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Abstract 

Integrally water-heated -of-

Temperature 

variation and temperature cycling, during heating and cooling, affect the properties of 

tool material and may produce undesirable thermal effects that degrade the tool 

durability and performance, especially when the tool construction involves various 

materials. Hence, in the current study, the performance and the thermomechanical 

behaviour of an integrally water-heated tool have been investigated using finite element 

analysis method. The intended tool, in the current study, consists different materials of 

composite and metals and is designed to heat up to 90 C. Linear mechanical properties, 

CTEs and transient heating curve of each tool part are determined experimentally and 

set during the numerical analysis of tool structure to calculate the static thermal load 

effects of deformation, stress and strain. Comparing the numerical thermal effects with 

the ultimate stresses and strains of the tool materials concluded that no failure occurs 

with regard to static thermal loads. However, the calculated stresses are as much as the 

lowest magnitude of safety relates to the tool mould part made of Alepoxy.    

Keywords: laminate and particle reinforced composites, strength, thermal properties, 
finite element analysis, deformation. 
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1 Introduction  

Composite tooling is subjected to thermal loading of heating and cooling during service, 

resulting in complex transient temperature variations through the tool, due to the 

combination of different material types and thermal properties. These temperature 

changes produce differential expansion or contraction. Thermal deformation will be 

stress-free in unrestrained isotropic materials, if the temperature variation is uniform 

over the body [1, 2]. Generally, thermoelastic stresses occur in constrained anisotropic 

materials and could result in damage if they exceed allowable limits [3, 4]. When 

materials of different thermal expansions, e.g. bi-material strips and composite 

structures, are bonded together, temperature change causes internal thermal stresses 

and/or thermal deformation [5, 6]. 

Simple geometries can be modelled analytically. Timoshenko [7] obtained a model for 

the longitudinal normal stresses in bimetallic strips under thermal loading, based on 

elementary beam theory. Bi-material plates that are heated uniformly take a spherical 

form [7], because of the equal and constant curvatures that occur along the in-plane 

directions of the plate. Many researchers have used numerical methods to analyse 

bimaterial structures with different geometries and material properties. For example, Fo-

van [8] concluded that the maximum interfacial shear and normal stresses concentrate at 

the ends, through a distance roughly equal to the strip thickness. Suhair [9] considered 

the longitudinal and transverse interfacial compliances and suggested a somewhat 

complicated analytical model for evaluating the interfacial stresses in thermostat strips. 

The performance of Suha  is compared with two other models and emphases 

that extreme care must be taken when  calculating the stresses near the free edges [10]. 

Timoshenko also proposed an analytic model for single tubes with different wall 
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thickness ( thick , thin  and very thin ) under thermal load [7, 11, 12]. The model 

calculates the steady state thermal stress, strain and deformation, assuming a radial 

temperature variation (across the tube wall thickness), constant axisymmetric 

temperature distribution and free expansion of the tube. Distribution of thermal stresses 

near the free ends of the tube is more complicated due to the discontinuity of the tube 

edge, and temperature variation along the tube thickness [11, 13]. 

Temperature variations modify and degrade mechanical and thermal properties of 

materials. In extreme cases the system performance and structural integrity may be 

affected [14, 15]. Thermal-related failure may damage the structure directly (e.g. 

thermal deformation and thermal shock) or gradually. Thermal stress may initiate 

cracks, delaminations and thereby the system failure directly or gradually by creating 

incremental obstacles for the performances. The behaviour of composite materials is 

particularly complex, since mismatched thermal properties occur at the micro-scale 

(fibre/matrix) as well as at the laminate scale (ply) [16, 17]. 

Composites micro-mechanics deals with the mechanical properties of the constituents 

and their interaction, whereas macro-mechanics is concerned with the mechanical 

characteristics of the produced composite structure (laminate) without direct regard for 

the constituents and their interaction. The latter as followed in the current study. 

