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Abstract 9 

The deformation of the middle to lower crust in collisional settings occurs via deformation 10 

mechanisms that vary with rock composition, fluid content, pressure and temperature. These 11 

mechanisms are responsible for the accommodation of large tectonic transport distances during nappe 12 

stacking and exhumation. Here we show that fracturing and fluid flow triggered coupled dissolution-13 

precipitation and dissolution-precipitation creep processes, which were responsible for the formation 14 

of a mylonitic microstructure in amphibolites. This fabric is developed over a crustal thickness of 15 

>500 m in the Lower Seve Nappe (Scandinavian Caledonides). Amphibolites display a mylonitic 16 

foliation that wraps around albite porphyroclasts appearing dark in panchromatic 17 

cathodoluminescence. The albite porphyroclasts were dissected and fragmented by fractures 18 

preferentially developed along the (001) cleavage planes, and display lobate edges with embayments 19 

and peninsular features. Two albite/oligoclase generations, bright in cathodoluminescence, resorbed 20 

and overgrew the porphyroclasts, sealing the fractures. Electron backscattered diffraction shows that 21 

the two albite/oligoclase generations grew both pseudomorphically and topotaxially at the expenses 22 

of the albite porphyroclasts and epitaxially around these. These two albite/oligoclase generations also 23 

grew as neoblasts elongated parallel to the mylonitic foliation. The amphibole crystals experienced a 24 

similar microstructural evolution, as evidenced by corroded ferrohornblende cores surrounded by 25 

ferrotschermakite rims that preserve the same crystallographic orientation of the cores. Misorientation 26 

maps highlight how misorientations in amphibole are related to displacement along fractures 27 

perpendicular to its c-axis. No crystal plasticity is observed in either mineral species. Plagioclase and 28 

amphibole display a crystallographic preferred orientation that is the result of topotaxial growth on 29 

parental grains and nucleation of new grains with a similar crystallographic orientation. Amphibole 30 

and plagioclase thermobarometry constrains the mylonitic foliation development to the epidote 31 

amphibolite facies (~600°C, 0.75-0.97 GPa). Our results demonstrate that at middle to lower crustal 32 

levels the presence of H2O-rich fluid at grain boundaries facilitates replacement reactions by coupled 33 
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dissolution-precipitation and favours deformation by dissolution-precipitation creep over dislocation 34 

creep in plagioclase and amphibole. 35 

Keywords 36 

Replacement reactions, dissolution-precipitation processes, Caledonides, electron backscatter 37 

diffraction, X-ray mapping. 38 

1. INTRODUCTION 39 

The thermo-mechanical properties of the middle to lower crust exert a fundamental control on the 40 

structure of orogenic belts, and on the amount and style of shortening during continental collision 41 

(e.g. Jackson, Austrheim, McKenzie, & Priestley, 2004; Mouthereau, Watts, & Burov, 2013). In 42 

particular, how strain is distributed vertically and horizontally in orogenic belts is one of the more 43 

important questions in crustal dynamics, and one that can be addressed by investigating the 44 

deformation mechanisms associated with the accumulation of hundreds of km tectonic transport 45 

distances along thrust faults during mountain building processes (e.g. Fusseis & Handy, 2008; Gilotti, 46 

1989; Mouthereau, Lacombe, & Vergés, 2012; Northrup, 1996; Royden, 1996).  47 

In particular, the deformation processes and rheology of mafic shear zones are the subject of 48 

considerable debate, because their main mineral constituents (e.g. plagioclase, amphibole, 49 

clinopyroxene) are expected to be rheologically strong at middle to lower crustal conditions (e.g. 50 

Bürgmann & Dresen, 2008). Thus, the weakening of mafic assemblages along major thrust faults 51 

developed at middle to lower crustal conditions seems to critically depend on the occurrence of 52 

metamorphic reactions, which can result in the formation of rheologically weaker phases, or in the 53 

formation of fine-grained material able to deform by grain size sensitive creep, or in both (e.g. Rutter 54 

& Brodie, 1992; Brander, Svahnberg, & Piazolo, 2012; Okudaira, Shigematsu, Harigane, & Yoshida, 55 

2017). Furthermore, the presence of H2O-rich fluid at the grain boundary typically facilitates 56 

dissolution and precipitation processes, which have been identified as the main deformation 57 
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mechanisms in different mid-crustal lithologies and up to high  temperature and high pressure 58 

conditions (Carmichael, 1969; Giuntoli, Lanari, & Engi, 2018; Gratier, Dysthe, & Renard, 2013; 59 

Imon, Okudaira, & Fujimoto, 2002; Imon, Okudaira, & Kanagawa, 2004; McAleer et al., 2017; 60 

Menegon, Pennacchioni, & Spiess, 2008; Mukai, Austrheim, Putnis, & Putnis, 2014; Putnis, 2009; 61 

Rutter, 1983; Stokes, Wintsch, & Southworth, 2012; Wassmann & Stöckhert, 2013; Wassmann, 62 

Stöckhert, & Trepmann, 2011; Wintsch & Yi, 2002). Two main dissolution and precipitation 63 

processes can be distinguished: coupled dissolution-precipitation and dissolution-precipitation creep. 64 

Coupled dissolution-precipitation results in the pseudomorphic (maintaining the size and shape of the 65 

pre-existing phase) and topotaxial (using the orientation of the pre-existing phase) replacement of a 66 

parent phase by a product phase from a reaction interface (e.g. Putnis, 2002; Ruiz-Agudo, Putnis, & 67 

Putnis, 2014). Dissolution-precipitation creep includes the transport of the chemical constituents from 68 

the dissolution sites, of locally high normal stress, to the precipitation site, of locally low normal 69 

stress (e.g. Imon et al., 2002; Imon et al., 2004; Mukai et al., 2014; Wassmann et al., 2011). Both 70 

processes invariably require the presence of a fluid. 71 

Porosity is another essential requirement for the operation of dissolution and precipitation processes, 72 

as it provides the necessary fluid pathways. Porosity may develop during replacement reactions due 73 

to molar volume differences between the dissolved and the precipitated minerals (Engvik, Putnis, 74 

Gerald, & Austrheim, 2008), or from dehydration reactions and associated fracturing (Plumper, John, 75 

Podladchikov, Vrijmoed, & Scambelluri, 2017). Other porosity-generating mechanisms in 76 

metamorphic environments include dilatancy at grain boundaries (Tullis, Yund, & Farver, 1996), 77 

fracturing (e.g. Brander et al., 2012), and creep cavitation in fine-grained ultramylonites deforming 78 

by grain size sensitive creep (Fusseis, Regenauer-Lieb, Liu, Hough, & De Carlo, 2009; Menegon, 79 

Fusseis, Stünitz, & Xiao, 2015).  80 

Here we show that mineral reactions and deformation in amphibolites occurred mainly by coupled 81 

dissolution-precipitation and dissolution-precipitation creep at epidote-amphibolite facies conditions, 82 
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and that fracturing was the most efficient porosity-generating mechanism assisting deformation. 83 

Metamorphism and deformation in the amphibolites resulted in the development of a > 500 m thick 84 

mylonitic foliation during Caledonian nappe thrusting.  85 

2. GEOLOGICAL SETTING 86 

The Scandinavian Caledonides developed due to the closure of the Iapetus Ocean in the Ordovician, 87 

and the subsequent subduction and continent collision of the Baltica plate below the Laurentia plate 88 

in the Silurian to early Devonian (e.g. Gee, Fossen, Henriksen, & Higgins, 2008; Roberts, 2003; 89 

Roberts & Gee, 1985; Stephens, 1988). In the Scandinavian Caledonides, tectonic units were 90 

transported up to 400 km to the east (Gayer, Rice, Roberts, Townsend, & Welbon, 1987; Gee, 1975; 91 

Gee, Juhlin, Pascal, & Robinson, 2010; Rice & Anderson, 2016; Roberts & Gee, 1985) as a result of 92 

the collision, creating a nappe stack of several allochthons units on top of Autochthons Baltic Shield 93 

