
Toward understanding I/O behavior in
HPC workflows
Conference or Workshop Item

Accepted Version

Lüttgau, J., Snyder, S., Carns, P., Wozniak, J. M., Kunkel, J.
and Ludwig, T. (2018) Toward understanding I/O behavior in
HPC workflows. In: PDSW­DISCS, 12 November 2018, Dallas,
Texas, pp. 64­75. Available at
http://centaur.reading.ac.uk/80104/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: https://ieeexplore.ieee.org/document/8638425

Publisher: IEEE

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/161508868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Reading’s research outputs online

Toward Understanding I/O Behavior
in HPC Workflows

Jakob Lüttgau†∗, Shane Snyder∗, Philip Carns∗, Justin M. Wozniak∗, Julian Kunkel‡, Thomas Ludwig†
∗Argonne National Laboratory (ANL), †German Climate Computing Center (DKRZ), ‡University of Reading

luettgau@dkrz.de

Abstract—Scientific discovery increasingly depends on complex
workflows consisting of multiple phases and sometimes millions of
parallelizable tasks or pipelines. These workflows access storage
resources for a variety of purposes, including preprocessing,
simulation output, and postprocessing steps. Unfortunately, most
workflow models focus on the scheduling and allocation of com-
putational resources for tasks while the impact on storage systems
remains a secondary objective and an open research question. I/O
performance is not usually accounted for in workflow telemetry
reported to users.

In this paper, we present an approach to augment the I/O
efficiency of the individual tasks of workflows by combining
workflow description frameworks with system I/O telemetry data.
A conceptual architecture and a prototype implementation for
HPC data center deployments are introduced. We also identify
and discuss challenges that will need to be addressed by workflow
management and monitoring systems for HPC in the future. We
demonstrate how real-world applications and workflows could
benefit from the approach, and we show how the approach helps
communicate performance-tuning guidance to users.

I. INTRODUCTION

Supercomputing resources enable scientific discovery at
an unprecedented pace. Scientists across domains employ
complex data-processing pipelines and workflows to automate
the evaluation of experiments and simulation results. Along
with the execution of these workflows, huge amounts of data
need to be handled by HPC I/O subsystems. Unfortunately,
compute and storage performance capabilities are on divergent
trajectories. While compute capabilities scale relatively well
because of massive use of distributed computing and special-
ized compute hardware [1], storage systems trying to match
required performance characteristics are usually constrained
by a lack of suitable and affordable technologies, as well as
limited energy envelopes. In addition, storage systems tend to
be shared by multiple users, and they employ complex memory
hierarchies to balance cost and performance. The resulting
software to drive storage and memory stacks evolves slowly,
and new approaches require time to prove that they are stable
enough to be used in production.

As exascale systems are about to become a reality, I/O
bottlenecks are a growing concern that needs to be addressed.
Overcoming the challenges raised requires changes through-
out the storage stacks, and hence many research efforts are
integrated into larger codesign initiatives [2] [3] [4]. At the
same time, design decisions for large-scale storage systems are
influenced by market forces, with future system architectures

[5] trying to make use of commoditization and employing deep
memory hierarchies to conserve cost.

The confluence of system complexity, application optimiza-
tions, and market forces lead to emergent I/O subsystem
behavior that is often not well understood. Systems remain
below theoretic peak performance since different usage pat-
terns can have unforeseen side effects on the system. In order
to better understand this behavior, monitoring tools are being
developed and deployed to allow systemwide monitoring in
modern HPC systems. Recent work has shown that the value
of I/O telemetry is greatly increased if it is analyzed in context
with broader contextual information [6], though this type of
analysis is generally performed only after the fact.

An untapped potential for increasing our contextual un-
derstanding of I/O behavior exists by exploiting knowledge
about the structure of HPC workflows. Since what is meant
by HPC workflows is not always obvious, a definition useful
from a storage perspective is offered in Section II-A. That
workflow knowledge is not routinely considered by decision
components across the storage stack can be attributed to a
number of factors. On the one hand, monitoring and telemetry
information are not always collected. On the other hand, appli-
cation developers lack incentive to switch to workflow tools,
especially when workflow models might impose constraints
on or add additional effort to a project.

In a mid- to long-term perspective, however, users specify-
ing their workflows help enable a number of on-going research
efforts. With a workflow description one can more easily
associate monitoring and telemetry data with the workflow.
More distant is the integration of this information into resource
allocation and scheduling systems. Data about how workflows
utilize the storage systems will eventually help develop and
train adaptive and more intelligent systems.

In this paper we present an approach to attribute I/O activity
to task and data objects in HPC workflows. Our contributions
are as follows:

1) An architecture proposal for a holistic association of I/O
activity with task and data of scientific workflows

2) A prototype implementation to demonstrate the potential
of an independent set of tools to work with different
workflow management systems

3) Tools for analysis and visualization of workflows for I/O
researchers as well as for communication with users of
supercomputing resources.

The remainder of the paper is structured as follows. Sec-
tion II introduces related work and background on workflows,
monitoring, and I/O. Standing challenges and an architecture
necessary to address them are proposed in Section III. In
Section IV an overview of the proof of concept implementation
is presented. Section V discusses two use cases to utilize
insight on workflow I/O in adaptive systems. Section VI
concludes the paper with a summary and provides an outlook
on future work.

II. BACKGROUND & RELATED WORK

This section introduces background information on state-
of-the-art solutions to I/O activity capture and monitoring
(Section II-D). The section includes a workflow definition
useful for HPC workflows that need to make use of large-
scale storage systems and parallel file systems in particular
(Section II-A).

A. I/O Perspective on Scientific Workflows

Scientists commonly perform experiments on supercomput-
ers using some notion of a workflow. Often, these workflows
may not be explicitly specified in a form easily accessible to
machines but instead are presented as a high-level description
in a project proposal or as sets of scripts used by researchers.
For complex workflows, especially when repeated many times,
researchers are more likely to opt for workflow management
systems (WMS) or workflow engines. A workflow manage-
ment system provides and implements a task or data model
requiring users to merely define the relationships, while the
workflow engine executes the workflow with potential to trans-
parently optimize resource utilization. Besides convenience for
users, workflows offer opportunities to better anticipate future
activity, including activity that will affect storage systems.

As no consistent universal definition for workflows holds
over time and across different fields, this section briefly offers
a definition that aims to be useful for workflows in HPC
environments with storage systems in mind. To an extent,
the definition leans on typical HPC workflows identified and
published in an APEX whitepaper on workflows [7]. The
perspective on how scientific workflows are expected to evolve
for next-generation workflows and systems is supported by [8].

