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Abstract 13 

 14 

Plankton communities make useful ecosystem indicators, and taking a historical perspective on plankton community 15 

composition provides insights into large-scale environmental change. Much of our understanding of long-temporal 16 

scale change in plankton communities in the North Sea has been provided by the Continuous Plankton Recorder 17 

(CPR) survey, operating since 1931, with consistent time-series data available since 1958. This paper further 18 

increases the temporal scale of our understanding of community change in the North Sea by combining the CPR 19 

dataset with a digitised collection of plankton surveys undertaken by ICES from 1902 to 1912.  After steps taken to 20 

integrate the two disparate datasets, differences in overall community composition between time-periods suggest 21 

that the multidecadal changes observed through the CPR survey time-period may have occurred from a non-stable 22 

baseline that was already on a trajectory of change. Therefore, a stable historical time period in which plankton 23 

communities are assessed against for any impact of human pressures may be hard to define for the North Sea and 24 

instead underlying variation needs to be encompassed within any baseline chosen. Further evidence for the 25 

influence of large scale changes in SST driving change in plankton community composition was found using the 26 

extended dataset. 27 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/161508953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jacob.bedford@plymouth.ac.uk


2 
 
1 Introduction 28 

Climate change is causing widespread changes in marine ecosystems, superimposed on a background of climate 29 

variability that acts at different temporal scales (Hoegh-Guldberg and Bruno, 2010). Plankton communities are 30 

sensitive to changes in the physical marine environment, and have been shown to be responsive to interannual and 31 

multi-decadal climate variability as well as anthropogenic climate change (Hays et al., 2005). As the base of the 32 

pelagic food web, phytoplankton are primary producers (Boyce and Worm, 2015), transferring energy through 33 

zooplankton to higher trophic levels (Richardson, 2008). This sensitivity to environmental conditions and their role in 34 

the pelagic foodweb makes tracking plankton community change useful as an indicator of change in the wider 35 

ecosystem. Much of our understanding of multi-decadal change in plankton communities in the North Sea comes 36 

from the Continuous Plankton Recorder (CPR) survey (McQuatters-Gollop et al., 2015). Consistent monitoring data 37 

available from 1958 through the present has documented widespread shifts in both phytoplankton and zooplankton 38 

communities, specifically the occurrence of basin-scale regime shifts in the North Atlantic (Beaugrand et al., 2014; 39 

Reid et al., 2015).  40 

The value of plankton time series as evidence for policy and management increases with time. Through using long 41 

temporal scale data, the influence of multi-decadal changes in environmental conditions on plankton communities 42 

can be investigated, and the most important environmental influences structuring plankton communities on this 43 

scale can be identified (Edwards et al., 2010; Giron-Nava et al., 2017).  For example, the Atlantic Multidecadal 44 

Oscillation is a term for the natural low-frequency SST variability in the North Atlantic that oscillates between warm 45 

and cool phases on a ~60yr time scale (Edwards et al., 2013). It has been identified as the second largest 46 

macroecological signal in North Atlantic plankton communities, but requires long temporal-scale time-series in order 47 

to detect the influence of transitions between oscillatory phases on community change (Edwards et al., 2013). 48 

Furthermore, the long temporal scale of the CPR survey can help separate these wider oceanographic and climatic 49 

influences on plankton communities, such as the influence of SST, from direct anthropogenic pressures such as 50 

eutrophication, which is particularly useful during formal policy assessments (McQuatters-Gollop et al., 2015).  51 

’Rescuing’ historical ecological datasets, that otherwise may be lost or deemed redundant, has been identified as a 52 

useful way of increasing temporal scale in ecological studies, and can be used to address contemporary marine 53 
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policy challenges, including understanding effects of long-term climate change (Hawkins et al., 2013). Specifically, 54 

the use of rescued historical datasets in avoiding ‘shifting baselines syndrome’ in biodiversity state has received 55 

much attention (Pauly, 1995). This is the phenomenon where neglecting historical changes obscures  the magnitude 56 

of change or variability in ecosystem components. Therefore, rescued historical plankton data can be a tool for 57 

avoiding shifting baseline syndrome in our understanding of the multi-decadal dynamics of plankton communities 58 