(Figure 1a-b). After emplacement, the nappe stack was folded into north-trending synforms and 94 

antiforms, possibly related to the crustal extension and normal faulting occurring during the latest 95 

orogenic phases (Bergman & Sjöström, 1997). By virtue of their deep erosional level, the internal 96 

parts of the Scandinavian Caledonides expose middle and lower crustal sections involved in 97 

subduction-exhumation history and nappe stacking.  98 

The Scandinavian Caledonides are subdivided, from top to bottom, into an Uppermost Allochthon, 99 

an Upper Allochthon, a Middle Allochthon, and a Lower Allochthon based on tectonostratigraphy 100 

(Figure 1; Gee & Sturt, 1985; Strand & Kulling, 1972; Strömberg et al., 1984). The Middle 101 

Allochthon, the target of this study, includes several basement units and associated metasediments 102 

representing the outermost Baltica margin and possibly including units derived from an ocean-103 

continent transition zone (e.g. Andréasson, 1994; Gee et al., 2008; Gee, Janák, Majka, Robinson, & 104 

van Roermund, 2013; Roberts, 2003; Stephens, 1988). The upper tectonic unit of the Middle 105 

Allochthon is the Seve Nappe Complex (SNC; e.g. Sjöström, 1983), which, in the central Scandes, 106 
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outcrops over a N-S distance of ~1000 km and an W-E distance of ~200 km (Figure 1; Andréasson, 107 

1994).  108 

In the Jämtland region, the SNC can be further subdivided into Lower, Middle and Upper Seve Nappe 109 

by the presence of internal thrust sheets (Zachrisson & Sjöstrand, 1990). The Lower Seve Nappe is 110 

mainly composed of micaschists, quartzites and metapsammites with gneisses, metabasics and with 111 

minor peridotites and serpentinites (Figure 1c). The Middle Seve Nappe is composed of similar 112 

lithotypes, but overprinted by a pervasive migmatization. Several parts of the Lower- and Middle 113 

Seve preserve evidence of high pressure (HP) to ultrahigh pressure (UHP-) metamorphism (summary 114 

in Figure 4 of Klonowska, Janák, Majka, Froitzheim, & Kośmińska, 2016) spanning from ~1.1 GPa 115 

and 600°C up to 4 GPa and 800°C, within the stability field of coesite and diamond (Brueckner & 116 

van Roermund, 2004; Gilio, Clos, & van Roermund, 2015; Janák, van Roermund, Majka, & Gee, 117 

2013; Klonowska et al., 2016; Klonowska et al., 2017; Majka et al., 2014; Van Roermund, 1985, 118 

1989). The HP-UHP metamorphism is the manifestation of the Ordovician subduction of the SNC 119 

(Brueckner & Van Roermund, 2007; Ladenberger et al., 2013; Root & Corfu, 2012). It is worth noting 120 

that to date, no evidence of (U)HP metamorphism has been recorded in the Lower Seve Nappe in the 121 

central Jämtland. In the Middle Seve Nappe, the granulite and amphibolite facies metamorphism 122 

appears to postdate the HP-UHP stage, and produced partial melting at 442–436 Ma (Ladenberger et 123 

al., 2013). A recent study has related the amphibolite facies metamorphic “stage” to the exhumation 124 

and lateral extrusion of the SNC (Grimmer, Glodny, Drüppel, Greiling, & Kontny, 2015). In the 125 

Lower Seve Nappe, a pervasive amphibolite facies foliation overprints the (U)HP fabric where 126 

present; where not present it represents the main metamorphic fabric. In the Åreskutan area, the 127 

amphibolite facies metamorphic stage was constrained at 550°C and 0.2 to 0.5 GPa (Arnbom, 1980).  128 

The “Collisional Orogeny in the Scandinavian Caledonides (COSC-1)” borehole (Lorenz et al., 2015; 129 

see location in Figure 1b-c) is located in the central Jämtland region, near Åre (Sweden). The drill 130 

core provides an almost complete section (recovery rate higher than 99%) through the Lower Seve 131 



7 
 

Nappe. In detail, the core comprises alternating layers of felsic gneisses, calc-silicates and 132 

amphibolites displaying narrow (mm-cm) and localized shear zones from the surface down to 1700 133 

m (Hedin et al., 2016). The rocks show strongly deformed fabrics from 1700 m to 2500 m (the end 134 

of the core; Lorenz et al., 2015), with the development of mylonitic fabrics. The lowermost portion 135 

of the core is composed of strongly deformed metasediments. Acoustic televiewer data indicates that 136 

the foliation is generally shallow and trends N-S, but there are remarkable exceptions, where the 137 

foliation has dips to the E or W with angles >50°, related to recumbent folds and boudinage (Wenning 138 

et al., 2017). 139 

3. METHODS 140 

3.1 Scanning electron microscopy (SEM)  141 

All the SEM analyses were performed on carbon-coated polished thin sections cut perpendicular to 142 

the foliation and parallel to the stretching lineation of the sample. Backscattered electron (BSE) and 143 

cathodoluminescence (CL) analyses were performed at the Open University (UK), using an FEI 144 

Quanta 200 three-dimensional SEM on carbon coated thin sections. Analyses were conducted under 145 

high vacuum, using an accelerating voltage of 10 kV, a beam current of 3.3 nA, a working distance 146 

of 13 mm, and an electron source provided by a tungsten filament. The panchromatic CL detector 147 

used is a Centaurus Deben with a photo multiplier tube (Hamamatsu R316) characterized by 148 

sensitivity in the range of 400-1200nm. 149 

Electron backscattered diffraction (EBSD) analyses were conducted with a Jeol-7001FEG SEM at 150 

the Electron Microscopy Centre, Plymouth University (UK). EBSD patterns were acquired with a 151 

70° tilted sample geometry, 20 kV accelerating voltage, 18-23 mm working distance and 1.3-1.7 µm 152 

step size. Diffraction patterns were automatically indexed using AZtec (Oxford Instruments). The 153 

indexing match units used for the analysed phases were “anorthite” (Laue group -1) for albite and 154 

oligoclase, and “hornblende” (Laue group 2/m) for tschermakite-ferrotschermakite. Both match units 155 
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were taken from the American Mineralogist database. Raw maps were processed with HKL Channel 156 

5 (Oxford Instruments), using the noise reduction procedure tested by Prior, Wheeler, Peruzzo, 157 

Spiess, and Storey (2002). Wild spikes were removed, and un-indexed points were replaced by the 158 

average orientation of the neighbour points. Grains smaller than 3 times the step size were not 159 

considered in the analysis. The mean angular deviation values were 0.3 for amphibole and 0.4-0.6 for 160 

plagioclase; the raw indexing rate ranged between 90% and 95%. Crystallographic directions were 161 

plotted on pole figures (upper and lower hemisphere of the stereographic projection), with X parallel 162 

to the stretching lineation and Z parallel to the pole of the mylonitic foliation. The grain orientation 163 

spread maps (GOS maps) were calculated as the average misorientation between every pixel in the 164 

grain and the grain’s average orientation. 165 

3.2 Electron probe micro-analyser (EPMA)  166 

EPMA analyses were conducted at the Open University (UK), using a Cameca SX100 connected to 167 

five spectrometers. Wavelength dispersive spectrometers (WDS) were used for both spot analyses 168 

and X-ray maps, the latter acquired following the procedure of Lanari et al. (2013). Spot analyses 169 

were acquired first for each mineral phase, before performing the X-ray maps on the same area. Spot 170 

analyses were performed with 20 KeV accelerating voltage, 20 nA specimen current and 2 µm beam 171 

diameter. Ten oxide compositions were measured, using natural standards: K-feldspar (SiO2, Al2O3, 172 

K2O), bustamite (CaO, MnO), hematite (FeO), forsterite (MgO), jadeite (Na2O), rutile (TiO2), apatite 173 