Most commonly, a workflow describes a number of tasks
that should be performed to achieve a higher-level goal. Tasks
usually will consume or yield a piece of data, which in many
cases leads to an order in which tasks need to executed. Also
worth considering are pipelines, since one commonly sees the
same series of steps being performed on different input data,
which in many cases give rise to parallel execution.

a) Task: A task is a logical entity or a program that can
consume and/or produce data. Granularity may vary depending
on the abstraction used by different workflow engines, with a
single task potentially mapping to to a job, a process, a thread,
or even a function call.

b) Data: Data comprises information that is retained or
passed between tasks. Depending on the lifetime, data can be
messages, database entries, or files and objects on a storage

Initial
Input Deck

Forever
Long-Term Archive

Tape

Simulation
Input Deck

Checkpoint
Dump

Initial
State

Checkpoint
Dump

Checkpoint
Dump

Timestep
Dataset

Timestep
Dataset

Setup/
Parameterize/

Create
Geometry

Job
Begin

Simulate
Physics

Job
End

Visualize

Campaign/Project
PFS/Object
Disk/HDD

Temporary
Working Set
Burst Buffer

Simulation
Workflow

Phases

Sampled
Dataset

Down-
Sample

Post-
Process

Analysis
Dataset

(a) Stereotypical simulation workflow (see APEX Workflows [7])

Shared
Input

Forever
Long-Term Archive

Tape

Private
Input

Checkpoint
Dump

Analysis
Data Sets

Checkpoint
Dump

Checkpoint
Dump

...

File-based
Comm.

Generate and/or
Gather Input Data

HTC Analysis or UQ Simulation
Analysis

Campaign/Project
PFS/Object
Disk/HDD

Temporary
Working Set
Burst Buffer

Simulation
Workflow

Phases ...
...

UQ Science Pipeline

HTC Science Pipeline

Analysis
Data Sets

(b) Stereotypical HQ/HTC workflow (see APEX Workflows [7])

Forever
Long-Term Archive

Tape

Analysis
Data Sets

Campaign/Project
PFS/Object
Disk/HDD

Temporary
Working Set
Burst Buffer

In situ
Workflow Generate and/or

Gather Input Data
Simulation
HTC or UQ

Visualisation

Shared
Input

Private
Input

Checkpoint
Dump

Analysis

Timestep
Dataset

Timestep
Dataset

Sampled
Dataset

Post-Processing
Products

(c) Approximation of an in situ workflow

Fig. 1: Abstractions of predominant existing and envisioned
workflows in HPC environments according to [7] and [8]. The
abstracted simulation, UQ, and HTC workflows are derived
from [7]. In situ workflows are anticipated but not widely
spread at this time as frameworks are in their early stages and
adapting existing applications is not always straightforward.

system. The granularity of data objects varies considerably
between different workflow engines. Many workflow engines
use notions of data sets in a hierarchical namespace, while
others directly assume the presence of file systems. In some
extreme cases, workflow engines might consider individual
variables as small as a single byte or integer as data objects.

c) Workflow: A workflow governs the dependencies of
tasks and data and is often represented by using a graph,
with nodes being used to model tasks while edges represent
dependencies. In many cases this representation will result in
a directed acyclic graph (DAG), although complex workflows
may contain cycles. Also, considering I/O activity in such a
graph can lead to situations where data is being read and

written in ways that turn an acyclic task dependency graph
into a cyclic task/data dependency graph. Implementation
logic of tasks is often strictly separated (e.g., a binary) from
the declaration of relationships, while fine-grained workflow
engines seem to favor workflow definitions that allow mixing
the two.

d) Pipeline: Some workflows feature a repeated chain of
steps (which might include branching). If a workflow starts this
same chain of steps, we refer to it as a pipeline. For example,
depending on an input set for the workflow, every element in
an array might require processing as an instance of a pipeline.

B. Common HPC Workflows

In order to address challenges of current and future work-
flows, this section introduces workflows commonly observed
[7] in HPC environments. An outlook on anticipated work-
flows and recognized challenges that WMS will need to ad-
dress before they are suitable for widespread adoption in HPC
environments is provided by [8]. To a large extent, workflows
depend on the facilities, instruments, hardware, and services
scientists find in their respective institutions. Workflows can
span different timespans from minutes up to years depending
on their alignment to a given project. Nonetheless, a number
of common patterns for workflows on HPC have emerged.

a) Simulation: Simulation workflows tend to consist of
3–4 major phases. An illustration of a stereotypical simula-
tion workflow is given in Figure 1a. In the preprocessing
phase, input data needs to be transformed into an initial
state for the simulation. In the simulation/data generation
phase, applications write snapshots and timestep data for fault
tolerance, postprocessing applications, and potential archival.
The postprocessing and visualization phases are deriving data
products that in many cases may be published and preserved.
A simulation workflow as outlined here might be part of the
pipeline of other more data-intensive workflows.

b) Uncertainty Quantification: To deal with uncertainty
when working with nonlinear or chaotic systems (as in many
physical simulations), researchers commonly design work-
flows for uncertainty quantification (UQ). An illustration of
a stereotypical UQ workflow is given in Figure 1b. Such
workflows often consist of a large number of independent
pipelines (typically with simulations running for multiple
hours) that can be executed in parallel. Results from these
parallel executions (often called ensembles) are then combined
into analysis data sets.

c) High-Throughput Computing: Similar to UQ work-
flows are high-throughput computing (HTC) workflows, again
illustrated in Figure 1b. In HTC a large number of pipelines
are executed, but typically featuring tasks only of limited
runtime/data volume. Often the objective is to explore a param-
eter space, for example, to find hyper-parameters in machine
learning applications. From a storage system perspective, high-
throughput computing is often associated with many relatively
small files.

d) In Situ / Integrated Approaches: In situ workflows in-
tegrate their numerous distinct phases into a single application.

Traditionally, these types of workflows have been implemented
in the context of MPI. An illustration of a possible in situ
workflow is given in Figure 1c. Such workflows allow for
conservation of resources by exploiting data locality and avoid-
ing overheads from resource allocation, context switching,
and application startup/shutdown. As far as storage systems
are concerned, the requirement to occasionally consume large
amounts of snapshot data remains; but overall in situ work-
loads promise to reduce the load across network and storage
systems.

e) Hybrid Approaches: Workflows will continue to
evolve, and in many cases scientists will mix workflow models
that are not easily integrated or solved by a single solution.
Since collaborations in projects often span multiple locations
and organizations, one must assume that different workflow
tools being used even within a single project. Consequently,
tools to analyze workflows should address this heterogeneity,
for example by offering abstractions and modularity to inte-
grate other tools and WMS with reasonable effort.