Compared to isotropic materials, there is a complicated relationship between the applied 

loads and deformation in anisotropic composites that can lead to unexpected 

behaviours. For example, temperature variation produces uniform expansion or 

contraction in all directions in isotropic materials, whereas it is non-uniform in 

composites and causes distortion. The expansivity mismatch between the different 

resins or adhesives in composite tooling, can cause disbonding of the heater from the 
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tool and delamination of the bonded parts of the tool that affect tool thermal 

performances of heating and structure strength [18]. Shahidi [19] observed significant 

delaminations on composite tool skins, especially heated tools, that incorporated the use 

of steam and hot air heating pipes and deduced that the expected damage of the heater 

systems, especially the electro fabrics, may be eliminated by the placement of several 

insulation layers on the back-face of the tool. The most expected thermal damages in 

composites are transverse microcracks in the matrix, when the tensile strength of matrix 

is exceeded, delamination of the plies due to exceeding the interlaminar shear strength 

and fibre failure due to the buckling of fibres [20, 21].  

The water-heated tool used in the present study involves different bonded materials 

(composites and metals) with different CTEs and performs heating up to 90 C suitable 

for curing of low temperature moulding (LTM) liquid resin or prepregs [22]. In this 

study, the tool structure is modelled in commercial finite element analysis software 

ANSYS to define the behaviour and distribution of the thermal stresses, strains and 

deformations caused by temperature variation through the tool geometry. This is 

preceded by validation studies on simple geometries with analytic solutions. The linear 

mechanical properties and CTEs of the constituent tool materials as well as the heating 

history (transient heating curve) of each tool part (tool surface, mould and channel) are 

characterised experimentally and set during the tool modelling. Finally the modelling 

results of tool thermomechanical behaviour are compared with the measured mechanical 

properties of the tool material to draw conclusions regarding the durability of the tool 

structure during repeated heating cycles.  
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2 Overview of the integrally water-heated tool 

The integrally water-heated tool (Figure 1) involves different parts (channel, tool 

surface, and mould) that are made of copper, CFRP (carbon non-crimp triaxial fibre and 

SR8100 epoxy) and Alepoxy (mixture of aluminium particles and epoxy), respectively 

[22]. The materials possess dissimilar thermal properties which result in different 

heating rates for each material. The tool is suitable for moulding a variety of composites 

with low temperature moulding (LTM) liquid resin or prepregs up to 90oC cure 

temperature. A number of K-type thermocouples were distributed at the tool interfaces 

between the mould, tool face and the channel as well as at the tool back face.  

 

Figure 1 the water-heated tool. 

3 Numerical methodology   

3.1  Numerical model of the tool geometry 

Using symmetry, one-quarter of the integrally water-heated tool, as shown in Figure 2, 

is modelled in ANSYS workbench. The symmetry faces are selected as frictionless 

supports, while the back face is selected to constraint the model displacement in z-

direction and prevent rigid body motion during analysis.  
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Figure 2 A one-quarter model of the tool 

3.2 Mesh generation  

Various meshing methods were applied and mesh quality was evaluated. A total of 

47160 elements was used to provide accurate results with acceptable run time and PC 

memory requirement. Figure 3 shows part of the mesh used.  

Figure 3  Meshing of the experimental tool model. 
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3.3 Applied boundary conditions  

 The heating profile of each tool part, as plotted in Figure 5, was measured 

experimentally and set as boundary conditions for the simulation. The instantaneous 

temperature change of each tool part was measured experimentally by a number of 

thermocouples distributed at various points of the tool interfaces [22], and their average 

defines as the heating curve (Figure 4). Accordingly the fastest and the slowest heated 

parts, the channel (copper) and the tool face (CFRP), respectively, were identified and 

the maximum temperature variation between them was obtained as 15.6 C. This occurs 

after about 400s then reduces to 6.8 C (steady state) after about 800s. Consequently the 

heating period of 700s was defined as the transient heating time (  for simulations.  

