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Abstract

Macrophages are present in healthy oral mucosa and their numbers increase dramatically during disease. They can exhibit a diverse range of
phenotypes characterised as a functional spectrum from pro-inflammatory to anti-inflammatory (regulatory) subsets. This review illustrates
the role of these subsets in the oral inflammatory disease lichen planus, and the immunosuppressive disease oral squamous cell carcinoma
(SCC). We conclude that the role of macrophages in driving progression in oral disease identifies them as potential therapeutic targets for a
range of oral pathologies.
© 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
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Introduction

The oral cavity is a non-sterile, dirty environment that con-
tains millions of foreign antigens from sources that are
harmless (food and commensal micro-organisms), or poten-
tially detrimental (pathogenic micro-organisms) to the host.
Host tissues must therefore be segregated from the oral
cavity by the oral mucosa, which consists of two layers.
Stratified squamous epithelium acts as a barrier to separate
the host tissues from the environment of the oral cavity,
and the lamina propria lies beneath the epithelial layer
and contains a collection of immune cells (macrophages,
dendritic cells, B cells, and T cells) that either initiate a
response to pathogenic micro-organisms, or induce a state
of immune non-responsiveness (tolerance).1–3 Induction and
maintenance of tolerance is essential to avoid inappropri-
ate reactions to food, and to commensal micro-organisms
that benefit the host. The choice between immune activa-
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tion and induction of tolerance depends on the nature of the
antigen and the context by which it is presented by antigen-
presenting cells to cells of the adaptive immune system (T
cells). Two major antigen-presenting cells predominate in
the oral mucosa: dendritic cells and macrophages. Dendritic
cells can taste antigen in the oral cavity by extending their
dendrites between the epithelial cells into the lumen.4 An
immune response is elicited if the antigen-presenting cells
present antigen to the T cells in the presence of co-stimulatory
molecules (B7-1, B7-2).5 Conversely, presentation of antigen
in the absence of such molecules, or through the ligation of
inhibitory receptors expressed on T cells – for example, cyto-
toxic T-lymphocyte antigen 4 (CTLA-4), can induce a state
of tolerance.6 Unlike dendritic cells that move in and out
of the oral mucosa, macrophages remain within it, and can
exhibit an array of diverse functions that depend on factors
encountered in their microenvironment. Their distinct effec-
tor phenotypes can be considered as a spectrum ranging from
pro-inflammatory or host defence (M1), to anti-inflammatory
or regulatory (M2).7 The relative balance of macrophage sub-
sets is likely to influence disease; a disruption in favour of M1
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macrophages (inflammation) could exacerbate oral inflam-
matory disorders, whereas a predominance in M2 subsets
(immunosuppression) will favour the progression of cancers.
Macrophages increase in number in oral disease, so they
could have a key role in progression.8,9 This review focuses
on the role of macrophage subsets in driving inflammatory
oral diseases and oral cancers, and specifically investigates
their role in oral lichen planus and oral squamous cell carci-
noma (SCC).

The macrophage

Macrophages are phagocytic cells, most commonly known
for forming the first line of defence against pathogens. They
are derived from blood monocytes, which are recruited into
the tissues by chemokine signals such as monocyte chemo-
tactic protein-1 (MCP-1).10 On delivery to target tissues,
they differentiate into tissue macrophages, which protect
against potential invasion, or fight against an existing infec-
tion. Macrophages have an array of important functions; they
recognise and kill pathogens, initiate and resolve inflamma-
tion, and heal and prime the adaptive immune system. Their
function therefore is essential for the survival of the host
(Fig. 1). During infection they can engulf pathogens by a
process known as phagocytosis and can subsequently kill
the pathogen through direct attack by reactive oxygen and
nitrogen species, and non-oxidative mechanisms that include
exclusion of nutrients, and lowered pH and digestive enzymes
such as lysozymes. Macrophages also instruct cells of the
adaptive immune system to activate and prime the T cells
by presenting fragments of the pathogen (in the presence
of co-stimulatory molecules and differentiating cytokines),
which initiates a memory response designed specifically for
their clearance. Of equal importance is the role macrophages
have in halting the immune response after pathogens have
been cleared. They produce the anti-inflammatory cytokines
interleukin-10 (IL-10) and transforming growth factor-�
(TGF-�), which dampen down an inflammatory episode by
downregulation of pro-inflammatory cytokines and antigens,
and through the induction of regulatory T cells that sup-
press antigen-presenting cells and T cell effector responses.
They also aid tissue regeneration after inflammatory dam-
age through the production of matrix metalloproteinases
(MMPs) and their inhibitors, TIMPs (tissue inhibitors of met-
alloproteinases) that remodel tissue. This diverse array of
macrophage effector functions has prompted the classifica-
tion of distinct subsets along a phenotypic spectrum defined
by their effector functions; pro-inflammatory or host defence
(M1) to anti-inflammatory or regulatory (M2).11,12

