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Abstract

Wireless sensor networks frequently use multi-path routing schemes between nodes and a base
station. Multi-path routing confers additional robustness against link failure, but in battery-
powered networks it is desirable to choose paths which maximise the overall network lifetime
— the time at which a battery is first exhausted. We introduce multi-objective evolutionary al-
gorithms to find the routings which approximate the optimal trade-off between network lifetime
and robustness. A novel measure of network robustness, the fragility, is introduced. We show that
the distribution of traffic between paths in a given multi-path scheme that optimises lifetime or
fragility may be found by solving the appropriate linear program. A multi-objective evolutionary
algorithm is used to solve the combinatorial optimisation problem of choosing routings and traffic
distributions that give the optimal trade-off between network lifetime and robustness. Efficiency
is achieved by pruning the search space using k-shortest paths, braided and edge disjoint paths.
The method is demonstrated on synthetic networks and a real network deployed at the Victoria &
Albert Museum, London. For these networks, using only two paths per node, we locate routings
with lifetimes within 3% of those obtained with unlimited paths per node. In addition, routings
which halve the network fragility are located. We also show that the evolutionary multi-path
routing can achieve significant improvement in performance over a braided multi-path scheme.

Keywords: Evolutionary routing; robust multi-path routing; network reliability; maximum
lifetime routing; multi-objective optimisation; wireless sensor mesh networks.

1. Introduction

This paper examines the use of evolutionary algorithms to find routings in low-power wireless
sensor networks that simultaneously optimise the network lifetime and overall network robust-
ness.

Wireless sensors are autonomous devices that measure environmental parameters, such as
temperature and humidity. In sensor networks many such devices are distributed over a wide
area. Generally these sensors periodically report data back to a central base station, often employ-
ing a mesh network topology, in which each device is a node, to extend the range of the network.
They are widely used in remote monitoring applications due to ease of installation and the ability
to monitor areas that are difficult to access. Inevitably, such applications require these sensors to
be battery powered. In addition to powering the sensors themselves, transmission and reception
costs are frequently major drains on the batteries. As such, it is important to choose paths from
each sensor to the base station that preserve the life of the batteries. Using paths that on average
use the least energy can be detrimental to a group of nodes that relay the most paths [1]. We there-
fore focus on optimising the lifetime of the node that first exhausts its battery; this is the network
lifetime — the time when the network first needs manual intervention to change a battery [2, 3].

Unpredictable and dynamic radio environments, leading to occasional link failures, are in-
evitable in wireless sensor network (WSN) deployments. The traditional routing approaches de-
ployed in generic wired or wireless networks to achieve network robustness may not be feasible,
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primarily due to energy, computational and storage limitations at sensor nodes [4, 5]. Many exist-
ing routing approaches in WSNs consider single-path routing schemes — a single path from each
source node to the base station — due to their simplicity and efficient resource utilisation. In case
of link failure the single-path routing can be re-planned or re-optimised and the network recon-
figured accordingly (see for example [6]). An alternative, which allows receipt of at least partial
information during link failure, is to use a multi-path routing scheme in which each source node
uses a number of paths to send data to the base station. In such a scheme each node sends a pro-
portion of its messages via each of the available paths; only one path is used for each individual
message, so if a link fails the proportion of messages sent via the other routes will be received
successfully. Such multi-path routing has been shown to be both fault tolerant through the use
of alternative paths and energy efficient through load balancing [4, 7]. As we discuss in more
detail in section 2.3, current measures of robustness generally consider the paths available to each
source node, without accounting for the effect on network robustness that results from failure of
a link that is used by paths from multiple source nodes. In this paper we therefore quantify the
network robustness in terms of the maximum expected data loss (across the entire network) that
would occur in the event of a link failure.

Although multi-path routing is beneficial for achieving network robustness, it is likely to have
deleterious effects on battery life because it utilises additional links. We therefore propose evo-
lutionary algorithms to locate routes that find routings which approximate the optimal trade-offs
between network lifetime and robustness.

Simultaneously improving both network lifetime and robustness is pivotal for devising a suc-
cessful multi-path routing scheme in WSNs. Current routing protocols treat this two-objective
optimisation problem as a single objective problem. For instance, Yahya et al. define a composite
weighted link cost combining energy, available buffer storage, and radio interference where the
relative importance of the cost are controlled with weights [8]. A preferred path is constructed
based on this link cost, and when the cost becomes expensive beyond a threshold, a new path
is used to send data. A similar strategy is adopted in [9]. However, the trade-off between dif-
ferent possible routings is not explored. The optimal trade-off front, also known as the Pareto
front, consists of the routings which are not dominated by any other routing [10]; that is, routings
for which there is no other routing with better network lifetime and robustness. Evolutionary al-
gorithms (EAs) are an efficient method of finding the Pareto front. They deploy a population of
possible routings and are capable of evolving a set of solutions that well approximate the optimal
trade-off front [10].

Most current EA-based multi-objective routing optimisation approaches consider single-path
routing schemes to optimise various objectives: energy efficiency, network lifetime, latency, ro-
bustness, expected transmission count, etc. [11, 12, 13, 14]. Here we describe a framework for
multi-path routing optimisation with two objectives: maximise network lifetime and maximise
robustness, and estimate the optimal trade-off front. This approach can achieve solutions with
network lifetimes close to the theoretical maximum network lifetime (when no constraint on the
number of routes per node is imposed) as presented in [1], and a range of solutions representing
various levels of robustness. The major contributions of this paper can be summarised as:

• We describe a hybrid evolutionary search procedure to approximate the optimal trade-off
between network lifetime and network robustness.

• We introduce a novel robustness measure (the fragility) of multi-path routing schemes to
quantitatively analyse and compare the robustness of different multi-path routing schemes.
The fragility accounts for the effect of failure of a link shared between multiple source nodes.

• We show how the proportion of time for which each path should be used in a multi-path
scheme may be determined by an appropriate linear program to optimise either network
lifetime or robustness.

• Novel search space pruning methods, based on braided and edge disjoint paths, are used
to speed the evolutionary search by restricting the search space to regions likely to contain
good solutions.
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• The proposed methods are illustrated in a real network deployed in Victoria & Albert Mu-
seum, London, UK, and successfully locate a wide range of robust multi-path routing schemes
with long network lifetimes and greater robustness, surpassing the performance of single-
path routing schemes.

The rest of the paper is structured as follows. In section 2 we describe our network model
and the associated formulation of network lifetime and robustness. Section 3 describes the multi-
objective problem to be optimised and in section 4 a hybrid evolutionary algorithm to solve it is
presented. Search space pruning, key to the efficiency of the evolutionary algorithm, is discussed
in section 4.1. The method is evaluated and compared with popular methods on synthetic and
real networks in section 5. Related work is discussed in section 6. Finally, conclusions are drawn
in section 7.

2. Network Model, Lifetime and Robustness

In this section, we present a model for WSNs with multi-path routing and formulate network
lifetime and robustness as objectives to be optimised.

2.1. Network Model
We consider a communication protocol in which all nodes periodically (e.g., once every minute)

send their sensed data to the base station, potentially by relaying a message through one or more
nodes. Such data reporting periods are repeated throughout the network lifetime: the time before
which a node first exhausts its battery. This scenario is most common in industrial applications,
especially for constant monitoring of locations.

Once a connectivity map, showing which nodes may communicate with each other, has been
established, routing is performed under the assumption that links are reliable. Generally, pairs of
nodes are configured to use the most energy efficient settings that allow reliable communication.
Usually energy efficient links correspond to high baud rate and low transmission power.

Note that we used very low power sensor nodes in this paper. As such the frequent pinging in
connectivity discovery is prohibitively expensive. Therefore, the connectivity discovery process
is only triggered in case of establishing the network for the first time or severe deterioration in
performance. Furthermore, nodes are not capable of performing route calculations due to very
limited computational resources. Thus routing calculation and decisions are performed at the
mains powered base station in a centralised manner as configuring the sensors infrequently over
the radio link is relatively cheap (for instance, in the real world implementation we consider here,
each network configuration cycle costs approximately 0.1% of the total battery energy per node).

