
UNIVERSITY OF READING

Department of Computer Science
School of Mathematical, Physical and Computational

Sciences

Software Evolution:
Hypergraph based model of solution space and

meta-search

by

Noel Vizcaino

Thesis Advisor: Dr. M. Manjunathaiah

Thesis submitted for the degree of Doctor of Philosophy

Sept, 2016

Acknowledgements

I would like to thank my advisor Dr. M. Manjunathaiah. First, for his fruitful

advice. Secondly, for his efforts. And finally, for his patience.

ii

To my family.

Abstract:
A hypergraph based model of software evolution is proposed. The model uses

software assets, and any other higher order patterns, as reusable components. We

will use software product lines and software factories concepts as the engineering

state-of-the-art framework to model evolution.

Using those concepts, the solution space is sliced into sub-spaces using equiv-

alence classes and their corresponding isomorphism. Any valid graph expansions

will be required to retain information by being sub-graph isomorphic, forming a

chain to a solution. We are also able to traverse the resulting modelled space. A

characteristic set of operators and operands is used to find solutions that would

be compatible. The result is in a structured manner to explore the combinatorial

solution space, classifying solutions as part of families hierarchies.

Using a software engineering interpretation a viable prototype implementa-

tion of the model has been created. It uses configuration files that are used as

design-time instruments analogous to software factory schemas. These form con-

figuration layers we call fragments. These fragments convert to graph node meta-

data to later allow complex graph queries. A profusion of examples of the mod-

elling and its visualisation options are provided for better understanding. An

example of automated generation of a configuration, using current Google Cloud

assets, has been generated and added to the prototype. It illustrates automation

possibilities by using harvested web data, and later, creating a custom isomorphic

relation as a configuration.

The feasibility of the model is thus demonstrated. The formalisation adds the

rigour needed to further facilitate automation of software craftsmanship.

Based on the model operation, we propose a concept of organic growth based

on evolution. Evolution events are modelled after incremental change messages.

This is communication efficient and it is shown to adhere to the Representational

State Transfer architectural style. Finally, The Cloud is presented as an evolved

solution part of a family, from the original concept of The Web.

Contents

1 Introduction 1

1.1 Introduction . 1

1.1.1 Software Evolution as modelling target 2

1.1.2 Higher level software components 3

1.1.3 Automation . 3

1.1.4 Graph based modelling . 4

1.1.5 Graph modelling . 6

1.1.6 Chapter summary . 6

1.2 Research methodology . 7

1.3 Software Evolution . 8

1.4 Existing evolution related Tools . 9

1.5 Overview of the model . 9

1.5.1 Asset and their relationships 10

1.5.2 Solutions views (perspectives) 10

1.5.3 Equivalence class . 10

1.5.4 Hypergraph and artefacts . 11

1.5.5 Hypergraph expansions and software families 11

1.5.6 Organic growth . 12

1.5.7 Examples and case studies . 13

1.6 The basis for Automation . 13

1.7 Conclusion . 15

2 Software Evolution 17

2.1 Software Evolution . 18

2.1.1 Introduction . 18

2.1.2 Evolving Software . 19

2.1.3 Evolution-ready or evolvable software 21

2.1.4 Conclusions . 22

2.2 Analysis and Visualization tools . 24

2.2.1 Introduction . 24

2.2.2 Holistic Software Evolution: CodeCity 24

Contents v

2.2.3 An Environment for dedicated Software Analysis tools:

Moose . 24

2.2.4 Recovering Software Architecture with Softwarenaut 25

2.2.5 Process Mining Software Repositories 28

2.3 Software tools for Architecture and Design 28

2.3.1 Automated Synthesis of CONNECtors to support Software

Evolution . 28

2.3.2 Emergent Middleware: Starlink 29

2.3.3 Pat-Evol: Pattern-driven Reuse in Architecture based Evo-

lution for Service Software . 29

2.3.4 CAPucine: Context-Aware Service-Oriented Product Line

for Mobile Apps . 30

2.3.5 MoDisco Framework . 30

2.3.6 Rascal metaprogramming . 31

2.3.7 Evolving Software for Molecular Modelling 31

2.4 Evaluation of the techniques . 31

2.5 Software evolution approaches . 35

2.5.1 Lower level: code and modules 35

2.5.2 Higher level: Architecture based 35

2.5.3 Graph based . 35

2.5.4 Model-driven (SPLs) . 37

2.6 Relational model overview . 37

2.6.1 Modelling asset relationships 40

2.6.2 Evolution guided by Isomorphism 41

2.7 Example: Architectures isomorphic to cloud systems 41

2.8 Conclusions . 44

3 A Relational Hypergraph based Model 46

3.1 Introduction . 47

3.2 Preliminaries . 47

3.2.1 Relations . 48

3.2.2 Graph of Asset relation . 49

3.2.3 Graph Isomorphism as a structure preserving operation . . . 49

3.2.4 Sub-graph Isomorphism to identify related structures 50

3.2.5 Existence of Primitive operations 50

3.3 Relational Hypergraph Model . 50

Contents vi

3.3.1 Evolution using Hypergraphs 53

3.3.2 Single Asset evolution . 53

3.3.3 Hierarchical evolution of multiple Assets 55

3.3.4 Existence of Product lines . 55

3.4 Encoding families using a Relational Hypergraph Model 58

3.4.1 Software Product lines: Single asset 58

3.4.2 Coupler enablers or the assets where to grow from 64

3.5 Multiple asset based product lines : Case studies 64

3.5.1 Case Study I: Evolution of Browser Technology 64

3.5.2 Case Study II: Cloud compute engine 67

3.5.3 Case Study III: Regulatory or Legal Constraints 69

3.6 Conclusion . 70

4 Engineering The Elements of Evolution 72

4.1 Introduction . 72

4.1.1 Software design insights . 73

4.2 Engineering the model . 75

4.3 Artefacts as complex operands . 76

4.3.1 Assets as abstract building sub-blocks 77

4.3.2 Artefacts as a hypergraph based software factory schema . 78

4.4 Evolution and Configurations . 79

4.4.1 The model as the basis of a component model for evolution . 81

4.4.2 Property transmission, recording and tracking 81

4.5 Evolution Operations . 82

4.5.1 Core operations . 83

4.5.2 Designing a seed artefact . 84

4.5.3 Designing a coupler . 84

4.5.4 Shift to Solution view . 85

4.5.5 Shift to compatible Coupler . 85

4.5.6 Evolution step: Evolve with ∆ under ' 85

4.6 Conclusions . 87

5 Evolution Automation Feasibility 89

5.1 Introduction . 90

5.1.1 The model in contrast . 90

5.1.2 Python prototyping . 91

Contents vii

5.1.3 The model . 92

5.1.4 Cloud solution . 93

5.1.5 ReST microservice . 93

5.1.6 Use cases . 93

5.2 Architectural Overview . 96

5.2.1 Jupyter server . 97

5.3 Configuration Context files . 98

5.3.1 Encoding Assets . 100

5.3.2 Encoding Artefacts . 101

5.4 The Model as a whole . 101

5.4.1 Artefact custom initialisation 103

5.4.2 Applying Configuration Contexts 104

5.4.3 Instance metadata . 106

5.4.4 Configuration Contexts Automation 107

5.4.5 Evolution operations ∆ . 111

5.4.6 Evaluating and tracking desired properties 111

5.4.7 Searching for other isomorphic solution views 111

5.5 I/O and Visualisation . 116

5.5.1 Displaying static graphs . 117

5.5.2 Displaying dynamic graphs 118

5.6 Modelling: Examples of scripting use 120

5.6.1 Single asset evolution . 122

5.6.2 Multiple assets evolution . 126

5.7 ReSTful microservice . 127

5.7.1 Selectable Test scenario (sandbox function) 129

5.7.2 ReST Resources . 129

5.7.3 How to implement ReSTful operations 129

5.7.4 A test scenario to showcase the model basics 131

5.8 Notebook deployment and Jupyter access 132

5.9 Microservice deployment . 134

5.10 Conclusions . 136

5.10.1 Evolution as documentation 137

5.10.2 The model should be the deepest module 138

5.10.3 Splitting Artefact Class . 139

5.10.4 Asynchronous operation upgrade 139

Contents viii

5.10.5 Future scaling . 140

6 Software Evolution: organic growth 141

6.1 Introduction . 141

6.2 Organic growth . 142

6.2.1 Generative models . 144

6.2.2 Predictors: Key search properties 144

6.2.3 Scanning using predictors . 145

6.3 The Cloud Family: Branch evolution 145

6.3.1 Starting stage: The birth of The Web 145

6.3.2 The Client family . 146

6.3.3 The Server family . 147

6.3.4 The Cloud family evolution 148

6.3.5 The Cloud family: Analysis 148

6.4 Conclusions . 149

6.4.1 Evolution process of growth 149

6.4.2 Families . 149

6.4.3 The Cloud family . 150

7 Conclusions 151

7.1 Introduction . 152

7.2 Formal modelling considerations . 152

7.2.1 Queries using graph based metadata 152

7.2.2 Automating solution (family) search 153

7.2.3 Observations and findings . 154

7.3 A Finite State Machine generator . 154

7.3.1 Solution family instance detection 154

7.3.2 Operations as data efficient messaging events 154

7.4 A (Scale-Free) network of assets assembler 155

7.4.1 Unlimited relationships . 156

7.4.2 Existence of Simpler Solution families 156

7.4.3 The need for complex families 156

7.5 Model Implications and Re-Interpretations 157

7.5.1 The coupler as a solution subspace 157

7.5.2 Solution sub-space iterator . 158

7.5.3 Emerging fractal spaces . 159

Contents ix

7.5.4 []' as a Closure . 159

7.6 Critical appraisal . 159

7.6.1 Terminology and concepts . 159

7.6.2 Models can be dangerous . 160

7.6.3 The need for empirical evidence 160

7.6.4 Prototype implementation . 160

7.6.5 Automation of craftsmanship 161

7.7 Recommendations for Future Research 162

7.7.1 Visual Modelling . 162

7.7.2 The research of other implementations 163

7.7.3 Automatic stop using conditional traversal 163

7.7.4 Complex Data Configurations 163

Bibliography 166

Appendices 183

A Appendices 183

A.1 Prototype notebook examples . 183

A.2 Python files . 183

A.2.1 csv2assets.py . 183

A.2.2 launcherharvest.py . 185

A.2.3 microservice.py . 188

A.2.4 ioutils.py . 195

A.2.5 model.py . 201

A.2.6 artefact views test.py . 208

A.3 Produced Support data . 208

A.3.1 The tile view Jinja2 template 208

A.3.2 The single view Jinja2 template 209

A.3.3 Single view javascript data sample 212

A.3.4 Sample JSON Artefact graph format 212

A.4 Python stdout(console) prints . 213

A.5 XML configuration files . 215

A.5.1 Artefact XML sets master configuration schema to validate

master . 215

A.5.2 Artefact XML assets master configuration example 215

Contents x

A.5.3 Artefact XML asset extra configuration fragment example . . 219

A.5.4 Google Cloud Launcher configuration fragment(layer) 221

A.6 Large images/captures . 226

List of Figures

1.1 Software product lines development phases propagation [1] [2] . . . 5

2.1 Differences between agile and heavyweight approach to software

development. By Khan and Balbo [3]. 21

2.2 ArgoUML source code map, generated using Codecity [4]. This

tool is under an academic non-commercial licence. 25

2.3 Moose data visualisation with Mondrian [5] [6] (CC BY 4.0) 26

2.4 Softwarenaut [7] [6] (CC BY 4.0) . 27

2.5 FASR+ProM [8] [6] (CC BY 4.0) . 28

2.6 Emergent Middleware model: Starlink [9] [6] (CC BY 4.0) 29

2.7 Transition from domain engineering to application engineering.

"The Multimodel in the Software Product Line development pro-

cess". ISSI Research Group (Polytechnic University of Valencia).

(CC BY 4.0) [10] [6] . 38

2.8 GPLv3 Graph-Tool analysis framework [11] using subgraph iso-

morphism detection [12] . 41

2.9 Graph isomorphism example. (CC BY-SA 3.0) by AAAS (adapta-

tion). Wikimedia. [13] . 43

3.1 Different Hypergraph views as described by Stell [14]. Left side: a

Hypergraph H = (V, E) where the edge set is E = a, b, c, d, e, f and

the vertex set is V = s, t, u, v, w, x, y, z. The right: the corresponding

relation ϕ on V ∪ E. 51

3.2 A directed hypergraph example view [15]. 51

3.3 Growing current graph produced through couplers. 53

3.4 Evolving equivalence classes: many views of a compatible solution

(for illustration purposes) . 56

3.5 Evolving families of products using coupler sets with cardinality k . 57

3.6 Higher level {gi} ∪ {cj} gives rise to a (property preserved) new

family of products . 58

3.7 Firefox based architectural dependencies. Coupler graph via ex-

tension for augmented browsing or custom web post-processing

capabilities (relaxed security sandbox may be available) 59

List of Figures xii

3.8 Architectural dependencies converging on coupler graph via

GreaseMonkey for custom web post-processing 62

3.9 Different solutions from the same equivalence class 63

3.10 FX ∪ {wasm1, wasm2} . 66

4.1 Artefacts virtual connection . 78

4.2 Artefacts virtual connection, artefact added 79

4.3 Practitioners define and affect artefacts through various means . . . 83

4.4 Sequence of events defining a FSM [16] and also an evolution path

to a higher solution Gn. 86

5.1 View of the starting folder of the running Jupyter server using a

web browser as the client. Existing notebooks with .ipynb extension. 94

5.2 Getting the SHA-1 hashed ID of a resource stored as seed.json 95

5.3 The prototype as a rudimentary graph imaging tool. Blue transpar-

ent circles added with LibreOffice Draw 95

5.4 Placement of custom Jupyter notebook files in a Google Cloud

Datalab VM instance. [17] . 96

5.5 Current prototype logical access as implemented. Green circles are

web clients. Blue rectangles are server related and the white one is

an interface. The purple trapezoid is an I/O function. Any other

I/O is omitted as it is of general access (utility). Dotted lines are

optional uses. 98

5.6 A Jupyter notebook editing cell featuring sample prototype code . . 99

5.7 Custom asset configuration fragment layer loaded into the graph

as metadata with tag (label) licence. 106

5.8 Google Cloud Launcher asset configuration fragment loaded into

the graph as metadata. 110

5.9 Prototype notebook outputting current count of metadata labelled

property. 112

5.10 Prototype notebook outputting current pre-filtered valid isomor-

phisms as dictionaries. 114

5.11 Sample static graph output using matplotlib library 118

5.12 Isomorphic solution tile of some sample static views as generated

and displayed. 119

5.13 Sample output using D3.js based GPL component [18, 19] 120

List of Figures xiii

5.14 Generated compact tiled-view of expanded [view] ' specimens

(other views). It can be loaded within a Jupyter notebook or via

a web browser. Jinja2 template version iframe sizes are bigger so

the there is more room for each graphs. 121

5.15 Google Cloud Platform sample Artefact 124

5.16 Notebook featuring single asset source code for loading of JSON

artefacts. Graph output depicted over. 125

5.17 Adding two couplers using assets such they require further isomor-

phic relationship. 126

5.18 Multiple asset notebook example. 128

5.19 Test scenario evolution. 130

5.20 Artefacts with graph on disk can be evolved using ReSTful opera-

tion handling. The page updates to the resulting base graph. 131

5.21 Small sample of the expected outcome of the test scenario. Tiled

view of thick ∆ evolved seed with many specimen views all be-

longing to the new [solution graph]'. [seed graph]' belonging views

are sub-graph isomorphic to all of them. 133

5.22 Loading JSON artefacts and the embedding of graph views. Graph

output depicted over. 135

6.1 Logistic curve with various parameters. Wikimedia Commons. [20] 143

6.2 Evolution of the client affects the system as a whole. 147

7.1 1 family. 2 levels. 4 ordered sequences of Equivalent solutions

operations. 4 paths. 158

A.1 Equivalence class generation of sample known static views. 227

A.2 All views evolved with the same artefact using the evolve delta()

thick ∆ method. 228

A.3 Notebook text output. Includes data before and after evolution and

configuration layering. 229

A.4 Sample test interactive output as a Jupyter notebook: "multiple si-

multaneous static graphs.ipynb" . 230

List of source code samples

1 McIlroy’s solution . 74

2 Example of asset configuration fragment layering new metadata in

design-time . 80

3 Sample asset configuration file entry. Database technologies de-

scription in Google Datalab collection [17] 100

4 Basic Artefact class initialisation. However we need more data for

it to be usable. 102

5 Custom class initialisations. cls is a convention for the class to be

customised . 104

6 We keep track of the added context fragments. It overrides meta-

data on tag name collision. Not a bug but part of corresponding

metadata update. 105

7 Sample asset entries from the context fragment layer views.xml.

Tags used are licence and softwwareview. Any tag can use watch-

ing out for semantic word clash with any other used by metadata.

This means they will capture the tag or label and later override

related metadata. 105

8 Python property using @property in lieu of getter/setters: properties

as a dictionary based node metadata 107

9 Generic choice of node metadata using existing tags (labels) 107

10 Creating a subset of the Cartesian product of assets in a

xml.etree.ElementTree tree data structure. It is called inside of a loop

with various categories. The loop should be moved inside for clar-

ity and efficiency. 108

11 Evolution by graph expansion (thin ∆) using a one base graph (a

key view in itself) and a coupler artefact instance. 113

12 Evolution by multiple graph expansion (thick ∆) using all stored

views and a coupler artefact instance. All resulting solution guar-

anteed to be analogous. Their metadata fingerprint could be different.115

13 Tagged metadata occurrence count. Also useful for solution view

assessment and sorting. 115

14 Checking for sub-graph isomorphism existence. 116

List of source code samples xv

15 Using loaded node metadata to filter and find existing isomorphisms.116

16 Defining asset names as node identifiers. These relationships

model valid Cartesian pairs to form a relation. 123

17 Load JSON graph data to create an Artefact instance. This replaces

the need to define node relationships as Cartesian pairs. 123

18 Using the evolve method (thin ∆) in succession. 123

19 Google Cloud Platform sample artefact modelling. 124

20 Reformatted data as JavaScript (initially used for testing) 126

21 Google Cloud Platform sample multiple asset based artefact gener-

ation. 127

22 Test scenario function . 129

23 Operation processing by URL /api entry using HTTP verb POST . . 130

24 function test scenario activated by

http://127.0.0.1:5000/test scenario 132

25 The model generates all offline data needed to embed within a

notebook . 134

26 Flask server launcher . 136

List of source code samples xvi

List of Abbreviations, acronyms

and nomenclature

.NET Microsoft .NET Framework [21].

ADL Architecture Description Language [22].

ADM Architecture Driven Modernisation [22].

AE Application engineering [23] [24].

AJAX Asynchronous JavaScript and XML [25].

Anaconda A Scientific Python distribution [26].

API Application Program Interface.

asm.js Low-level subset of JavaScript Mozilla specification (cross-browser) [27].

AST Abstract Syntax Tree [28].

Azure Microsoft Cloud services [29].

Bokeh A canvas-based charting library for the web. [30].

bs4 An error-tolerant HTML parser Python library [31].

C# A general purpose programming language. [32].

CASE Computer Aided Software Engineering.

CMS Content Management System [33].

CORBA Common Object Request Broker Architecture [22].

CRUD Create, Read Update and Delete operation set [34] [22].

CSS Cascading Style Sheets [35].

CSV Comma-Separated Values data format standard [35][22].

curl A command line networking tool [36].

List of source code samples xviii

cygwin A command line unix environment layer for MS Windows [37].

D3 Short for D3.js library [38].

D3.js D3 is a JavaScript library for visualizing data using web technologies [38].

DE Domain Engineering [23] [24].

Debian A type of linux distribution [39].

DOM Document Object Model [35].

DSL Domain-Specific Language [22].

EMF Eclipse Modelling Framework [22].

Emscripten Emscripten is an LLVM to JavaScript compiler [40].

Flask Python server for network microservices [41].

FSM Finite State Machine [42].

GA Genetic Algorithm.

GCP Google Cloud Platform [43].

Git A decentralised source control system [44].

GML Graph Markup Language [45].

Google Datalab. Google Cloud services [17].

GPL GNU Public Licence [46].

GPLv3 GNU Public Licence version 3 [46].

GreaseMonkey Firefox extension allowing custom scripts [47].

GUI Graphical User Interface

HATEOAS Hypermedia as the engine of application state [48].

HTML5 HTML version 5 [35].

HTTP Hypertex Transfer Protocol [35].

IaaS Infrastructure as a Service [22].

List of source code samples xix

ID Unique identifier.

IDE Integrated Development Environment.

IPython Python-exclusive Jupyter predecessor. Incorporated in Jupyter as a

Python engine. [49].

J2EE Java 2 Platform Enterprise Edition [22].

J2SE Java 2 Platform Second Edition [22].

Jinja2 A web templating system [50].

jQuery Javacript based declarative library for DOM manipulation [51].

JS Javacript

JSON JavasScript Object Notation [52].

Jupyter A multi-language system for client-server programming and deploy-

ment. [53] [54].

Linux Free and open source unix-like operating system [55].

LLVM Low Level Virtual Machine [56].

Matplotlib A Python library for the generation of static graphics and charts [57].

MDE Model Driven Engineering [58] [24] [22].

MDPL Model Driven Production Line [6].

MDRE Model Driven Reverse Engineering [59] [6].

MS Microsoft

MVC Model-View-Controller [60].

NetworkX A Python network(graph) library [61].

OMG Object Management Group [22].

OO Object Orientated

OS Operating System.

p2p peer-to-peer

List of source code samples xx

PaaS Platform as a Service [22].

PNG Portable Network Graphics. Image filetype [35].

POSIX Standard Unix APIs [62].

ReST Representational State Transfer [48] [22].

ReSTful (adjective) It adheres to the ReST architectural style principles.

SaaS Software as a Service [22].

Scipy Scientific library for Python [63].

SCM Software Configuration Management. Broader concept than VCS [64].

SE Software engineering.

SHA-1 Secure Hash Algorithm 1 [65].

SOA Service-oriented architecture [22].

SpiderMonkey Firefox rendering engine [66].

SPL Software Product Lines [67].

SQL Structured Query Language [68].

Subversion Centralised source control software from Apache Foundation [69].

SVG Scalable Vector Graphics [35]

SVN Apache SVN. A source control system [69].

TamperMonkey Multi-browser extension allowing custom scripts [70].

URI Uniform Resource Identifier [35].

URL Uniform Resource Locator. The web URI [35].

V8 Google’s Open source Javascript engine. Part of Chrome browser. [71].

VCS Version Control System. Part of SCM. [44].

VF2 Algorithm for fast sub-isomorphic graph testing [72].

VM Virtual Machine [27].

List of source code samples xxi

W3C World Wide Web Consortium [35].

wasm Short for WebAssembly binary [27].

WebAssembly The binary version of asm.js code [27].

WebGL Web Graphics Library [66].

wget A command line networking tool [73].

Wiki Software for collaborative web content creation [44].

win32api Standard API access expected in a Microsoft Windows 32 bit environ-

ment.

WinForms GUI library part of Microsoft .NET Framework.

XML eXtensible Markup Language [35] [22].

XML-RPC XML based Remote Procedure Calls (RPC) [22].

XPCOM Cross Platform Component Object Model [66].

XSLT eXtensible Stylesheet Language Transformations [35].

XSS Cross-Platform Scripting [74]

XUL XML User Interface Language [66].

YAML YAML Ain’t Markup Language [75].

Chapter 1

Introduction

Contents

1.1 Introduction . 1

1.1.1 Software Evolution as modelling target 2

1.1.2 Higher level software components 3

1.1.3 Automation . 3

1.1.4 Graph based modelling . 4

1.1.5 Graph modelling . 6

1.1.6 Chapter summary . 6

1.2 Research methodology . 7

1.3 Software Evolution . 8

1.4 Existing evolution related Tools . 9

1.5 Overview of the model . 9

1.5.1 Asset and their relationships 10

1.5.2 Solutions views (perspectives) 10

1.5.3 Equivalence class . 10

1.5.4 Hypergraph and artefacts . 11

1.5.5 Hypergraph expansions and software families 11

1.5.6 Organic growth . 12

1.5.7 Examples and case studies . 13

1.6 The basis for Automation . 13

1.7 Conclusion . 15

1.1 Introduction

There is a wealth of existing software assets that needs to be reused. There is a

demand of ever more complex software. We see software as an evolving system

1.1. Introduction 2

bound by time and its corresponding changing environment. The future is

uncertain so we need evolution-ready or evolvable software. Software evolution

also represents a development process lifecyle in itself.

This research is based on these pillars:

1. The software is made interrelated (software) assets. The practitioners can

establish which of those relationships make sense within an engineering

context.

2. To model the software evolution paths we shall use these higher level arte-

facts as software asset-based components.

3. The resulting model is feasible to be implemented using current technolo-

gies.

4. The model based tool shows a degree of automation is possible.

1.1.1 Software Evolution as modelling target

Models are representation of the target system, a part of the reality of the world.

A target system can be governed by a theory, with laws and axioms, and then be

interpreted as the model [76]. Software evolution can be interpreted as a process

of step-wise changes in a feedback-loop to adjust to the environment [77]. The

changes are the change in the relationships among its software constituents.

Therefore, we need to encode the constituents, their relationships and their

step-wise changes. The model is based on software assets and their relationships.

A relational model.

A desired software solution should exhibit properties leading to strategic

reuse and also to be able to evolve by assemblage or composition with finer

elements. Further evolvable software should be also an outcome of evolution

[77]. The scope will be limited to architectural or higher (software) abstraction

level. However, other models operate at any level of abstraction and they will be

considered for study. Our approach will not depend on source code level minute

changes but to always work at the highest level of abstraction possible.

1.1. Introduction 3

1.1.2 Higher level software components

Software evolution, in the software product lines context, is an emerging area.

It aims to define new development frameworks with higher order patterns of

reuse based on software assets. Novel software development paradigms such as

software factories have been proposed to integrate the innovative capabilities of

the practitioner using a systematic methodology [78] [79].

New models of evolution based on higher order patterns of reuse, as in

the software factory paradigm [78] [79], are currently shaping the landscape of

model driven approaches. Our interest is the generation of software akin to SPLs

and their related reconfigurability (also their evolution) [80]. Evolution has to

cope with the complexity of software evolution in a continuous evolution context.

Traditional approaches to software evolution (as a model driven approach to

transform an abstract model to an implementation) are being replaced with

similar abstractions. These include the identification of reusable forms in the

form of invariants for a family of related applications. Such new developments

are even impacting on the laws of software evolution itself in proposing revisions

[81] [82] [83]. We present novel graph-based modelling frameworks for emerging

reusable forms. We can formalise the structural properties of evolutionary paths

and a structured means to traverse a combinatorial evolution as the solution

space.

1.1.3 Automation

The model enables automation of any engineering aspect. These include the

search for any engineering insight, including but not limited to, desirable evo-

lution paths. The outcome is intended to be an aid or tool designed to empower

practitioners not replace them. Complex and tedious tasks are automated and

thus free the practitioners in favour of more creative or higher level tasks, automa-

tion of craftsmanship.

The critical issue is the realisation of this grand goal of automation of crafts-

manship. It is convenient to design it as a rigorous evolution framework. This is

required to provide a higher level of abstraction that captures reuse and thereby

reduces the complexity of the evolution in a combinatorial solution space. This is

due to the explosion of possible element relationships to consider in a complex

1.1. Introduction 4

software project.

1.1.4 Graph based modelling

Graph based analysis of software systems to aid software evolution is one of the

rigorous approaches that has seen a resurgence. Topological analysis of graphs

has been applied for analysing complex systems in many areas. Such analysis is

valuable to discover useful properties to aid software evolution. For instance in

a recent work, graph based techniques are used to infer structural changes and

also to predict defects in releases [84]. Other works such as [85] apply program

dependence graph techniques to track the desired software attributes or use

hypergraphs as alternative models for evolution [86].

In our work we are aiming to build a general framework to capture evolution

in emerging trends such as software factories in particular and SPL in general.

The artefacts under consideration are not just source code or a single software

instance but a collection of assets [78] [79]. Software factories yield families or

classes of software products that can be considered as the result of structuring

evolution systematically as software product lines [67]. We are interested in

’software that evolves organically’ phenomenon. We loosely define it so as to

describe the kind of configurations’ evolution that happens in an open collabo-

rative distributed team projects, as in open source projects or open frameworks.

Another interesting development is compute engines on the cloud. They enable

higher order patterns of reuse in the form of compute engines. Their basic

assets provides new ways of architecting software solutions that can lead to an

ever larger family of product lines in a Cloud Systems context [87]. In both

these scenarios, the traditional notion of evolution is replaced by higher order

abstractions and patterns of reuse. Thus, it affects software evolution dynamics

in different ways. For both these scenarios, we are interested in constructing

rigorous evolution techniques that can automate the exploration of evolutionary

paths by constructing attribute predictors.

A software product family is a collection of software-intensive systems having

common assets and sharing architectural properties. These are derived from

the relations among assets [67]. This collective asset arising in this paradigm is

1.1. Introduction 5

Figure 1.1: Software product lines development phases propagation [1] [2]

shown in Figure 1.1.4. The software architecture for a product family captures

the variabilities and commonalities of the product line. New products in the

family are instantiated from the same reference architecture and simultaneously

variations are introduced to differentiate the products. The evolution in this

context consists of a managed set of variation points. These enable a controlled

diversification of the product family. Managing variabilities and commonalities

of a product family is a challenging task. Therefore, methods to automate the

(evolution) process are an integral part of a product line framework [78] [79].

In our framework we propose using graph theoretical notions of isomorphisms

as attribute preserving operations. The model has to find commonalities and

viable solutions for a family of software systems as it evolves. We evolve software

systems to introduce variabilities using defined operations on these graph

structures to explore the vast combinatorial solution space in a more structured

manner.

1.1. Introduction 6

A characteristic feature of this product line evolution paradigm is that the

products are built from common assets in a prescribed way. We can capture

the common foundations shared by a collection of software systems in terms of

meta graph models and graph transformations such as isomorphism. Software

factory template consisting of reusable artefacts that include assets beyond just

code (such as samples, custom tools needed to build the members of the product

family, guidelines and others). All can be uniformly treated as higher order pat-

terns of reuse. Our graph model is based on the hypothesis that solution-wide

attributes will be preserved by isomorphisms. Therefore, the task of the practi-

tioner is to find a seed solution that will satisfy the requirements and then use a

predictor properties. They use the underlying model to suggest a family of valid

alternative solutions. The practitioner can then make a choice based on some

qualitative judgements. The advantage is that the search could be automated

to some degree. Practitioners will be only required to devise a grand strategy

and/or to preserve key attributes. This is analogous to the concepts explored

in [88]. We are empowering the practitioners to find novel solutions by automa-

tion of the detailed (and error prone) aspects of evolution and thus empower the

practitioner creativity in exploring higher level design attributes.

1.1.5 Graph modelling

The basic software engineering elements to model evolving relationships are ab-

stract objects representing software pieces. We shall call them assets. To address

their concern and context, a graph structure has been selected as the foundation

of the model. Design is restricted to high level software pieces (assets). Thus,

we limit the scope of the relationships considered but it does not limit the model

potential at a later stage. These relationships are valid pairs within a Cartesian

product of known asset sets . The graph helps to simplify the modelling as many

pairs will not make sense from an engineering perspective. We will use a Digraph

to account for this fact (ordered pairs) but in general the order of the pair might

not be relevant if the relationship is really abstract. It is based on conventions.

Sometimes the relationships are that of interdependence.

1.1.6 Chapter summary

The topics researched use the following logical chapter order:

1.2. Research methodology 7

1. Chapter 2 Evolution. It covers concepts of software evolution and an analy-

sis of existing tools within an evolution context by researching their material

when available.

2. Chapter 3 Hypergraph Model defines the hypergraph model in detail pro-

viding examples of its use in Software Engineering problems.

3. Chapter 4 Engineering the Elements of Evolution. A detailed design of the

model linked to software engineering topics. The underlying operation is

thoroughly explained. Operations and operands are defined. It lays the

basis for an implementation.

4. Chapter 5 Evolution Automation Feasibility. Demonstrates through the cre-

ation of a working prototype that the concepts and the design researched

are viable and that they can be implemented.

5. Chapter 6 Organic Growth and Evolution deals with the links between our

definition of organic growth as a by-product of the model operation as de-

signed.

6. Chapter 7 Conclusions. Research findings and recommendations for future

work. A critical appraisal of the research process and outcomes.

A detailed introduction to the concepts as they arise (by chapter order) fol-

lows. Chapter 6 is explained last not to break the order or said concepts.

1.2 Research methodology

There are many research methodologies, using the scientific method, which vary

among disciplines. The research method used is "Constructive Research" (Based

on Ontological Realism) [89]. There is an objective reality we are trying to under-

stand with our limited means. The main source of information is the Software

Engineering body of knowledge. This research combines theory and practice.

The theory also applies existing mathematics knowledge. A formal model pro-

vides rigour. The main building block shall be "the relationships of objects". There

are some software engineering pre-conditions setting the context from where to

build a model. Models are an oversimplification of reality (ontological foundation

viewpoint) however they also narrow the scope of the problems and help abstract

away unnecessary concerns.

1.3. Software Evolution 8

The model implementation has to be feasible. In other words, it needs to

be actually implementable using the currently available state-of-the-art. There

could be many possible implementations but one is to be provided as evidence of

feasibility. This implementation shows it can be (empirically) reproducible. Also,

different implementations will be equivalent from the modelling point of view.

1.3 Software Evolution

Software evolves to adapt to a changing environment. With new information

appearing the system needs to be updated. New requirements reflect changing

needs. This new information also includes the discovery of bugs and other

general maintenance may be needed. All these adjustments were explored by

Lehman [90] as a whole set of 8 laws. This maintenance orientated research

origin is represented as The Lehman Laws of Software Evolution. These laws are

a good starting point to discuss the scope of the problem and a descriptive list of

challenges for tackling.

Revised Lehman’s Laws of Software Evolution [91] [92] with some clarifying

comments(our interpretation):

1. Continuing Change: Program must be adapted or becomes unfit.

2. Increasing Complexity: Complexity increases with evolution unless deliber-

ately dealt with.

3. Self-Regulation: Evolution is self regulated so the development process and

outcome match the normal distribution.

4. Conservation of Organisational Stability (invariant work rate): The effort on

evolving software will be constant thorough its lifetime.

5. Conservation of Familiarity (growth rate decrease): A critical level is

reached, for same behaviour, therefore growth slows for that level.

6. Continuing Growth: Software crystallises to fit future needs and to fix bugs.

7. Declining Quality: The increasing feeling of unfitness for non-evolving soft-

ware.

1.4. Existing evolution related Tools 9

8. Feedback System: Multi-level closed feedback loop is of essence to under-

stand and evolve software.

There are other views of the concept of software evolution. Grossly unplanned

development under heavy uncertainty is one of the motivators of viewing soft-

ware evolution as a process. Also, such process should lead to evolvable software

as an outcome. It should be designed for change and adaptation so uncertainty

for future conditions are better tolerated [77].

1.4 Existing evolution related Tools

Software evolution tools have been explored and studied to gain insights on state-

of-the-art approaches. The tools are diverse, they use many techniques and tech-

nologies. Some aspects have been useful for the purpose of exploring future tool

design options. There are two different grand categories in our opinion. One is

the tools that deal with analysis and visualisation category. These are centred in

providing a snapshot of the software attributes state at present, the past evolu-

tion and future directed evolution prescription. Code analysis and code mining

techniques are quite popular. The other category comprises the tools centred in

architecture and design concerns. The practitioner is required to learn how to use

the frameworks. These latter tools enhance the evolution-readiness properties we

previously discussed. In summary, these criteria were used to assess the rele-

vance of the tools and thus, their inclusion. This classification analysis is finally

synthesized in a comparison table, the type of tool, techniques and technologies

involved, and the tools advantages and disadvantages were evaluated.

1.5 Overview of the model

A model for software evolution has been researched. The model is formalised

for rigour and to facilitate the automation at later stage. A strategic and planed

approach to reuse was required. We borrow the concept of asset from Software

Product Lines (SPLs) [93]. Configuration schemas to generate SPLs targeting

different views was studied in detail by Greenfield [79] [78]. We can use both

as conceptual foundations for the model to target. It should be noted that SPLs,

and related software factories, are an ideal and convenient target to illustrate the

model but not necessarily the only target.

1.5. Overview of the model 10

1.5.1 Asset and their relationships

Definition 1 - Asset:
Architecture and higher level of abstraction constituents will be called assets.

The assets are related. These relationships will be pairs of assets and can

be valid(possible) or not. Engineers, scientists and software architects are the

practitioners who will validate the configurations describing these relationships.

Let the set of assets be A. The set A×A defines the set of all potential asset

relationships combinations, valid or not. If the set A has n elements then the

set of all possible relations C contains 2n2
asset combinations. A relation R is a

Cartesian product subset. Relations of assets can be represented as graphs. We

will explore further relational concepts in the model chapter.

1.5.2 Solutions views (perspectives)

The model encodes the evolution steps towards a solution. The evolution steps

create evolutions paths. They can be recorded, from start to end, allowing their

study. Traversals of the different branches representing evolution is feasible in

various ways. The solution space is comprised by all the different solutions views.

Solutions views are perspectives to a problem using asset relationships. Using the

term perspective sound even more abstract so we will stick to software view.

Definition 2 - Solution view:
Set of valid asset relationships. This is a subset of all possible valid relationships.

It can be represented or identified by its resulting directed graph.

Isomorphism

A solution view can be encoded as a graph. Isomorphism is a structure pre-

serving operations that can be performed on graphs. Equivalent solutions are

considered isomorphic and their graphs will be isomorphic. New solutions can

be found by searching for isomorphic graphs or sub-graphs.

1.5.3 Equivalence class

We found that the generality of the structure gives further freedom to encode

relationships. This serves to pack all the solutions views into a solution or per-

1.5. Overview of the model 11

spective solving a concrete engineering problem. This represents a slice of the

solutions space. Since we chose graphs to encode the solutions, views the slicing

is an equivalence class.

Definition 3 - Equivalence class:
Disjoint partitioning of the solution space in sets made of equivalent solutions

views. Denoted by using square brackets: [].

1.5.4 Hypergraph and artefacts

The incidence structure chosen to encode the relationships of the many solution

views is the Hypergaph. This represents relationships of objects among them-

selves on a many-to-many basis. The hypergraph links equivalence classes to-

gether in two ways. If configuration knowledge is available, an equivalence class

can be defined. This equivalence class can be expanded by all theoretical graph

isomorphisms that can be found. This governing relationship among equivalence

classes will be denoted as '.

Definition 4 - Artefact:
Denotes a software solution made of related assets and their configuration (prop-

erties) data. It is modelled as an instance of a hypergraph modelling a solution

view belonging to [solution] '. It can be represented or identified by its base

graph.

An artefact is an engineering output in the classic software engineering ter-

minology. This is also an engineering process output. The term also comes from

SPLs engineering by-products.

Besides belonging to [solution] ' it has to be fully initialised with available

configuration information. A coupler graph can upgrade to artefact and thus

identify compatible (equivalent) views. A solution will usually mean any com-

patible solution and a solution view is the specific solution. We use the graph of

a solution view to represent it unequivocally. The model aims to systematically

assemble solutions encoded as artefacts from searchable compatible sets to form

a new artefact.

1.5.5 Hypergraph expansions and software families

We grow from an equivalence class [solution] ' by expanding its base graph. We

could discover new valid vertices and therefore establish new relationships. This

1.5. Overview of the model 12

will enlarge the known equivalence class. We can also add a coupler graph and

compose a grander hypergraph. This is allowed under '. However, this will

break the bijection of relations which make the base graph. The new evolved

equivalence class will be governed by other isomorphism. This way we can create

a chain of solutions. ([solution]'1 = S1, [solution]'2 = S2 . . . [solution]'n = Sn)

represent different solution sub-spaces or solution families.

These families of software are grown by evolution steps we will denote as ∆.

Every ∆ step has a new associated governing ', thus creating a hierarchies and

families.

∆ is performed under ' to grow a seed hypergraph with a coupler graph

made of assets relationships. Thus, a path with many branches is created. This

will characterise hierarchies of families. Single asset evolution will occur in a

thin path. Multiple asset evolution represent the general case where the path is

thick and evolution models a whole family branch. The way this path is created

is the basis to consider this type of growth as organic growth.

1.5.6 Organic growth

There are many loosely related definitions of organic growth, like from the busi-

ness and biology domains, notwithstanding others. The rationale for having one,

in our case, is that it simplifies the discussion about a complex set of interrelated

concepts. The power of growing comes from within the definition of the structure

operations and operands. We will discuss how the emerging dynamics can help

understand complex constructs like Cloud systems. These systems span many

layers of interrelated and contrasting relationships. These cross software defini-

tion boundaries and sometimes model evolution from hardware to software. This

is illustrated by the physical server on a server farm being replaced by a virtual

machine instance. We are able to model higher level asset relationships like these.

The resulting expansion is also organic as growth from within (the initial architec-

ture is not abandoned). This is due to the sub-graph isomorphic chains binding

the expansions.

Definition 5 - Organic growth:
Step-wise closed feedback-loop of directed compositions or expansions. Uses

specific selections from devised collections of simple structures to incrementally

create a more complex one. There will be a starting state and a way to internally

1.6. The basis for Automation 13

direct the growth to a desired future state.

These collections are limited by a hierarchy of [solution]'k . Being solution =

selectionk for a particular isomorphic level. The result is a changed or evolved itself

in resonance with the environment. Other sets of constraints and rules apply for

operators and operands. Exponential growth will be constrained by resources.

The emergence of new properties is expected.

The attachment point where to expand from must be selected. This selec-

tion has degrees of freedom of utmost importance for growth dynamics like a

scale-free network [94]. These nodes bring over new potential attachment points

candidates. In our model this is performed by explicitly sharing a common node

both in the solution view and the coupler. This indeed obviates the need for extra

parameters when designing the evolution operators.

1.5.7 Examples and case studies

Software engineering based examples of concrete solutions are discussed to clar-

ify how the model operates. These include augmented browsing and cloud com-

puting example contexts. These were chosen for didactic and illustration pur-

poses as we assume a degree of familiarity with related software architectures

and solutions.

1.6 The basis for Automation

Leon Osterweil in 1987 claimed "Software Processes are software too" [95].

Fundamentally, software development processes as well as software reuse can be

pre-programmed. In this view, we are execution actors of such processes. The

research of new architectures was also highlighted by Osterweil. We are able to

define a software development process to be somehow partially automatable. A

formal model can facilitate the automation of many aspects of the development

process.

The software engineering interpretation of the operations and operands de-

fined by the model are discussed in detail in the engineering chapter and then

implemented in a sample prototype as evidence of feasibility. This features a

class to store instance state. The instance will be the graph representing a solu-

tion view. [graph]' is the set of all possible (compatible) solutions views and can

1.6. The basis for Automation 14

be populated by adding compatible nodes tagged as isonodes entries to the assets

configuration file. These configuration files can be fragmented in context lists and

loaded overwriting the metadata held by the graph nodes. This allows for design

time configurations.

Extensible configurations

What is valid has to be configured. The configurations can be part of a Software

Factory schema [79, 78]. Software Factories automate the production of software

product lines (SPLs) with these configurations. The model supports information

extensible configuration schemas are akin to a software factory configuration.

These can be used to automate the production of SPLs. Resulting SPLs will com-

ply with measurable requirements and properties specified in the configurations.

Configurations are open to refinement and further extension.

Evolution Automation Feasibility describes a working prototype as one of the

possible implementations of the model. It is provided as a demonstration that the

model can be implemented. It allows to illustrate the model and to gain further

understanding. This is not necessarily the only one interpretation, the correct or

most suited one.

Prototype highlights:

• Implemented in Python 3 using the free Anaconda scientific distribution

[96].

• Artefacts represented as a graph of asset relationships data encoded as JSON

files.

• XML configuration asset master file with mandatory entries (isonode and

property).

• XML custom configuration fragments associated to assets to set custom en-

tries.

• It can be deployed as part of Jupyter Notebooks for interactive web execu-

tion. These can be deployed in supporting Cloud services.