C. Workflow Engines for Automation in HPC Environments

TABLE I: Workflow Management Systems for HPC

Workflow Engine Modes Data Models Graph Telemetry I/O
Swift/T [9], [10] Job/Runtime DSL (3) 5 5
Cylc [11] (Dist.) Jobs (3) 3 3 5
Apache Spark [12] Runtime RDD 3 3 (3)
Fireworks [13] Distributed - 3 3 (5)
Pegasus [14] (Dist.) Jobs - 3 3 5
TaskFarmer [15] Commands Files/Shards 5 5 5
Tigres [16] Runtime “Inputs” - 3 5
Ophidea [17] Runtime Datasets 3 3 5
Kepler [18] Runtime (3) 3 - 5

(5)/(3): Restrictions Apply, -: No documentation found
DSL: Domain Specific Language, RDD: Resilient Distributed Datasets

As scientists continue to add complexity to their workflows
and strive for reproducible scientific results, they demand
more elaborate tools and frameworks that can automate the
execution of workflows. Workflow management systems have
gained considerable popularity with an increase in big data
applications and have also become increasingly popular with
users in the HPC community. Since some of the tools popular
in a big data context are challenging to deploy in HPC systems,
a number of WMS designed specifically for use on HPC
systems are available and under active development. To an
extent, this fragmentation can be attributed to the slightly
different priorities from one scientific domain to another.
Table I provides an overview of HPC WMS as well as a
comparison of features relevant to an I/O perspective. In
particular, since this work introduces tools to visualize I/O
activity of workflows, we indicate whether WMS provide
graphical representations to inspect or even edit workflows.
Tools for visualization are provided by Cylc [11], Fireworks
[13], Ophidea [17], Kepler [18], and Pegasus [14]. Kepler [18]
is notable because an interactive graphical user interface is
provided that also allows direct inspection of results. Cylc
[11] uses the dot format to visualize workflows, which allows
for easy customization.

For the prototype implementation of our workflow analysis
tools, we started with support for two workflow engines that
reside at two ends of the spectrum for workflow granularity.
Swift/T implements a fine-grained and integrated approach to
workflows that is anticipated to be increasingly relevant as
applications strive to exploit exascale systems. Cylc follows
a more traditional and distributed workflow approach and as-
sumes the submission of jobs to batch scheduling systems. As
explained in Section II-B, we anticipate that both models will
remain relevant, and we therefore pursue an abstraction that
accommodates both. The following two paragraphs provide a
more in-depth description of Swift and Cylc.

a) Swift/T: Swift provides a domain-specific language
with many features of a generic programming language to
specify workflows. Swift has two different runtimes to inter-
pret and execute a workflow description: Swift/K [19] and
Swift/T [9], [10]. In this work we focused on the more
recent runtime called Swift/T (for the Turbine runtime [20])
geared toward supporting exascale workloads. The Turbine
runtime implements a highly integrated workflow model that
launches itself a single, large MPI application and optionally
dedicates communicators to subtasks. This approach may also
be especially interesting for applications considering use of
in situ techniques [21].

Swift/K, on the other hand, provides a runtime similar
to that of Cylc, adopting a model of job-based workflows
potentially distributed across multiple sites. In the language
shared by Swift/K and Swift/T, the data model can become
very fine-grained, with data objects potentially as small as
single integers. Each Swift variable is a future, and tasks are
represented as Swift functions that block on their inputs.

b) Cylc: Cylc implements a distributed workflow model,
with data generation and postprocessing and preprocessing
potentially being executed on different sites and consisting
of multiple jobs. Hence, Cylc also allows the collection of
results from multiple compute sites. In Cylc, users define a
directed dependency graph of tasks, as well as data objects that
are passed between tasks. Cylc provides an easy mechanism
to export a graphical representation of the workflow in dot
format. Cylc is used mostly in the context of climate and
weather applications.

D. Holistic I/O Monitoring

In this section we introduce four building blocks that
assist in capturing a comprehensive picture of I/O activity
throughout a data center. Darshan provides the means to
capture I/O activity from an application’s perspective. Many
storage subsystems additionally provide their own, sometimes
proprietary, mechanisms to query backend I/O monitoring
data. TOKIO collects this data from Darshan and other relevant
I/O subsystems and combines it for further analysis.

a) Darshan: Darshan captures I/O activity related to the
application and I/O library layers in an HPC stack. In par-
ticular, Darshan can instrument many I/O interfaces (POSIX,
STDIO) and libraries (such as MPI, HDF5) and can collect and
aggregate its own I/O-related performance counters. Figure 2

Application

Burst
Buffer

HPC Storage
(PFS, Object, ...) Archive

D
a
rs

h
a
n
-R

u
n
ti

m
e

MPI

POSIXSTDIO

Other Libraries

Network

Operating System
Logical Volume Managment (LVM)

Node Local Storage
(HDD, SSD, NVRAM)

Data Description Framework
(HDF5, NetCDF, ...)

Interface/Device Drivers

Darshan-Logfiles
Repository/Directory

Fig. 2: With Darshan one can collect I/O-related activity on
the application and library levels without requiring special
privileges. The dotted lines to STDIO, POSIX, MPI, and
HDF5 depict some instrumentation supported with Darshan
by default, but users can define additional wrappers for other
libraries as well. Recorded log data is stored into log files
before a group of MPI processes terminates.

illustrates at which levels Darshan is able to collect I/O activity
within a system stack. Darshan with extended tracing support
(DXT) [22] also enables the collection of full I/O traces
up to a configurable size. In many cases, instrumenting an
application is as easy as using LD_PRELOAD to interpose
Darshan’s instrumentation library between the application and
its I/O libraries. This approach can be used by all users without
requiring special privileges.

b) System-Level Monitoring/Vendor APIs: I/O monitor-
ing data is generally not accessible by all users, and for
proprietary systems internal performance counters may not
be exposed even to site operators. Many modern systems,
however, do offer APIs to query different system statistics or
even provide event hooks for more sophisticated actions.

c) TOKIO: The TOKIO (Total Knowledge of I/O) frame-
work [23] brings together monitoring information from mul-
tiple sources throughout the data center, as illustrated in Fig-
ure 3. This framework includes access to privileged monitoring
information from I/O subsystems and vendor APIs, but it also
makes use of application data collected by using Darshan. By
continuously monitoring a data center over time, one can, for
example, detect performance regressions [24]. TOKIO also
offers tools to analyze and aggregate collected log records.

d) Telemetry Support in Workflow Engines: Collection
or integration of telemetry information is also built into some
workflow engines, although I/O performance is not addressed

Darshan-Logfiles
Repository/Directory

C
o
m

p
u
te

B
u
rs

t
B

u
ff

e
r

H
D

D
/S

S
D

 S
to

ra
g

e
(P

FS
,

O
b

je
ct

,
..