We deem the hardware to be reliable, and thus node failure is a rare event that necessitates
replacement of the node. On the other hand, the radio environment is seldom constant and links
may occasionally fail due to changing atmospheric conditions, the passage of people, radio in-
terference, and so on. One mechanism to combat the intermittent failure of links is to provide
more than one path from each node to the base station. Each node then splits its traffic between
the available paths, sending a proportion of messages via each of the available paths; exactly one
path is used on each data reporting cycle, rotating between the available paths. Thus if there is a
failure on one path, messages sent via other paths will still be received, providing at least partial
information. We call the proportion of time that a particular path is utilised the active time share
for that path.

A WSN is represented as a network graph, G = {V,E}, where V is a set of N sensor nodes
vi plus a base station node vB , and E is the set of edges, describing with which other nodes each
node can communicate [15]. Figure 1 illustrates a multi-path routing in which there are two routes
from node vi to the base station vB : Ri1 = 〈vi, vj , . . . , vB〉 and Ri2 = 〈vi, vk, . . . , vB〉. We denote by
τid the active time share of path Rid, namely the proportion of messages sent by vi via route Rid.
Clearly, τid ≥ 0 for all i, d and

∑
d τid = 1,∀vi ∈ V .
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vi
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Figure 1: Two paths Ri1 = 〈vi, vj , . . . , vB〉 and Ri2 = 〈vi, vk, . . . , vB〉 from vi to the base station vB . In a multi-path
routing scheme, Ri1 is active for time share τi1 and Ri2 is active for time share τi2.

Hence, we define aD multi-path routing scheme (R, T ) as a set of paths, where each node has
D routes to the base station, and a set of associated time shares:

R = 〈{R1d}Dd=1, {R2d}Dd=1, . . . , {RNd}
D
d=1〉, (1)

T = 〈{τ1d}Dj=1, {τ2d}
D
j=1, . . . , {τNd}

D
d=1〉. (2)

Practical memory constraints of current devices generally require that D, the number of paths for
any node, is small, perhaps two or three.

2.2. Network Lifetime
The energy expended at a node due to transmitting its own data and relaying other nodes’

data depletes charge in its battery and thus governs the lifetime of a node. An individual node’s
lifetime, and thus the network lifetime, then depends on the routing scheme as it dictates the total
number of transmissions and receptions involving the node.

Let Tkj be the energy (charge) required at node vk to send a message to vj and let Apk be
the energy required to receive (and acknowledge) a message from vp at vk (Figure 2). Then
in one reporting cycle, the energy cost at vk associated with relaying messages in path Rid =
〈vi, . . . , vp, vk, vj , . . . , vB〉 is

Ckid = Apk + Tkj . (3)

At the originating node there is no reception cost, so that Ciid = Tir where vr is the node immedi-
ately downstream of vi.

vi vp vk

Apk, Tkj

vj vB

Figure 2: Notation for the d-th route for node vi: Rid = 〈vi, . . . , vp, vk, vj , . . . , vB〉. The energy costs to send data from
vp to vk are Tpk at node vp and Apk at node vk.

In order to calculate the battery lifetime remaining due to a multi-path routing scheme, we re-
quire additional intrinsic information about the nodes, namely the charge qk remaining in the
battery and the quiescent energy consumption per reporting cycle Bk due to constant micro-
controller operation, sensor measurements, running an on-board display, etc. The life of the node
vk is therefore given by

Lk =
qk

Nc(Bk +
∑

Rid∈RC
k
idτid)

(4)

where Nc is the number of reporting cycles per unit time (e.g. one year). Note that the energy
expended at node vk as a result of using route Rid depends on the associated time share τid; more
frequent use naturally incurs a greater energy expense. We emphasise that Lk ≡ Lk(R, T ) is a
function of all the paths and the associated time shares which utilise vk.

Our goal here is to maximise network lifetime, that is the time before any individual node
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requires its battery to be changed or recharged; thus we seek to maximise

L(R, T ) = min
vk∈V

Lk(R, T ). (5)

2.2.1. Optimal Time Share
Suppose that the routes R have been determined. Then the best distribution of time shares

between multiple paths can be found as follows.
Inspecting (4), we note that rearranging this equation for a mathematical programming for-

mulation will impose quadratic constraints with variables Lk and τid in product form. In order to
reformulate this problem as a linear program, we consider the inverse lifetime

L′k(T ) ≡ 1/Lk =
Nc

qk

Bk +
∑
Rid∈R

Ckidτid

 (6)

so that maximising minvk∈V {Lk} is equivalent to minimising maxvk∈V {L′k}. Defining L
′∗ =

maxvk∈V {L′k}, the optimal time shares are then the solution to the linear program:

min
T

L
′∗ (7a)

subject to:

qkL
′∗ −Nc

Bk +
∑
Rid∈R

Ckidτid

 ≥ 0 ∀k; (7b)

τkd ≥ 0 ∀k, d; (7c)∑
d

τkd = 1 ∀k. (7d)

Note that in deriving the inequality constraints in (7b) we utilise the relationship that for all nodes
in the system L

′∗ ≥ L′k and replace L′k by L
′∗ in (6). We use this trick because min-max functions

are non-smooth [16], and considering L
′∗ instead of L′k lets us formulate a convex linear program

which can be solved in polynomial time [17].
Here, the inequalities (7b) (derived from (4) and (6)) ensure that the batteries have non-negative

charge, while (7d) ensures that every node has paths allocated for all its messages.
Clearly, by solving the linear program (7) we can obtain a set of optimal time shares once a

multi-path routing scheme is generated. This provides a means to efficiently calculate optimal
time shares and thus compare routesR andR′. In the evolutionary optimisation method that we
present below, candidate paths are generated by the stochastic evolutionary mechanism; optimal
network lifetimes for these are obtained by solving the linear program, obviating the need to
perform a further stochastic search to locate optimal time shares.

2.3. Robustness
In WSNs, alongside network lifetime, it is important that data from sensors are delivered re-

liably. Data delivery may fail for various reasons: node failure, link failure, and congestion [18].
In modern deployments, node failure is a rare event due to recent advances in WSN technol-
ogy; moreover, it is considered to be a critical event that requires immediate attention from the
network administrator so that faulty nodes may be replaced or batteries can be changed. Addi-
tionally, the congestion problem at the Medium Access Control (MAC) layer may be addressed
with Time Division Multiple Access (TDMA) techniques [19]. Furthermore, Forward Error Cor-
rection (FEC) methods can be deployed to improve link reliability in the Data Link Layer (DLL)
[20]. However, even if these techniques are used, unpredictable link failures due to the changing
radio environment may still occur [21, 22]. Robustness against occasional link failures is con-
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ferred by retransmission of packets for which an acknowledgement was not received, however, it
is important to select reliable routes.

To select reliable routes and promote robustness against link failure, contemporary routing
approaches consider optimising the packet delivery rate or the path failure probability [5]; see for
example [23, 24, 25, 26, 27]. A common strategy is to send all messages via the most reliable path,
switching to the next reliable path if the current path fails [7, 26]. Alternative approaches either
distribute messages equally among paths, or in proportion to their expected reliability or residual
energy [28, 8, 25, 29, 30]. These alternative strategies are preferred when downstream nodes are
unable to signal link failure to source nodes and we employ these here. Generally, in assessing
path reliability these protocols consider each source node in isolation and direct traffic according
to the reliability of paths from that node. However, a link failure may simultaneously affect the
data from multiple source nodes. This is because paths from different nodes may share edges,
even if the multiple paths from each source node to the base station are disjoint. Assigning traffic
on this basis may therefore overestimate the network’s robustness, leaving it vulnerable to the
failure of links carrying traffic from more than one source node.

We consider the expected message loss associated with the failure of a link in one of the paths
used by a single node. We then characterise the fragility of the network as the maximum expected
data loss in the event of a link failure anywhere in the network. Then maximising robustness is
synonymous to minimising the fragility for a given multi-path routing scheme.

Let πm be the failure probability of an edge em ∈ E. We assume that the edge failure probabil-
ities are independent, so that the probability that a path Rid ∈ R fails in a unit time can be written
as:

pid = P (Rid fails) = 1−
∏

em∈Rid

(1− πm) =
∑

em∈Rid

πm − p̃id, (8)

where p̃id represents all the higher order product terms. When the edge failure probabilities are
small (πm � 1), the higher order product terms (representing the probability of more than one
edge failing simultaneously) are negligible, and pid is thus well approximated by:

pid ≈
∑

em∈Rid

πm. (9)

In the Victoria & Albert network πm ≈ 1%, and empirical results confirm that the approximation
works well for edge failure probabilities πm . 20%.