• It generates graphs using Matplotlib and D3.js based components for static

and dynamic display of graphs.

1.7. Conclusion 15

• Sample ReST interfacing using access to views as web resources. A first

approach to the model as ReSTful to gain further insights.

1.7 Conclusion

Software evolution has two meanings. Firstly, it is a step-wise process. Secondly,

it is a closed feedback loop of self-changes. It follows a growth or development

which by itself is a procedure, an algorithm, to re-adapt to a changing the envi-

ronment. It is the properties within the software itself that make it more prone to

be easily evolvable, adaptable to change.

Model directions:

• Strategic planned reuse of assets and their relationships.

• Organic growth feasible as defined.

• Automation implementation feasible.

• Adaptable to other software designs because not only it is formalised but

uses Software Engineering general concepts.

These objectives have been accomplished. Each chapter will put more empha-

sis in explaining the distinct topics and the research and techniques involved.

Proposed model highlights

• Small set of operations: Shifting(select) and ∆ (advancing).

• Inner sub-operations: Gather views to shift to by exploring or traversing.

• Shifting or steering: shift to view and shift to compatible coupler (another

view).

• Advancing or ∆’s: single asset ∆, multiple asset ∆ (general case). These also

can be viewed as thin branches or trunk branches depending how much

solution subspace they explicitly consider. A thin branch can represent a

thicker branch. Thus we will usually talk about single asset thin ∆.

• Advancing produces growth by creating a new graph expansion by coupler

attachment under a new '.

1.7. Conclusion 16

• Growth happens by thickening the branch, that is, expanding [graph]' sub-

space by adding isomorphism compatible nodes.

• Rich data operands based on hypergraphs encoding of asset relationships

and their configurations. These operands are created by the equivalence

class [] under ' isomorphic operator.

• Emerging software families based on solution space partitioning.

If we think about this at a higher level of abstraction we are in position to

deduce that a model based on software evolution should reflect the processes

which exhibit organic growth. We can also deduce that the properties which

make the software evolution-ready should be preserved.

Graph theory is an appropriate basis to model the relationships that need

to be analysed in software evolution. Since it is familiar and there is plenty of

theoretical knowledge, implemented tools and libraries based on such knowledge.

We utilise these to develop a general framework.

Papers

Chapter 3 is the published paper [97]: Vizcaino, N. and Manjunathaiah, M., 2015.

"Software evolution: a graph based model". Lecture Notes on Software Engineering,

3(3), p.164.

Presented at ICSTE 2014, 6th International Conference on Software Technol-

ogy and Engineering. It combines literature review, the proposed problem scope

and offers a solution. It also suggests possible applications.

For re-submission:

• "Software Evolution formalisation with Graph Isomorphism" submitted to Auto-

mated Software Engineering (Springer)

• "A Relational Hypergraph Model for Software Evolution" submitted to IEEE

Transactions on Software Engineering with the more general concept of multi-

ple asset evolution.

These gave the pointers to improve the chapter 3 further.

Chapter 2

Software Evolution

Contents

2.1 Software Evolution . 18

2.1.1 Introduction . 18

2.1.2 Evolving Software . 19

2.1.3 Evolution-ready or evolvable software 21

2.1.4 Conclusions . 22

2.2 Analysis and Visualization tools . 24

2.2.1 Introduction . 24

2.2.2 Holistic Software Evolution: CodeCity 24

2.2.3 An Environment for dedicated Software Analysis tools:

Moose . 24

2.2.4 Recovering Software Architecture with Softwarenaut 25

2.2.5 Process Mining Software Repositories 28

2.3 Software tools for Architecture and Design 28

2.3.1 Automated Synthesis of CONNECtors to support Software

Evolution . 28

2.3.2 Emergent Middleware: Starlink 29

2.3.3 Pat-Evol: Pattern-driven Reuse in Architecture based Evolu-

tion for Service Software . 29

2.3.4 CAPucine: Context-Aware Service-Oriented Product Line

for Mobile Apps . 30

2.3.5 MoDisco Framework . 30

2.3.6 Rascal metaprogramming . 31

2.3.7 Evolving Software for Molecular Modelling 31

2.4 Evaluation of the techniques . 31

2.5 Software evolution approaches . 35

2.5.1 Lower level: code and modules 35

2.5.2 Higher level: Architecture based 35

2.1. Software Evolution 18

2.5.3 Graph based . 35

2.5.4 Model-driven (SPLs) . 37

2.6 Relational model overview . 37

2.6.1 Modelling asset relationships 40

2.6.2 Evolution guided by Isomorphism 41

2.7 Example: Architectures isomorphic to cloud systems 41

2.8 Conclusions . 44

2.1 Software Evolution

2.1.1 Introduction

There are many methodologies to develop software [98]. The available tools and

the advent of mass collaboration are shaping the way we develop software [99].

There are grand architectural decisions that make sense but for the most part

software ought to be built bottom up [100]. A more organic incremental way of

developing is actually possible.

There should be a hierarchy of software assets to be modified or deployed at

any abstraction level. The engineer’s work would be integrated in a collaborative

and incremental way [99] [101]. The problem arises when this combinatorial

explosion of potential solutions become too complicated to be dealt with just

experience or intuition. There must be a subset of solutions belonging to

the solution space that can be detected following a particular criterion. Also,

equivalent solutions may or may not be desirable depending of which traits they

exhibit. The problem may not be linear in complexity and large scale project

could become unnecessarily difficult if a wrong combination of software assets is

used.

Software actually evolves as an incremental work-bite changes in a closed

feedback loop. Actually evolved by human input using several tool-chains (which

include IDEs and VCS systems). To gain insights about the nature of software we

need to study existing software and its development process. Software needs to

be constantly updated due to technological, organisational, unforeseen circum-

stances and fast changes in the existing environment [102]. Software engineering

2.1. Software Evolution 19

is not like other traditional engineering fields [103] and the developing process

must reflect this fact. We need to encourage incremental progress. Directed trial

and error techniques, prototyping, re-factoring and so forth. Emergent proper-

ties will appear to showcase the process as an evolving complex network [104].

Software projects are among the largest complex engineering projects today and

therefore will require extensive tooling and automation if we are to keep up. We

can wonder what is the philosophical equivalent of software in Nature. There

are analogies to be considered and good solutions to imitate from natural sys-

tems. Fore instance, treating them as individuals (which age) as part of species

(which evolve) [105]. Here species can be interpreted as a software family of

solutions. However, from the microscopic point of view could be seen as (stem

cells, evolves, let us say specialises) cell building-type blocks [106]. We would

like to distinguish between the process of evolving software and the readiness for

the software to evolve, even autonomously [77]. We will put the emphasis on the

semi-autonomous type since the aim is to empower the practitioner to make in-

formed decisions. However, a level of automation can be expected at lower levels

of abstraction. The scope of the evolution tends to go even higher than archi-

tecture level towards software classification as software product lines or software

families.

2.1.2 Evolving Software

Evolutionary software development can be facilitated if the right architectures

and development strategies are put in place. The software is developed with little

anticipation of future conditions (the development process). However, this soft-

ware is designed for change and adaptation so uncertainty for future conditions

are better tolerated [77]. Software evolution was originally rooted in software

maintenance concepts [90] [91] [92] when the waterfall model was nascent.

Revised Lehman’s Laws of Software Evolution(1997):

1. Continuing Change*

2. Increasing Complexity*

3. Self-Regulation*

4. Conservation of Organisational Stability (invariant work rate)

5. Conservation of Familiarity (growth rate decrease)

2.1. Software Evolution 20

6. Continuing Growth*

7. Declining Quality

8. Feedback System

2.1.2.1 Software that grows organically

The fact that software evolves and growth mimicking organic growth is not only

rooted in the process but is heavily enhanced depending on the methodology

used.

An empirical study [107] demonstrates that open source software complies

with laws 1, 2, 3 and 6 of Lehman’s Laws of Software Evolution. Open source

software grows organically out of the distributed effort of a network of partic-

ipant who organised themselves ad-hoc. Open source exploded with the use

of the Internet. These developments enabled ad-hoc teams of various sizes,

with certain work-flows (like Wikis [108] or Git [44]), also yield good results

showcasing organic growth.

Software development can be approached in many ways. It is interesting

to contrast agile methods against heavy or traditional methods. Heavyweight

Methods are rooted in military and aerospace projects with planning spanning

several years. Khan and Balbo [3] contrasted heavyweight methodologies against

Agile Methods as depicted in 2.1. They are documentation intensive and based

on traditional engineering procedures of long detailed planning. ISO-9000

documentation level is considered the quality standard for many industrial

software projects. This methodology may not be suited to certain projects. In

contrast, Agile methodologies, cater to the fast-paced continuous change and

uncertainty that surround many projects.

Keenan [109] formulates the hypothesis that each software project should have

a process tailored to its needs and circumstances. The fact is unlike under the old

models software is built upon, these agile development paradigms software is

literally evolved [110]. The difference of the approach is clear. Requirements are

often too volatile and keeping the initial requirements constant along the life of

the project is a mistake. Under agile methodologies software is grown from a

2.1. Software Evolution 21

Figure 2.1: Differences between agile and heavyweight approach to software

development. By Khan and Balbo [3].

small set of requirements and features to be stopped at some point in the future

after several cycles of requirements validation. The fact is there are enough safe

stop points so the client can request an early stop due to market conditions or

any other circumstances. The life cycle of the development is an incremental and

adaptive process as Abrahamsom et al. [111] explains. This process takes into

account and accommodates changes, finally adapting to them.

They are many tools, artefacts, code and abstractions that could be used

also in an integrated and collaborative way [112] [113]. Moreover, users and

programmers, in their respective stage of abstraction, should be involved to the

maximum extent possible. The implication is that software can be composed of

abstractions and go higher or lower depending on development needs.

2.1.3 Evolution-ready or evolvable software

Software could exhibit different levels of readiness to evolve. This software readi-

ness enhancements are also considered of interest within the software evolution

moniker [77]. A good line of research would be to tune readiness properties to

maximise some strategic feature.

2.1. Software Evolution 22

Attributes of evolvable software

The dynamics of operating with artefacts should enable the practitioners to design

software solutions that are:

• Productive: Fast ad-hoc solution with minimal time to market

• Part of Strategic or planned reuse : Not reinventing the wheel: Reuse of

existing assets

• Time tested or trustworthy: Existing possible bugs in assets remain, but we

do not create new ones

• Easy to modify by assemblage: Ample choice or alternatives and mainte-

nance or adaptation with no programming involved.

• Modular: Less coupling than done programmatically

• Sufficient or satisfactory: Less customisable than done programmatically

from scratch but solves the current problem as defined

• Antifragile: Challenges or constraints develop into enhancing features de-

spite hostile and hazardous fast changing environment [114]

• Evolvable: Output ready or prone to be further evolved

• Traceable : Output ready or prone to be further evolved

• Organic: Undirected growth, with self-organising tendencies and by

bottom-up development, in a self-reinforcing loop [115]

2.1.4 Conclusions

We can conclude that we can choose to evolve fast with software pieces and

lose full customisation, as in this model, or evolve slowly with the fullest

customisation (source code) at the price of potential bugs (also may be by starting

from scratch). This is the difference between evolving with hight level pieces

of software or evolving by changing source code instead. This fast evolution

can be also reinterpreted as a consequence of producing evolvable output. We

want the software solutions to be intrinsically evolvable or evolution-ready, as a

premeditated engineering strategy [77] [116].

2.1. Software Evolution 23

Software Evolution is a field with an immense amount of different approaches

to be researched. Evolution seems to bring the process of software develop-

ment and the resulting software properties and their mutual dynamics together.

Bio-mimicry or bio-inspired software solutions and processes are common. But

the presence of incremental growth in a closed-loop feedback underlying system

seems to be key. The question is how to bring this to a feasible model without

abstracting important features away from reality.

2.2. Analysis and Visualization tools 24

2.2 Analysis and Visualization tools

2.2.1 Introduction

In this section we will explore selected software evolution related tools [6]. The

core techniques are highlighted. Each of them brings a solution to the problems

brought forward by software evolution. Different aspects and patterns of the tools

can be extrapolated to other tools. Finally, a table with the different features will

state the various aspects to consider as analysed.

2.2.2 Holistic Software Evolution: CodeCity

Codecity [4] is a tool to piece together various sources of software evolution. As

part of Software Configuration Management (SCM) toolset, source control tools,

like Subversion [69] or Git [44] allow for a snapshot of the current state of the

software project keeping a multidimensional record(history) all various activities.

The REVEAL [117] group at the University of Lugano approaches the research

in a holistically trying to unify sources of information and to cover the gaps in

the information source. A highlighted tool is CodeCity by Richard Wettel where

source code can be modelled as city district (Figure 2.2) using various software

metrics as parameters [4] [6]. Classes are represented by buildings, packages as

districts and the number of methods is mapped as the height of the buildings. The

intensity of blue represent number of lines of code. There is also colour coded

design problem detection.

We believe there are parallels to a potential visualisation similar metrics even

if is encoded as a graph. This approach can also be applied for source code

re-factoring.

2.2.3 An Environment for dedicated Software Analysis tools: Moose

Moose [5] [6] is an open source project started in 1996, part of the FAMOOS

European project to study object-oriented systems. Software and data analysis

can be customised from the various raw data imported by Moose. Mondrian [118]

is a tool for visualisation feeding on Moose analytical data. Includes a scripting

engine and allows for several visual representation of software components such

as packages, classes, methods and their dependencies (Figure 2.3). Metrics are

represented by size and colour. For instance, the darker the colour, the longer

2.2. Analysis and Visualization tools 25

Figure 2.2: ArgoUML source code map, generated using Codecity [4]. This tool

is under an academic non-commercial licence.

the method persisted in the source. We could see the chronological evolution of

the module (its state) as a 2D treemap where new classes change from yellow in

gradient towards blue as the number of changes increase.

2.2.4 Recovering Software Architecture with Softwarenaut

An interactive and collaborative architectural manipulation tool [7] to mitigate

the degradation of software as it evolves in time. The modules are viewed as

treemaps (2.4) with their size proportional to the lines of code. The with of the

relationships represents the number of invocations between modules. Practition-

ers can programatically filter the whole representation to highlight modules and

dependencies based on a set of engineering criteria. Aside from said filters, in-

spectors provide insights about the evolution of a module.

2.2. Analysis and Visualization tools 26

Figure 2.3: Moose data visualisation with Mondrian [5] [6] (CC BY 4.0)

2.2. Analysis and Visualization tools 27

Figure 2.4: Softwarenaut [7] [6] (CC BY 4.0)

2.3. Software tools for Architecture and Design 28

2.2.5 Process Mining Software Repositories

FRASR [8] [6] is a tool for the analysis of data repositories from various data

sources (log preprocessing step), depicted in Figure 2.5. The output will be in-

put into ProM (the process mining step). ProM [119] is an open source frame-

work from implementing process mining tools. Reuse can be easily visualised,

as depicted in Figure 2.5. The first triangle represents the initial prototype be-

ing leveraged as the step for the next iteration (big triangle), showcasing reuse.

The researchers believe this mining allows for a good degree of prediction based

analysis.

Figure 2.5: FASR+ProM [8] [6] (CC BY 4.0)

2.3 Software tools for Architecture and Design

2.3.1 Automated Synthesis of CONNECtors to support Software Evo-
lution

Automated synthesis of CONNECTors enabling continuous composition. The

CONNECTors are software pieces that emerge from the understanding of dis-

2.3. Software tools for Architecture and Design 29

parate software artefacts like protocols, actions, data models. They effectively

interact automatically once generated. The researchers developed a theory of

CONNECTors to synthesise an application layer for automatic interoperation [6].

2.3.2 Emergent Middleware: Starlink

Starklink [9] [6] is an open source project that has been successful at dynami-

cally generating middleware for CORBA to XML-RPC protocols to understand

each other and also XML-RPC interoperating with the Picasa REST API. This tool

uses the CONNECTors previously described [120]. Emergeng middleware chart

shown in Figure 2.6.

Figure 2.6: Emergent Middleware model: Starlink [9] [6] (CC BY 4.0)

2.3.3 Pat-Evol: Pattern-driven Reuse in Architecture based Evolution
for Service Software

Off-the-shelf architecture evolution based on a constructive architecture-based

evolution process for service software (SOA). Automated identification of evolu-

tion patterns from the architecture change log. A pattern library acts as a reposi-

2.3. Software tools for Architecture and Design 30

tory to enable, using operations, pattern-driven change execution. The latest one

allows for reusable change execution. The metamodel uses a typed attributed

graph in which said graph encodes the configuration for the components and

their connectors. The modelling encodes the evolution operations. These are

based on graph transformation rules. This model enables the structural evolution

of architectures. The AI algorithms use the pattern library database to generate

a starting graph (in a markup language) that will be transformed using a XSLT

(XML template transformation technology) to a target graph [6].

2.3.4 CAPucine: Context-Aware Service-Oriented Product Line for
Mobile Apps

This project creates Dynamic Software Product Line (SPL) adapted to mobile het-

erogeneous systems. This is achieved using previously developed and tested

assets. Asset in this context means any software artefact used to develop an ap-

plication. In the SPL model, reuse of software assets among software families is

straightforward since the similarity and difference levels among the applications

were identified. Therefore, various configurations are possible. The interaction

between a variability model and an aspect model to be adapted even at runtime

(using a technique called Runtime weaving which allows for reconfiguration on

execution) [6].

2.3.5 MoDisco Framework

MoDisco is a Model-Driven reverse Engineering framework to update legacy sys-

tems (actually tested on such systems) [59]. It uses Model Driven Engineering

(MDE) [58] technologies provided in Eclipse and the Eclipse Modelling Frame-

work (EMF) [22]. It has been open sourced and also modularised. J2SE [22], J2EE

[22] and XML [35] technologies are supported and has a plethora of model dis-

coveries, transformations and code generators among other artefacts. The model

is considered by the OMG Architecture Driven Modernisation (ADM) Task Force

as the reference provider for real implementations of several of its standards [22].

This could have implications for other enterprise class tools [6].

2.4. Evaluation of the techniques 31

2.3.6 Rascal metaprogramming

Rascal [121] [6] is a Domain-Specific Language (DSL) for analysis, transformation

and visualisation of existing source code. It is written in Java and integrates with

the Eclipse IDE. This tool can be used in source to source transformations to see

where competing software patterns make more sense. The researchers expect

this tool to be of benefit of tree-centric object-oriented type of software. Software

metrics, static analysis, code transformations and code generations and further

DSL have been applied using Rascal.

2.3.7 Evolving Software for Molecular Modelling

Group of tools (programs and scripts) that simulate various levels of physical

(quantum, molecular) phenomena or interactions. Each level of abstraction cor-

responds with a tool. Each tool communicates to the next higher level (tool).

This keeps the simulations at the most appropriate level of abstraction. The tools

are named WOLF2PACK, GROW and ESPResSo++, ordered by abstraction level.

These tools were developed by the Fraunhofer Institute for Algorithms and Sci-

entific Computing (SCAI), Germany [6].

2.4 Evaluation of the techniques

There are some common techniques that appear recurrently on the examples.

Repository mining is used quite widely. Not only analyses source code (and

its chronological changes) but, in some cases, also analyses other items, like

source control commits (from the SCM tool used) annotations. There are some

time-tested libraries to do this mining.

When code is analysed, modules and/or packages and classes are mapped

(along with their methods, attributes and properties). Generally this is performed

by using any type introspection provided by the programming language used.

Once we read all the structure with its classes, objects and object behaviour we

can build an image of the system at runtime. This could be implemented ad-hoc

if no better alternative is available. Below there is a table that summarises various

aspects of the tools discussed and their strengths (and also applicability to future

evolution software tools).

2.4. Evaluation of the techniques 32

Tool Type Techniques,

libraries

and frame-

works

Advantages (↑) and Disad-

vantages (↓)

Codecity SCM min-

ing [64]

Smalltalk

[122],

Moose [5]

• ↑ Visual feedback on

patterns

• ↑ Analyses Many lan-

guages

• ↓ Framework monocul-

ture (Moose)

Moose [5] SCM min-

ing

Smalltalk

[122]

Time-tested mining frame-

work used in many projects.

Softwarenaut SCM min-

ing

Smalltalk

[122],

Moose [5],

ArgoUML

[123]

• ↑ Time-tested open

source framework.

• ↑ It analyses Many lan-

guages

• ↓ Framework monocul-

ture (Moose)

FRASR+ProM SCM min-

ing

XML [35]

based,

FRASR [8],

ProM [119]

• ↑ Log pre-

prepocessinng and

process mining sepa-

rated

• ↑ Novel approach to

repository mining

• ↓ Less examples of use

2.4. Evaluation of the techniques 33

Tool Type Techniques,

Libraries and

frameworks

Advantages (↑) and Disad-

vantages (↓)

Starlink Protocols

interopera-

tion

Java [124], XML

[35], custom

DSLs [22], au-

tomata [16],

CONNECTors

(AI) [6]

• ↑ Autonomous

• ↑ Based on computer

science principles: Uses

automata, AI

• ↑ It is been tested.

• ↓ Unforeseen situation

could come up at any

time

Pat-Evol Pattern

mining

SOA [22], XML

(XSLT) [35],

graphs (math)

• ↑ It uses standard techs

like SOA and XSLT

• ↑ Based on computer

science principles: Uses

automata, AI

• ↑ It generates evolu-

tions operations. Evo-

lution traceable

• ↓ It depends on the

quality of the patterns

found

• ↓ It depends on the

quality of the patterns

repository

CAPucine

Framework

SPL en-

gineering

[67]

Model-driven

SPL [67] [6],

MDE [58] [24]

[22], code gener-

ation

• ↑ It is just a framework

for models

• ↑ Code generation pos-

sible

• ↓ It may be hard to go

from theory to practice

2.4. Evaluation of the techniques 34

Tool Type Techniques,

Libraries and

frameworks

Advantages (↑) and Disad-

vantages (↓)

MoDisco Model-

Driven

Reverse

Engi-

neering

(MDRE)

[59] [6]

Java [124], XML

[35], Eclipse

(IDE) centric

[125]

• ↑ Eclipse (IDE) centric

• ↑ It uses standard techs:

Java, XML

• ↓ Eclipse only

Evolving

Molecular

modeling

Simulation

engine

C++ [126],

Python [127],

POSIX [62]

• ↑ It uses popular lan-

guages

• ↑ It uses popular stan-

dards like POSIX

• ↑ Parallel program-

ming

• ↑ Techniques could be

applied to other do-

mains

• ↓ Custom made tool,

not general purpose

• ↓ Simulation oriented

(good for simulation

though)

Rascal DSL based

[22]

Java [124],

Eclipse (IDE)

Meta-Tooling

Platform [125]

• ↑ Popular techs: Java ,

Eclipse

• ↑ metaprogramming is

flexible

• ↓ The actual metapro-

gramming could be

challenging and de-

pends on the skill of

the practitioners: no

guarantees

2.5. Software evolution approaches 35

2.5 Software evolution approaches

2.5.1 Lower level: code and modules

Bhattacharya et al. [128] proposed building graphs with the relationships of the

changes in the source code or modules. The developer collaboration dynamics

(VCS commits), bugs, static function calls (finer source level relationships) and

modules communication (coarser source level relationships) are also encoded as

graphs. All these events capture the software evolution process and can be thus

mined and tracked.

2.5.2 Higher level: Architecture based

Benett et al. [129] proposed a serviced based architectural model for software evo-

lution. It identified the software lifecycle as evolution milestones. Importantly, it

states that the speeds at which the various software components evolve may differ.

Cook et al. [116] addressed our concern of the software as a software process and

its properties as being evolvable (evolvability). This can be pre-designed or pre-

meditated. It also points to the advantage of dealing first with the architecture

(higher level of abstraction) evolvability properties using ADLs. These ADLs are

supposed to supplant any lesser formal framework. Architectures have traceable

and connected evolution paths. Also, there are architectural styles, even across

domains, of evolution depending on the relationship between architectures, their

paths and their evolution stages based on Barnes et al. research [130]. Further-

more, in the higher level category, we could include SPLs configuration evolution

as the higher order components to evolve with [80] [23].

2.5.3 Graph based

2.5.3.1 Pattern based

From an evolution approach point of view, Pat-evol [6] is an example of graph

based evolution with item relationships implemented as GML graphs. It uses

XSLT graph transformations to replicate CRUD primitive changes. The reposi-

tory of changes patterns is mined for reusable configurations. It also stablishes

the relationship between the GML graphs as FSM sources for pattern identifica-

tion purposes. These patterns get stored in a library or repository. The outcome

is that we have a match between the evolution changes and their correspond-

2.5. Software evolution approaches 36

ing graphs. This is stored as a XSLT transformation. Based on pre and post-

conditions transformations can be pulled from the repository based on existing

pattern changes.

2.5.3.2 Evolution paths (traceability)

Maletic et al. [131] proposed a graph based encoding for mode-to-model map-

ping. The models are graph based. There are traceability links for this inter-model

relationships. In the case of this research, XML is suggested to encode the data

regardless of the origin. Other XML related technologies like XSLT can be used

to encode transformations. To encode links (relationships) and their associated

metadata XPath [35] is suggested. All these techniques are the basis of the trace-

ability between inter-model graphs.

2.5.3.3 Evolution tree or lifecycle based model

Schach and Tomer researched the evolution of software where lifecycle phases are

encoded as trees [2]. This tree follows the development trail or axis. The mainte-

nance changes are in the maintenance axis and feature tree mappings tracking the

changes (evolution). This gets upgraded to a graph when we take into account

feedback loops on the whole process. For instance, a requirement update will

certainly create this loop. The result is a propagation graph encoding both the

lifecycle and all subsequent changes. We can see any maintenance as of software

evolution. There is the case of using the SPL artefacts as inputs to the model as

they later researched [1].

2.5.3.4 Hypergraph based

Harn et al. [85] [86] proposed a model based on hypergraphs. Here, waterfall

model milestones or software development lifecycle milestones are encoded in

the hyperedges. The outputs or product of the engineering process (including

those referred also as documentation artefacts) are the vertices or nodes. With

this overarching concept of component, practically any object is a possible node.

These objects include:

Criticisms, issues, requirements, specifications, modules, programs, and opti-

mizations.

Hyperedges are created with action-steps or events:

2.6. Relational model overview 37

i.e.: Software prototype demo step, issue analysis step, requirement analysis step,

specification design step, module implementation step, program integration step,

software product demo step, and software product implementation step. The flex-

ibility of this relational hypergraph model adapts to the multidimensional nature

of the different software evolution aspects being encoded.

2.5.4 Model-driven (SPLs)

A model-driven example is the model-driven software production line multi-

model [10]. The transition from domain engineering (DE) to application engi-

neering (AE) [24] [23] [6] can be achieved with a set of operations. It may be plau-

sible for the engineers to establish what kind of outcome is needed and then let

the model discard unwanted solutions from the solution space thereby finding a

valid solution. In practice these operations will evolve models in this multi-model

framework actually turning general systems into customized versions adapted to

the client’s needs. It is possible to use the model to preserve properties (for

strategic reuse, for instance) as showcased by the Carnegie Mellon University’s

Software Engineering Institute software product line catalogue [67]. Families of

isomorphisms located in the solution space could point to solutions akin to soft-

ware families. It is certainly possible to optimise the relationships of different

(software) assets in such a way that similar improvements are feasible.

Let f be an isomorphism f between Domain Engineering (DE) and Application

Engineering (AE) Cartesian product of their asset set with themselves.

∀ d ∈ DE ∃ a ∈ AE such that f : G(DE)→ H(AE), f (d) = a

See figure 2.7 which illustrates the view shift.

We can evolve using isomorphisms from any Domain engineering d view to a

particular Application Engineering a view, and thus, define the solution space of a

product line of software solutions based on the graphs defining the dependencies

between the two views. This is done by using the graphs G, H and finding

isomorphisms complying with this view shift.

2.6 Relational model overview

We are living in the age of the perpetual beta for a reason: software evolves.

Software needs to be constantly updated due to technological, organisational, un-

2.6. Relational model overview 38

Figure 2.7: Transition from domain engineering to application engineering. "The

Multimodel in the Software Product Line development process". ISSI Research

Group (Polytechnic University of Valencia). (CC BY 4.0) [10] [6]

foreseen circumstances and fast changes in the existing environment [102]. The

relevance of software evolution has only amplified in recent times since the ubiq-

uity of software in diverse application areas, and their complexity, has increased

dramatically [132].

Software evolution is a multi-faceted problem domain. Methods for software

evolution vary and are approached from several perspectives: understanding,

modelling, predicting, controlling, automating, visualizing, improving etc., [6].

Many approaches are semi-formal taking domain expertise into account and pro-

pose frameworks that address a particular facet of evolution. Even with this single

facet scenario cross-cutting concerns may imply that multiple elements of a com-

plex software system may need to be modified in order to evolve the software

to new requirements. Two main problems are faced in evolution: 1) combinato-

2.6. Relational model overview 39

rial search space of possible solutions and 2) risk of introducing inconsistencies

if done manually for lack of automated tool support. To address these two main

concerns, constructing rigorous software evolution model has gained significant

attention in recent research efforts and is recognised as a significant research chal-

lenge [132].

Graph based analysis of software systems to aid software evolution is one

of the rigorous approaches that has seen a resurgence. Topological analysis of

graphs has been applied for analysing complex systems in many areas and such

analysis is seen to be relevant to capture useful properties to aid software evo-

lution. For instance in a recent work graph based techniques are used to infer

structural changes and to also predict defects in releases [84]. Other works such

as [85] apply program dependency graph techniques to study the transmission

of attributes in each evolutionary step, in addition to the use hypergraphs as the

basis for the formalisation [86].

In our work we are aiming to build a general framework to capture evolu-

tion in emerging trends such as software factory paradigm [79] where the artefact

under consideration is not just the source code or a single software instance but

a collection of assets and a family of software products that can be considered

systematically. We are also interested in the ’software that evolves organically’

paradigm. It describes the kind of evolution dynamics that happens in an open

collaborative distributed team projects (as in open source projects). For both these

scenarios we are interested in constructing rigorous evolution techniques that can

automate the exploration of evolutionary paths by constructing predictors. Here

we suggest using Isomorphisms as attribute preserving operations to find viable so-

lutions for a family of software systems that arise in an evolving activity. We can

evolve software using defined operations to explore the combinatorial solution

space in a structured manner. The advantage is that the search could be par-

tially automated and engineers will be only required to provide a grand strategy

and/or preserve key attributes. As previously said, our graph model preserves

solution attributes by leveraging graph isomorphisms. Therefore, the task of the

engineer is to find a seed solution that will satisfy the initial requirements and

then use predictors that will use this model to suggest or point to a family of valid

alternative solutions from which the designer can make a choice. This will be

based on some qualitative judgements. We are empowering the practitioners to

find novel solutions by automating this task and this is not meant to the detriment

2.6. Relational model overview 40

of the individual’s creativity.

The next sections are organised as follows. We provide software evolution

scenarios and identify the graph formalism that are feasible in these contexts.

We also present our graph based formalism for modelling evolution. Finally, we

highlight some application scenarios.

2.6.1 Modelling asset relationships

As described above the different parts corresponding to a software system or

product are its assets [79]. Some software assets have a relation with other soft-

ware assets and we are required to maintain these relationship for consistency

of a software system. Two grand strategies can be incorporated as attributes to

be preserved, so we can make solutions to be isomorphic to a given instance of

software. Engineers choose attributes and explore the domain space using iso-

morphisms and set operations. The attribute choices should encode these facts or

aid to search the missing ones.

Let the set of assets be A. Let the relation S be a particular subset of the

Cartesian product of the assets sets:

S ⊂ A×A

A×A defines the set of all potential asset combinations, valid or not. If the

set A has n elements then the set of all possible relations C contains 2n2
asset

combinations. A product family is a subset S drawn from this asset relation such

that S ⊂ C consists of instances where requirements are met and consistency of

relationship is satisfied.

Our goal is to automate the search of this solution space S and so we need

a computational model of our product family S. Graphs provide the required

mathematical model since there is a one-to-one correspondence between relations

and graphs. Graphs also provides us with computational notions of Isomorphism

that are necessary in designing a software evolution framework.

Software assets shall be modelled as the set V of vertices of a graph G.

Similarly, the relationships between the assets is the set edge set E. Software

assets are made of other software assets, therefore we can adjust the assets set

cardinality to a particular size.

2.7. Example: Architectures isomorphic to cloud systems 41

2.6.2 Evolution guided by Isomorphism

Isomorphism and sub-graph Isomorphism gives two operations formalising a

predictor framework for evolution. Isomorphism gives the ability to architect

equivalent products, establish consistency across abstractions,... Sub-graph iso-

morphism can be used to capture differences in product lines where some parts

of the new design is isomorphic to an evolved graph. We detail the product

and check if it is isomorphic (at the right abstraction level) with a valid product.

Likewise, we abstract further and check if the result is isomorphic against our

current product graph. This isomorphism preserving operation guarantees that

the resulting product will preserve the desired properties. However, primitive

operations allow for the product to be evolved without the isomorphism checks.

Figure 2.8 shows an illustration of the searching operation of the graph 2.8a over

the solution space graph 2.8b resulting in a sub-isomorphic relationship or bind-

ing.

Figure 2.8: GPLv3 Graph-Tool analysis framework [11] using subgraph isomor-

phism detection [12]

2.7 Example: Architectures isomorphic to cloud systems

Cloud software [87] is clearly defining the functions of the server and the client

in two stacks communicating by HTTP [35]. This whole development mimics the

Model-View-Controller (MVC) architecture [60]. With the advent of the smart-

phone all clients are collapsing to a single client stack, merging traditional desk-

top development, mobile development and web development. The client is con-

2.7. Example: Architectures isomorphic to cloud systems 42

centrating on the presentation layer. The whole stack is shaping to communicate

with the client and therefore to supply the information in optimal ways. When

needed, a whole layer is bypassed communicating directly to the relevant client

layer. A remarkable development is that the OS is being virtualised and thus

treated as yet another layer in the stack. This allow for the server stack to provide

a variety of different server-side development frameworks. The characteristics of

cloud solutions are described in the taxonomy by Rimal et al. [87].

Consider a scenario where a software system for a desktop needs to be evolved

to a system that is compatible for a cloud system. We can define the asset rela-

tionship for the two systems using A and B as the assets sets.

The asset set in a desktop context (offline):

A = {server, database, AJAX, UI}
Being UI a collapsed view of desktop UX/GUI technologies.

and the asset relation is A×A, whose equivalent di-graph representation can be

denoted by H

The practitioner has a starting asset set of nodes corresponding previous desk-

top context:

B = { database, server, AJAX, browserbasedUI}

and a corresponding asset relation B × B, whose equivalent di-graph is denoted

by G. We consider G to be the seed solution to evolve from to H. We can formulate

this as an isomorphism between graphs G and H.

We can study the problem of a desktop product to a cloud product:

f : G→ H

Let f be the isomorphism such as f : G(A)→ H(B) and A = A×A , B = B × B

using the isomorphic graphs in Figure 2.9. Graph G 2.9a and graph H 2.9b.

f (Ga) = H1, f (Gb) = H6, . . . , f (Gj) = H7 matching pairs.

We can delete Gc and replace it with the new property preserving (iso-

morphism preserving) H8. In a desktop to cloud context that could make the

Cartesian pair (server, UI) be replaced by the pair (server, browserbased). Like-

wise, regulatory compliance could make us shift documentation to document

2.7. Example: Architectures isomorphic to cloud systems 43

Figure 2.9: Graph isomorphism example. (CC BY-SA 3.0) by AAAS (adaptation).

Wikimedia. [13]

intensive ISO-9000. However, we may not desire to change the isomorphic graph

but just the topology albeit being different products. Similarly, other assets, like a

particular software logical view, could be preserved in this fashion. We can also

grow the graph and search for the next isomorphic graph, since we want to add

new properties.

Validating every single pair may not be possible or desirable. We can establish

what we consider valid pairs using a digraph. Therefore, a digraph could be the

input we need for validity. This enables us to discard undesired combinations

and it does not constrain the creative options of the practitioners. For simple

examples it could be trivial although it might point to some overlooked property.

If the product is really complex and thus the graph, there could be a signif-

icant amount of properties to track and therefore such graph encoding is justified.

Given the definition of isomorphism, there must be a path of adjacent vertices

in isomorphic graphs. Therefore, two isomorphic graphs guarantee a dependency

path between one product (desktop solution in this case) and its equivalent Cloud

implementation and vice-versa. This way, key properties are preserved by the

isomorphism. However, we know that the systems are different so we can argue

the merits of one product against the other. To add another level of complexity

we can make both solutions isomorphic to a logical or architectural view to

2.8. Conclusions 44

preserve properties of a higher level of abstraction. We can also create a taxonomy

of solutions based on this higher level isomorphism check. This taxonomy will

enable us to identify families of products. We can conjecture how this could be

classed as a sort of architecture-time programming.

2.8 Conclusions

We have studied the aspects of software evolution. These show it is a process with

start and end states with ongoing outcome-states or stages. This process is bound

by Lehman’s Laws of Software Evolution. Moreover, it is a software development

process with a lifecycle. All these concerns should be considered to understand

the evolution phenomenon in a software engineering context.

We have presented a graph model as a rigorous approach to software evolu-

tion. Our key idea is to allow the exploration of a set of well defined operations

can represent the design or architecting of equivalent solutions in a software evo-

lution context. The architectural changes can be introduced and recorded in a

systematic way. This is already happening at source code level by collaboration

of engineers and/or in open source on a massive scale. We further this trend

providing a model to evolve a system. Using isomorphisms of known solution

structures to model new software could leverage the acquired previous knowl-

edge and even find relationship insights beyond the art of software development.

By freeing the engineers with relevant automation we actually get more engineer-

ing, and paradoxically, we further the art aspect by empowering their creative

choices.

Future work should consider the computational complexity of operations on

graph and its effect on constructing practical predictor frameworks. One solution

is to consider meta-heuristic techniques from a Soft-Computing domain, such as

genetic algorithms, to devise operations beyond plain operations on the graphs.

Other good candidates for a meta-heuristic would be (to train) a neural network

(operation) to recognise specific patterns in the whole model. This could work at a

global scale or at fine level depending on what is what we are looking for. These

meta heuristic can be used to discard solutions that do not meet some criteria

and therefore highlight some pockets or clustering of solutions. The isomorphism

check could be done, for instance, using some library implementation like the VF2

algorithm for NetworkX (Python) [72]. Another possibility is to consider polynomial

2.8. Conclusions 45

time algorithms for graph operations that are feasible under certain conditions

[133]

Regarding the tools sampled, to create a software evolution tool, we may

need software configuration management tools (SCM) mining. Either with ad-

hoc methods or using a framework like Moose to do the heavy lifting. Using

Moose is safer but is a less novel approach, as many tools use it. The source code

can certainly be statically analysed using industry standard libraries. The Star-

link /CONNECTors [6] approach is really interesting because it is bottom up and

autonomous. However, it may be hard to predict its behaviour. The approach

has been proven to work and the protocols do communicate autonomously. In

the same category is Pat-Evol [6] as “the system comes about” with the solution

automatically. Pattern matching is a well studied subject in Computer Science.

It is a remarkable fact that Pat-Evol uses operations to replicate evolution and

transform graphs of different software patterns into each other. Software Product

Lines (SPLs) are widely used to isolate commonalities and allow for customisa-

tion of families of software. These families evolve in time and a lot of research

follows this direction. Existing tools based on Eclipse also surfaced to do reverse

engineering and metaprogramming among other various aspects related to soft-

ware evolution. Code generation is also a recurrent feature in many systems as

well as the use of widespread open source technologies.

Chapter 3

A Relational Hypergraph based

Model

Contents

3.1 Introduction . 47

3.2 Preliminaries . 47

3.2.1 Relations . 48

3.2.2 Graph of Asset relation . 49

3.2.3 Graph Isomorphism as a structure preserving operation . . . 49

3.2.4 Sub-graph Isomorphism to identify related structures 50

3.2.5 Existence of Primitive operations 50

3.3 Relational Hypergraph Model . 50

3.3.1 Evolution using Hypergraphs 53

3.3.2 Single Asset evolution . 53

3.3.3 Hierarchical evolution of multiple Assets 55

3.3.4 Existence of Product lines . 55

3.4 Encoding families using a Relational Hypergraph Model 58

3.4.1 Software Product lines: Single asset 58

3.4.2 Coupler enablers or the assets where to grow from 64

3.5 Multiple asset based product lines : Case studies 64

3.5.1 Case Study I: Evolution of Browser Technology 64

3.5.2 Case Study II: Cloud compute engine 67

3.5.3 Case Study III: Regulatory or Legal Constraints 69

3.6 Conclusion . 70

3.1. Introduction 47

3.1 Introduction

In this chapter we introduce meta graph models to formalise software evolution

for this emerging paradigm of higher order reuse. We make the following contri-

butions:

• We introduce a relational hypergraph model to capture evolution in a prod-

uct line context.

• We formalise evolutionary paths in this hypergraph model by expansion of

the graph through isomorphic and coupling transformations. Paths in this hy-

pergraph enable traceability in software evolution and enables a practitioner

to systematically explore a solution space.

• We identify equivalence classes that relates the structural properties of hy-

pergraphs to product families.

• We provide a quantitative measure for existence of product lines.

We use a hypergraph as a meta-representation to traverse the solution space

where edges are labelled by isomorphic mappings. Our relational hypergraph

model is therefore different from those presented in other works [85] [86] since

the paths in our graph model are constructed from isomorphic operations and our

model relates to product lines.

The chapter is organised as follows. In section 3.2 we recall some preliminary

properties on relations and graphs. In section 3.3 we present our graph based

formalism for modelling evolution. In section 3.5 we evaluate the novel modelling

capability for emerging application scenarios.

3.2 Preliminaries

Given a collection of assets, software product lines can be created. There is a hier-

archy of abstractions where each level is defined by interlinked configurations for

layers of artefacts belonging to the development cycle. Within each of the view-

points a software factory template associates reusable artefacts that collectively

define the attributes that lead to differentiable product lines. Relationship within

a viewpoint and across viewpoints define semantic links and finally a factory

schema for architecting products from a common set of assets. A similar strategy

3.2. Preliminaries 48

is to be followed by software product lines emerging from the organic growth of

an extensible set of assets as we illustrate in the case study section.

The different parts corresponding to a software system or product are its as-

sets. Some software assets have a relation with other software assets and we

are required to maintain these relationships for consistency of a software system.

Two grand strategies can be incorporated as attributes to be preserved, so we can

make solutions to be isomorphic to a given instance of a software system: we

explore this in the form of single asset and multiple asset evolutions in the next

section. Practitioners choose attributes and explore the domain space using iso-

morphisms and set operations. The attribute choices should encode these facts or

aid in the search for the missing ones. Isomorphism and sub-graph isomorphism

are two operations with which we can formalise a predictor framework for evo-

lution. Isomorphism gives the ability to architect equivalent products, establish

consistency across abstractions or provide a basis for evolving organically. Archi-

tectural patterns of varied complexity will emerge eventually from the process to

be strategically assesed as noted in [134]. Sub-graph isomorphism can be used

to capture differences in product lines where some parts of the new design is

isomorphic to an evolved graph.

3.2.1 Relations

Let the set of assets be A. The relation A × A defines the set of all potential

asset combinations, valid or not. If the set A has n elements then the set of all

possible relations C contains 2n2
asset combinations. A product family is a subset

S drawn from this asset relation such that S ⊂ C comprises of instances where

requirements are met and consistency of relationship is satisfied. We will need

the following two types of definitions in our formalisation.

Definition 6 - Partial Order:
A relation R on a set A is called an Partial Order if it is reflexive, anti-symmetric

and transitive [135].

An element a is the least upper bound of a partially ordered set (poset) (l.u.b. of

(℘(A),≤)) if and only if:

• a is an upper bound of (℘(A),≤)

• for every upper bound b of (℘(A),≤), a ≤ b

3.2. Preliminaries 49

Definition 7 - Equivalence Relation:
A relation R on a set A is called an equivalence relation if it is reflexive, symmetric

and transitive.

Two elements a and b that are related by an equivalence relation are called equiv-

alent and are denoted a ' b. An equivalence relation decomposes the set of

elements A into equivalence classes. The equivalence class of a with respect to ' is

denoted [a]' [136].