.)
A

rc
h
iv

e
TOKIO

Telemetry/Monitoring
PFS/Object State Lookups

Vendor APIs

Darshan Utils

Darshan

TOKIO Data
Warehouse

Fig. 3: TOKIO takes a holistic approach to I/O activity capture
throughout the data center. To do so, TOKIO collects data from
different data sources, such as system and service logs, vendor
APIs, PFS monitoring tools, and Darshan log files.

specifically. The Tigres WMS [25], for example, features a
monitoring API to log events. Tigres also was evaluated for
use with I/O-intensive workflows, but a facility within the
workflow engine to capture I/O behavior is missing. Cylc
[11] monitors jobs and keeps track of output files even across
multiple sites. Fireworks [13] has a tracking feature for files
to check whether a file has enough output lines. Ophidea [17]
captures walltime and other statistics for workflows. Swift/K
allows for external monitoring via the web browser, a Java
Swing tool, or an ANSI text user interface. Swift/T uses
optional text or more scalable MPE logging [26].

External tools and dashboards have also been developed to
monitor workflows or WMS. Grafana dashboards, for example,
have been created [27] to monitor Spark.

III. DESIGN CHALLENGES

With the background on HPC workflows and I/O activity
capture established, this section introduces design challenges
for an architecture to gather, analyze, and present the I/O
behavior of workflows. The main motivation for the tools in-
troduced here is to gain insights useful for operating decisions
and system design. Because addressing identified problems or
optimization opportunities usually requires coordination with
users and application developers, the tools also aim to provide
more intuitive means of communication. We achieve this by
associating I/O-related observations for different subsystems,
which regular users may even be unaware of, with the pro-
cesses that users can relate to since the processes are part
of the workflows. The information collected by these tools is

expected to become a valuable input source for the realization
of smarter systems (see Section III-B). A potential integration
with resource management and I/O-related middleware in the
future is discussed in Section V-A and Section V-B.

To be useful in the HPC context, the architecture has to
support multiple WMS because communities use different
tools. The architecture also has to take into account that
supercomputing sites can vary significantly, as evidenced in a
variety of different scheduling systems, storage systems, and
software environments with a wide range of versions for a
specific software tool or library.

To address these requirements, we adopted a modular ap-
proach, with a first iteration of the prototype being designed
with three user perspectives in mind:

1) I/O researchers: Expect a flexible environment to explore
analysis data; for large amounts of log data, interactive
elements will be helpful

2) Site operators: Expect a toolbox that can be customized
to fit the needs of the data center or individual subsys-
tems

3) Application scientists: Expect a report that can be related
to the processing steps performed in their applications
and workflows

A first architecture for comprehensive I/O analysis of HPC
workflows is depicted in Figure 4. Workflows can be defined
implicitly or explicitly. Finding implicit workflows, as far
as I/O is concerned, presents researchers with challenges. It
seems reasonable, however, that at least parts of workflows
can be discovered from log data and I/O activity records that
might be used to improve system performance.

For users who use workflow engines (e.g., Swift, Cylc) there
exists an explicit description of the workflow, which usually
will be a directed acyclic graph of tasks and data objects.
A WMS should offer a easy mechanism to export the DAG
for visualization and other tasks; and, in fact, some do provide
mechanisms for exporting the DAG (e.g., in dot format). In any
case, we assume that one can often obtain a dependency graph.
We then assume helper utilities supporting different WMS that
transform the dependency graph into a preliminary workflow
report that can then be populated with I/O activity records and
annotations.

{
nodes: [{type: "task", ...}, {type: "file", ...}],
edges: [...], # tasks/data dependencies
reports: {
tasks: [...], # task reports
files: [...], # file reports
... },
annotations: [...] # e.g., advice
}

Fig. 5: Structure of a workflow report featuring (1) the
workflow dependency graph of tasks, files, and edges for their
relationships; (2) reports associated with different elements of
the workflow; and (3) annotations and advice also for different
elements of the workflow.

Darshan-Logfiles
Repository/Directory

C
o
m

p
u
te

B
u
rs

t
B

u
ff

e
r

H
D

D
/S

S
D

 S
to

ra
g
e

(P
FS

,
O

b
je

ct
,

..
.)

A
rc

h
iv

e

TOKIO

Projects with implicit or explicit workflows maintened by applications scientists and developers.

Execute w/o WF Engine

I/O Researcher

Site Operators

Darshan Utils
Darshan Workflow

Darshan

swift-t cylc other WMS

Helpers to extract DAG
for Tasks, Data, etc.

Load related logs

TOKIO Data
Warehouse

Developer/
Scientist

Interactive
Dashboard

Analysis Scripts
Jupyter Notebooks

Custom Tools
Machine Learning

Knowledge Base for
General/Site-Specific
Expert System

Telemetry/Monitoring
PFS/Object State Lookups

Vendor APIs

Fig. 4: Architecture overview to augment I/O behavior in HPC workflows by pulling in information from workflow engines
and I/O activity capturing tools. Integration with TOKIO and expert systems is not yet implemented in the proof of concept
introduced in Section IV as indicated by the dashed arrows. Thin dotted lines represent (optional) information sources.

The general structure of such a workflow report is illustrated
in Figure 5. The report JSON provides expected fields for the
workflow dependency graph (nodes, edges). The nodes
field typically will hold tasks (e.g., jobs) or data objects (e.g.,
files). The reports field currently assumes referenced or
inlined Darshan reports. Since Darshan reports can be broken
up, for example into reports per file accessed (many different
criteria can be used to aggregate the individual performance
counters), the reports field also distinguishes between tasks
and files.

For batch scheduling workflow engines, a task usually
corresponds to a job on an HPC system, for which Darshan
will record log files when an MPI application is invoked. The
annotations field is used to allow experts to add advice
either manually or, potentially, automatically using machine
learning models.

A. Associating Tasks and Data Objects with Telemetry

This section covers some challenges related to the associ-
ation of workflow tasks with recorded I/O activity. The first
challenge is to find a suitable mapping between our abstraction
for tasks and data objects and the notion used by the WMS.
A second challenge is to identify and store cues about how
tasks/data and log records relate to each other.

Unfortunately, mechanisms for automatic or transparent
association are not widely supported by workflow engines
and monitoring tools. Multiple mechanisms do exist, however,
to perform logdata/telemetry association are possible. The
following are two approaches that can be realized without
requiring extensive changes to existing monitoring solutions
and workflow engines.

• Naming conventions so that, for example, execution bina-
ries and tasks match. Obviously, this is a fragile approach
and may occasionally fail or pull in unrelated information.

• Exporting the name of the current task into an envi-
ronment variable. This is the preferred method to work
with Darshan, but it has limitations when working with
workflows that execute multiple tasks within a single MPI
execution.