If a node vi sends Ui messages per unit time, then it uses Rid to send Uiτid of these messages
and the expected loss of messages associated with a failure of a link in Rid is

Uiτidpid. (10)

Now, in multi-path routing schemes the paths from a particular node may share edges. As a
result, failure in a link in Rid may also be associated with loss in another path Rxy ∈ R \ Rid that
shares edges with Rid. In this case the expected data loss associated with the failure of an edge is:

Fid = Uiτidpid +
∑

Rxy∈{R\Rid}
vx∈V

Uxτxy

1−
∏

en∈{Rxy∩Rid}

(1− πn)

 (11)

where the bracketed term is the probability that an edge common to Rid and another path Rxy
fails.

In the following we use the first order approximation of path failure probabilities:

Fid = Uiτid
∑

em∈Rid

πm +
∑

Rxy∈{R\Rid}
vx∈V

Uxτxy
∑

en∈{Rxy∩Rid}

πn. (12)
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We call Fi = maxd Fid the fragility of the multi-path routes for vi. To quantify the robustness
of the entire network, we define the fragility of the network as the maximum expected data loss for
any node:

F = max
vi∈V

Fi = max
vi∈V

max
d
Fid. (13)

This path-based metric accounts for the failure probabilities of paths, the presence of shared edges,
and the proportional usages of different paths in the network. It quantifies the maximum expected
data loss in the WSN due to any link failure. Hence, optimising the fragility improves robustness
of the whole network.

Clearly F ≡ F (R, T ) depends on the choice of paths and time shares. To maximise the robust-
ness of the network, we therefore minimise the fragility with respect to R and T , that is, we seek
to minimise the maximum expected data loss in the event of a link failure.

Our work on robustness is complementary to the work presented in [21, 22]: they devise
ways to calculate statistical and empirical edge failure probabilities πm and such information can
be used to estimate robustness of multi-path routing schemes. If this information is not readily
available, especially when the network is being established, it may be assumed that all edges are
equally likely to fail and we set πm = π = const. for all m.

We next show that the optimum time shares T may be found by solving a linear program
when the routes R are known, after which, in section 2.3.2, we illustrate the fragility measure for
some simple intuitive cases. In section 3 we then present the multi-objective optimisation problem
and an evolutionary approach to maximise both the network lifetime and robustness.

2.3.1. Optimal Time Share
In a similar manner to the network lifetime problem, we can devise a linear program to locate

the active time shares T for a particular multi-path routing scheme R that minimise the network
fragility (13).

With F ∗(T ) = maxRid∈R Fid, the linear program to minimise the network fragility can be
described as follows:

min
T

F ∗ (14a)

subject to:

F ∗ ≥ Fid ∀Rid ∈ R; (14b)
τkd ≥ 0 ∀k, d; (14c)∑

d

τkd = 1 ∀k. (14d)

Here too, setting F ∗ = maxRid∈R Fid ≥ Fid enables us avoid the non-smoothness of the min-max
problem (14a) and formulate the linear program. The set of constraints in (14b) indicates that
any path specific fragility in (11) is less than or equal to the network fragility F ∗. As before, the
constraints in (14d) ensure that all data reporting cycles are used.

Solving this linear program results in a set of active time shares according to the best robust-
ness for a routing schemeR. This allows us to simply compare robustness of different multi-path
routing schemes R with the knowledge that the active times for each route are optimal, and thus
locate routing schemes with better robustness.

2.3.2. Case Studies
In this section we demonstrate the fragility in some simple scenarios, which are illustrated in

Figure 3.
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vi

vB

Ri1 Ri2

(a) Node vi has two
routes to the base sta-
tion vB : Ri1 (dotted),
and Ri2 (solid) with as-
sociated time shares τi1
and τi2 respectively. With
equal link failure prob-
abilities, the routes are
used equally, τi1 = τi2 =
50%.

vi

vB

Ri1 Ri2

Ri3

(b) Node vi has three
routes to the base station:
Ri1 (dashed) and Ri2

(dotted) and Ri3 (solid).
With equal link failure
probabilities π, the time
shares are τi1 = 18.2%,
τi2 = 27.3% and τi3 =
54.5% and the fragility is
Fi ≈ 0.545Uiπ.

vi

vB

Ri1 Ri2

Ri3

(c) Same configuration as
Figure 3b except for the
link (dash-dotted) shared
between Ri1 (dashed)
and Ri2 (dotted). With
equal link failure prob-
abilities the time shares
are τi1 = 12.5%, τi2 =
25%, τi3 = 62.5%. The
fragility is Fi = 0.625Uiπ.

vi vj

vB

Ri1

Ri2

Rj1

Rj2

(d) vi and vj each have
two routes with equal
numbers of links, but
share a single link (dash-
dotted). With equal link
failure probabilities π
and traffic Ui = Uj = U ,
the optimal time shares
are τi1 = τj1 = 55.6%,
τi2 = τj2 = 44.4%. The
fragility of vi and vj is
2.22Uπ.

Figure 3: Case studies illustrating the fragility (13).

Edge-disjoint routes between a pair of nodes
Edge-disjoint routes do not share any edges; however, they may share nodes. In such situa-

tions, the node fragility Fi is independent of the other nodes and the second term in (11) is zero.
As illustrated in Figure 3a, node vi has two routes of equal length to the base station vB : Ri1

and Ri2. The active time shares for these routes are τi1 and τi2. If the edge failure probabilities are
equal for all the edges, by either solving the linear program or straightforward direct calculation,
the minimum fragility occurs when τi1 = τi2 and Fi1 = Fi2, as would be expected from symmetry.
Clearly, if the two routes have equal probability of failing then they should be used equally. Like-
wise, if the total failure probability for path Rid is pid (c.f. (9)), then the minimum fragility occurs
when the expected losses of each of the independent routes are equal, which occurs when:

τid =
1

pid

(∑
l

1

pil

)−1
. (15)

When there are just two routes (Figure 3a) then (15) simplifies to τi1 = pi2/(pi1 + pi2) = 1 − τi2.
The fragility is Fi = Ui

(
p−1i1 + p−1i2

)−1, which is clearly minimised when pi1 = pi2 so that the
risk of failure is borne equally by the two routes. The case for three routes with 3, 2, and 1 links
respectively, each with equal failure probability π, is shown in Figure 3b. Here the routes are
utilised in the proportions τi1 = 18.2%, τi2 = 27.3% and τi3 = 54.5% so that the expected loss for
each route Fid is equalised; at the optimum Fi = 6Uiπ/11 ≈ 0.545Uiπ.

Shared edges from a single node
Sometimes the paths from a single node to the base station will have to share edges. Clearly

this makes the node more fragile because failure of one of the shared links will compromise more
than one path, although there might be another independent route.

Figure 3c shows a node vi with three routes in a similar configuration to Figure 3b, except that
Ri1 and Ri2 share a link (shown dash-dotted). With equal link failure probabilities there is less
advantage in using Ri1 and Ri2 than there was in the previous case. This is reflected in the time
shares: τi1 = 12.5%, τi2 = 25% and τi3 = 62.5% and the greater fragility Fi = 0.625Uiπ.

8



Multiple nodes sharing edges
When multiple routes share edges, failure of a single link may affect more than one node. In

practice, since most nodes in a network generate data, there will be a large number of shared
edges and the second term in (11) is significant.

As a simple illustration, Figure 3d shows two data reporting nodes vi and vj , which send
their data to the base station each using two paths. These paths have equal numbers of links, so
with equal edge failure probabilities, the fragility for each individual route is the same. In this
illustration routes Ri2 and Rj2 share a single link. In this case, assuming the vi and vj generate
equal traffic Ui = Uj = U , the optimal time shares are τi1 = τj1 = 55.6% and τi2 = τj2 = 44.4%, so
that traffic is directed away from the shared edge. Without the shared link the time shares for all
routes would be 50% and the fragility 2Uπ, whereas the shared link increases the best fragility of
both nodes to 2.22Uπ.

3. Multi-Objective Optimisation Problem

Our overall goal is to discover routes and time shares for a network that maximise the network
lifetime and maximise the network robustness by minimising the fragility. These two objectives
are expressed by (5) and (13) and may be collected together as a two-objective optimisation prob-
lem:

maximise f1(R, T ) = min
vk∈V

Lk(R, T ), (16)

minimise f2(R, T ) = max
Rid∈R

Fid(R, T ). (17)

These objectives might be augmented with others. For example, it might be important to max-
imise the lifetime of one or more particularly inaccessible nodes or to ensure the maximum ro-
bustness for other nodes. The optimisation procedure we describe below is easily generalised to
these situations, but for simplicity we assume there are just these two objectives.