3.2.2 Graph of Asset relation

Our goal is to automate the search of the evolution solution space around the

seed solution set S and so we need a computational model of our product family

S . Graphs provide the required mathematical model since there is a one-to-one

correspondence between relations and graphs. Graphs also provides us with

computational notions of isomorphism that are necessary in designing a software

evolution framework. Software assets shall be modelled as the set V of vertices

of a graph G. Similarly, the relationships between the assets is the edge set E.

Software assets are made of other software assets, therefore we can adjust the

assets set cardinality to a particular size.

3.2.3 Graph Isomorphism as a structure preserving operation

The subset S contains all the possible initial solutions. We need a seed (initial)

solution that complies with the requirements to be represented as a graph G. We

then need a mechanism to evolve from the seed an equivalent solution set. We

model the evolution of equivalent products as isomorphism of graph.

Definition 8 - Isomorphism:
Let G, H be two graphs. A mapping f : G → H is an isomorphism, where f is

bijective, with the property that if a, b are adjacent in G then f (a), f (b) are adjacent

in H. Graphs G and H are then considered to be isomorphic.

If we start with the seed solution G, we can then traverse the solutions space

using operation f to find other solutions. Following this reasoning, we define a

traverse operator, always moving within some level of abstraction:

∀ g ∈ G ∃ h ∈ H such that t : g→ h

3.3. Relational Hypergraph Model 50

3.2.4 Sub-graph Isomorphism to identify related structures

Definition 9 - Sub-graph Isomorphism:
Let G, H be two graphs and S ⊂ H be a subgraph. A mapping g : G→ S is a sub-

graph isomorphism, where g is injective, with the property that if a, b are adjacent

in G then f (a), f (b) are adjacent in H.

Sub-graph isomorphism can be used to evolve a given seed solution G into a

family of solution (super) set H such that the evolved design satisfies the origi-

nal requirements and any additional constraints that are put in defining a new

product line.

3.2.5 Existence of Primitive operations

We construct the expand operator by changing a vertex node to a more detailed

graph. Similarly by abstracting away a graph into a vertex node of higher level

(abstraction) we construct the collapse operator. These will adjust the level of detail

of the seed solution S.

expand : V → V′ = V ∪Vsubproblem (3.1)

collapse : V′ → V (3.2)

3.3 Relational Hypergraph Model

In order to capture evolutionary aspects of product lines we need a representation

to relate a solution with its equivalent solution set space. Since our seed solution

itself is a graph of the asset relation on the assets A we need a more flexible

generalisation of a graph but still an incidence structure — a hypergraph where

each edge is a set of vertices and can be related to other vertices. (many to many

relationships) [137] [14].

Definition 10 - Hypergraph:
A hypergraph is a directed graph denoted as H = (V, E) where

• V is the set of vertices or nodes.

• E is the set of edges or hyperedges, a set of subsets of V.

3.3. Relational Hypergraph Model 51

Figure 3.1: Different Hypergraph views as described by Stell [14]. Left side: a

Hypergraph H = (V, E) where the edge set is E = a, b, c, d, e, f and the vertex set

is V = s, t, u, v, w, x, y, z. The right: the corresponding relation ϕ on V ∪ E.

A hypergraph can also have many views or interpretations as it is going to be

illustrated. In Figure 3.1, the left side represent hyperedges as sets. On the right

it can be viewed as a relation ϕ over the union of both sets.

Figure 3.2: A directed hypergraph example view [15].

Another view shown in Figure 3.2 depicts a directed graph. We should notice

the nodes drawn origin and destination.

The model requires the edges to represent an isomorphism and thus be

mapped to an isomorphic operation '. Let Ł : E→' be a set of labels or identi-

3.3. Relational Hypergraph Model 52

fiers that maps edges to an isomorphic operation '.

Each vertex in this hypergraph corresponds to an instance of a solution from

S constructed from the asset relationship graph G. In evolving a seed solution,

additional vertices are introduced into this hypergraph and these vertices also

represent a (sub) graph from another view. There are two kinds of new vertex

sets:

• Those corresponding to equivalent seed solution that are derived from iso-

morphic operations.

• Those corresponding to a new set of asset relationship, which we term as

coupling graphs to evolve a seed graph into a new solution.

An edge of a hypergraph represents one of the two kinds of relationships. An

edge labelled with the isomorphic operation ' correspond to equivalent solutions

from the seed solution G. Edges without any labels link G with coupling graphs

K.

Figure 3.3 shows an example of a hypergraph with the above characteristics

to model an evolution step. The yellow graph G represent the seed solution and

the added coupler green graph belong to the solution family [G]' by the expan-

sion operator '. All resulting graphs that are isomorphic from seed to expanded

graph constitute the equivalence class [G]'. If f and h are isomorphic operations

then they belong to the same equivalence class. g could be a subsequent expan-

sion under a new isomorphism. The diagram depicts how commonalities and

variabilities can be systematically introducing within the framework of isomor-

phism.

A hypergraph with the defined structure above models the basic components

in an evolution framework through vertices and edges. The paths in this graph

represent evolutionary history and the evolutionary paths of a particular product

line are governed by some basic feasibility factors that we established in previous

sections. In general, it is possible to automate the construction of evolutionary

paths by transformation of hypergraphs. The decision to follow a particular path

and shape the evolutionary outcome is determined by the strategy that a prac-

titioner applies based on some objective criteria that is pertinent to a product

line.

3.3. Relational Hypergraph Model 53

Figure 3.3: Growing current graph produced through couplers.

3.3.1 Evolution using Hypergraphs

Given a basic structure of a model for evolution in terms of hypergraphs we can

now construct two main methods for an evolution framework. The first applies to

the case of a single asset situation and shows how product line evolution can be

cast as a hypergraph expansion. This can then be extended to the more general

case of multiple assets. The first can be viewed as a local expansion with transfor-

mations of only a few nodes introducing variability. The second can be viewed as

a global expansion from a coupling of local expansions that enables a systematic

exploration of a wider evolution space.

3.3.2 Single Asset evolution

We traverse a seed hypergraph G using isomorphic operations ' to explore the

solution space. Such transformations are useful to evolve a product with only

a few attribute changes, since the intention here is to preserve much of the core

assets shared by a product line and enable the variations to be introduced. This

need stems from the customisation for a specific requirement or to enhance a

product to suit technological advances.

The exploration of this solution space is not arbitrary but will be governed by

the following structural property. Let Ĝ = {G1, G2, . . . , Gn} denote a set of graphs

that are related by isomorphism '. The relational aspect of this hypergraph

model comes from the fact that the relation ' on Ĝ× Ĝ is an equivalence relation

as follows:

• every Gi is isomorphic to itself Gi ' Gi under an identity function hence it

3.3. Relational Hypergraph Model 54

is reflexive.

• if Gi ' Gj then Gj ' Gi and hence is symmetric.

• if Gi ' Gj and Gj ' Gk then Gi ' Gk hence transitive.

From this structural property we can deduce that a set of equivalence classes

for a graph G, ([G]'1 = S1, [G]'2 = S2 . . . [G]'n = Sn) represent different product

evolution sub-spaces or , in other words, product families.

Figure 3.3 shows an example of evolution of an asset graph through single

couplers. A sub-graph in the resulting expanded graph should be isomorphic to

the seed graph G.

Given a [G]', the equivalence class of isomorphic graphs, we now consider

expansion of the graph using couplers K. Every graph ĝ ∈ [Ĝ]' is a potential

candidate for evolving into another hypergraph through the introduction of a

coupler node k. This gives rise to a family of related products in which the com-

mon features are contained in the equivalence class of asset graphs [Ĝ]'. These

structural aspects of the graphs are higher order patterns that express common

contexts, i.e.., a product line, and problem-solution pairs and provide a rigorous

practical approach. We can use such patterns as aggregates in a software evolu-

tion framework.

Figure 3.3 shows an example of evolution of an isomorphic graph with coupler

graphs. Every path in this expanded graph is a feasible product line and the

software evolution process is governed by existence of such paths. From the

structural property of the expansion graph, we get the following property of a

product line.

Proposition 1 - Product family class:
A sub-system of a software product line forms an equivalence class [Ĝ]' under

isomorphism '.

In practical terms we can interpret the above proposition as follows: there

exists attribute preserving transformations that a practitioner can apply to sys-

tematically evolve a product line by incorporating a small set of coupling assets

that meets an enhancement criteria. Using the evolutionary paths, it is possible to

traverse the solution space while preserving the original higher order constraints

that the seed solution satisfied in the definition of the base solution.

3.3. Relational Hypergraph Model 55

3.3.3 Hierarchical evolution of multiple Assets

The method presented for single asset evolution above provides an incremen-

tal approach to make a one step transition within the boundaries of a particular

equivalence class. We now consider the general case when a collection of sub-

products can be evolved into an integrated evolved product by aggregation of

multiple assets through its equivalence classes [Ĝ]' in a structured manner. To

accomplish this general framework, we will define mechanism to compose col-

lection of equivalence classes to form larger hypergraphs. The expansion is not

arbitrary but is again constrained by requirements on the initial seed solutions

which translate into structural properties on the composed hypergraph. In par-

ticular, we will establish an existence criteria for product line evolvability based

on this structural property.

Each such (sub) product will be represented by its equivalence class Ĝi and

will be sub-graph isomorphic in the evolved hypergraph. Evolvability in this

case relies on the ability to compose a given set of graphs through a small set of

coupling graphs (nodes). Let {Ĝ1, . . . , Ĝn} be distinct equivalence classes that sat-

isfy distinct requirements/constraints corresponding to (sub) products. Through

our traverse operation (isomorphic check) we can identify candidate graphs set

{g1, . . . gn}. We then evolve (Figure 3.4) these candidate graphs by inserting new

coupling graphs {c1, . . . , ck}, that can be used as coupling in the evolution task. To

compose graphs, we need the following join operation:

Definition 11 - Evolve:
a structure preserving map ∆ : Ĝ → Ĥ is an expansion of a hypergraph Ĝi such

that {g1, . . . gi} ∪ {c1, . . . , cj} is constructed by inserting of appropriate edges con-

necting a seed g with an appropriate coupler c resulting in a hypergraph Ĥ.

With this expansion we can define a general evolution framework as it pro-

vides a larger solution space encompassing multiple feature sets and reveals an

underlying evolution structure that is not directly apparent to a practitioner be-

cause of the combinatorial expansion.

3.3.4 Existence of Product lines

Let M̂ = {Ĝ1, . . . , Ĝn, Ĥ1, . . . , Ĥk} be the expanded set of hypergraphs constructed

by traversing the solution space through an ' operation as defined above. Since

3.3. Relational Hypergraph Model 56

Figure 3.4: Evolving equivalence classes: many views of a compatible solution

(for illustration purposes)

3.3. Relational Hypergraph Model 57

each graph gi and ci satisfy a distinct requirement, the set ℘(M̂) under the '
relation is a partial order as follows:

• every Ĝi ∆ Ĝi evolves itself and hence is reflexive.

• if Ĝi ∆ Ĥj and Ĥj ∆ Ĥk then Ĝi ∆ Ĥk hence transitive.

• if Ĝi ∆ Ĥj and Ĥj ∆ Ĝi implies Ĥj = Ĝi hence anti-symmetric.

From the above property we get the following proposition about product lines.

Proposition 2 - Existence of Product lines:
A product line exist if there are k least upper bounds corresponding to a coupling

set of size k.

Figures 3.5 and also (simplified) in 3.6 illustrate an hierarchical evolution and

existence of k least upper bounds.

g1 ∪ c1 g2 ∪ c2 gi ∪ cj

H1 H2 Hk

∆' ∆'

Figure 3.5: Evolving families of products using coupler sets with cardinality k

In practical terms, we can interpret the above proposition as follows: the de-

sign of a product family [G]' is parametrised by its constraints and its evolution

will also be dependent on a small set of additional requirements. In order to

evolve consistently there can be up to k couplings that relates to valid product

lines. From the assets point of view, the existence proposition states that a practi-

tioner with a set of assets {A1, A2, . . . , An} at their disposal can evolve a product

line with up to k feasible solutions in one exploration step.

The graphs belonging to equivalence classes meaningfully grow i.e., evolve

with the ∆ operation. Any possible subset of the assets represented in a equiv-

alence class gi ⊆ G can potentially be evolved using any possible assets subset

provided by the coupler ci ⊆ C set. Therefore, the resulting gi ∪ cj that is isomor-

phic to the seed will be part of the equivalence class Hi ∈ H up to Hk potential

solutions, which will belong to a family of products.

3.4. Encoding families using a Relational Hypergraph Model 58

Hi

gi ∪ cj

∆'

Figure 3.6: Higher level {gi} ∪ {cj} gives rise to a (property preserved) new

family of products

This expansion technique can be further explored hierarchically to construct a

larger solution space as shown in Figure 3.5. Hk is the upper bound for the total

solutions available for the operation ∆ over the union of the graph set and the

coupler graph set. The metric k is parametric as it is dependent on the profile of

the asset set. It is possible to quantify this as it relates to the cardinality of the

equivalence classes; we have not fully explored this aspect yet.

3.4 Encoding families using a Relational Hypergraph

Model

Software product lines (SPL) and software factories have common features. The

levels of similitude, as pertaining our asset driven model, enables us to reuse

many features. It is possible to say the transition from domain engineering to ap-

plication engineering can be achieved sharing these features with the operations

devised in our model. It may be plausible for the practitioner to establish what

kind of outcome is needed and then let the model discard or find a valid region,

depending on the point of view, from the solution space. In practice these opera-

tions will evolve models in this multi-model framework actually turning general

systems into customised versions adapted to the client’s needs as depicted in

Figure 3.7.

3.4.1 Software Product lines: Single asset

Here we present a case study of applying our single asset formalism to illustrate

the modelling of software product lines based on web technologies. A baseline

product corresponding to a seed solution will be defined around which extensions

3.4. Encoding families using a Relational Hypergraph Model 59

Figure 3.7: Firefox based architectural dependencies. Coupler graph via exten-

sion for augmented browsing or custom web post-processing capabilities (relaxed

security sandbox may be available)

can be viewed as evolution of the system resulting in product lines. This can

be an effective way of creating new useful software by using the browser as a

development platform [138] [139]. The extensibility feature of web browsers gives

rise to a family of product lines depending on the starting seed solution (See also

Figure 3.7).

BrowserAssets = {GUI, ComponentModel, JavaScriptInterpreter,

ExtensionModel, WebTechnologies}

For instance, in the concrete case of Firefox:

• XPCOM as the component model.

• XUL as GUI (mainly for user interface)

• SpiderMonkey as the Javacript interpreter.

• An extension model.

• W3C web technologies are expected to be supported by the browsers.

3.4. Encoding families using a Relational Hypergraph Model 60

These are technologies part Mozilla technologies [66] and also part of Mozilla

Platform [140]. These would constitute the core assets for the seed solution. We

gather which are the required browser services would be needed to construct a

compatible solution. We can label "abstract dependency" or "logical dependency",

not necessarily a software or source code dependency the relationships between

assets. (NOTE: To logically elaborate on the concepts, examples of browser inter-

nal assets associations are used, for didactic and illustrative purposes. It is not a

claim on the appropriateness of such associations).

A corresponding seed solution is given by the following relation where each

pair represents a relation:

f : [BrowserAssets]'1 → [FX]'1

with the following mappings (if needed for functionality):

f (JavaScriptInterpreter) = SpiderMonkey

f (GUI) = XUL

f (XPCOM) = .NET

f (ExtensionModel) = FirefoxExtensionModel

A set of equivalence classes for a graph of the core asset FX with the edges en-

coding architectural dependencies and the nodes being part of the FX core asset

{[FX]'1 = C1, [FX]'2 = C2 . . . [FX]'n = Cn} represents different product evolu-

tion sub-spaces belonging to Firefox product families depending on the choice of

a seed solution for evolution.

Let [FX]'1 = C1 denote a product line corresponding to a seed solution of FX.

Using this as the base solution we can develop product lines in different ways as

follows which corresponds to evolving a single asset using isomorphic mappings

and coupling transformations.

3.4.1.1 Augmented Browsing: Custom Scripts

We could extend the functionality of the previous Firefox solution by adding a

new XPCOM component or by adding a new functionality leveraging XPCOM

[66] like, for instance, cookie support. We consider the family label not changed

as long as components remain the same in any case. However, we can create

a GreaseMonkey [47] custom script which allows the seed to be evolved into a

new solution. The requirement for Firefox and the script is for GreaseMonkey

3.4. Encoding families using a Relational Hypergraph Model 61

to be present as enabler. GreaseMonkey is one node attachment enabler. It al-

lows Javascript based scripts as for augmented browsing or web page custom

processing [141]. It is an alternative route to implement custom extensions within

a browser extension model. Custom Javascript programming (importing extra

Javascript Libraries, DOM and CSS manipulation, etc), before or after all render-

ing is done, is now allowed. Extra customisation, like for instance, personalised

business views, is possible now [47]. Just as a side note, GreaseMonkey scripts

can be converted to Firefox extensions obviating the need for GreaseMonkey it-

self. This could be considered an equivalent solution.

Denote the GreaseMonkey script by the following assets and a corresponding

di-graph as a coupler k:

GreaseMonkeyScript = {CustomScript, jQuery}

Our evolved system ˆFX can then be represented by a coupled graph which

extends our base graph FX transmitting relevant properties. ˆFX represents a

solution in the larger space which is isomorphic to the seed solution and can be

defined as follows:

ˆFX = [FX]'1 ∪ {(CustomScript, jQuery)} ∪ {(CustomScript, GreaseMonkey)}

In this evolution the following sub-graph isomorphism holds:

f : [FX]'1 → S

where S ⊂ ˆFX

3.4.1.2 Another view from the same family

We can consider a different family with similar functional attributes and hence

would be isomorphic to a Firefox product line. What we want to show here is that

it is possible to start at one point in the solution space and move to another point

in the solution space where we realise the same functionality but evolving the

system to a different point with an underlying component set that provides a new

family. Using the following assets we can develop a new family [ChromeNET]' as

shown in Figure 3.8.

ChromeNET = {Javacript, V8, JSLibraries, .NET, WinForms, TamperMonkey}

TamperMonkey is the Google Chrome equivalent to GreaseMonkey.

3.4. Encoding families using a Relational Hypergraph Model 62

Figure 3.8: Architectural dependencies converging on coupler graph via Grease-

Monkey for custom web post-processing

[ChromeNET]' can be considered isomorphic since we can apply the traverse

operation and find an isomorphic transformation (among other possible) as fol-

lows.

f : [FX]'1 → [ChromeNET]'

with the following mappings (if needed for functionality):

f (SpiderMonkey) = V8

f (XUL) = WinForms

f (XPCOM) = .NET

f (GreaseMonkey) = TamperMonkey

In this mapping, the relationships are preserved while the variations in the

product lines are realised by replacing specific components which in an evolution

context amounts to choosing a different path in the solution space. This solution

is a mere view of all the architecturally compatible solutions represented by the

hypergraph (Figure 3.9). This example is easy but there could be cases where the

mapping is not one to one and the assets need to be abstracted in for the resulting

graphs to be considered isomorphic.

3.4. Encoding families using a Relational Hypergraph Model 63

Figure 3.9: Different solutions from the same equivalence class

3.5. Multiple asset based product lines : Case studies 64

3.4.2 Coupler enablers or the assets where to grow from

Let a SpiderMonkey [66] instance be created by a python [127] script. Subse-

quently, a Javascript library could be loaded to provide some extra services. The

SpiderMonkey component further enables customisation by loading Javascript li-

braries and this provides the means to evolve the base functionality in numerous

ways. This indeed constitutes a new family of products whether depending ex-

clusively on Firefox technologies or based on other equivalents. However, the

point is all these families are related since their dependencies from some point of

view make them functionally compatible but also extensible-compatible.

Firefox supports asm.js, a highly efficient Javacript subset. This code is a

compilation target (via LLVM [56] compiler and Emscripten [40]) allowing for

C++ [126] compilation to target the browser with asm.js [27] as virtual machine

code. Therefore, Firefox, considered as an asset, enables growth via asm.js. The

only limitation is some OS facilities are blocked by the security sandbox.

Every time access is gained a whole new wealth of potential growth arises.

Some assets enable the realisation of new evolution paths. Therefore, we could

label them as coupler enablers. It is convenient to explicitly add them to the graph

for consideration. This means richer graphs make exploration more meaningful

and ultimately useful.

3.5 Multiple asset based product lines : Case studies

Here we consider two applications that exhibit the phenomena of structured evo-

lution that can be modelled in terms of single asset and multiple asset formulation

developed in the previous sections. As we will note, the higher order patterns of

reuse in the form of invariants of the graph leads to a new interpretation of the

traditional laws of evolution relating to "continuing growth" and "increasing com-

plexity" for E-type systems evolution [81].

3.5.1 Case Study I: Evolution of Browser Technology

The Mozilla Firefox is an exemplar of an E-type system which has evolved con-

tinuously resulting in nearly fifty versions. At the core is a basic functionality

of a web browser and variations have been introduced which differentiates the

different versions. The trunk-branch development structure has resulted in the

3.5. Multiple asset based product lines : Case studies 65

evolution of Firefox as variants of a common ’product’ which can be modelled as

a software product line.

The evolution of Firefox has involved an eco-system of multi-language inte-

gration through cross-compilation into java script, in particular, to asm.js subset.

Performance requirements for mobile and other emerging high performance re-

quirements is providing new evolutionary pathways through wasm [27], an AST

intermediate representation. Here we illustrate how these evolutionary trends

can be modelled in the multiple asset formalism.

XPCOM, XUL (mainly for user interface) and the SpiderMonkey Javacript

engine are technologies part of Mozilla Firefox architecture [66, 140]. We

consider these to constitute the core assets A1 for the seed solution. The

chosen assets are a simplification of software engineering elements for elu-

cidating our formalism. They include not just code but higher level ab-

straction components of the architectural viewpoint of a software prod-

uct line framework. For instance, the asset XUL is composed of the

assets {XULRequirements, XULDesign, XULImplementation, XULDocumentation} to

include all the documentation needed for XUL to be implemented successfully.

A1 = {XUL, Javascript, SpiderMonkey, JSLibs, XPCOM}

A corresponding seed solution is given by the following relation:

FX = {(SpiderMonkey, XUL), (SpiderMonkey, Javascript), (XUL, Javascript),

(JSLibs, Javascript), (XPCOM, Javascript), (XPCOM, SpiderMonkey),

(SpiderMonkey, JSLibs), (XPCOM, JSLibs)}

Let [FX]' denote a product line corresponding to a seed solution FX shown in

Figure 3.10. Proposition 1 states that structure preserving transformations can be

introduced to systematically evolve a product line. Using FX as the base solution

we can develop product lines in different ways as follows which corresponds to

evolving a multiple asset using isomorphic mappings and coupling transforma-

tions.

With the plethora of platform and devices constantly emerging the need for a

common runtime for the web has been recognized in recent developments. For ef-

ficiency a AST (Abstract Syntax Tree) binary based on a Javascript subset (asm.js)

known as WebAssembly, called wasm for short overcomes the overheads associ-

ated with parsing asm.js. Let wasm be the set containing all possible (validated)

3.5. Multiple asset based product lines : Case studies 66

Figure 3.10: FX ∪ {wasm1, wasm2}

pieces of software that can be compiled to this binary. This can include any cross-

compiled instances although currently C [142], C ++ [126] are primary targeted

languages.

Addition of a wasm component evolves the baseline FX with new functionality.

In this instance wasm is used as an AST target for custom java script. As shown

in figure 3.10, a coupler node corresponding to wasm1 can be defined with the

following relation:

wasm1 = {(WebGLJsProgram, wasmbinary1),

(JQuery, wasmbinary1), (Documentation1, wasmbinary1)

The evolved system ˆFX is a coupled graph {FX ∪ wasm1} which extends the

base graph FX which can be recorded as a structure preserving map in the evo-

lutionary process:

∆ : FX→ ˆFX

We continue to evolve with another component wasm2 to incorporate new

functionality. This can be specified with a coupling graph as follows:

wasm2 = {(C ++, wasmbinary2), (Documentation2, wasmbinary2)

These evolutionary steps using hypergraphs gives rise to a family of products

in which the common features are contained in an equivalence class

3.5. Multiple asset based product lines : Case studies 67

∆FX : ˆFX→ [FX]'

Thus, the higher order patterns of reuse are captured as structural properties

of hypergraphs ([FX]') and commonalities of product line preserved through

isomorphism.

3.5.2 Case Study II: Cloud compute engine

The emerging software as a service paradigm provides a new framework for higher

order patterns of reuse and new models of evolution that goes beyond traditional

software evolution due to the organic nature of product evolution in such open

framework contexts.

Consider the cloud compute engine where organic growth arises from the

possibility to architect products from an open platform of software packages that

can be executed seamlessly on cloud platforms [143]. Here we have a set of

components, i.e, the packages and engines, that can be deemed as higher order

assets. Software products can be architected at a higher level by composition

of components. Since the set of available assets can be in thousands, the set of

possible products resides in a large evolution space with a multitude of product

lines.

We illustrate how our multiple asset formalism can be applied to model the

evolution of product lines. Consider the example of a web-based thin client design

to create a virtual desktop infrastructure consisting of a browser, an OS and any

server side related software pertinent for a specific product.

We use partial functionalities of products by using Virtual Machines (VMs).

Open frameworks over the cloud deliver the advantage of using loosely coupled

architecture of the web to naturally separate business logic from presentation.

The servers (or The Cloud) keeps the business logic and the client deals mostly

with the presentation. These servers are today load-balanced farms where the

server side code or software run in VM containers on top or the host OS. A VM

guest instance runs the software needed for any particular client depending on

the service layer required. In cloud architecture the Operating System layer is

considered the infrastructure layer. This business could run the strategic elements

tied to the OS inside the container (guest VM) and use any available mechanism

to communicate with other software running on the host OS.

Organic growth can occur by simple aggregation of the assets relevant to the

side we are working with. We can acknowledge the overall aggregate evolution

3.5. Multiple asset based product lines : Case studies 68

as two instances of multiple asset evolution pertaining to server side and client

side as follows.

Server Side

On the server side the practitioner can select the necessary assets from the Google

Compute Engine [144] (IaaS [22]) collection to find a particular software solution.

One solution (requirements) could be asynchronous web server, key-value pair

database all running under a stable Linux OS [55] with Debian [39] distribution

package compatibility.

A seed solution can be modelled with the following relation:

SS = {(Debian7 OS, Redis), (Debian7 OS, webserver), (Debian7 OS, Node.js)

We traverse this hypergraph and evolve this seed solution using isomorphic

or coupler transformations. Substitution of Debian7 (Debian [39] version 7) for

another linux OS corresponds to isomorphic transformation and addition of a

custom solution on the server to incorporating coupler graph to evolve the system.

In both cases we introduce few attribute changes and the commonalities of the

product line will be maintained in the equivalence class.

∆SS : SS→ Hi

where Hi = [SS∪ ServerSideCustomSoftware]'1

Global evolution

On the client side we can evolve the web browser to customize it to provide a

new presentation for the thin client that is pertinent to the server side product

line. As in the previous section, we can achieve this customization through a

wasm coupler. The evolution of this sub-product can be parametrised in terms of

its equivalence class as defined earlier:

∆FX : ˆFX→ Hj

where Hj = [ˆFX ∪wasm]'2

The complete system can be modelled as a hierarchical evolution of multiple

assets where the server side and client side sub-products are evolved to form a

composed product. The equivalence classes of each product are aggregated into

a larger hypergraph through insertion of coupler graphs ci

3.5. Multiple asset based product lines : Case studies 69

∆SYS : {Hi ∪Hj ∪ ci} → Hk

This global evolution amounts to evolving products into families of a related

software ecosystem by virtue of creating a family [Hk]' that parametrises the

solution space in terms of commonalities preserved through sub-graph isomor-

phism and variabilities in terms of couplers. Thus, we can evolve systems in a

structured manner through higher order patterns of reuse that are related to the

structural properties of our meta graph.

In this example it is important to note that the method illustrated above ap-

plies to an instance of a multitude of product lines that are feasible from the

vast set of assets in the Google compute engine. The example shown here

applies to one instance of an organic growth, but the modelling framework

is general and is therefore applicable to every instance of composition of a

client-server or a distributed solution from higher order reuse of assets. We

can therefore view this organic growth in terms of a set of equivalence classes

([H]'1 = S1, [H]'2 = S2 . . . [H]'n = Sn) representing different product evolution

sub-spaces corresponding to different product families.

3.5.3 Case Study III: Regulatory or Legal Constraints

Evolution of software systems is constrained by artefacts that are not necessarily

code or architectural models. In large software systems regulatory compliance,

and associated assets in the form of documentation, constrain how sub-systems

and entire systems can evolve.

We may need the software (code) to be compatible to a particular licence,

open source or commercial. There could be any other legal or domain specific

requirements, including, for instance, to be validated for use in a pharmaceutical

industry related solution. This latter example is also a good example of a daisy

chain of approval required for all the software elements involved. This may en-

compass multiple components and tracking them may need to be automated or

systematically checked. Also, compatibility at all levels must be enforced. This

compliance can be interpreted as a constraint and also classifies the software as

families depending on the licences or constraints on the assets we can actually

use.

The evolution of this software can be modelled uniformly by insertion of cou-

pler graph that constrains the evolution of the sub-graph with these additional

3.6. Conclusion 70

requirement. For example, the above global evolution can be evolved in two ways

depending on the type of constraint as follows:

∆SYSi : {Hk ∪GPLi} → Mi

∆SYSj : {Hk ∪ PharmaLj} → Mj

3.6 Conclusion

Higher order patterns of reuse in the form of disjoint assets sets are being pro-

posed to capture evolution in which a family of related products can be evolved

in a structured manner. The open frameworks such as cloud engines offers higher

order patterns of structured evolution of classes of product lines. We have pre-

sented a meta graph model as a rigorous approach to software evolution. Our

key idea is to enable the exploration of the solution space aided by a structure

preserving transformation. To this end, we constructed a general mechanism

of expanding equivalence classes of product line graphs. This general framework

provides a larger solution space using multiple feature sets. It reveals an underly-

ing evolution branching possibility. This is not directly apparent to a practitioner

because of the combinatorial explosion.

A set of well defined operations can represent architectural realisations of

equivalent solutions in software evolution. The architectural changes can be in-

troduced and recorded systematically. This is already happening at source code

level by collaboration of engineers and/or in open source on a massive scale. We

contribute to this trend by providing a model to evolve a system. Using isomor-

phisms of known solution structures we can short-cut the path to model new

software. It could leverage the acquired previous knowledge and even find re-

lationship insights beyond the actual level of software development practice. By

freeing the engineers with relevant automation assistance we could actually get

more engineering, and paradoxically, we also further the art aspect by empower-

ing their creative choices.

The higher order patterns of reuse in our meta-graph model has implications

on how systems evolve and the new metrics that may be necessary to quan-

tify evolution. E-type systems to which Leeman’s law were pertinent have been

shown to be inadequate for modelling systems that evolve growing organically

as per open source examples [82, 83]. In our modelling framework we are able to

treat sub-systems as a sub-graph through the coupler transformation. The expan-

3.6. Conclusion 71

sion of Firefox functionalities through wasm coupling enables evolution at large

scales. Therefore, the system growth can exhibit super-linear growth as in other

cases of open source examples shown recently [82]. Simple metrics such as lines

of codes to define complexity are therefore not suitable for these meta models of

evolution.

In the case study II we showed that the evolution space can be large with a

multitude of product families. Automating the exploration of this evolution space

will require the design of predictors that can use some form of generative models

to construct solution subspaces autonomously. Designing predictors will take a

step closer to the automation of craftsmanship goal and towards a rigorous evolution

framework. This is another area of future work we are currently pursuing.

Chapter 4

Engineering The Elements of

Evolution

Contents

4.1 Introduction . 72

4.1.1 Software design insights . 73

4.2 Engineering the model . 75

4.3 Artefacts as complex operands . 76

4.3.1 Assets as abstract building sub-blocks 77

4.3.2 Artefacts as a hypergraph based software factory schema . 78

4.4 Evolution and Configurations . 79

4.4.1 The model as the basis of a component model for evolution . 81

4.4.2 Property transmission, recording and tracking 81

4.5 Evolution Operations . 82

4.5.1 Core operations . 83

4.5.2 Designing a seed artefact . 84

4.5.3 Designing a coupler . 84

4.5.4 Shift to Solution view . 85

4.5.5 Shift to compatible Coupler . 85

4.5.6 Evolution step: Evolve with ∆ under ' 85

4.6 Conclusions . 87

4.1 Introduction

There is a wealth of existing software solutions to many problems. These

solutions can be of any level of abstraction. Software available for production

needs to be taken into consideration. The relevant pieces of software we are able

4.1. Introduction 73

work with will be called assets following the naming convention for Software

Product Lines (SPLs henceforth) reusable assets [145]. The challenge is to create

meaningful engineering relations between distinct reusable pieces of software.

The result will be an engineering solution to a concrete problem. To further

narrow the scope of research only architecture a higher level is considered. Of

course, today source code can operate at that level. A browser can be instantiated

in the source code and give access to all its features programmatically. Since we

are intending to model at high level of abstraction, we can ignore some details in

favour of the more abstract higher ones.

In this chapter we will detail the operators and operands from a software

engineering point of view. To achieve this we will discuss the rationale behind

the design of the operators and operands. There are some design choices that

marked the development of key successful software. We use them as guidance to

look for time-tested design choices.

4.1.1 Software design insights

Imitating the successful is a common heuristic [146]. However, "It has worked

before" is a known cognitive bias. We should imitate some aspects as long as

we fully understand the reasons why they worked and in what context. The ba-

sis of the design is to have few concrete cohesive operations over complex rich

operands. There are some instances of successful software development support-

ing this approach. Some of these are the ReST architectural style, Unix philoso-

phy, CRUD [34] [22] and SQL [68] as the implementation of Relational Calculus

in the Relational Model for Databases.

The ReST architectural style

The Representational State Transfer (ReST) is a reinterpretation ex post of how

the architecture of the web emerged and how and why it works [48]. ReST

style architecture performs http operations over resources. These are accessed

through the URIs. This is information-on-demand of any kind. It could be text,

audio, video, any software or code on demand like JavaScript libraries. These

resources can be viewed as software assets as part of a higher software solution.

We propose that Software Evolution dynamics should exhibit properties similar

to systems like the ReST architecture. These dynamics also include other systems

4.1. Introduction 74

exhibiting scalability in its development process considering all abstraction

levels. For instance, in a Web based system, resources are retrieved on demand.

These resources can be data or programs. The kind of resource is specified

(MIME Types) and code on demand is possible but not required. However, the

fact that can be use is a seamless way to extend functionality. This allows for the

right piece of software to be selected. This point of view is interesting as we

also are modelling extension or growth as based on composition or assemblage.

Resources are other way of viewing/interpreting our definition of assets (or even

artefacts). The fact that they solve a concrete problem is the valid relation.

Unix philosophy

Unix philosophy is an example of reuse, composition and modularity. Everything

is represented by a file is a main metaphor and text is the universal interface. The

standard command tools follow these principles and can be chained to perform

complex tasks. Unix pipes allow for composition of tools using text input and

output as the (universal) interface. For instance, this was perfectly captured by

the famous challenge in Knuth vs McIlroy [147] where the simplified description

of the challenge reads (verbatim):

"Given a text file and an integer K, you are to print the K most common words in the file

(and the number of their occurrences) in decreasing frequency."

Knuth solutions was a literal programming exhibition exercise written in vari-

ous pages of elaborate Pascal [148]. McIlroy solution use the power of Unix pipes

to assemble a solution using reusable Unix command line tools.

Listing 1 McIlroy’s solution
tr -cs A-Za-z '\n' |

tr A-Z a-z |

sort |

uniq -c |

sort -rn |

sed \${1}q

This used the power of a reusable toolset in a functional programming style.

The data is processed until is fit for purpose.

4.2. Engineering the model 75

CRUD as a small set of core operations

The (S)CRUD (Create, Read, Update, Delete, and later also Search) set of

operations were firstly coined by Martin [34] as basic database actions. Later

Fielding reinterpreted these as a mapping to The Web verbs used by the HTTP

protocol (post, put, post, delete) [48]. This simplifies the design as the design of

Universal Resource Identifiers (URIs, URLs on the Web) requires the resources

to accessible by URI. Since the the verbs are The Web verbs, the resources have

to be nouns. URIs facilitate location of resources and are considered part of the

search operation.

SQL/Relational Calculus

SQL is a language to manipulate linked tables (rows and columns of cells). The

relational model specifies a mode of operation to operate on these structures (us-

ing a declarative paradigm) using Relational Calculus [149]. Without delving too

much into this topic we can say that some operations are interesting as they steer

towards a desired data sub-pace just using some parameters. Such operations

could be seen as a way to cherry pick and filter data pockets.

4.2 Engineering the model

Previously, we let the set of those relevant software pieces called to assets

represented as A. As per the established theoretical framework the relation

A×A defines the set of all potential asset combinations, valid or not.

However due to the combinatorial explosion caused by the Cartesian product

of the assets, a systematic and effective system to discard unwanted options

needs to be devised. The most discriminate option is for the practitioner(s) to

approve valid asset relations.

We have to find a particular software solution using just a subset of all the

valid pairs of assets. Let us call it relation f . Still, we could have many valid

similar relations. Everyone of them would meet the requirements in various

degrees. They also need to be studied and evaluated. Let us call these directional

4.3. Artefacts as complex operands 76

edges dependencies. They could be labelled architectural, logical or design

dependencies. What matters is they will be required for the isomorphic check to

make sense. Edges meaning will remain through evolution.

This valid relation f can be represented as a graph. The model proposes to

use the isomorphism as a structure preserving operation to create new relations

isomorphic to f . These allow a coupler graph to expand the original or any and

preserve key properties. Therefore, these couplers expand an equivalence class

[artefactgraph]' which represents the collection of all these related graphs under

' isomorphic operator (guarantor of validity).

Engineering links of differing models can be configured using XML files as

discussed on Maletic et al. [131]. Mainly two ideas are of direct relevance:

• Differing (graph) models can be connected (linked).

• Different configuration XML files can be used for this purpose.

It is clear we can encode graphs in a very abstract way and similarly operate

on them. Let us agree isolated nodes are to be called assets and they are only

elevated to artefact status by being part of a graph encoding a software solution.

The model can be viewed as the basis of as a software factory to produce SPLs

based solutions. This is being achieved with only key operations over configured

artefacts as opposed to lower lever source code programming.

4.3 Artefacts as complex operands

Software is also a technical artefact produced by the intellect. Based on this

commonly used terminology we can specify further and denote an artefact a (soft-

ware) resource with engineering meaning, a solution template, a building block

[150]. The standard software engineering definition defines it as the software

process technical outputs. Similarly from a SPL based project documentation

point of view [151]. Let an artefact be a solution with the engineering information

necessary to support informed decision making.

4.3. Artefacts as complex operands 77

Based on our model an artefact is represented by its base graph as represent-

ing a solution view belonging to [artefact graph] '. Therefore, it makes sense to

use just one graph as the artefact identifier for the whole equivalence class under

'. Artefacts also contain the nodes where they can be attached to or attach from.

By encapsulating this information as part of the operand we reduce the amount

of information needed by the operators.

We will seek to explicitly add the extra information relevant to the solution

context. This would be the task of the practitioners through a set of configuration

files. This fits well with the concept of software factories we discussed in other

chapters. Thus, we can pack all the engineering information in one single entity.

This will facilitate later reconfigurability and operation.

In our model, the operands are the relevant software artefacts, the building

blocs. These artefacts can interact in a finite number of ways and they should

be ready for that. To do this, they need to carry the necessary information for

any devised operation to be successful. Different Artefacts create a hierarchy of

operation abstraction.

There is no impediment for the lower level of artefacts to give rise to higher

level of artefacts. It is important for any structure to recursively allow for the

emergence of higher level structures and interactions. It is also desirable to allow

for these to allow other practitioners to come up with solutions not foreseen by

the initial designers of the system. Although it poses challenges, the strategic

advantages outweigh the disadvantages, like innovative evolution with novel

artefacts.

The goal is to enable the software artefacts to also contain the information for

the eventual purpose of achieving software development automation. Program-

ming is increasingly replaced by just configuring the necessary items.

4.3.1 Assets as abstract building sub-blocks

Artefacts are resources encapsulated in a minimally meaningful structure. The

chosen structure is a graph encoding the relationships of the assets. Assets them-

selves could upgrade to artefact by gaining such structure (graph) if needed. This

4.3. Artefacts as complex operands 78

allows us to focus the level of abstraction that better captures the engineering

specifics of interest. Although for generating SPL high level assets are used other

abstract items like key information (like a supported standard), data or docu-

mentation. Documentation is software and should be able to be included into

account.

4.3.2 Artefacts as a hypergraph based software factory schema

Lets engineer a software solution, and represent it as a graph, based on the assets

available. This is one solution but there could be many. We could come up

with another solution functionally isomorphic to the previous one. Similarly,

this make both graphs isomorphic as depicted in Fig. 4.1. Both solutions solve

the same engineering problem and they are equivalent in such sense. However,

they are different since they will have some disjoint features. For the purpose of

evolution these features may be important. Exploring is part of the discovery of

novel solutions. To illustrate lets use a generic example:

In the Figure 4.1 below we have two artefacts.

Figure 4.1: Artefacts virtual connection

The assets are the vertices or nodes and the edges are the orthogonal edges.

Node 1 is, for the purpose of the project, functionally equivalent to node 1b. Same

logic apply to subsequent nodes. There are connections, albeit virtual, which

links both graphs. These connections are the oblique edges4.1. A hypergraph is a

graph whose edges are a set of nodes. The orthogonal graph edges have the same

meaning as long as they go from and to the same node (or nodes if applicable).

4.4. Evolution and Configurations 79

Said differently, the numbers are the same and therefore graph isomorphism is

preserved. However the virtual connection packs nodes in sets. We need to

encode all this information into an artefact.

Figure 4.2: Artefacts virtual connection, artefact added

We continue adding isomorphic graphs if possible as shown in Figure 4.2.

They all belong to the same family or equivalence class. Thus, valid software

is modelled. The implication is that families defined by evolution steps can

help classify software into taxonomies. We can use just one artefact as the

representative of its equivalence class, [artefact graph]'. Therefore, there is one

way of expanding an equivalence class [artefact graph]'. This is performed by

adding a known valid node relationship. We will denote this node as isonode for

further reference.

4.4 Evolution and Configurations

Like in a Software factory the software will be composed with available assets

with known configurations schemas. This composition causes the artefact to

gain or loose properties. These properties can be predictors as studied in previous

4.4. Evolution and Configurations 80

chapters. The predictors should be included as part of the artefact configuration.

These configurations represent contexts affecting the evolution.

The evolution has to be modulated by the required views at every ∆ step.

The configurations take into account multiple semantic aspects regarding the

software engineering of the solutions space. Any engineering data should be

included in configuration schemas. These configurations can be encoded in a

relevant data format.

Listing 2 Example of asset configuration fragment layering new metadata in

design-time
<asset name="node.js" version="4.5.0">

<server> asynchronous </server>

<feature> event-driven </feature>

<feature> non-blocking I/O </feature>

<licence> MIT </licence>

<language> JavaScript </language>

<owner> John Smith </owner>

</asset>

As previously said, existing software assets can be leveraged as reuse elements

to create diverse solutions. The intention in designing these configurations is

also to minimise the expense of customising combinations of configurations. The

result of this mode of operation furthers the strategic reuse of these software

assets. Practitioners need to discover how to configure seed artefacts to grow them

into final products. It can also be enhance by operating on standardised software

repositories.

It worth highlighting that, as part of the factory, configurations can be tailored

to describe and record the evolution of inter-model relationships or model view-

shifts [131]. Thus, to actually model the isomorphic graphs (oblique relations)

is feasible as different valid solution-options can be linked. This could be one

element of configuration to take into consideration. Nevertheless, it solves more,

as such XML configuration file could encode even more detailed aspects of the

modelling. The practitioner deliberately decides which properties are of interest

4.4. Evolution and Configurations 81

at any moment.