For more integrated approaches such as followed by Swift/T
(see Section II-C0a), logging granularity of MPI executions or
at the job level is usually not meaningful anymore. In the case
of Swift/T, for example, a single MPI-based runtime is started
that uses MPI communicators to grant compute resources
to tasks under the assumption that tasks are defined in a
way that honors the provided communicator. Darshan at the
moment captures this activity; however, it does not maintain
individual performance counters per MPI communicator. As a
result, the counters collected in log files are the superposition
of many different tasks that cannot be easily broken down
into individual tasks again. Maintaining per communicator
counters is also not always desirable because it substantially
increases the footprint of the instrumentation and log files.
In addition, monitoring tools such as Darshan might need to
provide an API to allow workflow engines to interact with
the instrumentation, for example, to notify about the active
context/task and to store some custom metadata to log records.

While this API requires changes to monitoring tools such
as Darshan, another requirement for workflow engines is that
they expose and therefore keep track of which task is active
for a given process. In integrated approaches, a workflow
engine may be in charge of notifying a monitoring solution
of the context/task switch. Since this can be associated with

overheads for the WMS, the architecture cannot rely on this
feature.

Another use of such an API may be to expose information
about for what data objects and files are being used, which
might be added to log records to improve analysis and vi-
sualization. Table I indicates whether the WMS assumes or
implements a data model along with the workflow execution
functionality. While some WMS such as Spark, Swift, or
Ophidia use data models to optimize domain decomposition
and minimize data movement, no workflow engine offers users
the opportunity to add annotations on how the data is intended
to be used.

Such a capability would allow filtering for which workflow
elements logging data has to be gathered. Moreover, this could
help apply different analysis depending on how a data object
is used (also see Section III-B).

Scaling Considerations: A single workflow already might
quickly accumulate millions of log records with varying
degrees of detail and scattered across different subsystems.
Challenging research questions are how to best address this
explosion of log records and how to sample a representative
subset of log data.

Darshan log files, for example, are usually stored to the
parallel file system. For log data discovery this approach is
not always ideal because it might require scanning the file
system to discover logfiles. An alternative is to populate a
separate index with references to log files as tasks are being
executed, thus creating the association at runtime. Workflows
that did not use a WMS and monitoring solution with support
for this feature will still fall back to the first mode of log data
discovery.

B. Integration of Expert Systems and Machine Learning

The proposed architecture explicitly assumes the integration
with machine learning and big data analysis to generate
insight as well as reacting to or displaying advice in an
expert system scenario. While not implemented at this time,
potential advisories an expert system could provide include
the following:

• Detection of reliance on POSIX features such as times-
tamps, for example for locking/semaphore files or diag-
nostics. In addition, an alternative service or feature could
be recommended if available.

• Detection and indication of tasks that are issuing large
amounts of random I/O.

• Detection of inadequate Lustre/LFS stripe configurations
as well as better recommendations.

• Advice on most suitable storage system from a list of
available systems in a heterogeneous data center.

• Detection of inappropriate use of MPI collective/indepen-
dent I/O as well as overlapping reads on the same file in
a parallel application.

• Recommendation of the optimal checkpoint frequency
based on observed reads/writes. (This requires explicit
declaration or reliable classification as checkpoint file;
compare Section III-A).

• Recommendation of HDF5 chunking options. Useful, for
example, with write-once-read-many datasets and work-
flows where multiple follow-up tasks might access the
data by using distinct access patterns.

Accommodating the previous use cases gives rise to a
number of requirements for the workflow report structure and
features to be supported by the workflow processing toolchain:

• Reserved entries, which are picked up by standard tools
• Custom (opaque) entries in workflow report
• Representations compatible to wide-spread data analysis

and machine learning tools (e.g., compatible to numpy)
• Hooks for modules to specify processing actions and

visual representation
Two scenarios which integrate advisory products derived

from workflow I/O activity with scheduling systems and I/O
middleware are discussed in Section V-A and Section V-B.

Machine learning techniques also offer potential to discover
implicitly defined workflows by analyzing which jobs and
users have been accessing which files. For workflows that are
being executed sufficiently often, by using pattern recognition
and clustering methods this capability might be possible even
when data object identifiers and file names are varying. This
would be of direct help for users, but it could also be
interesting for automated systems and adaptive scenarios such
as those discussed in Section V.

IV. PROOF OF CONCEPT IMPLEMENTATION

This section offers a description and evaluation of the first
prototype implementation of our proposed approach. There are
multiple approaches for a proof of concept implementation
which complement each other, yet, each in itself already offers
opportunities to generate insight:

• Add fine-grained logging capabilities to Darshan (in
particular, per MPI communicator accounting)

• Expose an API for the workflow engine to inform Dar-
shan of task boundaries and context switches

• Focus on cases where tasks generate distinct darshan logs
The first two approaches require delicate changes and

feature additions touching the core architecture of Darshan
and workflow engines. In particular, these might lead to the
introduction of performance penalties or increased memory
footprints. albeit the work presented here does not. Our
approach, focusing on existing logging capabilities, is most
applicable to traditional HPC applications submitted to batch
scheduling systems. The proof of concept therefor supports
use cases for two different workflow engines to begin with:
Swift/T (see Section II-C0a) and Cylc (see Section II-C0b).

After a brief introduction on how workflows are declared
and extracted from different WMS in Section IV-A, Sec-
tion IV-B outlines the basic steps to compile a workflow report.
The remainder of this section covers tools to visualize and
explore I/O for workflows interactively (see IV-C) as well
as in scripts (see IV-D). Finally, we list implications and
recommendations for third parties to help compile an I/O
overview for workflows in Section IV-F.

A. Example Workflow and Workflow Declaration

To demonstrate how the approach helps to gain insight and
how the tools work, we prepared a simulation workflow similar
to the one introduced in Section II-B, as it might be performed
by a climate modeler. The workflow was kept simple for
illustrative purposes and for easy comparison between subsec-
tions. The demonstration workflow consists of the following
sequence of tasks:

1) Preprocessing: Multiple input files are combined to
create the initial state for a simulation.

2) Simulation: Multiple timesteps are simulated, and a
timestep file is written that is read by the next simulation
step as the initial state.

3) Postprocessing: For every simulated timestep some post-
processing is performed. In this example, the results of
different tasks are appended to a file shared by multiple
tasks (imagine a timeseries or a movie).

Depending on the WMS, the description of a workflow can
vary considerably. Compare, for example, the workflow defi-
nition used by Cylc in Figure 6 with the workflow definition
as it could be defined using Swift in Figure 7.

In Cylc, a user defines tasks, in this case, for example, as
a command line command to be executed in the runtime
section. In a separate section the dependencies are defined,
including convenience features such as the so-called cycle
features that can spawn a pipeline of events for different input
parameters. The application logic and workflow description
and configuration are neatly separated.

