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Highlights 

 Study daily dependence between global financial stress and Bitcoin 

 Use various forms of copula models: standard and quantiles-based  

 Financial stress causes Bitcoin returns at left and right tail of the latter's conditional 

distribution  

 Financial stress, however, has limited directional predictability for Bitcoin 
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Abstract 

We apply different techniques and uncover the quantile conditional dependence between the 

global financial stress index and Bitcoin returns from July 18, 2010, to December 29, 2017. The 

results from the copula-based dependence show evidence of right-tail dependence between the 

global financial stress index and Bitcoin returns. We focus on the conditional quantile 

dependence and indicate that the global financial stress index strongly Granger-causes Bitcoin 

returns at the left and right tail of the distribution of the Bitcoin returns, conditional on the global 

financial stress index. Finally, we use a bivariate cross-quantilogram approach and show only 

limited directional predictability from the global financial stress index to Bitcoin returns in the 

medium term, for which Bitcoin can act as a safe-haven against global financial stress. 

 

Keywords: Bitcoin; global financial stress index; dependence; copula; quantiles 

 

JEL classification: C22, G15 

 

1. Introduction 

Bitcoin was first designed in 2009 to allow users to send and receive payments on a peer-to-peer 

basis. However, its popularity as an investment asset has considerably increased as speculators 

and investors store Bitcoin with the objective of increasing its scarcity and potentially driving 

increases in its value. From July 2010 to December 2018, Bitcoin has quickly increased from 

less than one USD to more than fourteen thousand US dollars1. Importantly, Bitcoin has shown 

some resilience during periods of stress (Weber, 2014; Bouri et al., 2017a; Luther and Salter, 

2017).  

Prior causality studies suggest that Bitcoin might serve as a hedge against equities and currencies 

(Bouri et al., 2017b, Dyhrberg, 2016b), the commodity index (Bouri et al., 2017b,), and stock 

market's expectation of near term volatility - as measured by the VIX (Bouri et al. (2017a). 

                                                           
1At the end of December 2018, Bitcoin’s market value reached 216.32 billion US dollars, based on a closing price of 

14,156 US dollars (https://coinmarketcap.com/currencies/bitcoin/). 
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Nonetheless, the relationship between Bitcoin and a global measure of financial stress has 

remained unexplored. To enrich the related empirical literature, this study examines the 

relationship between Bitcoin returns and global financial stress index.  

On the data level, this study considers the global financial stress index (GFSI) that was recently 

introduced by Bank of America Merrill Lynch. The GFSI captures better global stress than the 

VIX measure2 employed by Bouri et al. (2017b). Specifically, the GFSI aggregates 23 measures 

of stress covering three types of financial market stress (risk, hedging demand, and investor 

appetite for risk) across five asset classes (credit, equity, interest rates, forex and commodity 

markets) and various geographies. On the methodological level, this study employs a 

combination between copula function and quantile causality, which allows for uncovering the 

Granger causality in both distributions and quantiles. As such, practitioners, scholars and policy-

makers would extend their limited understanding of the ability of Bitcoin to act as a safe-haven 

against global financial stress.  

Empirical analyses show evidence of right-tail dependence between the GFSI and Bitcoin returns, 

and further show that the GSFI strongly Granger-causes Bitcoin returns at the left tail (i.e., 

during deficient performance) and the right tail (i.e. during very robust performance) but not at 

the middle (i.e., during average performance) of the distribution of the Bitcoin returns 

conditional on the GSFI. Further analysis indicates that Bitcoin can act as a safe-haven against 

global financial stress from a medium-term perspective.  

 

2. Research background 

Bitcoin is an innovative peer-to-peer electronic payment network that uses a cryptography 

protocol to secure transactions. The building block of the network relies on an underlying 

blockchain technology that records and secures all Bitcoin transactions. Blockchain is a 

distributed ledger made of an unchangeable chain of data blocks spread across multiple sites but 

chained together cryptographically.  

Bitcoin operates in the absence of a central authority. Specifically, trust in Bitcoin is distributed 

to a large network and established through mass collaboration without a powerful third party. 

Unlike the case of conventional fiat currencies, Bitcoin production is neither centralized nor 

                                                           
2 http://uk.reuters.com/article/markets-stressindex-idUSN2920764420101129. 
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subject to inflation (Ciaian and Rajcaniova, 2016). Instead, it is dictated by the protocol that 

limits the number of Bitcoin in circulation to 21 million. While Bitcoin can be produced as a 

reward for approving Bitcoin transactions in a process called “mining”, it can be bought and sold 

against conventional currencies on trading platforms or exchanges.  

Bitcoin has shown some resilience during periods of stress, suggesting a potential hedging ability. 

Weber (2014) and Bouri et al. (2017a) argue that the global uncertainty that accompanied and 

followed the 2008 global financial crisis facilitated the rapid emergence of Bitcoin as both a 

financial asset and an alternative currency to conventional economies. Importantly, later stress 

periods such as the European sovereign debt crisis of 2010-2013 and the Cypriot banking crisis 

of 2012-2013 have further driven the use of Bitcoin as a shelter from sovereign and systematic 

risk (Bouri et al., 2017a). Luther and Salter (2017) show that interest in Bitcoin substantially 

increased following the March 16, 2013, announcement that Cyprus would accept a bailout. 

Increasing interest in Bitcoin has also been reported in countries such as Greece and Spain, 

whose banks are troubled. Bitcoin is an alternative to sovereign currencies and is often 

considered part of an alternative economy. In an environment of high uncertainty and low trust, 

investors move away from main-state economies and often resort to Bitcoin (Bouri et al., 2017b). 

Bitcoin has been referred to as digital gold (Popper, 2015), and Dyhrberg (2016a) situates its 

hedging capability somewhere between gold and the US dollar.  

Several empirical studies have noted the valuable role of Bitcoin as an investment and have 

highlighted the diversification benefits of adding Bitcoin to an equity portfolio. Brière et al. 

