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ABSTRACT. This technical note presents a case of practical exponential observer using extended Kalman filter independent of 
certain restrictions, such as online check and estimation error of initial state. Recursive state estimation is usually a challenge for 
discrete-time nonlinear system in terms of computation cost. Extended Kalman filter(EKF) is attractive with its simplicity since 
it is considered as an exponential observer given the above restrictions. However, those restrictions are so mathematically 
complicated that EKF cannot be practical in estimation. A novel case for an exponential observer using EKF is proposed which 
is independent of such restrictions. However, these restrictions are proved to be unnecessary in the case. The proposed case is 
illustrated by a navigation system scenario. The validity of the case is demonstrated by a numerical simulation experiment. The 
system is deterministic. 
 
INDEX TERMS. discrete-time nonlinear system, extended Kalman filter, exponential observer, restrictions, spectral norm 

I. INTRODUCTION 

The recursive state estimation is a typical problem of discrete-
time dynamic systems, especially in state estimation for 
navigation system. The estimation problem from noise or 
incomplete measured data became an issue of worldwide 
research interest in the last several decades. However, it is not 
easy to find a practical estimation method because of 
requirements of low computation costs and none parameter 
regulation. The basic solution on the basis of the Bayesian 
approach is provided by the Bayesian recursive relations 
(BRRs). The solution is to compute the probability density 
functions (pdfs) of the state. And these pdfs are conditioned 
by the measurements but fully descript the immeasurable 
state. The closed form solution to the BRRs is valid for some 
of special cases [1]. One typical example is for a linear 
Gaussian system, which introduces to the famous Kalman 
filter (KF). However, it is different in other cases for 
nonlinear systems. Some approximation methods are usually 
applied to approximate the nonlinear model. One popular 
kind of approximation is named as global method. It is 
derived from a kind of approximation of the BRRs with the 
generation of conditional pdf of the state. For example, these 
are the particle filter (PF)[2,3], the point–mass method [4], 
the Gaussian sum method, or the ensemble Kalman filter [5]. 

The disadvantage of these methods is big computational cost 
and thus it is necessary to find a different method with 
relatively low computation consumption 

Relatively, the other approximation is named as local 
method. It is based on an approximation of a system model. 
One obvious benefit of this method is that it is possible for the 
KF design technique to be used for the BRRs solution; that is, 
not only the covariance matrix but also conditional mean is 
computed instead of the conditional pdf. In fact, this 
approximation of the model is rough. Together with a 
posteriori estimates, it is induced that the validity of the 
estimates is local. Consequently, it is hard to guarantee 
convergence of the estimates of the local methods. 
Nevertheless, there is one advantage using the local methods 
that is the simplicity of the BRRs solution. For example, the 
extended Kalman filter (EKF) is a local method and is based 
on function approximation using the Taylor or Stirlling 
expansions. These presented Taylor expansions are a kind of 
important tools which will be used in the proving process 
related to our presented work (as shown in Section III) [6]~[9]. 
They have pointed out EKF is a second order filter and is 
usually used to solve nonlinear problems. The problem of 
EKF is that it is not reliable with poor initiation. Divided 
difference filters are different from general EKF. They are 
used for approximation of the pdfs and the state estimates are 
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represented by a set of selected weighted points [10]~[13]. 
This approach uses the unscented transform (UT). The 
unscented Kalman filter, the Gauss-Hermite filter, or the 
cubature Kalman filter all belong to this approach. This kind 
of approach is also a local method which gives a modified 
EKF frame but remains to be vulnerable to weak initial 
conditions. The fact that modified EKF cannot be satisfactory 
may give us a hint of modifying the system itself (as 
illustrated in Section II). The Moving Horizon 
Estimator(MHE) is an alternative to recursive estimators as it 
takes not only the nonlinearity of the process model but also 
different kinds of constraints into account [14]. In contrast, 
the calculation of MHE may result in a computational load 
because of repeat optimization.  Thus it is proved repeat 
optimization is not available method in the practical 
application. Receding-horizon Nonlinear Kalman (RNK) 
filter has been proposed for the recursive state estimation to 
address the computational constraints which exists in MHE 
[15]. The main contribution is RNK formulation gets 
computational gain because of its standard EKF framework. 
However, the convergence of RNK has not been analyzed and 
it seems to be further exploring. Recently, extended state 
observer (ESO) become an attracted filter due to regarding the 
disturbances of the system as a new state. For considering the 
fast varying disturbances, a modified ESO has been proposed 
with well performance in [16]. Considering the estimation for 
sensor networks, a distributed interval type-2(IT2) fuzzy filter 
model has been proposed with upper and lower bounds in 
membership functions [17]. It is useful in the estimation for 
static systems. In addition, the filter design for fault 
detection(FD) has also been investigated for 
nonhomogeneous Markovian jump systems [18]. The full FD 
filters have been designed desirably by a Takagi-Sugeno 
Fuzzy approach.  