 

Figure 4 The heating profiles applied to each part of the tool model. 

3.4 Material properties  

In view of the small variation of tool material properties with temperature, and the 

limited temperature range operation, the model was run with constant thermal 

properties.  
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3.4.1 Mechanical properties 

The Alepoxy and CFRP laminate composites have isotropic and orthotropic properties, 

respectively. The constant linear mechanical properties, as listed in Table 1, are 

calculated from those of the constituents according to rules of mixture (RoM) and 

Autodesk software, respectively [23]. Figure 5 illustrates the calculation procedure for 

the CFRP laminate properties.  

Figure 5 Calculation plan for the mechanical properties of CF laminate.  

A flexural modulus test was performed on an Instron 3367 machine (using the three-

point bending method) in accordance with ASTM D790-07 [24], after preparing 

uniform rectangular specimens, at a span to depth ratio of 32 [25], according to the ISO 

14125 [26], and flexural modulus of 44280 MPa is obtained for the CFRP laminate. 

Different CFRP laminates of 0.53 volume fraction, [45, 0,-45,-45, 90, 45]s fibre 

orientations and 0.26 mm ply thickness, were built in Autodesk by laminas designed 

according to the matrices and carbon fibres available in the software. Autodesk defines 

the mechanical properties of each laminate constructed including flexural modulus, 
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which was compared with the experimental value to find the one most similar. 

Accordingly the desired linear mechanical properties of the actual CFRP laminate 

(Table 1) are obtained. 

3.4.2 Coefficient of thermal expansion (CTE)  

The coefficient of thermal expansion (CTE) of the tool materials, as listed in Table 1, 

were measured in accordance to ASTM D5335-14 [27] utilizing the electrical resistance 

strain gauge technique. The method determines the CTE of the test materials by 

comparing with that of a reference material with a known expansion [28, 29]. Linear 

strain gauges of SGD-

tolerance, and K-type thermocouples were used. The thermocouple has measuring 

olerance and made by Labfacility 

according to IEC 584-2 specification, formerly BS4937:1983. 

Table 1 Linear mechanical and thermal properties of the tool materials 

The measurement showed the orthogonal in-plane CTEs of Alepoxy to be quite similar, 

 0.1 10-6 C-1 in that of CFRP, therefore an average 

of 1.9 10-6 C-1 was used. The through-thickness CTE of Alepoxy is assumed to be the 

same as in-plane due to its isotropic behaviour, but that of the orthotropic CFRP 

laminate is calculated by the RoM, according to its in-plane CTE and that of the fibre 

Materials 

Fibre 
Volume 
fraction 

 
ratio 

 
CTE 

tensile 
modulus 

Shear 
modulus 

Ultimate 
tensile 

strength 

Ultimate 
compressive 

strength 

Ultimate 
Shear 

strength 

- - -1 MPa MPa MPa MPa MPa 

Alepoxy orthotropic 0.48 0.34 32x10-6 6200 2300 120 -190 140 
Copper[30] orthotropic - 0.34 17x10-6 110x103 41x103  430 -430 170 

CFRP 
In-plane 0.58 0.451 1.9x10-6 8100 21x103 740 -490 53 
Out-plane 0.58 0.219 2.3x10-6 35600 2800  160 -240 50 
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constituent (1.2 10-6 C-1), because the laminate thickness is too small for direct 

measurement. 

4 Verification of numerical methodology 

A simple analytical model of a hollow cylinder was used to validate the correct 

assignment of boundary conditions and material properties. The tool channel has a 

circular profile and transfers hot water (at 90 C) to heat the tool from ambient 

temperature (17 C), and is therefore subjected to thermal stresses and deformation. 

Therefore a copper tube of 60 mm length, 5 mm external diameter and 0.7 mm wall 

thickness, was used as a validation model. The temperatures of the internal and external 

surfaces of the tube were set as that of water and ambient, resulting in a temperature 

variation of 73 through the wall thickness (Figure 6).  