(2015) use weekly data from 2010 to 2013 and highlight the low correlation of Bitcoin with both 

traditional assets (worldwide stocks, bonds, and hard currencies) and alternative investments 

(commodities, hedge funds, and real estate). The authors note Bitcoin’s significant 

diversification benefits despite its extremely high average return and volatility. Dyhrberg (2016b) 

shows that Bitcoin is useful as a hedge for UK currency and equities. Bouri et al. (2017b) 

indicate that Bitcoin can serve as an effective diversifier for major world stock indices, bonds, oil, 

gold, the general commodity index and the US dollar index. Those authors also reveal that 

Bitcoin has hedging and safe-haven properties against Asian Pacific and Chinese stocks. Ji et al. 

(2017) show that Bitcoin is isolated from the conventional global financial system. Bouri et al. 

(2017c) note the safe-haven property of Bitcoin against equities and reveal that Bitcoin is 

negatively related to the US VIX.  
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The empirical relationship between Bitcoin and global financial stress has been largely ignored. 

To the best of our knowledge, the only work closely related to this study was conducted by Bouri 

et al. (2017a), who examine Bitcoin’s hedging ability against the VIXs of developed and 

emerging markets. After decomposing Bitcoin returns into different frequencies and applying 

quantile-on-quantile regressions, the authors show that Bitcoin does act as a hedge against global 

uncertainty at both the lower and the upper ends of Bitcoin returns and global uncertainty, 

particularly on shorter investment horizons. Although Bouri et al. (2017a) differentiate between 

short and long investment horizons and between upper and lower quantiles, they ignore the 

dependence structure, as captured by copula, along with Granger-causality in both distributions 

and quantiles. Furthermore, Bank of America Merrill Lynch argues that the breadth and depth of 

the GFSI make it a more accurate gauge of global stress than the VIX, which is based on option 

data. More specifically, the GFSI helps detect significant market turning points, as indicated by 

the back-testing that has shown the high degree of the GFSI’s accuracy in forecasting market 

sell-offs since 2000. Based on the above, it appears that the GFSI is an essential tool for market 

participants to make better investment and risk management decisions. Importantly, the 

increased knowledge of which risks are essential and against which to hedge them in the 

different quantiles whilst explaining the copula dependence structure are two crucial aspects of 

successful investing. It follows that the hedging property of Bitcoin against that global measure 

of financial stress requires a thorough examination via the copula function and the Granger 

causality in both distribution and quantiles. This is where this contributes to the related literature.  

3. Data and methods 

3.1 Data 

Data used in this study are daily (5 days per week) and cover the period from July 18, 2010, to 

December 29, 2017. It consist of Bitcoin prices and the GFSI. Bitcoin prices are collected from 

CoinDesk (www.coindesk.com/price) and represent the average price of Bitcoin across leading 

exchanges (Bouri et al., 2017a). Data on the GFSI are collected from the Bloomberg Terminal. 

The GFSI is an index for global financial distress that better captures global stress than the VIX.  

Introduced in November 2010 by Bank of America Merrill Lynch, the GFSI aggregates 23 

measures of stress covering three types of financial market stress (risk, hedging demand, and 
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investor appetite for risk) across five asset classes (credit, equity, interest rates, forex and 

commodity markets) and various geographies. Levels greater than zero indicate more financial 

market stress than normal, and vice-versa. Table 1 shows the summary statistics of the GFSI and 

the return on Bitcoin (RBC) (calculated as the difference in logarithm between two consecutive 

prices). There are several noteworthy observations. While both the GFSI and RBC have positive 

means, GFSI has a larger standard deviation. The GFSI and RBC are positively skewed. RBC 

has significant excess kurtosis, whereas the GFSI has modest kurtosis. The Jarque-Bera test 

shows that the GFSI and RBC are not following a normal distribution. The GFSI and RBC are 

negative correlated (-0.053). 

3.2 Methods 

The empirical analyses rely on three main approaches to uncover the quantile conditional 

dependence between GFSI and Bitcoin returns (RBC). The first one is the dependence via 

copulas, which can characterize the average movements and the joint extreme movements 

between the two examined variables. The second approach is the out-of-sample approach of 

Hong and Li (2005), called the Granger causality in distribution (GCD), which captures the 

Granger causality in distributions in each conditional quantile. The third one is the cross-

quantilogram approach of Han et al. (2016), which allows to measure of directional predictability 

in quantiles.  

3.2.1 Modelling dependence using copulas 

It is well documented that copula functions provide both flexibility and effectiveness in 

characterizing such movement patterns, allowing obtaining valuable information on the average 

dependence and tail dependence.  

A copula is a multivariate cumulative distribution function, and its marginal distributions are 

uniform on the interval [0, 1]. Nelsen (1999) review the rigorous mathematical foundation of 

copulas. Sklar’s theorem plays the central role in the theory of copulas. “Sklar’s theorem 

elucidates the role that copulas play in the relationship between multivariate distribution 

functions and their univariate margin” (Nelsen, 1999)3. 

                                                           
3 Details on the Copula dependence model and the Sklar’s theorem are given in the Appendix.  
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There are at least three advantages of using copulas in analyzing the dependence. First, the 

copula method is designed to capture the complex and non-linear dependence structure of a 

multivariate distribution, whilst the traditional Pearson correlation assumes a linear dependence 

relationship and is not capable of measuring the asymmetric dependence. Copulas enable us to 

find both the tail dependence and the asymmetric dependence. Importantly, the tail dependence 

can measure the probability of simultaneous extreme losses for investors. Second, the marginal 

behaviour and the dependence structure are separated by the framework of copulas. This 

separation facilitates both the model specification and the model estimation. Compared with 

univariate models, the flexibility of the multivariate models is limited. Copulas can jointly 

combine different univariate models through their copula functions. The estimation can be 

performed in separate steps for the marginal models and the copula functions. Finally, copulas 

are invariant to increasing and continuous transformations (Ning, 2010), such as the scaling of 

logarithm returns, which is commonly used in economic and finance studies. 

We apply nine candidate copulas, including normal, Clayton, Rotated Clayton, Plackett, Frank, 

Gumbel, Rotated Gumbel, Student’s t and Symmetrised Joe-Clayton (see the Appendix that 

includes detailed information on the estimation methods as well as the marginal and Copula 

models).  

Despite their usefulness in modelling the average dependence and tail dependence, copula 

dependence models do not provide a conclusion about the causality between variables. Thus, we 

next consider the Granger causality in distribution (GCD) test. 

