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Context-aware Mouse Behaviour Recognition using
Hidden Markov Models

Zheheng Jiang, Danny Crookes Senior Member, IEEE, Brian D Green, Yunfeng Zhao, Haiping Ma, Ling Li,
Shengping Zhang Member, IEEE, Dacheng Tao Fellow, IEEE and Huiyu Zhou

Abstract—Automated recognition of mouse behaviours is cru-
cial in studying psychiatric and neurologic diseases. To achieve
this objective, it is very important to analyse temporal dynamics
of mouse behaviours. In particular, the change between mouse
neighbouring actions is swift in a short period. In this paper,
we develop and implement a novel Hidden Markov Model
(HMM) algorithm to describe the temporal characteristics of
mouse behaviours. In particular, we here propose a hybrid deep
learning architecture, where the first unsupervised layer relies
on an advanced spatial-temporal segment Fisher Vector (SFV)
encoding both visual and contextual features. Subsequent super-
vised layers based on our segment aggregate network (SAN) are
trained to estimate the state dependent observation probabilities
of the HMM. The proposed architecture shows the ability to
discriminate between visually similar behaviours and results in
high recognition rates with the strength of processing imbalanced
mouse behaviour datasets. Finally, we evaluate our approach
using JHuang’s and our own datasets, and the results show that
our method outperforms other state-of-the-art approaches.

Index Terms—Mouse behaviours, Hidden Markov Model,
spatial-temporal segment, Fisher Vector, segment aggregate net-
work.

I. INTRODUCTION

STUDYING neurobehavioural phenotypes can be of great
interest because the first symptom of neurological, psy-

chiatric or neurodegenerative disorders is often identifiable
through subtle changes in day-to-day human behaviours (e.g.,
food intake, sleeping and activity patterns) [1]. For example,
the activity/rest cycles of Alzheimer’s patients gradually dete-
riorate in the early stage of the disease. Mouse and rat disease
models are a valuable resource in studying these psychiatric
and neurologic diseases [2]–[8]. However, the studies need
prolonged systematic observation of mice or rats carrying
the diseases, e.g. several days or months, which is highly
labour intensive and subject to human error and varying
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interpretations. Furthermore, human observers may fail to
detect behavioural events that are either too quick or slow,
and miss some events because of dwindling attention span.
Automated home-cage systems can facilitate neurobehavioural
analysis of mouse phenotypes over a long period of time. The
application of such systems to the mouse models of human
diseases has provided new insights into the pathophysiology
and treatment of these disorders [9]–[11].

Previously developed automated systems [12]–[14] rely
mostly on the use of sensor equipment such as infrared beams.
Although these systems have demonstrated good performance
in monitoring locomotor activities, they cannot be used to
study home-cage behaviours such as grooming, hanging and
micro-movements. Visual analysis is thus being used to recog-
nise subtle animal behaviours.

In the scientific literature some systems have been described
to automatically recognize animal behaviours by visual anal-
ysis. For instance, Dankert et al. [15] tracked an insect body
using a Gaussian Mixture Model (GMM) and then performed
recognition of aggression and courtship behaviours of insects.
Unfortunately this system is unsuitable for analysing micro-
behaviours such as micro-movements of the head, grooming
or rearing. Rousseau et al. [16] may be the first group to
report that the detection of specific behaviours was possible.
They applied neural network techniques to recognise 9 solitary
rat behaviours from the body shape and position of rats,
recorded from the side view. However, their method of track-
ing the nose is not sufficiently developed to draw conclusions
concerning its sensitivity and reliability. In 2005, Dollár et
al. [17] recognised mouse behaviours by classifying sparse
spatio-temporal features. However, they only considered visual
features of the interest points (e.g. image gradient) without
using contextual information such as the spatial relationship
between two interest points. This method can only be used
to classify short video clips, each of which contains only one
subject behaviour. In 2010 Jhuang et al. [18] extracted image
features based on a computational model of motion processing
in the human brain [19], followed by classification using a
Hidden Markov Model Support Vector Machine (SVMHMM)
method. Their method to locate the mouse is dependent on
a good background model, which may not be achievable in
noisy environments. Burgos-Artizzu et al. [20] designed a
system for recognising social behaviours of mice using the top
and side views. They applied AdaBoost with spatio-temporal
and trajectory features to classify mouse behaviours. As with
the method of Dollár et al. [17], this method also ignored
the spatio-temporal contextual features. Furthermore, their
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trajectory features are based on a tracking algorithm which
was not detailed in their paper. Recently, CNNs have been
considered to classify individual behaviours of mice [21]. The
proposed models are designed to study interactive behaviours
with objects, so it is not yet powerful enough to recognise fine-
grained behaviours of a mouse itself based on the designed
features. Kramida et al. [22] presented a mouse behavior
classification method using VGG features and a long short-
term memory (LSTM) model. Existing neural networks trained
for action recognition typically learned from human subjects in
natural scenes which are intrinsically different from the rodents
in laboratory environments, and it is still a challenge to transfer
networks from the human to the rodent domain.

Many mouse actions have pairwise relationships in the
temporal domain. For example, it is very unlikely to have
a hang or rest action immediately after a drink action. Re-
cently, LSTMs have demonstrated satisfactory performance
for modelling sequential data but they are usually suitable for
learning long-term dynamics of sequential data, e.g. speech
recognition and natural language understanding with long-
distance dependency. In this paper, we use a generative HMM
[23] to model the temporal transition of mouse actions, where
the parameters are obtained using our proposed SFV+SAN
network. In our proposed framework, shown in Fig.1, we
treat a video sequence as a set of action clips. Each clip is
represented as a set of feature vectors employing our spatial-
temporal segment Fisher vectors (SFV), corresponding to an
observed variable in the HMM. The main contribution of our
proposed approach includes:

1. We propose a novel HMM model learning framework. Its
first unsupervised layers of video clips representation relies on
our SFV and involves feature encoding of both appearance and
contextual features. The subsequent supervised classification
layers comprise our advanced segment aggregate network
(SAN) trained through back-propagation to support the HMM
for inferring the most likely state sequence. Our proposed
system is a hybrid learning architecture as it stacks several
unsupervised and supervised layers. The motivation behind
this hybrid learning architecture is twofold: Firstly, we want to
explore a mid-level representation to mine discriminative ac-
tion parts. Secondly, we model the transformation of adjacent
actions in time using a HMM that considers the contextual
relationship of mouse behaviours.

2. We introduce a novel interest point detector, based on
the Dollár’s interest point detector, using frame differencing
and Laplacian of Gaussian (LoG) filtering. Inspired by the use
of context in local features such as [23], [24], we propose
to exploit spatial-temporal context which can characterise
the spatial location, pose and temporal changes of a mouse.
This is the first attempt to encode contextual features from
actions rather than simply concatenate them with the extracted
appearance features [18], [20]. Our contextual features are an
important feature which characterises both spatial location and
temporal changes of a mouse. We retain absolute and relative
positions of each interest point and then concatenate them to
form the contextual features.

3. Unlike the traditional FV pipelines [25]–[28] that encode
and aggregate the local features by sum pooling over the entire

video, our SFV performs sum pooling over each subvolume
to increase the discrimination ability of the extracted feature.

4. In order to cooperate with SFV, we also propose an
advanced SAN network in the supervised layers. This net-
work is employed to aggregate subvolume-level FVs so that
our framework is capable of modelling the spatial-temporal
structure over the entire video clip.