4.4.1 The model as the basis of a component model for evolution

One property of the ReST architectural style is the resource on demand feature.

In an assemblage of functionality perspective is of particular interest the code

on demand feature. This can be seen as a basic component model characterised

by being very loosely coupled. It also has the feature of being mostly source

code based (we can ignore obfuscated code here). This is a flexible approach

to model for full customisation abilities. This is due to the fact that composing

in this case only requires URIs (like URLs). It is remarkable how simple

and easy is to extend the functionality of a JavaScript file just by linking with

other files. Unrestricted linking is precondition to create scale-free networks [94].

4.4.2 Property transmission, recording and tracking

The Firefox extension model is similarly extendible as explored in the previous

case studies showcasing of the use of the model. The Firefox extension model is

based on standard web technologies. This causes the extensions model to inherit

some of their engineering properties. The transfer and tracking of properties

as defined in the artefact configuration must be included as part of the artefact

as engineering information. We encapsulate the engineering value into the

artefacts as fully configured complex components. Emerging dynamics relating

to the engineering data can be analysed by operating on artefacts as views of

complex components. Indeed, software should be able to upgrade to a different

configuration by only swapping assets creating a new software view part of

[artefact graph]'. Some properties remain unchanged and some are changed or

upgraded. The evolve operator ∆ preserve encapsulated properties but in every

step the evolution record is kept. This way property tracking is enabled within

the artefact as it grows.

The value of properties as metadata

To illustrate what properties can be lets use a practical engineering example:

Network programming to deal with multiple concurrent clients required multi-

4.5. Evolution Operations 82

threading programming. Each thread handles each client. Programming thread-

safe software is an engineering challenge. Multi-threading is handled by the web

server which enables clients to make concurrent requests via standard protocols.

However, as this functionality is provided by the server, there is no need to pro-

gram it as any other server from the ground up if the threaded web server is the

interface (with all the complexity it entails). Therefore, this complexity can be

bypassed by choosing to use a server with this capability. Thus, property trans-

mission occurs on element aggregation. Such element, a software piece, aggre-

gates its properties to the system. There would be no need for such properties to

be added separately by interfacing with this software piece. Therefore, knowing

any properties of a piece of software provides a potential engineering advantage.

As later was discovered, a side effect of using threads this way is I/O blocks af-

fecting the performance of the servers. To fix these, asynchronous servers were

created which place client handling in a single event loop, a single thread. Client

handling is therefore more efficient. Just by replacing the web server a new soft-

ware solutions handles this specific problem. This is easy as The Web is a loosely

coupled software solution. This new property could be encoded as an XML text

(tagged) entry as implemented in Listing 2. Tracking a few properties is intu-

itively easy. However, analysing and tracking of a vast network of thousands of

interlocked properties, from possibly unfamiliar pieces of custom software, is a

a challenge indeed. This requires configurations that will enable the necessary

automation level for decision making support.

4.5 Evolution Operations

Based on the model theory previously researched Equivalence class represented

is by relations that are isomorphic. The artefact represents an equivalence class

[artefact graph]'. The resulting artefact from the expansion of the graph by a

coupler will create a new different equivalence class [evolved artefact graph]'. All

of them are related if the relation(') of this expansion (isomorphism) can be done

using different couplers on the same equivalence class (the evolution). This means

that all artefacts governed internally by the same isomorphism can be grown or

expanded simultaneously(∆) to a larger artefact using exactly the same couplers.

We want to be able to make an intelligent analysis over which expansion is more

suitable based on the specific engineering requirements for the problem. The

4.5. Evolution Operations 83

previous equivalence class evolution step will always be sub-graph isomorphic

to the next step. This chain of steps defines families of solutions. A kernel of

fundamental operations to operate on artefacts through various means. These

include SCRUD basic implicit operations, evolution ∆ under ' and exploring or

fanning out the corresponding equivalence class [artefact graph]' to select or shift

to a solution view. For an overall view see Figure 4.3.

4.5.1 Core operations

CRUD based core operation affecting artefacts:

• Create: Artefacts or assets definition and configurations.

• Read: Artefacts or asset and configuration reading.

• Update: Artefacts or assets and configuration amending.

• Delete: Artefact or assets and configuration Deletion.

• Search: Enabled by artefact and its graph as an identifier.

Figure 4.3: Practitioners define and affect artefacts through various means

The staging and execution of the evolution operation ∆ comprises several

steps in various stages. The following is a description of them as connected to the

model.

4.5. Evolution Operations 84

4.5.2 Designing a seed artefact

1. Select relevant assets from available assets set

2. Make a seed artefact (a graph from valid asset pairs)

3. Select the same assets or other definition of assets from other practitioner(s)

4. To be isomorphic under ' other artefacts encoded must be isomorphic. This

is implicitly highlighted by the oblique relations among the artefacts (ison-

odes). They are composed of valid pairs (orthogonal edges). This makes

them expand their [seed artefact graph]' further

5. Stage [seed artefact graph]' defined.

6. The configured artefact is the representative or Id of its equivalence class.

Now a solution view must be selected from all available in [seed artefact graph]'
by shifting in that subspace.

4.5.3 Designing a coupler

A coupler graph can be viewed as an artefact if needed (It is a solution too).

1. coupler: Select same assets or other definition of assets from other practi-

tioner(s)

2. The node where to evolve from must be identified and has to be present in

the coupler graph

3. Make coupler artefact

4. Stage [coupler graph]' defined

Now a coupler view must be selected from all available in

[coupler artefact graph]' by shifting in that subspace. These operations limit

each other and the solution view shift should happen first but it is not

mandatory.

4.5. Evolution Operations 85

4.5.4 Shift to Solution view

Branch out or shift by selecting a solution view from equivalence class. These

steps are performed by the practitioner but can be partially automated. Both the

seed and the coupler artefacts base graphs must contain a common node. The

coupler artefact carries the information about its coupling options.

1. Evaluate [seed artefact graph]' properties and other configured engineering

data

2. Based on the evaluation, shift to solution view from [seed artefact graph]'

4.5.5 Shift to compatible Coupler

Branch out or shift to a node where to attach. Any of these steps are, as before,

performed by the practitioner but can be partially automated. Both the seed and

the coupler artefacts base graphs must contain a common node. The coupler

artefact carries the information about its coupling options.

1. Evaluate coupler graphs properties (perhaps modelled as an artefact) and

other configured engineering data

2. Based on the evaluation, shift to the appropriate coupler

4.5.6 Evolution step: Evolve with ∆ under '

Advancing or ∆’s: single asset ∆ (using one solution and one coupler), multiple

asset ∆ (general case using sets). These also can be viewed as thin branches or

thick branches depending how much solution subspace they explicitly consider.

A thin branch can represent a thicker branch. Thus, we will usually talk about

single asset thin ∆ as the evolve step. Advancing can produce growth by creating

a new graph expansion by coupler attachment under a new '.

With previous coupler or another suitable one this will advance and grow into

a new solution subspace:

1. ∆: After the two shifts, assemble or compose the new resulting validated

artefact. This expands the graph and therefore the hypergraph.

2. The resulting artefact is the representative or Id of its new higher level

equivalence class.

4.5. Evolution Operations 86

3. Final stage [evolved artefact graph]' defined.

4. Their multiple property profiles can now be re-evaluated or expanded.

To model multiple assets also several single asset evolution steps can take

place. This occurs if and only if the result of evolving those artefacts result in in-

compatible [evolved artefact graph]' from a future evolution point of view. Notice

that configuration contexts within artefacts also play a role in the ∆ operator. Fam-

ily hierarchies thick branches can be divided in thin branches pertaining smaller

related subspaces.

G0

G1

Gn

[G0]'0 view1

[G1]'1view2

gather views shift

∆'0

gather viewsshift

∆'n

Figure 4.4: Sequence of events defining a FSM [16] and also an evolution path to

a higher solution Gn.

Definition 12 - Traverse:
Search for isomorphic graphs (or sub-graph) to a graph related to [graph]'.

Definition 13 - Gather:
Compiles the known solution by searching and adding views belonging to an

equivalence class under isomorphism.

There two ways of gathering the views:

1. Explore [seed graph]' isomorphic node relationships and add the views.

2. Traverse to find sub-graph isomorphisms in graphs built with other rela-

tionships and add the hits as views.

4.6. Conclusions 87

Both ways enlarge the equivalence class. Explore uses known data and traverse is a

deeper exploration that may require building a relationship collection repository.

We could have a name for short traversals like probe or scan.

4.6 Conclusions

A few key operations manipulating rich complex data in the form of artefacts.

These encapsulate all the engineering information including relevant contexts.

These contexts could serve as the basis for software factory schemas. The model

as designed is characterised by being able to:

• Encode assets and their information

• Encode artefacts as instances of [artefact graph]'

• Encode the expansion of the [artefact graph]' by adding an isonode.

• Encode the hypergraph as part of the operands and operator

• Enable exploration for the [artefact graph]' (with known configuration data)

• Enable discovery of new graph or subgraphs as part of [artefact graph]' (thus

expanding it)

• Enable evolution by expanding the hypergraph using artefacts via the ∆

operator

• The resulting structure should be evolvable or evolution-ready in the same

fashion (the feedback loop).

• Enable organic growth as previously defined: a step-wise and bottom up

ordered and scalable hypegraph expansion.

The evolution over the potential solution space results in process that can be

modelled as 3 basic events. The shiftings (internal, first and in any order) and

one ∆. Both shiftings need to occur before a ∆ can take place. This generates

a new FSM that models the events as an evolution path to reach a particular

solution view.

The branching or shifting can be done by the practitioners based on their

engineering talent. These shifts could be automated, up to level for certain cases,

as we advance (evolve) if we have known stop conditions.

4.6. Conclusions 88

• Solution branching: Solution view wise shift. Shift to seed artefact solution

view or perspective from the equivalence class [seed graph]'. This selects

solution sub-space. Moreover, it limits coupler candidates.

• Coupler branching: Coupler wise shift. Shift to (artefact with) coupler

graph. There could be many solution view compatible graphs each possibly

featuring a different attachment node.

• Advance: Evolve ∆ using compatible coupler allowed by '

It makes more sense to shift first to the solution view but the other cannot be

ruled out as a selection preference to limit solution views subspaces as possible

candidates for attachment. Every advance increment represented by a 'counter

governing a hypergraph expansion and therefore it creates a new isomorphism

relation and increases that counter. The chain of events creates branches or paths

through the solution space. Moreover, operations altogether can be used to scan

or probe (by traversal) the potential solution space from a starting point in δ'

increments. This process uses the two-dimensional selection using view-coupler

branching pairs as the means of steering or shifting to the desired direction. This

obviates the need for input in every step as all the branches are traversed and

assessed. We could break the solution isomorphism using metadata encoded

into the artefact thus discarding unwanted exemplars. Therefore, we are able to

simplify the search by reducing the number of options. This narrows the branch

points, to continue evolving from, to more appropriate ones.

Chapter 5

Evolution Automation Feasibility

Contents

5.1 Introduction . 90

5.1.1 The model in contrast . 90

5.1.2 Python prototyping . 91

5.1.3 The model . 92

5.1.4 Cloud solution . 93

5.1.5 ReST microservice . 93

5.1.6 Use cases . 93

5.2 Architectural Overview . 96

5.2.1 Jupyter server . 97

5.3 Configuration Context files . 98

5.3.1 Encoding Assets . 100

5.3.2 Encoding Artefacts . 101

5.4 The Model as a whole . 101

5.4.1 Artefact custom initialisation 103

5.4.2 Applying Configuration Contexts 104

5.4.3 Instance metadata . 106

5.4.4 Configuration Contexts Automation 107

5.4.5 Evolution operations ∆ . 111

5.4.6 Evaluating and tracking desired properties 111

5.4.7 Searching for other isomorphic solution views 111

5.5 I/O and Visualisation . 116

5.5.1 Displaying static graphs . 117

5.5.2 Displaying dynamic graphs 118

5.6 Modelling: Examples of scripting use 120

5.6.1 Single asset evolution . 122

5.6.2 Multiple assets evolution . 126

5.1. Introduction 90

5.7 ReSTful microservice . 127

5.7.1 Selectable Test scenario (sandbox function) 129

5.7.2 ReST Resources . 129

5.7.3 How to implement ReSTful operations 129

5.7.4 A test scenario to showcase the model basics 131

5.8 Notebook deployment and Jupyter access 132

5.9 Microservice deployment . 134

5.10 Conclusions . 136

5.10.1 Evolution as documentation 137

5.10.2 The model should be the deepest module 138

5.10.3 Splitting Artefact Class . 139

5.10.4 Asynchronous operation upgrade 139

5.10.5 Future scaling . 140

5.1 Introduction

A sample implementation of the model is provided to showcase automation

possibilities and the viability of the proposed model beyond theory. The main

goal is to be didactic and to demonstrate that the model can be implemented

using current technology. All software used is licensed as open source. The

prototype maximises the amount of insights gained with respect to the model

theoretical capabilities. It also serves to assess the appropriateness of the current

engineering design choices.

There are many models and tool related to software evolution. Let us make a

comparison with significant examples to help understand our model and imple-

mentation choices. We can make a straightforward comparative if we adhere to

Harn et al. terminology [85, 86]. These terms correspond to previous engineering

chapter dealing with operator and operands. Their effect over the hypergraph

structure is also considered.

5.1.1 The model in contrast

Now we can compare our model and proposed prototype design to other existing

approaches to gauge further understanding.

5.1. Introduction 91

Table 5.1: Contrasted approach elements classified using Harn et al. terms.
software evolution objects

software evolution steps software evolution components

Harn et al.

[85, 86]

Software prototype demo step, is-

sue analysis step, requirement anal-

ysis step, specification design step,

module implementation step, pro-

gram integration step, software

product demo step, and software

product implementation step.

Criticisms, issues, requirements,

specifications, modules, programs,

and optimizations

Pat-evol [6] XSLT graph transformations to

replicate CRUD primitive changes.

GML graphs. Repository of

changes patterns mining. Configu-

rations.

Our model solution view shift, coupler view

shift, thin ∆, thick ∆, isomorphic

binding each step ('i)

Artefacts, Software assets, Asset

Relationships (including isomor-

phic ones). Asset Configurations.

Isomorphic graphs and their pre-

serving expansion.

Table 5.2: Completely different hypergraphs
Hypergraph

hyperedges nodes

Harn et al.

[85, 86]

software evolution steps (software

development event)

software evolution components

(software outputs and process

artefacts)

Pat-evol [6] None: Simple graphs.

Our model Assets and their graphs. Artefact

instances.

Isomorphic preserving nodes,

graphs of assets. Isomorphic

graphs and their expansion viewed

as sub-graph isomorphism ('i).

5.1.2 Python prototyping

Python [127] excels as a text processing language. It is suitable for prototyping

where changes and overhauls could be frequent and severe. There are some

particularities of Python as a development language. A python file is a module

and a folder is a package. From an object orientated point of view a module

has its own namespace scope and behaves and can be used as the singleton

pattern if needed. Namespaces are incredibly useful not only because avoid

naming clashes but they allow us to use names based on the context at hand.

5.1. Introduction 92

Functions are object and can also be loaded independently. This allows for and

encourages intense modularity. A strict OO approach like in Java or C# [32] is

dispensable if other appropriate options are provided. There is freedom to apply

multi-paradigm development techniques where applicable within the frame of

the problem.

Python libraries for science are comprehensive. They come pre-packaged in

distribution bundles like Scipy [63]. They also are included in large comprehen-

sive packages like Anaconda [26]. There is a large community behind them to

support open science. These bundles simplify prototype deployment.

User interaction with the model can be handled by a Python script, the python

interactive console, a Jupyter notebook (Figure 5.1) and/or via a ReST microser-

vice. It should be noted that all code listings shown, not the original files, are

justified close to 84 columns. This has been done in accordance with Python code

logic (meaning it will still work). The full listings, the module documentation as

well as other larger prototype outputs, are available in the appendix. The source

code is commented using restructured text for Sphinx, the de facto documentation

tool for python source code.

5.1.3 The model

The objective is to keep the data processing on the server as much as possible

and to leave any client just as a presentation layer to interact. We use NetworkX

[61] as the graph aware library for the model formalisation implementation. The

relational information is loaded into a digraph data structure. The class Arte-

fact represent any modelled compatible solution. Known solutions are deduced

from any input data. The graph acts as the ID for the equivalence class. Mean-

while, The isomorphic compatibility' is guaranteed at any time. The hypergraph

emerges by adding any compatible solutions views found. One way that can be

done it is via configuration files or by adding any subgraph isomorphic solution

view. There is a mandatory configuration file currently called assets.xml. It de-

fines some sample properties and isonodes. Any other tag can be added here or

in other configuration file. The content of these files details engineering informa-

tion that will be added to the graph nodes as a metadata payload. No payload

has been added to the edges (but it could be used). The whole configuration sys-

5.1. Introduction 93

tem works as layered where tag clashes perform data overrides. The dynamics

offered by the combination of the graphs with these configurations bring engi-

neering possibilities we will study in depth.

5.1.4 Cloud solution

A major development is the maturity of the Jupyter software package as a viable

solution for client-server interactive reporting [53] [54]. The systems used to be

called IPython [49] and to be restricted to the Python language. Now it supports

many languages through the use of plugins called language kernels. It can be

deployed in many cloud services providers (including major ones) as described

by this small survey [53]. The notebook files with custom sample tests can be

uploaded for easy presentation and to show how the implementation works.

Since this is a client/server solution, the prototype is as loosely coupled as the

web. It is easy to replace client and server with no issue propagation. It is

possible to import Python based notebooks as modules in a regular development

environment.

5.1.5 ReST microservice

The microservice interface is provided to show how the model fits the ReST ar-

chitectural style (which of course includes The web). The dual purpose was to

achieve a convenient way to display outputs and thus testing. It facilitates Jupyter

integration as the resources are accessible in various ways (i.e. as show in Figure

5.2). ReST style interface facilitates a uniform and efficient communication sys-

tem. The bulk of the data should be downloaded once in a real scenario. Any

other transfer happens by incremental change events. The server side is intended

to keep the data and its processing features while any presentation concerns are

on the client side.

5.1.6 Use cases

Finally, the single asset case, multiple asset case and various cloud platform mod-

elling cases are featured as examples. They show how to use the model with a

problem. The tool was incrementally used for the whole thesis. That is why visu-

alisations features were built up completely ad-hoc as needed. Examples of such

5.1. Introduction 94

Figure 5.1: View of the starting folder of the running Jupyter server using a web

browser as the client. Existing notebooks with .ipynb extension.

5.1. Introduction 95

Figure 5.2: Getting the SHA-1 hashed ID of a resource stored as seed.json

visualisations in Figure 5.3.

Figure 5.3: The prototype as a rudimentary graph imaging tool. Blue transparent

circles added with LibreOffice Draw

5.2. Architectural Overview 96

5.1.6.1 Cloud integration

Deployment steps are similar albeit different for any cloud provider like Google

Datalab [17] or Azure [29]. It is assumed the practitioner can install software in a

personal virtual machine (VM) instance. The Jupyter notebooks along with a web

browser could serve to interact with the model remotely (Figure 5.4). This is an

alternative to the desktop deployment. This is the foundation of the prototype, as

a tool concept, to be useful from a teamwork perspective. Currently, there is the

option to run a Docker image locally with all the necessary framework [152]. For

our needs the Anaconda package distribution sufficed.

Figure 5.4: Placement of custom Jupyter notebook files in a Google Cloud Data-

lab VM instance. [17]

5.2 Architectural Overview

The model module features the implementation of the model. Printing and in-

formation functions are implemented in the ioutils module. This module features

any I/O and related. It is a utility module as the name indicates. The prototype is

implemented in Python 3.5. The interpreter and needed libraries are all included

in the distribution used (Anaconda 4.0.0). The model works by using the python

modules by various means provided. This includes the Jupyter server, any web

browser or directly scripting in Python 3. Larger screenshots are featured in the

appendix.

Notable libraries (and software) not included with a standard python 3.5 in-

terpreter (server-side view):

5.2. Architectural Overview 97

• NetworkX [61] for the graphs and graph querying, including sub-graph

isomorphism.

• Matplotlib [57] for the static graphs

• Jupyter [53] [54] (server) to create, configure and run Jupiter notebooks.

• Flask [41] (server) to implement a ReST based cloud microservice (HTTP

interfacing).

• Jinja2 [50] template system.

Notable libraries (and software) on the client side:

• D3.js (or just D3) for dynamics graphs on the web using SVG rendering.

• A GPLv3 customised template for the D3 force graph to be later used as a

Jinja2 template.

The Jinja2 templates are just normal HTML files where some external pro-

gramming has been added. The production of dynamic graphs was a bit convo-

luted. Loading a JavaScript file with the graph data was a fair solution. However,

the evaluation needs increased the need for a faster cycle of testing. That lead

us to conclude a more streamlined option was needed. This was achieved by

reusing existing functions as this was more a convenience that a core model need.

In any case, it is easier to convey some information visually. Therefore, as the

static graphs felt short the new improved dynamic graph solved various prob-

lems including positioning the graph for a screenshot. This Jinja2 solution was

the shortest path to solve the problem given existing function but not the best. In

the conclusions section some pointers will be given for an easy upgrade.

5.2.1 Jupyter server

The Jupyter server can access all the prototype modules since it features a python

interpreter. It also provides a way to use a web browser as the client. The

prototype can be deployed as VM or docker image for convenience. For an

existing VM instance the folder can be added in the relevant path.

As previously said, the Jupyter server includes access to language runtimes in-

cluding Python. The use of this interpreter take place in an editable and runnable

5.3. Configuration Context files 98

frames called cells (Figure 5.22). The cells can execute the text contained using

the active language kernel. Outputs are subsequently displayed in the browser

making current rendered web page to grow vertically. Combined with the fact

that this also is a web page all the system can be accessed without leaving the

current browser tab. The contents and state of theses page interactions can be

stored in files called notebooks. There are development stories as they were last

left, like a last snapshot. This allows to seamlessly continue where the work had

been left. The current prototype architectural high level view for key elements

and possible interactions can be seen in Figure 5.5.

Figure 5.5: Current prototype logical access as implemented. Green circles are

web clients. Blue rectangles are server related and the white one is an interface.

The purple trapezoid is an I/O function. Any other I/O is omitted as it is of

general access (utility). Dotted lines are optional uses.

5.3 Configuration Context files

The XML or JSON files are used to configure the model. They could be replaced

by YAML files or any other convenient format. We deliberately chose them for il-

lustration purposes. The graph if encoded in JSON can be useful for client/server

new data transfer operation (thus, no conversion needed). XML schemas should

be used to validate the files. One example for the current master assets XML

design (file) is provided in the appendix.

5.3. Configuration Context files 99

Figure 5.6: A Jupyter notebook editing cell featuring sample prototype code

5.3. Configuration Context files 100

5.3.1 Encoding Assets

XML files describes and configures the assets. This information will be used as

additional input to the model. There are two mandatory entries expected to be

in a master file, also mandatory. Any other sets of entries can go in separate files

we call configuration fragments. These can be separately named and loaded.

The property tag and the isonode tag. These names could be changed later

if needed. These tags and any other custom tag can be used. They belong to

a semantic namespace mapped to the graph metadata dictionary namespace.

These two needs to synchronised with each other.

The model implements two properties for easy access to them but changes are

trivial using refactoring tools. The XML data has all the engineering information

needed about the assets. Also, assets can be specified to expand the hypergraph

by adding nodes we denote isonodes. The isonodes are known not to break the

isomorphism relation governing the equivalence class they belong to. The impor-

tance here is to have the ability to model this as the model operation will require

it. The more complete the configuration files are the more useful subgraph iso-

morphism and other graph analysis would be. isonode is also used for clarity as

can be remember as short for isomorphic-node. This serves as a proof of concept

ass other equivalence class expansions can be encoded similarly by using other

tag and a corresponding associated graph.

Listing 3 Sample asset configuration file entry. Database technologies description

in Google Datalab collection [17]
<asset name="Redis">

<property>Database</property>

<property>key-value</property>

<property>no-sql</property>

<isonode>PostgreSQL</isonode>

<isonode>Cassandra</isonode>

<isonode>MongoDB</isonode>

</asset>

5.4. The Model as a whole 101

5.3.2 Encoding Artefacts

An artefact instance carries all necessary information to evolve itself by graph

expansion using composition. The choice of the working instance is the shifting

operation. These as can be labelled as the variables they are. Artefact also carry

a name and a cryptographic SHA-1 hash as ID.

To implement an artefact we use a digraph from the NetworkX library. The

node IDs are the asset names. An Artefact is an instance of a valid family via

isomorphism. This family encodes a subset of the Cartesian product of the

assets. It is obvious that not all the pairings will be valid for a variety of reasons

including sheer infeasibility or just by not being adjusted to problem constraints.

The list of items tracked per artefact instance:

• The list of couplers is stored to keep track of added couplers.

• The list of edges where evolution took place.

• The list of applied contexts.

• The list of views known to belong to the equivalence class this artefact is

representative of.

These lists are ordered lists.

An Artefact base graph acts as key or ID of its equivalence class [artefact] '.

It can be persisted by saving its graph structure as a JSON file. This graph.json

file establishes the relationship between nodes. This file can also be generated

using the code stating the list of node pairs. All graph metadata contained will

be written to the JSON file. It acts as a graph snapshot. This feature is also useful

to make a sequence of snapshots to track hypergraph evolution.

5.4 The Model as a whole

The format chosen to encode the equivalence class expansion by node addition is

to add an appropiate <isonode> tag entry inside the asset definition. The artefact

after configuration loading can update its equivalence class. A equivalence class

5.4. The Model as a whole 102

Listing 4 Basic Artefact class initialisation. However we need more data for it to

be usable.
def __init__(self, name):

"""

Creates basic artefact with empty digraph and blanked fields.

:param name: Name of the artefact

"""

self.name = name

self.id = self.generateID(self.name)

self.graph = nx.DiGraph()

self.couplerlist = []

self.evolved_edges = []

self.contexts = []

self.views = []

def generateID(self, data):

"""

Generates a new one way cryptographic hash using sha1 algorithm.

The hexadecimal digest is returned as ID based on the utf8 self.name

encoding, just for convenience.

:param data: string to use as unicode bytes to be hashed

:return: the hex digest

"""

return hashlib.sha1(data.encode()).hexdigest()

is a list of views that must be kept updated.

In addition, any known or found sub-graph isomorphism can be added to

the artefact. Any metadata information or attribute desired can be part of an

isomorphic validation. These choices turn the underlying isomorphism on and

off. We accept of reject nodes as part of the graph based on the metadata stored.

This feature serves to explore and discover useful engineering relationships

among the artefacts. These features could be really difficult to achieve without

automation as the number of relationships among the artefacts views grows.

Indeed, a combinatorial explosion of data will have to be analysed by algorithms

of varying performance.

5.4. The Model as a whole 103

The equivalence class arising from the artefact views isomorphism is also

connected to a boolean vector encoded as tags present in each asset configuration

fragment. There is no limit in the descriptive potential of these combined

configuration files.

The advantage of having these configuration files is also that the software

does not need to be changed should we come with a new property or alternative

or even a tag. Tags are encoded using dictionaries (associative arrays) It is

implemented in a generic so adding any tag is trivial. This means that the

complexity on the configuration side can easily grow without disrupting the

model.

The model implements all the Artefact class methods operating on its in-

stances. It should be noted these instance names are important as they label or

tag the shifts done. These can be understood as the joint result of an evaluation

and selection. As of this prototype those are assumed to be done by the practi-

tioner or programmer depending on her engineering needs. However, it suffices

to demonstrate further automation options feasibility. One way to help evaluate

the current state is to use the assortativity property to assess solution evolution.

This property arises from the preferential attachment or nodes, also called assorta-

tive selection This provides an assortativity coefficient that measures the level of

nodes similarity after being selected (attached). Such selection criteria will affect

the graph properties as a whole. Thus, graphs can also be classified. Moreover,

evolution can be filtered using the find isomorphic pairs method to evaluate and

find suitable expansions. Automation ultimately depends on how much good

engineering data we have.

5.4.1 Artefact custom initialisation

The data structure to hold the data is a Digraph to acknowledge the node edges

as Cartesian pairs. Therefore, we use the NetworkX nx.Digraph(). It is initialised

in init which is not a constructor but it serves to initialise the instances. Class

custom initialisation can be aided by some special type of standardised Python

decorators. These use some syntactic sugar in the form of classmethod before the

function definition. This help to initialise the instance depending on the input

data. cls is the convention to name the class itself as parameter that needs to be

5.4. The Model as a whole 104

initialised itself with init .

Listing 5 Custom class initialisations. cls is a convention for the class to be cus-

tomised
@classmethod

def from_relationships(cls, data, name):

"""

To create an artefact using an assets pairs relationship list

:param data: list of asset pairs

:param name: name for this artefact

:return: new artefact with a default attached context (nodes metadata)

"""

artefact = cls(name)

artefact.graph.add_edges_from(data)

artefact.bind_context_fragment()

return artefact

@classmethod

def from_graph(cls, g, name):

"""

To create an artefact using a graph containing asset relationships

:param g: a NetworkX graph

:param name: name for this coupler artefact

:return: new artefact with a default attached context (nodes metadata)

"""

artefact = cls(name)

artefact.graph = g

artefact.bind_context_fragment()

return artefact

The sizes of the nodes represent their corresponding the number of properties

by default. Other criteria can be used. This initialises everything based on default

and/or existing selected configuration files.

5.4.2 Applying Configuration Contexts

Different configuration contexts can be set. These can be sliced further in con-

figuration fragments as multiple files. They will all be layers of metadata at

runtime, being only the master one, with properties and isonodes, mandatory.

They will override previous settings if there is a tag name clash. The method

5.4. The Model as a whole 105

bind context fragment will do just that on an instance basis. It is useful to set all

information early in the evolution to be able to track the trails of graph data dy-

namics. The default context is the assets encoded in the master file with system

path DEFAULT ASSETS PATH.

Listing 6 We keep track of the added context fragments. It overrides metadata on

tag name collision. Not a bug but part of corresponding metadata update.
def bind_context_fragment(self, config=DEFAULT_CONTEXT_FILE):

"""

Binds a metadata node information layer (context fragment) to

its (base) graph node metadata

:param config: path to node metadata file

"""

with load_graph_context(self.graph, config) as g:

self.graph = g

self.contexts.append(config)

Listing 7 Sample asset entries from the context fragment layer views.xml. Tags

used are licence and softwwareview. Any tag can use watching out for semantic

word clash with any other used by metadata. This means they will capture the tag

or label and later override related metadata.
<asset name="bs4">

<licence>MIT</licence>

<softwareview> business logic</softwareview>

</asset>

<asset name="Kivy">

<licence>Dual GPL</licence>

<softwareview> UX/Presentation</softwareview>

</asset>

<asset name="jsforcegraph">

<licence>GPLv3</licence>

<softwareview> Presentation</softwareview>

</asset>

<asset name="jQuery">

<licence>MIT</licence>

<softwareview> Presentation</softwareview>

</asset>

The current file is assets.xml. Any other can be set with different names. One

5.4. The Model as a whole 106

option is to add practitioners contexts assets practitioner1.xml. The other option

is to create another file and add the entry <owner>practitioner1</owner> to the

assets owned by the practitioner. This is how the sample views.xml was created.

These contexts (Figure 5.7) add a level of flexibility akin to what is expected of

software factories schemas. These are chosen in design time but choices during

runtime to branch out or drive the evolution to new evolution solution spaces.

These redirections could be programmed if some conditions are met within the

current state of the evolution. This would allow for the comparison of different

multiple extensible configurations.

Figure 5.7: Custom asset configuration fragment layer loaded into the graph as

metadata with tag (label) licence.

5.4.3 Instance metadata

A dictionary (associative array) is used as the basis to store and attach data to a

node. It is convenient to use the node since all the dynamics with nodes will carry

their data along. These attachments can be overridden by new ones. For conve-

nience properties are created to access the dictionary related to artefact properties.

This is similar in the case of the isonode tag.

For other custom tags a dictionary or associative array must be mapped by

node. The method fixmiss ensures there is no key error and blanks are applied

where appropriate. This is a read operation. The modifications have to happen

in the XML configuration files.

5.4. The Model as a whole 107

Listing 8 Python property using @property in lieu of getter/setters: properties as

a dictionary based node metadata
@property

def properties(self):

"""

Access to tag property node metadata as dictionary

:return: properties dictionary, use properties[node]

"""

ps = self.tagmap(Artefact.property_tag)

return ps

Listing 9 Generic choice of node metadata using existing tags (labels)
def tagmap(self, tag):

"""

Returns nodes stored tagged metadata

:param tag: name of the metadata dictionary

:return: a tag dictionary where nodes are the keys

"""

assetmap = nx.get_node_attributes(self.graph, tag)

self._fixmiss(assetmap)

return assetmap

5.4.4 Configuration Contexts Automation

Since configuring enough meaningful engineering information can be a daunting

task, a simple proof-of-concept example of automation has been devised.

Google Cloud Launcher has been harvested/scrapped into a CSV file to gather

mock engineering data to test some of the model features. The current count of

assets available is close to two hundred. They are classified into categories as also

can be deduced from the string in the href attribute of their links. The assets are

to be classified into meaningful categories that we will use to build a relation. In

this relation we assume the elements belonging to a category are perfectly inter-

changeable from an engineering point of view. The categories that are too generic

are discarded and thus the subset is reduced. An additional reduction happens

as we filter further for undesired or redundant items containing the string "Stan-

dard". We proceed to write an XML file googlelauncher layer.xml containing the

chosen subset of assets encoded as isonode entries in the relevant assets. The

5.4. The Model as a whole 108

other assets will not contain the entries. The idea is to illustrate how a subset of

the Cartesian product of the assets can be expressed by a virtual relation. This

relation can be labelled and in our case the label is subspace.expansion relation tag.

This label is currently "isonode" because it is short and easy to remember as

isomorphic-node. Similar semantics can be invented if new relations are discov-

ered. In fact, there could be many others. We recycle the label as the tag we

will use in a XML configuration file. This tag will be the name of the dictionary

(associative array) containing corresponding node metadata (Figure 5.8).

Listing 10 Creating a subset of the Cartesian product of assets in a

xml.etree.ElementTree tree data structure. It is called inside of a loop with vari-

ous categories. The loop should be moved inside for clarity and efficiency.
LISTING NOTE1: Using from model import Artefact as subspace

LISTING NOTE2: XML_RELATION_TAG = subspace.expansion_relation_tag defined as

"isonode" for the whole Artefact class.

def relation2tag(root,category, xfilter):

"""

Cartesian product of the asset set with itself using valid categories.

Other more meaningful relational subsets could be created.

:param root: root of the xml tree

:param category: a valid category

:param xfilter: a undesired string

:return: amended xml tree

"""

for assetA in root.iter('asset'):

nameA = assetA.get('name')

catA = assetA.get('category')

for assetB in root.iter('asset'):

nameB = assetB.get('name')

catB = assetB.get('category')

if catA in category and catB in category:

if nameA!=nameB and xfilter not in nameA and xfilter not in nameB:

isonode = customTree.SubElement(assetA, XML_RELATION_TAG)

isonode.text= nameB

return root

This is an example of how to automate the creation of complex asset entries.

These will belong to custom layers of various configuration context fragments.

These will be later applied (not necessarily in sequence) to build rich metadata

5.4. The Model as a whole 109

payloads into the nodes of all the artefact views. This view persists in the form of

a JSON file. Different views may have different metadata and that is the key for

graph isomorphism discrimination.

5.4. The Model as a whole 110

Figure 5.8: Google Cloud Launcher asset configuration fragment loaded into the

graph as metadata.

5.4. The Model as a whole 111

5.4.5 Evolution operations ∆

Once the initial setup is done, we can start evolution steps. The coupler graph

can be interpreted as an artefact instance since it is a software solution too.

The coupler graph has to include the node where to attach. In other words, it

is important to note that the common enabler node must be explicitly included in

the coupler as well as in the seed artefact. The program will deduct anything else

related to this step operation henceforth. In this fashion we keep data as just data

without forcing the user to identify such enabler. This has useful consequence

as we edge to a more functional programming philosophy in regard to data

processing.

The key operation evolve will create a new Artefact based on an existing arte-

fact using a coupler graph. This is an evolution step as part of an intelligent

aggregation strategy. This works in conjunction with the existing artefact infor-

mation. All relevant further and derived data will be updated or generated ac-

cordingly. This means that the knowledge of the suitability of the evolution relies

on the coupler existence whereas the viability of the solution as a whole relies on

the starting seed solution.

5.4.6 Evaluating and tracking desired properties

Looking at the generated family it may be obvious which solution has the most

desired properties. This can be achieved by using a desired tag to describe the

property sough as the node size. It can be accomplished, for instance, by adding

the entry <predictor-tag>data-of-interest</predictor-tag> to the relevant asset config-

uration file. Of course, visually this works quite well with a small example. If

the asset data were large enough it may not have been obvious. It may very well

not be advisable to try to visualise it as computer resources may not be enough.

However, a table and corresponding chart can be generated to discover desired

viable candidates (Figure 5.9).

5.4.7 Searching for other isomorphic solution views

To check if there is no sub-graph isomorphism in the first place to avoid a point-

less search refinements the function is subgraph isomorphic is provided. This can

5.4. The Model as a whole 112

Figure 5.9: Prototype notebook outputting current count of metadata labelled

property.

5.4. The Model as a whole 113

Listing 11 Evolution by graph expansion (thin ∆) using a one base graph (a key

view in itself) and a coupler artefact instance.
def evolve(self, coupler, name):

"""

Expand, with coupler graph, current base graph carrying existing

configurations.

This is operator (thin) :math:`\Delta` over the representative view of

:math:`[instance graph]_\\simeq` where

the equivalence class evolves but implicitly.

:param coupler: the artefact with the graph to attach

:param name: a name for the resulting artefact

:return: expanded solution view

"""

self.name = name

self.id = self.generateID(self.name)

common = set(coupler.graph) & set(self.graph)

print('common:',common)

self.graph = nx.compose(self.graph, coupler.graph)

for node in common:

for edge in coupler.graph.edges():

if node in edge:

self.evolved_edges.append(edge)

self.couplerlist.append(coupler)

return self

also be used to validate the growth chain states created by any ∆’s growth steps.

When we talk about isomorphism, we always refer to node based isomorphism.

This is also the point of view used in the NetworkX library implementation. Thus,

other point of view, referring to edges, will have to be implemented differently.

As featured in the "sub-graph isomorphism search.ipynb" notebook extra views

can be discriminated and found. There can be many possible sub-graph isomor-

phisms. To discriminate them we can use loaded node metadata as the initial

filtering criteria. This will only work if there such sub-graph isomorphism. The

output is an iterator pointing to dictionary data of the found isomorphism. Data

are key-value pairs, featured node by node (Figure 5.10).

5.4. The Model as a whole 114

Figure 5.10: Prototype notebook outputting current pre-filtered valid isomor-

phisms as dictionaries.

5.4. The Model as a whole 115

Listing 12 Evolution by multiple graph expansion (thick ∆) using all stored views

and a coupler artefact instance. All resulting solution guaranteed to be analogous.

Their metadata fingerprint could be different.
def evolve_delta(self, coupler, name):

"""

Explicitly evolve the known views belonging to

:math:`[instance graph]_\\simeq` currently known.

A trunk :math:`\Delta` operation.

:param coupler: the artefact with the graph to attach to all views

:param name: a name for the resulting artefact

:return: expanded equivalence class

"""

self.update_views()

for index,view in enumerate(self.views):

self.name=name

self.views[index].id = self.generateID(self.name)

self.views[index]=view.evolve(coupler, view.name+' <- '+coupler.name)

self.views[index].couplerlist.append(coupler)

self.views[index].evolved_edges=list(set(self.evolved_edges))

return self

Listing 13 Tagged metadata occurrence count. Also useful for solution view as-

sessment and sorting.
def count(self, tag):

"""

Counts and returns node metadata instances as id by an existing tag context

:param tag: an existing(initialised) tag context

:return: metadata instances or entries count

"""

return [len(self.tagmap(tag)[n]) for n in self.graph]

...

#LISTING NOTE: This code below would print property count per view.

for view in solution.views:

print('{} Property Count: {}'.format(

view.name,sum(view.count('property'))))

5.5. I/O and Visualisation 116

Listing 14 Checking for sub-graph isomorphism existence.
def is_subgraph_isomorphic(self, subartefact):

"""

Finds if current artefact itself contains ANY other isomorphic artefact

:param subartefact: sub-artefact with a relevant sub-graph to check with

:return: True if found.

"""

iso = isomorphism.DiGraphMatcher(self.graph, subartefact.graph)

return iso.subgraph_is_isomorphic()

Listing 15 Using loaded node metadata to filter and find existing isomorphisms.
def find_isomorphic_pairs(self, subartefact, tags, values):

"""

Check if current artefact contains other isomorphic sub-artefact considering

metadata information as a filter.

And provides the isomorphic result of the filter.

:param subartefact: sub-artefact with a relevant sub-graph to check with

:param tags: affected node metadata context tags list

:param values: corresponding node metadata context actual datum list

:return: Returns generator of dictionaries with found isomorphic pairs

"""

iso = isomorphism.DiGraphMatcher(self.graph, subartefact.graph,

node_match=

isomorphism.categorical_node_match(tags,

values))

return iso.isomorphisms_iter()

5.5 I/O and Visualisation

As previously said, in python modules can be understood as a singleton class. It

is convenient to add all I/O supporting methods in a single module, as a utility

module. They can be disk access or console based. The basic information about

an artefact is implemented as a str method so artefact instances know how

to pretty-print themselves using the standard print() function. This is also helpful

to output to any text accepting system, like a web browser.

List of implemented operations, briefly:

5.5. I/O and Visualisation 117

• JSON read and write

• Save PNG snapshot of current graph

• Show a static graph view

• Load all known assets data into a graph.

• Print adjacency matrix to console.

• Several other print to stdout and data output functions.

• Convenient output for extra graph generation to be used in D3.js based

component offline and online by using the microservice jinja templates.

• Save JavaScript custom data output files imported offline (superseded by

the microservice facilities).

5.5.1 Displaying static graphs

This graph visualisation is done using Matplotlib [57] (Figure 5.11). The incon-

venience here is the lack of interactivity. Able to generate rich graphical output

from xml and json description files (customisation). All these features had to be

feasible not having to change the python source code every time.

5.5.1.1 Display of [view] ' static graphs

The method explore isonodes generates the known equivalence class based on cur-

rently applied configuration data. An isonodes graph generates the partial hyper-

graph for the current data using sets as destination nodes as a curiosity imple-

mented to gain insights (Figure 5.12).

The viewing of a hyper-graph is a challenge in itself. It is out the scope of the

project but it is useful to consider it. That is why solutions views sets were chosen.

The image produced corresponds to all the artefacts views as viable candidates

that can be generated based on the information provided. Each view is a view of

the validated slice of the combinatorial explosion derived from the asset relation-

ships. This could be huge as the assets number grows. Any edge could actually

be a code dependency, a functional feature, or any other meaningful engineering

information. This choice needs to be consistent across the equivalence class.

5.5. I/O and Visualisation 118

Figure 5.11: Sample static graph output using matplotlib library

5.5.2 Displaying dynamic graphs

Client side dynamic interactive charts uses a D3.js based solution [38] (Figure

5.13). However, we chose to leverage the power of an existing GPLv3 component

customisation by Michel Bostock for the quick generation of web based graph

dynamic output [19]. This feature is convenient to study the outputs and to

gain insights on any extra information. The great advantage is that presentation

customisation resides at the appropriate layer (JavaScript and CSS level). Also,

this presentation model can be reused by any web based client.

D3.js allows for declarative style programming to be used similar to jQuery

[51]. This also includes cascade methods. For the purpose of demonstrating ca-

pabilities a JavaScript file with the data is produced with the necessary code to be

imported. This allows to produce a dynamic graph perfect for screen capturing.

The D3 based GPLv3 licensed custom component, by Michel Bostock is used for

as a Jinja2 [50] based template for all dynamic graphs [19].

5.5. I/O and Visualisation 119

Figure 5.12: Isomorphic solution tile of some sample static views as generated

and displayed.