M1 macrophages develop in an inflammatory setting;
interferon gamma (IFN-�) with microbial products– for
example, lipopolysaccharide, or differentiation factors such
as granulocyte macrophage colony-stimulating factor (GM-
CSF). They are characterised as IL-12HIGH, IL-23HIGH, and
IL-10LOW, and produce high levels of pro-inflammatory

cytokines such as tumour necrosis factor-� (TNF-�) and
chemokines (IL-8 – neutrophil recruitment, and MCP-1 –
monocyte recruitment).13–15 M1 macrophages have potent
antimicrobial potential through the generation of reac-
tive nitrogen species by the induction of inducible nitric
oxide synthase and by increased production of reactive
oxygen species.16 Conversely, macrophages exposed to an
immunosuppressive or anti-inflammatory environment (IL-4
and IL-13 immune complexes; IL-10 macrophage colony-
stimulating factor (M-CSF) or glucocorticoids, or both) adopt
an anti-inflammatory or regulatory M2 phenotype.7,13,17,18

They are predominantly anti-inflammatory through their
secretion of anti-inflammatory cytokines such as IL-10,
TGF-�, and IL-1 receptor antagonist (IL-1Ra), and are char-
acterised as IL-12LOW, IL-23LOW, and IL-10HIGH.14 M2
macrophages express lower antimicrobial activity than M1
macrophages, but express higher levels of scavenger recep-
tors such as mannose receptors, which correlates with their
role in tissue repair, homeostasis, and clearance of cell
debris.12

To induce a state of tolerance the balance of macrophage
subsets in the lamina propria of healthy oral mucosa is likely
to be tipped in favour of an M2 phenotype. As disruption
to this balance can lead to an inappropriate or exaggerated
response to particular stimuli, macrophages can potentially
aid the progression of inflammatory and immunosuppres-
sive oral diseases, and are therefore promising candidates
for cell-based therapeutic targets. This review focuses on
the role of pro-inflammatory M1 macrophages in driving the
inflammatory disease oral lichen planus, and on the role of
regulatory M2 macrophages in favouring progression in oral
SCC (Fig. 2).

Oral lichen planus

M1 macrophages can exacerbate chronic oral inflamma-
tory diseases such as oral lichen planus, which presents
clinically as white striations, with papules or plaques, or
both, that principally involve the buccal mucosa, tongue,
and gingiva.19 Histologically, it is characterised by a dense
subepithelial lymphocytic infiltrate, with disruption of the
basal membrane,20 and is predominantly mediated by T cells.
The interplay between macrophages and T cells empha-
sises the importance of macrophages in the progression
of the disease. Infiltrating monocytes recruited into the
lesion develop a pro-inflammatory M1 phenotype because
of the high levels of GM-CSF, TNF-�, and IFN-� produced
at the site.21,22 M1 macrophages can aid progression by
three main mechanisms: initiation of inflammation, activa-
tion and priming of T cells, and direct destruction of the
basal membrane. They can exacerbate inflammation through
the production of pro-inflammatory cytokines (TNF-�, and
IL-1�), which can upregulate cell adhesion molecules on
endothelial and keratinocyte surfaces and induce chemokine
expression (RANTES (regulated upon activation, normal T
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Fig. 1. Macrophages are functionally diverse, and mediate several important processes. Depending on activation and differentiation factors encountered in
their microenvironment, they will express a pro-inflammatory phenotype (red), which has a predominant role in host defence (phagocytosis, microbial killing,
inflammation, cell recruitment, antigen presentation, and priming of T cells), or an anti-inflammatory or regulatory phenotype (blue), which has a chief role
in regulatory or tissue reparative mechanisms involved in homeostasis (phagocytose cellular debris, anti-inflammatory cytokine secretion, tissue repair, cell
recruitment, and antigen presentation to induce tolerance).

