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ABSTRACT: Mucosal tolerance is central to efficient
gastrointestinal tract function, tolerating food and
commensal bacteria, whilst maintaining immune
responsiveness to pathogens. Mucosal macrophages play a
pivotal role in tolerance; whereas in inflammatory bowel
disease, dysfunctional macrophages lead to tolerance
breakdown, whereby commensals perpetuate inflammation.
Macrophage subsets however, determine effector function:
MIls are pro-inflammatory whereas M2s are anti-
inflammatory/regulatory. In addition to commensal
bacteria, butyrate, a short chain fatty acid probiotic
metabolite, may also modulate macrophage-mediated
tolerance. The human monocytic cell line, THP-1, was used
to investigate butyrate immunoregulation in M1 and M2
macrophages, generated by monocyte differentiation in the
presence of PMA or vitamin D, respectively. Butyrate
modulation of LPS- and PGN-induced TNFo, IL-1B3, IL-
10 and NFkB was measured by sandwich ELISA and
reporter gene assay, respectively. Data indicated butyrate
suppresses LPS- and PGN-induced monocyte and M2
production of IL-1f3 and TNFo, MI-induced TNFa and
IL-10 but failed to modulate MI-induced IL-1p.
Additionally, butyrate augmented M2 IL-10 production,
LPS- and PGN-stimulated M1 and LPS-induced M2 NFkB
activity but failed to regulate PGN-induced M2 NF-kB. In
conclusion, butyrate differentially regulates macrophage
cytokine production and NFkB activation, which is subset-
dependent and suggestive of a cautionary approach to
butyrate use in treatment of mucosal inflammation.
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INTRODUCTION

The immune system is capable of mounting localised
inflammatory responses to gut pathogens through the
recognition of conserved pathogen associated molecular
patterns (PAMPs) by pattern recognition receptors (PRRs).
The Toll-Like Receptors (TLRs) are capable of recognising
broadly expressed bacterial PAMPs such as lipopolysaccharide
(LPS) and peptidoglycan (PGN); commensal bacteria that are
beneficial to the gut, however, may also express some of these
PAMPs. Commensal bacteria are involved in gut mucosal
development and function (Rhee et al., 2004). Inappropriate
recognition of PAMPs expressed on commensals, by their
cognate PRRs, however, could trigger a damaging
inflammatory immune response.  Thus, it is vital that
recognition of bacterial PAMPs is tightly regulated that allows
the host to tolerate commensal organisms yet maintain
responsiveness to pathogens. The balance between luminal
contents such as commensal and pathogenic bacteria, present
in the intestinal microflora, and exposure of the mucosa to
food-derived antigens is vital for the decision between mucosal
tolerance (immune non-responsiveness) and immunity (Artis,
2008). Integral to this tolerance/activation decision and
prevention of inappropriate immune responses to commensals,
the gastrointestinal tract (GIT) has developed subtle
modifications (Shenk and Mueller, 2007). This responsiveness
to bacteria is regulated at many levels in cells of the gut
mucosa, which include TLR expression, endogenous signal
inhibitor expression, compartmentalisation of TLR expression
and up-regulation of expression and activity upon dangerous
insult.

Probiotic bacteria have long since been established to provide
a beneficial effect on gut mucosal function. In addition to
functions that facilitate epithelial cell growth, turnover and
the production of mucus and anti-microbial peptides,
probiotics and their metabolites have been described to
exhibit an immuno-modulatory effect on the gut mucosa. One
such group of probiotic metabolites includes the volatile short-
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chain fatty acids (SCFA’s) acetic, proprionic and butyric acids
that predominate in the gastrointestinal tract (Campos et al.,
2003). These SCFA’s are produced by the fermentation of
dietary fibre by anaerobic bacteria. The levels produced of
each SCFA is dependent on location in the gut, bacterial
population dynamics and diet; however, typical concentrations
have been suggested to approximate 10mM acetate, 1.5mM
butyrate and 2mM propionate (Scheppach et al., 1995;
Cavaglieri et al., 2003). Butyrate has been described to play
an important role in maintaining a healthy gut mucosa
(Simpson et al., 2000), predominantly utilised by gut epithelial
cells as a primary energy source, with a small amount passing
to underlying tissue and into the bloodstream (Yin et al., 2001;
Zapolska-Downar et al., 2004).