5.6. Modelling: Examples of scripting use 120

Figure 5.13: Sample output using D3.js based GPL component [18, 19]

5.5.2.1 Display of [view] ' dynamic graphs

The evolution steps can be automated by code or interactively. The D3.js chart is

embedded (Figure 5.14) in a Jupyter notebook [49, 54] along with other standard

facilities. In this fashion the evolution is self-documented and it is also of great use

for presentations and for non-practitioners of all levels to explore the possibilities.

5.6 Modelling: Examples of scripting use

Prototype access

Aided by the vast richness that can be added through configuration files the

model can be used programmatically. This can be done through the various

means be either anything with access to a Python 3 interpreter with adequate

module dependencies met. There are several caveats with the current prototype.

A minor one is that the microserver cannot be started within Jupyter notebook

cell (Figure 5.22) but can be launched separately. For Jupiter to be able to access

the modules the current working path must be the same. Starting in the same

path is a solution that will suffice here but for a bigger project other arrangements

may be needed. The model records evolution steps but does not persist them

(to files). The model is efficient as persist just the graphs. I realised while

5.6. Modelling: Examples of scripting use 121

Figure 5.14: Generated compact tiled-view of expanded [view] ' specimens

(other views). It can be loaded within a Jupyter notebook or via a web browser.

Jinja2 template version iframe sizes are bigger so the there is more room for each

graphs.

5.6. Modelling: Examples of scripting use 122

loading specimens that the loaded one showed no evolution. This is correct as no

evolution took place from the current script point of view. I could not foresee all

the emerging future use cases as new functionality was added and combined.

The created scenario within the rest microservice remembers the evolution

steps because it just took place (live with the system). Albeit anecdotal is worth

pointing this as it may be confusing but ultimately makes sense. The red arrows

therefore represent any last evolution steps that have taken place over the artefact

being displayed. Only the nodes affected will get the arrows.

The meaning of the direction of the arrows represent the fact that they model

Cartesian pairs. Sometimes the dependence is mutual and a frame of reference

is needed. A solution makes both seed and coupler depend on an enabler node.

That is because the whole solution depends on this node to be assembled. An-

other point of view could be that the node depends on other node to be a func-

tioning node. This is akin to a software dependency or architectural dependency.

Edges are not labelled but it could be interesting to visualise the order of the

evolution steps as they are stored and tracked along with a history of added

couplers.

5.6.1 Single asset evolution

Browsing Augmentation based Artefact

The example of a website post-processing script using Greasemonkey and Firefox

(basic notebook example in Figure A.3). This concept is known as augmented

browsing [153] [154]. This script manipulates the DOM tree, post-rendering stage,

in the browser. If the data does not come from the originating URL a browser

error is triggered. This is known as Cross Site Scripting (XSS) and it is currently

forbidden by browsers as a security measure. This post-processing scripts use

a relaxed security sandbox which allows XSS among other features. The utility

of these scripts (or extensions) is remarkable (including interdisciplinary uses) as

illustrated by Pafilis et al. [138].

GreaseMonkey enables Firefox to accept custom scripts. The relation a R b

applied create a graph expansion that is isomorphic to other allowed solutions.

In this case is browser R augmented browser enabler. The browser could be actually

5.6. Modelling: Examples of scripting use 123

enabled without the need for external software but we can model such feature

as independent. We consider a collapsed or expanded node depending on what

we actually want to put the emphasis on. Equivalence class: augmented browser,

Firefox compatible [FX]'. As a side note, since browsers share increasingly this

feature and couplers (i.e.. the extensions) the higher more abstract equivalence

adds all those views as belonging to that family of solutions.

Listing 16 Defining asset names as node identifiers. These relationships model

valid Cartesian pairs to form a relation.
r1 = [('XUL','SpiderMonkey'),('XUL','Javascript'),

('JS Libraries' ,'Javascript') , ('JS Libraries' ,'XPCOM') ,

('SpiderMonkey', 'XPCOM'),('JS Libraries' ,'SpiderMonkey')]

r2 =[('SpiderMonkey', 'GreaseMonkey'),('CustomScript','GreaseMonkey'),

('CustomScript','jQuery')]

r3 =[('CustomScript', 'D3.js'),('CustomScript','GreaseMonkey')]

Listing 17 Load JSON graph data to create an Artefact instance. This replaces the

need to define node relationships as Cartesian pairs.
with io.load_graph_context(io.load_json('graphdata.json')) as g:

test = model.Artefact.from_graph(g, 'test')

Listing 18 Using the evolve method (thin ∆) in succession.
solution = seed.evolve(coupler1,'CustomScript jQuery')

evolved_solution = solution.evolve(coupler2,'CustomScript jQuery and D3.js')

The variable names used by the artefact instances act as the labels of the arte-

facts chosen and name shifts if used. The nodes that will serve to attach the

graphs needs to be mutually shared for the mechanism to work. This feature

simplifies greatly the design of operation as we eliminate redundant parameters.

It is also interesting to keep related data as compact as possible. In this manner,

the artefact instances and their views always carry the necessary information to

be expanded and thus, evolved.

Cloud Solution based Artefact

Generation of a cloud solution from Google Cloud Platform solutions as Assets.

All the solutions present in the Google Cloud Launcher are considered. A custom

5.6. Modelling: Examples of scripting use 124

script for augmented browsing using the Redis [155] database and Flask [41]

as web server could be one simple example. The artefact links to the previous

browser based artefact with Firefox as the common node (Figure 5.15).

Figure 5.15: Google Cloud Platform sample Artefact

Listing 19 Google Cloud Platform sample artefact modelling.
r3 = [('Firefox','ReST API'),('ReST API','Flask'),('Flask','Redis')]

r1 =[('GreaseMonkey', 'Firefox')]

r2 =[('CustomScript','jQuery'),('CustomScript', 'D3.js'),('CustomScript',

'GreaseMonkey')]

seed = model.Artefact.from_relationships(r1,'GreaseMonkey enabled Firefox')

coupler1 = model.Artefact.from_relationships(r2,'GreaseMonkey Script')

coupler2 = model.Artefact.from_relationships(r3,'Cloud')

solution = seed.evolve(coupler1,'CustomScript')

solution = solution.evolve(coupler2,'Evolved with Cloud')

JavaScript file output

JavaScript file output sample generated by the prototype for seamless experimen-

tation. Important to note that dependency and coupler added are entities named by

convention as any other name could have been used. dependency could be a logical

dependency, architecture, view or any other relevant term. The prototype could

be upgraded visualise different edges meaning. The type can be fully customised.

dependency here means any logical dependency and it could coincidentally mutual

depending on the point of view.

5.6. Modelling: Examples of scripting use 125

Figure 5.16: Notebook featuring single asset source code for loading of JSON

artefacts. Graph output depicted over.

5.6. Modelling: Examples of scripting use 126

Listing 20 Reformatted data as JavaScript (initially used for testing)
var links = [{source: "CustomScript" , target:"jQuery", type: "dependency"},

{source: "CustomScript" , target:"GreaseMonkey", type: "coupler_added"},

{source: "CustomScript" , target:"D3.js", type: "dependency"},

{source: "Flask" , target:"Redis", type: "dependency"},

{source: "Firefox" , target:"ReST API", type: "coupler_added"},

{source: "ReST API" , target:"Flask", type: "dependency"},

{source: "GreaseMonkey" , target:"Firefox", type: "dependency"}];

5.6.2 Multiple assets evolution

When multiple assets belonging to solutions or couplers with different com-

patibilities we can perform a multiple evolve step (Figure 5.17 and Jupiter cell

in Figure 5.18). This will create a family of solutions on its own. The previous

example for the model chapter features a double coupler expansion.

We model same Firefox scenario but we assume it will be wasm capable. Using

WebAssembly binaries (wasm) we create two couplers. One coupler depends on

WebGL capabilities and the other is produced by compiling the C+++ into wasm.

This is isomorphic with wasm capable solutions but to be isomorphic with both

(the expansion) it needs to have access to the same space of possibilities. WebGL

and the used C++ framework, simultaneously. Sample modelling below.

Figure 5.17: Adding two couplers using assets such they require further isomor-

phic relationship.

5.7. ReSTful microservice 127

Listing 21 Google Cloud Platform sample multiple asset based artefact genera-

tion.
r1 = [('XUL','SpiderMonkey'),('XUL','Javascript'),

('JS Libraries' ,'Javascript') , ('JS Libraries' ,'XPCOM') ,

('SpiderMonkey', 'XPCOM'),('JS Libraries' ,'SpiderMonkey')]

r2 =[('wasm capability', 'SpiderMonkey'),('CustomBinary1','wasm capability'),

('CustomBinary1','WebGL wasm binary')]

r3 =[('CustomBinary2', 'C++ wasm target'),('CustomBinary2','wasm capability')]

seed = Artefact.create_from_relationships(r1,'wasm capability enabled Firefox')

coupler1 = Artefact.create_from_relationships(r2,'wasm1')

coupler2 = Artefact.create_from_relationships(r3,'wasm2')

solution = seed.evolve(coupler1,'wasm WebGL capable program')

solution = solution.evolve(coupler2,'wasm targeted C++ app')

In practice this can be automated by using evolve delta if done over the same

[view] '. If there are various different couplers in a list, we should loop through

the list. Then we can call evolve or evolve delta depending if one view or all the

views bound by the same ' are affected. In practice the only first one is needed

unless we want to hold all metadata in memory to do isomorphism related graph

discriminating queries. Demonstrating such queries will require a significant

amount of valid test data. The underlying mechanism is already implemented

by the NetworkX library using the VF2 algorithm [72].

5.7 ReSTful microservice

There is a simple cloud microservice implemented to illustrate the convenience

of the model to be implemented in a client-server context. It has been designed

following the ReST architectural style. It is absolutely experimental but the proof

of concept fits the model prototype design. It also serves to test the model and

provides an alternative means to output text rather than just stdout (console).

Besides being possible to test it over the network is also a useful cross-platform

solution.

The microservice offers the chance to test the model using the browser as a

feedback channel. This made basic testing seamless. The implementation was

an ad-hoc reuse of existing functions. Although functional, it can be improved.

Fortunately, the basic foundations have been laid to show how well the model

5.7. ReSTful microservice 128

Figure 5.18: Multiple asset notebook example.

design will fit within the rest style architecture. The model behaves like a gener-

ator of state machines modelling a protocol. HTTP is precisely a communication

protocol. The operands are resources and the operations make use of the web

verbs creating or manipulating the resources. The implementation should make

this line of analysis clear. It should be noted that is possible to implement a ReST

style architecture not using The Web.

Table 5.3: The model as a ReST style compatible design
Operators

Operands nodes

The Web as

ReST architec-

ture [48]

HTTP verbs POST, PUT, DELETE

mapping CRUD operations

Resources, reachable by HTTP verb

GET using URIs (URLs)

Our model Solution view shift, coupler view

shift, thin ∆, thick ∆, transmitted

using same HTTP verbs (It could

also be done using JSON data)

Artefacts and their related re-

sources reachable by URL

5.7. ReSTful microservice 129

5.7.1 Selectable Test scenario (sandbox function)

There is normal operation or operation based on a test pre-made scenario (Figure

5.19). Switching with:

• http://127.0.0.1:5000/normal scenario (Default on initialisation, loads any

<serverartefact> stored on disk)

• http://127.0.0.1:5000/test scenario (Where a mock model situation is tested)

Listing 22 Test scenario function
def test_scenario(artefact_json_name):

"""

Simple Model and API online testing.

:return: sample artefact

"""

seed = load_JSON_artefact(DEFAULT_SEED)

seed.evolve(subspace.from_relationships([('CustomBinary1',

'Redis')], 'rediscoupler'), 'redisexpansion')

solution = seed.evolve_delta(

subspace.from_relationships([('CustomBinary1', 'bs4')],

'bs4coupler'), 'bs4expansion')

or any not included before saving in any JSON artefact

solution.bind_context_fragment('views.xml')

#isonodes or properties must be updated together via XML,

otherwise the other data persists as is not overridden

solution.bind_context_fragment(r'.\GoogleLauncher\googlelauncher_layer.xml')

solution.update_views()

return solution

5.7.2 ReST Resources

5.7.3 How to implement ReSTful operations

There is normal operation or operation based on a test pre-made scenario. Switch

with:

• Using http://127.0.0.1:5000/operationtest The form (Figure 5.20) used to trans-

mit a sample ∆ operation and affected operands.

• http://127.0.0.1:5000/api Executes any operation done via HTTP verb POST

5.7. ReSTful microservice 130

Figure 5.19: Test scenario evolution.

Listing 23 Operation processing by URL /api entry using HTTP verb POST
@app.route('/api', methods=['POST'])

def operations():

"""

Evolve two artefacts by (JSON) name (It should use ID at later stage)

:return: resulting dynamic graph view

"""

seed = active_equivalence_class.use(request.form['seed'])

coupler = active_equivalence_class.use(request.form['coupler'])

view = seed.evolve(coupler,seed.name+'_delta_'+coupler.name)

#return request.form['seed']+' _delta_ '+request.form['coupler']+' = '+ view.id

io.dump_json(ARTEFACT_PATH+view.id+'.json',view.graph)

another fancy option

return render_template('viewtemplate.html', d3data = io.d3_data(view))

5.7. ReSTful microservice 131

Table 5.4: Cloud Microservice API Resource access.
URL Resource

http://127.0.0.1:5000/<serverartefact>/id SHA-1 hash

http://127.0.0.1:5000/<serverartefact>/<viewname> Renders a graph of any

available view including the

base graph.

http://127.0.0.1:5000/<serverartefact>/<viewname>/JSON The graph with metadata as

JSON

http://127.0.0.1:5000/<serverartefact>/<viewname>/info Basic textual information for

any views

http://127.0.0.1:5000/<serverartefact>/viewlist The artefact stored known

views

http://127.0.0.1:5000/<serverartefact>/tileviews Graphs take a time to load if

there are too many. Experi-

mental.Of course only prac-

tical for few views.

http://127.0.0.1:5000/<serverartefact>/info Basic textual instance infor-

mation from the base graph

http://127.0.0.1:5000/<serverartefact>/metadata/<tag> Access to live metadata

stored using tags as set in

XML configurations.

http://127.0.0.1:5000/operationtest Returns a basic form to test

online the the basic thin ∆

evolution operation.

Figure 5.20: Artefacts with graph on disk can be evolved using ReSTful operation

handling. The page updates to the resulting base graph.

5.7.4 A test scenario to showcase the model basics

There are to modes of operation. Normal mode and test mode. Normal mode is

de mode where an artefact is loaded from JSON data store on this using the name

of the file as a form of id. The second model of operation is a mock test situation

5.8. Notebook deployment and Jupyter access 132

where some test scenario has been created to create custom outputs (Figure 5.21).

This test scenario will load evolve.json as the seed artefact to populate the equiva-

lence class views list. This is performed last with the method update views which

delegates to explore isonodes(). These views will contain the graph state derived

from the immediate prior operations results. A thin and a thick ∆’s are performed

for didactic purposes. The thin delta evolve method evolves one view with one

coupler. Thick or wide ∆ evolve delta evolves the whole known equivalence class

views set (implemented as a list) with the same coupler. The ability to do this

last one is of paramount importance because the more graphs with metadata we

have in memory the deeper the pool to do isomorphic searches and other graph

analysis.

Listing 24 function test scenario activated by http://127.0.0.1:5000/test scenario
def test_scenario(artefact_json_name):

"""

Simple Model and API online testing.

:return: sample artefact

"""

seed = load_JSON_artefact(DEFAULT_SEED)

seed.evolve(subspace.from_relationships([('CustomBinary1', 'Redis')],

'rediscoupler'), 'redisexpansion')

solution = seed.evolve_delta(subspace.from_relationships([('CustomBinary1',

'bs4')], 'bs4coupler'), 'bs4expansion')

or any not included before saving in any JSON artefact

solution.bind_context_fragment('views.xml')

#isonodes or properties must be updated together via XML,

otherwise the other data persists as is not overridden

solution.bind_context_fragment(r'.\GoogleLauncher\googlelauncher_layer.xml')

solution.update_views()

return solution

5.8 Notebook deployment and Jupyter access

Start Jupyter notebook server in the command prompt. This can be done in

a suitable folder where the notebooks are present or are to be created. For

immediate access to the model is best to start it (or configure it) in the prototype

modules folder. This will be the working directory. The server will open the

5.8. Notebook deployment and Jupyter access 133

Figure 5.21: Small sample of the expected outcome of the test scenario. Tiled

view of thick ∆ evolved seed with many specimen views all belonging to the new

[solution graph]'. [seed graph]' belonging views are sub-graph isomorphic to all

of them.

5.9. Microservice deployment 134

default browser pointing to this specific folder or any other. A suitable localhost

port must be open being 8888 the default (it appears to hop forward to next

number if blocked). Using the microservice along with the notebooks is possible

and the best way to test the tool (with no IDE). The server usually is started

separately but is feasible, to launching within a notebook cell if needed in the

future. Elements are written and used offline to embed in the notebook (Figure

5.22). The toolset gain capabilities with extensions. Also communication between

servers is possible using JSON.

Start server command:

$jupyter notebook

Browse to any notebook an click it (as it is a link) to open it.

http://localhost:8889/prototypepath/server/anynotebook.ipynb

The modules must be able to be accessed by the notebook to be used. All paths

need to be adjusted accordingly so it is best to use relative path. This will also

make deployment to the cloud easier.

There are several cells. Inside the code cell python code can be input. The

result will appear and populate the web page increasing its size. The whole

resulting live example can be saved as a notebook for easier posterior examination

with no input involved. This allows for interactive tinkering and easy share of

ongoing results while keeping documentation of the whole process documented.

Listing 25 The model generates all offline data needed to embed within a note-

book
%%HTML

<iframe width="1024px" height="1024px" src="template_file">

</iframe>

5.9 Microservice deployment

The microserver.py has to be launched making sure PORT is open and that DE-

FAULT HOST is reachable. On timeout, the graphs will not show due to the

browser default settings, as explained before. Some browsers can be configured

to deal with this but is best to leave the default settings.

5.9. Microservice deployment 135

Figure 5.22: Loading JSON artefacts and the embedding of graph views. Graph

output depicted over.

5.10. Conclusions 136

Listing 26 Flask server launcher
import os, microservice

if __name__ == "__main__":

port = int(os.environ.get("PORT", microservice.MICROSERVICE_PORT))

microservice.app.run(debug=True, host=microservice.DEFAULT_HOST, port=port)

Further testing and experimenting:

curl [36] is a nice networking tool similar to wget [73]. We do some low level HTTP

response testing from the command line, using the console in Bash, cmd.exe or

cygwin depending on the system in use. The Flask debugger should also be

activated, for extra feedback.

$curl --header "Content-type: application/json"

POST http://127.0.0.1:5000/api

--data "@operation.json"

5.10 Conclusions

As seen, implementing the model is certainly possible. It has been implemented

open-ended (generic) to demonstrate its expansion possibilities. By using

configuration files we gain in flexibility without having to rewrite the source

code. However, this does not prevent us from adding information. We choose

an isomorphic family by selecting an instance of that family and from there

generate compatible families. The addition of isomorphic view is exemplified by

implementation of isomorphic check methods. The actual addition will require

meaningful data so its left as explanatory enough. This works by essentially by

delegating on the relevant NetworkX methods.

The automation of configuration information generation and its connection

to the theory has been achieved. Through the use of existing Google Cloud

Launcher data an example of automation of configuration generation and its

amendment has been showcased. Furthermore, the prototype models isomorphic

additions by expanding a solution view set by adding extra special nodes. The

relation labelled isonode serves as the means to illustrate the concept. It is the

basis to show hot to link graph metadata to configuration fragments. The

5.10. Conclusions 137

XML configuration can be made more complex as well as the JSON data. Of

course, the current choice of data format mix is done for didactic purposes.

Different data formats could be more appropriate depending on several factors.

Evaluating those factors could be an additional good future line of research for

their respective projects.

When the number of items grows the amount of relationships, and thus

interlinked metadata, grows exponentially. This makes hard to keep tabs on

things. We can be certain that as long as the data is of validated quality, lets

say a software relationship is truly part of an isomorphism, the output will

be sound. But this does not require the person assessing the relationships to

know all the details about the project. This is a sand-boxing of concerns into

configurations and it is of great use as allows for contributions from different

types of practitioners, including non-engineering domain experts.

There are plenty of ad-hoc visualisation facilities. These are incidentally

needed to aid in the discussion of concepts and the operation of the model.

However, they serve to illustrate the scientific value of the prototype as an

aggregation of capabilities.

5.10.1 Evolution as documentation

A command log with a chain of IDs (or a Jupyter notebook for richer narratives)

with evolution steps as engineering data could be added to projects. This would

allow tracking not only the evolution of the project but how this evolution fits

in the grander-than-architecture scheme of things. Another bonus is the extra

information being implicitly tracked like asset data or any other added item of

engineering interest. This helps in the sense of increasing the level of automation

potential of any task we already do, a sort of engineering book-keeping. The

fact that the files generated and used are all text based data makes them candi-

dates to be tracked with CVS tools like Git for further data mining potential

configuration additions.

5.10. Conclusions 138

Implementation Evaluation

Design choices mistakes have been made while implementing the solution. These

became more prominent as understanding was gain through the prototyping

stages. However, that is the point and tangible gain from prototyping. A series

of critical evaluations of some aspect of the prototype sections follows along with

suggested changes.

5.10.2 The model should be the deepest module

The I/O access to read the graph data and populate is unavoidable but not inside

of the Artefact class. The decision to have it inside of the custom initialisation

methods for the class was made to enforce it. However just after that doing

an enforced views update would be useful. It could not be done as a recur-

sive call to Artefact.from graph would happen in the method explore nodes. This

method should not have used that and return a list of artefact instances. Instead,

It should return graphs and thus we solve the recursion problem. Having done

that, all I/O could be taken off the class. If done so, the initialisation enforcing

bind context fragment() and possibly update views() could also be taken elsewhere.

They could still be done inside of the model module but outside of the class. If

we also moved there the relevant methods from the ioutils module we may have

that module made independent from ioutils too. All this combined will allow to

put such I/O logic at a higher abstraction level and make the model class easier

to test. This dependency inversion is done to keep business logic at the deepest

level and volatile choices like I/O at the highest. Truth is that in this Python

implementation the problem is not too acute. Functions and other entities can

be independently loaded for modules. All the I/O functions are kept in the I/O

module. The only function could be just added to the model module. In any

case these concerns may point to a better redesign route. bind context fragment()

should be called from a higher script, and thus, dismiss the configuration enforce-

ment in the custom class methods. This will help to redesign the class and any

derived testing.

5.10. Conclusions 139

5.10.3 Splitting Artefact Class

Another problem revealed through the use of the model is that evolution infor-

mation tracked regards just the main view but not other views. This is clearly a

design mistake if we want to keep the state of all the views beyond just the loaded

metadata. That gives way to interesting considerations. The initial idea was to

generate all the solution views from the master view (as a graph) contained in

the artefact instance. Their IDs were an afterthought to replace the name but that

helped with the insights. We realised how meaningful it was to call the fully

qualified model.Artefact class as subspace python namespace. The [arterfact graph]'
defines such solution subspace. This is the equivalence class representing all

the potential compatible views bound by isomorphism. Therefore, Artefact as a

higher class could hold all the views as instances. This will enable tracking views

state individually. This means that when we evolve a view we do an evolve delta

on an instance and when we evolve the artefact we do an evolve delta on a set

of instances. This makes the separation and meaning of these two ∆ operations

easier to understand at first glance. The method evolve will evolve view instances

and evolve delta Artefact instances holding all views. Artefact should be renamed

as, let us say, SolutionView and a new class called Artefact or Subspace would hold

the evolve delta method. This is because any view addition, like for instance sub-

graph isomorphic one, will have to be stored in that class instance. These classes

can both remain in the model module. Thus, the design is clearly improved. An-

other recommendation would be to create a higher class Family. It could store the

chains of family hierarchies emerging from ∆ chained operations as they are dis-

covered by comparing the chains ends metadata (This will require sizeable valid

data).

5.10.4 Asynchronous operation upgrade

To consider all the aspects of a fully fledged asynchronous online solution is

totally out the scope of this research but it is interesting to discuss how it would

fit in the prototype.

In order to improve communication efficiency, the Jinja2 [50] template(s)

should be transmitted just once. Any change should be implemented using asyn-

chronous facility on the client side. D3.js works with data loaded or encoded into

a SVG graph. The functionality is client-side here. AJAX style communication for

5.10. Conclusions 140

asynchronous client communication is possible using any option available (like

the ones included in D3 or jQuery). The model would still run as the server

side solution. The client can implement the update request of its own partial data

changes. To achieve this we suggest using JSON data as the means of transmitting

any change (interaction), including of course the all operations. These include the

shifts that could actually be implemented as evaluation and selection separately.

These as of now are performed implicitly by the practitioner but they could be au-

tomated. With these minute state-of-the-art changes the foundation of a complete

online (asynchronous) solution to operate the model will be complete. This is

notwithstanding any replacement to D3 and therefore the SVG rendering. Other

libraries will have other facilities and render to different targets. This does not

affect the upgrade underlying philosophy but could affect overall performance.

5.10.5 Future scaling

Given the relational nature of the model a persistent solution that scales and is

cloud deployment friendly can be designed. The straightforward solution is to

use a graph based database. An optional ad-hoc efficient solution is to use the

key-value pair database Redis (or any other) to store relational data of any kind.

This could include node-ID to metadata mappings. This could implement just

the persistence aspects and leave the graph metadata querying to the NetworkX

library. However, the concept of configuration files still useful as a human friendly

way to input custom data. The use of a combination of these approaches makes

a good case for future research.

Chapter 6

Software Evolution: organic

growth

6.1 Introduction

In the previous chapters we discussed how an evolution framework can help

solve problem arising from the combinatorial explosion of asset relationships.

This so far have been limited to a Software Line Product context as example of

high-order software component reuse.

Organic growth is characterised by step-wise closed feedback-loop of directed

compositions or expansions. Specific selections from devised collections of simple

structures to incrementally create a more complex one. A starting state and a way

to internally direct the growth to a desired future state. These aspects are already

part of the model operation. So far we have not departed from an orthodox

meaning of the expression.

However, the model can be configured to work as a generative model to find

higher order patterns. These patterns are growth chains product of evolving

artefacts using the rules previously discussed. We can use predictor properties to

enable a search within a range. This can be moved forward to ever larger depths

all of them capturing the time-ordering of evolution events. Branching events

model evolution in a way analogous to Git(VCS) [44].

The artefact could encompass other higher order structures not made just

by assets. Cloud systems feature multi-level ways or designing solutions. These

designs feature the use Virtual Machines or containers as part of the architectural

elements of a solution. We build evolutionary paths using such elements to reach

higher order structures using our hypergraph model.

6.2. Organic growth 142

Combining our model, interpreted a generative model, with the Google Cloud

Platform (GCP) builds a framework of high-order reuse. To this aim, the opera-

tions behaviour have to be adjusted as to meet the constraints of known generative

models.

6.2 Organic growth

A seed starting solution state, a way of directing the growth to and a desired

future state are requirements to grow organically. The model covers these but

there are more.

According to Lehman’s laws of software evolution, system growth will be

bounded by its size. This viewpoint was further re-enforced by Lehman et al.

statistical analysis [91]. System growth, measured in terms of numbers of source

modules and number of modules changed, is usually sub-linear. Lehman details

that there is a slowing down effect as the system gets larger and more complex.

Additionally, we may also consider Free and Open Source Software (FOSS) as

higher level components. Lehman’s Laws of Software Evolution set limits that

seem not to apply to open source.

The addition of elements is expected to follow a sigmoid or logistics cumu-

lative curve. This resembles population growth in ecological systems and the

pattern of diffusion of innovations. Also, this is a typical curve to track learning

skills progress. We propose to measure this growth in software complexity terms.

We should study how complexity changes and grows under different evolution

branches. It is common knowledge that "logistic functions model resource limited

exponential growth" [156] as depicted in Figure 6.1. They also represent accu-

mulation of a function with a peak value, like the bell curve (normal distribution).

For instance, it has been confirmed empirically by Scacchi that open source

software evolution is at least super-linear or exponential for FOSS large projects

during the early stages [157]. Such project also feature the typical S-shaped sig-

moid curve of growth. Some these projects have spawned for decades and they do

not show the slow down of growth and decline in quality predicted by Lehman’s

Laws in spite of increased complexity. This gives new light of understanding to

6.2. Organic growth 143

Lehman’s Laws of software evolution in the context open source. Based also on

the findings by Bhattacharya et al. [84] we can conclude that open source exhibits

super-linear growth.

Figure 6.1: Logistic curve with various parameters. Wikimedia Commons. [20]

The super-linear growth scenarios route around previous limitations:

1. Open source: Large FOSS components with developer popularity and sta-

bility in maintenance terms.

2. Cloud Systems (Server-side): Here the evolution based on higher order

’reuse’ of ’engines’ allow system growth. Measures of system growth in

term of code are no longer meaningful as the code size grows super-linearly.

3. Web growth (Client-side): emerging developments such as wasm binaries

(WebAssembly) enables large scale evolution by coupling existing large soft-

ware base through cross-compilation.

4. The combination of all three: ReST architecture can incorporate all three

under a common access interface. Allowing for asynchronous modular

growth. The system is able to evolve asymmetrically with parts in differ-

ent stages of evolution.

6.2. Organic growth 144

6.2.1 Generative models

A multitude of product lines are feasible from the vast set of assets in the

Google Cloud Platform (GCP). We are able to model any composition of a

client-server or a distributed solution from higher order reuse of assets. We

can therefore view this organic growth in terms of a set of equivalence classes

([H]'1 = S1, [H]'2 = S2 . . . [H]'n = Sn) representing different product evolution

sub-spaces corresponding to different product families. These emerge from the

chain of graph expansions arising from ∆ events. A family will comprise all the

paths leading to the same solution albeit using different branches. The branches

will feature a collection of states or waypoints guiding the evolution. This guid-

ance is under a set of constraints affecting the shift operations.

Node attachment probability and Power-laws

(Object Orientated) Software designs are scale-free if the probability of relation-

ships among classes follows a scaling-law as stated by Valverde and Sole [158].

This can be extrapolated to any relationships of any software construct as long

as the nodes have the same properties as classes (from a graph network point

of view). For Scale-Free networks it should follow the Barabasi-Albert Model

[94, 159]. The attachment of couplers is not random but features preferential or

assortative attachment to nodes based on their properties. Another condition is

that the number of potential attachments (links or relationships) is unlimited (or

not limited by resources). The concept of Node fitness can also be used to gener-

ate Scale-Free networks [160]. The Small-world effect (short inter-node distance

on average) guarantees the chains of solution expansions will not be long on av-

erage. Hubs and the clustering of nodes can also be expected. This concepts have

been applied to forecast future evolution in existing Java software projects [161].

6.2.2 Predictors: Key search properties

The parameters of our algorithm can be set forth as a traversal operation with a

stop condition. The base algorithm is as follows:

• Randomly choose a set of isonodes for expansion if there is no useful config-

uration for them.

• Select solution view based on existing properties

6.3. The Cloud Family: Branch evolution 145

• Generate a solution ([H]'1 = S using couplers based on pre-defined criteria

• iterate for a fixed number of expansions or use the metadata (as predictors)

to trigger a stop condition.

6.2.3 Scanning using predictors

The algorithm to explores an area determined by the ∆ and 'n depth. At each

step backtrack is possible, until we find a branch that is satisfactory. This is anal-

ogous to a maze search process but using certain solution sub-spaces as the open

paths. The difference with the traversal search is that ∆’s are allowed. The rea-

son is to expand the graph to look deeper into the new emerging node metadata

relationships. The deeper the search into the resulting combined structured data,

the greater space gets covered. The challenge is how to automate the encum-

bering relationship evaluations as the sub-space grows away from a seed point.

To search for desirable solutions also can be interpreted as to avoid undesired

ones. The practitioner eventually selects from desired options discovered if one

is not automatically selected. This operation has a clear role to play regarding

the automation potential of the model. Finally, the performance impact of this

operation, for large enough ([H]'i , should be studied empirically.

6.3 The Cloud Family: Branch evolution

The history of the web/cloud as a sample model for multilevel (view-abstraction

transformations) evolution growth. Modules division and further specialisation is

happening at the functional level on both sides of communication. We assume the

events discussed as common historical knowledge. The Web is one implementa-

tion of the ReST architecture. The statement can be reinterpreted into a new one:

The web is a software view of the ReST architectural style. If the aspects modelled

as relationships are seen as This is the contextual framework of the evolution.

6.3.1 Starting stage: The birth of The Web

The history of Cloud System from early web until today had this starting stage

context:

1. The Seed: HTTP served static full text with hyperlinks (HTML) to be ren-

dered by the browser

6.3. The Cloud Family: Branch evolution 146

2. The loose coupling and high cohesion forced by the protocol allowed client

and server to evolve separately.

3. Presentation and Controller (presentation events) remained client side as

the browser was event based.

4. Medium (the protocols) forced the separation of concerns.

The common critical parts to evolve at both sides are efficiency of the commu-

nication, hardware access and later performance. From there on their operational

context remains as the separation of concerns.

6.3.2 The Client family

A series of events we can call client events defined what the web browser is

today. The client seems to specialise in those areas where it makes more sense

given its context. Unsurprisingly, the client act as the presentation layer as we

are the ones using it. This made it event-aware. A series of evolution steps

happened each adding a feature or solving a problem. This in no way perturbed

the server development. Both happen in tandem thanks to the low coupling and

high cohesive nature of The Web as a software solution. This also means as part

of the ReST architectural style for which The Web is an implementation. The

[solution] ' here was the existing arrangement and the coupler contributed with

the necessary software changes. The choice of the couplers(shiftings) was guided

by the presentation nature of the client. Features added to the client by W3C

are evidence of the targeted changes: structure (HTML), presentation (CSS) and

semantics (tags with meaning, like <article>).

Here is an incomplete list of client-side events just for illustrative purposes:

ClientFamilyChain =



∆ Pictures and other media (plugins) added to the client

∆ DHTML: the client gains scripting

∆ The web goes asynchronous (AJAX).

∆ HTML:Code On demand using URLs

∆ Declarative data manipulation.

∆ Hardware access. OpenGL, OpenCL, codecs.

∆ HTML: Structure, presentation and sematics separated.

∆ WebAssembly: The web becomes compilation target

The evolution is also depicted in Figure 6.2 as affecting the whole previous state.

6.3. The Cloud Family: Branch evolution 147

Figure 6.2: Evolution of the client affects the system as a whole.

6.3.3 The Server family

Aside from the mentioned critical parts the evolution of the server gets marked

by the conversion of servers of any time to VM instances. They later specialise

into containers with less overhead by abstracting OS functions. There features

innovations that obviously matter only in a server context. It should be noted

that in a peer-to-peer (p2p) network the client and the server would be the same.

Its getting increasingly convenient to access services by VM or container instance.

For instance, we may want to run specialist software without configuring it or

having total control of it. We can run our own server and use The Web as the

interface, may be any other. This is what the Jupyter server does by exposing

currently implemented language kernels (loaded as plugins). The event leading to

this The [solution] ' ensure an sub-graph isomorphic solution available will links

both chains to create a new family part of The Cloud family and by transitivity to

ReST. We acknowledge a Cloud solution must include an appropriate client side

to be of any use. It develops server-side but uses client evolved capabilities.

6.3. The Cloud Family: Branch evolution 148

Here is an incomplete list of server-side events just for illustrative purposes:

ServerFamilyChain =



∆ Scripting; browser code(HTML) generation

∆ Database sharding.

∆ Load balancing: More hardware servers.

∆ Server goes asynchronous.

∆ Virtual instances replace servers.

∆ VM instances turn into containers(OS services abstracted)

6.3.4 The Cloud family evolution

The ReST style architecture and other factors contribute to make these families

isomorphic. Also, client are expected to work with the server by standard or

common feature agreement compliance. Such pairings can evolve in various ways

but any current Cloud will be the relation of both. This new family is created

using respective last compatible families. The collection of engineering criteria

will define the governing isomorphism. Based on previous description we can

elaborate:

[ServerFamilyChain]'i = [Hs]'1 ∆ [Hs]'2 ∆ . . . ∆ [Hs]'i

[ClientFamilyChain]'j = [Hc]'2 ∆ [Hc]'2 ∆ . . . ∆ [Hc]'j

[CloudFamily]'k = [ServerFamily]'i ∆ [ClientFamily]'j

Therefore, both chains can evolve together as a longer chain. By the means

of this mathematical description it can be deduced the evolution happen in asyn-

chronously as Hs and Hc solution combinations. ∆ is an anti-symmetrical operator

and seals the time-order event sequence producing the new [H]'. The order mat-

ters. Resulting state will be bound by first choice after ∆

6.3.5 The Cloud family: Analysis

Client-server compatibility is agreed upon by certain standards but poorly auto-

mated. Servers have to rely on client user-agent strings and the client does really

known a priori the server capabilities. Not all services are ReST based or truly

follow the design philosophy.

There are two major grand events happening in both sides of the network:

1. First a split into subunits: Further functional modularisation towards lower

coupling and

6.4. Conclusions 149

2. (Those) Units Specialisation: Specialise to offer straight higher coherence

solutions (thinner modules).

3. These happened within their respective operational context.

This looks like a divide and conquer heuristic happening at The Cloud sys-

tem level. We also expect data portability from closer family solutions to be less

convoluted

6.4 Conclusions

6.4.1 Evolution process of growth

Today even source code can be at a high level of abstraction. Components can be

also be large complex software frameworks. We combine opportunistic reusing

of transversal components with the planned strategic reuse of SPL assets and

other higher-order structures. This latter can be extended to Cloud components.

If the hypothesis defended by Musco et al. is true and there is an underlying

software evolution process common to all software [162]. That hypothesis is

backed by empirical data statistic analysis.

This process can use open source sub-components super-linear growth to

accelerate, in aggregate, higher-order asset evolution. Independent modules

can evolve separately and asynchronously thus increasing, or not slowing, the

evolution constant speed. The evolution events generate a time-order reflected as

a chain of expansions. These go ever deeper into the solution sub-space and this

gets increasingly closer to a solution.

The information is carried forward by the evolution process, shaped by the

selections (shifts, direction) and subsequent ∆. It is really important to point out

the sheer amount degrees of freedom required to form long evolution chain.

6.4.2 Families

As generative model this process can create chains of solutions, with expansion

stages, of various lengths. Any different chains of different steps are guaranteed

to be compatible if they reach the same last state. If so, they belong to the same

solution sub-space, that is the same equivalence class. The transitive property of

6.4. Conclusions 150

the equivalence relation ' of that state play the key role in this context. The chain

will lead to different properties to be evaluated giving a characteristic property

fingerprint to each family. Subspace can be scanned use predictors to evaluate

and help to select which chains, within a range or depth, lead to the desired

solution state (or stage).

6.4.3 The Cloud family

The Cloud family can be constructed as a series of relationships of its high-order

assets. Its solutions are fruit of the independent evolution of the server-side

and client-side parts helped by this divide. This divide is the foundation of The

Web, which itself is an instance of a ReST architecture. Anything that improves

the communication will make this divide more meaningful. Common interfaces

proposed by ReST help in this regard. This arrangement enhances the high

cohesiveness and low coupling of the modules with respect to the other side. The

evolution events lead to this arrangement and the final state is The Cloud. This

state is part of a hierarchy of families. Client-Server, The Web, The Cloud and

then ReST are stages of evolution or their respective solution sub-spaces.

Therefore, we manage to find instances composed of interrelated higher-order

assets satisfying a particular set of engineering needs. We can automate aspects

of this search and empower the practitioners without hindering their creativity.

Chapter 7

Conclusions

Contents

7.1 Introduction . 152

7.2 Formal modelling considerations . 152

7.2.1 Queries using graph based metadata 152

7.2.2 Automating solution (family) search 153

7.2.3 Observations and findings . 154

7.3 A Finite State Machine generator . 154

7.3.1 Solution family instance detection 154

7.3.2 Operations as data efficient messaging events 154

7.4 A (Scale-Free) network of assets assembler 155

7.4.1 Unlimited relationships . 156

7.4.2 Existence of Simpler Solution families 156

7.4.3 The need for complex families 156

7.5 Model Implications and Re-Interpretations 157

7.5.1 The coupler as a solution subspace 157

7.5.2 Solution sub-space iterator . 158

7.5.3 Emerging fractal spaces . 159

7.5.4 []' as a Closure . 159

7.6 Critical appraisal . 159

7.6.1 Terminology and concepts . 159

7.6.2 Models can be dangerous . 160

7.6.3 The need for empirical evidence 160

7.6.4 Prototype implementation . 160

7.6.5 Automation of craftsmanship 161

7.7 Recommendations for Future Research 162

7.7.1 Visual Modelling . 162

7.7.2 The research of other implementations 163

7.1. Introduction 152

7.7.3 Automatic stop using conditional traversal 163

7.7.4 Complex Data Configurations 163

7.1 Introduction

Model Overview

All graphs are relational information glued into a hypergraph as the incidence

structure of choice. This is achieved by virtue of establishing new relation-

ships between vertices and their functional equivalents through equivalence

classes. These, partition the whole solution space into subspaces ([]') made

of solution views. The underlying isomorphism ' enables further reach by

extending these subspaces as desired. We also grow the subspace into other

subspace with ∆ where previous isomorphism does not apply. Let us re-

mark that the formalisation model, in fact can be applied to any relationship

based problem based on pairs of elements. Therefore, it is of general applicability.

The result is a formal model comprising:

1. A functional core (Shifts and ∆ over []') (CRUD operations implied).

2. Operands are complex chains of relationships modelled with equivalence

classes governed by a compatibility assuring isomorphism operator.

3. The result is a chain of hypergraph states through evolution time.

7.2 Formal modelling considerations

7.2.1 Queries using graph based metadata

The solution path can be thin or thick depending how many common branches

lead to the same solution. They could be filtered out later with criteria not yet

considered for some other improved choice. This can be done, for instance, by

breaking the isomorphism using stored node metadata. This allow us to destroy

undesired relations not matching our constraints.

7.2. Formal modelling considerations 153

Hence, there is an implicit view a graph consisting of assets with attributes

(related structured data). These attributes can be turn on and off by adding entries

to the relevant configuration file or at runtime on the nodes graph metadata.

Data configurations are a convenient way to store node metadata in design-time.

The advantage of storing data into a graph structure comes from the wealth of

existing techniques for graph analysis. We filter a graph collection by ignoring

relationships based on node metadata to discover graphs. This is also a graph

search function if the filtering is extreme.

7.2.2 Automating solution (family) search

Software evolution is "projection into the uncertain future" since the environment

will change and we just have some available information. This is an exploration

and search, multidimensional in nature. This encompasses the evolution process

and the final state of such evolution. Using reusable elements we construct

complex operands. Then, using a small set of operations, we process them by

using the configuration information available. The evolve operator ∆ acts as a

growth step into a possible future growth path.

It is easier to take decisions as early as possible. With each evolution step

some minute change to the model occurs. This brings a little insight from an

unevaluated uncertain future. We cannot evaluate all the options at any later

stage but shifting (steering) the evolution as we operate is possible. Therefore,

decisions and backtracking can happen early, enabling to search for satisfactory

branching.

In other words, we can ping or probe a possible close future state by locally

traverse to it and then evaluate if it is desirable. The distance to a desired state

establishes the initial degree of probing difficulty. A collection of probe actions

can perform a scanning of a certain subspace size. The further we are from a

point the harder it will be to search and evaluate all the options. This provides a

way to see into future evolution events (∆) outcome with just the information at

hand. It should be noted that taking the wrong steps could make back-tracking

seriously prohibitive (albeit inevitable sometimes). We can just cover so much of

the solution sub-space. Data to be assessed grow exponentially with ∆. That is

why so important to make good chain-wise early assessments.

7.3. A Finite State Machine generator 154

7.2.3 Observations and findings

We can enumerate some interesting findings:

1. From a behavioural point of view is a Finite State Machine generator. This

has wide ranging implications discussed below.

2. From the way relationships are linked together forming a network (growth)

it can be a Scale-Free network generator. There is no empirical proof, just

compliance with some literature pre-conditions.