We emphasise that in some senses the time shares T are subsidiary to the routes R, because
if R is known then the T maximising the lifetime or minimising the fragility may be found by
solving the appropriate linear program. For a routing scheme R we denote by TL(R) and TF (R)
the solutions to the linear programs for lifetime and fragility respectively.

The network lifetime objective in (16) ensures that although energy efficient paths are selected,
some load is distributed away from the heavily loaded nodes to prolong minimum lifetime. This
may be in conflict, however, with the fragility objective in (17), where the load distribution that
minimises fragility is purely dependent on the nature of the paths and shared edges between
paths, without any regard to the traffic carried by each node and therefore the load imposed on
its battery. As it will usually be impossible to optimise both objectives with a single routing, we
therefore seek the set of solutions corresponding to the optimal trade-off between these objectives.
In this case, there exists a set of solutions which are Pareto optimal; that is, there are no other
feasible solutions available that improve performance on one objective, without a simultaneous
decrease in the quality of the other objective (see, for example, [10]). With these Pareto optimal
routing schemes on hand, the network engineer can make a reasoned decision about which to
use.

The trade-off solutions to the multi-objective problems are more formally characterised in
terms of dominance. In a multi-objective problem, one solution, x = (R, T ) is said to dominate
another x′ = (R′, T ′) if it is wholly better than x′. In terms of (16) and (17), a solution x dominates
another x′, written x ≺ x′ iff:

f1(x) > f1(x
′) and f2(x) ≤ f2(x′)

or f1(x) ≥ f1(x′) and f2(x) < f2(x
′).

(18)

Two routing schemes are mutually non-dominating if neither dominates the other. The Pareto set is
the maximal mutually non-dominating set of feasible solutions and the Pareto front is the image
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of the Pareto set in objective space; see e.g. [10].
Locating the Pareto set for this problem exactly would require searching all the possible multi-

path routing schemes available in the network connectivity graph, G. However, the problem of
counting the number of all possible simple paths in a graph is known to be #P -complete; thus
the corresponding problem of listing all simple paths is NP-complete [31, 32, 33]. Hence, there
is no suitable algorithm that can solve this multi-objective problem in polynomial time and we
therefore use a hybrid evolutionary approach to estimate the optimal trade-off between these
conflicting objectives.

4. Hybrid Evolutionary Approach to Multi-Path Routing Optimisation

We use a straightforward elitist evolutionary algorithm as the basis of our search. The elitist
EA starts with a random initial population of solutions and creates a mutually non-dominated
archive from these solutions without any constraints on the number of solutions it may preserve
(see, for instance, [34]). At each episode of evolution, two parent solutions from the archive are
selected at random and evolutionary operators are applied to these solutions with the purpose of
generating a better child solution. The evolutionary operators used here are crossover and pertur-
bation (mutation). The crossover operator takes some parts of one of the selected individuals and
combines them with the complementary parts of the other individual to construct a child. Essen-
tially, this enables the algorithm to generate solutions that are not in the vicinity of the current
members of the archive on the fitness landscape, and thus allows exploration. On the other hand,
the perturbation strategy randomly makes small alterations to the child, and therefore exploits
the fitness of that particular child. The child solution, however generated, is then compared with
all the solutions in the archive and the mutually non-dominated solutions are retained. Therefore
the archive remains a mutually non-dominating set throughout evolution. Thus, at any stage of
the evolution, the archive represents the current best approximation of the Pareto set and can only
move towards the true Pareto set. A more detailed account of the algorithm (see Algorithm 1) is
given below.

Algorithm 1 Multi-objective multi-path routing optimisation using evolutionary algorithms.
Inputs
P : Library of paths for each node
T : Number of iterations
s : Number of initially sampled routing schemes
µ : Perturbation rate
c : Crossover rate

Steps
1: A← InitialiseArchive(P, s) . Initialise random archive
2: for i = 1→ T do
3: {R1,R2} ← Select(A) . Select two parent solutions
4: R′ ← Crossover(R1,R2, c)
5: R′′ ← Perturb(R′, µ,P) . Perturbation
6: A ← NonDom(A ∪ {(R′′, TL(R′′)), (R′′, TF (R′′))})
7: end for
8: A ← PostProcess(A)
9: return A . Approximation of the Pareto set

The algorithm is initialised by constructing s candidate routing schemes from a library of
possible routes for each node, P = 〈{R1m}Mm=1, {R2m}Mm=1, . . . , {RNm}

M
m=1〉, where M is the num-

ber of routes available for each node 1. Preliminary experiments indicated that the algorithm is
relatively insensitive to the exact number of initial solutions (s), as evolutionary mechanism may

1In practice some nodes may have fewer than M routes available.
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eventually locate a range of routing schemes trading off between network lifetime and robustness.
Nonetheless, from rapid optimisation perspective, s = 100 provides a good initial population for
the networks used in the experiments.

To obtain an efficient search and combat the combinatorial explosion in the number of possible
solutions with increasing network size, this library is built to contain routes that are likely to be
good candidates for optimal solutions; details of its construction are given in section 4.1. In a D-
path routing scheme, D paths for each node vi are drawn at random from the available routes for
vi in P , to form R. Optimal time shares for TL(R) and TF (R) are found via linear programming.
The candidate solutions (R, TL(R)) and (R, TF (R)) are added to the archive A. Solutions in A
which are dominated by other solutions are removed from A, so that it remains a set of mutually
non-dominating solutions.

At each generation of the evolutionary procedure the routesR1 andR2 corresponding to two
solutions in A are selected at random from the elite archive A (line 3). These parent routing
schemes are combined in a uniform crossover operation (line 4), in which a new routing scheme
R′ is constructed by selecting each path Rid in the paths for each node vi from either R1

id or R2
id

with probability c or 1 − c respectively, independently of other nodes and the paths for vi. The
new routing scheme R′ is then perturbed by choosing a number of paths in the solution to alter
based on the perturbation rate µ, and then replacing these from P at random (line 5). During the
evolutionary optimisation we used c = µ = 0.1 for the crossover and perturbation rates as these
values allowed good convergence rates. Finally, having evaluated the optimal time shares and the
corresponding objectives, if either of the newly constructed routings (R′′, TL(R′′)) or (R′′, TF (R′′))
is not dominated by any of the solutions in A, then it is added to A and any solutions in A that are
dominated by these are removed fromA. In this way non-dominated routing schemes are retained
in the archive and the corresponding objectives can only approach the true Pareto front. The
evolutionary process continues for a fixed number of generations, although another termination
condition, such as a specified minimum dominated hypervolume [35] may be employed.

During the evolutionary process, we consider only the extremal time shares TL(R′′) and TF (R′′)
for a particular candidate solution R′′ by solving appropriate linear programs. However, there
may be many intermediate time shares between TL(R′′) and TF (R′′) that trade-off between net-
work lifetime and robustness. Evaluating many potential intermediate time shares during evolu-
tion is computationally expensive. For completeness, we therefore consider the intermediate time
shares for the solutions fromA after the evolutionary optimisation is complete. This step has little
impact on the overall run time of the algorithm, but may help improving the final approximation
of the Pareto set. Full details are given in Appendix A.

4.1. Search Space Pruning
As noted above, the multi-objective optimisation problem is a combinatorial optimisation

problem with, for practical WSNs, a vast number of potential solutions. The number of possi-
ble multi-path routing schemes depends on the number of available routes for each node in the
network and the number of routes allowed per node. For instance, let the number of available
loopless paths from vi to vB be ai. If the number of paths per node is D, then the number of
possible multi-path routing schemes is (

∏
i ai)

D. Hence, it is crucial for practical implementa-
tions that we obtain an efficient algorithm by sensibly pruning the search space, while retaining
important potential solutions, rather than considering solutions from the whole search space. In
this section, we describe a number of methods of pruning the search space: k-shortest path pruning,
braided and edge-disjoint path pruning are used to construct libraries of potential paths for each node
PSP ,Pbraid, and Pedge from the connectivity graph, G; we also reduceG to a new a graphG′ using
max-min pruning and construct additional libraries P ′SP ,P ′braid, and P ′edge from it using k-shortest
path pruning, braided and edge-disjoint path pruning. The evolutionary algorithm (Algorithm
1) then selects candidate routes from, P = PSP ∪ Pbraid ∪ Pedge ∪ P ′SP ∪ P ′braid ∪ P ′edge, where the
union is performed separately over the paths for each node.
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4.1.1. k-shortest Path Pruning
The k-shortest paths library reflects the intuition that short paths to the base station are most

likely to be energy efficient. We therefore construct a library PSP from the k shortest paths from
each node to the base station. Several shortest path routes are available for each node because, if
each node were to utilise its shortest path, nodes that occur in many of the shortest paths would
be disproportionately burdened.