(Ward et al. 2008). The ICES historical plankton dataset used in this study is a dataset of plankton samples collected 59 

in the North Atlantic between 1902 and 1912, digitised from historical log books. Hällfors et al. (2013) compared 60 

phytoplankton records from this ‘rescued’ ICES historical dataset in the Baltic Sea with contemporary phytoplankton 61 

samples, and documented compositional differences between the two time periods, potentially driven by both 62 

climate change and eutrophication. By comparing the ICES historical dataset with North Sea data from the CPR 63 

survey, we can better understand changes occurring in North Sea plankton communities pre-1950s, facilitating 64 

further exploration of the effects of large scale temperature change to the Continuous Plankton Recorder temporal 65 

coverage.  66 

Disparities in sampling and analysis methodologies between the ICES historical data and the CPR survey, however, 67 

present challenges in their direct comparison, which need to be addressed before using the datasets together. 68 

Handling disparate data-types is a key challenge facing regional scale monitoring and assessment where data from 69 

multiple different sampling programmes often needs to incorporated (Olli et al., 2013; Zingone et al., 2015). For 70 

example, the OSPAR IA2017 regional-scale assessment of plankton communities incorporated multiple time-series 71 

from across Europe, where taxa were sampled using different methods, and analysed to differing taxonomic 72 

resolutions (OSPAR, 2017). In this study, by integrating and combining the CPR historical time series with the rescued 73 

ICES historical dataset, we aim to provide additional contextual information to the  changes in North Sea plankton 74 

communities between 1958 and 2015 detected by the CPR survey, specifically to address the following questions: 75 

• Is there a difference in plankton community structure (both phytoplankton and zooplankton) between the 76 

early 20th century and the beginning of the consistently-sampled CPR time period (1960s)? 77 

• Which plankton communities and individual taxa are most responsive to SST when examining the two 78 

datasets combined (1902-12, 1958-2015)?  79 
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 80 

2 Data and Methods 81 

2.1 Data sources 82 
 83 

2.1.1 Plankton samples 84 
Data from the period 1902-1912 have become available through the ICES historic plankton digitisation project where 85 

13,379 plankton samples have been digitised from seven historical ICES volumes (McQuatters-Gollop et al. 2011). 86 

The data are collated from different sampling programmes, across the North-East Atlantic, North Sea, Irish Sea, 87 

Baltic Sea and Arctic Sea. After digitisation, data tables from the historical volumes were quality checked. The 88 

samples are all spatially referenced and consist of records of taxa at the presence/ absence level or with semi-89 

quantitative abundance information. In this study, we used all data at the presence/absence level, as to be able to 90 

compare with the Continuous Plankton Recorder survey data. We extracted data from the months February, May, 91 

August and November, as these had the greater numbers of samples. This historical plankton dataset is now freely 92 

available via the ICES data portal (ecosystemdata.ices.dk/HistoricalPlankton/Download.aspx).  93 

The Continuous Plankton Recorder survey has been collecting samples in the North Sea on a routine, consistent basis 94 

since 1958 (Kirby and Beaugrand, 2009). CPRs consist of a filtering mechanism housed in an external body that is 95 

towed behind ships of opportunity at a depth of approximately 6-7m. The speed at which the silk is drawn from a 96 

storage spool is controlled by a propeller, with 10.16 cm of silk corresponding to 18.5 km of tow through the sea 97 

(Batten et al., 2003). CPR data for the months February, May, August and November were obtained for the North 98 

Sea area for phytoplankton (DOI 10.7487/2016.236.1.999) and zooplankton (DOI 10.7487/2016.236.1.998). Although 99 

abundance information is collected for each taxon identified on each sample, for this study data were converted to 100 

presence/absence to make comparable to the ICES historical database.  101 

As well as differences in quantitative resolution between the datasets, there are major structural differences 102 

between the historical ICES surveys and the CPR survey (McQuatters-Gollop et al. 2010). Firstly, the CPR is a 103 

continuous plankton sampling method, using a 270 micron mesh size silk (Richardson et al., 2006).The ICES database, 104 

in contrast, consists of net samples, , collected at fixed point locations by a multitude of disparate sampling cruises 105 

by northern European nations. Therefore, whereas the analysis methodology has remained consistent throughout 106 
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the CPR series, the composite nature of the ICES dataset means that the sampling and analysis methodologies are 107 

not reliably consistent throughout the database. However, both sampling methodologies incorporated sub-sampling, 108 

where only a proportion of the sample is analysed, reducing any differences as a result of volume of water filtered 109 