 

Figure 6 Numerical distribution of temperature throughout the tube thickness. The internal and 
external faces of the tube were set at 90 C and 17 C, respectively as boundary condition. 

 Timoshenko  mathematical model [12] for thin wall hollow cylinders is applied to calculate 

the bending moment at the free ends of the model and consequently the maximum amounts of 

tube deformation, strain and stress (longitudinal and tangential). Although the model is 

axisymmetric, its 3D geometry is analysed to offer the best understanding of the structural 
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behaviour, using symmetry. A half-length of the tube is modelled in ANSYS Workbench. 

Figure 7 illustrates a simulation result.  

Maximum analytical and numerical deformations, stresses and strains, are listed in Table 2 and 

very good agreement was obtained, confirming the correct assignment of the boundary 

conditions and the material properties during the numerical analysis. Results indicated that the 

ion, stress and strain change intricately near the free edges (through a distance of 

about one twelfth of the total tube length) as illustrated in Figures 8 to 10, due to temperature 

variation and the bending moments generated at the tube free edges. 

Table 2 The analytic and numerical analysis results of the cylindrical model 

 

 

Figure 7 Tangential normal stresses in the cylindrical model 

Analysis methods 
Max. deformation Max. strain Axial & tangential stresses 

mm mm/mm MPa 

Analytic 2.96 x 10-3 5.82x 10-4 -109.03 to 97.8 
Numerical 3 x 10-3 5.9 x 10-4 -107.85 to 98.7 
Absolute difference percentage 1.3% 1.4% 1.3% 
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Figure 8 Tangential normal stress along the inner and outer tube surfaces, towards the 
free end. 

Figure 9 Radial deformation along the length of inner and outer tube surfaces, towards the free 
end. 

Figure 10 Radial elastic strain along the length of inner and outer tube surfaces, towards the 
free end. 

5 Numerical results and discussions 

5.1 Total deformations  

The transient total deformation (the vector sum all directional displacements) of the tool 

is plotted in Figure 11. It increases almost linearly until about 400s, then gradually until 

it reaches steady state at about 700s. This behaviour of tool deformation is directly 

Free edge 

Free edge 

Free edge 
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related to the applied boundary conditions (Section 3.3). Maximum total deformation of 

the tool is 0.23 mm at the free ends (near the corners) as shown in Figure 12A, which 

also shows the tool bending towards the tool surface near the free edges, sides and 

especially the corners due to the lower CTE of CFRP compared to Alepoxy. Figure 12B 

illustrates that the total deformation at the tool symmetry faces is lower, and does not 

exceed 0.107 mm. The high deformation of the tool near the free edges is due to the free 

ends of the copper channels and reaches 0.23 mm, as illustrated in Figure 13, while it 

does not exceed 0.18 mm in the rest of the channel. 

 

Figure 11 Transient total deformation in the tool. 
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Figure 12 Total deformation in the: A) tool model and its free edge.  B) Transverse symmetry 
side of the tool, Ht = 700s 
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Figure 13 Total deformation in a channel, Ht = 700s  

5.2 Directional deformation  

The maximum deformation along each of the tool free corners, edges and sides, occurs 

in the longitudinal (x-axis) direction and reaches 0.21 mm. Figure 14 illustrates that 

along the tool free corners, in which the maximum deformation occurs in the Alepoxy 

part (mould). 

 

 Figure 14 Directional deformations along the tool corners, Ht = 700s 

5.3 Normal (tensile and compressive) elastic strain 

Figures 15 and 16 illustrate that the highest longitudinal (x-axis) normal elastic strain (-

1.2 x 10-3) occurs only near the free edges of the tool interface between Alepoxy and 

CFRP, while in the rest of the tool body is equal to or lower than -7.8 x 10-4 mm/mm. 