Butyrate exerts a variety of effects on gut epithelial cells and
immune cells, essential for mucosal homeostasis thus allowing
the host to tolerate food antigens and commensal microbiota
whereas, at the same time, maintaining the capacity to initiate
protective immune responses to pathogenic organisms.
Butyrate plays an important role in mucosal barrier function;
maintaining a healthy gut mucosa and modulating intestinal
epithelial cell function by regulating differentiation,
proliferation and enhancing tissue turnover, thus reducing
the risk of inflammation and cancer (Brouns et al., 2002;
Bocker et al., 2003). Additional observations have described
butyrate to upregulate the anti-microbial peptide, LL-37
(Cathelicidin) expression in epithelial cells (Schwab et al.,
2007) and expression of mucins (Willemsen et al., 2003).
Impaired butyrate supply however, such as is the case in
inflammatory bowel disease (IBD), where patients have an
impaired ability to oxidise and utilise butyrate, underlies
epithelial cell atrophy and an ensuing dysregulated immunity
as a consequence of antigen overload in the sub-epithelial tissue
(Roediger, 1980).

With respect to modulation of immune cell function,
butyrate potently modulates both cells of the innate and
adaptive immune system. It exerts an effect on T cell responses
by suppressing antigen presentation through down-regulation
of co-stimulatory molecules (B7-1), adhesion molecules
(ICAM-1, LFA-3) (Bohmig et al., 1997), suppression of T
cell alloresponses, resulting in prolonged allograft survival
(Bohmig, et al., 1999) and facilitates a shift away from Th -
dominant responses i.e. from pro-inflammatory to regulatory,
anti-inflammatory responses (Cavaglieri et al., 2003). From
current understanding of IBD, this would suggest a beneficial
role for butyrate in the treatment of a Th /Th -driven
pathology such as Crohn’s disease (CD) but may be counter-
intuitive with respects to the treatment of ulcerative colitis
(UC), a Th,-driven pathology. Butyrate effects differ with
cell type, differentiation status, cytokine and inflammatory
environment (Miller et al., 2005). In innate immunity,
butyrate would appear to be an anti-inflammatory modulator,
suppressing monocyte effector function by the inhibition of
expression of pro-inflammatory cytokines such as TNFow,

IL1B and IL-12 (p40 and p70) with a corresponding up-

regulation of the anti-inflammatory/regulatory cytokine, IL-
10 (Saemann et al., 2000; Mahida et al., 2004). In contrast,
however, upon co-culture of epithelial cells overlying
monocytes; in the presence of an intact epithelial barrier, no
cytokines could be induced; in the absence of this barrier,
butyrate induced TNFa production and suppressed IL-10 (van
Nuenen et al., 2005). Thus, it is suggestive that butyrate
modulates both pro-inflammatory and anti-inflammatory/
regulatory effects. In addition, with respect to macrophages,
butyrate has been suggested to alter macrophage
differentiation, down-regulating differentiation markers and
reducing phagocytic capacity (Millard et al., 2002). Butyrate
both inhibited macrophage inflammatory mediators (TNFao,
IL-6, CCL2, NO) and NFkB translocation (Soderberg et al.,
2004); it was also found to down-regulate expression of TLR4,
the LPS receptor, which indirectly impacts on NFkB activation
and inflammatory cytokine production (Huuskonen et al.,
2004).

The use of a butyrate enema in a rat model of induced colitis
was observed to suppress inflammation and stimulate mucosal
repair (Butzner et al., 1996), creating the rationale for this
SCFA to be proposed for the treatment of IBD in humans
(Bohmig et al., 1997; Venkatraman et al., 2003). With respect
to the development of butyrate as an anti-inflammatory
therapeutic, CD lamina propria mononuclear cell (MNCs)
production of TNFa was suppressed as was pro-inflammatory
cytokine production and nuclear translocation of the pro-
inflammatory transcription factor, NFkB, induced by LPS
activation of peripheral blood MNCs (Segain et al., 2000).
Oral administration of butyrate to patients with active CD
resulted in remission in 53% of patients with a corresponding
suppression of IL-1P, NFkB and IL-12 (Di Sabatino et al.,
2005). Surprisingly, butyrate administration to UC patients
has produced encouraging results, suppressing mucosal
inflammation by inhibiting NFkB activity in lamina propria
macrophages (Breuer et al., 1997; Zapolska-Downar et al.,
2004). Butyrate suppresses both activation of the
inflammatory transcription factor, NFkB and binding
efficiency to promoter binding sequences (Diakos et al., 2006;
Huuskonen et al., 2004). In both monocyte-derived
macrophages and gut lamina propria macrophages, this
suppression of NFkB activity was shown to be as a consequence
of stabilisation of the inhibitors, IkBat and IkBf (Segain, 2000;
Park et al., 2007; Zapolska-Downar et al., 2004; Yin et al.,
2001). Thus, NFkB plays a central role in regulating the
expression of a range of cytokines involved in gut inflammation
(Neurath et al., 1998). Indeed, NFkB has been shown to be
activated at inflammatory sites of patients with IBD (Segain
etal., 2000). It is widely accepted that the anti-inflammatory
effects of butyrate, that down-regulate pro-inflammatory
mediators, are mediated by the suppression of IBD mucosal
macrophages (Venkatranan et al., 2003).

