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The dichotomy of memantine treatment for ischemic stroke:
dose-dependent protective and detrimental effects
Melissa Trotman1,4, Philipp Vermehren1,4, Claire L Gibson2 and Robert Fern3

Excitotoxicity is a major contributor to cell death during the acute phase of ischemic stroke but aggressive pharmacological targeting of
excitotoxicity has failed clinically. Here we investigated whether pretreatment with low doses of memantine, within the range currently
used and well tolerated for the treatment of Alzheimer’s disease, produce a protective effect in stroke. A coculture preparation exposed
to modeled ischemia showed cell death associated with rapid glutamate rises and cytotoxic Ca2+ influx. Cell death was significantly
enhanced in the presence of high memantine concentrations. However, low memantine concentrations significantly protected neurons
and glia via excitotoxic cascade interruption. Mice were systemically administered a range of memantine doses (0.02, 0.2, 2, 10, and
20mg/kg/day) starting 24 hours before 60minutes reversible focal cerebral ischemia and continuing for a 48-hour recovery period. Low
dose (0.2mg/kg/day) memantine treatment significantly reduced lesion volume (by 30% to 50%) and improved behavioral outcomes in
stroke lesions that had been separated into either small/striatal or large/striatocortical infarcts. However, higher doses of memantine
(20mg/kg/day) significantly increased injury. These results show that clinically established low doses of memantine should be
considered for patients ‘at risk’ of stroke, while higher doses are contraindicated.
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INTRODUCTION
Cerebral stroke is the third leading cause of death in developed
countries and the leading cause of adult disability. The only
licensed pharmacological treatment available for acute cerebral
stroke is thrombolysis with recombinant tissue plasminogen activator
but because of its narrow therapeutic window (o4.5 h) and safety
concerns, approximately only 15% of stroke patients receive
recombinant tissue plasminogen activator.1 Focal cerebral ische-
mia initiates a cascade of complex pathophysiologic events
including excitotoxicity, acidotoxicity, ionic imbalance, oxidative
stress, inflammation, and apoptosis.2–4 In an attempt to limit the
acute cell death after the onset of ischemia a variety of
neuroprotective strategies have been developed, which aim to
antagonize injurious biochemical and molecular events that
culminate in neuronal death. However, such strategies have failed
to translate effectively into clinically available treatments for
stroke patients (see Davis et al5) and the development of safe and
effective treatments remains a major challenge to stroke research.
The most rapid, and possibly the most severe, pathophysiologic

mechanism initiated after ischemic stroke is that of excitotoxicity,
which triggers widespread necrosis and subsequent functional
impairment.6,7 Historically, the focus of neuroprotection research
has been to use strategies that supress the excitotoxic response
after induction of ischemia and primarily target the glutamate
system.8 Various NMDA (N-methyl-D-aspartate) receptor antago-
nists have been investigated for their therapeutic potential and
been shown to reduce the deleterious effects of excitotoxicity
within both in vitro and in vivo models of ischemic stroke.9–15

However, clinical trials targeting acute ischemic stroke using
NMDA receptor antagonists have repeatedly failed16 probably for

a number of reasons including an inability to reach effective con-
centrations because of severe toxicity shown in humans, too short
a neuroprotective time window, and poor clinical trial design.14,17

To exert a beneficial effect after ischemic stroke the majority of
NMDA receptor antagonists have to be administered at high
doses, which increases the possibility of producing unwanted
psychotomimetic and cardiovascular effects.18 However, not all
NMDA receptor antagonists produce unwanted side effects at
clinically effective doses and some are in current clinical use.
One such NMDA receptor antagonist, memantine (1-amino-3,5-
dimethyladamantane), has been approved since 2002 in Europe
(and since 2003 in the USA) for the treatment of moderate to
severe Alzheimer’s disease,19 and has been shown in clinical trials
to be a safe and effective treatment for vascular dementia.20

Memantine is distinct from other NMDA receptor antagonists as it
possesses fast on/off kinetics, low-moderate receptor affinity and
is able to block the effects of excessive glutamate without inter-
fering with the physiologic activation of NMDA receptors.21