(e.g. Hällfors et al. 2012).  110 

The mesh sizes of the net samples in the ICES historical database are missing from the sample metadata, and are 111 

likely to be varied. The mesh size of the Continuous Plankton Recorder, 270 microns, is larger than the majority of 112 

standard plankton nets, which tend to range between 5µm - 80 µm for phytoplankton and 125 µm – 200 µm for 113 

zooplankton (John et al., 2001; Castellani and Edwards, 2017) . Importantly therefore, any biases in sampling as a 114 

result of mesh size differences between the ICES historical plankton dataset and the CPR data are likely to come 115 

from the side of the CPR survey, evidenced by a lower number of species recorded overall than the ICES historical 116 

dataset. For example, CPR methodology likely undersamples smaller phytoplankton taxa, although they often are 117 

retained on the silk strands of the mesh (taxa as small as 5-10 µm are regularly recorded), which constitutes 30-40% 118 

of the mesh area (Batten et al., 2003)Similarly, the CPR survey likely undersamples small zooplankton taxa. A 119 

previous study however, comparing CPR data to net samples  taken at the L4 sampling station in the Western English 120 

channel, that used a mesh size of 200 microns, concluded that although the abundance of zooplankton taxa were 121 

generally lower, all dominant zooplankton species recorded at L4 were also common to CPR data (John et al., 2001). 122 

In this study, occurrence frequencies of select plankton taxa, based on presence/absence resolution data, were 123 

compared between datasets. 124 

Samples from both datasets located in the North Sea region were divided into a ‘Northern’ North Sea region and a 125 

‘Central/Southern’ North Sea region based on the border between ICES regions 4b and 4c (Figure 1). The two spatial 126 

areas represent a balance between the need for spatial specificity in comparing plankton communities with known 127 

differences occurring across latitudes, and the retention of a reliable sample size within each area. To ensure the 128 

depth of the ICES samples were comparable to the CPR dataset all ICES historical samples collected below 15m, or 129 

vertical hauls that started below 15m were removed from the resulting sample list, along with samples for which no 130 

depth information was given. To compare plankton communities from the same area, CPR samples within half a 131 

degree of the ICES historical sample locations were then selected. 132 
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 142 

Figure 1. Location of historical samples (large yellow) and centre points of CPR samples (small blue), included in the 143 

study. North Sea area (dashed white line) divided into ‘Northern’ and ‘Central/Southern’ areas based on the boundary 144 

between ICES subregions 4b and 4c (solid white line). 145 

 146 

2.1.2 Sea surface temperature (SST) data 147 

Monthly SST data were downloaded for the North Sea region from the International Comprehensive Ocean 148 

Atmosphere Dataset (ICOADS) at a 2 degree resolution. Data points were extracted from the Northern and 149 

Central/Southern North Sea area, and averaged for each year between 1902 and 2015. 150 

 151 

2.2 Data preparation 152 

Taxa lists of both phytoplankton and zooplankton were extracted from the historical ICES and CPR databases and 153 

both the ICES taxa lists and the CPR taxa lists were run through the Taxon Match Tool available on the WoRMS 154 
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(World Register of Marine Species) website (http://www.marinespecies.org) to update all names to the most up-to-155 

date accepted nomenclature. Due to the ICES database being a composite of multiple sampling programmes, 156 

sporadically occurring taxa were removed, as these may not have been recorded or identified inconsistently 157 

between the different sampling programmes. For both datasets, a threshold of 1% frequency of occurrence was 158 

selected as a cut-off point for taxa to include in analyses of taxonomic composition. This represented a balance 159 

between the need to remove sporadic taxa, as highlighted by Hällfors et al. (2013), but still include rare species in 160 

analyses. Because of the decade time-span of the ICES historical dataset, this list for the CPR data was constructed 161 

based on a  1% occurrence frequency threshold in any decade , to ensure consistency.  162 

The taxa lists differed in the taxonomic resolutions of recorded taxa. As the CPR time-period is the longer of the two, 163 

and the taxa are generally more coarsely taxonomically resolved, the taxa within the ICES list were aggregated to 164 

their equivalent resolution within the CPR taxa list. For example, the CPR taxon name ‘Radiozoa’ is a phylum, 165 

whereas in the ICES taxa list there were four taxon names within the phylum Radiozoa. These taxa were therefore 166 

aggregated to the coarser CPR resolution. In some cases, new groups were constructed to aggregate multiple taxa. 167 