7.3 A Finite State Machine generator

The way model operates leading leads to consider it within an Automata Theory

context. A Finite State Machine or a Deterministic Finite Automaton are related

to graphs [42]. Each evolution path is a recipe to assemble a correct solution. It

features a succession of states encoded as []' with an end state representing the

desired solution. A generator of valid growth tracks.

7.3.1 Solution family instance detection

But also a validator of tracks. This could validate tracks (solutions paths) in

the same fashion regular expressions detect text patterns. Both ways model a

FSM. Regular expression are just one FSM implementation. Instead of regular

expressions we can use the []' trail to recognise traces of this growth tracks in

large (asset) relationships graphs. We could use this to search and replace long

chains with short chains, thus simplifying the software system. This is performed

considering one instance. In addition, since we model families, we can study all

instances belonging to the same family. Guaranteed to be equivalent by the ∆'
chaining.

7.3.2 Operations as data efficient messaging events

Furthermore, this state machine is an event-driven system, an event-driven state

machine. It can be implemented as an event driven FSM. The operators are the

events and the state is kept by []'. Coincidentally an event driven FSM models

a communication protocol.

7.4. A (Scale-Free) network of assets assembler 155

The model as modelling a protocol explains why it is so data efficient when

considering a client-server implementation of the model. Since the model is

also a growth model, this yields a client-server relational growth model. In a

peer to peer network only the asset configuration data would be store and not

transferred by the nodes. Just the key or ID of the solution view or coupler in

question would be needed to be sent.

The seed solution is a representative of its solution views. With an added

coupler, we obtain the future views to be evaluated. If we perform this step

several times we get a sequence of growth. This growth is kept in the last system

state. Let us re-frame again the problem on a client-server basis as a model

for low coupling, communication architecture. Let us put the model on the server.

Assuming no ad-hoc configuration will be needed later, all asset data could

be on the server. We only need the graphs on the client side as the minimal

presentation. To change the state (growth) we need to transmit one coupler

or, since we have all information on the server, just any identifier (ID) will do.

We can just attach the coupler (may also be visually) and keep the client prime

function: presentation (interfacing).

Behaviour explained by its intrinsic state machine (from a model-wide point

of view). We only need to transmit "the event" and get back some results from the

"evolved state". We transmit back from the server just the relevant information

from the evolved state to make any view from the client meaningful and useful.

This arrangement is optimal from the point of view of communication channel

efficiency . The model shares the low coupling and also the communication effi-

ciency properties of the client-server model because it models a communication

protocol.

7.4 A (Scale-Free) network of assets assembler

Some aspects related to how relationships grow the network using the model are

precondition for a scale-free network behaviour generation but not proof. Like

in ReST, the system is featured by a set of operations with an uniform and easy

access to resources. In ReST this is achieved through the use of URIs. This gives

7.4. A (Scale-Free) network of assets assembler 156

it easy access to resources on the network, just with a few links. Furthermore, the

number of how many of such links (relationships) can be created is not limited.

7.4.1 Unlimited relationships

Every step in the evolution acts a modulator on the degrees of freedom available

to perform the next evolution step. The coupler graph chosen to traverse unlocks

new possibilities for expansion. A principle of ReST architecture is "Hypermedia

as the engine of application state" or HATEOAS. A strong parallel can be found.

In our model, the state is the last expanded graph and isonodes are acting as

hyperlinks (relations) to new equivalence classes (families). By simply adding

nodes(and these relationships) to an equivalence class we are establishing the

connection (link), and thus, also enabling new exploration pathways. Also, these

new nodes set the stage for new evolution paths to take place executed by the

evolve ∆ operation. It is the shifting or branching, by the practitioner (explicit) or

automated (implicit), which will steer the state and the growth to whatever new

path.

The unrestrained power of relating or linking is precondition of a scale-free

network as well as preferential attachment based on node properties [94]. These

preconditions are met. The model insofar complies with the Barabasi model

preconditions should grow a scale-free network. A Node fitness criterion [160] is

guaranteed, by isomorphism in our case, so the strength of the claim is reaffirmed.

7.4.2 Existence of Simpler Solution families

This scale-free network guarantees high connectedness, the small world effect.

The connectedness allows for solutions families to have a shorter (smaller) dis-

coverable instances. This feature enhances a replacement mechanism using the

family instance detection previously discussed. This mechanism allows for sim-

pler software with no known property loss.

7.4.3 The need for complex families

Reaching a solution may require long chains of artefact evolutions. The reason

for this is to achieve the degree of property aggregation needed for a solution to

be acceptable. Furthermore, complex solution richness, gained by its node count,

7.5. Model Implications and Re-Interpretations 157

may exhibit special future freedom to expand. The main point to take is that not

always the simplest solution will be the best choice. A deliberately long solution

may be more evolvable for a variety of reasons. The Cloud evolution is a good

example of this phenomenon.

7.5 Model Implications and Re-Interpretations

7.5.1 The coupler as a solution subspace

We could model both the solution view and the coupler creating two sets with two

governing '. It became clear after implementing the prototype that, recycling the

concept of artefact to include the coupler, made sense from both a development

and theoretical perspective. A new scenario emerges if both solution view and

coupler view belong to their respective [view graph]'. We talked about the FSM

created by the model events affecting the solution subspace. The Gi (states) not

only is a hierarchy but also the crossing point if we generate another FSM from

the coupler view perspective, accepting only compatible solution views. Either

shift has to happen first, narrowing subsequent choices. The tree is created by the

composition (∆ ◦ ∆) of many binary functions as depicted in Figure 7.1. Instead

of adding a coupler graph to expand the existing original graph we consider

both graph to be parameters (solution subspaces instance or views). One sub-

space has to act as the coupler subspace (by searching and selecting an instance

or view). Hence, a new binary operator ∆ allows constructing binary trees of

artefact assemblages (Figure 7.1. With this perspective we are just acknowledging

the solution space as explicitly searchable or not fixed. In terms of implementa-

tion, for instance, this could turn a subspace into a internal or external variable

(regarding the modular arrangement).

∆(∆(A, C), ∆(B, D)) = ∆(X, Y) = Z

The way it is currently implemented, the solution evolves (itself) with a cou-

pler. The solution and the coupler are artefacts. Choosing the coupler first would

limit the solutions available, but that, could be of interest in some engineering

scenarios. If the solution space is equivalent to a web browser with a set proper-

ties, a compatible extension performing the desired task would be the coupler. If

we swap the roles of solution and coupler many solutions can be added as cou-

plers. This could be useful for the need to find a custom and compatible complex

7.5. Model Implications and Re-Interpretations 158

Figure 7.1: 1 family. 2 levels. 4 ordered sequences of Equivalent solutions

operations. 4 paths.

component using solution as couplers. Using the previous situation, the exten-

sion is chosen (fixed) and any compatible browser or other piece of compatible

software is the variable option. The implementation forces a choice order, so-

lution view.evolve(coupler view), where a method would use evolve(solution view,

coupler view). Fortunately, upgrading the original implementation to illustrate

this is straightforward. In this perspective the new [view graph]' albeit an artefact

is governed by a different ', that is, a new different subspace. This will model

all the potential solution space as a binary tree. That is, the model can be viewed

as modelling solution sub-spaces (families) as a binary tree of hypergraphs as

artefacts (hierarchies).

7.5.2 Solution sub-space iterator

The operations can be implemented as functors by adding an evaluation func-

tion as parameter. The artefact as hiding an abstract container of compatible by

isomorphism equivalence classes. The model as an iterator implementation of

7.6. Critical appraisal 159

solutions sub spaces advance is performance by iterating over known solution

views.

7.5.3 Emerging fractal spaces

Since the operations, including Delta, are also an iterative function they are the

basis for fractal [163] space modelling. The model operations work as a plane-

filling function (a space filling curve), albeit for solution spaces [164]. Using the

binary tree modelling view its easier to deduce the model to be a type L-system

for solution sub-spaces [165]. Every ∆ is a refinement toward a solution.

7.5.4 []' as a Closure

Here closure is used from the Set Theory perspective. []' identifies members

of the same family. The outcome is part of the same set so its closed for both

shifts. Since this is implemented as a class Artefact where a concrete solution

view growth state is the artefact instance. This makes the Artefact Set close with

respect to ∆ evolve method as it produces a new artefact. This is only true from

the hypergraph point of view as the same hypergraph encoding remains. The set

definition []' will change to incorporate a new isomorphism, making ∆ not close

from that perspective.

7.6 Critical appraisal

7.6.1 Terminology and concepts

First and foremost, the terminology of abstract concepts is complicated to balance.

On one hand there is the need to be clear and understood. On the other hand

the abstraction potential should not be lost. There is also a clash with commonly

used words which make them hard to use. New terminology was not invented

nor created. This has the cost of making the reader get lost in abstract or general

concepts. There are some freedoms taken that should not prevent understanding.

For instance, "software solution, logical or any other view" gets shorten to solution

view or just "solution" since we are talking about compatible solution sets. The

term Artefact is also troublesome. It clashes with the common denomination of

general engineering documentation outputs, as well as with any software related

device or widget. We could term it configured solution sub-space but that is too

7.6. Critical appraisal 160

long albeit accurate. Artefact, subspace, solution, view or [view graph]' are used

depending on the emphasis required by subtle differences regarding the topic at

hand.

7.6.2 Models can be dangerous

Models are simplifications of reality. Sometimes oversimplifications. They are not

exempt of being contaminated by all the cognitive biases plaguing any research.

The model definition is complex but it is simple enough as it operates. It is based

on formal mathematical definition so there is an element of safety in that sense.

It may not model all unforeseen engineering aspects or it may not be the best

way of modelling software relationships for any particular purpose. Therefore,

it is best to evaluate this and other models on a cases by case applicability basis

supported by empirical results. There exists an epistemic unsuitability under the

heavy uncertainty created by change events caused by the passage of time. This

is of lesser concern as it is covered because the episteme the model is based on is

Set Theory and Graphs, i.e., well known Mathematics. The risk should fall on the

applicability to future software engineering concerns.

7.6.3 The need for empirical evidence

The prototype supports the theory but it is quite incomplete as a practical demon-

stration of some aspects. There is a need for empirical proof. The formal model

only validates the relational model but not the consequences of operating it. This

is a good line of new research. The space partitioning and traversal in any form

is also formally validated. What is also not known is its uses of a particular

engineering need beyond asset relationships.

7.6.4 Prototype implementation

Albeit for didactic purposes the choices for data formats are not ideal for every

purpose. For a Python only implementation YAML would have been a better

choice for straightforward operation. For graph incidence tables as text (CSV)

could have been used. However, it is useful to show how to convert to useful

formats like JSON. That way also need to transmit data as JSON was anticipated.

XML implementation could be implemented in a more general way as not all sce-

narios are covered, underutilising its potential. Some aspects could be element

7.6. Critical appraisal 161

attributes and some other may need levels of nesting. These text files are appro-

priate to configure the system but a database will be best to persist the state of

larger networks. Since the model is relational, Redis (a key-value database), could

be a good choice. A graph database is also a sound choice for the same reason.

Software engineering concerns

The prototype has been tested but not exhaustively. A battery of unit tests is

need to assure all known conditions are covered. Since the development was so

experimental, such level of testing were obviated. Here it became evident how

hard is to keep concepts and prototype in synch. Refactoring solves most of

the problems in this case but not every one. Furthermore, the propagation of

changes when some basic concept is reassessed is noticeable. This may point to

a design flaw(s) or the change is so fundamental is causes an overhaul of the

implementation. Given these, solid testing is left for a future production stage.

However, these are interesting engineering concerns to take into account.

7.6.5 Automation of craftsmanship

The model allows exploring complex relationships of assets. The emphasis was

on architectural and higher level (or abstract) components modelling applica-

tions. The prototype is evidence we can automate the analysis of those intricate

relationships, even if applied to other designs elements like modules or classes.

The tool can be used and expanded as a companion aid to document devel-

opment. Links to Jupyter notebooks can be added to git as extra documentation.

The notebooks can also be used to document development stories. A visual way

of modelling can be added for extra ease of use.

The prototype shows how easy is to configure a system and these configura-

tions can be easily traced with no overhead as they are text files. Their changes

can be tracked with Git (or other VCS) as just another part of any engineering

project.

The microservice facility shows how fit it is for a web ReSTful implementation

and it also has great extension possibilities. This could be the foundation of an

independent case tool. With any deployment proper companion tools to create

7.7. Recommendations for Future Research 162

configurations, including internal wikis or a repository system to classify the

assets.

The model have been demonstrated to be feasible and viable using current

software. However, it could have been more complete with extra evaluation

functions or more detailed metadata. Any of these may require enough good

engineering data for any analysis to make sense.

Human friendly automation

The history of software development is littered with examples of shifts to higher

abstractions levels. Opportunistic reuse is an old strategy and several component

models were successful in the past. It needs to be enhanced by planned reuse

like in SPLs.

Parallel to this, computer languages are increasingly higher level and started

supporting multi-paradigm features. This feature acquisition is noticeable with

regard to software patterns. Software patterns are a way of reusing known

solutions to known problems. In some instances, they reveal a gap in the

language a missing feature. Now features of the languages are tuned to match

software patterns (like with iterators). This can be modelled as an asset or a

property o the asset.

This fits well with our initial goal of automation of craftsmanship. Moreover,

it empowers the practitioners to evaluate the options at any desired level without

limiting their creativity.

7.7 Recommendations for Future Research

7.7.1 Visual Modelling

There is a lack of support for visual modelling. It was more interesting to imple-

ment the model and obviate the need for a visual interfacing. Such interfacing

falls in other implementation domains. There are many ways of display graph in

Python but is nascent scene for interactive graphs, particularly on the web. The

7.7. Recommendations for Future Research 163

web is the de facto presentation target. There is D3.js using SVG as the drawing

system. An alternative, Bokeh uses the HTML5 canvas element and is supposed

to be faster for larger graphs. Both use JavaScript. To study specific JavaScript im-

plementations was explored but ultimately considered to be out of scope. There

are other systems integrating D3 into Python (to also use it in Jupyter). Since

most are quite incomplete (as of 2016) except for D3 and they are under heavy

development right now. These and others may be a good choice to upgrade any

prototype future version.

7.7.2 The research of other implementations

It would be of great engineering interest to seen original implementation of the

models. Perhaps using other language features too. As said, the engineering

needs may vary and no all the implementation approaches are the same. Even

written in Python there may exits a better implementation. This can be studied

in depth.

7.7.3 Automatic stop using conditional traversal

Automatic evaluation of metadata for automated exploring has not been imple-

mented. This has the utility to advance on the hierarchy branches until a node

configuration metadata condition is met. Only large data configurations would

justify this but it is still a really useful feature.

7.7.4 Complex Data Configurations

Advanced online web harvesting

Harvesting/scrapping online or offline resource has great potential as demon-

strated. This could serve to create or enhance configuration files or other novel

ways to alter metadata, perhaps while on execution. Other relations can be cre-

ated automatically to try to push the model to its limit. Using the technique

shown, we can build an isomorphism database that can be enhanced with the

aggregate knowledge of practitioners. There is more work on the data gathering

aspect. This is good research line. This includes mining real SPL repositories. All

this could be integrated as a whole CASE tool with an enhanced ReST API access

to allow this new aspects.

7.7. Recommendations for Future Research 164

Intelligent Scanning

We use these branches to traverse the whole solution space as [seed artefact graph]'
expands and evolves multidimensionally. This is poised to be exponentially eas-

ier closer to the seed when the underlying hypergraph is smaller. Intelligent

operation based on machine learning or soft computing techniques could help to

analyse all the artefact information and branching up to a level. They can also

help to grow autonomously until conditions are met.

These are operations that go further in complexity and implement heuristics,

AI or any other soft-computing techniques. This complexity is to add get to a

level of interaction or configuration beyond what can be achieve by other complex

operation implementations. There are many possibilities in this domain. We

would briefly discuss a sample application for illustrative purposes.

Configuring schema parameters with Genetic algorithms

To deal with large solution spaces or combination of variable we can make use

of Genetic Algorithms (GAs).It is possible to devise operations beyond plain op-

erations on the graphs. In order to reduce the size of the solution space we may

want to apply some meta-operation with specific goals.

We could use genetic algorithms to discard solutions that not meet some cri-

teria and therefore highlight some pockets of valid solutions. The advantage of

genetic algorithms is that they excel at searching large solutions spaces finding

satisficing solutions that are exponentially better as an aggregate of the improve-

ment of averages after each iteration [166].

We could construct such operations with a clear defined function concise

enough to minimise redundancy of operation. This multidimensional search is

defined by the encoding of the genes. Binary encoding is the worst case scenario

(further from the description of the problem) and some higher abstracted level

encoding the better one (closer to the description of the problem). A genetic

algorithm is a process that discards a lot of unsuitable specimens in an implicitly

parallel fashion. It could be used to find pockets or regions of acceptable

solutions in the solution space. Best way to picture this is a multidimensional

slicer (or discarder, depending on the point of view). A family of operations can

be created with various levels of complexity.

7.7. Recommendations for Future Research 165

For instance, it can be expected that a cohesion maximiser or a modules reducer

(as a knapsack problem, which is NP-hard) operations could be developed. Jul-

strom [167] describes the Knapsack problem and suggests a greedy heuristic to

enhance the naive genetic algorithm approach. Such optimisations could be imple-

mented as an operator. A collection of n objects with to positive numerical values

as attributes need to fit a conceptual knapsack with weight capacity capped at

C. Being these two attributes size and weight, we need to maximise the size of

the objects while minimising their total weight up to the constraint C. Therefore,

being v and w the value vectors:

∀ v, g ∈ V, G

x1, x2, . . . , xn and w1, w2, . . . , wn ∈ vi modules reducer : v→ g

W = ∑n
i=1 xiwi ≤ C

We can interpret the values in any way suitable to the optimisation to be

performed. We may want to maximise some property while minimising others.

This adaptation could be an interesting line of research.

Bibliography

[1] S. R. Schach and A. Tomer, “A maintenance-oriented approach to software

construction,” Journal of Software Maintenance: Research and Practice, vol. 12,

no. 1, pp. 25–45, 2000. xi, 5, 36

[2] S. Schach and A. Tomer, “Development/maintenance/reuse: Software evo-

lution in product lines,” in Proceedings of the First Conference on Software

Product Lines : Experience and Research Directions: Experience and Research

Directions. Norwell, MA, USA: Kluwer Academic Publishers, 2000, pp.

437–450. xi, 5, 36

[3] A. Khan and S. Balbo, “A tale of two methodologies: Heavyweight

versus agile.” [Online]. Available: http://ausweb.scu.edu.au/aw04/

papers/edited/balbo/ [Accessed: 2014-02-11] xi, 20, 21

[4] “CodeCity.” [Online]. Available: http://www.inf.usi.ch/phd/wettel/

codecity.html [Accessed: 2013-06-07] xi, 24, 25

[5] “The moose book: Table of contents.” [Online].

Available: http://www.themoosebook.org/book/table-of-contents?_s=

OafoYNdOVLUBkxVl&_k=E6gvB8TO&_n&8 [Accessed: 2013-06-19] xi, 24,

26, 32

[6] “ERCIM news 88.” [Online]. Available: http://ercim-news.ercim.eu/en88

[Accessed: 2013-06-09] xi, xix, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 45,

91

[7] “Softwarenaut: The Book.” [Online]. Available: http://scg.unibe.ch/

softwarenaut/book [Accessed: 2013-07-01] xi, 25, 27

[8] “FRASR - FRamework for analyzing software repositories.” [Online].

Available: http://www.frasr.org/description/ [Accessed: 2013-07-01] xi,

28, 32

[9] “Starlink.” [Online]. Available: http://starlink.sourceforge.net/Starlink.

html [Accessed: 2013-07-01] xi, 29

http://ausweb.scu.edu.au/aw04/papers/edited/balbo/
http://ausweb.scu.edu.au/aw04/papers/edited/balbo/
http://www.inf.usi.ch/phd/wettel/codecity.html
http://www.inf.usi.ch/phd/wettel/codecity.html
http://www.themoosebook.org/book/table-of-contents?_s=OafoYNdOVLUBkxVl&_k=E6gvB8TO&_n&8
http://www.themoosebook.org/book/table-of-contents?_s=OafoYNdOVLUBkxVl&_k=E6gvB8TO&_n&8
http://ercim-news.ercim.eu/en88
http://scg.unibe.ch/softwarenaut/book
http://scg.unibe.ch/softwarenaut/book
http://www.frasr.org/description/
http://starlink.sourceforge.net/Starlink.html
http://starlink.sourceforge.net/Starlink.html

Bibliography 167

[10] S. Abrahão, J. Gonzalez-Huerta, E. Insfrán, and I. Ramos, “Software

evolution in model-driven product line engineering,” ERCIM News, vol.

2012, no. 88, 2012. [Online]. Available: http://ercim-news.ercim.eu/en88/

special/software-evolution-in-model-driven-product-line-engineering [Ac-

cessed: 2017-01-11] xi, 37, 38

[11] “graph tool.topology - assessing graph topology graph-tool 2.2.28

documentation.” [Online]. Available: http://graph-tool.skewed.de/static/

doc/topology.html [Accessed: 2014-01-27] xi, 41

[12] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the

ACM, vol. 23, no. 1, pp. 31–42, Jan. 1976. xi, 41

[13] “Mathematician claims breakthrough in complexity theory | Science |

AAAS.” [Online]. Available: http://www.sciencemag.org/news/2015/11/

mathematician-claims-breakthrough-complexity-theory [Accessed: 2017-

03-11] xi, 43

[14] J. G. Stell, “Relations on hypergraphs,” in Proceedings of the 13th Interna-

tional Conference on Relational and Algebraic Methods in Computer Science, ser.

RAMiCS’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 326–341. xi, 50,

51

[15] G. Ausiello, P. G. Franciosa, and D. Frigioni, “Directed Hypergraphs: Prob-

lems, Algorithmic Results, and a Novel Decremental Approach,” in Theo-

retical Computer Science, ser. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, Oct. 2001, pp. 312–328. xi, 51

[16] B. Harvey, “Computer Science Logo Style vol 3 ch 1: Automata Theory.”

[Online]. Available: https://people.eecs.berkeley.edu/~bh/v3ch1/fsm.

html [Accessed: 2016-09-11] xii, 33, 86

[17] “Quickstart: Launch the Deployer | Google Cloud Datalab | Google

Cloud Platform.” [Online]. Available: https://cloud.google.com/datalab/

docs/deployer/quickstart [Accessed: 2016-09-27] xii, xiv, xviii, 96, 100, 221

[18] “Force-directed graph.” [Online]. Available: http://bl.ocks.org/mbostock/

4062045 [Accessed: 2014-02-13] xii, 120

[19] M. Bostock, “Mobile Patent Suits.” [Online]. Available: https://gist.github.

com/mbostock/1153292 [Accessed: 2016-09-19] xii, 118, 120, 208

http://ercim-news.ercim.eu/en88/special/software-evolution-in-model-driven-product-line-engineering
http://ercim-news.ercim.eu/en88/special/software-evolution-in-model-driven-product-line-engineering
http://graph-tool.skewed.de/static/doc/topology.html
http://graph-tool.skewed.de/static/doc/topology.html
http://www.sciencemag.org/news/2015/11/mathematician-claims-breakthrough-complexity-theory
http://www.sciencemag.org/news/2015/11/mathematician-claims-breakthrough-complexity-theory
https://people.eecs.berkeley.edu/~bh/v3ch1/fsm.html
https://people.eecs.berkeley.edu/~bh/v3ch1/fsm.html
https://cloud.google.com/datalab/docs/deployer/quickstart
https://cloud.google.com/datalab/docs/deployer/quickstart
http://bl.ocks.org/mbostock/4062045
http://bl.ocks.org/mbostock/4062045
https://gist.github.com/mbostock/1153292
https://gist.github.com/mbostock/1153292

Bibliography 168

[20] “File:Logistic cdf.svg - Wikipedia.” [Online]. Available: https://en.

wikipedia.org/wiki/File:Logistic_cdf.svg [Accessed: 2017-03-10] xiii, 143

[21] “Microsoft .net framework.” [Online]. Available: https://www.microsoft.

com/net/ [Accessed: 2017-07-20] xvii

[22] A. v. Hoorn, Model–Driven Online Capacity Management for Component-Based

Software Systems. Norderstedt: Books On Demand, October 2014, pp. 305–

310. xvii, xviii, xix, xx, xxi, 30, 33, 34, 68, 73

[23] S. Schulze, M. Schulze, U. Ryssel, and C. Seidl, “Aligning coevolving ar-

tifacts between software product lines and products,” in Proceedings of the

Tenth International Workshop on Variability Modelling of Software-intensive Sys-

tems, ser. VaMoS ’16. New York, NY, USA: ACM, 2016, pp. 9–16. xvii, xviii,

35, 37

[24] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line Engineering:

Foundations, Principles and Techniques, 2005th ed. Berlin u.a.: Springer, Sep

2005, p. 21. xvii, xviii, xix, 33, 37

[25] “Getting Started - Ajax | MDN.” [Online]. Available: https://developer.

mozilla.org/en-US/docs/AJAX/Getting_Started [Accessed: 2017-01-06]

xvii

[26] “Anaconda package list | Continuum Analytics: Documentation.”

[Online]. Available: https://docs.continuum.io/anaconda/pkg-docs [Ac-

cessed: 2016-08-24] xvii, 92

[27] “Webassembly concepts.” [Online]. Available: https://developer.mozilla.

org/en-US/docs/WebAssembly/Concepts [Accessed: 2017-03-06] xvii, xx,

xxi, 64, 65

[28] K. C. Louden and Lambert, Programming Languages: Principles and Practices.

Cengage Learning, Jan. 2011, p. 216. xvii

[29] “Microsoft azure.” [Online]. Available: https://azure.microsoft.com/

en-us/ [Accessed: 2017-07-19] xvii, 96

[30] “bokeh.” [Online]. Available: http://bokeh.pydata.org/en/latest/ [Ac-

cessed: 2017-07-19] xvii

https://en.wikipedia.org/wiki/File:Logistic_cdf.svg
https://en.wikipedia.org/wiki/File:Logistic_cdf.svg
https://www.microsoft.com/net/
https://www.microsoft.com/net/
https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started
https://developer.mozilla.org/en-US/docs/AJAX/Getting_Started
https://docs.continuum.io/anaconda/pkg-docs
https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts
https://developer.mozilla.org/en-US/docs/WebAssembly/Concepts
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
http://bokeh.pydata.org/en/latest/

Bibliography 169

[31] “Beatifulsoup.” [Online]. Available: https://www.crummy.com/software/

BeautifulSoup/bs4/doc/ [Accessed: 2017-07-19] xvii

[32] “C# guide.” [Online]. Available: https://docs.microsoft.com/en-us/

dotnet/csharp/index [Accessed: 2017-07-19] xvii, 92

[33] “Using a Content Management System (CMS).” [On-

line]. Available: https://www.ucl.ac.uk/building-great-websites/

managing-your-website/using-a-cms [Accessed: 2017-03-11] xvii

[34] J. Martin, Managing the Data Base Environment. Pearson Education, Limited,

1983, p. 381. xvii, 73, 75

[35] “All Standards and Drafts - W3C.” [Online]. Available: https:

//www.w3.org/TR/ [Accessed: 2017-01-06] xvii, xviii, xx, xxi, 30, 32, 33,

34, 36, 41

[36] “curl command line tool and library.” [Online]. Available: https:

//curl.haxx.se/ [Accessed: 2017-07-19] xvii, 136

[37] “cygwin.” [Online]. Available: https://www.cygwin.com/ [Accessed:

2017-07-19] xviii

[38] “D3.js - data-driven documents.” [Online]. Available: http://d3js.org/

[Accessed: 2014-02-13] xviii, 118

[39] “Linux debian.” [Online]. Available: https://debian.org [Accessed:

2017-07-18] xviii, 68

[40] “Emscripten.” [Online]. Available: https://developer.mozilla.org/en-US/

docs/Mozilla/Projects/Emscripten [Accessed: 2017-07-18] xviii, 64

[41] “Flask.” [Online]. Available: http://flask.pocoo.org/ [Accessed: 2017-07-

19] xviii, 97, 124

[42] B. Khoussainov and A. Nerode, Automata Theory and its Applications.

Springer Science & Business Media, Jun. 2001, pp. 1–18,19–23,44–103. xviii,

154

[43] “Cloud Launcher.” [Online]. Available: https://console.cloud.google.com/

launcher [Accessed: 2016-08-23] xviii

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://docs.microsoft.com/en-us/dotnet/csharp/index
https://docs.microsoft.com/en-us/dotnet/csharp/index
https://www.ucl.ac.uk/building-great-websites/managing-your-website/using-a-cms
https://www.ucl.ac.uk/building-great-websites/managing-your-website/using-a-cms
https://www.w3.org/TR/
https://www.w3.org/TR/
https://curl.haxx.se/
https://curl.haxx.se/
https://www.cygwin.com/
http://d3js.org/
https://debian.org
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Emscripten
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Emscripten
http://flask.pocoo.org/
https://console.cloud.google.com/launcher
https://console.cloud.google.com/launcher

Bibliography 170

[44] “Git - About Version Control.” [Online]. Available: https://git-scm.com/

book/en/v2/Getting-Started-About-Version-Control [Accessed: 2017-03-

08] xviii, xx, xxi, 20, 24, 141

[45] “The GraphML File Format.” [Online]. Available: http://graphml.

graphdrawing.org/ [Accessed: 2017-01-06] xviii

[46] “Licenses by Name | Open Source Initiative.” [Online]. Available:

https://opensource.org/licenses/alphabetical [Accessed: 2017-03-07] xviii

[47] M. Pilgrim, Greasemonkey Hacks: Tips & Tools for Remixing the Web with Fire-

fox. "O’Reilly Media, Inc.", 2006. xviii, 60, 61

[48] R. T. Fielding, “REST: architectural styles and the design of network-based

software architectures,” Doctoral dissertation, University of California,

Irvine, 2000. [Online]. Available: http://www.ics.uci.edu/~fielding/pubs/

dissertation/top.htm [Accessed: 2017-03-14] xviii, xx, 73, 75, 128

[49] F. Pérez and B. E. Granger, “Ipython: A system for interactive scientific

computing,” Computing in Science & Engineering, vol. 9, no. 3, pp. 21–29,

2007. xix, 93, 120

[50] “Jinja.” [Online]. Available: http://jinja.pocoo.org/ [Accessed: 2017-07-19]

xix, 97, 118, 139

[51] “jquery.” [Online]. Available: https://jquery.com/ [Accessed: 2017-07-19]

xix, 118

[52] “JSON.” [Online]. Available: http://www.json.org/ [Accessed: 2017-01-06]

xix

[53] “Powered By Jupyter: A Survey of the Project Ecosystem,”

Mar. 2016. [Online]. Available: http://blog.ibmjstart.net/2016/03/21/

powered-by-jupyter/ [Accessed: 2016-07-28] xix, 93, 97

[54] “IPython/Jupyter project receives 6 million US$ funding - Computational

Modelling Group.” [Online]. Available: http://cmg.soton.ac.uk/news/

2015/07/ipythonjupyter-project-receives-6-million-us/ [Accessed: 2016-

09-27] xix, 93, 97, 120

[55] “Linux.” [Online]. Available: https://linux.org [Accessed: 2017-07-18] xix,

68

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
https://opensource.org/licenses/alphabetical
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://jinja.pocoo.org/
https://jquery.com/
http://www.json.org/
http://blog.ibmjstart.net/2016/03/21/powered-by-jupyter/
http://blog.ibmjstart.net/2016/03/21/powered-by-jupyter/
http://cmg.soton.ac.uk/news/2015/07/ipythonjupyter-project-receives-6-million-us/
http://cmg.soton.ac.uk/news/2015/07/ipythonjupyter-project-receives-6-million-us/
https://linux.org

Bibliography 171

[56] “The LLVM Compiler Infrastructure Project.” [Online]. Available: http:

//llvm.org/ [Accessed: 2017-01-06] xix, 64

[57] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science

& Engineering, vol. 9, no. 3, pp. 90–95, 2007. xix, 97, 117

[58] A. R. da Silva, “Model-driven engineering: A survey supported by the uni-

fied conceptual model,” Computer Languages, Systems & Structures, vol. 43,

pp. 139–155, 2015. xix, 30, 33

[59] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot, “Modisco: A model driven

reverse engineering framework,” Information and Software Technology, vol. 56,

no. 8, pp. 1012–1032, 2014. xix, 30, 34

[60] “ASP.NET MVC Overview.” [Online]. Available: https://msdn.microsoft.

com/en-us/library/dd381412(v=vs.108).aspx [Accessed: 2017-01-06] xix,

41

[61] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,

dynamics, and function using NetworkX,” in Proceedings of the 7th Python

in Science Conference (SciPy2008), Pasadena, CA USA, Aug. 2008, pp. 11–15.

xix, 92, 97

[62] “What is POSIX?” [Online]. Available: https://kb.iu.edu/d/agjv [Ac-

cessed: 2017-01-06] xx, 34

[63] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific

tools for Python.” [Online]. Available: http://www.scipy.org/ [Accessed:

2016-06-22] xx, 92

[64] M. Moreira, Software Configuration Management Implementation Roadmap, ser.

Software Configuration Management Implementation Roadmap. Wiley,

2004, no. v. 1. xx, 32

[65] “SHA1 version 1.0.” [Online]. Available: https://www.w3.org/PICS/

DSig/SHA1_1_0.html [Accessed: 2017-01-11] xx

[66] “Mozilla technologies.” [Online]. Available: https://developer.mozilla.

org/en-US/docs/Mozilla/Tech [Accessed: 2016-09-03] xx, xxi, 60, 64, 65

http://llvm.org/
http://llvm.org/
https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://msdn.microsoft.com/en-us/library/dd381412(v=vs.108).aspx
https://kb.iu.edu/d/agjv
http://www.scipy.org/
https://www.w3.org/PICS/DSig/SHA1_1_0.html
https://www.w3.org/PICS/DSig/SHA1_1_0.html
https://developer.mozilla.org/en-US/docs/Mozilla/Tech
https://developer.mozilla.org/en-US/docs/Mozilla/Tech

Bibliography 172

[67] “Software product lines | case studies | catalog of software product lines.”

[Online]. Available: http://www.sei.cmu.edu/productlines/casestudies/

catalog/index.cfm [Accessed: 2014-02-03] xx, 4, 33, 37

[68] C. Hursch and J. Hursch, SQL: The Structured Query Language, ser. TAB

books. TAB Professional and Reference Books, 1988. xx, 73

[69] “Subversion.” [Online]. Available: https://subversion.apache.org/ [Ac-

cessed: 2017-07-18] xx, 24

[70] “Tampermonkey.” [Online]. Available: https://tampermonkey.net/ [Ac-

cessed: 2017-07-19] xx

[71] “V8. google’s open source javascript engine.” [Online]. Available:

https://developers.google.com/v8/ [Accessed: 2017-07-20] xx

[72] “VF2 algorithm. NetworkX 1.7 documentation.” [Online]. Avail-

able: http://networkx.lanl.gov/reference/algorithms.isomorphism.vf2.

html [Accessed: 2014-02-09] xx, 44, 127

[73] “Gnu wget.” [Online]. Available: https://www.gnu.org/software/wget/

[Accessed: 2017-07-19] xxi, 136

[74] “Cross-site scripting - Glossary | MDN.” [Online]. Available: https:

//developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting [Ac-

cessed: 2017-01-06] xxi

[75] “The Official YAML Web Site.” [Online]. Available: http://yaml.org/

[Accessed: 2017-01-06] xxi

[76] R. Frigg and S. Hartmann, “Models in Science,” in The Stanford Encyclopedia

of Philosophy, fall 2012 ed., E. N. Zalta, Ed., 2012. 2

[77] “Evolutionary Software Development,” 2008, NATO IST-026/RTG-008.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.215.6318 [Accessed: 2017-03-14] 2, 9, 19, 21, 22

[78] “Software factories: Assembling applications with patterns, models,

frameworks, and tools,” Apr. 2013. [Online]. Available: http://msdn.

microsoft.com/en-us/library/ms954811.aspx [Accessed: 2013-04-23] 3, 4,

5, 9, 14

http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
https://subversion.apache.org/
https://tampermonkey.net/
https://developers.google.com/v8/
http://networkx.lanl.gov/reference/algorithms.isomorphism.vf2.html
http://networkx.lanl.gov/reference/algorithms.isomorphism.vf2.html
https://www.gnu.org/software/wget/
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
http://yaml.org/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.6318
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.215.6318
http://msdn.microsoft.com/en-us/library/ms954811.aspx
http://msdn.microsoft.com/en-us/library/ms954811.aspx

Bibliography 173

[79] J. Greenfield and K. Short, “Software factories: assembling applications

with patterns, models, frameworks and tools,” in Companion of the 18th an-

nual ACM SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications, ser. OOPSLA ’03. New York, NY, USA: ACM, 2003,

pp. 16–27. 3, 4, 5, 9, 14, 39, 40

[80] J. White, J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, and

D. C. Schmidt, “Evolving feature model configurations in software prod-

uct lines,” Journal of Systems and Software, vol. 87, pp. 119–136, 2014. 3, 35

[81] I. Herraiz, D. Rodriguez, G. Robles, and J. M. Gonzalez-Barahona, “The

evolution of the laws of software evolution: A discussion based on a sys-

tematic literature review,” ACM Comput. Surv., vol. 46, no. 2, pp. 1–28, Dec.

2013. 3, 64

[82] M. Godfrey and Q. Tu, “Growth, evolution, and structural change in open

source software,” in Proceedings of the 4th International Workshop on Principles

of Software Evolution, ser. IWPSE ’01. New York, NY, USA: ACM, 2001, pp.

103–106. 3, 70, 71

[83] M. W. Godfrey and D. M. German, “On the evolution of lehman’s laws,” J.

Softw. Evol. Process, vol. 26, no. 7, pp. 613–619, Jul. 2014. 3, 70

[84] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based

analysis and prediction for software evolution,” in Proceedings of the 2012

International Conference on Software Engineering, ser. ICSE 2012. Piscataway,

NJ, USA: IEEE Press, 2012, pp. 419–429. 4, 39, 143

[85] M. Harn, V. Berzins, Luqi, and B. Shultes, “A formal model for software

evolution,” in Third International Conference on Computational Intelligence and

Multimedia Applications, 1999. ICCIMA ’99. Proceedings, 1999, pp. 143–147. 4,

36, 39, 47, 90, 91

[86] M. Harn, V. Berzins, Luqi, and A. Mori, “Software evolution process via a

relational hypergraph model,” in 1999 IEEE/IEEJ/JSAI International Confer-

ence on Intelligent Transportation Systems, 1999. Proceedings, 1999, pp. 599–604.

4, 36, 39, 47, 90, 91

[87] B. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud comput-

ing systems,” Aug. 2009, pp. 44–51. 4, 41, 42

Bibliography 174

[88] D. Simon and T. Eisenbarth, “Evolutionary Introduction of Software Prod-

uct Lines,” in Proceedings of the Second International Conference on Software

Product Lines, ser. SPLC 2. London, UK, UK: Springer-Verlag, 2002, pp.

272–282. 6

[89] G. D. Crnkovic, “Constructive Research and Info-computational Knowledge

Generation,” in Model-Based Reasoning in Science and Technology, ser. Studies

in Computational Intelligence, L. Magnani, W. Carnielli, and C. Pizzi, Eds.

Springer Berlin Heidelberg, 2010, no. 314, pp. 359–380, dOI: 10.1007/978-3-

642-15223-8 20. 7

[90] M. Lehman, “Programs, life cycles, and laws of software evolution,” Pro-

ceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076, Sep. 1980. 8, 19

[91] M. Lehman, J. Ramil, P. D. Wernick, D. Perry, and W. Turski, “Metrics and

laws of software evolution-the nineties view,” in Software Metrics Symposium,

1997. Proceedings., Fourth International, Nov. 1997, pp. 20–32. 8, 19, 142

[92] M. M. Lehman, “Laws of software evolution revisited,” in Proceedings of

the 5th European Workshop on Software Process Technology, ser. EWSPT ’96.

London, UK, UK: Springer-Verlag, 1996, pp. 108–124. 8, 19

[93] L. Northrop, “SEI’s software product line tenets,” IEEE Software, vol. 19,

no. 4, pp. 32–40, Jul. 2002. 9

[94] A.-L. Barabási, Network Science, 1st ed. Cambridge University Press, Aug.

2016, ch. 5. 13, 81, 144, 156

[95] L. Osterweil, “Software processes are software too,” in Proceedings of the 9th

International Conference on Software Engineering, ser. ICSE ’87. Los Alamitos,

CA, USA: IEEE Computer Society Press, 1987, pp. 2–13. 13

[96] “Anaconda package list \textbar Continuum Analytics: Documenta-

tion.” [Online]. Available: https://docs.continuum.io/anaconda/pkg-docs

[Accessed: 2016-08-24] 14

[97] N. Vizcaino and M. Manjunathaiah, “Software evolution: a graph based

model,” Lecture Notes on Software Engineering, vol. 3, no. 3, p. 164, 2015. 16

[98] R. S. Pressman and D. Ince, Software engineering: a practitioner’s approach.

London: McGraw-Hill, 2000. 18

https://docs.continuum.io/anaconda/pkg-docs

Bibliography 175

[99] B. Heller, E. Marschner, E. Rosenfeld, and J. Heer, “Visualizing collaboration

and influence in the open-source software community,” in Proceedings of the

8th Working Conference on Mining Software Repositories, ser. MSR ’11. New

York, NY, USA: ACM, 2011, pp. 223–226. 18

[100] N. Curtis, Modular Web Design creating reusable components for user experience

design /Nathan Curtis. Berkeley,Ca: New Riders, 2010. 18

[101] T. O’Reilly, “Open source paradigm shift.” [Online]. Available: http:

//oreilly.com/tim/articles/paradigmshift_0504.html [Accessed: 2014-02-

11] 18

[102] K. Bennett, M. Munro, N. Gold, P. Layzell, D. Budgen, and P. Brereton, “An

architectural model for service-based software with ultra rapid evolution,”

in IEEE International Conference on Software Maintenance, 2001. Proceedings,

2001, pp. 292–300. 18, 38

[103] J. Baragry and K. Reed, “Why is it so hard to define software architecture?”

Dec. 1998, pp. 28 –36. 19

[104] C. R. Myers, “Software systems as complex networks: Structure,

function, and evolvability of software collaboration graphs,” Physical

Review E, vol. 68, no. 4, Oct 2003. [Online]. Available: https:

//arxiv.org/abs/cond-mat/0305575 [Accessed: 2017-01-11] 19

[105] M. Jazayeri, “Species evolve, individuals age,” in Eighth International Work-

shop on Principles of Software Evolution, Sep. 2005, pp. 3 – 9. 19

[106] A. Marco, F. Gallo, P. Inverardi, and R. Ippoliti, “Towards a stem archi-

tecture description language for self-adaptive systems,” in 2010 4th IEEE

International Conference on Self-Adaptive and Self-Organizing Systems (SASO),

Oct. 2010, pp. 269–270. 19

[107] G. Xie, J. Chen, and I. Neamtiu, “Towards a better understanding of soft-

ware evolution: An empirical study on open source software,” in IEEE In-

ternational Conference on Software Maintenance, 2009. ICSM 2009, Sep. 2009,

pp. 51–60. 20

[108] M. N. K. Boulos, I. Maramba, and S. Wheeler, “Wikis, blogs and podcasts: a

new generation of web-based tools for virtual collaborative clinical practice

and education,” BMC medical education, vol. 6, no. 1, p. 41, 2006. 20

http://oreilly.com/tim/articles/paradigmshift_0504.html
http://oreilly.com/tim/articles/paradigmshift_0504.html
https://arxiv.org/abs/cond-mat/0305575
https://arxiv.org/abs/cond-mat/0305575

Bibliography 176

[109] F. Keenan, “Agile process tailoring and probLem analYsis (APTLY),” in Pro-

ceedings of the 26th International Conference on Software Engineering, ser. ICSE

’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 45–47. 20

[110] V. Rajlich, “Changing the paradigm of software engineering,” Commun.