Although acute postischemic administration of other NMDA receptor
antagonists has been shown to be protective in experimental
models (for review see Lipton, 2004) there is a wealth of evidence
showing that this therapeutic approach of trying to limit cell death
during the acute phase of ischemia is difficult to achieve. Thus, a
more realistic approach may be prophylactic administration of
memantine to those patients identified at being at risk of ischemic
stroke, at a dose already tolerated in clinical practice, e.g., for the
treatment of Alzheimer’s disease. The aim of this study was to
determine if systemic administration of the antiexcitotoxic drug,
memantine hydrochloride, at doses currently administered for
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moderate to severe Alzheimer’s disease, could produce protection
from ischemic stroke.

MATERIAL AND METHODS
Cell Culture
High-density cultures (HDCs): Cortices were obtained from E16
balb-c mice after humane cervical dislocation under UK Home
Office regulations. UK home office regulations were followed for
all experimental work which was conducted in accordance with
the relevant guidelines and regulations. The animal welfare and
ethics committee of University of Leicester approved all the
experimental protocols. The tissue was placed in Hank’s balanced
salt solution, trypsinized (1% trypsin/DNase), triturated, centri-
fuged (250 g), resuspended in growth medium (Neurobasal+
L-alanyl-L-alanyl-L-glutamine+B27 supplement for neurons, Dul-
becco’s minimum essential medium+L-glutamine+pyruvate+10%
fetal bovine serum for astrocytes), filtered (100 μm, Falcon) and
diluted to achieve 0.7 × 106 cells per ml. Neuronal cultures were
plated onto cover slips and medium changed at 1 day in vitro (DIV)
and subsequently at 3 to 4 DIV intervals; cultures were used from 5
to 14 DIV. Astrocyte cultures were maintained in bulk for 2 DIV
before agitation/medium exchange to remove other cells types,
and then graded agitation/medium exchange after a further 4 DIV
before Hank’s balanced salt solution wash, trypsinization, cen-
trifugation and resuspension (in either Dulbecco’s minimum
essential medium or Neurobasal). Cultures were used 3 to 14
DIV, with 50% medium exchange every 3 DIV. Cocultures: acute
neuronal cultures were plated onto confluent astrocyte cultures
(at 2 DIV), maintained in Neurobasal and used 3 to 14 DIV. Normal-
density cultures: cortices were obtained from E16 C57BL/6 mice
and neurons and astrocytes were plated at 0.15 × 106 cells per ml;
all other steps were the same as above.

Cell Culture Characterization
Cover slips were washed (0.1mol/l phosphate-buffered saline (PBS)),
fixed (4% paraformaldehyde/PBS or methanol/acetone 1:1), permea-
bilized (PBS/10% goat serum (Dako, Cambridge, UK)/0.5% Triton-X
(Sigma-Aldrich, Gillingham, UK), PBSGT), incubated (PBSGT overnight
at 4°C with primary antibody), exposed to appropriate secondary
antibody (60minutes PBSGT), mounted (SuperFrost Plus slides,
Menzel-Glaser, Braunschweig, Germany) in PermaFluor (Thermo
Fisher Scientific, Loughborough, UK), and imaged using a Leica
(Milton Keynes, UK) TCS SP2 confocal microscope. Primary antibodies:
glial fibrillary acidic protein and neuron specific enolase (1:400,
Sigma-Aldrich); NSE (prediluted, Sigma-Aldrich); CNPase (1:100,
Chemicon, Nottingham, UK); IB-4 (1:100, Molecular probes, Fisher
Thermo Scientific). Projections (eight slices) were viewed using Leica
software, Fluoview (Olympus, Southend-on-Sea, UK), or Metamorph
(Molecular Devices, Sunnyvale, CA). Multiple slide areas were imaged
and total cell number established either using the Hoechst 33,342
nuclear stain or light images of the cells; both methods produced
similar cell counts (Supplementary Figure S1). At least three separate
cell cultures and 3 to 8 slides were analyzed from each culture.