‘Gelatinous zooplankton’ was created as Cnidarians and Ctenophores were sometimes recorded as ‘Coelenterata’ 168 

within the ICES dataset. This nomenclature is outdated, and is not a monophyletic group, and so it would be 169 

impossible to determine whether these records related to ‘Cnidaria’ taxa or ‘Ctenophora’ taxa. Some taxa had 170 

resolutions too low for aggregation, for example records of ‘Crustacea’ with associated life stages ‘larvae’ or 171 

‘nauplius’. Samples containing these records were removed before analysis, so the low taxonomic resolution did not 172 

skew results. Lastly, taxa that are not consistently recorded throughout the CPR time series, as a result of analysis 173 

changes, were removed. Similarly, any taxa within the ICES taxa list that would not be reliably sampled by the CPR 174 

due to their small size or delicate nature were removed, thus reducing biases from differing mesh sizes.  175 

After integrating the taxonomic nomenclature and resolution of the two taxa lists, of taxa that occurred in over 1% 176 

of samples, 39 phytoplankton taxa and 27 zooplankton taxa were unique to the ICES list, whilst 10 phytoplankton 177 

taxa and 13 zooplankton taxa were unique to the CPR list. These differences could represent large changes in 178 

occurrence frequency over the time period, but could also still be a result of sampling biases between the two 179 

datasets, for example though different mesh sizes. We therefore only used taxa that occurred in over 1% of samples 180 

in both datasets. These lists of common phytoplankton and zooplankton taxa shared between the two datasets 181 
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represented taxa that were assumed to be consistently sampled by both surveys (Hällfors et al., 2013), further 182 

minimising biases from differing mesh sizes , and consisted of 44 phytoplankton taxa and 30 zooplankton taxa 183 

respectively (Table 1). Records of these shared common taxa were then extracted from the CPR and ICES samples, 184 

before determining the occurrence frequency of each taxon for each sampling month. Months with fewer than 5 185 

samples were removed before analysis.  186 

                           Table 1. ‘Matching’ taxa lists, at aggregated taxonomic resolution, used in analysis 187 

Phytoplankton Matching List 
  

Zooplankton Matching List 
         

Diatoms 
    

Holoplankton 
  Asterionellopsis glacialis Navicula spp. 

  
Acartia spp. 

 
Oithona spp. 

 Bacillaria paxillifera Odontella aurita 
 

Anomalocera patersoni Para-Pseudocalanus spp. 

Bacteriastrum spp. Odontella sinensis 
 

Appendicularia spp. Paraeuchaeta norvegica 

Bellerochea horoglacialis Paralia sulcata 
  

Calanus spp. 
 

Podon spp. 

 Ceratoneis closterium Proboscia alata 
  

Centropages spp. Temora longicornis 

Chaetoceros spp. Pseudo-nitzschia delicatissima 
 

Centropages hamatus Thecosomata  

 Corethron spp. 
 

Pseudo-nitzschia seriata 
 

Centropages typicus Tintinnidae 

 Coscinodiscus spp. Rhaphoneis amphiceros 
 

Chaetognatha spp. 
  Coscinodiscus concinnus Rhizosolenia hebetata f.semispina Copepoda spp. 

   Ditylum brightwellii Rhizosolenia setigera 
 

Corycaeus spp. 
   Eucampia zodiacus Rhizosolenia styliformis 

 
Euphausiacea spp. and Mysida spp. 

 Fragilaria 
 

Skeletonema costatum 
 

Evadne spp. 
   Guinardia delicatula Thalassionema spp. 

 
Foraminifera spp. 

  Guinardia striata Thalassiosira spp. 
 

Isias clavipes 
   Halosphaera spp. Thalassiothrix longissima 

 
Labidocera wollastoni 

  Lauderia danicus 

   
Metridia lucens lucens 

         
Dinoflagellates, 
silicoflagellates and 
haptophytes 

   
Meroplankton 

  Ceratium fusus 
 

Tripos furca 

  
Bivalvia spp. 

   Ceratium horridum Tripos lineatus 

  
Bryozoa spp. 

   Ceratium tripos 
 

Tripos longipes 

  
Cirripedia spp. 

   Dictyochophyceae Tripos macroceros 
 

Decapoda spp. 
   Dinophysis spp. 

    
Echinodermata spp. 

  Gonyaulax 
    

Pisces spp. 
   Phaeocystis 

    
Polychaeta spp. 

   Prorocentrum spp. 

       Protoperidinium spp. 

