a voiding 

contraction, even if it is less than that expected with full innervation. Nonetheless, there 

must be some constraints on the extent to which this is possible. Propagation of 

micromotions appears to be relatively slow; in an extensively denervated area, it is likely 

that the time taken to generate a rise in tone and contraction of a denervated area 

would be too long for effective contribution to voiding. Thus, increasing severity of 

denervation will be associated with a reduction in contraction response, and hence 

detrusor underactivity.  



These processes have not been studied in humans with DUA, but in an ageing mouse 

model, there is a clear-cut loss of phasic pressure fluctuations (7), which is associated 

with bladder distension in vivo. 

Summary 

It is proposed that the generation of small intravesical pressure transients depends on 

the initiation and propagation of bladder wall micromotions coupled to a significant 

overall bladder tone. These processes are modulated by the phase of the micturition 

cycle, with efferent inhibition preventing excessive activity during the storage phase and 

efferent excitation ensuring synchronous activation of all areas during voiding. In 

situations where innervation is impaired, the influence of central nervous efferents on 

this activity is altered; the emergence of autonomous activity is seen during urine 

storage, due to loss of efferent inhibition. During voiding, loss of efferent excitation may 

be partly compensated by propagation of micromotions from the innervated areas, but 

not where denervation is too extensive (or if gap junctions are sparse). The extent to 

which aberrant micromotions generate sensation may be determined by whether 

afferent nerves are preserved.  
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Figure legends 

Figure 1; End of the filling cystometry and the pressure flow study (PFS) from a 38 year old 

man where DO with DUA is present. 1. Detrusor overactivity; 2. Time of maximum flow rate in 

PFS (maximum flow rate is 11 ml/sec, detrusor pressure 30 cm H2O, so bladder contractility 

index is 85, indicating impaired contractility); 3. The subject undertakes abdominal straining to 

supplement the poor contractile function); 4. Cough-subtraction at the end of the void is 

adequate. Overall duration of voiding phase was 100 seconds, and a post void residual was 

present.  

Figure 2; A schematic approach to representing a 3-dimensional bladder in 2-D. Much like the 

earth’s globe (A) can be represented as a 2-D map (B), the intact bladder (C) can be portrayed 

schematically in 2-D (D), incorporating landmarks (trigone, urethra, ureters and nerve trunks. 

This illustration conveys the propagating pattern of micromotility, yellow indicating motile, and 

stars indicating initiation points of the microcontractions.  

Figure 3; Two-dimensional representation of the possible impact of denervation on the bladder 

in an intact animal. TOP ROW; The innervation shown heading towards the trigone is marked 

with a minus (-), to signify efferent inhibition as present in the storage phase. A. Where 

innervation is complete, the entire bladder is effectively inhibited to facilitate storage. B. Where 

there is mild, patchy denervation, the affected areas are able to express some autonomous 

activity, and consequently OAB/ DO. C. Severe denervation increases the propensity to 

autonomous micromotility. BOTTOM ROW; The same bladders, but during the voiding phase 

(innervation +). A. The fully innervated bladder shows consistent, coherent contraction of the 

entire bladder wall simultaneously. B. The presence of partial denervation is compensated by 

the triggering from the adjacent edges where (innervated) patches are stimulated by the 

innervation. C. The sheer extent of denervation prevents the triggering from innervated areas 

generating sufficient contraction of the denervated areas to contribute usefully, resulting in 

detrusor underactivity. 

Figure 4. Schematic diagram of an in vitro recording chamber for the measurement of rat 

bladder tension and afferent nerve activities. The urinary bladder is isolated with its associated 

L6-S2 spinal roots and lumbar splanchnic nerve which carry the pelvic and hypogastric afferent 

nerves, respectively. Detrusor contractile activity is monitored through a tension transducer 

which is connected to a stepper motor to stretch and elicit mechanical stimulation. Nerves are 

split in the oil baths to allow recording of mechanosensitive afferents that respond to 

micromotion-induced bladder stretch, as well as nociceptors that fire spontaneously, with single-

units (at the arrows) determined by off-line analysis. B. Under normal conditions, micromotions 

do not generate significant changes in tension as reflected by the lack of afferent nerve firing 

from the S1 spinal nerves. C. Addition of 0.1% acetic acid to the bladder bath enhanced 

micromotions which, combined with sensitization of the afferent nerves, triggered robust firing. 

 