Gut mucosal macrophages are central to deciding the fate
of immune responsiveness to luminal antigens and bacteria.
The nature of the response, i.e. activation or tolerance is



determined by the cells and molecules present which are
themselves initiated by their local environment. Whereas most
macrophages express a wide range of PRRs, intestinal
macrophages are both functionally and phenotypically
different from blood-derived monocytes. In the healthy gut,
which is tolerant to luminal contents, intestinal lamina propria
macrophages express MHC 1II and display a regulatory/anti-
inflammatory phenotype characterised by phagocytic
function, scavenger receptor expression (CD13, CD36), anti-
inflammatory/regulatory cytokine/cytokine receptor
expression (TGFf, IL-10, TGFBR I and II), reduced
responsiveness to PAMPs (low or absent expression of CD14
and TLRs) and fail to express integrin receptors, chemokine
receptors, CD25, TREM-1, CD40, CD80, CD86 and
CD89; this phenotype resembles that of the M2 macrophage
subset (Smith et al., 2001; Smythies, 2005; Platt and Mowat,
2008) which are important in immune regulation and
resolution of inflammation, during remission of IBD, by
secreting anti-inflammatory cytokines (Mahida, 2000).
Inappropriate presentation of luminal contents such as is
observed in pathogenic insult or dysfunctional mucosal barrier
results in a breakdown in tolerance and localised immune
activation/inflammation. Breakdown in tolerance to
commensal bacteria is suggested to contribute to the
pathogenesis of Crohn’s disease. In such inflammatory
pathology, the lamina propria macrophages are characterised
as CDI14", TREM-1*, display an increased TLR
responsiveness and expression of the pro-inflammatory
cytokines IL-1f, IL-8, IL-12 and TNFo (Zareie et al., 2001).
This phenotype resembles that of the M1 macrophage subset.
Thus, the functional phenotype of macrophages present in
the lamina propria is central in governing immune fate as
tolerising or immune activatory/pro-inflammatory.

Butyrate exerts a suppressive effect on IL-12 which will
subsequently decrease Th, production of the macrophage-
activating cytokine, IFNY, and consequently, pro-
inflammatory cytokine production (Beck and Wallace, 1997).
In line with this, butyrate also suppresses inflammation by
inhibiting IFNY signalling. IFNYyis upregulated in the mucosa
of IBD patients (Stallmach et al., 1998) and is well established
to be integral to activation and effector function of pro-
inflammatory M1-like macrophages through the activation
of STAT-1 (Klampfer et al., 2003). Butyrate may suppress
STAT-1 activation through inhibiting the phosphorylation of
its upstream activator, JAK2. Such a mechanism is thought
to be important for butyrate exerting anti-inflammatory effects
in IBD (Klampfer et al., 2003). Immunomodulation of IFNy
production and signalling, pro- and anti-inflammatory
cytokines, TLR expression and monocyte differentiation by
butyrate, thus directly affects mucosal macrophage functional
phenotype. Differentiation status and effector function of
gut mucosal macrophages is dependent on environmental
factors encountered. As such, gut mucosal macrophages can
be primed towards an anti-inflammatory/regulatory
phenotype (M2) in normal healthy mucosa or towards a more
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pro-inflammatory phenotype (M1) during pathological insults
upon barrier function being compromised. This dichotomy
in macrophage effector phenotype partially explains the
differential regulation of Th-driven responses; M1 cells effect
either a Th, or a Th _-driven response whereas M2 cells effect
a Th -driven response (Mills et al., 2000).