Cell Imaging
Oxygen–glucose deprivation (OGD)-induced intracellular Ca2+

([Ca2+]i) changes were assessed using FURA-2FF (Invitrogen, Fisher
Thermo Scientific), a low affinity dye that does not affect cell
viability during ischemia.22 The more sensitive FURA-2 was used
for agonist responses. In both cases, cells were acetoxymethyl-
loaded (see Fern23 for more details of imaging methods). FURA
dyes tended to leak from astrocytes over longer recording periods
so, cell viability during OGD was assessed using 5-
chloromethylfluorescein diacetate (Invitrogen) acetoxymethyl-
loaded at 2.5 μmol/l. Dye-loaded cultures were mounted into a

perfusion chamber (atmosphere chamber, Warner Instruments,
Hamden, CT, USA), perfused at 2 ml/min (artificial cerebrospinal
fluid in mmol/l: NaCl, 126; KCl, 3; NaH2PO4, 2; MgSO4, 2; CaCl2, 2;
NaHCO3, 26; and glucose, 10; pH, 7.45, bubbled with 5% CO2/95%
O2) and maintained at 37°C on the stage of an epifluorescence
microscope (Nikon, Kingston Upon Thames, UK). Oxygen–glucose
deprivation involved switching to artificial cerebrospinal fluid
containing no glucose prebubbled with 95% N2/5% CO2, while
chamber atmosphere was switched from 95% O2/5% CO2 to 95%
N2/5% CO2. Cell temperature was monitored and maintained via
flow-through, objective, and room heaters. A rapid exchange
perfusion system was used for short application agonist experi-
ments (ValveBank8.2, AutoMate Scientific, Berkeley, CA, USA). Oil
immersion x20 images were collected at 520 nm or 508 nm using
appropriate filter sets (Chroma Technology Corporation, Bellows
Falls, VT, USA). For FURA-loaded cultures, cells were illuminated at
340, 360, and 380 nm; 5-chloromethylfluorescein diacetate cells
were illuminated at 489 nm (Optoscan, Cairn Research). Images
were captured by a coolSNAP HQ camera (Roper Scientific,
Sarasota, FL, USA) controlled via MetaFluor (Molecular Devices)
with background signal subtracted. For FURA-2 imaging, 340:380
was converted to [Ca2+]i using a calcium calibration kit (Invitro-
gen). Cell death was characterized by sudden collapse of the
fluorescent signal to the background level and this phenomenon
was used to calculate cell death rates and precise time points of
cell death for all cells within the field of view. Cells were also
imaged before and after the experiment in quadrants surrounding
the field of view, where initial cell counts and surviving cell counts
were measured. Cell death data plotted as a time series represents
the real-time recordings from the field of view, while total cell
death data includes the cells from the surrounding quadrants.
Cultured astrocytes and neurons are morphologically distinct

under phase contrast. The majority of neurons are high contrast
which have either pyramidal, fusiform, or multipolar character-
istics.24 Astrocytes show low phase-contrast with a flat morphol-
ogy forming a continuous layer once confluent. These criteria for
identification were tested and confirmed using immuno-
histochemical staining of fixed cocultures for glial fibrillary acidic
protein and neuron specific enolase, (Supplementary Figure S2).
The criteria were used to distinguish cells using initial phase-
contrast and fluorescence images. Any unidentifiable cells were
excluded from subsequent analysis.

Biosensors
Glutamate microelectrode biosensors (Sarissa Biomedical, Coven-
try, UK),25 amplified via a Duo-Stat ME-200+ potentiostat (Sycopel
International, London, UK) were used to record real-time
glutamate or adenosine triphosphate concentration changes
in vitro from the unstirred fluid layer surrounding cells. This layer
is in communication with the bath solution and is likely to vary
between recordings depending on the placement of the
electrodes. These factors may contribute to the degree of variance
observed between data sets, but reliable mean recordings were
achieved. Signals were differential to a null electrode and both
active and null electrodes were carefully inserted into a modified
atmosphere chamber until the sensor tips rested directly on the
cell layer. An Ag/AgCl reference electrode was introduced at a
distal site. Oxygen–glucose deprivation and control experiments
were performed as described above for cell imaging. Sensors were
recalibrated in the chamber at the end of the OGD period after
retraction from the cell layer. Values from the null, sensor, and
sensor-minus-null outputs were recorded at 0.5 Hz and subse-
quently converted into Δ adenosine triphosphate or Δ glutamate,
rather than absolute concentrations. Experiments were repeated a
minimum of three times, all values collected for a time point
during a specific condition/experiment were averaged using Prism
(Graphpad, La Jolla, CA, USA).
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Focal Cerebral Ischemia
This study was conducted in accordance with the UK Animals
(Scientific Procedures) Act, 1986 (Project License 60/4315). Male
adult C57 BL6 mice (Charles River, Oxford, UK) weighing between 22
and 32 g at the time of surgery were randomly assigned to a
treatment group (the surgeon was masked to treatment and
subsequent analyses). A total of 69 mice were used, 7 mice were