Regarding the convergence of the EKF for discrete-time 
nonlinear systems, [19] presents a significant role forward in 
exponential stability analysis. The contribution in this paper 
is that it is EKF for discrete-time nonlinear system is proved 
to be regarded as an exponential observer given certain 
conditions; that is, the dynamics of the estimation error are 
exponentially stable. This result points out EKF can be an 
exponential observer and it makes EKF attractive for 
estimation of nonlinear system. Thus we go back to consider 
the EKF as a potential algorithm basic frame. In similar to the 
results before, it is also pointed out that the conditions have 
to be checked online as well as the estimation error of initial 
state small enough. Actually, it is not practical since usually 
it is hard for us to select an initial state with small estimation 
error as well as check online.  Thus practical exponential 
observer is actually being pursuing for the sake of engineering 
realization. Then one important question has to be asked, is 
there any case that EKF might become an exponential 
observer independent of those restrictions? This question has 
not been answered not clearly and thus motivates the main 
objective of this note: To design a practical exponential 
observer considering low computation costs and none 

regulation of initial condition.  
To address this problem, we can deduce a further solution 

through the proving process of exponential observer in [19]. 
As result, a novel case for state of estimation of navigation 
system is proposed in this technical note. The proposition is 
proved on the basis results in [19]. We prove there is indeed 
such an exponential observer using EKF. The proposed case 
of the observer consists of two parts. First, the linearized 
system matrix in nonlinear system (1) is modified into the 
frame as shown in Theorem 3.1 which is proved in Section 
III. Then a traditional EKF is used to obtain the estimates of 
the nonlinear system. Considering a position estimate 
scenario, one typical nonlinear discrete-time system is 
introduced through a navigation system. Only a single range 
is available for measurement in the system. Generally, it is 
clear the EKF of this nonlinear system is not exponential 
stable given none online check and poor estimation of initial 
state. In contrast, we show the estimates can convert quickly 
in the proposed case and do not need any such restrictions, 
neither online check nor small estimation error of initial state. 
We also prove the key is to set the norm of the ‘system matrix’ 
to be smaller than one during the estimation process. In some 
situation when the system is nonlinear and unknown, the 
estimates from the filter could have steady states as the system, 
such as flight vehicle, moves in the desired trajectory in [20]. 
On the location problem, several algorithms have been 
compared in the simulation of biopsy needle localization and 
it has been proved that the ROI-RK (Kalman filter based) 
algorithm is most useful because of ROI initialization step 
and EKF tracking step [21]. The advantages of the proposed 
method are illustrated as below 

1)The proposed method is always feasible in the 
controllable system on the basis of mild assumptions. 

2) It is practical in engineering because of low computing 
consumption as same as traditional EKF. 

3)It provides much availability and potentiality for 
designing the controller of estimating process.  