[scheduling]
initial cycle point = 2021
final cycle point = 2023
[[dependencies]]
[[[R1]]] # Initial cycle point.
graph = prep => model
[[[R//P1Y]]] # Yearly cycling.
graph = model[-P1D] => model => post
[[[R1/P0Y]]] # Final cycle point.
graph = post => stop

[runtime]
[[prep]]
script = mpiexec -np 1 ./prep
[[model]]
script = mpiexec -np 4 ./model
[[post]]
script = mpiexec -np 1 ./post

Fig. 6: Example of a workflow defined using Cylc.

A Swift workflow, on the other hand, looks more like a nor-
mal programming language. As a result, identifying individual
tasks is not as straightforward. At this time, association with
Swift tasks relies on a convention to have function calls in
Swift coincide with the names of binaries to be executed in
parallel. This choice was made in order to limit the granularity
of the dependency graph, since Swift keeps track of individual
variable instances and scopes. Instead of dividing aggregate
I/O activity for tasks, a more appropriate approach is to
associate records with source lines or elements of the acyclic

syntax tree of the Swift script. Using the Swift compiler (stc),
a Tcl script is generated that can be executed using the turbine
runtime.

int m[]; // assuming integer references to datasets
int p[];

m[2020] = prep(); // a pre-processing step

foreach x in [2021:2023] {
m[x] = model(m[x-1]); // a simulation
p[x] = post(m[x]); // a post-processing step

}

Fig. 7: A simple workflow defined in Swift using pseudo code
for the range and array semantics for brevity.

B. Workflow Report Generation

This section describes the different processing steps neces-
sary to generate the workflow overview report (see Figure 5).

1) Provided a workflow was defined using a WMS (at the
moment either Swift or Cylc).

a) Enable instrumentation with Darshan (this can
usually be achieved by setting and exporting
LD_PRELOAD).

b) Configure the workflow engine to expose a TaskID
within the execution environment. A modified vari-
ant of Darshan uses this information to add meta-
data to Darshan logs or to use in the log file name.

2) Extract a dependency graph of the workflow. This could
be either derived from source, via an export feature to
dot, or generated from an execution log. A helper script
for the workflow engine maps the WMS task/data model
to the task/data abstraction used by darshan-workflow
postprocessing tools.

3) Using the nodes in the workflow graph, discover Dar-
shan logs for every task (currently by scanning the file
system). Ideally, the lookup could also be done from a
database or index files which were populated directly by
Darshan or the WMS. Note that, currently, Darshan logs
can only be generated by MPI applications (specifically,
Darshan relies on the application to call MPI Init and
MPI Finalize).

4) Preprocess Darshan logs, and convert them into JSON
representation or Python data objects for further anal-
ysis. Preprocessing will typically generate a number of
derived performance counters (per file, per operation).

5) Generate a workflow report file, including data/refer-
ences for preprocessed reports.

6) (Optional) Add additional advisory products manually
by review (human in the loop) or by using machine
learning for automatic analysis (can be already added
and rendered with interactive tools).

7) Interact with data using Python/Jupyter Notebooks or
the report dashboard example.

(a) Dependency view as defined by using a workflow
management system or seen by the user.

(b) Dataflow view with files and the number of total
bytes read/written per task/file added to the graph.

(c) Hybrid view

Fig. 8: Different perspectives for visualization of the same workflow.

C. Visualization and Interaction

The large number of tasks and log records, as discussed
in Section III-A, gives rise to tools allowing for convenient
exploration of workflow I/O activity. As outlined in Section II,
graph-based representations for workflows are popular among
a number of WMS, but an I/O perspective is usually not
offered. For visualization tools, users may have different
preferences and needs, including the following:

• Users may prefer to integrate I/O feedback with any GUI
tools their workflow engines supports. Whether this is
feasible from a software support perspective is unclear.

• Users and operators may use well-established dashboards
such as Grafana or Nagios. Instead of requiring yet an-
other tool, many ecosystems offer mechanisms to extend
these systems with custom widgets.

• Sometimes specialized or custom tools may be most ap-
propriate. E.g., to best communicate the I/O perspective,
reports may require visualization, plots, and interface
elements optimized for this perspective.

Using vis.js [28] as a foundation, we implemented graph
representations for different perspectives and different levels
of detail, in order to render workflows using the format shown
in Figure 5. Javascript packaging allows for easy reuse in
various contexts and custom tools such as Jupyter Notebooks

(see Section IV-D) and dashboards (see Section IV-E).
Figure 8a illustrates a dependency view, resembling the

graph representation most WMS would offer to users. In
Figure 8b a dataflow or I/O activity perspective is rendered
that uses tasks from the workflow description and adds files
and read/write access information obtained from Darshan log
records. The edge label and the width of an edge indicate
the number of total bytes written in absolute and relative
terms. Mixing both perspectives as shown in Figure 8c can
be useful, although challenges exist in automatically choosing
which information to display.

We also note the orange exclamation marks rendered near
the top left corner of the postprocessing tasks. Indicators like
this (e.g., to indicate usage of MPIIO, POSIX, or STDIO) can
be used to communicate problems and other information in a
compact and intuitive representation. Currently, an indicator
is added when an annotation for a node/task is defined in the
JSON report.

D. Libraries for Use in Custom Tools and Jupyter Notebooks

Tool development in research is a delicate task since inte-
grated solutions quickly cease to address unforeseen use cases.
Instead of aiming for such an integrated solution, the toolchain
to extract the workflow description, gather Darshan/TOKIO
log records, and process and aggregate the log data was

Fig. 9: Executing a workflow may produce substantial amounts of log data. Interactive tools such as dashboards can help
explore workflows in detail. The graph shows a dataflow view with edges of workflow dependencies removed.

chosen to use Python/Javascript libraries where expedient.
This limits code duplication across specific tools as used
in glue code and helpers, but it also allows the user to
quickly adapt analysis or integrate with other Python-based
libraries. This is of particular interest since the ecosystem for
data science, machine learning, and neural networks is well
developed for Python (e.g., Keras, Tensorflow, Pandas, scikit-
learn). While aiming for smaller reusable components may add
initial overhead, the effort pays off in the long run as it offers
flexibility.

As an example, the workflow visualizations described in
Section IV-C are compatible with Jupyter Notebooks by pro-
viding a special Jupyter Widget. The motivation for support in
this direction is to endorse rapid prototyping and reproducible
I/O analysis for workflows. Jupyter Notebooks, for example,
can be easily shared.