5. We conduct a comprehensive evaluation of the proposed
algorithm, and compare our method against several state-
of-the-art techniques for mouse behaviour recognition. The
proposed architecture results in high recognition rates with the
strength of processing imbalanced mouse behaviour datasets.

II. MODELLING WITH HMM
In this section, we introduce how we model mouse be-

haviours using HMM and estimate the parameters of the
proposed infrastructure. Fig. 1 shows the proposed HMM
framework.

A. Model set-up
HMM in our approach is used 1) to infer latent or hidden

states from the observed sequential data, and 2) to account
for the dynamics of the observed sequential data according
to the dynamics of the hidden states (see e.g., [29], [30]).
Here, we assume that an observation Ot in the observed
sequential data O∗ = {O1, O2, ..., OT } is generated by an
underlying and hidden state St. The underlying states follow
a Markov chain. HMM is a discrete time model where
we receive an observation generated by a hidden state at
each time instance t. The sequence of the underlying states
S∗ = {S1, S2, ..., ST } takes possible values from a countable
finite set St ∈ A∗ = {A1, A2, ..., AM}, where A∗ is an
action set with M actions. The sequence of the underlying
states S∗ forms the Markov chain and satisfies the Markov
property:P (St+1|St, St−1, ..., S1) = P (St+1|St), i.e., the
probability of the transition to the next state St+1 only depends
on the current state St. The transitions between the actions
(e.g. walk and rest) are represented by the transition probabil-
ity matrix, in which element αmn denotes the transition proba-
bility from action Am in the current state St to action An in the
next state St+1:αmn = P (St+1 = An|St = Am) ,

∑
j αmn =

1 and Am, An ∈ A∗.
In our application, suppose there are M actions (without

loss of generality, in this paper we look at the example of
M = 8), each of which corresponds to an underlying state of
the HMM. Examples for the transition probabilities between
actions and the probabilities of self-transition are illustrated
in Fig. 2. In our experiments, we observe that the probability
of a self-transition is usually larger than that of a transition
between actions. Interestingly, a mouse often switches back
and forth between ‘walk’ and ‘rear’, or ‘walk’ and ‘head’.

The probability of the current observation Ot is conditioned
on the current latent state St:P (Ot|Ot−1, ...O1, St, ..., S1) =
P (Ot|St). In our case, suppose there are T sliding windows
partitioned from an entire video, then we have a sequential
observation O∗ with T elements. Given any of the underlying
states St = Am, Ot has a probability estimated by our hybrid
learning architecture.
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Fig. 1. Illustration of the proposed hybrid learning framework.

B. Model estimation

In a HMM model, there are three sets of parameters: the
initial probabilities of the first states πm in the sequence of
the underlying states S∗, the probability matrix including tran-
sition probabilities αnm between hidden states (i.e. actions),
and the probability distribution of generating observation Ot
(given St). Typically the feature vectors of the sequential
data O∗ are assumed to follow Gaussian Mixture Models
(GMMs) [31]–[34]. The Expectation-Maximisation (EM) al-
gorithm is normally used to derive the parameters of GMMs
and transition probabilities. However, GMMs of several states
may overlap and lack the capacity to discriminate one class
from the others. Furthermore, estimating a GMM of high
dimensionality requires a large amount of training data and
generally limits the dimension of the targeted feature space
to avoid this difficulty. To overcome these limitations, people
started using standard Artificial Neural Networks instead of
Gaussian mixtures for a better discrimination ability [35], [36].
However, these ANN-HMM architectures are not deep enough
to identify complex actions.

In contrast to a common HMM paradigm which estimate
HMM parameters from only the sequence of observation O∗,
our model utilizes the ground truth Y ∗ = {Y1, Y2, ..., YT }
about the sequence of latent actions to directly initialize
the initial state and transition probabilities. In particular, we
estimate the initial probabilities πm by πm = P (S1 = Am)
with

∑
m πm = 1. For estimating the transition probability

αnm from action An to action Am, we assume that qnm
is the times that action state An changes to Am. Then we
have: αnm = qnm∑

m′ qnm′
. For the estimation the probability

distribution of generating observation Ot (given St), we pro-

Fig. 2. An example to show a Markov model that depicts the transition
probabilities between different actions and the probabilities of keeping the
same action (i.e., self-transition). Transition probabilities < 0.04 are omitted
to avoid clutter.

pose a hybrid learning architecture consisting of unsupervised
and supervised layers to estimate the probability distribution
of generating observation Ot (i.e. an emission probability of
the HMM). The first set of the unsupervised layers involves
three layers of interest point detection, local feature extraction
and SFV encoding, followed by supervised layers including
SAN layers, which consists of several subvolume-level net-
works and an aggregation layer (see III-B-1 for detail), and
a HMM layer. In the last layer of SAN, we use a softmax
function to estimate P (St = Am|Ot) that is transformed to
the emission probability of the next HMM layer. The posteriors
P (St = Am|Ot) have to be transformed into emission proba-
bilities using Bayes’ rule P (Ot|St = Am) ∝ P (St=Am|Ot)

P (St=Am) ,
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where the prior probability P (St = Am) of action Am is
estimated by: um∑

m′ um′
, where um is the occurrence of action

Am in the training data. For simplicity, here we assume all
the observations have a uniform prior probability.

Given a well-fitted HMM and the observation sequence
O∗ = {O1, O2, ..., OT }, our interest is to infer the most likely
sequence of action states S∗ = {S1, S2, ..., ST }. In order
to find an optimal state sequence S∗ over time, we deploy
the standard Viterbi algorithm based on the output of SAN.
Defining µmt as the probability of the most probable state
sequence S1:t with St = Am ∈ A∗ as its final state, the
recursion of the Viterbi algorithm [37] can be described as
follows:

Initializing:

µm1 = P (Ot|St = Am) · πm
ψm1 = 0.

(1)

Recursing:

µmt = max
1≤n≤M

(
P (Ot|St = Am)αnm · µnt−1

)
ψnt = argmax

1≤n≤M

(
P (Ot|St = Am)αnm · µnt−1

)
.

(2)

Terminating:

mT = argmax
1≤m≤M

(µmT ) ,

ST = AmT
.

(3)

Path backtracking:

mt−1 = ψmt
t ,

St−1 = Amt−1 .
(4)

where ψnt is a backpointer which is used to retrieve the final
Viterbi path S∗ in Eqs. (3) and (4). In section III-B-2, we
will introduce how to import the output of SFV to the Viterbi
algorithm in further detail.

III. HYBRID LEARNING ARCHITECTURE

As shown in Fig.1, our proposed hybrid learning architec-
ture SFV-SAN aims to estimate the probability distribution
of generating observation Ot in the HMM framework. Our
framework is constituted of several unsupervised and super-
vised layers to be detailed as follows.

A. Unsupervised layers

There are three unsupervised layers that sequentially per-
form interest point detection, local feature extraction and SFV
encoding.