With the development of butyrate administration to IBD
sufferers, the immunopathological mechanisms driving CD
and UC are contrasting. Taken into consideration that these
responses may be driven by two divergent functional subsets
of macrophage present in the gut mucosa, it is imperative to
study the functional responses to butyrate treatment. Thus,
the aim of this study was to investigate the effects of the short
chain fatty acid, butyrate, on regulation of inflammatory
responses induced in M1 and M2 macrophage subsets.

MATERIALS AND METHODS

Monocyte and macrophage culture

The human monocytic cell line, THP-1, was obtained from
ECACC and routinely used for this study between passages 7
and 25. THP-1 cells were maintained in RPMI-1640 medium
supplemented with 10%v/v foetal calf serum, 2mM L-
glutamine and 100Uml"! penicillin/100pug/ml streptomycin,
here on referred to as R10 medium (Lonza, Wokingham, UK).
The THP-1 NFkB reporter cell lines, THP-1Blue (CD14")
and THP-1Blue-CD14 (CD14") were maintained in R10
medium in the presence of the selection antibiotics, zeocin
(200mgml™"') only (CD14") or zeocin (200ug/ml) and
blastocidin (10pg/ml) (CD14")(Autogen Bioclear, Calne,
UK). Cells were plated out at a density of 1x10° cells/ml in
R10 medium with 1x10° cells per well in 96 flat-bottomed
well tissue culture plates (monocyte cultures). Pro-
inflammatory (M1-like) CD14" macrophages and anti-
inflammatory (M2-like) CD14" macrophages were generated
by differentiation of these monocytes in the presence of 25ng/
ml PMA for 3 days or 10nM 1,25-(OH),-vitamin D, (Sigma-
Aldrich, Poole, UK), for 7 days, respectively.

Activation of monocyte and macrophage cytokine
production

Monocytes and macrophages were stimulated by the
bacterial pathogen associated molecular patterns (PAMPs);
Ing/ml Peptidoglycan PGN (predominantly expressed in
GM+ve bacteria and detected by TLR2/6 and NOD2) and
100ng/ml LPS (predominantly expressed in GM-negative
bacteria and detected by TLR4) and cultured for 18 hours
(determined as optimal time period for expression of all the
cytokines TNFa, IL-1f and IL-10). After which, supernatants
were harvested and stored at -20°C until required for assay by
sandwich ELISA.

Regulatory effect of butyrate
Butyrate is thought to mediate its regulatory effects by
suppression of the NFkB signalling pathway. To facilitate this
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effect on intracellular signalling processes, sodium butyrate
(Bu) (Sigma-Aldrich, Poole, UK) was added in culture to final
concentrations of 0.1, 0.5, 1, 2 and 10mM as a pre-treatment
for 4 hours prior to stimulation with the bacterial PAMPs,
PGN and LPS. As a control experiment, to demonstrate a
more physiologically relevant role for butyrate, cytotoxicity
assays (MTT and trypan blue exclusion) were carried out on
both monocytes and macrophages, up to 10mM butyrate.
No significant reductions in viability were observed for the
concentrations used in this study; viability was routinely >90%.

Cytokine measurement

The pro-inflammatory cytokines; TNFo and IL-1f and
anti-inflammartory cytokine, IL-10, were analysed by sandwich
ELISA using capture and detection antibodies commercially
available from R&D Systems UK Ltd., Abingdon, UK and
BD-Pharmingen, Oxford, UK. Protocols were followed as
according to manufacturer’s instructions and compared to
standard curves, between the range of 7 to 5000pg/ml, using
the recognised international standards available from NIBSC,
Potter’s Bar, UK. Colorimetric development was measured
spectrophotometrically by an OPTIMax tuneable microplate
reader at 450nm and analysed by Softmax Pro version 2.4.1
software (Molecular Devices Corp., Sunnyvale, CA, USA).

NFkB activity measurement

NFkB activity was measured using a colorimetric reporter
gene assay for secreted embryonic alkaline phosphatase, SEAD,
associated with the stably-transfected reporter gene cell lines,
THP-1Blue (CD14") and THP-1Blue-CD14 (CD14")
(Autogen Bioclear, Calne, UK). Briefly, at the conclusion of
the experimental incubation period, supernatant was
harvested for analysis, fresh supernatant was incubated with
Quantiblue colorimetric reagent (Autogen Bioclear, Calne,
UK) at a dilution of 1:3 for 30 minutes at 37°C/5% CO.,.
After which time, colorimetric development was measured
spectrophotometrically by an OPTIMax tuneable microplate
reader at 620nm and analysed by Softmax Pro version 2.4.1
software (Molecular Devices Corp., Sunnyvale, CA, USA).
The colour development being directly proportional to the
reporter gene SEAP expression and hence NFkB activity.