Algorithms for discovering the k shortest paths between a source and all the nodes in a
weighted graph are well known and can be computed inO(|E|+|V | log |V |+k|V |) time [36, 37, 38].
However, as we noted above, the energy costs in this problem are associated with the nodes them-
selves rather than with the edges; see (3). We therefore weight the edges in the network graph to
associate the energy cost at the nodes with the edges connecting them. Consider the nodes vi and
vj . We define the weight of the edge between them as:

wij =
Tij
qi

+
Aij
qj
. (19)

It is expected that if qi = qj , then wij = wji. This edge weighting models the fact that a high
transmission cost can be borne by nodes with a high battery charge, but transmission is relatively
expensive for nodes with low battery charge because each transmission will make a larger frac-
tional depletion of the charge. Likewise, if a node is connected to mains power then transmissions
are free, which is modelled by setting qi → ∞. We call the cost of a routing scheme calculated
using the weights wij the composite cost.

We construct PSP from the k shortest paths with respect to the composite cost using a straight-
forward modification of Eppstein’s algorithm [37] to produce only simple or loopless paths.

4.1.2. Braided and Edge-Disjoint Path Pruning
In the interest of retaining potential good routes from the perspective of robustness, we build

two additional path libraries: Pbraid, containing braided paths and Pedge, containing edge-disjoint
paths, which have been shown to be highly resilient and energy efficient [7].

Ganesan et al. [7] describe braided paths as partially disjoint paths, i.e. paths in a braid are
allowed to share nodes and edges as long as they differ in some edges or nodes. These braided
paths are based on a primary path, which we take to be the shortest path from a node to the base
station considering the composite cost as edge weights; these primary paths are found during the
construction of PSP or can be found using Dijkstra’s algorithm [39].

Two particular types of braided paths are presented by Ganesan et al.: idealised and localised
braids. In idealised braids, two paths must differ in at least one node; while in localised braids
two paths are allowed to share nodes as long as they have different edges to and from at least
one shared node. Therefore to produce idealised braids, we remove one node at a time from the
primary path from the network graph, and calculate new primary path. Similarly, for localised
braids, we remove only the edges connecting a node in the primary path, and generate the pri-
mary path on the new graph. This is repeated for each node and associated edges in the primary
path. Hence, the number of braided paths depends on the length of the primary path.

To generate edge-disjoint paths, starting from the primary path, we remove edges of the 1-st
to m-th path from the network and calculate the next shortest path, i.e. the (m+ 1)-th completely
edge-disjoint path, based on the composite edge costs. We repeat this process to construct Pedge
with k edge-disjoint paths. In a partially connected network, as is usually the case in WSNs, a
node may be completely disconnected from the network by removing a small number of edges,
and as a consequence may have very few edge-disjoint paths.

4.1.3. Max-Min Lifetime Pruning
In order to generate candidate routes that tend to prolong the lifetime of the network we

consider routing in the situation where, rather than just D routes, each node may use an arbitrary
number of routes to the base station. Chang et al. [1] have shown that in this case the distribution
of traffic along the various links that maximises the network lifetime can be found by solving a
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linear program (in polynomial time). The solution to this problem specifies the edge utilisation
uij , namely the traffic carried by each edge, in the connectivity graph G. We generate a reduced
graph G′ ⊂ G = (V,E), by deleting from G all the edges eij for which uij = 0; for full details of
the construction of G′ see [40]. We then use G′ as the basis for generating libraries P ′SP ,P ′braid and
Pedge of k-shortest, braided and edge-disjoint paths. The use of G′ prunes the size of the search
space, but retains routes that are good for prolonging the minimum lifetime.

5. Evaluation

In this section, we evaluate the proposed method in synthetic and real networks. In each
case, we compare with the theoretical limit in network lifetime, obtained by solving the linear
program devised by Chang et al. [1]. We emphasise that this best possible network lifetime can
only be achieved if an arbitrarily large number of paths is available. In the multi-path schemes
considered here nodes are limited to a small number (one, two or three) of paths. Nonetheless, we
show that the method can obtain multi-path routing schemes with a network lifetime within 3%
of the theoretical upper bound, while discovering a range of other routing schemes representing
various levels of trade-off between network lifetime and robustness.

We also present a comparison with Ganesan et al.’s [7] braided path method, which is popular
for fault tolerance and energy efficiency (see section 5.3). In this case, the braided path solution is
always dominated by the solutions discovered through evolutionary routing.

5.1. Synthetic Network Evaluation
We first illustrate our multi-path routing algorithms on randomly generated synthetic net-

works. In these networks nodes were distributed uniformly at random in a rectangular area, and
an edge defined between each node and its three nearest neighbours. This process results in net-
works in which every node is attached to at least three others, however as the nearest neighbour
relation is not symmetric, some nodes may be connected to more than three neighbours. Trans-
mission and reception costs associated with each link were selected randomly from 5 configura-
tions. The most energy required for a single transmission amounted to approximately 2.77 times
the quiescent current expended between transmissions, while the least energy was 0.17 times the
quiescent energy. Note that while nodes on the periphery of the network will make only a single
transmission per reporting cycle, those closer to the base station may make many transmissions
and receptions as they relay other nodes’ data. For simplicity we assume that the probability that
any link fails is π for all links in the network.

To permit easy visualisation we begin with a simple network comprising 11 nodes plus a base
station and we allow two paths per node, making it a 2-path routing scheme. Figure 5a shows the
connectivity map for this network. For simplicity, all node batteries had the same initial charge
and all edges were assumed to have the same link failure probability. In subspace pruning, we
used k = 10 shortest paths for building each PSP and P ′SP ; in addition we used braided and edge-
disjoint path pruning to build the complete path library P . The initial evolutionary population
was created by randomly selecting 100 routes R from P . Then solving the linear programs (7a)
and (14a) generated distinct time shares TL(R) and TF (R) respectively for each route, resulting
in 200 initial solutions (R, T ). The initial archive comprised the non-dominated solutions among
these random solutions. After 40000 generations, the Pareto front estimation was judged to have
been well-converged based on the dominated hypervolume measure [35].

Figure 4 shows the estimated Pareto front from the evolutionary optimisation. As the figure
shows, the 2-path routing schemes in the estimated Pareto set not only contains a wide range
of solutions representing various levels of trade-off between network lifetime and robustness,
but also performs better than solutions in the random initial archive.2 The network engineer may
then inspect these approximately Pareto optimal solutions and select a suitable multi-path routing
scheme for this particular network.

2We note that the random initial archive was constructed from solutions within the pruned subspace of available
routes. Routing schemes selected at random from the entire space generally perform much more poorly than these.
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Figure 4: Pareto front approximation showing the trade-off between network lifetime and fragility, resulting from the
evolutionary multi-path routing optimisation in a random network with two paths per node. The Pareto front ap-
proximation is shown with crosses, with Rl and Rf being the best network lifetime and the most robust solutions
respectively. Initial random solutions are depicted with solid dots and the non-dominated solutions in the initial
archive are indicated with empty square around the associated random solutions. The approximated performance of
the braided multi-path routing scheme Rb is shown with a solid diamond, which is dominated by the final approx-
imated Pareto front. The dashed horizontal line shows the upper bound for network lifetime if unlimited paths per
node are permitted. Note that the fragility (maximum expected packet loss per reporting cycle) is proportional to π
the failure probability for any link in the network. For instance, if π = 1%, then the range of fragility is 0.05 to 0.25
maximum expected packet loss per cycle on the abscissa.