1) Points detection layer: Our interest point detector is the
improved version of [17]. The traditional Dollár’s detector
uses solely local information within a small region, and
it is prone to false detection under illumination variations.
To overcome these shortcomings, we here propose a differ-
ent interest point detector including two steps: 1) a LoG
filter is used instead of a single Gaussian filter [17] for
reducing the impact of illumination change, and 2) frame
differencing is used to eliminate spurious interest points on
the background. This two-step approach facilitates saliency

Fig. 3. Comparison between interest points detected using our detector (right)
and the Dollár detector (left) under the same illumination.

detection in both the temporal and spatial domains and pro-
duces a combined filtering response. Therefore, our response
function is R = (I (x, y, t) ∗ g (x, y, σ) ∗ L ∗ hev (t))

2
+

(I (x, y, t) ∗ g (x, y, σ) ∗ L ∗ hod (t))
2, where I (x, y, t) is the

image at time t, g (x, y, σ) is the 2D Gaussian smoothing
kernel which is applied only along the spatial dimension, L
is the operator of Laplace used on the spatial dimension, and
hev and hod are a quadrature pair of 1-D Gabor filters defined
as: hev (t; τ, ω) = − cos (2πtω) e−t

2/τ2

and hod (t; τ, ω) =
− sin (2πtω) e−t

2/τ2

. With the constraints ω = 4/τ , σ and
τ are two parameters of the spatial and temporal scales,
respectively. They are empirically set by σ = 2.5 and τ = 2.
Fig. 3 shows that, under the same illumination, our detector
can extract precise interest points on the mouse.

2) Local feature extraction layer.: Like most of the existing
action recognition methods [17], [28], [38], [39], we extract
visual features from the cuboids around the interest points in
the 3-D spatio-temporal volume. For simplicity, we extract the
brightness gradients of three channels (Gx, Gy, Gz) from each
cuboid and flatten the cuboid into a vector [17]. To eliminate
noise and retain principle information, Principle Component
Analysis (PCA) is used to reduce the dimensionality of the
visual feature vector. Besides appearance information, spatial-
temporal context information is also important for mouse clas-
sification. As we have known, some behaviours look very simi-
lar but may locate at different areas (e.g. drinking and eating).
Using spatial-temporal context information will help further
improve the discriminability of the extracted features. We also
exploit the contextual information of the interest points to
characterise both spatial location and temporal changes of a
mouse. Two types of features are computed: the relative and
absolute spatial positions of the interest points [38]. If there are
Q interest points in an action clip, then our contextual feature
vector has the form: Fq =

[Xq−Xc;Yq−Yc;Tq−Tc;Xq ;Yq ]
‖[Xq−Xc;Yq−Yc;Tq−Tc;Xq ;Yq ]‖2

, q =

1, 2, ..., Q where [Xc;Yc;Tc] and [Xq;Yq;Tq] represent the
center coordinate of all the interest points and the absolute
coordinate of the qth interest point respectively in the spatial-
temporal domain.

3) SFV encoding layer.: The Fisher vector can be derived
from the Fisher kernel [40] and has been applied by Perronnin
et al. [25] for large-scale image categorisation. Assuming that
all interest points are independent and given a GMM with
parameters λ = {ωk, µk, σk, k = 1, ...,K} where ωk, µk, σk
and K respectively denote the mixture weight, mean vector,
standard deviation vector (diagonal covariance) and the num-
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Fig. 4. Visualization of SFV representation for different action clips.

ber of Gaussians. FV has the form:

GXµ,k =
1

Y
√
ωk

Y∑
y=1

γy (k)

(
xy − µk
σk

)
(5)

GXσ,k =
1

Y
√
ωk

Y∑
y=1

γy (k)

[
(xy − µk)

2

σ2
k

− 1

]
(6)

where Y is the number of the interest points detected from an
action clip. Parameter γd (k) is the weight of xy to the kth
Gaussian: γy (k) = ωkuk(xn;µk,Σk)∑K

k=1 ωkuk(xn;µk,Σk)
. To correct for the

independence assumption of interest points, we apply power
normalization followed by L2 normalization [25] to each GXµ,k
and GXσ,k before concatenating them together. It is observed
that a critical step in the encoding layer is to learn the GMM
from a set of local features X∗ = {x1, x2, ..., xM}. These
features are randomly sampled from the universal set of local
features which are extracted from the interest points of all the
training action clips. Given the feature set X∗, the optimal
parameters of GMM are learned through maximum likelihood
estimation [37]:

argmaxλ

M∑
m=1

ln

[
K∑
k=1

ωkN (xm;µk, σk)

]
, (7)

where N (x;µk, σk) is D-dimensional Gaussian distribution
and D is the dimensionality of the feature vector. We use
the iterative EM algorithm of [37] to render the solution.
The traditional FV coding only learns the GMM from the
appearance features, e.g. [25]–[28]. To capture the distribution
of appearance and contextual features, we learn two GMMs
for these two features respectively. Based on Eqs. (5) and
(6), two FVs are used to represent an action clip. Note that
the global sum-pooling used in Eqs. (5) and (6) ignores
the relative location of the aggregated features. To derive an
optimal spatial-temporal structure of the action class, inspired
by the methods reported in [41]–[44], we trim the entire

video clip into one which only contains all the interest points
and then empirically segment this small video clip to 2*2*2
subvolumes. Both contextual and appearance features encoded
by two Fisher vectors are then computed for each subvolume
and the whole video clip. After having normalised these two
FVs for each subvolume and the whole video clip by power
and L2 normalisation, we concatenate them into one feature
vector in the subvolume domain and then give this as the input
of the next supervised layers. Note, contextual and appearance
features are complementary and jointly boost the recognition
rate (see Section IV A for justification). We finally obtain a
sequence of FV representations {V1, V2, ...VH}. Here V1 are
computed from a whole video clip, {V2, ...VH} come from
several subvolumes, and H = 9 in our experiment. Fig.4
illustrates the SFV representation for some examples of action
clips. Actions ‘groom’ and ‘head’ are easily misclassified by
the traditional FV pipeline as they always obtain a similar
FV representation (V1) which aggregates codes in an entire
clip. However subvolume-level features in our SFV layer can
provide more clues to distinguish these two challenging be-
haviours, for example V2, V6 and V8. Algorithm 1 summarises
the steps of our SFV scheme.

Algorithm 1 Algorithm for the proposed SFV scheme.
Input: Input action clip O and the number of Gaussian K.
Output: feature representation V .

1: Detect interest points from the input O using proposed
LOG filter + frame differencing method;

2: Extract appearance and contextual features for each inter-
est point;

3: Encode each interest point using appearance and contex-
tual GMMs which are learned through Eq. (7);

4: Sum-pooling, normalise and fuse features as described in
the SFV encoding layer of Section III-A to obtain feature
representations.
V = {Vh, h = 1, ...,H}.

B. Supervised layers

To infer the best state sequence from the sequence of sliding
windows, we establish several supervised layers upon the
previous unsupervised layers, whose parameters are learned
by using the sequence of sliding windows and action labels
from the training dataset

1) SAN layers: In the supervised layers, the SAN cooper-
ates with SFV and finally obtains probability P (St = Am|Ot)
that is transformed to the emission probability of the next
HMM layer. Given a sequence of FVs {V1, V2, ...VH}, the
SAN models them as follows:

SAN (V1, V2, ...VH) = O
(
Agg

(
F
(
V T1 P1;W

)
,

F
(
V T2 P2;W

)
, ...F

(
V TH PH ;W

))) (8)

where F
(
V Th Ph;W

)
is the function operating on the FV

representation Vh and produces classification results for all
the classes. The parameter Ph is a projection matrix for
dimensionality reduction of the FV representation Vh. The
projection matrix {P1, P2, ...PH} and W of all the connected
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Fig. 5. Comparison between the proposed SFV-SAN pipeline and the traditional FV pipeline.

layers are jointly learned. The segment aggregate function
Agg (average pooling) combines the outputs from multiple
segments to obtain a consensus of class hypothesis among
them. For obtaining the probability of each action class for the
entire video clip, we use a softmax function as the prediction
function O. Combined with the standard categorical cross-
entropy loss, the final loss function is formed below:

J = E +
λ

2
‖W‖22 +

µ

2

H∑
h=1

‖Ph‖2F , (9)