ACM, vol. 49, no. 8, pp. 67–70, Aug. 2006. 20

[111] O. S. P. Abrahamsson, “Agile software development methods,” Relatório

Técnico, Finlandia, 2002. 21

[112] “Microformats part 2: The fundamental types. alex faaborg,”

http://blog.mozilla.org/faaborg/2006/12/13/microformats-part-2-the-

fundamental-types/. [Online]. Available: http://blog.mozilla.org/

faaborg/2006/12/13/microformats-part-2-the-fundamental-types/ [Ac-

cessed: 2012-04-12] 21

[113] “Introduction to software Engineering/Architecture/Anti-Patterns

- wikibooks, open books for an open world.” [On-

line]. Available: http://en.wikibooks.org/wiki/Introduction_to_Software_

Engineering/Architecture/Anti-Patterns [Accessed: 2014-02-11] 21

[114] N. N. Taleb, Antifragile: Things that Gain from Disorder. Penguin, Nov. 2012.

22

[115] J. Highsmith, Adaptive Software Development: A Collaborative Approach to

Managing Complex Systems. Addison-Wesley, Jul. 2013, pp. 273–274. 22

[116] S. Cook, H. Ji, and R. Harrison, “Software evolution and soft-

ware evolvability,” pp. 1–12, 2000, DOI 10.1.1.21.9272. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=

A9BBD33EBA9045E996A226F794D2C0E3?doi=10.1.1.21.9272 [Accessed:

2017-03-14] 22, 35

[117] “Reveal group.” [Online]. Available: http://www.inf.usi.ch/lanza/reveal.

html [Accessed: 2017-07-18] 24

[118] M. Meyer, T. Gîrba, and M. Lungu, “Mondrian: An agile information visu-

alization framework,” in Proceedings of the 2006 ACM Symposium on Software

Visualization, ser. SoftVis ’06. New York, NY, USA: ACM, 2006, pp. 135–144.

24

http://blog.mozilla.org/faaborg/2006/12/13/microformats-part-2-the-fundamental-types/
http://blog.mozilla.org/faaborg/2006/12/13/microformats-part-2-the-fundamental-types/
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Anti-Patterns
http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Architecture/Anti-Patterns
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=A9BBD33EBA9045E996A226F794D2C0E3?doi=10.1.1.21.9272
http://citeseerx.ist.psu.edu/viewdoc/summary;jsessionid=A9BBD33EBA9045E996A226F794D2C0E3?doi=10.1.1.21.9272
http://www.inf.usi.ch/lanza/reveal.html
http://www.inf.usi.ch/lanza/reveal.html

Bibliography 177

[119] W. Poncin, A. Serebrenik, and M. v. d. Brand, “Process mining software

repositories,” in 2011 15th European Conference on Software Maintenance and

Reengineering, March 2011, pp. 5–14. 28, 32

[120] “INRIA lille nord europe - ADAM team web site: Topics/SPL.” [Online].

Available: http://adam.lille.inria.fr/pmwiki.php/Topics/SPL [Accessed:

2013-07-09] 29

[121] “Rascal - WebHome.” [Online]. Available: http://www.rascal-mpl.org/

[Accessed: 2013-07-09] 31

[122] “Smalltalk.” [Online]. Available: http://web.cecs.pdx.edu/~harry/

musings/SmalltalkOverview.html [Accessed: 2017-07-18] 32

[123] “Argouml.” [Online]. Available: http://argouml.tigris.org/ [Accessed:

2017-07-18] 32

[124] “The java tutorials.” [Online]. Available: http://docs.oracle.com/javase/

tutorial/ [Accessed: 2017-07-18] 33, 34

[125] “Eclipse.” [Online]. Available: https://eclipse.org/home/ [Accessed:

2017-07-18] 34

[126] “Iso c++.” [Online]. Available: https://isocpp.org/ [Accessed: 2017-07-18]

34, 64, 66

[127] “Python.” [Online]. Available: https://python.org/ [Accessed: 2017-07-18]

34, 64, 91

[128] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based

analysis and prediction for software evolution,” in Proceedings of the 2012

International Conference on Software Engineering, ser. ICSE 2012. Piscataway,

NJ, USA: IEEE Press, 2012, pp. 419–429. 35

[129] K. Bennett, M. Munro, N. Gold, P. Layzell, D. Budgen, and P. Brereton, “An

architectural model for service-based software with ultra rapid evolution,”

in IEEE International Conference on Software Maintenance, 2001. Proceedings,

2001, pp. 292–300. 35

[130] J. M. Barnes, D. Garlan, and B. Schmerl, “Evolution styles: foundations and

models for software architecture evolution,” Software & Systems Modeling,

vol. 13, no. 2, pp. 649–678, 2014. 35

http://adam.lille.inria.fr/pmwiki.php/Topics/SPL
http://www.rascal-mpl.org/
http://web.cecs.pdx.edu/~harry/musings/SmalltalkOverview.html
http://web.cecs.pdx.edu/~harry/musings/SmalltalkOverview.html
http://argouml.tigris.org/
http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/
https://eclipse.org/home/
https://isocpp.org/
https://python.org/

Bibliography 178

[131] J. I. Maletic, M. L. Collard, and B. Simoes, “An xml based approach to

support the evolution of model-to-model traceability links,” in Proceedings

of the 3rd International Workshop on Traceability in Emerging Forms of Software

Engineering, ser. TEFSE ’05. New York, NY, USA: ACM, 2005, pp. 67–72.

36, 76, 80

[132] T. Mens and J. Klein, “Evolving software - introduction

to the special theme,” ERCIM News, vol. 2012, no. 88,

2012. [Online]. Available: http://ercim-news.ercim.eu/en88/special/

evolving-software-introduction-to-the-special-theme [Accessed: 2017-01-

11] 38, 39

[133] “Approaches to solving the graph isomorphism problem,” Nov.

2012. [Online]. Available: http://smartech.gatech.edu/handle/1853/6494

[Accessed: 2012-11-29] 45

[134] R. Kazman, “Assessing architectural complexity,” in Proceedings of the Second

Euromicro Conference on Software Maintenance and Reengineering, 1998, Mar

1998, pp. 104–112. 48

[135] E. Weisstein, “Partial Order.” [Online]. Available: http://mathworld.

wolfram.com/PartialOrder.html [Accessed: 2014-12-01] 48

[136] E. W. Weisstein, “Equivalence Class.” [Online]. Available: http:

//mathworld.wolfram.com/EquivalenceClass.html [Accessed: 2014-12-01]

49

[137] A. Bretto, Hypergraph Theory: An Introduction. Springer Science & Business

Media, Apr. 2013. 50

[138] E. Pafilis, S. I. O’Donoghue, L. J. Jensen, H. Horn, M. Kuhn, N. P. Brown,

and R. Schneider, “Reflect: augmented browsing for the life scientist,” Na-

ture Biotechnology, vol. 27, no. 6, pp. 508–510, Jun. 2009. 59, 122

[139] “Zotero.” [Online]. Available: https://www.zotero.org/ [Accessed: 2016-

08-24] 59

[140] “The Mozilla platform.” [Online]. Available: https://developer.mozilla.

org/en-US/docs/Mozilla/The_Mozilla_platform [Accessed: 2016-09-03]

60, 65

http://ercim-news.ercim.eu/en88/special/evolving-software-introduction-to-the-special-theme
http://ercim-news.ercim.eu/en88/special/evolving-software-introduction-to-the-special-theme
http://smartech.gatech.edu/handle/1853/6494
http://mathworld.wolfram.com/PartialOrder.html
http://mathworld.wolfram.com/PartialOrder.html
http://mathworld.wolfram.com/EquivalenceClass.html
http://mathworld.wolfram.com/EquivalenceClass.html
https://www.zotero.org/
https://developer.mozilla.org/en-US/docs/Mozilla/The_Mozilla_platform
https://developer.mozilla.org/en-US/docs/Mozilla/The_Mozilla_platform

Bibliography 179

[141] R. Filman, “Taking back the Web,” IEEE Internet Computing, vol. 10, no. 1,

pp. 3–5, Jan. 2006. 61

[142] “The c programming language.” [Online]. Available: http://groups.engin.

umd.umich.edu/CIS/course.des/cis400/c/c.html [Accessed: 2017-07-18]

66

[143] P. T. Endo, G. E. Gonçalves, J. Kelner, and D. Sadok, “A survey on open-

source cloud computing solutions,” in Brazilian Symposium on Computer Net-

works and Distributed Systems, 2010. 67

[144] “Google compute engine.” [Online]. Available: https://cloud.google.com/

compute/ [Accessed: 2017-07-18] 68

[145] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a

Product-line Approach. Pearson Education, 2000, pp. 165–166,174. 73

[146] G. Gigerenzer, “Why Heuristics Work,” Perspectives on Psychological Science,

vol. 3, no. 1, pp. 20–29, Jan. 2008. 73

[147] J. Bentley, D. Knuth, and D. McIlroy, “Programming pearls: A literate pro-

gram,” Commun. ACM, vol. 29, no. 6, pp. 471–483, Jun. 1986. 74

[148] “Free pascal reference guide.” [Online]. Available: https://www.freepascal.

org/docs-html/current/ref/ref.html#QQ2-7-6 [Accessed: 2017-07-18] 74

[149] “Relational Calculus.” [Online]. Available: http://jcsites.juniata.edu/

faculty/rhodes/dbms/relcalc.htm [Accessed: 2016-09-11] 75

[150] N. H. Madhavji, J. Fernandez-Ramil, and D. Perry, Software Evolution and

Feedback: Theory and Practice. John Wiley & Sons, Aug. 2006, pp. 72–75. 76

[151] J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a

Product-line Approach. Pearson Education, 2000, p. 173. 76

[152] “Docker - Build, Ship, and Run Any App, Anywhere.” [Online]. Available:

https://www.docker.com/ [Accessed: 2016-09-27] 96

[153] D. Cunliffe, C. Taylor, and D. Tudhope, “Query-based navigation in seman-

tically indexed hypermedia,” in Proceedings of the Eighth ACM Conference on

Hypertext, ser. HYPERTEXT ’97. New York, NY, USA: ACM, 1997, pp.

87–95. 122

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/c/c.html
http://groups.engin.umd.umich.edu/CIS/course.des/cis400/c/c.html
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://www.freepascal.org/docs-html/current/ref/ref.html##QQ2-7-6
https://www.freepascal.org/docs-html/current/ref/ref.html##QQ2-7-6
http://jcsites.juniata.edu/faculty/rhodes/dbms/relcalc.htm
http://jcsites.juniata.edu/faculty/rhodes/dbms/relcalc.htm
https://www.docker.com/

Bibliography 180

[154] O. Díaz and C. Arellano, “The augmented web: Rationales, opportunities,

and challenges on browser-side transcoding,” ACM Trans. Web, vol. 9, no. 2,

pp. 8:1–8:30, May 2015. 122

[155] “Redis.” [Online]. Available: https://redis.io/ [Accessed: 2017-07-19] 124

[156] “Logistic Functions.” [Online]. Available: http://wmueller.com/

precalculus/families/1_80.html [Accessed: 2016-08-31] 142

[157] W. Scacchi, “Understanding Open Source Software Evolution 181,” in Soft-

ware Evolution and Feedback, N. H. d. Chair, J. C. F.-R. B. Lecturer, MEM, and

D. E. P. C. D. Co-Editor, Eds. John Wiley & Sons, Ltd, 2006, ch. 9, pp.

181–205. 142

[158] S. Valverde and R. V. Sole, “Hierarchical Small Worlds in Software

Architecture,” arXiv:cond-mat/0307278, Jul. 2003, arXiv: cond-mat/0307278.

[Online]. Available: http://arxiv.org/abs/cond-mat/0307278 [Accessed:

2016-08-20] 144

[159] A.-L. Barabási, Network Science, 1st ed. Cambridge University Press, Aug.

2016, ch. 10. 144

[160] K. Nguyen and D. A. Tran, “Fitness-Based Generative Models for Power-

Law Networks,” in Handbook of Optimization in Complex Networks, ser.

Springer Optimization and Its Applications, M. T. Thai and P. M. Pardalos,

Eds. Springer US, 2012, no. 57, pp. 39–53, dOI: 10.1007/978-1-4614-0754-

6 2. 144, 156

[161] T. Chaikalis and A. Chatzigeorgiou, “Forecasting java software evolution

trends employing network models,” IEEE Transactions on Software Engineer-

ing, vol. 41, no. 6, pp. 582–602, 2015. 144

[162] V. Musco, M. Monperrus, and P. Preux, “A Generative Model of

Software Dependency Graphs to Better Understand Software Evolution,”

arXiv:1410.7921 [cs], Oct. 2014, arXiv: 1410.7921. [Online]. Available:

http://arxiv.org/abs/1410.7921 [Accessed: 2016-09-26] 149

[163] D. Shiffman, “The Nature of Code.” [Online]. Available: http:

//natureofcode.com/book/chapter-8-fractals/ [Accessed: 2016-09-12] 159

https://redis.io/
http://wmueller.com/precalculus/families/1_80.html
http://wmueller.com/precalculus/families/1_80.html
http://arxiv.org/abs/cond-mat/0307278
http://arxiv.org/abs/1410.7921
http://natureofcode.com/book/chapter-8-fractals/
http://natureofcode.com/book/chapter-8-fractals/

Bibliography 181

[164] E. W. Weisstein, “Plane-Filling Function.” [Online]. Available: http:

//mathworld.wolfram.com/Plane-FillingFunction.html [Accessed: 2016-

09-12] 159

[165] J. Song, F. Kui, and C. Yan, “Model Based on the L-System’s Binary Tree

Structure and Its Application,” Procedia Engineering, vol. 15, pp. 4446–4450,

Jan. 2011. 159

[166] M. Mitchell, An Introduction to Genetic Algorithms, new edition ed. MIT

Press, Apr. 1998. 164

[167] B. A. Julstrom, “Greedy, genetic, and greedy genetic algorithms for the

quadratic knapsack problem,” in Proceedings of the 2005 Conference on Genetic

and Evolutionary Computation, ser. GECCO ’05. New York, NY, USA: ACM,

2005, pp. 607–614. 165

http://mathworld.wolfram.com/Plane-FillingFunction.html
http://mathworld.wolfram.com/Plane-FillingFunction.html

Appendices

Appendix A

Appendices

NOTE: Sources edited manually for line-break adjustment. This usually follow

some logic. In the case of python scripts, in a pythonic way (any { [()] }).

A.1 Prototype notebook examples

A.2 Python files

A.2.1 csv2assets.py

1 #!/usr/bin/env python3

2 """

3 Utility module to build a XML configuration fragment from custom a CSV file of asset data.

4 These configuration can be layered and only overwrite node metadata on tag name clash.

5 The subset categories used is naive but serves as illustration. Further and more meaningful

6 subsets can be created. Also serves as example how configurations can be customised.

7 """

8 __author__ = 'Noel Vizcaino'

9

10 import csv

11 import xml.etree.ElementTree as customTree

12 import xml.dom.minidom as dom

13 from model import Artefact as subspace

14

15 GENERATOR_MESSAGE = 'Generated by csv2assets.py. \n' \

16 'Google Cloud Launcher features popular \n' \

17 'open source packages that have been configured by \n' \

18 'Bitnami or Google Click for easy deployment.'

19

20 infile = r'.\GoogleLauncher\googlelauncher.csv'

21 outfile = r'.\GoogleLauncher\googlelauncher_layer.xml'

22 XML_RELATION_TAG = subspace.expansion_relation_tag

23 XFILTER = 'Standard'

24

25 def googlecsv2assets():

A.2. Python files 184

26 """

27 Writes the csv encoded asssets into a XML assets file.

28 It features many options from the model like creating a graph from

29 the set of the cartesian product of a reduced assets set.

30 """

31 root = customTree.Element('assets')

32 root.set('name', 'Google Cloud Launcher Assets')

33 root.append(customTree.Comment(GENERATOR_MESSAGE))

34 with open(infile, encoding='UTF-8') as f:

35 reader = csv.reader(f,delimiter='|')

36 for row in reader:

37 link, name, icon, description = row

38 if '?cat=INFRASTRUCTURE' in link:

39 category = 'Infrastructure'

40 elif '?cat=OS' in link:

41 category = 'OS'

42 elif '?cat=DATABASE' in link:

43 category = 'Database'

44 elif '?cat=BLOG' in link:

45 category = 'Blogging'

46 elif '?cat=CMS' in link:

47 category = 'CMS'

48 elif '?cat=CRM' in link:

49 category = 'CRM'

50 elif '?cat=DEVELOPER_TOOLS' in link:

51 category = 'Developer tools'

52 elif '?cat=OTHERS' in link:

53 category = 'Other'

54 else:

55 category='Unknown origin'

56 customTree.SubElement(root, 'asset',{ 'icon':icon,

57 'link':link,

58 'description':description,

59 'category':category,

60 'name':name.strip(),

61 })

62 for valid_category in ['OS','Database','Blogging','CMS','CRM','Developer tools']:

63 root = relation2tag(root,valid_category, XFILTER)

64 #NOTE:minidom changes the order or the attributes, only annoying for humans

65 xml = dom.parseString(customTree.tostring(root)).toprettyxml(indent=" ")

66 #print(ET.tostring(root))

67 #print(xml)

68 with open(outfile, "w", encoding='UTF-8') as fout:

A.2. Python files 185

69 fout.write(xml)

70 print('Done!')

71

72 def relation2tag(root,category, xfilter):

73 """

74 Cartesian product of the asset set with itself using valid categories.

75 Other more meaningful relational subsets could be created.

76 :param root: root of the xml tree

77 :param category: a valid category

78 :param xfilter: a undesired string

79 :return: amended xml tree

80 """

81 for assetA in root.iter('asset'):

82 nameA = assetA.get('name')

83 catA = assetA.get('category')

84 for assetB in root.iter('asset'):

85 nameB = assetB.get('name')

86 catB = assetB.get('category')

87 if catA in category and catB in category:

88 if nameA!=nameB and xfilter not in nameA and xfilter not in nameB:

89 isonode = customTree.SubElement(assetA, XML_RELATION_TAG)

90 isonode.text= nameB

91 return root

92

93 if __name__ == '__main__':

94 googlecsv2assets()

A.2.2 launcherharvest.py

1 #!/usr/bin/env python3

2 """

3 Utility module to parse Google Cloud Launcher item cell subtree structure as

4 of sept 2016 (fetch online or offline)

5 to build a custom CSV file of asset data.

6 """

7 __author__ = 'Noel Vizcaino'

8

9 import urllib.request, urllib.error

10 from bs4 import BeautifulSoup

11 import ssl

12

13

14 XML_PARSER = "lxml"

15 offlinepath = r'.\GoogleLauncher\Cloud Launcher Marketplace Solutions.html'

A.2. Python files 186

16 onlineURL = 'https://console.cloud.google.com/launcher?q=*'

17 google_launcher_cell_tag = 'a'

18 google_launcher_cell_class = 'p6n-mp-solution-card-link'

19 csv_filename = r'.\GoogleLauncher\googlelauncher.csv'

20 csv_separator = '|'

21

22 def harvest_online(url):

23 """

24 Get text/HTML resource as utf-8 from site url

25 :param url: url of the site to harvest or scrub

26 :return: text/html

27 """

28 try:

29 ctx = ssl.create_default_context()

30 ctx.check_hostname = False

31 ctx.verify_mode = ssl.CERT_NONE

32 # user_agent = 'Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X) AppleWebKit/536.26' \

33 #'(KHTML, like Gecko) Version/6.0 Mobile/10A5355d Safari/8536.25'

34 user_agent = 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.0)' \

35 'Gecko/20100101 Firefox/48.0'

36 response = urllib.request.urlopen(urllib.request.Request(

37 url, headers={'User-Agent': user_agent}), ctx)

38 html = response.read().decode('utf-8')

39 return html

40 except (urllib.error.HTTPError, urllib.error.URLError, ssl.SSLError):

41 print('====================== [Online access error.

42 Try offline by fetching the file] ======================')

43 return None

44 finally:

45 print('====================== [Online access errors.

46 Try offline by fetching the file] ======================')

47 return None

48

49

50 def html_parse(html, tag, class_):

51 """

52 Parser of the current Google Cloud Launcher item cell subtree structure as of

53 sept 2016 (saved offline for convenience)

54 name class-->

55 ['p6n-space-below-xs p6n-color-primary ' \

56 'p6n-mp-solution-card-text-name'].string

57 -->h3

58 icon class-->

A.2. Python files 187

59 ['p6n-mp-solution-card-icon-image']['src']

60 -->img

61 description

62 class-->['p6n-space-last p6n-color-secondary' \

63 ' p6n-mp-solution-card-description'].string]

64 -->div

65

66 :param html:

67 :param tag: tag of the HTML element of interest

68 :param class_: class of the HTML element of interest

69 :return: list of rows with fields separated by csv_separator

70 """

71 lines=[]

72 soup = BeautifulSoup(html, XML_PARSER)

73 cells = soup.find_all(tag, attrs={"class": class_})

74 if cells:

75 print('#:',len(cells))

76 for link in cells:

77 #tmp=(repr(item).replace('',''))

78 print(repr(link))

79 fields =[link['href'],#a

80 link.h3.string,#h3

81 link.img['src'],#img

82 link.find('div',class_='p6n-space-last p6n-color-secondary p6n-mp-

83 solution-card-description').string]#div

84 line = csv_separator.join(fields)

85 lines.append(line)

86 return lines

87

88 def googlelauncher2csv():

89 """

90 Fetches and/or scrubs html data from Google Cloud Launcher as example of the

91 possibilities to generate

92 asset sets.

93 """

94 with open(csv_filename, 'w', encoding='utf-8') as fout:

95 with open(offlinepath, encoding='utf-8') as fin:

96 text = harvest_online(onlineURL)

97 if not text:

98 text = fin.read()

99 fout.write('link|name|icon|description' + '\n')

100 for row in html_parse(text, google_launcher_cell_tag, google_launcher_cell_class):

101 if row:

A.2. Python files 188

102 fout.write(row + '\n')

103

104

105 if __name__ == '__main__':

106 googlelauncher2csv()

artefact views test cleaned.py

A.2.3 microservice.py

1 #!/usr/bin/env python3

2 """

3 Attempt to implement a example cloud microservice to illustrate how to visualise

4 (configured) artefact

5 instances saved as JSON files on the server.

6

7 NOTICE:artefact names and IDs are equivalence via URL for convenience.

8 The logical thing in practice

9 would be to saved them as hash-id.json files and ignore the names.

10

11 *Views include its originator, because it is a view.*

12

13 When running open http://127.0.0.1:5000/artefact/seed/viewlist for available

14 view list.

15 to initialise and see a saved (naive) sample seed 'artefact.json' and others.

16

17 There is normal operation or operation based on a plot_relation pre-made

18 scenario. Switch with:

19 * http://127.0.0.1:5000/normal_scenario (default on init)

20 * http://127.0.0.1:5000/test_scenario (where some normal operations

21 were tested online)

22

23 Test sample operation evolve using POST (in practice JSON with any AJAX exchange

24 would do):

25 * http://127.0.0.1:5000/operationtest

26

27 IT should be noted that only operations and ID would be transmitted except on

28 creation where the new

29 arterfact would have to be downloaded to the client.

30

31 Operations related to HTTP verbs POST PUT DELETE would go here:

32 * http://127.0.0.1:5000/api

33

34 Resources access:

A.2. Python files 189

35

36 ==

37 URL

38 ==

39 http://127.0.0.1:5000/<serverartefact>/id

40 http://127.0.0.1:5000/<serverartefact>/<viewname>

41 http://127.0.0.1:5000/<serverartefact>/<viewname>/JSON

42 http://127.0.0.1:5000/<serverartefact>/<viewname>/info

43 http://127.0.0.1:5000/<serverartefact>/viewlist

44 http://127.0.0.1:5000/<serverartefact>/tileviews

45 http://127.0.0.1:5000/<serverartefact>/info

46 http://127.0.0.1:5000/<serverartefact>/metadata/<tag>

47 ==

48

49 ==

50 Resources

51 ==

52 SHA-1 hash (40 char), just as ID

53 Renders a graph of any available view

54 The graph with metadata as JSON

55 Basic textual information for any views

56 Equivalence class known views

57 Graphs take a time to load if there are too many. Experimental.

58 Basic textual information from

59 Tags used in XML configurations

60 ==

61

62 This is also an example of how to remote assets as ReST resources. They can be

63 fetched with wget or curl too.

64 It tries to honour the ReSTful API style AFAIK.

65

66 Browsers:

67 Chromium v44 seems to be more responsive than Firefox v48.

68

69 Further testing and experimenting:

70 * curl is a nice tool similar to wget, we can do some testing from the

71 command line.

72 * $curl --header "Content-type: application/json"

73 POST http://127.0.0.1:5000/api --data "@operation.json"

74

75 Truth is only the IDs and operators need to be transmitted for maximum

76 communication efficiency.

77 The artefacts should be downloaded just once by the client. From there,

A.2. Python files 190

78 update progressively on creation.

79 This microservice can be operated by Jupyter to create nice and shareable

80 development narratives.

81 """

82 __author__ = 'Noel Vizcaino'

83

84 DEFAULT_HOST = '127.0.0.1'

85 #Make sure the port is open!!

86 MICROSERVICE_PORT = 5000

87

88

89 from flask import Flask, render_template, jsonify, abort, request

90 from model import Artefact as subspace

91 import ioutils as io

92 import os

93

94 app = Flask(__name__)

95 ARTEFACT_PATH = r'.\artefacts\\'

96 DEFAULT_SEED = 'evolved'

97

98 class Scenario:

99 """

100 Simple strategy pattern to account for the tests scenarios vs normal operation

101 """

102 def __init__(self, function=None):

103 """

104 Initialises the default scenario

105

106 :param function: the function to use as replacement

107 """

108 if function:

109 self.use = function

110

111 def use(self,artefact_json_name):

112 return normal_scenario(artefact_json_name)

113

114

115 def test_scenario(artefact_json_name):

116 """

117 Simple Model and API online testing.

118

119 :param artefact_json_name: the name on disk of the seed artefact

120 :return: sample artefact

A.2. Python files 191

121 """

122 seed = load_JSON_artefact(DEFAULT_SEED)

123 seed.evolve(subspace.from_relationships([('CustomBinary1', 'Redis')],

124 'rediscoupler'), 'redisexpansion')

125 solution = seed.evolve_delta(subspace.from_relationships([('CustomBinary1',

126 'bs4')], 'bs4coupler'), 'bs4expansion')

127 solution.bind_context_fragment('views.xml') # or any not included before

128 #saving in any JSON artefact

129 #isonodes or properties must be updated together via XML, otherwise the

130 #other data persists as is not overridden

131 solution.bind_context_fragment(r'.\GoogleLauncher\googlelauncher_layer.xml')

132 solution.update_views()

133 return solution

134

135 def normal_scenario(artefact_json_name):

136 """

137 Loads a store JSON artefact and updates the expanded

138 :math:`[artefact\ graph]\simeq`views

139

140 :param artefact_json_name: the name of the stored JSON artefact

141 :return: the artefact with its views updated

142 """

143 art = load_JSON_artefact(artefact_json_name)

144 art.update_views()

145 return art

146

147 #default scenario

148 active_equivalence_class = Scenario(normal_scenario)

149

150 @app.route('/scenario/<function_name>')

151 def setscenario(function_name):

152 """

153 Sets the scenario to be ANY predefined one without touching the source code.

154 NOTICE: Not ReSTful!, just for convenience not purity. This should be added

155 as part of any API using HTTP verbs.

156

157 :param function_name: the name of the function of the scenario to use

158 :return: Confirmation

159 """

160 global active_equivalence_class

161 active_equivalence_class = Scenario(globals()[function_name])

162 return 'Scenario {} is set.'.format(function_name)

163

A.2. Python files 192

164 def load_JSON_artefact(name):

165 """

166 Loads JSON file produced with the same API format. JSON carries metadata

167 along but not evolved step marks

168 or red arrows.

169

170 :param name: Name used in the JSON filename

171 :return: The fully configured seed artefact

172 """

173 with io.load_graph_context(io.load_json(ARTEFACT_PATH+name+'.json')) as g:

174 seed =subspace.from_graph(g, name)

175 return seed

176

177 @app.route("/operationtest")

178 def operationstest():

179 """

180 Naive sample operation how-to plot_relation

181

182 :return: form to evolve any two JSON stored artefacts

183 """

184 return ('<html><head><style></style></head>'

185 '<body><div>This only works with artefact names on disk as JSON
'

186 '<form action="/api" method="POST">'

187 '<label for="seed">Seed : </label><input name="seed"> '

188 '<label for="coupler">Coupler : </label><input name="coupler">'

189 '<input type="submit" value="evolve"></form></div></body></html>')

190

191 @app.route('/api', methods=['POST'])

192 def operations():

193 """

194 Evolve two artefacts by (JSON) name (It should use ID at later stage)

195

196 :return: resulting dynamic graph view

197 """

198 seed = active_equivalence_class.use(request.form['seed'])

199 coupler = active_equivalence_class.use(request.form['coupler'])

200 view = seed.evolve(coupler,seed.name+'_delta_'+coupler.name)

201 #return request.form['seed']+' _delta_ '+request.form['coupler']+' = '+ view.id

202 io.dump_json(ARTEFACT_PATH+view.id+'.json',view.graph)

203 # another fancy option

204 return render_template('viewtemplate.html', d3data = io.d3_data(view))

205

206 @app.route('/<server_artefact>/id')

A.2. Python files 193

207 def getID(server_artefact):

208 """

209

210 :param server_artefact: file basename of stored artefact

211 :return: the SHA-1 hash of the name as stored

212 """

213 return active_equivalence_class.use(server_artefact).id

214

215 @app.route('/<server_artefact>/<viewname>')

216 def artefact_view(server_artefact,viewname):

217 """

218 Shows the corresponding dynamic view.

219

220 :param server_artefact: file basename of stored artefact

221 :param viewname: instance name or ID

222 :return: A jinja2 template implementing a D3 Force graph with view data

223 """

224 #parsedname=urllib.parse.unquote(viewname)

225 for view in active_equivalence_class.use(server_artefact).views:

226 if view.name==viewname or view.id==viewname:

227 return render_template('viewtemplate.html', d3data = io.d3_data(view))

228

229 @app.route('/<server_artefact>/<viewname>/JSON')

230 def artefact_view_JSON(server_artefact,viewname):

231 """

232 JSON corresponding to a view

233

234 :param server_artefact: file basename of stored artefact

235 :param viewname: instance name or ID

236 :return: text/JSON

237 """

238 #parsedname=urllib.parse.unquote(viewname)

239 for view in active_equivalence_class.use(server_artefact).views:

240 if view.name==viewname or view.id==viewname:

241 return str(io.to_json(view.graph))

242

243 @app.route('/<server_artefact>/viewlist')

244 def artefact_viewlist(server_artefact):

245 """

246 Browser quirks mode will help display the list of artefact views

247

248 :param server_artefact: file basename of stored artefact

249 :return: List of seed views currently configured and their IDs

A.2. Python files 194

250 """

251 #parsedname=urllib.parse.unquote(viewname)

252 return ('
\n'.join(['ID:{}
\n'

253 'Name:{}'.format(DEFAULT_HOST,

254 MICROSERVICE_PORT,

255 server_artefact,

256 view.id,

257 view.id,

258 view.name)

259 for view in active_equivalence_class.

260 use(server_artefact).views]))

261

262 @app.route('/<server_artefact>/tileviews')

263 def tiled_views(server_artefact):

264 """

265 Attempt to create a tile view of current available views using iframes.

266 IDs work when dragged from source

267 but not when clicked. Bugged. I suspect it does not scale well.

268

269 :param server_artefact: file basename of stored artefact

270 :return: A jinja2 template with iframes. Each loads another template

271 implementing a D3 Force graph with view data

272 """

273 return render_template('tiletemplate.html',

274 solutionviews =

275 active_equivalence_class.use(server_artefact).views,

276 artefact=server_artefact)

277

278 @app.route('/<server_artefact>/info')

279 def seed_info(server_artefact):

280 """

281 Basic artefact text information to self pretty-print on the web

282 as a naive stdweb ;)

283

284 :param server_artefact: file basename of stored artefact

285 :return: artefact web friendly textual representation

286 """

287 return str(active_equivalence_class.use(server_artefact)).replace('\n','
\n')

288

289 @app.route('/<server_artefact>/<viewname>/info')

290 def artefact_info(server_artefact,viewname):

291 """

292 Basic artefact view text information to self pretty-print on the web

A.2. Python files 195

293

294 :param server_artefact: file basename of stored artefact

295 :param viewname: artefact name or hash ID

296 :return: artefact web friendly textual representation

297 """

298 for view in active_equivalence_class.use(server_artefact).views:

299 if view.name==viewname or view.id==viewname:

300 return str(view).replace('\n','
\n')

301

302 @app.route('/<server_artefact>/metadata/<tag>')

303 def artefact_tag(server_artefact,tag):

304 """

305 Artefact stored metadata by tag

306

307 :param server_artefact: file basename of stored artefact

308 :param tag: tag used by any configuration fragment. Remember past layering as

309 could have been overwritten.

310 :return: artefact web friendly textual representation of the metadata

311 """

312 return str(active_equivalence_class.use(

313 server_artefact).mapinfo(tag)).replace('\n','
\n')

A.2.4 ioutils.py

1 #!/usr/bin/env python3

2 """

3 Utility module dedicated to input/output helper functions.

4 These comprise stdout (console output) printing functions

5 and disk IO methods for various data formats.

6 """

7 __author__ = 'Noel Vizcaino'

8

9 import json

10 from networkx.readwrite import json_graph

11 import networkx as nx

12 import matplotlib.pyplot as plt

13 import xml.etree.ElementTree as element_tree

14 #from xml.dom import minidom

15 from contextlib import contextmanager

16 #import os

17

18 DEFAULT_CONTEXT_FILE = 'assets.xml'

19 DEFAULT_NODE_SIZE = 300

20

A.2. Python files 196

21 def dump_json(filename, g):

22 """

23 Writes graph g in JSON format to a new file with a a name filename in default

24 working directory.

25 This saves the state of the graph, including metadata loaded.

26

27 :param filename: the name of the file

28 :param g: NetworkX graph

29 """

30 data = to_json(g)

31 with open(filename, 'w', encoding='UTF-8') as fout:

32 fout.write(json.dumps(data))

33

34

35 def to_json(graph):

36 """

37 Returns JSON data encoding of the graph

38

39 :param graph: NetworkX graph

40 :return: JSON data

41 """

42 data = json_graph.node_link_data(graph)

43 return data

44

45

46 def load_json(filename):

47 """

48 Loads a graph g from a JSON file

49

50 :param filename: name of the JSON file

51 :return: a new NetworkX graph built from the data

52 """

53 with open(filename,'r', encoding='UTF-8') as fin:

54 g = json_graph.node_link_graph(json.load(fin))

55 return g

56

57 def save_png(solution,filename):

58 """

59 Saves a PNG snapshot of the drawn solution from the plot window

60

61 :param solution: artefact instance

62 :param filename: filename of the PNG image

63 """

A.2. Python files 197

64 nx.draw(solution.graph,pos=nx.spring_layout(solution.graph),

65 node_size=plot_sizes(solution),with_labels=True)

66 plt.savefig(filename)

67 plt.clf()

68

69 def print_adjacency_matrix(graph):

70 """

71 Prints to stdout the adjacency matrix corresponding to the graph

72

73 :param graph: a NetworkX graph

74 :return: matrix text stdout print

75 """

76 print(nx.adjacency_matrix(graph))

77

78 def show(solution,tag):

79 """

80 Draws the solution on a Matplolib plot window

81

82 :param solution: artefact instance

83 :param tag: tag from a context to base the size of the nodes on

84 """

85 pos=nx.spring_layout(solution.graph)

86 nx.draw(solution.graph, pos,node_size=plot_sizes(solution,tag),with_labels=True)

87 nx.draw_networkx_edges(solution.graph, pos,

88 edgelist=[],

89 width=4,alpha=0.5,edge_color='r')

90 plt.show()

91 plt.clf()

92

93 def show_graph(graph):

94 """

95 Draws any NetworkX graph on a Matplolib plot window

96

97 :param graph:

98 :return:

99 """

100 nx.draw_spring(graph,with_labels=True)

101 plt.show()

102 plt.clf()

103

104 def plot_sizes(solution,tag):

105 """

106 Calculates node sizes for plotting on a Matplolib plot window

A.2. Python files 198

107

108 :param solution: artefact instance

109 :param tag: tag from a context to calculate the actual rendering size of the nodes

110 """

111 sizes = [DEFAULT_NODE_SIZE*(1+size) for size in solution.count(tag)]

112 return sizes

113

114 def show_multiple_artefacts(solutions, tag):

115 """

116 Draws a solution list on several simultaneously spawning Matplolib plot windows

117

118 :param solutions: artefact instance list

119 :param tag: tag from a context to base the size of the nodes on

120 """

121 for i,solution in enumerate(solutions):

122 plt.figure(i)

123 pos=nx.spring_layout(solution.graph)

124 nx.draw(solution.graph,pos,node_size=plot_sizes(solution, tag),

125 with_labels=True)

126 plt.show()

127 plt.clf()

128

129 @contextmanager

130 def load_graph_context(graph, filename=DEFAULT_CONTEXT_FILE):

131 """

132 Populates a graph with the node metadata specified by the context in

133 (fullpath)file filename

134

135 :param graph: NetworkX graph to populate

136 :param filename: XML file with context data

137 :returns: a generator yielding to the populated graph

138 """

139 tree = element_tree.parse(filename)

140 root = tree.getroot()

141 for asset in root.findall('asset'):

142 assetname = asset.get('name')

143 if assetname in graph:

144 tags = list(set([child.tag for child in asset]))

145 if tags:

146 for tag in tags:

147 nx.set_node_attributes(graph, tag, {assetname:

148 [item.text.strip() for item in asset.findall(tag)]})

149 yield graph

A.2. Python files 199

150

151 def print_d3_data(solution):

152 """

153 Prints custom formatted data to be loaded in JavaScript

154

155 :param solution: artefact instance

156 """

157 data = d3_data(solution)

158 print(data)

159

160 def write_d3js(solution, filename='customdata.js'):

161 """

162 Writes a JavaScript file containing custom formatted data

163

164 :param solution: artefact instance

165 :param filename: name of the JavaScript file, default is customdata.js

166 """

167 with open(filename, 'w', encoding='UTF-8') as fout:

168 fout.writelines(d3_data(solution))

169

170 def d3_data(solution):

171 """

172 Generates customised text data (a JavaScript source code snippet)

173 based on the artefact graph

174

175 :param solution: artefact instance

176 :return: JavaScript source code snippet

177 """

178 tmp=[]

179 for i,e in enumerate(solution.graph.edges()):

180 if e in solution.evolved_edges:

181 line = 'source: "{source}" , target:"{target}", type: "{type}"'.format(

182 source=e[0],target = e[1],type='coupler_added')

183 else:

184 line = 'source: "{source}" , target:"{target}", type: "{type}"'.format(

185 source=e[0],target = e[1],type='dependency')

186 tmp.append('{'+line+'}')

187 out= ',\n'.join(tmp)

188 return 'var links = ['+out+'];'

189

190 def print_pairs(graph):

191 """

192 Prints the edges of a graph as key and value pairs

A.2. Python files 200

193

194 :param graph: A NetworkX graph

195 """

196 for k,v in graph.items():

197 print(k,v)

198

199 def print_graph(graph):

200 """

201 Prints the nodes in the graph one by one

202

203 :param graph: A NetworkX graph

204 """

205 for node in graph:

206 print('Node: ',repr(node))

207

208 def write_evolved_tile_views(seed, coupler, filename, div=True):

209 """

210 Generates HTML file with iframes based for assist in the viewing of graphs

211 as a tile

212

213 :param seed: artefact instance

214 :param coupler: artefact instance with coupler graph

215 :param filename: HTML file

216 :param div: If div tag is needed, default is True

217 """

218 # write_d3js(seed, filename)

219 with open('tileview.html','w',encoding="UTF-8") as tv:

220 tv.write('<html>')

221 #tv.write('<div style="padding:4px;">{}</br><iframe scrolling="no"

222 #width="270px" #height="270px" src="{}.html"></iframe></div>'.

223 #format(seed.name,filename))

224 for index,sol in enumerate(seed.explore_isonodes()):

225 level2 = sol.evolve(coupler, sol.name+'<-'+coupler.name)

226 name = 'view'+str(index)+'.js'

227 write_d3js(level2, name)

228 with open('viewgraph.html',encoding="UTF-8") as f:

229 text = f.read()

230 newtext = text.replace(r'server/customdata.js',name)

231 with open(name+'.html','w',encoding="UTF-8") as fout:

232 fout.write(newtext)

233 if div:

234 tv.write('<div style="padding:4px;">{}</br><iframe scrolling="no" '

235 'width="270px" height="270px" src="{}.html">'

A.2. Python files 201

236 '</iframe></div>'.format(name,name))

237 else:

238 tv.write('<iframe scrolling="no" width="270px" height="270px"'

239 'src="{}.html"></iframe>'.format(name,name))

240 tv.write('</html>')

A.2.5 model.py

1 #!/usr/bin/env python3

2 """

3 Module dedicated to the designed Elements of Evolution.

4 This features operators (methods) and operands related to artefacts

5 This includes the Class Artefact as a solution view belonging to its equivalence

6 class under an isomorphism :math:`[instance graph]_\\simeq`.

7 The view is represented by its graph we can name 'itself' or *base graph*.

8

9 """

10 __author__ = 'Noel Vizcaino'

11

12 import networkx as nx

13 from networkx.algorithms import isomorphism

14 from ioutils import load_graph_context, DEFAULT_CONTEXT_FILE

15 import hashlib

16

17

18 class Artefact:

19 """

20 Class Artefact is a solution subspace instancing known views belonging to its

21 equivalence class under an isomorphism represented by

22 :math:`[instance graph]_\\simeq`.

23 This is the key or ID to a subspace of the whole potential solution space.

24 The subspace is further configured with configuration fragments that can be

25 layered into a whole within the instance.

26 The fragments contain useful metadata to be loaded into the nodes.

27 This is kept glued together by a chain of isomorphisms representing

28 the relational associations of the nodes(or vertices) understood as assets

29 relationships.

30 :math:`\Delta`'s create a new isomorphic subspaces by graph expansion

31 abandoning previous chain to create a new one. This means old instances from

32 the same origin are sub-graph isomorphic.

33

34 """

35 node_property_tag = 'property'

36 expansion_relation_tag = 'isonode'

A.2. Python files 202

37

38 def __init__(self, name):

39 """

40 Creates basic artefact with empty digraph and blanked fields.

41

42 :param name: Name of the artefact

43 """

44 self.name = name

45 self.id = self.generateID(self.name)

46 self.graph = nx.DiGraph()

47 self.couplerlist = []

48 self.evolved_edges = []

49 self.contexts = []

50 self.views = []

51

52 def generateID(self, data):

53 """

54 Generates a new one way cryptographic hash using sha1 algorithm.

55 The hexadecimal digest is returend as ID based on the utf8 self.name

56 encoding, just for convenience.