Statistical analysis

Measure of statistical significance was analysed by a paired
Students’ T test. Significance was set at p<0.05, where
significant effects of butyrate compared to stimulus control
were indicated as *p<0.05, **p<0.01 and ***p<0.001. NS
denotes not significant.

RESULTS

Butyrate suppresses monocyte pro-inflammatory cytokines
Butyrate has been established to suppress peripheral blood-
derived monocyte TNFa production. This experiment was

undertaken to establish whether butyrate exerted the same
effects on the monocytic cell line, THP-1, validating it as a
useful model system to primary monocytes. Butyrate potently
suppressed both PGN and LPS-induced TNFa; PGN
response was suppressed from 1363+71pg/ml to 756+27pg
(p=0.0119) and 335+2pg/ml (p=0.0032) for 1mM and
10mM butyrate respectively. LPS response was suppressed
from 461+25pg/ml to 164+7pg/ml (p=0.0004) and 17+2pg/
ml (p=0.0004) for ImM and 10mM respectively (Fig 1a).
Butyrate was less potent at suppression of IL-1 production;
here, however, there was a differential sensitivity to suppression
that was dependent on stimulus. PGN-induced IL-1f
production displayed no significant suppression by butyrate
until used at a concentration of 10mM (control levels of
493+35pg/ml suppressed to 207+8pg/ml, p=0.0004). LPS-
induced IL-1 was more sensitive to suppression by butyrate
with significant reductions observed for all concentrations
used; from control levels of 540+24pg/ml to 477+5pg/ml
(ImM, p=0.032), 339+14pg/ml (2mM, p=0.003) and
99+5pg/ml (10mM, p=0.0007).

FIGURE 1. Butyrate suppresses monocyte pro-inflammatory
cytokines. THP-1 monocytes were stimulated by 1ug/ml PGN
(bold) or 100ng/ml LPS (unshaded) in the presence or absence
of designated concentrations of sodium butyrate (mM).
Cytokine production is expressed as the mean+SD in pg/ml
for a) TNFat and b) IL-1fB. Data displayed is representative of
triplicate samples of n=3 replicate experiments.
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differentially =~ FIGURE 2. Butyrate differentially regulates M1 and M2 macrophage pro-inflammatory

regulates M1 and M2  cytokines. M1 (a and b) and M2 (c and d) macrophages were generated by differentiating
macrophage pro-inflammatory ~ THP-1 monocytes with either 25ng/ml PMA for 3 days or 10nM 1,25-(OH), vitamin D,

cytokines

for 7 days, respectively. After which time, macrophages were stimulated by 1pg/ml PGN

Butyrate has been suggested (bold) or 100ng/ml LPS (unshaded) in the presence or absence of the designated

to have

beneficial  concentrations of sodium butyrate (mM). Cytokine production is expressed as the mean+SD

immunomodulatory effects in  in pg/ml for TNFo (a and ¢) and IL-1B (b and d). Data displayed is representative of
the gut mucosa for both  triplicate samples of n=3 replicate experiments.
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control levels of 820+37 to
50115 (p=0.0066) (Fig 2a);
2mM  butyrate further
reduced production to 364+13pg/ml (p=0.0029); data
point not shown). M2 production of TNFa was sensitive to
ImM butyrate with PGN stimulus being suppressed from
209+32pg/ml to 101+3pg/ml (p=0.0484) and LPS
suppressed from 169+42pg/ml to 95+2pg/ml, p=0.007 (Fig
2¢). There was a differential response between M1 and M2
macrophages displayed for PGN and LPS-induced IL-1b
production. M1, pro-inflammatory, macrophages displayed
no significant modulation by 1mM butyrate for PGN
(control 73+17pg/ml to 61+8pg/ml) or LPS (67+11pg/ml
to 92+14pg/ml) stimulation (Fig 2b). M2 macrophage
production of IL-1b, on the other hand, was sensitive to
modulation by butyrate; PGN stimulus was suppressed from
1872+80pg/ml to 1014+36pg/ml (p=0.0025) and LPS
stimulus from 352+18pg/ml to 205+19pg/ml (p<0.0001)
by 1mM butyrate (Fig 2d). This data clearly shows that
butyrate exerts differential effects on pro-inflammatory
cytokine production by M1 and M2 macrophages,
representative of mucosal inflammatory and mucosal anti-
inflammatory/regulatory macrophages, respectively.