E = −
M∑
m=1

ym

[
Gm − log

(
M∑
i=1

exp (Gm)

)]
. (10)

λ and µ are the regularization constants of the L2 norm of
W and the Frobenius norm of all Ph respectively. These
two regularization terms prevent the model from overfitting
the training data. Eq. (10) is different from the traditional
cross-entropy loss because we introduce the segment aggregate
function into our loss function. We denote ym = 1 if a clip is
tagged as a numerical action label m of M actions and ym = 0
otherwise. Gm = Agg

(
Fm

(
V T1 P1

)
, ...,Fm

(
V TH PH

))
. Note

that, Fm represents the classification result of class m, which
can be obtained from the last softmax layer of each segment.
Here a class score Gm is inferred from the scores of the
same class and the same sample on all the FV representations.
We use an average pooling function to achieve this score
aggregation. In the back-propagation process, the gradients of
parameters whij and Ph with respect to the loss value J can
be derived as follows:

∂J

∂whij
=

M∑
m

∂J

∂Gm

H∑
h

∂Gm

∂Fm
(
V Th Ph

) ∂Fm (V Th Ph)
∂whij

. (11)

∂J

∂Ph
=

M∑
m

∂J

∂Gm

H∑
h

∂Gm

∂Fm
(
V Th Ph

) ∂Fm (V Th Ph)
∂
(
V Th Ph

) ∂
(
V Th Ph

)
∂Ph

.

(12)

Here, whij means the weight from the ith neuron in the lth
layer to the jth neuron in the lth + 1 layer. lth and lth + 1
two are layers after the projection layer, serving the same
subvolume h. Eqs. (11) and (12) ensure that the parameter
updating uses the segmental aggregation G derived from all the
subvolume-level prediction. Figure 5 shows the comparison
between the traditional FV pipeline and our proposed SFV-
SAN+HMM approach. The traditional FV pipeline encodes
the local features of the action video and aggregates the
codes over the entire video by sum pooling. Subsequently this
representation is usually fed to a Linear or RBF kernel SVM.
Since the traditional FV pipeline represents and classifies
the video in the local feature space, it cannot mine spatial-
temporal structures. Such a pipeline is not good enough for
the applications which require a high discriminative ability,
e.g., the behaviour recognition task studied in this paper. To
overcome this limitation, we propose a SFV layer, which
encodes and aggregates the local features by sum pooling over
each subvolume, followed by a SAN for capturing spatial-
temporal structures and aggregating information from these
subvolumes. For learning our model parameters, we firstly
initialise Ph by PCA and whij from a zero-mean Gaussian.
We then use a mini-batch (set to 8) stochastic gradient
descent (SGD) paradigm, a popular and efficient method to
solve stochastic optimization problems which arise in machine
learning [41], [45]–[47], to update these parameters, where we
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experimentally set the learning rate to 0.03 and the momentum
to 0.95. The regularization parameters λ and µ in Eq. (9) are
set to 2 · 10−6 and 2 · 10−5, respectively. The SGD algorithm
is an iterative method for minimizing the loss function Eq. (9)
and updates the parameters by

whij = ŵhij + ∆whij + ξ∆ŵhij , (13)

where whij and ∆whij are the weight and the update weight in
the current iteration. The hat above the variable denote that
its value is computed from the previous iteration. ξ is the
momentum. In order to construct the above update equation,
we need to compute the gradient of our objective function J
with respect to whij , which is determined by its location in the
neural network and can be derived from the chain rule. For
the softmax layer of the h segment: The update weight ∆whij
has the following form:

∆whij = −η 1

N

N∑
n

∂Jn
∂whn,ij

= −η 1

N

N∑
n

(
∂En
∂zhn,j

∂zhn,j
∂whn,ij

+ λwhn,ij

)
,

(14)

where zhn,j =
∑
i w

h
n,ijb

h
n,i, b

h
n,i is the ith output of the former

hidden layer, and N is the size of the mini-batch. Then we
can get:

∂zhn,j
∂whn,ij

= bhn,i, (15)

∂En
∂zhn,j

=

(
exp (Gn,j)∑
n,j′ exp (Gn,j′)

− yn,j

)
H∑
h

∑
n,j′

exp
(
zhn,j′

)
exp

(
zhn,j

)
− exp

(
zhn,j

)∑
n,j′ exp

(
zhn,j′

)
(∑

j′ exp
(
zhn,j′

))2 .

(16)

For the hidden layer of the h segment: To avoid confusion,
we replace j in Eq. (16) with k, and define j and k as the
neuron number in the last hidden layer and the softmax layer,
respectively. We also define:

θhn,k =
∂En
∂zhn,k

. (17)

The update ∆whij in the last hidden layer follows:

∆whij = −η 1

N

N∑
n

∂Jn
∂whn,ij

= −η 1

N

N∑
n

(
∂En
∂zhn,j

∂zhn,j
∂whn,ij

+ λwhn,ij

)

= −η 1

N

N∑
n

(
K∑
k

∂En
∂zhn,k

∂zhn,k
∂bhn,

∂bhn,j
∂zhn,j

∂zhn,j
∂whn,ij

+ λwhn,ij

)
,

(18)

where η is the learning rate. bhn,j = σ
(
zhn,j

)
. We use a rectified

Linear Unit (reLU) σ (x) = max (0, x), which makes the
training faster and less error-prone with respect to the involved
tanh and sigmoid units [48]. Finally, we simplify Eq. (18) as
follows:

∆whij =


0 if zhn,j ≤ 0

−η 1
N

∑N
n

(∑K
k

θhn,kwn,jk
(
zhn,j

)
bhn,i + λwhn,ij

)
if zhn,j > 0

(19)

Similar to Eq. (17), we define θhn,j = ∂En

∂zhn,j

, i.e.,

θhn,j =

{
0 if zhn,j ≤ 0∑K
k θ

h
n,kwn,jk

(
zhn,j

)
if zhn,j > 0

(20)

We then extend the above equation to the other hidden layers
in a recursive manner:

θhn,j =

{
0 if zhj ≤ 0∑Cl+1

c=1 θhn,cwn,jc
(
zhn,j

)
if zhn,j > 0

(21)

where Cl+1 is the total number of the neurons in the lth + 1
layer. In the hidden layer, the update ∆whij can be described
as

∆whij = −η 1

N

N∑
n

(
θhn,jb

h
n,i + λwhn,ij

)
. (22)

To study the influence of the number of the hidden layers, we
conduct experiments in Section V-A setting this number from
0 to 2.

For the projection layer of the h segment, we update P
using the follow equation:

Ph = Ph − η
∂Jn
∂Pn,h

= Ph − η
1

N

N∑
n

 ∂En

∂
(
V Tn,hPn,h

) ∂
(
V Tn,hPn,h

)
∂Pn,h

+ µPn,h


= Ph − η

(
Θn,hV

T
n,h + µPn,h

)
,Θn,h = [θhn,1, ..., θ

h
n,C1

].
(23)

2) HMM layer: The goal of the HMM layer is to infer the
most likely sequence of action states S∗ = {S1, S2, ..., ST },
based on the class scores of SAN. Let St = Am ∈ A∗

denote the final state of the most probable state sequence
S1:t, the posteriors P (St = Am|Ot) can be transformed into
emission probabilities using Bayes’ rule P (Ot|St = Am) ∝
P (St=Am|Ot)
P (St=Am) . By introducing the class scores of SAN, Eqs.