 
This note is organized as below. In Section II, the problem 

statement is presented. The estimation approach is presented 
in Section III. A numerical illustration of the proposed filter 
is given in Section IV, and concluding remarks are provided 
in Section V. 

Throughout this technical note, we denote the n -

dimensional unit matrix by I  and we denote the spectral 

norm of matrices by  . 

II. PROBLEM STATEMENT 

Present a deterministic nonlinear system of discrete-time 
given by (1)  

 1k k -x = f x (1a) 

 k kz = h x (1b) 

where n
kx  denotes the states of the system and m

kz 
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denotes the measurements taken from the system and k is the 

time instant. The  f   and  h   are both assumed to be 

1C  functions. For this system, we introduce an observer 
given by 

 1 1 1
ˆ ˆ

k k- k - k -x = f x (2a)   

   1 1
ˆ ˆ ˆk kk k k k - k k -x = x + K z - h x (2b) 

where the observer gain kK  is a time-varying n m  

matrix. The estimated states 1
ˆ

k k -x is named a priori estimate 

as well as ˆ
k kx  a posteriori one. As  f   and  h   are 

assumed  to be 1C  functions, they are expanded via 

       ˆ ˆ ˆk k k k k k kf x - f x = A x - x x ,x (3a)

       1 1 1
ˆ ˆ ˆk n k kk k- k k- k k -h x - h x = C x - x + x ,x (3b) 

where and are residuals and  

 ˆk k k

f
A x

x





(4a) 

 1
ˆk k k-

h
C x

x





(4b) 

We call kA the ‘system matrix’. The states of system (1) are 

estimated according to the two-step EKF approach. The 
structure of the discrete-time EKF for system (1) is 
summarized in the steps as below.  

Step 1:Assume 0k  , then define an initial condition

1
0 0( ) ( )-p x | z = p x   via 0 -1 0 0x = E[x ] = x



 
which is called the initial state estimation and 

 0 00 -1P = cov x = P called the initial covariance 

matrix, where  0cov x denotes covariance 

function, -1 means previous one sample time and –
k means previous k sample time  

Step 2: We can give the predictive mean as well as 
covariance matrix as below 

 1 1 1
ˆ ˆ

k k - k - k -x = f x  (5a) 

1 1 1
T

k kk k- k - k -P = A P A +Q  (5b) 

                               
Step 3: The estimates of the states and covariance matrix 

are obtained by 

  1 1
ˆ ˆ ˆk kk k k k - k k -x = x + K z - h x (6a) 

1 1k kk k k k - k k -P = P - K C P (6b) 

where 

  1

1 1

-
T T

k k k kk k - k k -K = P C C P C + R (7) 

                         
Step   4: Let k = k + 1. Then the EKF algorithm always 

continues since Step 2. 

Where n nQ  and m mR  are the symmetric positive definite 

matrices. 
The estimation error is given by 

-1
ˆ=k k k kx x  (8) 

We introduce the main result of exponential observer in [19] 
for illustration of the proposed case. 
  Theorem 2.1: For a nonlinear system given in equation (1) 
and an EKF as described in equation (2) to (7), the EKF can 
be regarded as an exponential observer if the following 
assumptions hold. 
1) The inequalities given below are satisfied via 

kA a (9) 

kC c (10) 

1 2k kp I P p I  (11a) 

                   1 21k k -p I P p I  (11b)   

where a , c , 1p  and 2p are positive real numbers. 

2) kA  is nonsingular for every 0k  . 