3.2.2 Granger causality in distribution (GCD) test 

After identifying the appropriateness of adopting copula models and modelling the average 

dependence and tail dependence, we proceed to uncover the causality dynamic between the GFSI 

and RBC by computing the quantile forecasts that rely on the inversion of the parametric 

conditional copula distribution. We use the model by Lee and Yang (2014) to examine the 

dependence between the GFSI and RBC using a parametric copula because the linear Granger 

causality test cannot model the asymmetric dependence between the GFSI and RBC, possibly 

because of the existence of nonlinearity and structural breaks. From the modelling perspective, it 

is more informative to explore the causal relationship between the GFSI and RBC using the 

GCD test, which can model the causal relation at the extremes of the return distributions rather 
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than only at the centre. For market practitioners, it is more realistic to imagine that causality is 

only anticipated at high quantiles of the GFSI and RBC, because RBC may act as a safe haven 

when the global financial market panics. Indeed, this hypothesis is supported by the empirical 

evidence we provide later.  

We apply the proposed out-of-sample test for GCD in accordance with Hong and Li (2005) with 

the null hypothesis that Xt does not Granger cause Yt in distribution: H0: c(u, v) = 1, where c(u, v) 

is the conditional copula density function, with u and v as the conditional probability integral 

transforms of Xt (i.e., GSFIt) and Yt (i.e., RBCt), respectively. The forecasted conditional 

variance for { Xt } and { Yt }, ℎ̂𝑥,𝑡+1 and ℎ̂𝑦,𝑡+1, are computed by 

ℎ̂𝑥,𝑡+1 = �̂�𝑥0 + �̂�𝑥1𝑥𝑡
2 +   �̂�𝑥2ℎ̂𝑡,𝑥 

ℎ̂𝑦,𝑡+1 = �̂�𝑦0 + �̂�𝑦1𝑦𝑡
2 +   �̂�𝑦2ℎ̂𝑡,𝑥                                                      (1) 

The CDF values of �̂�𝑡+1 and 𝑣𝑡+1 for xt+1 and yt+1 are calculated by the empirical distribution 

function (EDF), and a nonparametric copula function is estimated with pared EDF values 

{�̂�𝑡+1, 𝑣𝑡+1}𝑡=𝑅
𝑇−1 using a quartic kernel function specified as follows: 

𝑘(𝑢) =
15

16
(1 − 𝑢2)2𝐼(|𝑢| ≤ 1) (2) 

The GCD results using the Hong and Li (2005) test statistic for {𝑥𝑡+1, 𝑦𝑡+1}𝑡=𝑅
𝑇−1 is 40.843, which 

is significant at the 1% level, indicating that there is significant GCD between the GSFI and 

RBC. However, evidence of the GCD test does not imply Granger causality in each conditional 

quantile. In our empirical study, we focus on three regions of the distribution: the left tail (1% 

quantile, 5% quantile and 10% quantile), the central region (40% quantile, median and 60% 

quantile) and the right tail (90% quantile, 95% quantile and 99% quantile); this is the same as 

Lee and Yang (2014). The objective is to forecast the conditional quantile, 𝑞𝛼(𝑌𝑡|ℱ𝑡), where α is 

the left tail probability. The conditional quantile 𝑞𝛼(𝑌𝑡|ℱ𝑡) is derived from the inverse function 

of a conditional distribution function: 

𝑞𝛼(𝑌𝑡|ℱ𝑡) = 𝐹𝑌
−1(𝛼|ℱ𝑡) (3) 
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where 𝐹𝑌(𝑌𝑡|ℱ𝑡)  is the predicted conditional distribution function of Yt . The inverse is to 

compute 𝑞𝛼(𝑌𝑡|ℱ𝑡) from 

∫ 𝑓𝛾(𝑦|
𝑞𝛼(𝑌𝑡|ℱ𝑡) 

−∞
ℱ𝑡)𝑑𝑦 = 𝛼  (4) 

where 𝑓𝛾(𝑦|ℱ𝑡)  is the predicted conditional distribution function. The quantile forecasting 

models 𝑞𝛼(𝑌𝑡|ℱ𝑡) are computed by solving the equation 

𝐶𝑢(𝐹𝑋(𝑥𝑡+1), 𝐹𝑌(𝑞𝛼(𝑌𝑡|ℱ𝑡)) = 𝛼  (5) 

To evaluate the predictive ability of those quantile forecasting models 𝑞𝛼(𝑌𝑡|ℱ𝑡) obtained from 

the seven (I = 7) copula functions for C(u; v), we use the “check" loss function of Koenker and 

Bassett (1978)4. The expected check loss for a quantile forecast 𝑞𝛼(𝑌𝑡|ℱ𝑡) at a given 𝛼 is 

𝑄(𝛼) = 𝐸[𝛼 − 𝐼(𝑌𝑡 − 𝑞𝛼(𝑌𝑡|ℱ𝑡) < 0)](𝑌𝑡 − 𝑞𝛼(𝑌𝑡|ℱ𝑡))  (6) 

We denote the k’th type of copula function as Ck(u; v) (k = 1,…,l = 7). For each copula 

distribution function Ck(u; v), we also denote the corresponding quantile forecast as 𝑞𝛼,𝑘(𝑌𝑡|ℱ𝑡) 

and its expected check loss as Qk(α). To compare copula model 1 (benchmark) and model k (= 

2,…,l), we consider the corresponding check loss-differential 

𝐷𝑘 = 𝑄1(𝛼) − 𝑄𝑘(𝛼)  (7) 

We can estimate 𝐷𝑘 by 

�̂�𝑘,𝑝 = �̂�1,𝑝(𝛼) − �̂�𝑘,𝑝(𝛼)  (8) 

where 

�̂�𝑘,𝑝(𝛼) =
1

𝑝
∑[𝛼 − 𝐼(𝑌𝑡 − 𝑞𝛼(𝑌𝑡|ℱ𝑡) < 0)](𝑌𝑡 − 𝑞𝛼(𝑌𝑡|ℱ𝑡)), 𝑘 = 1, … , 𝑙

𝑇−1

𝑡=𝑅

 

                                                           
4 For detailed information, please refer to Lee and Yang (2014).  
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The conditional quantile forecasts from using the copula distribution function Ck (k = 2,…) with 

the largest value �̂�𝑘,𝑝 will be preferred.  