(1) and (2) of the standard Viterbi algorithm can be modified
as:

Initializing:

µm1 = P (St = Am|Ot) ·
1

P (St = Am)
· πm

=
exp (G1,m)∑
m′ exp (G1,m′)

·
∑
m′ um′

um
· πm

ψm1 = 0.

(24)
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Recursing:

µmt = max
1≤m≤M

(
P (St = Am|Ot) ·

1

P (St = Am)
· αnm · µnt−1

)
= max

1≤m≤M

(
exp (Gt,m)∑
i′ exp (Gt,m′)

·
∑
m′ um′

um
· qnm∑

m′ qnm′
·µnt−1

)
ψnt = argmax

1≤n≤M

(
exp (Gt,m)∑
i′ exp (Gt,m′)

·
∑
m′ um′

um
· qnm∑

m′ qnm′
·µnt−1

)
.

(25)

Terminating:

mT = argmax
1≤m≤M

(µmT ) ,

ST = AmT
.

(26)

Path backtracking:

mt−1 = ψmt
t ,

St−1 = Amt−1
.

(27)

where Gt,m is the class score from the output of our SAN
at time t. The action occurrence um and the action transition
occurrence qnm can be estimated with action labels Y ∗ in the
training data as described in Section II-B. The algorithm for
training and testing SAN+HMM is outlined in Algorithms 2
and 3.

Algorithm 2 Algorithm for training the proposed SAN+HMM.
Input: Sequence of sliding windows O∗ = {O1, O2, ..., OT }

and action labels Y ∗ = {Y1, Y2, ..., YT } for training, SGD
parameters µ, λ, η, ξ,N .

Output: SAN, Π = {π1, ..., πM}, transition matrix Ȧ.
Initialisation: initialize Ph by PCA and whij from a zero-
mean Gaussian.

1: Compute feature representations V ∗ =
{V th , h = 1, ...,H, t = 1, ..., T} for O∗ using Algorithm
1;

2: Compute prior probabilities Π and transition matrix Ȧ of
HMM using Y ∗, as described in section II-B;

3: Randomly shuffle V ∗ on t dimensions;
4: for iter = 1 to T

N do
5: Propagation forward through the network to generate

bhn,i and zhn,j of all layers;
6: Updates for all the weights from the softmax layer using

Eqs. (14), (15) and (16);
7: Update for all the weights from the hidden layer using

Eqs. (20), (21) and (22);
8: Update network weights using Eq. (13);
9: Update P in projection layer using Eq. (23);

10: Record the update ∆whij .
11: end for
12: return SAN, Π, Ȧ.

(a) Our Database. (b) Jhuang Database.

Fig. 6. Database used in our experiment.

Algorithm 3 Algorithm for testing the proposed SAN+HMM.
Input: Sequence of sliding windows O∗ = {O1, O2, ..., OT }

for testing; the SAN and HMM with parameters Π and Ȧ
using Algorithm 2.

Output: State sequence S∗ = {S1, S2, ..., ST }.
1: for t = 1 to T do
2: Compute feature representation V ∗ =

{Vh, h = 1, ...,H} of Ot using Algorithm 1;
3: Propagation forward through the network to generate

the class scores Gt,m;
4: if t = 1 then
5: Initialize µm1 and backpointer ψnt using Eq. (24);
6: else
7: Compute µm1 and backpointer ψnt using Eq. (25).
8: end if
9: end for

10: Compute the last state ST using Eq. (26).
11: Compute the optimal state sequence S∗ using path back-

tracking described in Eq. (27).

IV. EXPERIMENTAL SETUP

A. Datasets:

In our experimental work, we firstly use the publicly ac-
cessible Jhuang databases [18]. The public Jhuang database
has two parts: ‘clipped database’ and ‘full database’. The
‘clipped database’ contains 4200 clips in which only the best
instances of specific behaviours are included. It consists of
8 mouse behaviour classes: rear (399 cases), groom (1477),
eat (374), drink (61), hang (521), rest (868), walk (233) and
head (180). Each clip records a single mouse from a side-
view camera (see Figure 6 for examples of video frames).
The ‘full database’ contains 12 frame-by-frame labelled videos
that last over 10 hours in total. In this paper, experiments
on the ‘clipped database’ use a half-by-half cross-validation
procedure. A leave-one-out strategy is used in our experiments
on the ‘full database’.

Apart from the public database described above, we also
recorded four videos of a single mouse using a Sony Action
camera (HDR-AS15) with a frame rate of 30 fps and 640 by
480 pixels’ VGA video resolution. The mouse used throughout
this study was housed under constant climatic conditions with
free access to food and water. All experimental procedures
were performed in accordance with the Guidance on the
Operation of the Animals (Scientific Procedures) Act, 1986
(UK) and approved by the Queen’s University Belfast Animal
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Welfare and Ethical Review Body. Our recognition system has
been designed to suit different mouse cages. The location of
mouse foods and drinks in our mouse cage is changing (see
Figure 6). To facilitate the ‘dig’ behaviour in the experiment,
we covered the ground of the cage with sawdust. However, this
sawdust leads to severe background clutters, a big challenge
for mouse detection and tracking. This database includes
4 frame-by-frame labelled videos, each of which lasts 30
minutes and contains 6 different behaviours: rear (defined
by an upright posture and forelimbs off the ground), groom
(defined by the forelimbs sweeping across the face or torso),
eat (defined by the mouse reaching and acquiring food from
the food bin), walk (defined by ambulation), micro-movement
(defined by small movements of the mouse’s head or limbs)
and dig (defined by raising of sawdust with the forelimbs
and/or head).

B. Baseline features:

In recent years, trajectory-based approaches, e.g. Improved
Dense Trajectory (IDT) [39], have attracted attention due
to their resilience to noise and illumination change. Their
approach allows image points to be densely sampled which are
tracked using optical flow. We here use the default trajectory
length of 15 frames. The trajectory descriptor describes its
shape by a sequence of displacement vectors. Histograms of
Oriented Gradients (HOG), Histograms of Optical Flow (HOF)
and Motion Boundary Histograms (MBH) are computed in the
spatio-temporal volume aligned with each trajectory. For each
trajectory, we compute HOG, HOF and MBH descriptors with
the same parameters as shown in [48]. The final dimensions
of the descriptors are 30 for Trajectory, 96 for HOG, 108 for
HOF and 192 for MBH.

Other state-of-the-art approaches with respect to deep
learning features include Gated Restricted Boltzmann Ma-
chines [49], 3D Convolutional Neural Networks [50], Deep
Convolutional Neural Networks [51], Two-Stream Convolu-
tional Networks [46]. Wang et.al [47] argued that the current
network architectures for action recognition in videos are
relatively shallow compared with those very deep models
in the image domain [52], [53]. They therefore proposed a
very deep two-stream ConvNets and achieved the state of the
art results. We use their trained VGG-16 CNNs, which are
pretrained on ImageNet [52] and fine-tuned on the UCF-101
dataset. We fix the parameters of the first 13 convolutional
layers and re-train the last 3 fully connected layers on the
mouse dataset. Wang et.al [26] designed a trajectory-pooled
deep convolutional descriptor (TDD), whose goal is to com-
bine the benefits of both trajectory-based and deep-learned
features. This local trajectory-aligned descriptor is computed
from the spatial and temporal nets. We load the parameters of
the convolutional layers from the networks that have already
been trained on the ImageNet dataset [45]. We choose the
descriptors from conv4 and conv5 layers for the spatial nets,
and conv3 and con4 layers for the temporal nets. Finally, we
de-correlate TDD with PCA and reduce its dimensions. The
reason for choosing the TDD feature as our baseline is that
the feature shows great performance on several datasets of

human action and can be effectively integrated into our SFV-
SAN+HMM network to improve the system performance.