expressed and secreted) for T cells; MCP-1 for monocytes)
by oral keratinocytes, which results in increased recruit-
ment of inflammatory cells into the lesion.21,23 At the site
macrophages can activate antigen-specific T cells (antigen
unknown in oral lichen planus) and influence the polarisation
of T cells through the secretion of differentiation cytokines
(IL-12 → Th1 or IL-4, IL-5 → Th2).24 T cells in the dis-
ease have been found to secrete IFN-�,25 which is typical
of Th1 subsets, and is indicative of IL-12 production by
the macrophages in oral lichen planus. IFN-� and IL-2 are
cytokines produced by activated Th1 cells, and they function

to permit the full activation of CD8+ cytotoxic T cells, which
are hypothesised to kill basal keratinocytes.26 IFN-� can also
feed back and activate the M1 macrophages to produce TNF-
� which can directly initiate basal keratinocyte apoptosis, and
indirectly increase the rate of destruction of the basal mem-
brane through the upregulation of MMP-9 from lesional T
cells.27 MMP-9 cleaves type IV collagen causing the mem-
brane to be destroyed and the subsequent loss of attachment of
basal keratinocytes, which potentially results in keratinocyte
apoptosis and further damage.19 Macrophages are distributed
close to the damaged basal layer and can therefore contribute

Fig. 2. The role of macrophages in oral disease. Macrophages display a diverse array of functions represented as a phenotypic spectrum from pro-inflammatory
M1 to anti-inflammatory or regulatory M2 subsets. They can be activated to give an exaggerated or inappropriate response that can perpetuate oral disease. M1
macrophages can aid the progression of oral lichen planus and potentially induce malignant transformation. Conversely, M2 macrophages aid immunosuppressive
disease such as oral squamous cell carcinoma (SCC).
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to the destruction of the basal membrane.28 There seems to
be a vicious cycle of perpetuating inflammation and damage
to the basal membrane, as this destruction can further ini-
tiate inflammation through the release of danger-associated
molecular patterns (DAMPs).29 M1 macrophages can there-
fore aid the progression of lichen planus by activating T cells
and exacerbating inflammation at the site.

Malignant transformation

A link between inflammation and cancer has been known for
decades. As a chronic inflammatory disease, lichen planus
has been defined as a premalignant lesion by the World Health
Organization, although there is controversy regarding the rate
of transformation.30 M1 macrophages have the ability to aid
initiation of the transformation process, and M1 cells produce
reactive oxygen and nitrogen species (superoxide, hydrogen
peroxide). Although this is beneficial in the short term, these
reactive species have mutagenic capabilities because of their
cytotoxicity to many pathogens, and in chronic inflammation
(as in lichen planus) they can potentially cause the disease
to progress and epithelial cells to transform. Reactive oxy-
gen species can directly oxidise DNA, while reactive nitrogen
species can cause nitration and deamination reactions of DNA
bases that lead to changes in the DNA, and increase the rate
of mutation.31 Pro-inflammatory cytokines (TNF-�, and IL-
1�) produced by M1 macrophages can also activate specific
signal transduction pathways that can affect the expression of
genes that control cellular processes such as proliferation and
apoptosis.32 Nuclear factor �B (NF�B) is a major transcrip-
tion factor that is activated and is a link between inflammation
and cancer.33 It can promote oncogenic cell transformation
by upregulating the expression of anti-apoptotic proteins
(X-linked inhibitor of apoptosis protein (XIAP), and TNFR-
associated factor 1 (TRAF-1), which increases cell survival),
cell cycle mediators (cyclin D, which increases proliferation),
and angiogenic factors (vascular endothelial growth factor
(VEGF), which forms new blood vessels to supply additional
nutrients), so tipping the balance in favour of cell proliferation
and survival.34 The M1 macrophage phenotype can therefore
aid the malignant transformation of cells in chronic inflam-
matory conditions such as lichen planus, and result in oral
cancer.

Oral squamous cell carcinoma

Oral SCC presents a serious public health issue and consti-
tutes over 90% of all malignancies of the oral cavity, and
holds the eighth position in the ranking of cancer incidence
worldwide.35 Leukocyte infiltration (monocytes, neutrophils,
eosinophils, lymphocytes) is a characteristic of oral SCC
and, from knowledge of other solid tumours, can account
for around half of the tumour mass.8,36–38 Macrophages

constitute a substantial portion of these leukocytes and are
termed tumour-associated macrophages (TAMs). Monocytes
are recruited to the tumour site by monocyte chemotactic fac-
tors such as MCP-1, which is produced by head and neck
SCCs and their associated TAMs; the level of MCP-1 cor-
relates with the amount of infiltration by the TAMs.39 On
migration into the tissues the monocytes differentiate into
TAMs in response to tumour-derived factors. The phenotype
of TAMs varies with the status of tumour development; M1
macrophages may aid initiation, whereas M2 cells, dictated
by the ability of cancer cells to secrete M2 priming fac-
tors such as M-CSF and IL-10, can aid progression in the
advanced stages.37,40