57

58 :param data: string to use as unicode bytes to be hashed

59 :return: the hex digest

60 """

61 return hashlib.sha1(data.encode()).hexdigest()

62

63 @classmethod

64 def from_relationships(cls, data, name):

65 """

66 To create an artefact using an assets pairs relationship list

67

68 :param data: list of asset pairs

69 :param name: name for this arterfact

70 :return: new artefact with a default attached context (nodes metadata)

71 """

72 artefact = cls(name)

73 artefact.graph.add_edges_from(data)

74 artefact.bind_context_fragment()

75 return artefact

76

77 @classmethod

78 def from_graph(cls, g, name):

79 """

A.2. Python files 203

80 To create an artefact using a graph containing asset relationships

81

82 :param g: a NetworkX graph

83 :param name: name for this coupler artefact

84 :return: new artefact with a default attached context (nodes metadata)

85 """

86 artefact = cls(name)

87 artefact.graph = g

88 artefact.bind_context_fragment()

89 return artefact

90

91 def update_views(self):

92 """

93 Creates or updates views with known solutions views.

94 This is the equivalence :math:`[instance graph]_\\simeq` class partial

95 expansion

96 """

97 self.views = self.explore_isonodes()

98

99 def bind_context_fragment(self, config=DEFAULT_CONTEXT_FILE):

100 """

101 Binds a metadata node information layer (context fragment) to its (base)

102 graph node metadata

103

104 :param config: path to node metadata file

105 """

106 with load_graph_context(self.graph, config) as g:

107 self.graph = g

108 self.contexts.append(config)

109

110 @property

111 def properties(self):

112 """

113 Access to tag property node metadata as dictionary

114

115 :return: properties dictionary, use properties[node]

116 """

117 ps = self.tagmap(Artefact.node_property_tag)

118 return ps

119

120 def count(self, tag):

121 """

122 Counts and returns node metadata instances as id by an existing tag context

A.2. Python files 204

123

124 :param tag: an existing(initialised) tag context

125 :return: metadata instances or entries count

126 """

127 return [len(self.tagmap(tag)[n]) for n in self.graph]

128

129 @property

130 def isonodes(self):

131 """

132 Access to tag isonode node metadata as dictionary

133

134 :return: isonodes dictionary, use isonodes[node]

135 """

136 ps = self.tagmap(Artefact.expansion_relation_tag)

137 return ps

138

139 def _fixmiss(self, assetmap):

140 """

141 Check fixes a dictionary for unknown node metadata hit misses by blanking them

142

143 :param assetmap:

144 :return: assetmap with blanked array misses

145 """

146 for n in self.graph:

147 try:

148 assetmap[n]

149 except KeyError:

150 assetmap[n] = []

151 return assetmap

152

153 def tagmap(self, tag):

154 """

155 Returns nodes stored tagged metadata

156

157 :param tag: name of the metadata dictionary

158 :return: a tag dictionary where nodes are the keys

159 """

160 assetmap = nx.get_node_attributes(self.graph, tag)

161 self._fixmiss(assetmap)

162 return assetmap

163

164 def evolve(self, coupler, name):

165 """

A.2. Python files 205

166 Expand, with coupler graph, current base graph carrying existing

167 configurations. This is operator (thin) :math:`\Delta` over

168 the representative view of

169 :math:`[instance graph]_\\simeq` where

170 the equivalence class evolves but implicitly.

171

172 :param coupler: the artefact with the graph to attach

173 :param name: a name for the resulting artefact

174 :return: expanded solution view

175 """

176 self.name = name

177 self.id = self.generateID(self.name)

178 common = set(coupler.graph) & set(self.graph)

179 # print('common:',common)

180 self.graph = nx.compose(self.graph, coupler.graph)

181 for node in common:

182 for edge in coupler.graph.edges():

183 if node in edge:

184 self.evolved_edges.append(edge)

185 self.couplerlist.append(coupler)

186 return self

187

188 def evolve_delta(self, coupler, name):

189 """

190 Explicitly evolve the known views belonging to

191 :math:`[instance graph]_\\simeq` currently known.

192 A trunk :math:`\Delta` operation.

193

194 :param coupler: the artefact with the graph to attach to all views

195 :param name: a name for the resulting artefact

196 :return: expanded equivalence class

197 """

198 self.update_views()

199 for index,view in enumerate(self.views):

200 self.name=name

201 self.views[index].id = self.generateID(self.name)

202 self.views[index]=view.evolve(coupler, view.name+' <- '+coupler.name)

203 self.views[index].couplerlist.append(coupler)

204 self.views[index].evolved_edges=list(set(self.evolved_edges))

205 return self

206

207 def explore_isonodes(self):

208 """

A.2. Python files 206

209 Gathers the solutions views that can be currently generated based on stored

210 isonode metadata.

211

212 :return: A list with (valid) solution views belonging to

213 :math:`[instance graph]_\\simeq`

214 """

215 artefact_list = []

216 mapping = {}

217 for n in self.graph:

218 for alternative in self.isonodes[n]:

219 mapping.update({n: alternative})

220 # print(repr(tmp)) # add original node!

221 graph = nx.relabel_nodes(self.graph, mapping)

222 name = 'View '+str(repr(mapping).replace(':', ' by '))

223 artefact = self.from_graph(graph, name)

224 artefact.evolved_edges = self.evolved_edges #plot_relation

225 artefact.couplerlist = list(set(self.couplerlist))

226 artefact_list.append(artefact)

227 artefact_list.append(self)

228 return artefact_list

229

230 def isonodes_graph(self):

231 """

232 Creates graph with the isonodes name enumerations as nodes.

233 Bijection is broken

234 as on node point to many

235 making it a hypergraph view.

236

237 :return: a new graph

238 """

239 mapping = {}

240 for n in self.graph:

241 assets = self.isonodes[n]

242 assets.append(n)

243 newnode = ', '.join(assets)

244 mapping.update({n: newnode})

245 graph = nx.relabel_nodes(self.graph, mapping)

246 # NOTE: ignoring other data as not needed

247 return graph

248

249 @property

250 def assortativity(self):

251 """

A.2. Python files 207

252 The degree of assortative or preferential attachment calculated for the

253 artefact graph. This is calculated using a fast internal

254 provided by NetworkX implementation of the Pearson algorithm.

255 This would serve to track its evolution through branches and to compare

256 the assortativity with that of other networks.

257

258 :return: floating point coefficient

259 """

260 return nx.degree_pearson_correlation_coefficient(self.graph)

261

262 def is_subgraph_isomorphic(self, subartefact):

263 """

264 Finds if current artefact itself contains ANY other isomorphic artefact

265

266 :param subartefact: sub-artefact with a relevant sub-graph to check with

267 :return: True if found.

268 """

269 iso = isomorphism.DiGraphMatcher(self.graph, subartefact.graph)

270 return iso.subgraph_is_isomorphic()

271

272 def find_isomorphic_pairs(self, subartefact, tags, values):

273 """

274 Check if current artefact contains other isomorphic sub-artefact considering

275 metadata information as a filter.

276 And provides the isomorphic result of the filter.

277

278 :param subartefact: sub-artefact with a relevant sub-graph to check with

279 :param tags: affected node metadata context tags list

280 :param values: corresponding node metadata context actual datum list

281 :return: Returns generator of dictionaries with found isomorphic pairs

282 """

283

284 iso = isomorphism.DiGraphMatcher(self.graph, subartefact.graph,

285 node_match=

286 isomorphism.categorical_node_match(tags,

287 values))

288

289 return iso.isomorphisms_iter()

290

291 def __str__(self):

292 """

293 Basic artefact text information to self pretty-print to stdout with standard

294 print function

A.3. Produced Support data 208

295

296 :return: textual representation of the artefact

297 """

298 out = '----------------------------[Artefact: {}]' \

299 '----------------------------\n'.format(self.name)

300 out += self.mapinfo(Artefact.node_property_tag)

301 out += self.mapinfo(Artefact.expansion_relation_tag)

302 out += str('\nContext sequence: {}'.format(self.contexts))

303 out += str('\nCouplers so far: {}'.format([coupler.name

304 for coupler in self.couplerlist]))

305 out += str('\nEvolution edges: {}'.format(repr(self.evolved_edges)))

306 # out += str('\nProperty Count: {}'.format(self.count('property')))

307 return out

308

309 def mapinfo(self, tag):

310 """

311 Gather nodes tagged text metadata to self pretty-print to stdout with

312 standard print function

313

314 :param tag: an existing context tag

315 :return: Tagged node metadata as text

316 """

317 out = '\n'.join('Node {} {} entries: '.format(n,tag)+repr(self.tagmap(tag)[n])

318 for n in self.graph)

319 return(str(out))

A.2.6 artefact views test.py

A.3 Produced Support data

GPLv3 licensed component by Michael Bostock customised to display D3.js

force graph display in all D3 based views using Jinja2 template system. Source:

http://bl.ocks.org/mbostock/1153292 [19]

A.3.1 The tile view Jinja2 template

1 ï»¿<!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="UTF-8">

5 </head>

A.3. Produced Support data 209

6 <body>

7

8 {%- for view in solutionviews %}

9 <iframe sandbox="allow-scripts"

10 scrolling="no" width="500px"

11 height="500px"

12 src="http://127.0.0.1:5000/{{artefact|safe}}/{{view.id|safe}}">

13 </iframe>

14 {%- endfor %}

15

16 </body>

17 </html>

A.3.2 The single view Jinja2 template

1 ï»¿<!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="UTF-8">

5 <!--Based on http://bl.ocks.org/mbostock/1153292

6 need to customize, this is just for the presentation layer

7 -->

8

9 <style>

10

11 .link {

12 fill: none;

13 stroke: #666;

14 stroke-width: 1.5px;

15 }

16

17 #coupler_added {

18 fill: red;

19 }

20

21 .link.coupler_added {

22 stroke: red;

23 }

24

25 .link.otherel {

26 stroke-dasharray: 0,2 1;

27 }

28

29 circle {

A.3. Produced Support data 210

30 fill: #ccc;

31 stroke: #333;

32 stroke-width: 1.5px;

33 }

34

35 text {

36 font: 10px sans-serif;

37 pointer-events: none;

38 text-shadow: 0 1px 0 #fff, 1px 0 0 #fff, 0 -1px 0 #fff, -1px 0 0 #fff;

39 }

40 </style>

41 </head>

42 <body>

43 <script src="http://d3js.org/d3.v3.min.js"></script>

44 <script>

45

46

47 {{d3data|safe}}

48

49 var nodes = {};

50

51 // Compute the distinct nodes from the links.

52 links.forEach(function(link) {

53 link.source = nodes[link.source] || (nodes[link.source] = {name: link.source});

54 link.target = nodes[link.target] || (nodes[link.target] = {name: link.target});

55 });

56

57

58 var width = 480,

59 height = 480;

60

61 var force = d3.layout.force()

62 .nodes(d3.values(nodes))

63 .links(links)

64 .size([width, height])

65 .linkDistance(50)

66 .charge(-300)

67 .on("tick", tick)

68 .start();

69

70 var svg = d3.select("body").append("svg")

71 .attr("width", width)

72 .attr("height", height);

A.3. Produced Support data 211

73

74 // Per-type markers, as they don't inherit styles.

75 svg.append("defs").selectAll("marker")

76 .data(["dependency", "coupler_added", "otherel"])

77 .enter().append("marker")

78 .attr("id", function(d) { return d; })

79 .attr("viewBox", "0 -5 10 10")

80 .attr("refX", 15)

81 .attr("refY", -1.5)

82 .attr("markerWidth", 6)

83 .attr("markerHeight", 6)

84 .attr("orient", "auto")

85 .append("path")

86 .attr("d", "M0,-5L10,0L0,5");

87

88 var path = svg.append("g").selectAll("path")

89 .data(force.links())

90 .enter().append("path")

91 .attr("class", function(d) { return "link " + d.type; })

92 .attr("marker-end", function(d) { return "url(#" + d.type + ")"; });

93

94 var circle = svg.append("g").selectAll("circle")

95 .data(force.nodes())

96 .enter().append("circle")

97 .attr("r", 6)

98 .call(force.drag);

99

100 var text = svg.append("g").selectAll("text")

101 .data(force.nodes())

102 .enter().append("text")

103 .attr("x", 8)

104 .attr("y", ".31em")

105 .text(function(d) { return d.name; });

106

107 // Use elliptical arc path segments to doubly-encode directionality.

108 function tick() {

109 path.attr("d", linkArc);

110 circle.attr("transform", transform);

111 text.attr("transform", transform);

112 }

113

114 function linkArc(d) {

115 var dx = d.target.x - d.source.x,

A.3. Produced Support data 212

116 dy = d.target.y - d.source.y,

117 dr = Math.sqrt(dx * dx + dy * dy);

118 return "M" + d.source.x + "," + d.source.y + "A" + dr + "," +

119 dr + " 0 0,1 " + d.target.x + "," + d.target.y;

120 }

121

122 function transform(d) {

123 return "translate(" + d.x + "," + d.y + ")";

124 }

125

126

127

128 </script>

129 </body>

130 </html>

A.3.3 Single view javascript data sample

1 var links = [{source: "SpiderMonkey" , target:"DCOM", type: "dependency"},

2 {source: "JS Libraries" , target:"SpiderMonkey", type: "dependency"},

3 {source: "JS Libraries" , target:"DCOM", type: "dependency"},

4 {source: "JS Libraries" , target:"Javascript", type: "dependency"},

5 {source: "XUL" , target:"SpiderMonkey", type: "dependency"},

6 {source: "XUL" , target:"Javascript", type: "dependency"},

7 {source: "CustomBinary1" , target:"WebGL wasm binary", type: "dependency"},

8 {source: "CustomBinary1" , target:"wasm capability", type: "coupler_added"},

9 {source: "wasm capability" , target:"SpiderMonkey", type: "dependency"}];

A.3.4 Sample JSON Artefact graph format

Graph data

1 {"graph": {"name": "compose(,)"}, "nodes": [{"licenceview": ["None"],

2 "id": "C++ wasm target", "property": ["C++ libraries", "NO filesystem IO",

3 "fastest", "load-time-efficient"], "softwareview": ["Language"]},

4 {"id": "WebGL wasm binary"}, {"id": "CustomBinary1"}, {"softwareview":

5 ["Presentation"], "id": "SpiderMonkey", "property":

6 ["JavaScript engine", "asmj.js", "wasm", "language:JavaScript",

7 "Mozilla application framework"], "isonode": ["V8", "Chakra"],

8 "licenceview": ["MPL"]}, {"softwareview": ["UX/Presentation"],

9 "id": "XUL", "property": ["GUI", "web", "XML", "cross platform",

10 "Mozilla application framework"], "isonode": ["WinForms", "Swing",

11 "wxWidgets", "Kivy", "QT"], "licenceview": ["MPL"]}, {"id": "CustomBinary2"},

A.4. Python stdout(console) prints 213

12 {"softwareview": ["Components"], "id": "XPCOM", "property": ["business layer",

13 "component model", "enable:plugins", "text processing", "cross platform",

14 "Mozilla application framework"], "isonode": ["DCOM", ".NET", "BONOBO"],

15 "licenceview": ["MPL"]}, {"softwareview": ["Language"], "id": "Javascript",

16 "property": ["language", "imperative", "Object Oriented",

17 "text processing", "web"], "isonode": ["Python", "TypeScript"],

18 "licenceview": ["None"]}, {"id": "wasm capability"}, {"id": "JS Libraries"}],

19 "multigraph": false, "directed": true,

20 "links": [{"target": 3, "source": 4}, {"target": 7, "source": 4},

21 {"target": 8, "source": 2}, {"target": 1, "source": 2},

22 {"target": 8, "source": 5}, {"target": 0, "source": 5},

23 {"target": 6, "source": 3}, {"target": 6, "source": 9},

24 {"target": 3, "source": 9}, {"target": 7, "source": 9},

25 {"target": 3, "source": 8}]}

A.4 Python stdout(console) prints

Artefact basic information print output:

1 ----------------------------[Artefact: wasm capability enabled Firefox]----------------------------

2 Node XPCOM property entries: ['business layer', 'component model', 'enable:plugins', 'text processing', 'cross platform', 'Mozilla application framework']

3 Node SpiderMonkey property entries: ['JavaScript engine', 'asmj.js', 'wasm', 'language:JavaScript', 'Mozilla application framework']

4 Node Javascript property entries: ['language', 'imperative', 'Object Oriented', 'text processing', 'web']

5 Node XUL property entries: ['GUI', 'web', 'XML', 'cross platform', 'Mozilla application framework']

6 Node JS Libraries property entries: []

7 Node wasm capability property entries: []Node XPCOM isonode entries: ['DCOM', '.NET', 'BONOBO']

8 Node SpiderMonkey isonode entries: ['V8', 'Chakra']

9 Node Javascript isonode entries: ['Python', 'TypeScript']

10 Node XUL isonode entries: ['WinForms', 'Swing', 'wxWidgets', 'Kivy', 'QT']

11 Node JS Libraries isonode entries: []

12 Node wasm capability isonode entries: []

13 Context sequence: ['assets.xml']

14 Couplers so far: []

15 Evolution edges: []

16 Seed Assort: -0.148522131447

17 ----------------------------[Artefact: CustomScript jQuery and D3.js]----------------------------

18 Node XPCOM property entries: ['business layer', 'component model', 'enable:plugins', 'text processing', 'cross platform', 'Mozilla application framework']

19 Node CustomBinary1 property entries: []

20 Node XUL property entries: ['GUI', 'web', 'XML', 'cross platform', 'Mozilla application framework']

21 Node WebGL wasm binary property entries: []

22 Node CustomBinary2 property entries: []

23 Node Javascript property entries: ['language', 'imperative', 'Object Oriented', 'text processing', 'web']

24 Node JS Libraries property entries: []

A.4. Python stdout(console) prints 214

25 Node C++ wasm target property entries: ['C++ libraries', 'NO filesystem IO', 'fastest', 'load-time-efficient']

26 Node SpiderMonkey property entries: ['JavaScript engine', 'asmj.js', 'wasm', 'language:JavaScript', 'Mozilla application framework']

27 Node wasm capability property entries: []Node XPCOM isonode entries: ['DCOM', '.NET', 'BONOBO']

28 Node CustomBinary1 isonode entries: []

29 Node XUL isonode entries: ['WinForms', 'Swing', 'wxWidgets', 'Kivy', 'QT']

30 Node WebGL wasm binary isonode entries: []

31 Node CustomBinary2 isonode entries: []

32 Node Javascript isonode entries: ['Python', 'TypeScript']

33 Node JS Libraries isonode entries: []

34 Node C++ wasm target isonode entries: []

35 Node SpiderMonkey isonode entries: ['V8', 'Chakra']

36 Node wasm capability isonode entries: []

37 Context sequence: ['assets.xml', 'views.xml']

38 Couplers so far: ['wasm1', 'wasm2']

39 Evolution edges: [('CustomBinary1', 'wasm capability'), ('CustomBinary2', 'wasm capability')]

40 Sol Assort: -0.0185185185185

41 Node XPCOM softwareview entries: ['Components']

42 Node CustomBinary1 softwareview entries: []

43 Node XUL softwareview entries: ['UX/Presentation']

44 Node WebGL wasm binary softwareview entries: []

45 Node CustomBinary2 softwareview entries: []

46 Node Javascript softwareview entries: ['Language']

47 Node JS Libraries softwareview entries: []

48 Node C++ wasm target softwareview entries: ['Language']

49 Node SpiderMonkey softwareview entries: ['Presentation']

50 Node wasm capability softwareview entries: []

51 Node XPCOM licenceview entries: ['MPL']

52 Node CustomBinary1 licenceview entries: []

53 Node XUL licenceview entries: ['MPL']

54 Node WebGL wasm binary licenceview entries: []

55 Node CustomBinary2 licenceview entries: []

56 Node Javascript licenceview entries: ['None']

57 Node JS Libraries licenceview entries: []

58 Node C++ wasm target licenceview entries: ['None']

59 Node SpiderMonkey licenceview entries: ['MPL']

60 Node wasm capability licenceview entries: []

61 True

62

63 Process finished with exit code 0

A.5. XML configuration files 215

A.5 XML configuration files

Configuration files with metadata to be loaded on artefact instances.

A.5.1 Artefact XML sets master configuration schema to validate master

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xs:schema attributeFormDefault="unqualified"

3 elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

4 <xs:element name="assets" type="assetsType">

5 <xs:annotation>

6 <xs:documentation>if I define it

7 <assets name="asset repository"

8 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

9 xsi:noNamespaceSchemaLocation="./repository.xsd"></xs:documentation>

10 </xs:annotation>

11 </xs:element>

12 <xs:complexType name="assetsType">

13 <xs:sequence>

14 <xs:element type="assetType" name="asset" maxOccurs="unbounded" minOccurs="0">

15 <xs:annotation>

16 <xs:documentation>inside the artefact they are just listed</xs:documentation>

17 </xs:annotation>

18 </xs:element>

19 </xs:sequence>

20 <xs:attribute type="xs:string" name="name"/>

21 <xs:attribute type="xs:string" name="version"/>

22 </xs:complexType>

23 <xs:complexType name="assetType">

24 <xs:choice maxOccurs="unbounded" minOccurs="0">

25 <xs:element type="xs:string" name="property"/>

26 <xs:element type="xs:string" name="isonode"/>

27 </xs:choice>

28 <xs:attribute type="xs:string" name="name" use="optional"/>

29 </xs:complexType>

30 </xs:schema>

A.5.2 Artefact XML assets master configuration example

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!--

3 if I define it

A.5. XML configuration files 216

4 <assets name="asset repository"

5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

6 xsi:noNamespaceSchemaLocation="./repository.xsd">

7 -->

8 <assets name="master" version="1.0">

9 <!-- inside the artefact they are just listed -->

10 <asset name="DCOM">

11 <property>Windows Only</property>

12 </asset>

13 <asset name="WebGL wasm binary">

14 <property>NO filesystem IO</property>

15 <property>fastest</property>

16 <property>web</property>

17 <property>Render:Canvas</property>

18 <property>language:JavaScript</property>

19 <property>Smallest size</property>

20 <property>Sandboxed</property>

21 </asset>

22 <asset name="C++ wasm target">

23 <property>C++ libraries</property>

24 <property>NO filesystem IO</property>

25 <property>fastest</property>

26 <property>load-time-efficient</property>

27 <property>Access to legacy code</property>

28 <property>Low level</property>

29 <property>Smallest size</property>

30 <property>Sandboxed</property>

31 </asset>

32 <asset name="bs4">

33 <property>HTML processing</property>

34 <property>HTML error tolerance</property>

35 <property>language:python</property>

36 <property>text processing</property>

37 <property>web</property>

38 </asset>

39 <asset name="Kivy">

40 <property>GUI</property>

41 <property>cross platform</property>

42 <isonode>WinForms</isonode>

43 <isonode>Swing</isonode>

44 <isonode>wxWidgets</isonode>

45 <isonode>XUL</isonode>

46 <isonode>QT</isonode>

A.5. XML configuration files 217

47 </asset>

48 <asset name="D3">

49 <property>web</property>

50 <property>language:JavaScript</property>

51 <property>Render:SVG</property>

52 <isonode>Bokeh</isonode>

53 </asset>

54 <asset name="Bokeh">

55 <property>web</property>

56 <property>Render:Canvas</property>

57 <property>language:JavaScript</property>

58 <isonode>D3</isonode>

59 </asset>

60 <asset name="jQuery">

61 <property>language:JavaScript</property>

62 <property>web</property>

63 <property>declarative</property>

64 <property>cross platform</property>

65 <isonode>Zepto</isonode>

66 <isonode>AngularJS</isonode>

67 <isonode>umbrella.js</isonode>

68 </asset>

69 <asset name="Firefox">

70 <property>web</property>

71 <property>browser</property>

72 <property>cross platform</property>

73 <property>enable:plugins</property>

74 <property>Mozilla application framework</property>

75 <isonode>Chrome</isonode>

76 <isonode>IE</isonode>

77 <isonode>Opera</isonode>

78 <isonode>Edge</isonode>

79 <isonode>Lynx</isonode>

80 </asset>

81 <asset name="GreaseMonkey">

82 <property>enabler:XSS</property>

83 <property>web</property>

84 <property>language:JavaScript</property>

85 <property>Firefox:extension</property>

86 <isonode>Scriptish</isonode>

87 <isonode>Tampermonkey</isonode>

88 <isonode>Violent monkey</isonode>

89 </asset>

A.5. XML configuration files 218

90 <asset name="XPCOM">

91 <property>business layer</property>

92 <property>component model</property>

93 <property>enable:plugins</property>

94 <property>text processing</property>

95 <property>cross platform</property>

96 <property>Mozilla application framework</property>

97 <isonode>DCOM</isonode>

98 <isonode>.NET</isonode>

99 <isonode>BONOBO</isonode>

100 </asset>

101 <asset name="SpiderMonkey">

102 <property>JavaScript engine</property>

103 <property>asmj.js</property>

104 <property>wasm</property>

105 <property>language:JavaScript</property>

106 <property>Mozilla application framework</property>

107 <isonode>V8</isonode>

108 <isonode>Chakra</isonode>

109 </asset>

110 <asset name="Javascript">

111 <property>language</property>

112 <property>imperative</property>

113 <property>Object Oriented</property>

114 <property>text processing</property>

115 <property>web</property>

116 <isonode>Python</isonode>

117 <isonode>TypeScript</isonode>

118 </asset>

119 <asset name="XUL">

120 <property>GUI</property>

121 <property>web</property>

122 <property>XML</property>

123 <property>cross platform</property>

124 <property>Mozilla application framework</property>

125 <isonode>WinForms</isonode>

126 <isonode>Swing</isonode>

127 <isonode>wxWidgets</isonode>

128 <isonode>Kivy</isonode>

129 <isonode>QT</isonode>

130 </asset>

131 <asset name="Ubuntu Trusty">

132 <property>OS</property>

A.5. XML configuration files 219

133 <property>Linux</property>

134 <isonode>Windows Server 2012 R2</isonode>

135 <isonode>Red Hat Enterprise Linux 7</isonode>

136 <property>Google Cloud Platform</property>

137 </asset>

138 <asset name="Redis">

139 <property>Database</property>

140 <property>key-value</property>

141 <property>no-sql</property>

142 <isonode>PostgreSQL-test</isonode>

143 <isonode>Cassandra-test</isonode>

144 <isonode>MongoDB-test</isonode>

145 </asset>

146 <asset name="nginx">

147 <property>server</property>

148 <property>high-performance server</property>

149 <isonode>node.js</isonode>

150 <isonode>Apache</isonode>

151 <isonode>LAMP</isonode>

152 <isonode>LAPP</isonode>

153 </asset>

154 <asset name="node.js">

155 <property>server</property>

156 <property>language:JavaScript</property>

157 <property>asynchronous</property>

158 <property>evented</property>

159 <isonode>vertx.io</isonode>

160 <isonode>Tornado</isonode>

161 </asset>

162 <asset name="LAMP">

163 <property>Server Stack</property>

164 <property>language:JavaScript</property>

165 <property>language:sql</property>

166 <isonode>LAPP</isonode>

167 <isonode>Apache</isonode>

168 <isonode>language:PHP</isonode>

169 <isonode>MySQL</isonode>

170 </asset>

171 </assets>

A.5.3 Artefact XML asset extra configuration fragment example

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!-- if I define it

A.5. XML configuration files 220

3 <assets name="asset repository"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:noNamespaceSchemaLocation="./repository.xsd">

6 -->

7 <assets name="views" version="1.0">

8 <!-- inside the artefact they are just listed-->

9 <asset name="C++ wasm target">

10 <licence>Not applicable</licence>

11 <softwareview> Language</softwareview>

12 </asset>

13 <asset name="bs4">

14 <licence>MIT</licence>

15 <softwareview> business logic</softwareview>

16 </asset>

17 <asset name="Kivy">

18 <licence>Dual GPL</licence>

19 <softwareview> UX/Presentation</softwareview>

20 </asset>

21 <asset name="jsforcegraph">

22 <licence>GPLv3</licence>

23 <softwareview> Presentation</softwareview>

24 </asset>

25 <asset name="jQuery">

26 <licence>MIT</licence>

27 <softwareview> Presentation</softwareview>

28 </asset>

29 <!-- define firefox as an artefact -->

30 <asset name="Firefox">

31 <licence>MPL</licence>

32 <softwareview> framework </softwareview>

33 </asset>

34 <asset name="GreaseMonkey">

35 <licence>MPL</licence>

36 <softwareview>plugin</softwareview>

37 </asset>

38 <asset name="XPCOM">

39 <licence>MPL</licence>

40 <softwareview> Components</softwareview>

41 </asset>

42 <asset name="SpiderMonkey">

43 <licence>MPL</licence>

44 <softwareview> Presentation</softwareview>

45 </asset>

A.5. XML configuration files 221

46 <asset name="Javascript">

47 <licence> Standard</licence>

48 <softwareview> Language </softwareview>

49 </asset>

50 <asset name="XUL">

51 <licence>MPL</licence>

52 <softwareview> UX/Presentation</softwareview>

53 </asset>

54 </assets>

A.5.4 Google Cloud Launcher configuration fragment(layer)

Just selected assets entries out of 1755 source lines [17].

1 <?xml version="1.0" ?>

2 <assets name="Google Cloud Launcher Assets">

3 <!--Generated by csv2assets.py.

4 Google Cloud Launcher features popular

5 open source packages that have been configured by

6 Bitnami or Google Click for easy deployment.-->

7 <asset category="Unknown origin" description="description"

8 icon="icon"

9 link="link" name="name"/>

10 <asset category="Unknown origin" description=" Universal artifact repository "

11 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/XvXO5GaH5MSyRwmozajoTjIziG

12 pBllps5Kg8nQOG88aRqvonfM.png"

13 link="https://console.cloud.google.com/launcher/details/jfrog-app/artifactory"

14 name="JFrog Artifactory"/>

15 <asset category="OS" description=" Ubuntu Trusty Linux (14.04 LTS) "

16 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/BuywmfS24sUuqEjgyg_VRZrGN2m

17 -CPqMgOMAa1MaLlT-LtCXJk.png"

18 link="https://console.cloud.google.com/launcher/details/ubuntu-os-cloud/

19 ubuntu-trusty?cat=OS"

20 name="Ubuntu Trusty">

21 <isonode>Windows Server 2012 R2</isonode>

22 <isonode>Red Hat Enterprise Linux 7</isonode>

23 <isonode>Ubuntu Xenial</isonode>

24 <isonode>Windows Server 2008 R2</isonode>

25 <isonode>Ubuntu Precise</isonode>

26 <isonode>Red Hat Enterprise Linux 6</isonode>

27 <isonode>SUSE Linux Enterprise Server 11</isonode>

28 <isonode>SUSE Linux Enterprise Server 12</isonode>

29 <isonode>Debian 8</isonode>

30 <isonode>CentOS 7</isonode>

A.5. XML configuration files 222

31 <isonode>CentOS 6</isonode>

32 </asset>

33 <asset category="Database" description=" Advanced key-value cache and store "

34 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/V2nVMPQcimn14jDWD-QKf_

35 VToeFZOIt7-5GOF7Saqt_mMJKR0I.png"

36 link="https://console.cloud.google.com/launcher/details/click-to-deploy-images/

37 redis?cat=DATABASE"

38 name="Redis">

39 <isonode>Cassandra</isonode>

40 <isonode>EDB Postgres Enterprise</isonode>

41 <isonode>Aerospike</isonode>

42 <isonode>MySQL</isonode>

43 <isonode>MongoDB</isonode>

44 <isonode>PostgreSQL</isonode>

45 <isonode>Cassandra</isonode>

46 <isonode>Percona</isonode>

47 <isonode>MongoDB Multi-VM</isonode>

48 <isonode>CouchDB</isonode>

49 <isonode>DataStax Enterprise</isonode>

50 <isonode>ClearDB</isonode>

51 </asset>

52 <asset category="Blogging" description=" The most popular and ready-to-go CMS "

53 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/DvnBOpJOiEM2LW4mhC8fZBEMKxB

54 7DAARTrOTUp3mKrAkwyM5n8.png"

55 link="https://console.cloud.google.com/launcher/details/bitnami-launchpad/

56 wordpress?cat=BLOG"

57 name="WordPress">

58 <isonode>WordPress Multisite</isonode>

59 <isonode>Ghost</isonode>

60 <isonode>Publify</isonode>

61 <isonode>Chyrp</isonode>

62 <isonode>Roller</isonode>

63 </asset>

64 <asset category="CMS" description=" The most popular and ready-to-go CMS "

65 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/DvnBOpJOiEM2LW4mhC8fZBEMKx

66 B7DAARTrOTUp3mKrAkwyM5n8.png"

67 link="https://console.cloud.google.com/launcher/details/bitnami-launchpad/

68 wordpress?cat=CMS"

69 name="WordPress">

70 <isonode>WordPress Multisite</isonode>

71 <isonode>Joomla!</isonode>

72 <isonode>Drupal</isonode>

73 <isonode>Alfresco Community</isonode>

A.5. XML configuration files 223

74 <isonode>concrete5</isonode>

75 <isonode>MODX</isonode>

76 <isonode>Tiki Wiki CMS Groupware</isonode>

77 <isonode>CMS Made Simple</isonode>

78 <isonode>Pimcore</isonode>

79 <isonode>ProcessWire</isonode>

80 <isonode>Open Atrium</isonode>

81 <isonode>SilverStripe</isonode>

82 <isonode>eZ Publish</isonode>

83 <isonode>Sitecake</isonode>

84 <isonode>TYPO3</isonode>

85 <isonode>Plone</isonode>

86 <isonode>Ametys</isonode>

87 <isonode>Neos</isonode>

88 <isonode>XOOPS</isonode>

89 <isonode>Refinery CMS</isonode>

90 <isonode>ocPortal</isonode>

91 <isonode>EnanoCMS</isonode>

92 </asset>

93 <asset category="CRM" description=" Flexible customer relationship management

94 solution "

95 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/fT0AI13fKyeVPMFaGGkYFvOSj

96 ToDYswn77zLTOQTOoML3IQPb0.png" link="https://console.cloud.google.com/launcher/

97 details/bitnami-launchpad/sugarcrm?cat=CRM"

98 name="SugarCRM">

99 <isonode>Odoo</isonode>

100 <isonode>SuiteCRM</isonode>

101 <isonode>Mautic</isonode>

102 <isonode>ERPNext</isonode>

103 <isonode>Dolibarr</isonode>

104 <isonode>CiviCRM</isonode>

105 <isonode>EspoCRM</isonode>

106 <isonode>OpenERP</isonode>

107 <isonode>OroCRM</isonode>

108 <isonode>Zurmo</isonode>

109 <isonode>X2Engine Sales CRM</isonode>

110 <isonode>Fat Free CRM</isonode>

111 </asset>

112 <asset category="Developer tools" description=" Binary Repository Manager for

113 Maven, Ivy,

114 Gradle modules "

115 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/-oLJxURmB1qwQYk1Zbe412B7u

116 6cdToF5rv5mW

A.5. XML configuration files 224

117 JeHhEczeaaHcs.png"

118 link="https://console.cloud.google.com/launcher/details/bitnami-launchpad/

119 artifactory?cat=DEVELOPER_TOOLS" name="Artifactory">

120 <isonode>PHP 5.6 - Zend Server Developer Edition</isonode>

121 <isonode>Jenkins</isonode>

122 <isonode>Redmine</isonode>

123 <isonode>GitLab</isonode>

124 <isonode>Kafka</isonode>

125 <isonode>DreamFactory</isonode>

126 <isonode>RabbitMQ</isonode>

127 <isonode>Subversion</isonode>

128 <isonode>Phabricator</isonode>

129 <isonode>TestLink</isonode>

130 <isonode>Eclipse Che</isonode>

131 <isonode>Parse Server</isonode>

132 <isonode>ActiveMQ</isonode>

133 <isonode>Mantis</isonode>

134 <isonode>PHP 7.0 - Zend Server Developer Edition</isonode>

135 <isonode>Trac</isonode>

136 <isonode>Review Board</isonode>

137 <isonode>Codiad</isonode>

138 <isonode>Squash</isonode>

139 <isonode>JFrog Artifactory</isonode>

140 <isonode>Kong</isonode>

141 </asset>

142 <asset category="Other" description=" Cogito understands the meaning of written

143 language "

144 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/c3xcso5w75hN6sjRNWoR4BYne9R

145 aFcCezmM275pc9cu5ZhOOT1.png"

146 link="https://console.cloud.google.com/launcher/details/cogito-api/cogito?cat=OTHERS"

147 name="Cogito API Core"/>

148 <asset category="Other" description=" Popular eCommerce software and platform "

149 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/xQhecg2kZcuOSYaomVko4qpWGyk

150 _3WS1_7KkNEqtlubrOooO7I.png"

151 link="https://console.cloud.google.com/launcher/details/bitnami-launchpad/

152 magento?cat=OTHERS"

153 name="Magento"/>

154 <asset category="Other" description=" Universal artifact repository "

155 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/XvXO5GaH5MSyRwmozajoTjIziGp

156 llps5Kg8nQ

157 OG88aRqvonfM.png"

158 link="https://console.cloud.google.com/launcher/details/jfrog-app/artifactory?cat=OTHERS"

159 name="JFrog Artifactory"/>

A.5. XML configuration files 225

160 <asset category="Other" description=" Extremely powerful, scalable wiki

161 implementation "

162 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/OPnVKdrbvyCzz1uA8qhWrUGMOLj

163 nX-kb9f17EsTb8Cphntk6Ws.png"

164 link="https://console.cloud.google.com/launcher/details/bitnami-launchpad/

165 mediawiki?cat=OTHERS"

166 name="MediaWiki"/>

167 <asset category="Other" description=" Free e-commerce platform for online

168 merchants "

169 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/t_mZQ0un4z_MSkRpmyF_Fl

170 VdxBnNh2zluwu_TR8e

171 8qln7W5Lug.png"

172 link="

173 <asset category="Other" description=" Intuitive to-do list app for easy

174 collaboration "

175 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/I7nZXExPyqXIbwfWb7ul

176 Gn0uGg1HwAbjcqMdHg6

177 -lrKGDZj7gd.png"

178 link="https://console.cloud.google.com/launcher/details/bitnami-launchpad/

179 tracks?cat=OTHERS"

180 name="Tracks"/>

181 <asset category="Other" description=" Popular Open Source ePortfolio and

182 social networking

183 web app "

184 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/WtnYURyuHYbw0tTai7qEj

185 yzhEFXlMiJIVtTaXu5w

186 5QTbNOA9_2.png"

187 link="

188 <asset category="Other" description=" Popular personal web server "

189 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/sbXZDQSLT-KPnRI0Vaxnd

190 E9uLwgfNLgenpeRJXi

191 6e43YORpRLg.png"

192 link="https://console.cloud.google.com/launcher/details/bitnami-launchpad/

193 diaspora?cat=OTHERS"

194 name="Diaspora"/>

195 <asset category="Other" description=" Multi-purpose, fully featured web

196 gallery "

197 icon="Cloud%20Launcher%20Marketplace%20Solutions_files/cf1dfpaQRU_GKGIfFAj5CH

198 1ZUqC4z4X7groQv01ZmiAJq683zY.png"

199 link="https://console.cloud.google.com/launcher/details/bitnami-launchpad/

200 coppermine?cat=OTHERS"

201 name="Coppermine"/>

202 </assets>

A.6. Large images/captures 226

A.6 Large images/captures

A.6. Large images/captures 227

Figure A.1: Equivalence class generation of sample known static views.

A.6. Large images/captures 228

Figure A.2: All views evolved with the same artefact using the evolve delta() thick

∆ method.

A.6. Large images/captures 229

Figure A.3: Notebook text output. Includes data before and after evolution and

configuration layering.

A.6. Large images/captures 230

Figure A.4: Sample test interactive output as a Jupyter notebook: "multiple

simultaneous static graphs.ipynb"

A.6. Large images/captures 231

	Introduction
	Introduction
	Software Evolution as modelling target
	Higher level software components
	Automation
	Graph based modelling
	Graph modelling
	Chapter summary

	Research methodology
	Software Evolution
	Existing evolution related Tools
	Overview of the model
	Asset and their relationships
	Solutions views (perspectives)
	Equivalence class
	Hypergraph and artefacts
	Hypergraph expansions and software families
	Organic growth
	Examples and case studies

	The basis for Automation
	 Conclusion

	Software Evolution
	Software Evolution
	Introduction
	Evolving Software
	Evolution-ready or evolvable software
	Conclusions

	 Analysis and Visualization tools
	Introduction
	 Holistic Software Evolution: CodeCity
	An Environment for dedicated Software Analysis tools: Moose
	Recovering Software Architecture with Softwarenaut
	Process Mining Software Repositories

	 Software tools for Architecture and Design
	 Automated Synthesis of CONNECtors to support Software Evolution
	Emergent Middleware: Starlink
	Pat-Evol: Pattern-driven Reuse in Architecture based Evolution for Service Software
	 CAPucine: Context-Aware Service-Oriented Product Line for Mobile Apps
	MoDisco Framework
	 Rascal metaprogramming
	 Evolving Software for Molecular Modelling

	 Evaluation of the techniques
	 Software evolution approaches
	 Lower level: code and modules
	 Higher level: Architecture based
	 Graph based
	 Model-driven (SPLs)

	 Relational model overview
	Modelling asset relationships
	Evolution guided by Isomorphism

	 Example: Architectures isomorphic to cloud systems
	 Conclusions

	 A Relational Hypergraph based Model
	Introduction
	 Preliminaries
	Relations
	Graph of Asset relation
	Graph Isomorphism as a structure preserving operation
	Sub-graph Isomorphism to identify related structures
	Existence of Primitive operations

	Relational Hypergraph Model
	Evolution using Hypergraphs
	Single Asset evolution
	Hierarchical evolution of multiple Assets
	Existence of Product lines

	 Encoding families using a Relational Hypergraph Model
	 Software Product lines: Single asset
	 Coupler enablers or the assets where to grow from

	 Multiple asset based product lines : Case studies
	 Case Study I: Evolution of Browser Technology
	 Case Study II: Cloud compute engine
	 Case Study III: Regulatory or Legal Constraints

	 Conclusion

	 Engineering The Elements of Evolution
	Introduction
	 Software design insights

	Engineering the model
	Artefacts as complex operands
	Assets as abstract building sub-blocks
	 Artefacts as a hypergraph based software factory schema

	Evolution and Configurations
	The model as the basis of a component model for evolution
	Property transmission, recording and tracking

	 Evolution Operations
	Core operations
	Designing a seed artefact
	Designing a coupler
	Shift to Solution view
	Shift to compatible Coupler
	Evolution step: Evolve with under

	Conclusions

	Evolution Automation Feasibility
	Introduction
	The model in contrast
	Python prototyping
	The model
	Cloud solution
	ReST microservice
	Use cases

	Architectural Overview
	Jupyter server

	Configuration Context files
	Encoding Assets
	Encoding Artefacts

	The Model as a whole
	Artefact custom initialisation
	Applying Configuration Contexts
	Instance metadata
	Configuration Contexts Automation
	 Evolution operations
	Evaluating and tracking desired properties
	Searching for other isomorphic solution views

	 I/O and Visualisation
	 Displaying static graphs
	 Displaying dynamic graphs

	Modelling: Examples of scripting use
	Single asset evolution
	Multiple assets evolution

	ReSTful microservice
	Selectable Test scenario (sandbox function)
	ReST Resources
	How to implement ReSTful operations
	A test scenario to showcase the model basics

	Notebook deployment and Jupyter access
	Microservice deployment
	Conclusions
	Evolution as documentation
	The model should be the deepest module
	Splitting Artefact Class
	Asynchronous operation upgrade
	Future scaling

	Software Evolution: organic growth
	Introduction
	Organic growth
	Generative models
	Predictors: Key search properties
	Scanning using predictors

	The Cloud Family: Branch evolution
	Starting stage: The birth of The Web
	The Client family
	The Server family
	The Cloud family evolution
	The Cloud family: Analysis

	Conclusions
	Evolution process of growth
	Families
	The Cloud family

	Conclusions
	Introduction
	Formal modelling considerations
	Queries using graph based metadata
	Automating solution (family) search
	Observations and findings

	A Finite State Machine generator
	Solution family instance detection
	Operations as data efficient messaging events

	A (Scale-Free) network of assets assembler
	Unlimited relationships
	Existence of Simpler Solution families
	The need for complex families

	Model Implications and Re-Interpretations
	The coupler as a solution subspace
	Solution sub-space iterator
	Emerging fractal spaces
	 [] as a Closure

	Critical appraisal
	Terminology and concepts
	Models can be dangerous
	The need for empirical evidence
	Prototype implementation
	Automation of craftsmanship

	Recommendations for Future Research
	Visual Modelling
	The research of other implementations
	Automatic stop using conditional traversal
	Complex Data Configurations

	Bibliography
	Appendices
	Appendices
	Prototype notebook examples
	Python files
	csv2assets.py
	launcherharvest.py
	microservice.py
	ioutils.py
	model.py
	artefact_views_test.py

	 Produced Support data
	 The tile view Jinja2 template
	 The single view Jinja2 template
	 Single view javascript data sample
	Sample JSON Artefact graph format

	 Python stdout(console) prints
	 XML configuration files
	Artefact XML sets master configuration schema to validate master
	Artefact XML assets master configuration example
	Artefact XML asset extra configuration fragment example
	Google Cloud Launcher configuration fragment(layer)

	 Large images/captures