C. Baseline encoding method:

The traditional Fisher Vector pipeline [25] is chosen as our
baseline encoding method. We set the number of Gaussians
to K = 20 for the best results in the experiments, and each
feature is represented with a 2KD dimensional Fisher vector,
where D is the dimension of the feature vector. To normalise a
Fisher vector, we apply power and L2 normalisation. Finally,
we concatenate the normalised Fisher vectors of different
descriptors. A linear SVM is used for classification. Besides,
we also compare our SFV-SAN pipeline with the stacked FVs,
a video-level representation with multi-layer nested Fisher
vector encoding, which was proposed by Peng et al. [27].

D. Baseline recurrent neural network(RNN):

Recently, recurrent neural networks, especially Long Short-
Term Memory (LSTM) networks, have demonstrated their
large success in speech recognition [54] and human action
recognition [55]. We use a LSTM network trained using
Adaptive Moment Estimation (Adam) instead of linear SVM
in the traditional FV pipeline. The learning rate of the model
was initially set to 0.01 and the hidden unit was set to 100,
experimentally.

V. EXPERIMENTAL RESULTS

A. Experiments on ‘clipped database’ of JHuang

We compare the performance of our visual features (VF)
and contextual features (CF) against that of the state-of-the-
art IDT and TDD features using the same encoding method.
In our empirical study, we set 100 units per hidden layer and
use reLU non-linearity as the activation function between two
layers. We experiment with a set of neural network layers
operating on the FV representation of each subvolume and
the entire video clip. The number of the hidden layers varies
from 0 to 2, compared against the traditional FV pipeline
with radial basis function (RBF) and linear kernels SVM.
Table I shows the performance of the different features,
where the traditional FV pipeline with linear or RBF kernel
SVM perform significantly worse than our SFV-SAN pipeline.
Especially, the neural network with one hidden layer has
the best performance no matter what features it takes. More
hidden layers seem to make the model overfit. In JHuang’s
dataset, the CNN based TDD features lead to the performance
similar to our combined VF and CF features. Table VI shows
that our combined VF and CF features lead to 3.2% better
performance than the TDD features for our datasets. We also
explore the the complementary capacity of these three methods
by concatenating their Fisher vectors in each subvolume, and
observe that the integration can further improve the system
performance to 97.9%. However, it is interesting to notice
that the combined features without IDT trajectory have better
performance that that with IDT trajectory. That is to say, it is
not always true that adding more features will produce better
classification results. In fact, it is complementary features
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TABLE I
PERFORMANCE (ACCURACY) OF DIFFERENT FEATURES FOR CLIPPED DATASET.

Features Traditional FV pipeline [25] SFV-SAN pipeline
linear SVM RBF SVM 0 NN 1 NN 2 NN

IDT [48]

Trajectory 73.8% 74.5% 73.5% 78.1% 75.7%
HOG 91.6% 93.1% 88.8% 94.7% 93.7%
HOF 83.2% 86.9% 82.7% 88.3% 86.0%
MBH 87.9% 88.1% 87.6% 91.0% 89.9%

Combined IDT with Traj. 91.8% 92.1% 91.9% 93.8% 93.5%
Combined IDT without Traj. 92.3% 92.7% 93.0% 94.5% 94.0%

TDD [26]

Spatial conv4 and conv5 93.1% 93.1% 93.8% 95.3% 94.7%
Temporal conv3 and conv4 93.2% 92.7% 93.0% 93.7% 93.4%

Combined TDD 95.1% 94.0% 95.5% 96.1% 95.4%

ours
With frame differencing

Visual features 91.4% 89.4% 89.2% 93.1% 90.7%
Contextual features 92.2% 90.8% 90.4% 93.3% 92.0%
Combined VF&CF 95.4% 91.1% 94.9% 96.5% 96.3%

Without frame differencing Combined VF&CF 94.7% 90.2% 94.2% 96.0% 95.7%

itcombined

ours+IDT without Traj. 95.5% 94.5% 97.2% 97.4% 97.3%
TDD+ours 95.3% 94.5% 97.0% 97.5% 96.8%

TDD+IDT without Traj. 95.3% 94.3% 96.0% 96.7% 96.1%
TDD+ours+IDT with Traj. 95.1% 94.1% 96.4% 97.0% 96.7%

TDD+ours+IDT without Traj. 95.4% 94.7% 97.6% 97.9% 97.0%
Dollár [17] 81.0%(Bag of visual words + linear SVM)
Jhuang [18] 93.0%(linear SVM)

TABLE II
PERFORMANCE (ACCURACY) OF DIFFERENT FEATURES FOR CLIPPED DATASET.

Action our visual fea-
tures

our contextual
features

Combined
VF&CF

Combined IDT Combined
TDD

Combined
IDT+TDD

Combined
IDT+TDD +ours

drink 42.6% 70.5% 80.3% 50.8% 45.9% 62.3% 77.0%
eat 85.3% 92.2% 93.3% 90.1% 92.0% 94.1% 97.3%
groom 96.5% 96.4% 98.2% 97.0% 98.3% 98.0% 99.1%
hang 96.7% 94.6% 98.5% 96.0% 98.8% 99.2% 99.2%
head 71.7% 58.9% 80.6% 77.8% 80.6% 86.1% 86.1%
rear 85.7% 88.5% 93.5% 93.2% 95.2% 96.0% 96.7%
rest 98.3% 98.8% 99.1% 97.1% 99.0% 98.8% 99.1%
walk 99.6% 92.3% 97.9% 99.1% 97.9% 97.9% 99.6%
all 93.1% 93.3% 96.5% 94.5% 96.1% 96.7% 97.9%

(a) Combined VF and CF (b) TDD. (c) Combined TDD+ours.

Fig. 7. Confusion matrixes of our system using different features.The diagonal cells show the number and percentage of correct classifications. The non-
diagonal cells contain the number and percentage of incorrectly classified behaviors. The proportion of each actual behavior that were correctly or incorrectly
predicted is shown in the bottom row. The proportion of each predicted behavior that were correct or incorrect is shown in the rightmost column. Overall,
the proportion of correct predictions is shown in the bottom right corner.
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(a) (b)

(c) (d)

Fig. 8. ROC curve shows the true positive rate (TPR) against the false positive
rate (FPR) for the features: (a) combined visual and contextual features; (b)
IDT combined features; (c) TDD combined features; (d) all combined features.

rather than a random combination of features to boost the
system performance. Table I also shows that our approach
significantly outperforms Jhuang (93.0%) and Dollár (81.0%),
both of which use much larger proportions of the dataset for
training.

Table II illustrates the performance of the different features
for specific behaviours. In Table II, we observe that the
system performance for ‘head’ is clearly worse than the others.
The main reason is that ‘head’ is affected by the micro-
movements of the mouse’s head or limbs so it is easily
confused with similar behaviours such as ‘groom’. Regarding
the low accuracy for ‘drink’, we believe that this is due
to the imbalanced database where ‘drink’ has a very small
training set (1% of the whole dataset). However, we find that
our VF+CF features still achieve sufficient accuracy on the
‘drink’ behaviour, meanwhile more than half of the ‘drink’
clips are incorrectly classified using the TDD features, shown
in yellow cell of Fig.7(b). Fig.7(c) shows that adding our
VF+CF features can help improve the system performance
in discriminating between visually similar behaviours, for
which the location of the mouse in the cage provides critical
information. For example, drinking (versus eating) occurs
at the water bottle spout. Figure 8 clearly shows that the
combined features are able to achieve significantly higher
accuracy for each behaviour than individual uses of them.