Numerous studies over the past few decades have set
out to understand how TAMs can aid cancer progression.
Mantovani et al. showed that they have the potential to
carry out antitumour responses in vitro, but in the tumour
they execute progression over resolution.41 These findings
indicate that interaction between tumour cells and TAMs
can dictate macrophage function, and they emphasise the
functional plasticity of the macrophage. This idea can be
supported by observing differences in macrophage func-
tion with respect to location in the tumour cells. TAMs in
head and neck SCC are present in the supporting connec-
tive tissue known as the tumour stroma, and in between
the malignant epithelial cells. The macrophages in imme-
diate proximity to the malignant cells have been shown to
possess fewer lysosomes and to have a defective phagosome-
lysosomal apparatus (required to present tumour antigens
to T cells) compared with those in the tumour stroma.
The tumour cells therefore communicate with the TAMs
to suppress their ability to present tumour antigens, evad-
ing recognition by T cells and enabling survival of the
tumour cells. This shows that the interaction between
tumour cells and TAMs is important with regards to TAM
function.42

There is a dynamic interaction between oral SCC and
TAM-derived factors that enable survival, growth, and
invasion of tumour. TAMs can promote growth and sur-
vival of a tumour through their production of growth
factors that include epidermal growth factor (EGF), fibro-
blast growth factor-1 (FGF-1), and platelet-derived growth
factor-1 (PDGF-1), which can sustain activation of NF�B
in tumour cells.43 Angiogenic factors such as VEGF and
chemotactic factors such as IL-8 are produced by the
TAMs and oral SCC, and act on vascular endothelial cells
to induce formation of new blood vessels to enable sus-
tained growth and potential metastasis of the tumour cells.44

IL-8 can also induce the production of MMPs which
break down the extracellular matrix to aid invasion of the
tumour.45,46 In addition to assisting with progression in oral
SCC, TAMs can be used by the tumour cells to suppress
antitumour responses. Oral SCC and TAMs can produce
immunosuppressive cytokines such as IL-10,47 which can
suppress the adaptive immune responses needed for effi-
cient destruction of the tumour cell by inhibiting production
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Fig. 3. Macrophages as potential therapeutic targets. M2 macrophages have
the regulatory capacity to dampen down ( ) chronic inflammation in
oral lichen planus and prevent potential malignant transformation, and M1
macrophages can create the antitumoural environment required to resolve
( ) oral squamous cell carcinoma (SCC).

of pro-inflammatory cytokines such as TNF-�, IL-1�, and
IL-12 (inhibits the cell-mediated response required to kill
the transformed cells) by downregulating major histocom-
patibility complex (MHC) I and II molecules (suppresses
presentation of tumour antigen, so avoiding recognition),
and by upregulating inhibitory co-stimulatory molecules
such as B7-H4, which prevent the activation of adaptive
immune cells that are required for an efficient antitumour
response.48–51 In addition, IL-10 and TGF-� can induce the
formation of regulatory T cells, which further inhibit the
adaptive antitumour response at the tumour site.52 The pres-
ence of TAMs is therefore very important for progression
in oral SCC, and their importance in this type of cancer
has been shown by the relation between the number of
TAMs and five-year survival; a high density results in a poor
prognosis.8,39

Macrophages as future therapeutic targets

Macrophages clearly have an important role in driving
inflammatory disease and cancer in the oral cavity, and the
diverse spectrum of activities they display in response to par-
ticular factors in their microenvironment suggest that they
could be potential therapeutic targets for a number of these
conditions. If the macrophage phenotype could be manip-
ulated from M1 to M2 and vice versa, there could be the
potential to correct a range of oral inflammatory disorders
such as lichen planus, recurrent aphthous stomatitis, and
leukoplakia, and enable resolution of oral cancers such as
SCC (Fig. 3). This could be achieved by the manipulation
of macrophage plasticity, activation states, tolerance, or apo-
ptosis, and a few studies have started investigations using
other cancer models with some promising results. Target-
ing macrophages in the context of oral disease is therefore
a prospective area for future research and development in
cell-based therapeutic interventions that are aimed at redirect-

ing macrophage effector functions, and could benefit patients
with inflammatory disease and cancer.53
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