       
          188 

 189 

 190 
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2.3 Multivariate analysis 191 

To investigate whether significant change occurred in the plankton community between the ICES historical time-192 

period and the beginning of the time-period covered by the CPR survey, we tested for an effect of time period 193 

(historical dataset, 1902-1912, to the 1960s decade of the CPR time period) on plankton community composition 194 

using multivariate generalised linear models with the ‘mvabund’ package in R (Wang et al., 2012). This method fits a 195 

generalised linear model to each taxon separately, and then gives a summed likelihood ratio for the given predictors 196 

for each model, which can be used as a test statistic (‘Sum-of-LR’) for the effect of predictors on the community as a 197 

whole. Resampling is then done at the whole-sample level (here the sampling month) to test for significance while 198 

accounting for correlations between taxa (Wang et al., 2012). The method accounts for a mean-variance relationship 199 

in the data (Warton et al., 2012). The generalised linear models were fitted for the occurrence frequency of each 200 

taxa in each sampling month, with a complementary log-log link to accommodate the proportional, binomial data 201 

(Wang et al., 2012). For each model, the log of the sampling month occurrence frequency total was used as an offset 202 

as an approximate method of analysing relative compositional change, and weights were included so that sampling 203 

months with higher sample sizes were given stronger weighting. We extracted the univariate statistics for each taxon 204 

in the model, to examine the contribution of each taxon to any overall effect.  205 

Furthermore, we visualised change in the plankton community over the extended time period using non-metric 206 

Multidimensional Scaling (nMDS) ordination plots. Plots were constructed for each area and plankton type using the 207 

vegan package in R (Oksanen et al., 2007). These were constructed based on the relative occurrence frequency of 208 

each of the matching list taxa in each sampling month.  .  209 

After testing for the effect of time period on community composition, we tested whether SST difference between 210 

the two periods could explain any observed differences in community composition using multivariate generalised 211 

linear models. Here, models including SST were compared to models including SST and time-period, as a significant 212 

effect of time-period over and above SST suggests there is variation between the time-periods not explained by 213 

changes in SST alone. Lastly, we tested for any overall effect of SST on plankton community composition, over the 214 

whole extended time period, when examining the two datasets combined. Models with SST and season as predictors 215 

were compared against models with just season as a predictor to look for the influence over and above seasonality.  216 
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3  Results 217 

 218 

3.1 Changes in plankton community composition over time 219 

Significant differences in overall community composition were found for both phytoplankton and zooplankton in 220 

both the Northern and Central/Southern North Sea areas, suggesting a change in the North Sea plankton community 221 

between the beginning of the 20th century and the 1960s. The zooplankton communities showed a stronger overall 222 

difference, with larger overall summed likelihood ratios for an effect of time period, despite a lower number of taxa 223 

within the list of shared common taxa (Northern North Sea: Sum-of-LR= 1891.3, p= 0.004; Central/Southern North 224 

Sea: Sum-of-LR= 2355.5, P=0.003). In contrast, the overall effect of time period, although significant, was lower for 225 

phytoplankton communities, suggesting a smaller community change (Northern North Sea: Sum-of-LR= 299.44, 226 

p=<0.001; Central/Southern North Sea: Sum-of-LR= 825.65, p<0.001). 227 

However, when extracting the individual contributions of each taxon to the overall community response, a low 228 

number of taxa in all communities showed significant contributions to overall community responses. Furthermore, 229 

the overall community responses were largely dominated by a low number of taxa.  For example, in each community 230 

over 20% of the variation was driven by one individual taxon, which showed changes in relative occurrence 231 

frequency in all months. These were Protoperidinium (a heterotrophic group) and Tintinnidae in the Northern North 232 

Sea area for phytoplankton and zooplankton communities respectively, which showed declines. In the 233 

Central/Southern North Sea area Guinardia striata showed adecline, whilst ‘Euphausiacea and Mysida’ showed an 234 

increase. Out of these taxa, only the decline in Tintinnidae in the Northern North Sea was a statistically significant 235 

contribution to community change. Other taxa showing large contributions to overall effect were Dinophysis within 236 

the Northern North Sea phytoplankton community, and Anomalocera patersoni within the Northern North Sea 237 

zooplankton community, both of which showed a decline  ,although the decline in Dinophysis was not a statistically 238 

significant contribution to community change. Aside from these particular taxa, the overall community change 239 

between the beginning of the 20th century and the 1960s was distributed relatively evenly between the taxa, 240 

suggesting a holistic community change between the two time periods. 241 

As sampling biases between the datasets, such as varying mesh sizes, may have influenced the taxa that had 242 

disproportionate contributions to overall community change, we removed taxa contributing over 20% of variation 243 
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between time periods before visualising community composition over the extended time period using nMDS plots 244 