E. Workflow I/O Dashboard for Users
The benefits of considering visual and interactive tools

were already motivated in Section IV-C and Section IV-D on
visualization and modular packaging. In this section we show-
case a functioning special-purpose dashboard to interactively
explore and visualize the I/O activity related to workflows.
A screenshot of the dashboard is shown in Figure 9. Users
can click on and select individual or multiple nodes in the
workflow graph or in the report sidebar. As the selection
changes, the report summary and the plots in the middle
section are updated. Where appropriate, performance counters
of multiple reports can be aggregated and displayed in a

combined statistic. Besides the interactive elements, providing
such a dashboard to users is attractive because it allows
the inclusion of activity data that otherwise is not available
to users, since the interface to query log records in many
cases requires special privileges. Should the log data contain
sensitive information, processes can be established to audit and
remove sensitive information. In other cases, after aggregation
or after plotting to static images, no sensitive information
remains.

F. Implications for WMS, Monitoring, and Developers

Development of the prototype implementation helped iden-
tify a number of ways that WMS, monitoring solutions, and
application developers can help make collection and associa-
tion of log records easier. For WMS the recommendations are
as follows:

• Expose active task and offer facilities for backtrace.
• Export workflow dependency graph, for example, in dot

format.
• Use data/file notions (e.g., to declare data object is

snapshot, diagnostic, dataset)

For monitoring tools on the application and library layer the
following features would be helpful:

• Provide options to pick up context to allow associations.
• Support user-specific metadata with records.
• Offer an API to interact with monitoring toolkit.
• Allow performance counters per MPI communicator.

Application developers can help by making their intent more
explicit by using libraries (e.g. HDF5) or domain-specific lan-
guages. Scientists running workflows should consider enabling
tools such as Darshan with at least a subset of their runs to
help create a body of training data for adaptive systems.

V. USE CASES

This section outlines two use cases that become possible
as a result of better insight into HPC workflows in a mid-
to long-term perspective. Section V-A outlines a scenario
where knowledge about the I/O phases of workflows and tasks
might allow more efficient I/O-aware scheduling. Section V-B
illustrates a pathway for I/O-related middleware to make
data placement decisions to conserve cost or to optimize
performance.

A. Use Case: I/O Aware Scheduling

In a scheduling scenario, knowledge about the I/O phases
of a task, job, or pipeline offers interesting opportunities to
adapt scheduling decisions. Figure 10 illustrates an example
that assumes a number of independent jobs that are submitted
to a batch scheduling system. Assuming a workflow that
experiences bursty I/O, this approach could help the scheduler
spread jobs over time in order to reduce stress on the file
system. To do so, the scheduler could ensure that different
jobs are started out of phase in order to spread out I/O more
evenly over time. This approach could allow operators to offer
more predictable quality of service or to reduce cost by scaling
down system size since peak performance requirements could
be relaxed.

B. Use Case: Decisions in I/O Middleware

A second use case concerns I/O-related middleware such as
HDF5 [29], Decaf [30], ADIOS [31], and ESDM [32]. Across
the I/O stack countless decision components are active. By
considering knowledge about the different processing steps of
long-living data in workflows, a number of decisions could be
improved:

• Domain decomposition on write
• Target (service, client/server, OST) selection
• Logical separation of data (e.g., metadata vs data), and

autopopulating of data catalogue services

I/
O

 A
ct

iv
it

y

Time

Job 1

Job 2

Job 3

I/
O

 A
ct

iv
it

y

Time

Job 1

Job 2

Job 3I/O Aware
Schedule

I/O in phase I/O out of phase

Fig. 10: Sketch of I/O-aware scheduling using knowledge
about workflows to potentially increase performance and re-
duce I/O time per job or allow procuring a scaled-down storage
system.

Application 1

Burst
Buffer

HPC Storage
(PFS, Object, ...) Archive

HDF5 with VOL

Application 2 Application 3

HDF5 with VOL

NetCDF

I/O Middleware
e.g. ESDM for Earth System Data

DBMS NoSQL...

Domain Decomposition

Performance

Other (e.g., Cost, Power)

D
e
ci

si
o
n

C
o
m

p
o
n
e
n
ts

Data
Backend Interface

Metadata
Backend Interface

Site Configuration

D
a
ta

 M
o
d

e
l

I/
O

 S
ch

e
d

u
le

r

Node Local Storage
(HDD, SSD, NVRAM)

Trained Expert System

Monitoring Data

Workflow

Fig. 11: I/O middleware considering knowledge about work-
flow I/O to make data placement or transformation (e.g.,
enabling compression) decisions.

In particular, applications with high degrees of similarity
and minor variation in the structure of output data are at-
tractive for this approach. For UQ and HTC workflows, for
example, a pipeline may be executed hundreds or thousands
of times. Because doing so yields multiple observations per
task and pipeline, we can be more confident in the expected
behavior and slowly and potentially automatically adapt the
system behavior to better accommodate this workload. The
I/O middleware might need to consider information from
multiple sources, as is illustrated in Figure 11. This includes
the I/O perspective on workflows, knowledge from expert
systems about tunables and optimal configurations, feedback
with current monitoring data, and the available systems and
service of the data center.

VI. SUMMARY AND CONCLUSION

Capturing a holistic picture of I/O activity for workflows
is an ambitious goal, in part because of the fragmented
landscape of tools for workflow description as well the variety
of monitoring records used across I/O subsystems. In this work
we demonstrate that it is possible to generate useful reports and
interactive visualizations with reasonable effort in two WMS’s
used by scientists for production applications. The underlying
methodology can be extended and applied in a variety of other
workflow environments as well.

The current state of the practice in monitoring workflow
I/O activity starts with an existing workflow definition and I/O
activity collected on the application or library layer. The pro-
posed architecture, however, can incorporate log records from
across a data center. In particular, the approach addresses the
diversity of stakeholders by adopting a modular architecture
that provides a common core library to provide functionality
that is then reused in glue code, special-purpose tools, and for
integration with third-party tools.

Besides low-level integration with WMS and the collection
of record data to generate an overview report, we showcased
a number of ways to use workflow reports more effectively.

In particular, this objective is achieved by providing widgets
and a Python library to support common tools such as Jupyter
Notebooks to encourage reproducible I/O analysis of work-
flows. Furthermore, we discussed the use of interactive tools
and dashboards to provide intuitive ways for users and I/O
researchers to explore workflows.

The implementation of the proof of concept also revealed a
number of ways (see Section IV-F) that existing WMS and
monitoring solutions as well as application developers and
scientists can help better understand HPC workflows.

In the future, we plan to apply the existing toolchain to
analyze additional practical workflows and address anticipated
scaling problems. In particular, we welcome suggestions from
the community about data-intensive workflow candidates with
an exascale use case in mind. We also would like to add
support to additional WMS, improve the support utilities and
libraries, and try the tools on more sites.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357.

The ESiWACE project received funding from the EU Hori-
zon 2020 research and innovation programme under grant
agreement No 675191.