B. Experiments on ‘full database’ of Jhuang

Our system performance is evaluated here based on a leave-
one-out cross-validation procedure. This procedure employs
all the videos except one to train the system (via random
sampling) and the remaining video for testing. We repeat this
procedure n = 12 times and report the weighted average
accuracy in Table III. There are two annotations: ‘Group 1’ and
‘Group 2’, where ‘Group 1’ is used as the ground truth to train
and test the system while ‘Group 2’ is used for measuring the

(a) Confusion matrix. (b) ROC curve.

Fig. 9. Performance of our proposed system against ‘Group 1’.

human agreement between two independent human annotators.
All the local features are computed from a short sliding video
(40 frames), which are centered at each frame. As shown
in Table III, our features have a better ability to represent
mouse behaviours. Although the metric used might suggest
that the performance difference between our proposed features
and Jhuang’s is small, analyzing each behaviour separately
shows that ours outperforms Jhuang’s system in 5 out of the
8 behaviours (eat, groom, hang, rear, rest). In particular, Table
II shows a very poor performance by FV+LSTM (17.1% by
FV+LSTM vs 60.3% by SFV-SAN+HMM) for the recognition
of the ‘drink’. We consider the imbalance training dataset
(only 0.3% of the video is annotated as ‘drink’) influences the
performance of LSTM. It is true that SFV-SAN+HMM has a
better capability than LSTM to deal with the bias towards the
majority class in this example. Overall, our system trained with
the fusion of all the features achieves 81.5% agreement with
‘Group 1’, which is higher than the commercial system [56] ,
Jhuang’s system and humans (71.6%). To study the important
role of our SFV-SAN+HMM pipeline, we train it with different
features and report results in Table IV. The columns on
the left side show the performance of each local feature
and their combination with the traditional FV pipeline. The
columns in the middle show the results after applying our SFV-
SAN pipeline. Additionally, incorporating our HMM model
is shown in the columns on the right side. In comparison
to the baseline of the traditional FV pipeline, our SFV-SAN
pipeline results in 4.9% better performance on the combined
features, 6.7% better on average. The HMM model further
improves the performance and lead to a final performance
improvement of 6.4% and 8.7% on the combined features and
average compared to the baseline method.

Fig. 9 shows the confusion matrix of our system against
‘Group 1’. A confusion matrix allows the visualization of the
agreement between two entities, where the diagonal cells show
the percentage of the agreement with ‘Group 1’ and the non-
diagonal cells contain the percentage of the disagreement with
‘Group 1’. In Figure 9 for example, the cell value in the fourth
row and fourth column indicates that our system correctly
classifies 96% of the ‘hanging’ behaviours as labelled by
human observers of ‘Group 1’, whereas 4% of the behaviours
are incorrectly classified as ‘rear’ (2% ), ‘head’ (1% ), ‘eat’
(1% ).
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TABLE III
COMPARISON OF DIFFERENT SYSTEMS.

Action VF&CF (SFV-
SAN+HMM)

IDT
(traditional FV)

TDD
(traditional FV)

IDT+TDD (SFV-
SAN+HMM)

VF&CF+IDT+TDD JHuang Commercial
system HumanSFV-SAN+HMM FV+LSTM

drink 59.4% 21.9% 24.7% 61.6% 60.3% 17.1% 72.0% 63.0% 78.0%
eat 80.3% 62.0% 69.7% 77.7% 81.1% 78.6% 75.0% 73.0% 87.0%
groom 79.9% 70.3% 64.9% 82.9% 82.2% 80.9% 70.0% 30.0% 57.0%
hang 95.2% 86.5% 90.0% 94.3% 95.8% 94.8% 92.0% 82.0% 91.0%
head 68.6% 57.0% 63.3% 73.0% 74.6% 73.8% 83.0% 64.0% 64.0%
rear 69.8% 60.3% 66.2% 70.8% 74.9% 72.6% 70.0% 35.0% 66.0%
rest 98.2% 86.5% 93.0% 96.3% 97.1% 88.3% 94.0% 96.0% 95.0%
walk 66.3% 55.3% 59.3% 68.5% 67.7% 65.8% 55.0% 69.0% 68.0%
all 78.1% 67.7% 70.8% 79.8% 81.5% 78.8% 77.3% 60.9% 71.6%

TABLE IV
COMPARISON OF TRADITIONAL FV, OUR SFV-SAN AND OUR SFV-SAN+HMM PIPELINE.

Traditional FV pipeline SFV-SAN pipeline SFV-SAN+HMM pipeline
VF&CF IDT TDD Combined VF&CF IDT TDD Combined VF&CF IDT TDD Combined

drink 25.3% 21.9% 24.7% 31.5% 37.0% 17.8% 24.0% 28.1% 59.4% 56.2% 54.8% 60.3%
eat 65.8% 62.0% 69.7% 73.0% 74.2% 72.2% 75.2% 77.2% 80.3% 78.6% 80.0% 81.1%
groom 74.3% 70.3% 64.9% 76.8% 77.9% 78.7% 70.6% 80.8% 79.9% 81.9% 80.0% 82.2%
hang 89.3% 86.5% 90.0% 92.3% 92.5% 91.1% 92.6% 94.2% 95.2% 95.0% 95.8% 95.8%
head 59.4% 57.0% 63.3% 65.1% 67.0% 68.7% 72.1% 73.7% 68.6% 70.4% 73.4% 74.6%
rear 61.7% 60.3% 66.2% 67.6% 70.3% 71.1% 73.2% 74.7% 69.8% 72.2% 73.4% 74.9%
rest 97.0% 86.5% 93.0% 94.4% 97.4% 92.1% 95.5% 95.2% 98.2% 96.6% 97.2% 97.1%
walk 57.6% 55.3% 59.3% 60.9% 64.2% 64.0% 65.0% 66.1% 66.3% 66.4% 67.0% 67.7%
all 71.7% 67.7% 70.8% 75.1% 77.0% 76.5% 76.7% 80.0% 78.1% 78.8% 79.3% 81.5%

TABLE V
COMPARISON OF DIFFERENT SYSTEMS.

Action VF&CF(SFV-
SAN+HMM)

IDT
(traditional FV)

TDD
(traditional FV)

TDD+IDT (SFV-
SAN+HMM)

VF&CF+TDD+IDT Stacked FV Two-stream DollárSFV-SAN+HMM FV+LSTM
dig 75.8% 46.9% 49.1% 59.5% 67.2% 61.0% 46.5% 47.8% 52.1%
eat 92.1% 35.2% 43.7% 59.3% 88.0% 61.5% 31.6% 73.1% 19.1%
groom 71.8% 40.9% 42.5% 52.2% 66.3% 51.4% 38.4% 49.2% 30.7%
head 67.6% 54.5% 67.8% 76.7% 74.6% 78.0% 74.4% 64.6% 76.1%
rear 85.5% 73.6% 79.1% 84.6.0% 86.0% 84.5% 74.2% 86.2% 63.6%
walk 73.5% 62.0% 67.0% 71.6% 70.8% 66.1% 63.5% 71.0% 64.3%
all 74.2% 53.2% 61.2% 70.1% 74.7% 70.3% 61.0% 64.6% 59.1%

Fig. 10. The system performance with varying sizes of training examples.