(P2O5). A ZAF matrix correction routine was applied; uncertainty on major element concentrations 174 

was <1%. X-ray maps were acquired with 15 KeV accelerating voltage, 100 nA specimen current, 175 

dwell times of 70-100 ms and step size of 5 µm. Ten elements (Si, Ti, Al, Fe, Mn, Mg, Na, Ca, K and 176 

P) were measured at the specific wavelength in two series. Intensity X-ray maps were standardized 177 

to concentration maps of oxide weight percentage using spot analyses as internal standard. X-ray 178 

maps were processed using XMapTools 2.2.1 (Lanari et al., 2014). 179 

3.3 Geothermobarometry  180 
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3.3.1 Amphibole-plagioclase thermobarometry  181 

Temperature (T) was estimated using Holland and Blundy (1994) geothermometer. In detail, the 182 

Holland and Blundy (1994) thermometer is based on element exchange between amphibole and 183 

plagioclase pairs in equilibrium; the calibration reaction edenite + albite = richterite + anorthite was 184 

constrained from experimental and natural data for silica-saturated and silica-rich igneous and 185 

metamorphic rocks in the range of 0.1-1.5 GPa and 400-1000 °C.  186 

Pressure (P) was estimated using two geobarometers: Bhadra and Bhattacharya (2007) and Anderson 187 

and Smith (1995). The former is based on element distribution between amphibole and plagioclase 188 

pairs in equilibrium. Experimental data were conducted on silica-saturated assemblages in the P-T 189 

range of 0.1-1.5 GPa and 650-950 °C and on the reaction tremolite + tschermakite + 2 albite = 2 190 

pargasite + 8 quartz. The latter is based on the increase of Al content in hornblende with increasing 191 

P and is calibrated on experimental data at 675 and 760 °C, accounting for the effects of T and fO2. P 192 

and T were calculated using the Plagioclase–Hornblende Thermobarometry spreadsheet (Anderson, 193 

Barth, Wooden, & Mazdab, 2008) and the spreadsheet of Wallis, Phillips, and Lloyd (2014) (the latter 194 

was used to derive P from the calibration of Bhadra & Bhattacharya, 2007).  195 

3.3.2 Chlorite+Quartz+H2O thermometry 196 

Chlorite+Quartz+H2O thermometry was performed using the program CHLMICAEQUI (Lanari, 2012). 197 

The crystallization temperature of chlorite and the XFe3+ were computed at a fixed pressure of 0.7 198 

GPa in the temperature range of 100 to 550°C from the convergence of four equilibria involving five 199 

chlorite end-members, quartz and H2O (Lanari et al., 2012; Vidal, Lanari, Munoz, Bourdelle, & De 200 

Andrade, 2016) using standard state properties and solid solution models of Vidal, Parra, and 201 

Vieillard (2005; 2006).  202 

4. RESULTS 203 

4.1 Petrography and microstructure 204 
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In the middle and lower portions of the COSC-1 borehole (~1500-2300 m deep), amphibolites show 205 

a mylonitic foliation. The studied sample (International Geological Sample Number: 206 

ICDP5054EX8E601) was extracted from a depth of 2206.97 metres from the surface and is similar 207 

to several amphibolite samples present between ~1600 and ~2300 m of depth. In this sample the 208 

mylonitic foliation is subhorizontal, it wraps around plagioclase porphyrocrysts and is defined by 209 

amphibole, plagioclase (with smaller grain size, details in the following), chlorite, quartz, epidote and 210 

ilmenite (Figure 2). Quartz and calcite occur mainly in veins subparallel to the mylonitic foliation or 211 

as fine grains dispersed in the mylonitic foliation, typically along the phase boundaries between 212 

plagioclase and amphibole.  213 

Plagioclase is present as zoned porphyrocrysts (up to 0.5-1 cm in size) wrapped by the mylonitic 214 

foliation, and as finer (up to hundreds of µm in size) albite/oligoclase grains elongated parallel to the 215 

mylonitic foliation (aspect ratios up to ~ 5; mean ~ 2). Plagioclase porphyrocrysts have albite cores 216 

that appear turbid due to abundant fine-grained (up to 30 µm in size) inclusions of ilmenite, rutile and 217 

epidote. Ilmenite crystals are also included with bigger grain size (100 microns in size); quartz is 218 

present as inclusions with variable grain size (tens to hundreds of µm in size; Figures 3 and 4). The 219 

inclusions locally define a rotated internal foliation (upper plagioclase porphyrocryst in Figure 3a). 220 

These cores are porphyroclastic, and are cut by fracture systems and some are dismembered parallel 221 

to the foliation (see details in section 4.2). The cores are always surrounded by albite/oligoclase rims. 222 

Pores are evident in the albite/oligoclase rims: they are few microns in size and occur in trails parallel 223 

to fracture systems that dissect the plagioclase core (Figure 4). Several mineral inclusions also occur 224 

along such trails, ranging from a few microns to tens of microns in size. These are muscovite, epidote 225 

and calcite, with rare Ba-rich muscovite (Figure 4). Such inclusions confer a turbid aspect to 226 

plagioclase rim in plane-polarized light micrographs (Figure 3a, Table 1). 227 

Amphibole is pleochroic, with absorption colours ranging from light brown to dark green-blue; in 228 

some bigger crystals absorption colours highlight a paler core and a darker rim. Amphibole displays 229 
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the C-axis parallel to the stretching lineation and a maximum grain size of >1 mm. Chlorite has a 230 

pleochroism varying from light yellow to light green, a negative optical sign and grain size similar to 231 

the amphibole. Asymmetric pressure shadows around plagioclase porphyroclasts indicate both 232 

dextral and sinistral sense of shear. In these pressure shadows amphibole, albite/oligoclase grains and 233 

chlorite crystallize intergrown and elongated parallel to the mylonitic foliation. C’ planes display a 234 

dominant sinistral sense of shear and are defined by the same minerals found along the mylonitic 235 

foliation (Figures 2, 3a-b). Opaque minerals include mostly ilmenite, up to 1 mm in size, with minor 236 

magnetite and pyrite. Ilmenite crystals are elongate and lie parallel to the mylonitic foliation. 237 

4.2  Microstructure and chemistry of plagioclase 238 

BSE images highlight two plagioclase generations: dark cores with an albitic composition (Pl1) are 239 

surrounded by brighter plagioclase rims with higher anorthite content (Pl2 and Pl3, as defined based 240 

on chemistry in the next paragraph; Figures 3c and 4). Furthermore, the cores are cut by fractures 241 

filled with plagioclase with the same composition as the plagioclase rims. The distinction of these 242 

plagioclase generations is more evident in the CL images, where plagioclase cores appear moderately 243 

luminescent and are surrounded by bright plagioclase rims (Figure 3d). The fractures dissecting the 244 

cores are as bright as the plagioclase rims. The plagioclase cores (Pl1) are locally fragmented and 245 

display lobate edges and embayments that are typically surrounded by bright plagioclase (Figures 3d, 246 

7a and 8b). In some areas, the plagioclase rims can be further subdivided into two generations based 247 

on the brightness of their CL response: a brighter plagioclase generally surrounded by a darker one 248 

(Pl2 and Pl3, respectively).  249 

Compositional maps of plagioclase display a perfect match with the CL images (Figure 3e).  The 250 

maps highlight three plagioclase compositions, numbered from the older to the younger: Pl1 (XAn 0-251 

0.05), Pl2 (XAn 0.13-0.25), Pl3 (XAn 0.05-0.13; Figures 5a, 7b, Table 2). The plagioclase core (Pl1) 252 

has an albite composition and is overgrown by the two albite/oligoclase rims (Pl2 and Pl3). Pl2 is 253 

present only locally and is overgrown by Pl3, as shown in the top right corner of Figure 3e. 254 
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Furthermore, Pl3 seals the fractures inside Pl1. Pl1 forms porphyroclasts wrapped by the mylonitic 255 

foliation, whereas Pl2 and Pl3 occur in the pressure shadows of Pl1.  256 

4.3 Microstructure and chemistry of amphibole and chlorite 257 

Compositional maps of amphibole crystals display corroded cores, higher in Mg# 258 