3.2.3 Directional predictability test 

We employ the recent directional predictability test of Han et al. (2016) to complement the GCD 

test because investors may want to use the GFSI to predict the movement of RBC; this follows 

the need to access the forecasting performance of RBC using the GFSI as a predictor. The null 

hypothesis is that the GFSI has no directional predictability for another time series. The added 

advantage of the cross-quantilogram of Han et al. (2016) over GCD is its ability to detect the 

magnitude, duration, and direction of the relationship between the GFSI and RBC spontaneously, 

whilst GCD failed to do so. Another advantage is that the model allows us to select arbitrary 

quantiles for both the GFSI and RBC, rather than pre-set quantiles for GCD. Furthermore, the 

use of the bootstrap technique allows for the use of large lags in the directional predictability test. 

The cross-quantilogram proposed by Han et al. (2016) can provide a quantile-to-quantile 

relationship from the GSFI to RBC. The linear quantile regression can be specified as 

𝑞𝛼(𝜏𝑡+1|ℱ𝑡) = 𝛽0,𝛼 + 𝛽1,𝛼𝑥𝑡 + 𝛽2,𝛼𝑥𝑡𝑞𝛼(𝜏𝑡|ℱ𝑡−1) + 𝛽3,𝛼|𝜏𝑡|        (9) 

where 𝜏𝑡 and 𝑥𝑡 are the RBC and GSFI, respectively, and 𝑞𝛼(𝜏𝑡+1|ℱ𝑡) is the conditional quantile of 

the RBC given the information ℱ𝑡 at time t. The cross-quantilogram �̂�𝛼(𝑘) and the portmanteau 

tests �̂�𝛼
(𝑝)

 of the Box-Ljung versions are provided in the figures to detect the directional 

predictability from the RBC to GSFI. For the quantiles of RBC q1 (α1), we consider a wide range 

for α1 = 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 and 0.95. For the quantiles of GSFI q2 (α2), we 

consider a wide range for α2 = 0.1, 0.5, and 0.9. In each graph, we show the 95% bootstrap 

confidence intervals for no predictability based on 1000 bootstrapped replicates. The maximum 

lag we consider is 2 months (i.e., k = 60). To estimate the critical values from the limiting 

distribution, we could use the nonparametric estimation using the stationary bootstrap (SB) of 

Politis and Romano (1994). The SB is a block bootstrap method with blocks of random lengths. 

The SB resample is strictly stationary, conditional on the original sample. Alternatively, we can 

apply the self-normalized approach proposed in Lobato (2001) to test the absence of 
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autocorrelation of a time series that is not necessarily independent. A key ingredient of the self-

normalized statistic is an estimate of cross-correlation based on subsamples. 

Compared to the GCD, the directional predictability approach of Han et al. (2016) provides 

several added advantages. The first is related to its ability to detect the magnitude, duration, and 

direction of the relationship between the GFSI and RBC spontaneously, such that investors can 

use this information to inform their trading strategies. Second, the directional predictability test 

allows researchers to select arbitrary quantiles for the GFSI and RBC rather than pre-set 

quantiles, as in the case of GCD. Third, the use of the bootstrap technique allows for the use of 

large lags in the directional predictability test. The directional predictability test of Han et al. 

(2016) was used by Jiang et al. (2016) to investigate the daily, overnight, intraday, and rolling 

return spillovers of four key agricultural commodities—soybeans, wheat, corn, and sugar—

between the U.S. and Chinese futures markets. The authors found the empirical model very 

useful in capturing the extreme quantiles dependence between markets. 

4. Empirical Results  

4.1 Results for marginal and copula models 

The probability density of the empirical copula is presented in Table 2. We rank the pair of series 

in ascending order and then divide each series evenly into 10 bins. Bin 10 includes the 

observations with the highest values, and bin 1 includes observations with the lowest values. The 

ranks for the GFSI (i) are on the vertical axis, whilst the ranks for RBC (j) are on the horizontal 

axis. For the vertical axis, observations increase from the bottom to the top. For the horizontal 

axis, observations increase from left to right. Cell (1,1) is located on the lower-left corner, cell 

(10,1) is located on the lower-right corner, cell (10,10) is located on the upper-right corner, and 

cell (1,10) is located on the upper-left corner. The number of observations in cell (1,1) reveals 

information about a positive left-tail dependence, the number of observations in cell (1,10) 

reveals information about a negative right-tail dependence, the number of observations in cell 

(10,10) reveals information about a positive right-tail dependence, and the number of 

observations in cell (10,1) reveals information about a negative left-tail dependence between the 

two states. There are several noteworthy observations: cell (1, 1) has a low number, and there is 

no positive left-tail dependence (see lower-left corner, Table 2). When the global financial 
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markets are generally healthy, it is unlikely that we will observe an extreme decrease in the 

Bitcoin market. Cell (10,1) has a high number, and there is strong negative left-tail dependence 

(lower-right corner, Table 2). This finding indicates that the Bitcoin market is prosperous when 

the GFSI is very low. Cell (1, 10) has a high number, and there is strong negative right-tail 

dependence (upper-left corner, Table 2). Investors must rationally manage risks under this 

scenario, in which an extremely stressed financial market and a substantial decrease in the 

Bitcoin market occur simultaneously. An extreme joint loss is likely to be higher than a normal 

value-at-risk (VaR). Cell (10, 10) has a high number, and there is strong positive right-tail 

dependence (upper-right corner, Table 2). It is interesting to observe that the Bitcoin market can 

perform well when the global financial markets are in depression. This evidence justifies that 

Bitcoin provides a channel against global financial stress. 

 

The ARMA(1,1)-tGARCH(1,1) model has been chosen for the marginal model as shown in 

Table 3. In the diagnostics section, Q(P) and Q2(P) are Q-statistics for testing the hypothesis of 

no serial correlation in the standardized residuals and squared standardized residuals, 

respectively. ARCH (P) is the LM test for the hypothesis of no autoregressive conditional 

heteroscedasticity in the standardized residuals. These statistics each have a chi-square 

distribution with P degrees of freedom. Based on the estimation results, the t-stat is significant 

for all coefficients in the model for both the GFSI and RBC. The Q-statistics suggest no serial 

correlation in the standardized residuals of GSFI and RBC. The LM test suggests no 

heteroscedasticity in the standardized residuals of the GSFI and RBC. 