The tool face is in tension, while other parts are under compression due to the difference 

of their expansivity. 
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Figure 15 Longitudinal (x-axis) normal elastic strain in the tool, Ht = 700s 

 

Figure 16 Longitudinal (x-axis) normal elastic strain in the mould, = 700s 

5.4 Normal (tensile and compressive) stresses 

The transient longitudinal (x-axis) normal (tension and compression) stresses are plotted 

in Figure 17, which illustrates an almost linear increase until about 400s then slowing 

down until reaches the steady state after about 700s of heating. Figure 18 illustrates that 

the maximum tensile stress of 41.4 MPa occurs in the CFRP tool face (due to its low 
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CTE) while the maximum compressive stress of -102.4 MPa occurs at the internal face 

of the high dilatable channels (Figure 19). Both reduce near the free edges, corners and 

sides. 

 

Figure 17 Longitudinal (x-axis) normal stresses in the tool  

 

Figure 18 Longitudinal (x-axis) normal stress in the tool, Ht = 700s 
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Figure 19 Longitudinal (x-axis) normal stress in a channel, Ht = 700s 

The maximum normal stress, along the transverse and longitudinal symmetry sides of 

the tool interface between CFRP and Alepoxy (Figure 20) is 38.8 MPa and occurs in the 

longitudinal (x-direction), especially over the channels in the transverse symmetry side. 

Normal stress along the tool corners, as shown in Figure 21, changes intricately at the 

interface between the CFRP and Alepoxy, reaching a maximum value of about 15 MPa 

in the x-direction. Complex changes also occur to the normal stress along the channel 

free edges, as shown in Figure 22, and its maximum value of 15 MPa occurs in the 

radial direction. This is because of overlapping the bending moments generated at the 

free edges of the bonded materials (Alepoxy, CFRP and copper) as a result of the 

expansion restriction between them.   

 

 

 

 

Figure 20 Normal stress along the transverse symmetry side of the tool interface between CFRP 
and Alepoxy  
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Figure 21 Normal stress along the tool corners 

   

 

 

 

 

 

 

Figure 22 Normal stress along the channel free ends 

5.5 In-plane shear stress 

Figure 23A shows that the total xy-plane shear stress (at the interfaces between the tool 

face, mould and channels) generally do

occur just near the free ends of channel, as shown in Figure 23B. The maximum in-

plane shear along the transverse free edges of the interface between the Alepoxy and 

CFRP, as illustrated in Figures 24, is 8.6 MPa in the xz-plane, particularly over the 

channels. This is due to the intricate change of shear stress along the free edges of the 

interface between the channel and Alepoxy, as shown in Figure 25, which reaches the 

maximum value of 7.8 MPa in yz-plane.  
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Figure 23 xy-plane shear stresses: A) at the tool interfaces. B) in the channel, Ht = 700s 

 

Figure 24 Plane shear stresses along free ends of the Alepoxy and CFRP interface. 
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Figure 25 Plane shear stresses along the tube free ends (mould channel interface). 

6 Conclusion 

Numerical results show that:  

 The thermal deformation and normal (tension and compression) stresses, in the 

heated tool, have the same trend as the temperature variation between the tool parts, 

which increases linearly at the beginning of heating until about 400s, and then slows 

down until steady state at about 700s.  

 The highest thermal stresses occur in the tool body due to the expansion restriction 

between the bonded parts, while the highest deformation occurs near the free edges, 

corners and sides of the tool due to the local irregularities and the overlapping 

bending moments. 

 The maximum values of normal stresses, in-plane shear, normal elastic strain and 

deformation occur on the internal face of the high dilatable copper channel, the free 

edges of the tool and its parts, reaching about -102 MPa, 24 MPa, -1.2 x10-3mm/mm 

and 0.23 mm, respectively. 

 Magnitudes of the static normal stresses, in-plane shear, normal elastic strain and 

deformation anywhere in the tool body, except the locations illustrated previously, 

does not exceed 41.4 MPa, 0.1 MPa, 7.8 x 10-4 mm/mm and 0.18 mm, respectively. 