The best lifetime solutionRl achieves a network lifetime of 6.6 years with two routes allowed
per node; this is within 0.001% of the theoretical upper bound of the network lifetime for this par-
ticular network, which can be calculated when there is no limit to the number of paths available
to each node. At the other extreme, the evolutionary algorithm has located a comparatively ro-
bust solution reducing the fragility to 29.3% of the best lifetime solution, at the expense of a 59.4%
decrease in network lifetime. In most circumstances the network operator will want to choose a
solution between these two extremes. Inspection of the figure shows that a solution close to the
“knee” in the Pareto front (Rk; fragility≈ 9.9, lifetime≈ 5.9) may be preferred because decreasing
the fragility further leads to a rapid deterioration in lifetime, whereas large increases in fragility
are required to achieve significantly longer lifetimes.

To clarify the nature of both objectives and their relationship with multi-path routing schemes,
we further visualise in Figure 5 the routes corresponding to the solutions Rl and Rf , which op-
timise the lifetime and fragility respectively. This figure shows the connectivity map for the net-
work (Figure 5a), the overall edge utilisations for Rl and Rf (panels 5b and 5c) and each node’s
paths in Rl and Rf . Time shares τi1 and τi2 allocated to each of the two paths from a given node
vi are indicated using the colour scale, green forRl and red forRf .

The edge utilisations for Rl in Figure 5b indicate that energy efficient edges are utilised to
achieve long network lifetime. This is clear when edge utilisations are compared with the connec-
tivity map in Figure 5a: higher edge utilisations occur where energy costs are relatively low. This
is also evident from inspecting individual node’s paths: for 6 of the 11 nodesRl uses single-paths,
i.e. only a single path is used to send all the data (τi1 = 1 and τi2 = 0). Multiple paths tend only
to be used for nodes distant from the base station (Figures 5k-5n) in order to relieve more heavily
loaded nodes closer to the base station.

By contrast, edge utilisations for the least fragile routing Rf (Figure 5c) show no obvious
relationship with energy costs, although nodes close to the base station are inevitably used more
heavily than distant nodes. Instead, it is clear that robustness is achieved by providing two paths
for 7 of the 11 nodes. Where only a single path is used for a node (e.g., Figure 5g), we have
verified that adding an additional path increases the overall fragility of the network because it
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Figure 5: Comparison between extreme solutions: best lifetime solution (Rl) and most robust solution (Rf ) in the
median run of 31 runs for the random network; see Figure 4. (a) shows the connectivity map with all available links
between nodes and associated energy costs (darker represents lower energy cost), with the grey square node indicating
the base station. (b) and (c) depict the edge utilisations for all routes in solutions Rl and Rf respectively (darker
represents higher utilisation). Each of (d) – (n) shows the active time shares between a pair of paths forming the
solutions Rl (shades of green) and Rf (shades of red) for individual nodes (solid grey), with the associated lifetimes
and fragility written at the bottom left. Only paths with non-zero time shares are shown. Overall Rl prefers energy
efficient single routes with only few nodes using multi-paths to distribute load from most heavily loaded nodes, while
Rf mainly balances traffic to form disjoint paths and improve fragility irrespective of energy costs. Note that the
fragility Fi (maximum expected packet loss per reporting cycle) is scaled by π, where πm = π is the failure probability
at any edge em.
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(b) 30 sensors (real: V & A museum)
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(c) 100 sensors (synthetic)
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Figure 6: Performance comparison between single-path routing schemes (1-RS) and 2-path routing schemes (2-RS)
approaches for random synthetic networks with 11 (a), 100 (c) and 150 sensors (d), and a real network with 30 sensors
(b) deployed in Victoria & Albert Museum. The solid lines depict 50% summary attainment surfaces and dotted lines
show 10% and 90% surfaces. The theoretical upper bound of the maximum minimum lifetime, calculated by solving
the linear program proposed by Chang et al. [1], for the network is shown with horizontal dashed line in grey. In
all cases the multi-path schemes (2-RS) completely dominates the single-path schemes (1-RS), and the best network
lifetimes achieved using multi-path schemes (2-RS) are within 3% of the theoretical maximum. Note that the fragility
(maximum expected packet loss per reporting cycle) is scaled by π, where πm = π is the failure probability at any edge
em.

requires additional traffic to use an already vulnerable link. It is, of course, possible to ensure that
all nodes incorporate some redundancy by using distinct paths at least a fraction τmin of the time
by replacing the positivity constraints (7c) and (14c) with τkd ≥ τmin for all k, d.

In Figure 6a, we present the summary attainment surfaces [41, 42]. These are the Pareto fronts
achieved by 10%, 50% and 90% of 31 independent runs of the evolutionary optimiser. Clearly, the
attainment surfaces for 2-path schemes are superior to those from single-path schemes in terms
of both lifetime and fragility. We attribute this to the possibility of load balancing between the
paths for a single nodes as well as between nodes. Also, the narrow width of the attainment sur-
faces indicates desirable repeatability and convergence properties of the proposed evolutionary
approach.

We obtained similar results with a random network comprising 100 (Figure 6c) and 150 (Fig-
ure 6d) sensor nodes. To achieve satisfactory performance, the number of function evaluations
required for 100 node network was 100000, and for 150 node network was 200000. As Table 1
shows, in both cases, the best network lifetime was within 3% of the optimal solution for net-
works with unlimited paths per node [1].
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Table 1: Comparison between the theoretical optimal lifetime L∗ and the lifetime of the best lifetime solution (Rl) from
the median run of evolutionary 2-path routing for synthetic and real networks. L∗ was found by solving the linear
program proposed by Chang et al. [1]; this may not be realised in multi-path system with a limited number of paths
available to each node.

Number of sensor nodes Network lifetime (years) L(Rl)/L∗
L(Rl) L∗

11 (synthetic) 6.60 6.61 99.8%
30 (real) 1.37 1.38 99.2%

100 (synthetic) 3.12 3.21 97.2%
150 (synthetic) 2.59 2.67 97.0%

5.2. Real Network Evaluation
Finally, we show the performance of the approach on a real network deployed in the Victoria

& Albert Museum, London.3 To ensure the preservation of their artefacts, many museums and art
galleries employ battery-powered wireless sensor networks in order to monitor temperature and
humidity. Battery power combined with wireless means that such sensors can be easily placed
practically anywhere, such as in environmentally controlled cabinets, without the need for ad-
ditional wiring. The network comprises 30 sensor nodes and a base station, distributed across
five floors, and within an area of approximately 35, 000 m2. The thick, solid walls of the museum
mean that some sensors which are close spatially nevertheless cannot directly communicate (or
can only do so reliably at a high transmission power). Nodes are connected to between 3 and 21
other nodes, with the average degree being 11.9. The characteristics of the radio environment also
vary with the passage of visitors through the galleries (over 3.4 million visitors passed through
the museum in 2015), which may lead to occasional link failures.

We used the same evolutionary algorithm configuration as described for the synthetic network
for evolutionary multi-path routing optimisation in this network; except 60000 function evalua-
tions were required to achieve similar convergence quality as indicated by the dominated hy-
pervolume measure [35]. Routing optimisation, using two paths per node, resulted in a range of
trade-off solutions, with the best lifetime solution in the median run of 31 optimisations achieving
99.51% of the theoretical best network lifetime with unlimited paths (Table 1). In this network the
quiescent energy expenditure is higher, so that transmission and reception energy costs amount to
between 0.017 and 0.27 times the quiescent energy expended in a reporting cycle. Consequently,
the maximum available lifetime and the range of available lifetimes is smaller than in the synthetic
network where transmission and reception costs are more significant. Nonetheless, the evolution-
ary search has located a wide range of lifetimes and shows the trade-off with robustness. At the
other extreme, the fragility of most robust solution was 37.9% of the robustness of the best life-
time routing at an expense of a reduction of 29.5% in network lifetime in comparison with the
best lifetime solution.

The Figure 6b shows the 10%, 50% and 90% summary attainment surfaces from 31 optimi-
sation runs for one and two paths per node routings. As for the synthetic network the close
proximity of the attainment surfaces, indicates the repeatability and convergence of the optimi-
sation. The optimised 2-path routings clearly dominate the single path routings, providing better
lifetimes and robustness. In this network, allowing an additional path for each node does not
provide significantly better routings.

5.3. Comparison with Braided Multi-Path Routing Scheme
In their seminal and popular work, Ganesan et al. [7] described the braided multi-path rout-

ing scheme, which is known to be fault tolerant and energy efficient. Although this scheme is
implemented in a distributed manner, we can approximate the performance of a centralised im-
plementation and thus compare it with our evolutionary multi-path approach.