(Figure 2). ’May 1912’ was removed due to being highly anomalous. Here, the stronger effect of time-period on 245 

zooplankton composition can be seen with a clearer distinction between the historical (1902-1912) decade and the 246 

1960s . Furthermore, there is a clearer distinction between the 1960s and the 2000s within the zooplankton plots, 247 

especially for the Central/Southern North Sea, suggesting phytoplankton to be more stable in terms of change in 248 

community composition over multi-decadal scales.  249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

Figure 2. nMDS plots using Bray Curtis dissimilarity, based on monthly occurrence frequency of the matching list taxa 263 
in each North Sea region. Data points from the ICES historical dataset (1902-1912) are shown in orange and are 264 
bound by orange polygon (convex hull). K=3 for all except Northern NS zooplankton, where k=4 to lower stress. Data 265 
points from 1971-1999 from the CPR survey are shown in grey, with data from the 1960s shown in blue and bounded 266 
by blue polygon. Data from the 2000s decade are in purple and bounded by purple polygon, for additional context.   267 

 268 
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 269 

3.2 Influence of SST change on plankton communities 270 

Taxa contributing over 20% of between-dataset variation then remained removed when analysing the effect of SST 271 

on plankton community composition, to ensure any effects of SST found were not being driven by a small proportion 272 

of the taxa. SST has increased in both the Northern and Central/Southern North Sea areasand particularly sharp 273 

increases occurred during the late 1920s and 1980s (Figure 3). The average annual SST for the ICES historical time 274 

period (1902-1912) was 9.00 °C for the Northern North Sea area, rising to 9.53 °C in the 1960s. In the 275 

Central/Southern North Sea area, the average SST for the ICES historical time period was 9.59 °C, rising to 9.86 °C in 276 

the 1960s.  277 

 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

Figure 3. North Sea SST variation between 1902 and 2015. Annual data are in grey and the 5 year mean is in blue.  286 

 287 

Differences in SST between the time periods suggest that changes observed in overall plankton community 288 

composition between 1902-1912 and the 1960s coincided with changes in environmental conditions within the 289 

North Sea. We tested this further using multivariate generalised linear models; a significant effect of time-period 290 
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over and above SST suggests there is variation between the time-periods not explained by changes in SST alone. A 291 

significant effect of time period over and above SST was found only in the Central/Southern North Sea 292 

phytoplankton community (p=0.023), suggesting variation between time-periods could not be explained by SST 293 

change only in this community. In the Northern North Sea zooplankton and phytoplankton communities, as well as 294 

the Central/Southern zooplankton community there was no significant effect, suggesting variation could be linked to 295 

large-scale SST change.  296 

 297 

When then using both the ICES historical dataset and the full CPR dataset together, giving an extended temporal 298 

coverage, we found significant effects of SST on phytoplankton and zooplankton communities in both the Northern 299 

and Central/Southern North Sea areas (Table 2). SST had a greater influence in the Central/Southern North Sea  than 300 

the Northern North Sea area on both phytoplankton and zooplankton composition, and a larger influence on 301 

zooplankton than phytoplankton overall. No phytoplankton taxa showed individual significant contribution to overall 302 

community response. In contrast, there were multiple individual significant contributions to the overall response 303 

within zooplankton communities, with the most number of significant individual contributions shown in the 304 

Central/Southern North Sea. These included both meroplankton and holoplankton taxa, with the largest 305 

contributions to overall community response from Centropages typicus and the multi-species group Bivalvia.  306 

Centropages typicus showed an increase in relative occurrence frequency over time, whilst Bivalvia showed a 307 

decrease in relative occurrence frequency over time, coinciding with increasing annual SST (Figure 4). 308 

 309 

 310 

 311 

 312 

 313 
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Table 2. Plankton community responses to SST when examining both datasets combined (1902-1912, 1958-2015). 314 

Sum-of-LR= Summed likelihood ratio. 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

Figure 4. A) Occurrence frequency of Centropages typicus by month from wider time-period. B) Occurrence frequency 326 

of Bivalvia by months from wider time-period.  327 

Plankton community Overall community 
response 

Taxa with significant  
contributions to community 
response to SST over the 
extended time period 

  Sum-of-LR p 
 Northern NS phytoplankton 195.7 0.044 N/A 

Central/Southern NS phytoplankton 542.86 <0.001 N/A 

Northern NS zooplankton 669.94 <0.001 Anomalocera patersoni 

    
Decapoda spp. 