3) The nonlinear functions  ,   and  ,  in (3) are 

bounded via 

  2
ˆ ˆk kk k k kx ,x x - x    (12a) 

  2

1 1
ˆ ˆk kk k- k k-x ,x x - x   (12b) 

 

for 1
ˆ ˆ n

k k k- k kx ,x ,x   with 

ˆk k kx - x   (13a) 

and 

1
ˆk k k -x - x   (13b) 

respectively, where  ,  ,  and   are positive real 

numbers.  
Using the direct method of Lyapunov, the extended 

Kalman filter is proved to be an exponential observer (the 
proving theory shown in [19]), i.e., the dynamics of the 
estimation error is exponentially stable under certain 
conditions 1),2) and3),. Then we recall the definition of 
exponential observer as well as exponentially stable 
equilibrium point in [19]. Given , and  are positive real 

numbers with 0  , 0   and 1  ,the inequality 

given below is easily induced from (8) 
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- -
0 0 0-1

ˆ= k k
k k k kx x x x           (14) 

for every 0k  where  0
nD        .  It 

follows from(14) that  k in (8) converges exponentially as 

below 
-

0= 0k
k     as  k   

It is easy to conclude that (14) guarantees the elimination of 
the estimation error in (8). 

In general, to ensure such EKF being considered as an 
exponential observer, we conclude that certain restrictions 
are required as below. 
i)The bounds (11a) and (11b) are checked online during the 
whole estimation process. They are naturally satisfied if the 

matrices kA and kC fulfill the uniform observability 

condition[19].  
ii)The inequalities (12) is also checked online during the 
whole estimation process. The inequalities (12) depends on 
(13). 
iii)A proper estimate of initial state is necessary. In fact, the 
real number  in (14) is restricted complicatedly due to 
restrictions (11)~ (13)([19], Sec. II, Th. 7, p.2327). It is 
inclined to the small-scale convergence of the exponential 
observer. 

Obviously, those restrictions probably keep EKF from a 
practical exponential observer. 

The goal of this technical note is to propose a novel case 
that EKF becomes a practical exponential observer.  And 
the estimates of the EKF converge quickly independent of the 
restrictions as remarked above.  

III. PROPOSED METHODS  

We present the main proposition of Section III on the basis 
of the previous works. To make proving process concise, the 
direct method of Lyapunov theory is not shown in this paper 
as it can be found in [19]. We first prove the assumptions in 
theorem 3.1 satisfy all the conditions of theorem 2.1 through 
a detailed derivation and then the result is deduced directly 
from theorem 2.1. 

Theorem 3.1: For a nonlinear system given in equation (1) 
and an EKF as described in equation (2) to (7), and assume 
the following assumptions hold. 

1)   f   and  h   are both 2C  functions. 

2) kA  is nonsingular for every 0k  . 

3) The inequalities given below are satisfied via  

<1kA a (15a) 

kC c (15b) 

where a  and c are positive real numbers. 
Then the EKF can be an exponential observer independent 

of (11)~ (13)for every bounded 0 .  

Proof: As  h  is a 2C function, applying the Taylor 

expansion yields 

       1 1 1
ˆ ˆ ˆk k k kk k - k k- k k -h x - h x = C x - x + x ,x (16) 

where  

     2

1 1
ˆ ˆ

2k kk k - k k-

h''
x ,x = x - x


 (17) 

denotes the remainder terms and  h''   is a second-order 

derivative with respect to x    and   is a value between 

kx  and 1ˆk|k -x . There always exists a positive real number 

0  such that  

 ''

2

h
 


 (18) 

From (17), we find that  

  2

1 1
ˆ ˆk kk k- k k-x ,x x - x   (19) 

stands for any bounded 1
ˆ n

k k k -x , x  . 

Similarly, as  f   is a 2C  function, there always exists 

a positive real number 0  such that 

  2
ˆ ˆk kk k k kx ,x x - x    (20) 

stands for any bounded ˆ n
k k kx , x  .  

Considering the equations (5b), (6b) and (7), where Q  

and R are both symmetric positive definite matrixes. We 

obtain the results as below in terms of kA . 