3To allow comparison with this work, data on the network can be found at http://emps.exeter.ac.uk/computer-
science/wsn/
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In a braided multi-path scheme all partially disjoint paths from the primary path are con-
structed for each source node (see section 4.1.2 for a brief description of this process). When the
primary path fails to deliver messages, data is sent via alternative paths with a preference towards
shorter paths, as indicated by the maintenance overhead metric described in [7]. In essence a list
of paths for each node, ordered according to increasing length or total failure probability is main-
tained; each path is only used when all paths with higher preferences have failed. In this context
the proportional usage (time share) of each route is thus dependent on its path success probability
and the path failure probabilities of the paths with higher preferences. We model the time share
of a path Rid as:

τid = (1− pid)
d−1∏
l=1

pil 1 ≤ d ≤ D (20)

where pid is the probability path Rid failing.
With this model of the time shares it is clear that

∑D
d=1 τid ≤ 1, where there are D braided

paths from a node vi to the base station. Consequently, there may be residual time for which no
route has been allocated a time share. For a fair comparison with our approach, we proportionally
distribute this residual time between paths and thus we model the time shares as:

τ ′id =
τid∑
l τil

. (21)

Table 2: The braided multi-path (Rb) is compared with the most robust solution (Rf ), the best lifetime solution (Rl)
and a selected solution from the “knee” of the estimated front (Rk) from the median run of evolutionary 2-path routing
for synthetic and real networks. The minimum fragility and maximum network lifetime are shown in bold.

Number of sensor nodes Fragility Network lifetime (years)
Rb Rf Rl Rk Rb Rf Rl Rk

11 (synthetic) 8.79 6.42 21.90 8.20 2.48 2.68 6.60 5.28
30 (real) 14.24 7.07 18.65 11.81 0.61 0.96 1.37 1.34

100 (synthetic) 77.19 24.48 62.02 39.97 0.31 1.17 3.12 2.98
150 (synthetic) 144.75 51.36 124.4 88.76 0.51 1.01 2.59 2.50

We present the comparison between the approximate performance of the braided multi-path
routing and the evolutionary 2-path routing in Table 2. As the table shows, the 2-path routings
obtained by evolutionary optimisation all dominate the braided path routings. The most robust
solution Rf improves both objectives, with fragility improved by at least 25% in comparison to
Rb. Choosing a routing, Rk, close to the knee of the estimated trade-off front can increase the
network lifetime significantly while also improving fragility in comparison to Rb. In general,
the evolutionary 2-path solutions always lead to longer network lifetimes and than the braided
path routings. The better performance of the 2-path evolved routings is due to the fact that the
braided multi-path scheme tends to prefer shorter paths and the braided paths for each source
are chosen without regard for other nodes; they are therefore less effective at utilising the load
balancing capability of multi-path routing schemes which may be detrimental to a small group
of nodes that relay the most traffic. In contrast, most solutions from the estimated trade-off front
are more robust and the advantage becomes more greater in larger networks. We attribute this
improvement to the flexibility that larger networks provide for achieving greater distribution of
expected data loss between paths.

Note that we did not impose any constraints on the number of paths for the braided multi-
path scheme, which was free to utilise all possible braided paths. The evolved multi-paths were
able to achieve better performance even though they were constrained to have only 2 paths.
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6. Related Work

Multi-path routing has become popular in the past few years (for recent surveys on multi-
path routing in wireless sensor networks see [23, 5, 4]). This is primarily because multiple paths
for sending data are particularly useful for balancing load to achieve better network lifetime (as
a proxy for energy efficiency) and improving reliability under uncertainty at links. However,
finding multiple paths and deciding on the time shares between them are challenging tasks. As
we have pointed out here there is a trade-off between network lifetime and robustness against link
failures. In this paper, we have focused on devising generals methods for locating routes and the
associated traffic, and we proposed an evolutionary approach to estimate the optimal trade-off
between these objectives. In this section we discuss this algorithm in the context of recent related
work.

Most current routing approaches in wireless sensor networks deal with network lifetime as
a single objective optimisation problem; this is known as maximum lifetime routing. Saleh et al.
present many such methods in their survey paper [43]. The most notable work in this area is due
to Chang et al. [1], who model the routing problem in terms of a linear program which may be
solved efficiently. One criticism of the original work is that it does not consider the link level hand-
shaking: the process of confirming the reception of data by the destination at the link level [44].
In our formulation in section 2.2, we included the link level handshaking. More importantly, the
Chang et al. solution is applicable when there is no limit to the number of paths that a node may
utilise. Unfortunately, very low power sensor networks, particularly those with limited memory
and processing resources at each node, must limit the number of paths available to each node.
Consequently, alternative methods such as those presented here must be found for networks with
these characteristics. As we have shown, the evolutionary approach is able to find solutions with
few paths per node with lifetimes that closely approach the Chang et al. upper bound. Neverthe-
less, the multi-objective nature of the algorithm shows that it may be advantageous to sacrifice
some longevity for robustness to link failure.

To select paths that are resilient to unpredictable faults, often node-disjoint or partially disjoint
paths from a node to the base station are sought. The earliest example of such a multi-path rout-
ing protocol in WSNs is due to Intanagonwiwat et al. [45]. They devised the directed diffusion
algorithm that constructs node-disjoint paths in a distributed fashion. All discovered paths are
maintained and the best among these are used to send data back to the base station. In case of a
failure, the next best path is used. However, depending on the network topology there may not
be many completely disjoint paths between a node and the base station. Moreover, using com-
pletely disjoint paths results in longer paths, which generally consumes more power, lowering
the network lifetime. Also, path discovery and maintenance is dependent on broadcast messages
flooded through the network. To reduce the overhead due to flooding, Challal et al. introduced
a sub-branch multipath routing protocol that uses only one message per node to discover paths,
but insist on using node-disjoint paths [46]. Similarly, Yang et al. proposed a sleeping multi-path
routing protocol to conserve energy in directed diffusion [26]. It uses expected path success and a
reliability requirement on paths to limit the number of active alternative paths and hence reduce
the overhead of maintaining many disjoint paths. To improve the energy efficiency by reducing
the length of the alternative paths, Ganesan et al. proposed the braided multi-path protocol [7].
In this protocol, rather than building completely disjoint paths, partially disjoint paths are con-
structed. This is based on the intuition that a path may fail due to an edge failure, while the other
edges may still be usable. Exploiting this idea, the method allows efficient use of shorter paths as
it does not require the next best path to be completely disjoint. This has been shown to be 50%
more reliable and energy efficient than using idealised node-disjoint multipath protocol in [45]. In
these protocols, as new routes are used on failure, the uncertainty at links is managed reactively.
Also, network lifetime is not directly addressed.

The optimisation scheme here produces superior results to these methods because it is able to
directly optimise the network robustness expressed via the fragility which, as discussed in section
2.3, measures the maximum expected packet loss for the entire network in case of a link failure.
This is in contrast to most current methods [18, 23, 24, 25, 26, 27] for assessing path robustness,
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which consider the paths for each source node without regard for the links which are used by
paths for other nodes. As our simulation results show, the optimisation produces routing schemes
with much improved robustness compared with the popular and effective braided paths heuristic
[7]. Our work builds on the braided paths idea by incorporating many braided paths into the
library of paths from which evolutionary algorithm builds complete routing schemes.

Many recent routing protocols have attempted to combine different objectives, such as net-
work lifetime, network robustness and data latency, into a single objective. For instance, Huang
et al. formulate an integer linear program (ILP) to minimise the number of active routes with con-
straints on acceptable delay and reliability [47]. The active routes are used equally to send data.
Bagula proposes an extension to the ILP with an additional constraint on energy consumption
[25]. The data from a source node is then sent via a randomly selected path from the available
multi-paths. Ben-Othman et al. defines a composite edge cost as the weighted sum of residual
energy, available buffer size and the signal-to-noise-ratio [9, 8]. The path costs are calculated by
summing the relevant edge costs. Also, a reliability constraint and expected path success are used
to calculate the optimal number of alternative paths as described in [48]. Data from a node is
split into smaller segments and sent through different paths using a queuing model. The data is
reconstructed on reception by the base station. Similarly, in [49], Radi et al. formulate another cost
metric which is a product of accumulated expected transmission count, inverse residual battery
and experienced interference level. Node-disjoint paths are then built by minimising this metric.
The traffic between routes are optimised by solving a linear program based on a path load cost
metric and traffic ratio.