Butyrate differentially regulates anti-inflammatory
cytokine, IL-10

Butyrate has been suggested to exert its anti-
inflammatory effects via a range a mechanisms. One of
these might include the augmentation of the anti-
inflammatory cytokine, IL-10. The effect of butyrate
on LPS- and PGN- stimulation on IL-10 production by
M1 and M2 macrophages was examined. Butyrate, at a
concentration of 1mM, exerted a differential effect on
IL-10 production from M1 and M2 macrophages.
Butyrate suppressed M1 production stimulated by both
PGN (reduction in stimulation control levels to 70+3%
control, p=0.1734) and LPS (reduction in stimulation
to 34+9% control levels, p=0.013). Conversely,
butyrate significantly augmented M2 macrophage IL-
10 production. LPS-induced IL-10 was augmented to
361+57 % control level, p=0.0258 whereas PGN-
induced IL-10 was augmented to 992+£269% control
stimulus levels, p=0.0293 (Fig 3). Thus, butyrate exerts
both positive and negative effects on the production of
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macrophage IL-10, dependent on macrophage subset
present.

FIGURE 3. Butyrate differentially regulates anti-inflammatory
cytokine, IL-10. M1 (unshaded) and M2 (bold) macrophages
were stimulated with 1 pg/ml PGN or 100ng/ml LPS in the
presence or absence of ImM sodium butyrate (+But). Production
of the anti-inflammatory cytokine, IL-10, is expressed as %
production of stimulus control and is representative of triplicate
samples of n=3 replicate experiments.
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Butyrate fails to suppress PAMP-induced macrophage NFkB
activation

Additionally, butyrate has also been suggested to exert an
anti-inflammatory effect by inhibiting the transcriptional
activity of the predominantly pro-inflammatory transcription
factor, NFkB. The effects of butyrate on NFkB activity have
been examined for M1 and M2 macrophages using a reporter
gene construct-transfected cell line. In no situation did
butyrate suppress NFkB activity in either M1 or M2
macrophages. Butyrate failed to modulate any NFkB activity
in the absence of PAMP-stimulation. In M1 macrophages,
butyrate augmented LPS and PGN activation of NFkB;
butyrate augmented activity in CD14" M1’s by 70%
(p<0.0001) and 52% (p=0.0006) for LPS and PGN
respectively (Fig 4a). Butyrate augmented LPS-induced
CD14" M2 NFkB activity by 108% (p=0.0003) whereas
PGN-induced activity was unchanged in CD14" M2
macrophages (p=0.243, NS) (Fig 4b). Of note, was the fact
that NFkB activation was highest in the proinflammatory
CD14" M1 macrophages and that this was unregulated upon
treatment with butyrate.

DISCUSSION

Probiotics have been extensively studied for their potential
to modulate immune function. They have been described
to modulate some of these effects either directly through
the physical interaction of these bacteria with their immune
targets or indirectly through soluble secreted proteins or
metabolites that result from fermentation of dietary

FIGURE 4. Butyrate regulation of PAMP-induced
macrophage NFkB activation is subset- and stimulus-
dependent. M1 CD14" and M2 CD14" macrophages were
generated by differentiating CD14" and CD14" THP-1-
NFkB reporter monocytes with either 25ng/ml PMA for 3
days or 10nM 1,25-(OH), vitamin D, for 7 days, respectively.
M1 (a) and M2 (b) macrophages were stimulated with 1pg/ml
PGN or 100ng/ml LPS in the presence (shaded) or absence
(bold) of 1mM sodium butyrate. NFkB reporter activity is
expressed as arbitrary absorbance units (A ) and is
representative of triplicate samples of n=3 replicate
experiments.
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components. The short chain fatty acid, butyrate, is
produced from the metabolic breakdown of dietary fibre;
this product also exhibits immunomodulatory capacity. This
study demonstrates a differential immunomodulatory
capacity for butyrate that is dependent on the macrophage
subset being modulated. Thus butyrate can effect both a
pro-inflammatory and an anti-inflammatory response
determined by the predominant macrophage subset present
in the gut mucosa.

Butyrate exhibited an anti-inflammatory
immunomodulation of monocyte pro-inflammatory cytokines;
dose-dependently suppressing PGN- and LPS-induced TNFo

and IL-1B. This observation conformed to previous studies



(Saemann etal., 2000) but extended the findings in the context
of suppression of these cytokines in response to predominantly
Gram-negative bacteria (LPS stimulus) mediated through
TLR4 and Gram positive bacteria (PGN stimulus), mediated
through NOD2 and TLR2/TLR6.