 

 

Table 4 reports the estimated results for our data by applying nine candidate copulas, including 

normal, Clayton, Rotated Clayton, Plackett, Frank, Gumbel, Rotated Gumbel, Student’s t and 

Symmetrised Joe-Clayton. In accordance with Patton (2006), we calculate the copula likelihood 

for each candidate copula. Based on the copula likelihood, we further calculate two information 

criteria: Akaike information criterion (AIC) and Bayesian information criterion (BIC). 

Additionally, we compute the tail dependence for each fitted copula. According to the copula log 

likelihood, the Gumbel copula provides the best fit for our data. According to AIC and BIC, the 

Gumbel copula is the best model for our data. Only through the Gumbel copula can we find tail 
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dependence in the right tail. All other copulas indicate no tail dependence. Overall, the 

dependence structure of our data would be best captured by the Gumbel copula5. 

 

4.2 Results of the GCD test 

From subsection 4.1, we find evidence of a right tail dependence by the Gumbel copula, whilst 

all other copulas indicate no tail dependence. Although we identify the Gumbel copula as the 

appropriate copula for our data, the analysis provides no information about the causality between 

the GFSI and RBC. Therefore, this section seeks to provide a more informative test to examine 

the GCD as a tool to explore a causal relationship between the GSFI and the return of Bitcoin. 

The results of testing GCQ in p-values are reported in Table 5. The small p-values of the reality 

check signal the rejection of the null hypothesis, indicating that there is a copula function to 

model GCQ and produce a better quantile forecast of the RBC by conditioning on the GSFI. We 

can observe that a quantile forecasting model with no Granger causality in the quantile is 

rejected in many quantiles, except for the quantile at 40%, 50%, and 60% with evidence at 1 

percent significance level. This result shows that the GSFI strongly Granger-causes the RBC at 

the left tail (poor performance) and right tail (superior performance) but not at the centre (usual 

performance) of the distribution of the RBC conditional on the GSFI. 

 

 

 

4.3 Results of the directional predictability test 

In section 4.2, we examined the relationships between the GFSI and RBC at the extremes of the 

return distributions rather than only at the centre and confirmed the hypothesis that causality 

between the GFSI and RBC is only anticipated at high quantiles of the GFSI and RBC because 

RBC may act as a safe haven when the global financial market is in panic. However, investors 

may want to use the GFSI to predict the movement of the RBC, suggesting the need to conduct a 

complementary analysis to investigate directional predictability. To this end, we apply the 

directional predictability test of Han et al. (2016), and the results are presented in Figs. 1-3.  

                                                           
5 We also considered the possibility of the regime- dependent copula of Wang et al. (2013).  However, the results are 

insignificant (for details, please see the appendix).  
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Figs. 1(a) and 1(b) are for the case when the Bitcoin return is in the lower quantile, i.e., q2 (α2) 

for α2 = 0.1. The cross-quantilogram �̂�𝛼(𝑘) for α1 = 0.2 is positive and significant after the 

second week. This finding means that when GSFI is very low, there is less likely to be a very 

large negative loss for Bitcoin. The cross-quantilogram p ̂_α (k) for α1 = 0.7, 0.8, 0.9, and 0.95 is 

negative and significant for most lags, indicating that when GSFI is very low, it is less likely to 

have a very large positive gain for Bitcoin. Fig. 1(b) shows that the Box-Ljung test statistics are 

significant for quantiles α1 =0.1, 0.2, 0.3, 0.5, 0.8 and 0.9. 

 

 

Figs. 2(a) and 2(b) are for the case in which the Bitcoin return is in the median, i.e., q2 (α2) for 

α2=0.5. If the distributions of Bitcoin returns and the predictor are symmetric, the median return 

forecast will be equal to the mean return forecast. For α1 = 0.5 and α2 = 0.5, the cross 

quantilograms are insignificant for nearly all lags. The cross-quantilogram �̂�𝛼(𝑘) for α1 = 0.2 and 

0.3 is positive and significant for all lags. This finding means that when the GSFI is lower than 

the median, it is less likely to result in a very large negative loss for Bitcoin. The cross-

quantilogram �̂�𝛼(𝑘) for α1 = 0.2 and 0.3 is positive and significant for all lags. This finding 

means that when the GSFI is lower than the median, it is less likely to have a very large negative 

loss for Bitcoin. Fig. 2(b) shows the Box-Ljung test statistics for α2 = 0.5. 

 

 

Figs. 3(a) and 3(b) are for the case in which Bitcoin return is in the higher quantile, i.e., q2 (α2) 

for α2 = 0.9. Compared to the previous case of α2 = 0.5, the cross quantilograms have very 

different trends in addition to much larger absolute values. For α1 < 0.5, the cross quantilograms 

are negative and significant for approximately 50-60 days. This finding implies that when 

financial stress is higher than the 0.9 quantile, there is an increased likelihood of having very 

large negative losses to Bitcoin for a maximum of 50-60 days. For α1 =0.8 and 0.9, the cross 

quantilograms are positive and significant for more than 60 days. This finding implies that when 

risk is very high (higher than the 0.8 quantile), there is an increased likelihood of having a very 

large positive gain for the next 60 days. Fig. 3(b) shows the Box-Ljung test statistics for α2 = 0.9. 
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In summary, when global financial stress is in a higher quantile, in general, the absolute value of 

the cross-quantilogram is higher, and the cross-quantilogram is significantly different from zero 

for larger lags. Our results exhibit a more complete quantile-to-quantile relationship between 

financial stress and Bitcoin return and show how the relationship changes for different lags. This 

evidence on Bitcoin’s safe-haven property against global financial stress in certain quantiles 

from a predictive perspective adds to that reported by Bouri et al. (2017b) in general and Bouri et 

al. (2017a) in particular. The evidence can be explained by the well-documented view that 

Bitcoin is part of an alternative economy (Bouri et al., 2017), and its price formation depends on 

certain non-economic and non-financial factors and Bitcoin attractiveness indicators (Ciaian and 

Rajcaniova, 2016) such as the anonymity of payment transactions (EBA, 2014), use in illegal 

activities (Böhme et al., 2015), and computer-programming enthusiasts (Yelowitz and Wilson, 

2015). 