(1) When 1kA  , from (5b), we can get that 

1 0k|k -P  , and | -1 -1| -1 -1| -1
T

k k k k k k k kP A P A P   (21a) 

Applying (6b) into (21a) and letting 1k k  yields  

| -1 -1| -2 -1 -1 1| 2

-1 -1 1| 2( )

k k k k k k k k

k k k k

P P K C P

I K C P

 

 

 

 
  (21b) 

   Obviously 

  -1 -1k kK C >0, and -1 -10 k kI K C I     (22a)    

Thus, from equation (21a) we get 

| 1 -1| 2k k k kP P    (22b) 

Similarly, from (6b) we can get 

| | -1 | 1 | 1= = ( )k k k k k k k k k k k kP P K C P I K C P     (23a) 

Since (22a), applying(5b) into(23a) yields  

| -1| -1 -1| -1+T
k k k k k k k kP A P A Q P   (23b) 

We can infer that both | 1k kP  and |k kP are monotonous 
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increase with no upper bound. The assumptions (11a) and 

(11b) are not satisfied. Thus when 1kA  , the EKF is 

not able to be an exponential observer. 

(2) In contrast, when 1kA   we find that 

1 11 1 0 00 +T T
k kk k k- k -P A P A Q A P A +Q   (24) 

Since Q  is a symmetric positive definite matrix, it follows 

that there always exists a positive real number p  from (24) 

such that 

0 k kP pI  (25) 

Similarly, from (5b), (6b), and (7) we can also get: 

2 21 1 2 100 T T
k kk k - k - k -P A P A +Q A P A +Q   (26) 

Like the above, there always exists a positive real number 
q as well such that 

10 k k -P qI  (27) 

Applying (15), (19), (20), (25), and (27) to Theorem 2.1, 
we can conclude that the EKF can be regarded as an 
exponential observer independent of (11)~(13). That is for 

every bounded 0 , the inequality (14) holds, that is  the 

estimation error k in (8) converges exponentially, 

independent of   (11) to (13) only if positive real numbers 

0   , 0   and 1  holds                               

                                   
                                                                                                      
From the above results, we can summary that the EKF of the 
nonlinear system can be a practical exponential observer 
since it is independent of those restrictions in Th.2.1 Section 
II. Instead of selecting the initial condition of the nonlinear 
system, any bounded counterpart is feasible for the observer. 
The assumptions in Th.3.1 are not restrictive. The estimates 
of the EKF converge quickly in the estimation process even 
without complicated restrictions. However, it should be 

noticed that  the ‘system matrix’ 1kA  is the key. 

IV. SIMULATION RESULTS 

The proposed case is illustrated using an example of a 
range-only navigation system [22]. The range-only 
navigation system has the same form as systems (1). Besides 

that,  f   and  h   are 2C functions. The position of 

the platform called the autonomous underwater vehicle is 
estimated using only distances of measurements between the 
platform and the single beacon. Suppose the platform follows 
the continuous white noise motion model. For convenience, 
the navigation system is modified as below: 

1k k-x = Ax (28a) 

k ky = x (28b) 

Where 2
kx  denote the state of the system and ky

1  denote the output of the system. A  is a 2 2  
matrix. EKF is used as an exponential observer. Q  is the 

covariance matrix 1w,k 2= I   of Gaussian zero-mean 

state noise, and R  is the variance 22v,k  of Gaussian 

zero-mean measurement noise. The examples of two different 
cases  are given in terms of different values of the spectral 

norms of A  as follows. 

(1) 1A  . Let 

 
 

exp 0.001 0
=

0 exp 0.002

T
A

T

 
  

(29) 

(2) 1A  . Let 

 
 

exp 0.001T 0
=

0 exp 0.002T
A

 
 
 

(30) 

Where T=1 denotes sample time for one second and 

 exp   denotes the exponential function  e 
. The EKF 

filter is initialized with an initial position of [50 m, 50 m] and 

initial error covariance 
8

8

10 0

0 10





 
 
 

. To compared the 

estimation of two different cases, we use a root mean square 
error (RMSE) as below 

ˆRMSE= k kx - x (31) 