excluded because of severe blood loss during surgery or poor
recovery after middle cerebral artery occlusion (MCAO). Treatment
groups were vehicle (n=17) or NMDA GluR antagonist, i.e.,
memantine, at the daily doses: 20 (n=9), 10 (n=7), 2 (n=7),
0.2 (n=16), or 0.02mg/kg (n=6). All drugs were dissolved in
10% dimethyl sulfoxide and 90% saline, loaded into mini pumps
(Alzet, Charles River. Model: 1003D; total volume 100 μl, flow rate

Figure 1. Characterization of high-density cultures (HDCs). (A–D) Fixed cocultures showing GFAP (green: astrocyte), NSE (red: neuron), Hoechst
(blue: nuclei), and overlaid images, respectively. Note the differences in cell morphology and approximately equal numbers of the two cell
types. (E) CNPase (oligodendrocyte) and NSE costaining showing a rare CNPase(+) cell surrounded by neurons. (F) IB-4 (microglia) and Hoechst
costaining showing few microglia in the cocultures but the multilobular nature of the microglial cell nuclei make it difficult to accurately count
these cells using nuclei staining. (G) Proportion of cell types in cocultures. GFAP: 43.74%± 2.78% (2,401 of 5,753 cells); CNPase: 0.09%± 0.09%
(1 of 918 cells); NSE: 51.93%± 2.72% (3,580 of 6,671 cells); and IB-4: 9.15%± 1.10% (105 of 1,166 cells). (H–J) Neuronal culture costained for
GFAP, NSE, and Hoechst (H); NSE and CNPase (I); and IB-4 and Hoechst (J). (K) Proportion of cell types in neuronal cultures. GFAP: 5.02%± 0.8%
(123 of 2,509 cells); CNPase: 0.33%± 0.2% (3 of 1,769 cells); NSE: 91.41%± 1.2% (3,958 of 4,278 cells); and IB-4: 1.28%± 0.2% (16 of 1,162 cells).
(L–N) Astrocyte culture costained for GFAP, NSE, and Hoechst (L); GFAP and CNPase (M); and IB-4 and Hoechst (N). (O) Proportion of cell types
in astrocyte cultures. GFAP: 93.87%± 0.6% (3,572 of 3,800 cells); CNPase: 2.1%± 0.51% (50 of 2,319 cells); NSE: 0.47%± 0.36% (7 of 1,481 cells);
and IB-4: 9.8%± 0.64% (54 of 546 cells). n=number of cultures examined. Scale bars, 100 μm. GFAP, glial fibrillary acidic protein; NSE, neuron
specific enolase.
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Figure 2. Cellular interactions during ischemia in high-density cultures (HDCs). (A) Oxygen–glucose deprivation (OGD)-evoked intracellular
Ca2+ ([Ca2+]i) rises in FURA-2FF loaded cells in HDC cocultures (340:380 ratio, red) and cell death (360 emission, green), which were largely
absent in control conditions (right). Each line represents data from a single cell. (B) [Ca2+]i rises (left) and cell death (right) in individual
astrocytes in coculture. Note the early (open arrows) and late (filled arrows) rises in [Ca2+]i, the latter preceding cell lysis (right, filed arrows). (C)
Early and late OGD-induced [Ca2+]i rises in neurons in coculture and monoculture. (D) The extent of acute cell lysis under control and OGD
conditions in the presence of receptor antagonists in neurons (top) and astrocytes (bottom). *= Po0.05; **= Po0.01; ***=po0.001 versus
cell death in OGD alone. (E) Incidence of cell death during OGD, which rises in astrocytes (green bars) before neurons (red bars) in both co-
and monocultures. Significantly more neuronal lysis occurs when they are cocultured with astrocytes. (F) Changes in glutamate concentration
in coculture, neuronal monoculture, and astrocyte monoculture, measured in the unstirred layer adjacent to cells. Data have been binned in
the lower panels and a significant rise is first seen in the 10 to 20minutes period of OGD for cocultures and astrocytes.
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1 μl/h) and implanted subcutaneously 24 hours before MCAO.
Antagonists or vehicle (10% dimethyl sulfoxide; 90% saline) were
administered for 3 days in total.
Mice were anesthetized with isoflurane (induction 4%; main-