With respect to butyrate modulation of macrophages, again
other laboratories have described similar anti-inflammatory
responses; this effect has been inferred to gut mucosal
macrophages and suggested butyrate as an anti-inflammatory
therapeutic treatment for IBD (Butzner, 1996; Segain, 2000;
Di Sabatino, 2005; Park, 2007). Thus far, butyrate has
exhibited limited success in the treatment of these diseases
when used as an enema. This suggested that the macrophage
influence was not as clear as formerly expected; something
that was evident from the functional characterisation of
macrophages as pro-inflammatory (M1) or regulatory/anti-
inflammatory (M2), according to the activation stimuli or
differentiation factors encountered (Mills et al., 2000; Foey
et al., 2000; Anderson and Mosser, 2002; and reviewed in
Mosser and Edwards, 2008). This study investigated the
modulatory activity of butyrate on such macrophage subsets
and found that the immunomodulatory capacity was
determined by the differentiation of the monocyte into distinct
subsets rather than stimulation through predominant Gram
negative or Gram positive receptors, where butyrate exhibited
similar effects on macrophages irrespective of stimulus being
transduced through TLR4 or TLR2/6/NOD2. Butyrate
suppressed LPS- and PGN-induced TNFa in both M1 and
M2 macrophages whereas, IL-1p production was suppressed
in M2 macrophages but failed to be suppressed in M1
macrophages. Pro-inflammatory M1 macrophages were not
suppressed and remained inflammatory as a result of continued
production of IL-1B, a cytokine highly prominent in the
pathology of IBDs, which is counter-intuitive for developing
this SCFA as a treatment for inflammatory bowel diseases.
Additionally, butyrate has been suggested to induce/augment
the production of anti-inflammatory cytokines such as IL-10.
IL-10 suppresses both the production and bioactivity of pro-
inflammatory cytokines such as IL-1p and TNFo (Fiorentino
et al., 1991). This study both reinforced and contradicted
these findings, that butyrate induces IL-10 (Saemann et al.,
2000; Mahida et al., 2004). This anti-inflammatory effect
was again, dependant on macrophage subset being studied.
Butyrate suppressed pro-inflammatory M1 macrophage
production of IL-10 in response to both LPS and PGN
stimulation; albeit, these macrophages are very low producers
of IL-10. On the other hand, LPS- and PGN-induced anti-
inflammatory M2 macrophage production of IL-10 was
significantly augmented. Thus, this early data was suggestive
that the desired anti-inflammatory effect of butyrate was
dependant on the macrophage subsets present in the
inflammatory lesions to be treated; butyrate is highly beneficial
when M2 subset predominates but may be less beneficial in

the presence of the M1 subset; an inflammatory subset which
predominates in CD. Of interest, TNFo and IL-1B have
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long-since been established to play a role in inducing IL-10
expression in monocyte/macrophages (Foey et al., 1998).
Butyrate suppression of TNFo appeared to be independent
of IL-10 expression/activity, as butyrate regulation of TNFo
and IL-1f expression was observed at an earlier time point to
that of IL-10 expression (data not shown). In addition, if IL-1P3
and TNFo directly induced IL-10 expression, then butyrate
suppression of these pro-inflammatory cytokines would
indirectly down-regulate IL-10. Thus, it is probable that
butyrate regulates pro- and anti-inflammatory mediators
separately via distinct pathways in these distinct macrophage
subsets. Dissection of such discrete pro- and anti-inflammatory
pathways in these subsets would prove useful for the informed
development of anti-inflammatory regimens to be utilised in
the treatment of IBD.

This differential sensitivity of M1 and M2 macrophage
cytokine production to butyrate was suggestive of subtle
differences between these two macrophage subsets with respect
to reception, signalling and transportation of cytokines outside
the cell. /n vitro, our laboratory has observed that these subsets
express similar TLR profiles with respect to detection of
bacterial PAMPs (unpublished data). This was suggestive that
there was either a difference in TLR profiles upon butyrate
exposure, as butyrate has already been demonstrated to
suppress TLR expression (Canto et al., 2006), or that M1
and M2 subsets exhibited differences in the signal transduction
pathways that were utilised. It must be noted, however, that
immunomodulation by butyrate is dependent on its availability
after utilisation by epithelial cells, transport through the
epithelial barrier and expression of butyrate receptors on the
immune cells. SCFAs signal through a series of G-protein
receptors (GPRs) where butyrate is a more selective ligand
for GPR41 that is linked to IP,-gated Ca** release, ERK-1/2
activation and the inhibition of cAMP accumulation by the
coupled pertussis toxin sensitive Gi/Go protein (Brown et al.,
2003). It is probable that these macrophage subsets express
different profiles of these G-protein receptors, with profiles
favouring anti-inflammatory function being predominant in
the M2 macrophage subset.