    
Echinodermata spp. 

Central/Southern NS zooplankton 1999.7 <0.001 Bivalvia 

    
Calanus spp. 

    
Centropages typicus 

    
Corycaeus spp. 

    
Decapoda spp. 

    
Oithona spp. 

    
Para-Pseudocalanus spp. 

    
Polychaeta spp. 
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Although overall community composition change between 1902-1912 and the 1960s may be linked to changes in 328 

SST, taxa that had the largest univariate contributions to community change did not necessarily have large responses 329 

to SST across the wider time period (1902-1912, 1958-2015). This suggests that although a change in temperature 330 

conditions may have contributed to the overall community response, it does not necessarily explain individual taxon 331 

changes between the two time periods. Furthermore, any potential influences of specific environmental drivers on 332 

community composition differences between the two time-periods may be at least partially obscured by the 333 

differences in sampling and analysis methodologies between the two datasets used, and the low quantitative 334 

resolution available.  335 

 336 

4 Discussion 337 

Here, we have demonstrated the value of ‘rescued’ historical plankton data in increasing the temporal scale of 338 

understanding of community change. By harmonising the taxonomic lists from the two datasets in order to ensure 339 

comparability and then further selecting a subset of shared, common taxa based on a 1% occurrence frequency 340 

threshold, and using presence/absence semi-quantitative resolution, we have reduced the influence of disparate 341 

sampling and analysis methodologies. Results suggest that the 1960s had a significantly different plankton 342 

community composition compared to the early 1900s, indicated by variation in the relative occurrence frequency of 343 

shared common taxa. Differences in community composition between time periods were largely driven by a small 344 

number of taxa. The remaining effect was shared relatively evenly between the remaining taxa, suggesting the 345 

overall significant changes in community composition are a result of subtle change across the taxa list, with 346 

individual taxa having mainly non-significant contributions to overall community response.  347 

Zooplankton communities showed a greater difference between the ICES historical time period and the 1960s 348 

decade of the CPR time period than phytoplankton communities. The nMDS plots also revealed clearer visual 349 

distinctions between the 1960s decade and the 2000s decade within the zooplankton communities than within the 350 

phytoplankton communities. This suggests that although differences between the time periods were found within 351 

phytoplankton communities, over the whole time period the phytoplankton community showed less directional 352 

change in community composition at the multi-decadal scale than zooplankton communities. A similar result was 353 
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found during the OSPAR (Oslo-Paris Convention for the Protection of the North-East Atlantic) Intermediate 354 

Assessment 2017, where larger changes in indicators of zooplankton community structure were found compared to 355 

phytoplankton communities (OSPAR, 2017). This assessment result could therefore be representative of multi-356 

decadal patterns of variation occurring at the century-scale.  357 

 Furthermore, we found that the plankton community change identified between 1902-1912 and the 1960s could be 358 

explained through changes in SST in Central/Southern North Sea zooplankton and Northern North Sea 359 

phytoplankton and zooplankton. These community changes in response to SST could therefore be attributed to a 360 

regime shift that has been shown to have occurred in the North Atlantic during the 1920s and 1930s, which is argued 361 

to be the largest and most significant climate-induced regime shift of the 20th century (Drinkwater, 2006), associated 362 

with increases in SST. Furthermore, change in the Central/Southern North Sea phytoplankton community could not 363 

be explained by SST change.  It is likely, therefore, that finer scale changes, in variables other than SST, drove the 364 

change in the Central/Southern North Sea phytoplankton community. Hällfors et al. (2013) similarly described an 365 

unknown ‘period effect’ between the ICES historical time period and contemporary phytoplankton samples in the 366 

Baltic Sea, where variation could not be explained by environmental change alone, and instead they hypothesise a 367 

potential signal of eutrophication in the  change observed. At the regional scale in the North Sea however, previous 368 

research has suggested that eutrophication occurs mainly in coastal regions, rather than open sea (McQuatters-369 

Gollop et al., 2009). Furthermore, although we are confident that differences in taxonomic nomenclature and 370 

resolution are not driving any patterns observed, we cannot rule out an influence of the low quantitative resolution 371 

resulting from sampling and analysis biases, especially for the taxa showing disproportionate contributions to the 372 

overall community response.   373 

By integrating the CPR survey with the ICES historical data, we facilitated exploration of the influence of warming 374 