(Mg#=Mg/(Fe2++Mg); Amp1: Mg# 0.5-0.44, Si apfu 7-6.5), and rims, lower in Mg# (Amp2: Mg# 259 

0.44-0.36, Si apfu 6.5-6.1; Figures 3f and 5b, Table 2). Based on the classification of Leake et al. 260 

(1997) the Amp1 is at the compositional boundary between tschermakite-ferrotschermakite-261 

magnesiohornblende-ferrohornblende; Amp2 is a ferrotschermakite (Figure 5c). There are local 262 

exceptions to this zoning pattern, in which the two peripheral areas have higher Mg# (Figure 9c). 263 

Amp2 and Pl3 grains displaying mutual intergrowths and elongation parallel to the foliation (Figure 264 

3 c-f) 265 

Chlorite is characterized by a homogeneous Mg# (Mg# 0.59-0.56, Chl1), except along grain 266 

boundaries and the C’ planes, where some lower values are visible (Mg# 0.55-0.52, Chl2; Figure 5c, 267 

Table 3). Chl1 grains occur as intergrown with Pl3 and Amp2 along the mylonitic.  268 

4.4 Amp-Pl thermobarometry 269 

Thermometric estimates for the Pl1 and Amp1 pair yield 400°C; thermobarometric estimates for the 270 

Pl2 and Amp1 pair and the Amp2 and Pl3 pair yield 615°C and 0.97 GPa and 605°C and 0.74 GPa 271 

respectively (±50 °C ±0.2 GPa, Table 4; see Section 5.1 for discussion on the Pl and Amp growth 272 

zones that we consider to be in equilibrium).  273 

4.5 Chlorite+Quartz+H2O thermometry 274 

Chlorite+Quartz+H2O thermometry was performed on the two different chlorite groups, Chl1 and 275 

Chl2 (Figure 5c), at a fixed pressure of 0.7 GPa. Chl1 displays two peaks in the T-frequency diagram 276 

(Figure 6a): one close to the T limit of the thermometer (550°C-450°C) and one at lower T (400°C-277 
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250°C). Chl2 yields T in the range of 200-350°C, with a peak at ~250°C (Figure 6b), with only one 278 

grain yielding a higher T (~500°C).  279 

4.6 EBSD analysis 280 

Figures 7-8 show the results of EBSD analysis of two microstructural domains (see Figures 2 and 3 281 

for the location of EBSD maps): domain 1 includes a plagioclase porphyrocryst with a core of Pl1 282 

composition rimmed by Pl2 and Pl3 compositions. The porphyroclast Pl1 is cut by a network of 283 

intracrystalline microfractures oriented NW-SE and filled with Pl2-Pl3. Domain 1 also includes 284 

clusters of amphibole and plagioclase grains around the plagioclase porphyrocryst (Figure 7). Domain 285 

2 contains an aggregate of amphibole grains, mostly elongate parallel to the foliation, and several 286 

grains of plagioclase showing a core-and-rim zoning in CL images (Figure 8). 287 

The comparison between EBSD maps, CL images and compositional maps shows that the Pl1 288 

porphyroclasts, which EBSD identifies as one individual grain (i.e. it does not contain high-angle 289 

boundaries with misorientation > 10°), actually include areas with Pl2 and Pl3 compositions, which 290 

maintain the original crystal shape and crystallographic orientation of Pl1 (Figures 7 and 8). The 291 

internal distortion of the compositionally zoned porphyrocrysts, as evaluated with the GOS, is rather 292 

low (GOS values lower than 2°: Figures 7c and 8e).  Low-angle boundaries (misorientations 2-10°) 293 

are preferentially distributed along the microfracture. The analysis of local misorientations within Pl1 294 

cores indicates that Pl2 and Pl3 areas have misorientations of up to 2° with respect to the Pl1 cores 295 

(Figure 7d). Higher misorientations (up to 3°) are found in the plagioclase porphyrocryst of the 296 

domain 2 (Figure 8d). 297 

In domain 1, the compositionally zoned plagioclase porphyrocryst is surrounded by Pl2-Pl3 grains 298 

that range in size between 30 and 200 µm, delimited by high-angle boundaries with misorientation > 299 

10° from the porphyrocryst. The Pl2 and Pl3 grains have mean GOS values lower than 1°, with one 300 

maximum value of 4°.  301 



14 
 

Amphibole generally shows GOS values lower than 2°, with a few maxima of up to 7° (Figures 7e, 302 

8g, 9d). Misorientations progressively increase towards fractures perpendicular to the crystal 303 

elongation and, locally, towards very few low angle boundaries oriented subparallel to the crystal 304 

elongation (Figures 7f, 8h, 9f). The misorientation profile in Figure 9e highlights a jump in 305 

misorientation of up to 7° across the low angle boundary.  306 

The crystallographic orientation of the new grains of Pl2 and Pl3 displays a variable degree of overlap 307 

with the one of the Pl1 core that they overgrow (Figures 10a-b and 11a-b). In some cases, all the new 308 

grains inherit the crystallographic orientation of the Pl1 core (Figure 10a-b), whereas in other cases, 309 

the overlap is more limited and the new grains show a significant dispersion of crystallographic 310 

directions with respect to the Pl1 cores (Figure 11).  The crystallographic inheritance is more evident 311 

if we consider the crystallographic orientation of the Pl2-Pl3 grains in direct contact with the Pl1 core 312 

(Figures 10a and 11b). The Pl2-Pl3 grains dispersed in the mylonitic matrix show a wide range of 313 

crystallographic orientations, which do not necessarily overlap with those of the Pl1 cores included 314 

in the map (Figures 10b and 11a). EBSD analysis also shows that the most common fracture set in 315 

the Pl1 porphyroclasts is parallel to the (001) plane, which is a perfect cleavage plane in plagioclase 316 

(Figure 11a).  317 

Amphibole has a strong CPO, with the (100) and [001] subparallel to the foliation and to the stretching 318 

lineation, respectively (Figures 10c and 11c). The misorientation angle distribution of amphibole 319 

displays the strongest peaks between 2° and 25° and around 50° and 180°, with higher values for the 320 

correlated pairs (Figure 11d). The misorientation axes of amphibole, plotted in crystal coordinates, 321 

show maxima around the c-axis for misorientations up to 30°, which, in sample coordinates, is 322 

oriented subparallel to the stretching lineation of the mylonite (Figure 11d). 323 

5. DISCUSSION 324 

5.1 P-T conditions of metamorphism and deformation 325 
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The Anderson and Smith (1995) geobarometer calibration was based on rocks that equilibrated in the 326 

presence of melt. There is no evidence of melt in our sample, therefore we favour the pressure results 327 

from Bhadra and Bhattacharya (2007; Table 4).  However, we kept both results, as the Plagioclase–328 

Hornblende Thermobarometry spreadsheet (Anderson et al., 2008) that we used to compute P and T 329 

utilises a convergence between the results of Anderson and Smith (1995) geobarometer and Holland 330 

and Blundy (1994) geothermometer. As a test, we used the Bhadra and Bhattacharya (2007) P results 331 

as input for the Holland and Blundy (1994) geothermometer and we obtained coincident T results, 332 

within error.  333 

The oldest metamorphic stage preserved in the sample is represented by the albite cores (Pl1) with 334 

their oriented inclusions of epidote, ilmenite and rutile. In particular, rutile inclusions suggest 335 

relatively high pressure, but the coexistence with albite crystals would constrain the maximum 336 

pressure of this metamorphic stage below the albite breakdown reaction (albite = jadeite + quartz; 337 

Newton & Smith, 1967). However, the exact conditions of this first metamorphic stage were not 338 

constrained in this study. 339 

The microstructural relationships between Pl1 and Amp1 are equivocal, therefore it is difficult to 340 

prove that they grew in equilibrium. Their compositions suggest that had they grown in equilibrium, 341 

they would have crystallised at 400°C (Table 4). These results, however, are far away from the lower 342 

limits of the calibration of Bhadra and Bhattacharya (2007; 650-950°C) and Anderson and Smith 343 