tenance 1.5% in N2O/O2 70/30%). A small subcutaneous incision
was made on the midflank and the osmotic mini-pump inserted.
The wound was sutured and animals recovered for 24 hours
before focal ischemia. Focal cerebral ischemia was induced for
60minutes by occlusion of the right middle cerebral artery as pre-
viously described.26 Body temperature was monitored throughout
surgery (rectal probe) and maintained at 37.0°C ± 0.6°C using a
heating mat (Harvard Apparatus, Holliston, MA, USA). Laser
Doppler flowmetry (Moor Instruments, Axminster, UK) was used
to monitor relative cerebral blood flow for 5 minutes before and
5minutes after MCAO. After 60-minute MCAO, mice were
reanesthetized and the occluding filament withdrawn. Mice were
weighed at 24 and 48 hours after surgery and neurologic status
assessed using a 28-point neurologic score.27 At 48 hours after
surgery, mice were killed via cervical dislocation and brains were
removed, sectioned (10 × 1mm coronal slices) and stained (2%
2,3,5-triphenyltetrazolium chloride in saline) for 30 minutes. 2,3,5-
Triphenyltetrazolium chloride is a marker of mitochondrial
function and has been shown to be a reliable indicator of
ischemic areas for up to 3 days after ischemia.28 Sections were
stored in 10% formalin solution at 4°C and photographed for
analysis. Infarct areas were calculated as previously described29

using an indirect method whereby overestimation of the infarct
area because of edema is avoided.

Statistical Analysis
In focal ischemia experiments, lesion volume, behavior, and body
weight assessment were performed (by MT who was masked) and
are presented as mean± s.e.m. The population distribution for
lesion volume in the vehicle infusion group was not uniformly
distributed, falling into two groups: small lesions located in the
striatum and large lesion encompassing both the striatum and
cortical areas. When separated into these two patterns of injury,
lesion volume in the vehicle group had a normal distribution and a
parametric one-way analysis of variance (Fisher’s) test was there-
fore used to determine significance between vehicle and test
groups in these data sets. For in vitro data, all experimental
protocols were repeated a minimum of three times and results are
presented as means ± s.e.m. Experiments were compared using
either a t-test (when comparing two groups) or analysis of variance
(Tukey’s), with differences being significant when Po0.05.

RESULTS
Establishing a Coculture Model of In Vitro Ischemia
To facilitate biosensor recording of neurotransmitter release in vitro,
HDCs were developed (Figure 1) for astrocyte (93%±2.7% pure),
neuronal (96%±2.7% pure) or mixed cells (51.9%± 2.7%/