C. Experiments on our database

The aim of this experiment is threefold. First, while the
proposed system has good performance on Jhuang’s Database,
we expected the proposed system was generalised well with
many different laboratory settings. For this reason, we col-
lected and annotated a new dataset of videos with an entirely
different mouse cage recorded by a different camera system
(see Figure 6). Second, we also expected the proposed system
could be used to recognise additional behaviours. To this
end, we covered the ground of the mouse cage with sawdust
so that we can collect a new behaviour i.e. dig. Third,
we wanted to understand how many training examples are
sufficient for good system performance. To investigate this,
we systematically evaluate the performance of the system as
a function of the amount of minutes available for training. We
select a representative set of video segments from the first x
minute of each video for training; testing is carried out on
the remaining of the video from the x − th minute to the
end of the same video. Figure 10 shows the performance of
several systems with varying sizes of the training examples.
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TABLE VI
COMPARISON OF TRADITIONAL FV, OUR SFV-SAN AND OUR SFV-SAN+HMM PIPELINE.

Traditional FV pipeline SFV-SAN pipeline SFV-SAN+HMM pipeline
VF&CF IDT TDD Combined VF&CF IDT TDD Combined VF&CF IDT TDD Combined

dig 59.6% 46.9% 49.1% 59.2% 63.5% 50.4% 52.4% 61.5% 75.8% 59.3% 60.0% 67.2%
eat 73.6% 35.2% 43.7% 75.3% 78.9% 39.8% 43.2% 78.6% 92.1% 58.2% 71.7% 88.0%
groom 59.3% 40.9% 42.5% 62.9% 64.0% 41.5% 42.9% 59.4% 71.8% 59.3% 62.2% 66.3%
head 67.2% 54.5% 67.8% 69.9% 74.3% 73.3% 76.5% 76.6% 67.6% 71.7% 73.2% 74.6%
rear 81.2% 73.6% 79.1% 82.8% 82.3% 80.6% 80.7% 83.3% 85.5% 86.2% 85.0% 86.0%
walk 65.1% 62.0% 67.0% 66.8% 67.6% 66.6% 66.1% 67.6% 73.5% 71.4% 70.0% 70.8%
all 67.2% 53.2% 61.2% 69.3% 72.2% 63.3% 65.4% 72.4% 74.2% 69.0% 71.0% 74.7%

(a) JHuang’s clipped dataset. (b) JHuang’s full dataset. (c) Our dataset.

Fig. 11. Impact of updating and learning projection layer

(a) eat (b) dig

Fig. 12. Example images with annotation results.

The performance of the proposed SFV-SAN+HMM pipeline
with our features is consistently higher than that of the other
methods including FV+LSTM pipeline. The most likely reason
for the inferior performance of the LSTM is that the low
quantity and imbalanced training dataset is quite a challenge to
the LSTM. Besides, we also believe RNNs (e.g. LSTM based)
are usually used for learning long-term dynamics of sequential
data such as speech recognition and natural language under-
standing. However, in our application, the change between
neighbouring actions is swift in a short period, adding an
extra dimensionality of technical challenges and thereby RNNs
do not perform satisfactorily. After analysing the performance
curve of our system, we observe that satisfactory performance
can be achieved with only 7 minutes of annotation for each
training video, corresponding to 90% of the performance
obtained using 28 minutes of annotations (these results are
the average ones of ten trials). Some example images with
their annotation results are shown in Figure 12.

Table V depicts the results of each behaviour class using
several baseline methods. In the conclusion of the previous
experiments, our SFV-SAN+HMM pipeline with the combined

features has the best result (74.7%). In Table VI, we compare
the traditional FV, our SFV-SAN and our SFV-SAN+HMM
pipeline with different features. In comparison to the tradi-
tional one, the SFV-SAN pipeline improves performance 6.7%
and 4.8% on average and combined features. The integration
of our SFV-SAN pipeline and HMM model leads to the final
performance improvement of 7.0%, 15.8%, 10.0% and 5.4%
for ours, IDT, TDD and combined features respectively, in
comparison to the baseline algorithm. During the training of
SFV-SAN or SFV-SAN+HMM, we generate the validation
accuracy curves after having updated the projection layer with
the PCA initialisation and after simply having taken the PCA
initialisation, whilst repeating the same experiments for our
dataset, JHuang’s clipped and full datasets. From Fig.11, we
observe that updating the projection layer is a better way to
improve the validation accuracy. Furthermore, as Fig.11(b)
and (c) show, updating the projection layer can boost the
performance of the SFV-SAN+HMM network during the train-
ing. For example, the network reaches the best performance
after 500 and 700 iterations for JHuang’s full dataset and
our dataset, respectively, whilst the validation accuracy, after
we simply use the PCA initialisation, is relatively lower. To
compare the computational costs, we calculate the time of
training and testing the individual systems using a segment
of 7 minutes of each video.

All the algorithms are implemented on a PC with a 3.6-
GHz Intel Core i7 processor and a 4-GB memory. To speed
up the training of TDD and deep two-stream ConvNets, we
employ a NVIDIA GRID M60-8Q GPU. The time cost (min)
of training different systems is reported in Table VII. From
Table VII, we can see that the SFV-SAN+HMM pipeline only
consumes 191 minutes for training. Table VIII shows the SFV-
SAN+HMM can also reach the testing speed of 0.8 second per
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TABLE VII
TIME (MIN) OF TRAINING DIFFERENT SYSTEM

Action Combined
VF&CF

IDT (tra-
ditional)

TDD
(tradi-
tional)

Stacked
FV

Two-
stream

Dollár

CPU 191 229 882 250 / 179
GPU / / 674 / 1198 /

TABLE VIII
TIME (SECOND/FRAME) OF TESTING DIFFERENT SYSTEM

Action Combined
VF&CF

IDT (tra-
ditional)

TDD
(tradi-
tional)

Stacked
FV

Two-
stream

Dollár

CPU 0.8 1.1 4.2 1.19 / 0.8
GPU / / 3.2 / 5.7 /

frame. Although it is implemented on the CPU machine, it is
still faster than the other compared systems except Dollár’s
method.

VI. CONCLUSION

This paper has presented an SFV-SAN+HMM framework
for automated recognition of mouse behaviours. In order to
estimate the emission probabilities of the HMM, an efficient
hybrid architecture including a combination of SFV and SAN
has been introduced. Results on the ‘clips’ database of Jhuang
show that our feature extraction method, a key component
in the unsupervised layers of our hybrid architecture, gives
better accuracy than the other state-of-the-art methods. Our
feature extraction method achieves weighted average accuracy
of 96.5% (using visual and context features) and 97.9% (incor-
porated with IDT and TDD features) compared to the others
that have the best accuracy of 93%. On the ‘full’ database
of Jhuang, our SAN-SAN+HMM pipeline also obtained the
best results (81.5%) with combined feature, higher than the
traditional FV pipeline with IDT (67.7%)or TDD (70.8%),
Jhuang’s system (77.3%) and human annotation (71.6%). The
experiment on our database showed the robustness of the
proposed system for recognition of the additional behaviours
and different settings of the mouse cage. Meanwhile, the
proposed system still achieved the accuracy of 74.7% using
the combined features, while the best performance of the
traditional FV pipeline with TDD only reached the accuracy
of 61.2% and FV+LSTM with the combined features reached
the accuracy of 70.3%. Moreover, the proposed system shows
a better ability than LSTM to avoid the bias towards the
majority class on the imbalance dataset. Using the same
dataset for training on CPU, our system is 4 times faster
than the traditional FV pipeline with TDD. Even though this
baseline method was implemented on a GPU, our system
was still 3 times faster. Our future work will include the
exploration of social interactions between multiple mice using
the proposed system.
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