(1995; 675–760 °C): for this reason, pressures were not computed for the Amp1-Pl1 pairs. 344 

Furthermore, Pl1 is out of the compositional range of the Bhadra and Bhattacharya (2007) 345 

equilibration (Table 10 of that contribution).  346 

Within uncertainty, the T results of Amp1-Pl2 and Amp2-Pl3 pairs lie just within the lower limits of 347 

the two calibrations. The T and P estimates from the Amp1-Pl2 and Amp2-Pl3 pairs are coincident 348 

within error (±50 °C and ±0.2 GPa). This is due to the subtle chemical differences existing between 349 

these two generations.  Thermobarometric calculations suggest that Pl2 may have grown 350 
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synchronously with Amp1 at 615°C and 0.97 GPa. The crystallisation of Pl2 marks the first stage of 351 

the mylonitic foliation development, as evidenced by the presence of Pl2 in the pressure shadows of 352 

Pl1 (Figures 3, 5a and 7). The mylonitic foliation continued to develop under conditions of ~ 600°C 353 

and 0.75 GPa (Amp2-Pl3 pair), as supported by the microtextural observation of Amp2, Pl3 and Chl1 354 

intergrowths within the Pl1 pressure shadows (Section 4.1). This T result is coincident, within error,  355 

with the Chlorite+Quartz+H2O thermometry results for Chl1 (550°C; higher T peak in Figure 6a).  356 

The XAn increase from Pl1 to Pl2 and Pl3 could reflect the following reaction from Apted and Liou 357 

(1983) for P of 0.7 GPa: 358 

epidote + albite + hornblende1 + quartz = oligoclase + hornblende2 + H2O. (1) 359 

The abundant Ep inclusions in Pl1 and its scarcity and corroded aspect in the matrix of the sample 360 

would support this hypothesis. Pl2 likely crystallized at temperatures >600°C in the (High-T) Ep-361 

amphibolite facies field (Apted & Liou, 1983; Liou, Kuniyoshi, & Ito, 1974; Miyashiro, 1968; 362 

Winkler, 1980), and Pl3 at lower temperatures, as the associated Amp2 and Chl1 limit the maximum 363 

T to 550-600°C (Figures 5 and 6a). A final retrograde stage is recorded by the Chl2 compositions 364 

suggesting a T range of 350°C-200°C (using the Chlorite+Quartz+H2O thermometry, Figure 6b), and 365 

by the overprinted Chl1 values yielding the low T peak of figure 6a. Indeed, Chl2 appears to be 366 

associated with the development of C’ shear bands overprinting the mylonitic foliation.  367 

5.2 The origin of luminescence in plagioclase 368 

BSE and CL images provide important insight into feldspar textures (e.g. Lee, Parsons, Edwards, & 369 

Martin, 2007; Parsons & Lee, 2009; Parsons, Steele, Lee, & Magee, 2008). Plagioclase luminescence 370 

has been related to many causes (summarized in Götze, 2012): the Mn2+, Ti, Fe3+ content (Götze, 371 

Habermann, Kempe, Neuser, & Richter, 1999; Mariano & King, 1975), trace and REE elements 372 

(Götze, Habermann, Neuser, & Richter, 1999; Mariano & King, 1975), lattice defects (e.g. Al-O-Al 373 

bridge; Finch & Klein, 1999) and/or mineral inclusions (Smith & Stenstrom, 1965). The CL signal is 374 
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most commonly linked to Ti concentrations (Lee et al., 2007; Parsons et al., 2008), with a contribution 375 

from Fe (Lee et al., 2007). Furthermore, Parsons et al. (2008) has noted that CL emissions appear to 376 

be linked to Ca zoning, but they did not find a direct link between Ca concentration (or other trace 377 

element concentrations) and CL intensity. 378 

In our samples, TiO2 concentrations appear uniform across all Pl generations (with a content of 379 

0.01wt%; Table 2). This is also the case for the MnO concentrations, with a scatter between 0.002 380 

and 0.006 wt%. The FeO (Fe total) concentrations in Pl1 and Pl2 are the same (0.03 wt%; Table 2), 381 

but increases in Pl3 (0.06 wt%; Table 2).  The CL signal in our samples appears to be related to the 382 

Ca\Na ratio (with maybe some contribution from Fe): the higher the ratio the brighter the growth 383 

zone, as visible from the perfect match between the SEM-CL and EPMA compositional maps 384 

(Figures 3 and 7), even though we cannot rule out a contribution from trace and REE elements or 385 

lattice defects. Luminescence induced by calcite inclusions in PL2 and 3 can be excluded, as the 386 

calcite veins in the sample do not luminesce. 387 

5.3 Replacement reactions by coupled dissolution-precipitation and deformation by 388 

dissolution-precipitation creep in plagioclase and amphibole 389 

Our analysis highlights a strong correlation between CL images and both BSE images and EPMA 390 

compositional maps of plagioclase. Textural and chemical features similar to those reported in this 391 

study are recognised in several amphibolites present over > 500 m of the COSC-1 core (from ~1600 392 

to ~2300 m deep), implying that the deformation mechanisms and the mineral replacement reactions 393 

discussed below are important for the development of the middle to lower crustal thrusts and 394 

associated tectonic transport during Caledonian nappe stacking.  395 

The plagioclase porphyrocrysts deformation history is summarized in Figure 12a. During the first 396 

stage Pl1 grew including a foliation defined by Qz, Ep, Ilm and Rt. Subsequently, fractures developed 397 

along the (001) cleavage planes (Ague, 1988; Brander et al., 2012; Brown & Macaudiére, 1984; 398 
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McLaren & Pryer, 2001) enhanced fluid infiltration that triggered replacement reactions occurring 399 

via coupled dissolution of Pl1 and precipitation of Pl2 (Brander et al., 2012; Marti, Stünitz, 400 

Heilbronner, Plümper, & Drury, 2017) in equilibrium with the changed P and T conditions of 615° 401 

C, 0.9 GPa. These replacement processes continued precipitating Pl3, which rimmed Pl1 and Pl2 and 402 

sealed the fractures in Pl1. The slightly different chemistry of Pl3 compared to Pl2 and the 403 

microstructural observation that Pl3 overgrows Pl2 suggest that these two growth zones were closely 404 

related in time or crystallisation reaction (Section 4.2).  405 

The growth zones of Pl2 and Pl3 inherit the crystallographic orientation of the Pl1 cores, with 406 

maximum misorientation of 5° (Figure 7c-d). Thus, the precipitation of Pl2 and Pl3 on Pl1 is an 407 

example of pseudomorphic and topotaxial growth, as often observed during coupled dissolution-408 

precipitation processes (Engvik et al., 2008; Hövelmann, Putnis, Geisler, Schmidt, & Golla-409 

Schindler, 2010; Plümper et al., 2017; Putnis & Putnis, 2007; Spruzeniece, Piazolo, & Maynard-410 

Casely, 2017). The small (generally < 2°) and only local difference in crystallographic orientation 411 

between Pl1 and Pl2-Pl3 presumably results from the slightly different unit cell parameters between 412 

albite and oligoclase. The few low angle boundaries associated with Pl2-Pl3 growth zones are 413 

typically found along intracrystalline fractures (Figure 7d), and we interpret them as the evidence of 414 

slightly rotated fractured fragments of Pl1 that re-equilibrated to Pl2-Pl3 compositions via coupled 415 

dissolution-precipitation processes. Pore trails occur in the plagioclase porphyrocrysts parallel to the 416 

two fracture systems, together with several micrometric mineral inclusions resulting in a turbid aspect 417 

of the plagioclase (Figures 3a-b and 4). Those trails probably represented the main pathways of fluid 418 

circulation during coupled Pl1 dissolution and Pl2 and Pl3 precipitation. These mineral inclusions 419 

may represent the signature of transient porosity during plagioclase replacement reactions (e.g. 420 