Figure 3. Intracellular Ca2+ ([Ca2+]i) changes evoked in neurons (A) and astrocytes (B) in HDCs by glutamate receptor agonists. Top:
Representative recordings from single cells are shown. Middle: Mean proportion of cells responding to agonists. Bottom: Mean [Ca2+]i rise in
responding cells. Note that neurons have larger and more frequent responses to glutamate receptor agonists. Adenosine triphosphate (ATP)
response is included for astrocytes as a positive control. NMDA, N-methyl-D-aspartate.
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43.8%±2.8%, respectively; 196.4 ± 7.9 cells per field of view). High-
density cultures were subjected to 90-minute OGD evoking
biphasic [Ca2+]i rises and acute cell lysis (Figures 2A–2C). Neurons
were less sensitive than astrocytes to injury in both mixed and
mono-HDCs (Figure 2D) and neuronal death was potentiated by
coculture with astrocytes suggesting the influence of a cytotoxic
glial factor (Figure 2E). The astrocyte death rate was not signi-
ficantly different in mono- and coculture conditions. High-density
cocultures were found to release recordable quantities of
glutamate during continuous perfusion using biosensor record-
ings from the unstirred fluid layer surrounding cells (Figure 2F,
top). Glutamate levels increased synchronously with the first
phase of the [Ca2+] rises occurring before the second phase or
[Ca2+] rises/cell death events in both mixed (Figure 2F, top) and
astrocyte (Figure 2F, bottom) HDCs. A similar rise in glutamate was
not found in neuronal HDCs (Figure 2F, middle). Neuron injury in
HDC was significantly reduced by the NMDA GluR blocker MK-801
(10 μmol/l) and the non-NMDA GluR blocker 2,3-dihydroxy-6-nitro-
7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (30 μmol/l; Figure 2D
top). In contrast, GluR antagonists failed to protect astrocytes
(Figure 2D bottom), although the absence of any significant
protection in the presence of 2,3-dihydroxy-6-nitro-7-sulfamoyl-
benzo[f]quinoxaline-2,3-dione may be a product of the
small sample size in this data group. Exogenous glutamate-
evoked [Ca2+]i rises in all HDC neurons, mediated by both Mg2
+-sensitive NMDA and Mg2+-insensitive non-NMDA GluRs
(Figure 3A). In contrast, only 13.9%± 6.8% of astrocytes showed
glutamate-evoked [Ca2+]i rises, which were smaller and almost
exclusively non-NMDA GluR-mediated (Figure 3B).

Dose-Dependent Effects of Memantine after In Vitro Ischemia
High concentrations of memantine (100 to 300 μmol/l) produced
toxicity in normal-density cocultured cells when perfused for 40 to
90minutes, affecting both astrocytes and neurons (Figures 4A and
4B). Although toxic effects of NMDA receptor antagonists have
been noted previously (see Longuemare et al30) and deleterious
effects of memantine have been observed in vivo,31–33 there are no
previous reports of toxicity associated with memantine in vitro
where vascular factors are eliminated. Memantine toxicity in neural
cell cultures was not potentiated by high extracellular [K+] and was
not mimicked by exposure to high MK-801 concentrations (100
μmol/l; Supplementary Figure S3) and the underlying mechanisms
are not known. However, low concentrations of memantine (0.5 to
2 μmol/l) applied to normal-density cultures replicated the protec-
tion seen in HDCs with MK-801 (Figure 4C), although high
concentrations (300 μmol/l) retained toxicity under ischemic
conditions resulting in a ‘U’-shaped curve. Although findings
based on reduced preparations are highly dependent on technical
factors, these results show that while low doses of memantine
resulted in protection, as a consequence of successfully blocking
the excitotoxic injury cascade, higher doses have a neurotoxic
effect and significantly increased the amount of cell death.

Establishing the Dose-Dependent Effects of Memantine after
In Vivo Cerebral Ischemia
Preinfusion for 24 hours with low-dose memantine reduced whole
lesion volumes but significance levels were not achieved using the
appropriate nonparametric comparison (Figure 5A). Significant
reduction in both striatal and striatocortical lesions (examples
shown in Figures 5B and 5C) were found in the 0.2-mg/kg meman-
tine infusion group when the two lesion types were separated
(Figure 5C). Significance was tested using a parametric analysis
of variance post hoc test (Fisher’s). Reduced lesion volume was
associated with improved behavioral scores at 24 hours after MCAO
(Figures 5D–5F) and significantly reduced body weight loss in the
striatal lesion group at 24 and 48 hours after MCAO (Figure 5F).
Higher memantine concentrations (2 to 10mg/kg) failed to provide

any protection while 20mg/kg potentiated injury (Figure 6),
correlating with the inverse concentration dependence of the
protective effect of memantine over the 0.2 to 10mg/kg range.