5. Conclusion 

Initially introduced as an electronic payment system equivalent to cash that could be used nearly 

anonymously in e-commerce, Bitcoin has quickly gained ground as an investment asset. A great 

deal of attention has been devoted to the technological, cryptographic, and legal aspects of 

Bitcoin. However, empirical evidence of its economic and financial aspects, particularly its role 

as a safe haven against global financial stress, is relatively scarce. This paper addressed this void 

by examining the quantile dependence between Bitcoin and global financial stress, which is 

measured by the GFSI, from July 18, 2010, to December 29, 2017. Interestingly, the GFSI 

captures global stress better than the VIX because it aggregates 23 measures of stress covering 

factors that reflect deteriorating economic fundamentals and poorly functioning financial systems. 

Methodologically, we considered the quantile dependence using copula functions, given the 

inability of conventional methods to appropriately capture the dependence between Bitcoin 

returns and the GFSI, as the bivariate joint distribution is not normally distributed. This paper not 

only found evidence of right-tail dependence but also computed the inverse of the conditional 

copula distribution function as a necessary step to obtain the conditional quantile functions and 

examine the Granger causality in different quantiles; in addition, it showed that global financial 

stress strongly Granger-causes Bitcoin returns at the left tail (deficient performance) and the 

right tail (superior performance) but not at the middle (average performance) of the joint 
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distribution. Furthermore, we focused on the quantile-to-quantile relation from a predictive 

perspective and revealed evidence of directional predictability from the GFSI to Bitcoin returns, 

suggesting Bitcoin’s ability to act as a safe-haven against global financial stress for 

approximately 60 days. 

Overall, our findings support the literature on the valuable role of Bitcoin returns (Bouri et al., 

2017a, 2017c; Brière et al., 2015; Dyhrberg, 2016a, 2016b; Ji et al., 2017) and extended it by 

showing the directional quantile dependence. This extension is important and useful to 

practitioners and policy-makers in an era of potentially high global financial stress. However, 

Bitcoin’s possible benefits as a financial asset must be considered along with its associated 

volatility, which is documented in numerous studies (Pieters and Vivanco, 2017). It would also 

be premature to ensure that Bitcoin’s role as a valuable investment will not be interrupted by a 

technological glitch. Future research can use the quantile dependence approach to more 

thoroughly examine Bitcoin’s safe-haven property against conventional assets and commodities. 
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Fig. 1(a). The sample cross quantilogram �̂�𝛼(𝑘) for α2 = 0.1 to detect directional predictability 

from the GSFI to RBC. Bar graphs describe sample cross quantilograms, and lines are the 95% 

bootstrap confidence intervals. 

 

Fig. 1(b). Box-Ljung test statistic �̂�𝛼
(𝑝)

 for each lag p and quantile using �̂�𝛼(𝑘), with α2 = 0.1. 

The dashed lines are the 95% bootstrap confidence intervals. 
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Fig. 2(a). The sample cross quantilogram �̂�𝛼(𝑘) for α2=0.5 to detect directional predictability 

from the GSFI to RBC. Bar graphs describe sample cross quantilograms, and lines are the 95% 

bootstrap confidence intervals. 

 

 

Fig. 2(b). Box-Ljung test statistic �̂�𝛼
(𝑝)

, for each lag p and quantile using �̂�𝛼(𝑘) with α2=0.5. The 

dashed lines are the 95% bootstrap confidence intervals. 
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Fig. 3(a). The sample cross quantilogram �̂�𝛼(𝑘) for α2 = 0.9 to detect directional predictability 

from the GSFI to RBC. Bar graphs describe sample cross quantilograms, and lines are the 95% 

bootstrap confidence intervals. 

 
 

Fig. 3(b). Box-Ljung test statistic �̂�𝛼
(𝑝)

 for each lag p and quantile using �̂�𝛼(𝑘), with α2 = 0.9. 

The dashed lines are the 95% bootstrap confidence intervals. 
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Table 1. Summary statistics. 

Series GFSI RBC 

Mean 0.105 0.006 

Maximum 1.310 0.500 

Minimum -0.530 -0.470 

Standard devaition 0.355 0.065 

Skewnes 0.784 0.016 

Kurtosis 3.572 12.338 

Jarque-Bera test 225.738 7062.835 

Unconditional Correlation -0.053 

Note: This table presents summary statistics of the GFSI and Bitcoin returns (RBC) for the period July 18, 2010, to 

December 29, 2017.  

 

Table 2. Empirical copula for the GFSI and Bitcoin return. 

  
Bitcoin- 

lowest 
  

              
Bitcoin- 

highest 

GFSI-highest 34 27 18 12 21 11 19 14 16 31 

 

13 15 18 28 52 27 19 10 14 6 

 

12 12 24 19 24 27 32 11 13 17 

 

15 20 15 17 21 16 21 19 22 21 

 

22 17 18 14 22 13 13 21 21 28 

 

21 21 22 15 17 21 20 29 19 11 

 

17 20 25 26 7 27 18 23 21 17 

 

19 26 23 21 12 18 20 24 22 24 

 

31 16 18 23 8 13 15 17 23 12 

GFSI-lowest 10 21 13 20 10 21 18 26 24 27 

Notes: The pair of returns are ranked in ascending order and then each series is divided evenly into 10 bins. Bin 10 

includes the observations with the highest values, and bin 1 includes observations with the lowest values. The ranks 

for the return of Bitcoin (i) in the pair are on the vertical axis, whilst the ranks for the GFSI (j) in the pair are on the 

horizontal axis. For the vertical axis, returns increase from the bottom to the top. For the horizontal axis, returns 

increase from left to right. 
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Table 3. Estimation of marginal models. 