Plümper et al., 2017; Plümper & Putnis, 2009; Putnis, 2015; Walker, Lee, & Parsons, 1995). 421 

Crystallographic continuity indicative of epitaxial overgrowth is also observed between plagioclase 422 

porphyrocrysts and Pl2 and Pl3 grains around them, but to different extents (compare Figure 10a with 423 
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Figure 11b). Thus, the crystallographic orientation of new Pl2 and Pl3 grains may be inherited from 424 

the Pl1 parent grain due to epitaxy, as described for several minerals deforming by dissolution-425 

precipitation creep at different crustal levels (Engvik et al., 2008; Imon et al., 2002; Imon et al., 2004; 426 

Jiang, Prior, & Wheeler, 2000; Mukai et al., 2014; Spruzeniece et al., 2017; Wassmann & Stöckhert, 427 

2012; Wassmann et al., 2011). The crystallographic continuity seems to decrease away from the 428 

plagioclase porphyrocrysts (Figures 10b and 11a), presumably reflecting the heterogeneous 429 

nucleation of Pl2 and Pl3 neoblasts in the surrounding matrix together with Amp2 and Chl1. 430 

Additionally, these neoblasts may have also undergone grain-boundary sliding during deformation, 431 

given their fine grain size, which can further disperse their inherited crystallographic orientation 432 

(Okudaira et al., 2017).  433 

Thus, we conclude that metamorphism of plagioclase at ~ 600° C and 0.75-0.9 GPa occurred by 434 

coupled dissolution-precipitation processes with pseudomorphic and topotaxial replacement of Pl1 435 

by Pl2 and Pl3, and deformation was accommodated by dissolution-precipitation creep with 436 

nucleation of Pl2-Pl3 grains around the plagioclase porphyrocrysts (epitaxial) and in the surrounding 437 

matrix. It is worth noting that the replacement of Pl1 porphyroclasts by coupled dissolution-438 

precipitation processes generally occurred concentrically (Figure 7). Consequently, at least part of 439 

this replacement process outlasted the deformation.  The similar chemistry of Pl3 replacing Pl1 and 440 

the Pl3 neoblasts in the surrounding matrix suggest that there was no major change in metamorphic 441 

conditions throughout the timing of growth of Pl3. 442 

No significant contribution of crystal plasticity was observed, although deformation occurred at PT 443 

conditions at which crystal plasticity in plagioclase is expected to occur (e.g. Gerald & Stünitz, 444 

1993;Pearce, Wheeler, & Prior, 2011). The porosity necessary to maintain fluid transport during 445 

coupled dissolution-precipitation was generated mostly by fracturing, as shown by the common 446 

occurrence of Pl2-Pl3 growth zones along fractures parallel to the (001) perfect cleavage planes. 447 

Finally, the sharp chemical transition (across ~1-5 µm) between all the Pl generations, visible from 448 
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the EPMA and CL maps (Figures 3 and 7), suggest that chemical equilibration did not occur by solid-449 

state diffusion (e.g. Hövelmann et al., 2010). 450 

The textural features of amphibole suggest a similar deformation history to plagioclase (Figure 12b).  451 

Amp1 (high Mg#) grains are preserved mostly as relict cores and displays embayments, lobate edges 452 

and truncated chemical zoning patterns (Figures 3f and 9c; Bukovská, Wirth, & Morales, 2015; 453 

Gratier et al., 2013; Hyppolito, García-Casco, Juliani, Meira, & Hall, 2014; Passchier & Trouw, 1996; 454 

Rutter, 1983; Stokes et al., 2012; Wassmann & Stöckhert, 2013; Wintsch & Yi, 2002). These textural 455 

features suggest that Amp1 underwent coupled dissolution and Amp2 precipitated on Amp1. As for 456 

plagioclase, the growth of Amp2 on Amp1 was pseudomorphic and topotaxial (Figure 9d-f). Amp2 457 

grew also as smaller neoblasts (maximum few hundreds of µm in size), elongated parallel to the 458 

mylonitic foliation and preferentially elongated parallel to their c-axis, due to dissolution-459 

precipitation creep. These crystals do not display Amp1 cores in the compositional maps (Figures 3f 460 

and 5b). 461 

The CPO and shape-preferred orientation of the amphibole can be acquired via different mechanisms: 462 

dissolution-precipitation creep (Bons & den Brok, 2000; Imon et al., 2004; Pearce, Wheeler, & Prior, 463 

2011), oriented grain growth and passive rotation after growth (Berger & Stünitz, 1996; Kanagawa, 464 

Shimano, & Hiroi, 2008) and/or diffusion creep (Getsinger & Hirth, 2014). In the studied sample the 465 

CPO displayed by Amp2 is mostly inherited due to the pseudomorphic and topotaxial growth on 466 

Amp1. The small misorientations (< 3°) evident in the EBSD map (Figure 9f) are attributed to 467 

fractures that developed perpendicular to the crystal elongation (Figure 9a). Some amphibole crystals 468 

display more complex zoning (e.g. central crystal in Figure 9c), probably due to a preferential 469 

replacement of the central part of the crystal (e.g. Hyppolito et al., 2014). The CPO of Amp1 grains 470 

was presumably formed via oriented grain growth during an earlier deformation event.  Moreover, as 471 

presented in section 4.6, the misorientation axes of amphibole show maxima around the c-axis, which 472 

is oriented subparallel to the stretching lineation of the mylonite (Fig. 11d). This geometry is not 473 
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consistent with dislocation creep on the prism <c> slips system of amphibole, as the misorientation 474 

axis cannot coincide with the Burgers vector (e.g. Kruse, Stünitz, & Kunze, 2001; Lloyd, Farmer, & 475 

Mainprice, 1997). Instead, we interpret the cluster of misorientation axes around <c> as the evidence 476 

of topotaxial growth of elongated amphibole grains that preferentially share their c-axis. As the data 477 

come from all the grains included in the map (and not only from the rims of Amp2), we think that 478 

oriented growth was the dominant deformation mechanisms of amphibole throughout the deformation 479 

history.   480 

In the studied sample amphibole, like plagioclase, shows no evidence of deformation via crystal 481 

plasticity, such as high intracrystalline misorientations, misorientation bands, subgrains. Instead it 482 

appears to have deformed by fracturing and coupled dissolution-precipitation, as also suggested in 483 

other studies (Berger & Stünitz, 1996; Brodie & Rutter, 1985; Lafrance & Vernon, 1993; Nyman, 484 

Law, & Smelik, 1992; Pearce et al., 2011). Crystal plasticity is potentially a more effective 485 

deformation mechanism at higher temperatures (e.g. Skrotzki, 1992). 486 

It is worth noting that the synkinematic reaction that produced Pl2-Pl3 and Amp2 (reaction 1) could 487 

have been a dehydration reaction. If this was the case, the aqueous fluid necessary to sustain coupled 488 

dissolution-precipitation processes did not necessarily infiltrate from an external source, but may have 489 

been released internally. The role of dehydration reactions in the rheological evolution of crustal 490 

rocks has received little attention so far, as reaction weakening is commonly associated with hydration 491 

reactions during retrogression (e.g. Gueydan, Leroy, Jolivet, & Agard, 2003). However, dehydration 492 

reactions that release fluids at grain boundaries can also potentially result in weakening and strain 493 

localization during burial and nappe stacking, if the released fluids facilitate the activation of coupled 494 

dissolution-precipitation creep and of diffusion creep. 495 

6. CONCLUSIONS 496 
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Middle to lower crustal mylonites from the COSC-1 drill core (Lower Seve Nappe) were investigated 497 

with EPMA compositional maps, CL images and EBSD maps to constrain the mechanism(s) 498 

responsible for their formation. The data suggest that fracturing, coupled dissolution-precipitation 499 

and dissolution-precipitation creep were responsible for the development of the mylonitic fabric in 500 

amphibolites at conditions of ~600°C, 0.75-0.97 GPa, in the epidote-amphibolite facies, over a 501 