SSTs on multidecadal plankton community change at the century-scale, although focusing on occurrence frequency, 375 

rather than abundance values. Over the extended time period (1902-1912, 1958-2015), SST had a stronger influence 376 

on zooplankton communities than phytoplankton, in both the Northern and Central/Southern North Sea areas. In 377 

particular, it is known that temperature is an important structural variable for zooplankton communities and is a key 378 

determinant of the limits to distributions (Richardson, 2008). In contrast, although SST was a significant driver of 379 

community composition in phytoplankton in both the Northern and Central/Southern North Sea, no single taxa 380 
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showed significant contributions to the overall community effect. Previous studies have suggested the importance of 381 

physical variables other than SST directly influencing phytoplankton community composition including salinity and 382 

wind stress (Hinder et al., 2012).  383 

Multiple zooplankton taxa in the Central/Southern North Sea area showed significant univariate responses to SST 384 

change, with Centropages typicus and the multi-species group Bivalvia showing the largest responses. A positive 385 

association between the abundance of Centropages typicus and SST has previously been identified in the North Sea 386 

(Lindley and Reid, 2002), and this pattern is also shown here when examining the CPR time-series at a 387 

presence/absence resolution.  The lack of a large difference in relative occurrence frequency between the beginning 388 

of the 20th century and the 1960s found here however suggests that the response of Centropages typicus to SST 389 

occurred since the 1960s. In contrast, the larger difference in the occurrence frequency of Bivalvia found here 390 

between the beginning of the 20th century and the 1960s suggests the decline in the abundance of bivalve larvae 391 

previously identified in the North Sea (Kirby et al., 2008) occurred over a longer time scale. Kirby et al. hypothesise 392 

that the long-term decline in bivalve larvae found through the CPR survey is a result of predation from increasing 393 

abundance of decapod larvae, also observed through the CPR survey, and the increase in decapod larvae is 394 

associated with increasing SST (Lindley et al., 2010). In this study, decapod larvae in the Central/Southern North Sea 395 

had a significant response to SST, and increased in relative occurrence between 1902-1912 and the 1960s, 396 

suggesting that trophic amplification of a climate signal could explain the decrease in bivalve larvae also at the 397 

century scale. The differences in whether the taxa with strong overall responses to SST also showed large differences 398 

in occurrence frequency between time periods suggests that the temporal scale of responses to SST change, and 399 

temporal scale of baseline shifts, is variable between individual taxa.  400 

 401 

4.1 Conclusions and policy implications 402 

Through integrating and directly comparing the CPR dataset to the ICES historical database, important 403 

considerations have been identified for using disparate plankton datasets together, with applications for large scale 404 

assessment and integrated monitoring programmes, such as regional scale assessments undertaken at the OSPAR 405 

level (OSPAR 2017). Particularly, zooplankton taxa varied greatly in the taxonomic resolution in which they were 406 
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recorded between surveys, and much attention needs to be drawn to this when designing integrated monitoring 407 

programmes constructed from different surveys. However, we have shown that a subset list of shared common taxa 408 

can inform on community change when combining data from disparate sources. Furthermore, occurrence frequency 409 

seems to be a relevant proxy for abundance, when abundance data is non-comparable, for example occurrence 410 

frequency resolution still revealed strong seasonality signals. As sampling and analysis biases cannot ever be fully 411 

reconciled in contemporary comparisons of rescued historical datasets, such as varying mesh sizes, often resulting in 412 

low quantitative resolution, we suggest that ‘rescued’ historical datasets can be useful as an additional contextual 413 

tool for understanding climate change effects on plankton communities, but caution should be employed when 414 

using disparate historical datasets as robust evidence bases on their own.   415 

A stable historical baseline, from which plankton communities are assessed for impacts of direct anthropogenic 416 

pressures, may be hard to define in the North Sea, as the plankton communities vary on inter-annual, multi-decadal 417 

and, suggested here, century-wide scales in response to environmental change. Phytoplankton community 418 

composition may show less directional change in community composition, in terms of the relative occurrence 419 

frequency of common taxa, over multi decadal time scales than zooplankton communities.  Although statistically 420 

significant changes were observed in particular individual taxa between time periods, and across the wider time-421 

series in response to SST, this does not necessarily inform on the ecological significance of changes. When formally 422 

assessing change in North Sea plankton communities under policy drivers, it is important to consider the functional 423 

consequences of community change, as well as the century-scale shifts in community composition baselines. 424 
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