 Comparing these results with ultimate stresses and strains (calculated from the 

ultimate stresses and module) listed in Table 1, it can be seen that the lowest 

magnitude of safety relates to mould part made of Alepoxy, while it may be 

concluded that no failure occurs with regard to static thermal loads. The calculated 
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stresses are significant fractions of the allowable, so the question of the effect of 

repeated temperature cycling remains unanswered, and is an important topic for 

future investigation.     
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Table 1 Linear mechanical and thermal properties of the tool materials 

 

 Table 2 The analytic and numerical analysis results of the cylindrical model 

 

 

Materials 
Fibre 

Volume 
fraction 

 
ratio 

 
CTE 

tensile 
modulus 

Shear 
modulus 

Ultimate 
tensile 

strength 

Ultimate 
compressive 

strength 

Ultimate 
Shear 

strength

- - -1 MPa MPa MPa MPa MPa 

Alepoxy orthotropic 0.48 0.34 32x10-6 6200 2300 120 -190 140 
Copper[1] orthotropic - 0.34 17x10-6 110x103 41x103  430 -430 170 

CFRP 
In-plane 0.58 0.451 1.9x10-6 8100 21x103 740 -490 53 
Out-plane 0.58 0.219 2.3x10-6 35600 2800  160 -240 50 

Analysis methods 
Max. deformation Max. strain Axial & tangential stresses 

mm mm/mm MPa 

Analytic 2.96 x 10-3 5.82x 10-4 -109.03 to 97.8 
Numerical 3 x 10-3 5.9 x 10-4 -107.85 to 98.7 
Absolute difference percentage 1.3% 1.4% 1.3% 

Table(s)
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Figure 1 the water-heated tool. 

Figure 2 A one-quarter model of the tool 

Figure 3  Meshing of the experimental tool model. 

Figure(s)
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Figure 4 The heating profiles applied to each part of the tool model. 

Figure 5 Calculation plan for the mechanical properties of CF laminate.  
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Figure 6 Numerical distribution of temperature throughout the tube thickness. The internal and 
external faces of the tube were set at 90 C and 17 C, respectively as boundary condition. 

  

 

Figure 7 Tangential normal stresses in the cylindrical model 

 

Figure 8 Tangential normal stress along the inner and outer tube surfaces, towards the 
free end. 

Free edge 
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Figure 9 Radial deformation along the length of inner and outer tube surfaces, towards the free 
end. 

Figure 10 Radial elastic strain along the length of inner and outer tube surfaces, towards the 
free end. 

 

Figure 11 Transient total deformation in the tool. 

Free edge 

Free edge 
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Figure 12 Total deformation in the: A) tool model and its free edge.  B) Transverse symmetry 
side of the tool, Ht = 700s 

 

 

Figure 13 Total deformation in a channel, Ht = 700s  
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 Figure 14 Directional deformations along the tool corners, Ht = 700s 

 

Figure 15 Longitudinal (x-axis) normal elastic strain in the tool, Ht = 700s 

 



7 

 

Figure 16 Longitudinal (x-axis) normal elastic strain in the mould, = 700s 

 

Figure 17 Longitudinal (x-axis) normal stresses in the tool  

 

Figure 18 Longitudinal (x-axis) normal stress in the tool, Ht = 700s 
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Figure 19 Longitudinal (x-axis) normal stress in a channel, Ht = 700s 

 

 

 

 

Figure 20 Normal stress along the transverse symmetry side of the tool interface between CFRP 
and Alepoxy  

 

Figure 21 Normal stress along the tool corners 
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Figure 22 Normal stress along the channel free ends 

 

Figure 23 xy-plane shear stresses: A) at the tool interfaces. B) in the channel, Ht = 700s 
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Figure 24 Plane shear stresses along free ends of the Alepoxy and CFRP interface. 

 

Figure 25 Plane shear stresses along the tube free ends (mould channel interface). 

 