    GFSI RBC 

    Est Coef t Stat Est Coef t Stat 

ARMA(1,1) 

Constant -0.002 -2.355 0.000 2.397 

AR{1}  0.990 392.585 0.924 35.858 

MA{1} 0.179 7.785 -0.895 -29.564 

GARCH(1,1) 

Constant 0.000 3.482 0.000 5.020 

GARCH{1} 0.844 29.495 0.762 40.080 

 ARCH{1}  0.103 5.118 0.238 6.978 

Residual DoF 4.971 8.954 3.099 15.362 

    Test Stat P-Value Test Stat P-Value 

Diagnostics 

Q(4) 7.607 0.107 8.662 0.070 

Q(8) 10.366 0.240 13.546 0.094 

Q2(4) 3.244 0.518 2.427 0.658 

Q2(8) 7.067 0.529 4.654 0.794 

Arch(4) 3.375 0.497 2.369 0.668 

Arch(8) 7.057 0.531 4.788 0.780 

Notes: The order of ARMA is (1,1), and the order of GARCH is (1,1), which is sufficient for our data with evidence 

from the autocorrelation and heteroscedasticity tests. This model is parsimonious; it can capture both autocorrelation 

and heteroskedasticity. 

 

Table 4. Copulas model estimation. 

Copula Type Estimated Parameter 
Copula Log 

Likelihood 
AIC BIC 

Left-tail 

Dependence 

Right-tail 

Dependence 

Normal 𝜌 -0.009 -0.074 -0.147 -0.144 0.000 0.000 

Clayton 𝜃 0.000 0.005 0.011 0.014 0.000 0.000 

Rotated Clayton 𝜃 0.011 -0.110 -0.218 -0.215 0.000 0.000 

Plackett 𝜃 0.999 0.000 0.001 0.004 0.000 0.000 

Frank 𝜃 0.004 0.001 0.002 0.005 0.000 0.000 

Gumbel 𝜃 1.008 -0.250 -0.499 -0.496 0.000 0.010 

Rotated Gumbel 𝜃 1.000 0.009 0.019 0.022 0.000 0.000 

Student's t 
𝜌 -0.008 

-0.187 -0.372 -0.366 0.000 0.000 
𝜈 81.327 

Symmetrised upper tail  0.000 
1.177 2.355 2.361 0.000 0.000 

Joe-Clayton lower tail  0.000 
Notes: The normal copula has zero tail dependence. The Clayton copula has zero upper-tail dependence. The rotated 

Clayton copula has zero lower-tail dependence. The Plackett copula has zero tail dependence. The Frank copula has 

zero tail dependence. The Gumbel copula has zero lower-tail dependence. The rotated Gumbel copula has zero 

upper-tail dependence. The Student's t copula has symmetric tail dependence. The SJC copula parameters are the 

tail-dependence coefficients, but in reverse order.  
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Table 5. Testing for GCQ. 

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 99% 

0 0 0 0 0 0.038 0.546 0.4 0 0 0 0 0 

Notes: We compute the quantile forecasts by inverting the parametric conditional copula distribution. We use six 

copulas (Gaussian, Frank, Clayton, Clayton Survival, Gumbel and Gumbel Survival copulas). The check loss 

functions are compared to evaluate the predictive ability of different quantile forecasting using different copula 

models. The benchmark quantile forecasts are computed using the independent copula such that there is no GCQ. 

Reported are the bootstrap p-values for testing the null hypothesis that none of these six copula models (which 

model GCQ) produces a better quantile forecast than the independent copula (which gives no GCQ). The small p-

values of the reality check indicate the rejection of the null hypothesis, indicating that there is a copula function to 

model GCQ and produce a better quantile forecast. 
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Appendix 

Copula dependence model  

Sklar’s Theorem. Let 𝐹𝑋𝑌 be a joint distribution function. 𝐹𝑋𝑌 has two marginal distributions 𝐹𝑋 

and 𝐹𝑌. There exists a copula 𝐶 such that all 𝑥, 𝑦 in 𝑹, 

𝐹𝑋𝑌 = 𝐶(𝐹𝑋(𝑥), 𝐹𝑌(𝑦)) 

The copula 𝐶  is unique if marginal distributions 𝐹𝑋  and 𝐹𝑌  are continuous; otherwise, 𝐶  is 

uniquely determined on Ran(𝐹𝑋) × Ran(𝐹𝑌). Sklar’s theorem enables us to model the marginal 

distributions and the dependence structure separately. Within our context, a bivariate joint 

cumulative distribution function of returns of Bitcoin and the GFSI can be decomposed into two 

marginal cumulative distribution functions and a copula cumulative distribution function. 

Assuming 𝐹𝑋 and 𝐹𝑌 are differentiable, the bivariate joint density is defined as 

𝑓𝑋𝑌 =
𝜕2𝐹𝑋𝑌

𝜕𝑥𝜕𝑦
= 𝑓𝑋(𝑥)𝑓𝑌(𝑦)𝑐(𝑢, 𝑣) 

where 𝑢 and 𝑣 are the “probability integral transforms” of 𝑥 and 𝑦 based on 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦), 

respectively. 𝑓𝑋(𝑥)  and 𝑓𝑌(𝑦)  are marginal densities of 𝑥  and 𝑦 , respectively, and 𝑐(𝑢, 𝑣) =

𝜕2𝐶(𝑢,𝑣)

𝜕𝑢𝜕𝑣
 is the copula density. Therefore, the bivariate joint density is expressed as the product of 

the two marginal densities and the copula density. 

One particularly important dependence measure that copula can capture is the tail dependence, 

which measures the probability that two variables are jointly in their lower or upper tails. Tail 

dependence can be viewed as a pronounced spike in the data points in the plot of the lower-left 

or upper-right corner of a copula probability density. Intuitively, lower or upper-tail dependence 

is a relatively high probability density in the lower or upper quantile of the joint distribution. In 

Nelsen (1999), the left and right-tail dependence coefficients of a copula are defined as 

𝜑𝐿 = lim
𝑢→0

𝐏[𝑌 ≤ 𝐹𝑌
(−1)

(𝑢)|𝑋 ≤ 𝐹𝑋
(−1)

(𝑢)] = lim
𝑢→0

𝐶(𝑢, 𝑢)

𝑢
  

𝜑𝑅 = lim
𝑢→1

𝐏[𝑌 > 𝐹𝑌
(−1)

(𝑢)|𝑋 > 𝐹𝑋
(−1)

(𝑢)] = lim
𝑢→1

1−2𝑢+𝐶(𝑢,𝑢)

1−𝑢
                                                    (A1) 

 

where 𝐶 is a copula function. 
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Estimation methods and parametric copulas  

The quasi-maximum likelihood method (Bollerslev and Wooldridge, 1992) is applied to estimate 

the marginal models. The variance-covariance matrix of the estimated coefficients is adjusted 

accordingly. We use the Canonical Maximum Likelihood method to transform the standardized 

residuals, which are based on a cumulative distribution function (CDF) 6 , into uniform 

distribution. We present the parametric copulas used in the paper and their tail-dependence 

properties. 