DISCUSSION
In the current study, memantine exerted a dose-dependent effect
in both the degree of protection provided against ischemic injury
and the degree of toxicity directed against neural cells. A broad
range of concentrations/doses were tested, revealing significant
protection at levels several orders of magnitude lower than
previously tested in in vivo studies of stroke, bringing prophylactic
pretreatment for patients at risk of stroke within the therapeutic
window. Importantly, this study replicated these dose-dependent
effects both in vitro and in vivo. We observed that mice exposed to
middle cerebral artery occlusion displayed two distinct patterns of
injury, small striatal or large corticostriatal lesions and when
lesions were divided into the two subtypes, low doses of meman-
tine reduced the amount of lesion volume present whereas high
doses increased it. These results suggest that memantine is
an effective neuroprotectant at clinically useful doses while the
toxicity found at high concentrations may explain previous
variability in the degree of protection reported.
To investigate the effect of memantine in vitro, we developed a

HDCs model which allowed acute cell death, [Ca2+]i and extra-
cellular glutamate release to be monitored in real time simulta-
neously in astrocytes, neurons, and mixed cultures. Memantine
applied to normal-density culturs at high concentrations (100 to
300 μM) produced a toxic effect under control artificial cerebrosp-
inal fluid conditions and potentiated the injury produced by OGD.
An absence of protection against ischemic conditions at this
concentration is found in experiments using isolated rat optic
nerve,10 an effect that is counteracted by coperfusion with a non-
NMDA glutamate receptor blocker; while negative effects of
higher memantine doses have been noted previously in vivo.31–33

The toxic effect of memantine may be because of the interaction
of the antagonist with the NMDA receptor or at a site distinct from
the receptor. To test this, memantine was applied under
depolarizing conditions, which did not potentiate toxicity,
indicating the toxic effect is not because of the interaction of
memantine at the NMDA receptor since actions at this site are
highly voltage-dependent.18 High concentrations of MK-801 (100
μmol/l) were not toxic, confirming that there is no specific toxicity
after NMDA receptor blockade in this preparation. Memantine has
been shown to interact with various other receptors including the
5-HT and α-nicotinic receptors,34–37 and toxicity may arise from
nonselective effects of this type.
Although higher concentrations of memantine potentiated cell

death during 90minutes of OGD in coculture, significant protec-
tion was seen in the presence of lower concentrations (0.5 to
2 μmol/l). The current well-tolerated therapeutic dose for Alzhei-
mer’s treatment is 5 to 10mg/day, with 5mg/day producing a CSF
concentration in patients of ~ 0.05 μmol/l,38 although the effective
concentration at the receptor mouth in vivo is estimated to be an
order of magnitude higher (Xia et al 2010). Results here show that
NMDA receptor inhibition at these memantine concentrations
attenuates both astrocyte and neuronal cell death in coculture,
while ischemic conditions evoked glutamate release from astrocyte
but not neuronal monocultures. Caution must be used when
interpreting a negative result of this type, however, it is possible
that the lower density of neuronal monocultures resulted in lower
levels of glutamate release compared with the denser glial
monoculture. Neuronal cell death was potentiated by coculture
with astrocytes and was preceded by biphasic cytotoxic [Ca2+]i
rises, while exogenous application of glutamate agonists evoked
[Ca2+]i rises in neurons with little effect in astrocytes. The findings
are consistent with ischemic glutamate release from astrocytes
evoking neuronal [Ca2+]i rises and cell death via a glutamate
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Figure 4. Protection and toxicity of memantine in normal-density cultures. (A) The extent of cell death in neurons, astrocytes, and all cells
under normoxic normoglycaemic conditions maintained for 90minutes in the presence of a range of memantine concentrations. (B) Time
course of the development of all cell death in the presence of the various memantine concentrations. Differences in significance levels arise
from methodological differences in measuring cell death over time (see Materials and Methods). (C) Cell death after 90minutes OGD in
various memantine concentrations in astrocyte, neuron, and cocultures. Note the protection seen at 0.5 and 2 μmol/l, and the potentiation of
cell death in 300 μmol/l memantine. ‘n’ refers to the number of cultures; *Po0.05, **Po0.01, ***Po0.001 versus cell death in 0 μmol/l
memantine.
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receptor dependent form of excitotoxicity, a cascade interrupted
by memantine leading to cell protection. Despite the low incidence
and amplitude of NMDA receptor responses in astrocytes, low
memantine concentrations protected both cell types; an effect
indicative of bidirectional glial-neuronal feedback during ischemic
conditions, where neuronal injury may potentiate astrocyte injury,
while astrocyte glutamate release triggers neuron cell death.
Antiexcitotoxic drugs were first identified as potential stroke

therapies over 30 years ago, but have failed to translate into
clinical practice because of dose-dependent complications.39