Like some other authors, rather than combining the possibly competing objectives into a sin-
gle objective, we prefer to expose the individual objectives by optimising them all simultaneously
to approximate the Pareto front. With this on hand the network manager can make an informed
decision about the trade-offs involved in selecting a routing scheme. More technically, it is known
that combining objectives as a weighted sum results in a single objective problem which may not
capture the full extent of the trade-offs between the constituent objectives even as the weights
are varied [50]. Most current EA-based multi-objective routing optimisation approaches consider
single-path routing schemes to optimise various objectives: energy efficiency, network lifetime,
latency, robustness, expected transmission count, etc. [11, 12, 13, 14]. To the best of our knowl-
edge, this work represents the first attempt to estimate and explore the optimal trade-off between
network lifetime and robustness using multi-path routings in wireless sensor networks.

7. Conclusions

Despite advances in battery technology it remains important to extend the network lifetime of
wireless sensor networks by choosing routes that balance the loads placed on individual nodes.
However, as we have shown here, optimisation solely of the lifetime may be detrimental to the
robustness of the network to link failure. In this paper we have therefore presented novel methods
for discovering the best trade off between network lifetime and network robustness in multi-path
routing schemes.

Chang et al. [1] elegantly showed how the network lifetime may be maximised by solving a
linear program. However, their work is applicable only when each node may use an unlimited
number of paths, which is often impractical for low-power, limited memory devices. In contrast,
limiting the number of paths results in an NP-hard combinatorial problem. Nonetheless, in the
example networks presented here our multi-objective evolutionary algorithm is able to locate
routes with network lifetimes within 3% of the Chang et al. lifetime, even with only two paths per
node. Undoubtedly there will be networks that require more paths to approach the Chang et al.
lifetime, but our experience suggests that two paths allow routes with very good lifetimes to be
found.

Network robustness to link failure is quantified by the network fragility, which measures the
maximum expected data loss in the complete network if a link fails. This measure incorporates
the probabilities of individual links failing. Initially, in the absence of any prior information these
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probabilities may be set equal, but during network operation links may be monitored to better es-
timate these probabilities. With these on hand, the optimisation may be repeated to minimise the
fragility. In the case of protracted link failure, we have shown elsewhere [6] that re-optimisation
of the routing using the present solution as a base can cope with dynamic conditions.

Evolutionary algorithms are an effective way to obtain good solutions to combinatorial opti-
misation problems. Efficient optimisation for this problem was obtained by two measures. First,
the space of possible solutions was pruned to limit the search to routes likely to have good lifetime
and/or robustness. Secondly, we showed how to find the optimal division of traffic between the
paths from each node by solving a linear program for either lifetime or fragility. The resulting hy-
brid algorithm is efficient because the need to use a further, relatively slow, evolutionary process
to find the optimal division of traffic is obviated.

We note that it is straightforward to extend the two-objective algorithm presented here to
three or more objectives. For instance, if there is a group of nodes whose lifetime should be given
priority because they are in particularly inaccessible locations, then the minimum lifetime within
this group may be treated as an additional third objective [40]. Also, objectives describing other
desirable network properties, such as latency, could also be optimised.

This work has used linear models for the batteries, which is a good approximation. How-
ever, close to the end of life and under intermittent loads batteries may be display nonlinear
behaviour. Future work will include modelling the uncertainties introduced by battery nonlinear-
ities together with uncertainties introduced by lack of information about link failure probabilities
in order to allow for more robust optimisation of WSNs under these uncertainties.
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Appendix A. Exploiting Intermediate Time Shares

The evolutionary approach discussed in this paper is capable of generating a wide range of
solutions representing varying degrees of trade-offs between network lifetime and robustness.
During the evolutionary process, a set of routes R is proposed through the evolutionary mecha-
nism, and then the optimal time shares TL(R) and TF (R) maximising the network lifetime and
robustness respectively are located by solving the LPs (7) and (14) (step 6 in Algorithm 1 ). How-
ever, for any given R, there is a continuum of time shares T which optimally trade-off between
network lifetime and robustness for that particular R. These intermediate time shares between
the extremal solutions are used during the evolutionary search. In this appendix, we describe
how these intermediate time shares may be used to improve approximation to the Pareto front.

The optimal trade-off front is a result of solving a bi-objective linear program (BOLP) [51]:

min
T

L
′∗(T ,R) (A.1)

min
T

F ∗(T ,R) (A.2)

subject to the constraints described in (7b), (14b), (14c), and (14d). Since we wish to find the
Pareto optimal time shares for a given R, for notational simplicity from now on we suppress the
dependence of these objectives onR.

The BOLP may be expressed as a weighted sum LP to minimise over all time shares T :

hλ(T ) = λL
′∗(T ) + (1− λ)F ∗(T ), (A.3)

21



with the same constraints, where λ ∈ [0, 1] controls the weight associated with each objective, and
thus represents its relative importance. The Pareto optimal time shares can be found by solving
the weighted sum LP for sufficiently many λ.

In fact, Ehrgott showed that the front is a convex polygon, and thus may be described entirely
in terms of the vertices and relevant λs (Figure A.7) [51]. Exploiting this convexity property,
he describes a bi-objective simplex method to exactly locate the λs for the vertices on the front.
However, the number of vertices on the front is not known a priori. Also there may be many
vertices depending on the complexity of the problem. Hence incorporating the intermediate time
shares from all the vertices, during or post evolution, may be computationally expensive. We
therefore elect to locate a few solutions evenly spaced between the minimum inverse network
lifetime L

′∗(T ) and the minimum fragility F ∗(T ) following the evolutionary search.

O = (F ∗(TF ), L
′∗(TL))

L
′∗(T )

F ∗(T )

λ = 1
(F ∗(TL), L

′∗(TL))

λ = 0
(F ∗(TF ), L

′∗(TF )))

θ

λ

∆F ∗

∆L
′∗

Figure A.7: An illustration of the optimal Pareto front for a given routing scheme R, obtained by solving the BOLP in
(A.3). The front is a convex polygon that is completely defined by the vertices (solid dots). The extremal vertex and
the associated time share TL for inverse network lifetime can be achieved by setting λ = 1 and solving the BOLP (the
BOLP reduces to the LP in (7)). Similarly, TF for optimal fragility can be obtained with λ = 0. Given a target angle θ,
we use a bisection algorithm to locate a solution on the BOLP front together with a λ corresponding to θ.

Algorithm 2 Bisection search for target angle, θ.
Inputs
R : A D-path routing scheme
θ : Target angle corresponding to a particular weight (λ)
δθ : Tolerance for angle
O : Reference point (F ∗o , L

′∗
o ) = (F ∗(TF ), L

′∗(TL))

Steps
1: λa ← 0
2: λb ← 1
3: repeat
4: λ′ ← λa+λb

2
5: T ′ = argminT hλ′(T ) . Solve weighted sum BOLP for T with λ′ (A.3)
6: F̂ ∗, L̂′∗ ← Normalise(F ∗(T ′), L′∗(T ′))

7: θ′ = arctan

(
F ∗o−F̂ ∗

L′∗o −L̂
′∗

)
8: if θ′ < θ − δθ : λ0 ← λ′

9: else λ1 ← λ′

10: until |θ − θ′| ≤ δθ
11: return T ′ . Time shares pertinent to the target angle
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Solving the BOLP (A.3) for evenly spaced λ ∈ [0, 1] does not usually result in an even cov-
erage of the BOLP Pareto front [50]. To locate evenly spaced solution we normalise the objec-
tives so that the sides of a triangle: (F ∗(TL), L

′∗(TL))–(F ∗(TF ), L
′∗(TL)) and (F ∗(TF ), L

′∗(TL))–
(F ∗(TF ), L

′∗(TF )) have equal length (see Figure A.7). Then we choose evenly spaced target angles
θ ∈ [0, π2 ] and use a bisection algorithm to simultaneously find the λ corresponding to the target
angle and the solution of the BOLP. The bisection algorithm is described in Algorithm 2.

In order to augment the estimated Pareto set, A, we apply this method for eachR ∈ A in turn,
and add each BOLP solution toA, retaining only the non-dominated solutions. ThusA represents
the final approximation of the Pareto set for all routing schemes and associated time shares.
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