thickness of > 500 m. No evidence of deformation via crystal plasticity is present in either plagioclase 502 

or amphibole in the analysed sample, even though deformation occurred at pressure and temperature 503 

conditions at which plagioclase is expected to deform by dislocation creep. The presence of H2O-rich 504 

fluid at the grain boundaries appears to have enhanced replacement reactions and facilitated 505 

dissolution and precipitation processes, which in turn considerably decreased the strength of this 506 

middle to lower crustal shear zone. Importantly, replacement reactions of plagioclase only occurred 507 

by coupled dissolution-precipitation at grain boundaries and along fractures, and were otherwise 508 

sluggish.  509 

Our study shows that crystallographic preferred orientation in plagioclase and amphibole can be 510 

inherited from parental grains due to pseudomorphic and topotaxial growth during coupled 511 

dissolution-precipitation during deformation. Thus, care must be taken when considering CPOs in 512 

deformed rocks as evidence of deformation by dislocation creep.  513 

The development of a mylonitic fabric by coupled dissolution-precipitation and dissolution-514 

precipitation creep in amphibolites over a thickness > 500 in the Lower Seve Nappe suggests that the 515 

strength of amphibolites can be significantly low in the presence of grain-boundary aqueous fluid 516 

during nappe thrusting in the middle to lower crust.  517 
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 855 

FIGURE 1 Geological setting of the Scandinavian Caledonides. (a) Tectonic map with inferred 856 

paleogeography of the nappes (modified after Gee et al., 2010). (b) Cross section marked in (a) with 857 

vertical exaggeration of 5 x  and approximate location of the COSC-1 borehole (modified after Gee 858 

et al., 2010). (c) Detail of the study area with location of the COSC-1 drilling site (modified after 859 

Strömberg et al., 1984). 860 
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 862 

FIGURE 2 Amphibolite with Pl porphyroclast displaying a mylonitic foliation defined by Amp, Pl, 863 

Chl, Qz, Ep and Ilm. Cal and Qz ribbons, presumably representing transposed veins, are parallel to 864 

the foliation. Both dextral- (clasts close to Figure 3 rectangle, marked by the white arrow) and sinistral 865 

sense of shear (C’ planes, red dashed line) are visible. (a): plane-polarized light; (b): crossed-866 

polarized light. Mineral abbreviation from Whitney and Evans (2010).  867 

Minerals Pre-main 
foliation 

Main foliation C’ Planes 

Amp    

Pl Ab Core
 

Ab/Olig Rims
 

 

Chl    

Quartz    

Cal     

Epidote    

Ilmenite    

TABLE 1: Metamorphic and deformation evolution of sample ICDP5054EX8E601. 868 
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 870 

FIGURE 3 More detailed areas of sections shown in Figure 2. (a) Ab porphyroclasts with dark trails 871 

of inclusions of Ep and Cal few µm in size. The Ab porphyroclasts are wrapped by the mylonitic 872 

foliation defined by Amp, Olig and Chl. The white rectangle indicates the site of the EBSD map 873 

shown in Figure 7 (plane polarized light). (b) X-ray map showing Pl, Amp, Chl and Ep that crystallize 874 

in the pressure shadows of Ab porphyroclasts. (c) BSE image showing zoned Pl with dark cores (Pl1) 875 

and brighter rims (Pl2 and Pl3). Bright inclusions inside Pl are Ilm crystals. (d) CL image highlighting 876 
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the difference between Ab cores (dark, Pl1) rimmed by Pl with higher An content (bright, Pl2 and 877 

Pl3). This bright Pl crystallises also in the pressure shadows and in the fractures that dissect the Ab 878 

cores. (e) Standardized X-Ray map of the X Anorthite (XAn) in the Pl. Note the fractures in Pl1 879 

sealed by Pl3 and sheared-off fragments of Pl1 rimmed by Pl2 and 3 (see text and Figure 5 for 880 

distinction). (f) Standardized X-Ray map of Amp crystals displaying relic cores higher in Mg# 881 

(Amp1) and rims lower in Mg# lengthened as the main foliation (Amp2). A minor but consistent shift 882 

toward higher Mg# is visible from the top to the bottom of the picture, probably related to an 883 

analytical artefact.  884 

 885 

FIGURE 4 Details of the microstructures shown in Figure 3c. BSE images. (a) Dark Pl1, highlighted 886 

by the dashed yellow line, with lobate edges and peninsular features rimmed by Pl2 and Pl3. (b) Iso-887 

oriented Ilm and Rt inclusions in Pl1. Note the two perpendicular trails of pores in Pl2 and Pl3. (c) 888 

Detail of the pore trails and associated Ms and Cal inclusions. (d) Close-up of (c) highlighting pores, 889 

abundant Ms inclusions and rare Ba-rich Ms.  890 
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 891 

FIGURE 5 Mineral chemistry of Pl, Amp and Chl. The subdivision in generations was made based 892 

on microtextures. (a) Pl groups based on the XAb and XAn content: Pl1 XAn 0-0.05; Pl2 XAn 0.05-893 

0.13; Pl3 XAn 0.13-0.25. Compare with Figure 3e. (b) Amp groups based on the Mg# and Si apfu 894 

content: Amp1 Mg# 0.5-0.44, Si apfu 7-6.5; Amp2 Mg# 0.44-0.36, Si apfu 6.5-6.1. Compare with 895 

Figure 3f. (c) Compositional map of Chl Mg# for 0% Fe3+. The crystals display homogeneous 896 

compositions (Chl1 Mg# 0.59-0.56), except at grain boundaries and along C’ band where lower 897 

values are present (Chl2 Mg# 0.55-0.52) (d) Diagram of classification of calcic amphiboles with 898 

plotted the average chemical compositions of Amp1 and Amp2 (from Leake et al., 1997). 899 

  900 



35 
 

  Pl Amp 

  Core (Pl1) Rim1 (Pl2) Rim2 (Pl3) Core (Amp1) Rim (Amp2) 

SiO2 68.21 62.95 64.99 43.52 41.62 

TiO2 0.01 0.01 0.01 0.22 0.35 

Al2O3 19.08 24.37 21.55 13.21 15.42 

FeO 0.03 0.03 0.06 18.41 18.56 

MnO 0.00 0.00 0.00 0.17 0.17 

MgO 0.00 0.00 0.00 8.34 7.37 

CaO 0.11 4.30 2.30 11.42 10.72 

Na2O 12.34 8.93 10.47 1.72 2.02 

K2O 0.04 0.05 0.05 0.21 0.35 

Sum 99.83 100.64 99.43 97.22 96.57 

  
Formulae based on 8 O 

Formulae based on 23 

anhydrous O 

Si 2.99 2.76 2.88 6.49 6.26 

Ti - - - 0.02 0.04 

Al 0.99 1.26 1.12 2.33 2.73 

Fe3+ - - - 0.41 0.49 

Fe2+ - - - 1.89 1.85 

Mn - - - 0.02 0.02 

Mg - - - 1.86 1.65 

Ca 0.01 0.20 0.11 1.83 1.73 

Na 1.05 0.76 0.90 0.50 0.59 

K 0.00 0.00 0.00 0.04 0.07 

Sum 5.04 4.99 5.01 15.38 15.42 

Mg# - - - 0.45 0.41 

XAn 0.01 0.21 0.11 - - 

XAb 0.99 0.79 0.89 - - 

TABLE 2 Representative average composition analysis (wt%) of Pl and Amp. 901 

 902 
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Chl Chl1-High Mg# Chl2-Low Mg# 

  0% XFe3+ 30% XFe3+ 0% XFe3+ 30% XFe3+ 
SiO2 25.70 25.70 26.52 26.69 
Al2O3 22.33 22.34 21.70 21.69 
FeO 22.00 21.98 22.60 22.41 
Fe2O3 - 0.02 - 0.21 
MnO 0.15 0.15 0.15 0.14 
MgO 16.43 16.43 15.37 15.42 
CaO 0.02 0.02 0.03 0.03 
Na2O 0.01 0.01 0.01 0.02 
K2O 0.00 0.00 0.01 0.01 
Sum 86.63 86.65 86.38 86.62 