REFERENCES

[1] Top500, “Top500 Supercomputer Sites.” [Online]. Available: http:
//www.top500.org/

[2] DOE and NISA, “Exascale Computing Project (ECP),” 2017. [Online].
Available: https://www.exascaleproject.org/

[3] Intel, The HDF Group, EMC, and Cray, “Fast Forward Storage and I/O,”
Jun. 2014.

[4] “NEXTGenIO: Next Generation I/O for the Exascale.” [Online].
Available: http://www.nextgenio.eu/

[5] G. K. Lockwood, D. Hazen, Q. Koziol, S. Canon, K. Antypas,
J. Balewski, N. Balthaser, W. Bhimji, J. Botts, J. Broughton, T. L. Butler,
and G. F. Butler, “A Vision for the Future of HPC Storage,” p. 37, Oct.
2017.

[6] G. K. Lockwood, W. Yoo, S. Byna, N. J. Wright, S. Snyder, K. Harms,
Z. Nault, and P. Carns, “UMAMI: A Recipe for Generating Meaningful
Metrics Through Holistic I/O Performance Analysis,” in Proceedings
of the 2nd Joint International Workshop on Parallel Data Storage &
Data Intensive Scalable Computing Systems, ser. PDSW-DISCS ’17.
New York, NY, USA: ACM, 2017, pp. 55–60. [Online]. Available:
http://doi.acm.org/10.1145/3149393.3149395

[7] LANL, NERSC, and SNL, “APEX Workflows,” Mar. 2016. [Online].
Available: https://www.nersc.gov/assets/apex-workflows-v2.pdf

[8] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The Future of Scientific Workflows,” The International Journal of
High Performance Computing Applications, vol. 32, no. 1, pp. 159–175,
Jan. 2018. [Online]. Available: http://journals.sagepub.com/doi/10.1177/
1094342017704893

[9] J. M. Wozniak, T. G. Armstrong, M. Wilde, D. S. Katz, E. Lusk, and
I. T. Foster, “Swift/T: Scalable data flow programming for distributed-
memory task-parallel applications,” in Proc. CCGrid, 2013.

[10] T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster, “Compiler
techniques for massively scalable implicit task parallelism,” in Proc. SC,
2014.

[11] “Cylc -A Workflow Engine.” [Online]. Available: https://cylc.github.io/
cylc/

[12] “RDD Lineage — Logical Execution Plan Mastering Apache
Spark.” [Online]. Available: https://jaceklaskowski.gitbooks.io/
mastering-apache-spark/spark-rdd-lineage.html

[13] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, and
K. A. Persson, “FireWorks: A Dynamic Workflow System Designed
for High-Throughput Applications,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 17, pp. 5037–5059, 2015, cPE-
14-0307.R2. [Online]. Available: http://dx.doi.org/10.1002/cpe.3505

[14] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and
K. Wenger, “Pegasus, a Workflow Management System for Science
Automation,” Future Generation Computer Systems, vol. 46, pp. 17–35,
May 2015. [Online]. Available: http://linkinghub.elsevier.com/retrieve/
pii/S0167739X14002015

[15] NERSC, “TaskFarmer,” 2017. [Online]. Available: http://www.nersc.
gov/users/data-analytics/workflow-tools/taskfarmer/

[16] “Tigres.” [Online]. Available: http://tigres.lbl.gov/home
[17] C. Palazzo, A. Mariello, S. Fiore, A. D’Anca, D. Elia, D. N. Williams,

and G. Aloisio, “A Workflow-Enabled Big Data Analytics Software
Stack for Escience,” in 2015 International Conference on High Per-
formance Computing Simulation (HPCS), Jul. 2015, pp. 545–552.

[18] “The Kepler Project — Kepler.” [Online]. Available: https:
//kepler-project.org/

[19] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[20] J. M. Wozniak, T. G. Armstrong, K. Maheshwari, E. L. Lusk, D. S. Katz,
M. Wilde, and I. T. Foster, “Turbine: A distributed-memory dataflow
engine for high performance many-task applications,” Fundamenta In-
formaticae, vol. 28, no. 3, 2013.

[21] M. Dorier, M. Dreher, T. Peterka, J. M. Wozniak, G. Antoniu, and
B. Raffin, “Lessons learned from building in situ coupling frameworks,”
in Proc. In Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization @ SC, 2015.

[22] C. Xu, S. Snyder, O. Kulkarni, V. Venkatesan, P. Carns, S. Byna,
R. Sisneros, and K. Chadalavada, “DXT: Darshan eXtended Tracing,”
p. 8, 2017.

[23] Glenn K. Lockwood, Shane Snyder, George Brown, Kevin Harms, Philip
Carns, and Nicholas J. Wright, “TOKIO on ClusterStor: Connecting
Standard Tools to Enable Holistic I/O Performance Analysis,” in In
Proceedings of the 2018 Cray User Group, May 2018.

[24] G. K. Lockwood, T. Wang, S. Byna, N. J. Wright, S. Snyder, and
P. Carns, “A Year in the Life of a Parallel File System,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC18), 2018.

[25] V. Hendrix, J. Fox, D. Ghoshal, and L. Ramakrishnan, “Tigres Workflow
Library: Supporting Scientific Pipelines on HPC Systems,” in 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2016, pp. 146–155.

[26] J. M. Wozniak, A. Chan, T. G. Armstrong, M. Wilde, E. Lusk, and
I. T. Foster, “A model for tracing and debugging large-scale task-parallel
programs with MPE,” in Proc. Workshop on Leveraging Abstractions
and Semantics in High-Performance Computing (LASH-C) at PPoPP,
2013.

[27] “Grafana-Spark-Dashboards: Scripts for Generating Grafana Dashboards
for Monitoring Spark Jobs,” Hammer Lab, Aug. 2018. [Online].
Available: https://github.com/hammerlab/grafana-spark-dashboards

[28] Almende B.V., “Vis.Js - A Dynamic, Browser Based Visualization
Library.” 2018. [Online]. Available: http://visjs.org/

[29] “HDF5: Hierarchical Data Format.” [Online]. Available: https://www.
hdfgroup.org/hdf5/

[30] T. Peterka, Franck Cappello, and Jay Lofstead, “Decaf: High-
Performance Decoupling of Tightly Coupled Flows — Argonne
National Laboratory,” 2018. [Online]. Available: http://www.mcs.anl.
gov/project/decaf-high-performance-decoupling-tightly-coupled-flows

[31] “Next generation of ADIOS developed in the Exascale Computing
Program: Ornladios/ADIOS2,” ADIOS, Sep. 2018. [Online]. Available:
https://github.com/ornladios/ADIOS2

[32] “ESiWACE: Centre of Excellence in Simulation of Weather and
Climate in Europe.” [Online]. Available: https://www.esiwace.eu/