Memantine is a moderate affinity noncompetitive NMDA receptor
antagonist, binding directly within the pore of the channel in its
open configuration.35,36,40 Although it displays fast on/off kinetics,
it also shows partial trapping on agonist removal.41 These pro-
perties make memantine effective in models of stroke at high

(20 mg/kg) concentrations when administered in the acute
treatment window;42,43 20 mg/kg/day infusion produces a CSF
concentration in rodents of 0.5 to 1 μmol/l,18 an order of magni-
tude higher than that reported in patients receiving a standard
5mg/day regime.38 Although there are no data indicating rodent-
CSF levels at lower infusion doses, the 0.2 mg/kg/day dose found
to be protective in the current experiments is two orders of
magnitude lower than the standard 20mg/kg/day protocol use
elsewhere and is likely to correlate to the 0.05 μmol/l levels
reported in patients taking 5 to 10 mg/day. That protection was
found at doses lower than previously reported and which are
likely to correlate to well-tolerated current clinical practice
suggests that prophylactic treatment for patients at risk of stroke
is feasible. A discrepancy between the low protective concentrations
found in vitro (0.5 to 1 μmol/l) and those likely to be present in the

Figure 5. Pretreatment with low doses of memantine are highly protective in both striatal and striatocortical lesions. (A) Memantine
pretreatments fail to significantly reduce total lesion volume at any tested concentration (doses shown at figure bottom). (B and C)
Pretreatment with 0.2 mg/kg memantine significantly reduces the volume of striatocortical (B) and striatal (C) lesions. Representative striatal
and striatocortical lesions (2,3,5-triphenyltetrazolium chloride staining of coronal sections showing dark for viable tissue, 48 hours after
ischemia) are shown in the inserts. (D and E) Performance on a 28-point behavioral test were improved for both lesion types at 24 hours after
middle cerebral artery occlusion (MCAO) in animals pretreated with 0.2 mg/kg memantine. (F) Weight loss after MCAO was reduced in mice
with striatal lesions in the group pretreated with 0.2 mg/kg memantine.
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CSF after infusion of 0.2 mg/kg/day in vivo may result from the
known potentiation of the blocking effects of low memantine
concentrations when applied for a long period.10 The standard
20mg/kg/day memantine dose used largely for postlesion studies
of focal ischemia was found to exacerbate the amount of ischemic
damage produced when administered as a pretreatment. A similar
reversal of memantine protection at higher concentrations has
been reported in models of Alzheimer’s disease.44,45

In the current study, as others have also reported, we observed
two distinct patterns of ischemic injury; small striatal lesions and
large corticostriatal lesions. Why a standard protocol of focal
ischemia should produce one of two distinct injury patterns may
relate to variability in vascular anatomy or genetic makeup, or may
arise from a normal distribution in the vascular field size produc-
ing lesions that encroach from the striatum into the cortex in a
proportion of cases,46 where a separate injury cascade may spread
the lesion in an all or none manner throughout a large cortical
area. Initiation of spreading depression, for example, may act to
propagate injury from a relatively small cortical border zone
through the cortical hemisphere.47,48

This study has showed both the protective and toxic effects of
memantine after in vitro and in vivo ischemia. Such dichotomous
effects of memantine were dose-dependent. Memantine is licensed

and approved for treatment of Alzheimer’s disease at low systemic
concentrations, which produce few side effects.45 Because of the
strong correlation of increased stroke risk with patient factors
including previous stroke or transient ischemic attack, hyperten-
sion, age and atrial fibrillation,49–52 patients at high risk of stroke
can be identified. The potentially neuroprotective effect of
prophylactically administered low-dose memantine may thus
represent a pharmacological intervention of potentially immediate
clinical utility for a significant number of patients.
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