There is no online check during the estimation. The 
estimation performance is demonstrated in Table I in terms of 
the initial position estimation error tolerance and RMSE , 

where 0x  and 0x  denote the estimated and the true of the 

initial position respectively. The true coordinate of the initial 
state are (50,-50). The closest estimation of the initial states 
is (-60,60) while the furthest one is (-1000,1000). Their 
initial estimation errors are 155.6 and 1484.9 by the 
calculation according to (31). Their RMSE with both

1A  are only 0.045 and 1.377repectively. By contrast, 

their RMSE with 1A  become large to 107.   Obviously, 

the proposed case gives much nicer results. Nevertheless, its 
computational cost is much small: only about 0.1 second with 
a 2.6 GHz CPU. Besides that, we can easily obtain the initial 
estimation error of (-500,500) is 777.8. Then the three 
percentages between each initial estimation error and its 
RMSE are 0.00009,0.0008 and 0.0009. It is satisfactory that 
the RMSE is invisibly influenced by the estimation errors of 
the initial state. 
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TABLE I 
RESULTS  OF TWO DIFFERENT CASES 

0x  [m] 
(–1000, 
1000) 

(–500, 500) (–60, 60)

0x  [m] (50, –50) (50, –50) (50, –50)

RMSE with 1A   [m] 1.377 0.620 0.045 

RMSE with 1A  [m] 107 107 107 

time[sec] 0.114 0.114 0.113 

The time response of the RMSE is depicted in Fig. 1 for 
several selected initial position estimations in Table I. As 

expected, the EKF with 1A   provides a much better 

estimation performance than the one with 1A  . The 

estimation of the former converges with time as shown in 
Fig.1(a). No matter how large the initial estimation error is, 
the estimation converges fast nearly in the same time. This 
shows the validity of the summary in Section III. By contrast, 

the EKF with 1A   becomes divergent rapidly as shown 

in Fig.1(b). The RMSE become so great after a moment of 
300 seconds that the EKF is totally divergent. It is proved the 

proposed novel case with 1A  generally provides a high 

estimate quality with lower computational cost.  By 

observing the estimation with 1A  and 1A  ,it is 

possible that the convergence of the general EKF may reverse 
in practical application if there exists a little bit change of the 
system model in (28) as well as in (1).  

 
FIGURE 1(a). The convergence for the EKF filter with 1A   

 

 
FIGURE 1 (b). The divergence for the EKF filter with 1A   

V. CONCLUSION 

We proposed a novel case of practical exponential observer 
offering asymptotically exact estimation and computational 
efficiency. The observer consists of two parts: modified 
linearized system matrix and general EKF. The key technique 
is to set the spectral norm of the ‘system matrix’ smaller than 
one during the estimation process. The simulation 
experiments are given by an example of a range-only 
navigation system. Simulation results show that the proposed 
case provides a nice performance with little computation load 
even in the presence of poor initialization. Besides that, it is 
not necessary to have online check. Thus the proposed case 
can be a practical exponential observer. The theorem and the 
simulations demonstrate the convergence of the general EKF 
may become unpredictable in practical application if there 
exists the system model error The novel case could be used in 
the state estimation of wireless communication networks 
while the security in broadcast is an important role and novel 
methods to improve the security in cooperative networks 
were proposed in [23~24]. And it could be in prospect in the 
navigation observer in unmanned surface vehicles [25] and 
closed-loop methods for the voltage-source inverters [26]. 

In this technical note, we give a supposed linearized system 
matrix. But it remains to design a desirable system matrix by 
regulating the inputs of the nonlinear systems. Possibly 
Model Prediction Control (MPC) can be used to design such 
a controller. In addition, we presume the deterministic 
nonlinear system in the paper and therefore the stochastic 
process of nonlinear system should be pursued in the 
proposed case as well as in the presence of unmeasurable 
states. It may refer to the event-triggered sliding mode 
controller for a class of uncertain stochastic systems 
addressed in [27] which provides a well control performance 
for a plant with unmeasurable state.    
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