With regards to signal transduction, butyrate is thought to
modulate NFkB activity (Segain, 2000; Soderberg, 2004;
Park, 2007). NFkB family is a group of transcription factors
consisting of several proteins including NFkB1, NFkB2, p65
(rel A), c-rel and rel B (Tak and Firestein, 2001; Bonizzi and
Karin, 2004). In its active conformation, NFkB exists as a
heterodimer of these subunits, notably the p65/p50 dimer
regulates inflammatory responses. The promoter regions of
the proinflammatory cytokines, TNFo, IL-1f, IL-6 and 1L-8
all express NFkB binding consensus sequences and have been
shown to be highly regulated by NFkB; the anti-inflammatory
cytokine, IL-10, does not possess NFkB binding consensus
sequences and its expression is NFkB-independent (Bondeson
et al., 1999). Inhibition of NFkB suppresses the expression
of these pro-inflammatory cytokine genes. It was expected
that butyrate would suppress these cytokines by inhibiting
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NEkB activity. These data did not conform to this expectation;
in fact, butyrate augmented both LPS- and PGN-induced
NFkB activity in the pro-inflammatory M1 macrophages and
LPS-induced activation in the anti-inflammatory/regulatory
M2 macrophages. Interestingly, butyrate failed to augment
PGN-induced activity in M2 cells. This lack of regulation of
butyrate to the Gram-positive bacterial PAMP may be
indicative of both the greater anti-inflammatory responsiveness
of these macrophage cells and the regulatory nature of PGN
expressed by gram-positive bacteria that include several
probiotic strains.

Of note however, is the fact that the NFkB reporter gene
assay used in this study did not discriminate between NFkB
heterodimers or homodimers. The pro-inflammatory p65/
p50 NFkB heterodimer may well have been inhibited and
replaced by another NFkB dimer by either direct regulation
or competition for binding to shared promoter sequences. In
fact, the p50/p50 homodimer of NFkB has been
demonstrated to exhibit anti-inflammatory or regulatory
capability (Ziegler-Heitbrock, 2001; Saccani et al., 2006).
Augmentation of LPS-induced NFkB activity observed in the
anti-inflammatory subset may have been reflective of this
differential NFkB subunit expression. This promoter activity
may not discriminate between different forms of NFkB, hence
the confusion in the real lack of discrimination of these NFkB
data between M1 and M2 macrophages. Future
investigations studying the effects of butyrate on NFkB will
have to focus on subunit expression and utilisation in these
distinct macrophage subsets and how they show differential
sensitivity to regulation by the probiotic metabolite, butyrate.
Finally, these NFkB data can also be suggestive that butyrate
effects on macrophage cytokine expression are independent
of NFkB activity. This does not necessarily conform to
established studies however, describing butyrate suppression
of NFkB but may be a valid conclusion when considering the
differential pathways employed in specific effector functions
of the macrophage subsets investigated in this study.

In conclusion, butyrate differentially regulates inflammatory
cytokine expression in M1 and M2 macrophage subsets:
suppressing M2 pro-inflammatory cytokines (TNFo and IL-
1B) whilst augmenting the anti-inflammatory IL-10 and,
conversely, suppressing M1 TNFo and IL-10 yet failing to
modulate IL-1P. This failure to modulate M1 production of
IL-1B is suggestive that suppression of TNFa is not enough
with respect to control of inflammation and that pro-
inflammatory effects can be driven by compensation for TNFa
activities by IL-1P expression. Due to the overlapping activities
and redundancy between these pro-inflammatory cytokines,
it is likely that the development of successful clinical
therapeutics will aim to suppress all pro-inflammatory
mediators, preventing this compensation by other pro-
inflammatory factors. Current use of butyrate in the treatment
of IBD must be viewed with caution and may be only
successfully used when both macrophage subset and cytokine
profiling of the inflammatory pathology have been evaluated.
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