Formulae based on 14 anhydrous O 
Si 2.69 2.63 2.78 2.74 
Al 2.75 2.70 2.68 2.62 
Mg 2.56 2.51 2.41 2.36 
Fe3+ 0.00 0.57 0.00 0.58 
Fe2+ 1.92 1.32 1.98 1.35 
Sum 9.92 9.73 9.85 9.65 
Mg# 0.57 0.66 0.55 0.64 

TABLE 3 Representative average composition analysis (wt%) of Chl. 903 

 904 

Amp-Pl couples Thermometer Barometer 
HB BB AS 

Amp1-Pl1 392 °C - - 
Amp1-Pl2 615 °C 0.97 GPa 0.87 GPa 
Amp2-Pl3 605 °C 0.74 GPa 1.09 GPa 

 905 

TABLE 4 Results of Amphibole-Plagioclase geothermobarometry computed from the values of 906 

Table 2. Thermometer abbreviation: HB: Holland and Blundy (1994). Barometer abbreviations: BB: 907 

Bhadra and Bhattacharya (2007); AS: Anderson and Smith (1995). The favoured results are 908 

highlighted in bold (see Section 5.1 for details). 909 

 910 
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 911 

FIGURE 6 Chlorite+Quartz+H2O thermometry results calculated at a pressure of 0.7 GPa and a 912 

range between 0-50 % of Fe3+. 913 

 914 
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 915 

FIGURE 7 Details of the microstructure shown in Figure 3 (referred to as domain 1 in the text). (a) 916 

CL image of a dark Pl1 porphyroclast with fractures and rims containing the bright Pl2-3. (b) 917 

Standardized X-Ray map of the XAn content showing the overlap between the bright CL areas and 918 

the Pl2-Pl3 compositions. (c) EBSD GOS map superposed to the band contrast (BC) map of the same 919 

area shown in (a). White lines: low angle boundaries 2-10°. Black lines: high angle boundaries > 10°. 920 

Light blue lines: Twin boundaries in Pl. (d) EBSD texture component map (TCM) of the Pl1 921 

porphyroclast, showing the misorientation from the reference point marked by the red cross. White 922 

lines: low angle boundaries 2-10°. Black lines: high angle boundaries > 10°. Light blue lines: Twin 923 
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boundaries in Pl. (e) EBSD GOS of Amp from the area shown in (a). White lines: low angle 924 

boundaries 2-10°. Black lines: high angle boundaries > 10°. (f) EBSD TCM of Amp, showing the 925 

misorientation from the reference point marked by the red cross. White lines: low angle boundaries 926 

2-10°. Black lines: high angle boundaries > 10°.  927 
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 928 
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FIGURE 8 Details of Figure 2 (referred to as domain 2 in the text). (a) Light microscopy 929 

microstructure of the site analysed with EBSD. (b) CL image of the site shown in (a). Dark Pl1 930 

porphyroclasts are overgrown by bright Pl2 and Pl3. (c) EBSD phases map of the site shown in (a). 931 

Note the epitaxial growth of Pl2 and Pl3 on Pl1, as indicated by the lack of high angle boundaries 932 

separating Pl1 from Pl2 and Pl3, and the very few low angle boundaries in the Pl1 porphyroclast. (d) 933 

EBSD TCM showing the misorientation from reference point (red cross) in Pl1 porphyroclasts. Note 934 

the correlation between higher misorientation and Pl2-Pl3 overgrowth on the right-hand side of the 935 

reference point. (e) EBSD GOS map suggesting that the Pl crystals are very low internal strain. (f) 936 

EBSD TCM showing the misorientation from reference point of another Pl1 porphyroclast. (g) EBSD 937 

GOS map of Amp. (h) EBSD TCM showing the misorientation from reference point in an Amp 938 

crystal elongate parallel to the foliation. 939 

 940 

 941 

FIGURE 9 Details of Figure 2. (a) Sigmoidal grain of Amp surrounded by Chl along the foliation 942 

wrapping around Pl porphyroclasts. Several brittle fractures perpendicular to the Amp elongation are 943 

visible (plane-polarized light). The white rectangle encompasses the site of the EBSD maps shown 944 

in (d) and (f). (b) X-ray map of the mineral phases in (a). (c) Standardized X-Ray map showing the 945 

variation in Mg# of Amp grains (scale bar on the right-hand side). Amp displays cores higher in Mg# 946 

(Amp1) and rims lower in Mg# (Amp2) elongate parallel to the foliation (compare with Figure 3f). 947 
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(d) EBSD GOS map of Amp. The black line is the trace of the misorientation profile a-b shown in 948 

(e). See (a) for the location of the map. (e) Misorientation profile a-b drawn across a low-angle 949 

boundary. (f) EBSD TCM showing the misorientation from the reference point marked by a red cross. 950 

 951 

 952 

FIGURE 10 Pole figures of the crystallographic orientation data of Pl (colour-coding as in the grain 953 

size maps) and Amp; same site as maps shown in Figure 8. X is the extensional instantaneous 954 

stretching axis, Z is the pole of foliation, stereographic projections, lower hemisphere if not specified; 955 

U: upper hemisphere, L: lower hemisphere. (a) Subset of the Pl porphyroclast and adjacent grains 956 

sharing the same crystallographic orientation, with the exception of a few data points. The Pl displays 957 
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a CPO with the (100) and (001) maxima approximately at 45° from X.  The (010) maximum is 958 

perpendicular to X. a: 189029 Pl data points. (b) Subset of the Pl crystals of the matrix (Pl2 and 3) 959 

not adjacent to the porphyroclast. A weak CPO similar to Figure 11a is visible. 34676 Pl data points. 960 

(c) Amp displaying a CPO with the (100) and [001] perpendicular and parallel to X, respectively. 671 961 

Amp data points (one-point-per-grain). n=number of grains. Half width 10° and cluster size 5°, 962 

maximum value is given. Contouring is 1. 963 

 964 
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FIGURE 11 Pole figures of the crystallographic orientation data of Pl (colour-coding as in the grain 966 

size maps) and Amp; same site as maps shown in Figure 7. (a) The Pl displays a CPO with the (100) 967 

and (001) at low to medium angles to X. Note how the maximum of the values coincides with the 968 

porphyroclast values, in red. 357353 Pl data points. (b) Subset of the Pl porphyroclast and adjacent 969 

grains; some of the latter display a similar crystallographic orientation as the porphyroclast. 238333 970 

Pl data points (c) Pole figures of Amp displaying a strong CPO with the (100) and [001] perpendicular 971 

and parallel to X, respectively. 140 Amp data points (one-point-per-grain). n=number of grains. Half 972 

width 10° and cluster size 5°, maximum value is given. Contouring is 2. (d) Histogram of distribution 973 

of misorientation angles and misorientation axes of amphibole plotted in crystal coordinates. 3295 974 

Amp data points. Dashed line: forbitten zone limit. 975 

 976 

 977 

FIGURE 12 Idealized sketch of the deformation history of Pl and Amp, colour-coding as in the 978 

compositional maps. (a) 1: Pl1 porphyrocrysts grew including a foliation marked by Ep, Qz and Ilm. 979 

2: Fracturing of the Pl1 porphyrocrysts, mostly imposed along the (001) plane. 3: Fluid infiltration 980 

triggered mineral replacement by coupled dissolution-precipitation with topotaxial and 981 
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pseudomorphic growth of Pl2 and, successively, Pl3 on Pl1. Replacement occurred mostly along and 982 

in proximity of the fractures as well as at the edges of the crystals. Pl3 nucleated also as newly grown 983 

grains in the matrix. (b) 1: Amp1 grew with a CPO. 2: Replacement of Amp1 by Amp2 by coupled 984 

dissolution-precipitation; topotaxial growth is suggested by the same CPO shared by the two 985 

generations. 3: Development of misorientation due to displacement along the fractures and along the 986 

cleavage planes.   987 