Normal Copula 

𝐶𝑁(𝑢, 𝑣) = Φ𝜌(Φ−1(𝑢), Φ−1(𝑣)) (A2) 

where Φ−1(⋅) is the inverse of the distribution function of a standard normal random variable, 

and Φ𝜌(⋅) denotes the distribution function of a bivariate normal random vector with zero means 

and correlation 𝜌. A normal copula has zero tail dependence. 

Clayton Copula 

𝐶𝐶(𝑢, 𝑣) = [max(𝑢−𝜃 + 𝑣−𝜃 − 1,0)]
−

1

𝜃, where 𝜃 ∈ [−1, ∞]\{0} (A3) 

The Clayton copula has zero upper-tail dependence but positive lower-tail dependence. 

Rotated Clayton Copula 

𝐶𝑅𝐶(𝑢, 𝑣) = [max((1 − 𝑢)−𝜃 + (1 − 𝑣)−𝜃 − 1,0)]
−

1

𝜃, where 𝜃 ∈ [−1, ∞]\{0}  (A4) 

The rotated Clayton copula has zero lower-tail dependence but positive upper-tail dependence. 

Plackett Copula 

𝐶𝑃 =
1+(𝜃−1)(𝑢+𝑣)−√[1+(𝜃−1)(𝑢+𝑣)]2−4𝜃(𝜃−1)𝑢𝑣

2(𝜃−1)
, where 𝜃 ∈ (0, ∞) (A5) 

The Plackett copula has zero tail dependence. 

Frank Copula 

𝐶𝐹(𝑢, 𝑣) = −
1

𝜃
𝑙𝑛 (1 +

(𝑒−𝜃𝑢−1)(𝑒−𝜃𝑣−1)

𝑒−𝜃−1
), where 𝜃 ∈ (−∞, ∞)\{0} (A6) 

The Frank copula has zero tail dependence. 

Gumbel Copula 

𝐶𝐺(𝑢, 𝑣) = exp (−[(− ln 𝑢)𝜃 + (− ln 𝑣)𝜃]
1

𝜃), where 𝜃 ∈ [1, ∞] (A7) 

The Gumbel copula has zero lower-tail dependence but positive upper-tail dependence. 

Rotated Gumbel Copula 

                                                           
6 The empirical marginal cumulative distribution function is computed by �̂�𝑘(𝑥) =

1

𝑇+1
∑ 𝐈(𝜂𝑘,𝑡 ≤ 𝑥)𝑇

𝑡=1 , where 𝐼(⋅) 

is an indicator function.   
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𝐶𝑅𝐺(𝑢, 𝑣) = exp (−[(− ln(1 − 𝑢))𝜃 + (− ln(1 − 𝑣))𝜃]
1

𝜃), where 𝜃 ∈ [1, ∞] (A8) 

The rotated Gumbel copula has zero upper-tail dependence but positive lower-tail dependence. 

Student’s t Copula 

𝐶𝑆𝑇(𝑢, 𝑣) = Ψ𝜌(Ψ−1(𝑢, 𝑑), Ψ−1(𝑣, 𝑑), 𝑑)    (A9) 

where Ψ𝜌(⋅) is the distribution function of a bivariate Student’s t distribution with correlation 𝜌 

and degree of freedom parameter 𝑑, and Ψ−1 is the inverse of the distribution function for the 

univariate Student’s t distribution with zero means and degree of freedom 𝑑. The Student’s t 

copula has symmetric tail dependence. 

Symmetrised Joe-Clayton Copula 

𝐶𝑆𝐽𝐶(𝑢, 𝑣) =
1

2
(𝐶𝐽𝐶(𝑢, 𝑣) + 𝐶𝐽𝐶(1 − 𝑢, 1 − 𝑣) + 𝑢 + 𝑣 − 1)          (A10) 

where 

𝐶𝐽𝐶(𝑢, 𝑣) = 1 − (1 − {[1 − (1 − 𝑢)𝜅]−𝛾 + [1 − (1 − 𝑣)𝜅]−𝛾 − 1}
−

1
𝛾)

1
𝜅

 

𝜅 =
1

log2(2 − 𝜏𝑈)
 

𝛾 = −
1

log2(𝜏𝐿)
 

and {𝜏𝑈 , 𝜏𝐿} ∈ (0,1)      (A11) 

 

Marginal and Copula models 

The ARMA(1,1)-tGARCH(1,1) model has been chosen for the marginal model. There are three 

motivations to use this model. First, our data contain a serial correlation. The level equation is 

chosen to be ARMA (1,1). Second, our data have heteroscedasticity. The volatility equation is 

chosen to be GARCH (1,1). Third, there are many outliers in the data. The standardized residuals 

follow the Student-t distribution. The order of ARMA is (1,1) and the order of GARCH is (1,1), 

which is sufficient for our data with evidence from the autocorrelation and heteroscedasticity 

tests. This model is parsimonious, which can capture both autocorrelation and heteroskedasticity7. 

The model is given by: 

                                                           
7 When 𝑘 = 1, that is the model for the GFSI; when 𝑘 = 2, that is the model for the RBC. 
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𝑅𝑘,𝑡 = 𝛼𝑘,0 + 𝛼𝑘,1𝑅𝑘,𝑡−1 + 𝛼𝑘,2𝜀𝑘,𝑡−1 + 𝜀𝑘,𝑡       𝑘 = 1,2 

ℎ𝑘,𝑡 = 𝛽𝑘,0 + 𝛽𝑘,1𝜀𝑘,𝑡−1
2 + 𝛽𝑘,2ℎ𝑘,𝑡−1 

𝜂𝑘,𝑡 =
𝜀𝑘,𝑡

√ℎ𝑘,𝑡
,    𝜂𝑘,𝑡|Ω𝑡−1 ∼ 𝑡(𝑑𝑘)                                                                               (A12) 

where 𝜂𝑘,𝑡 is the standardized residuals, which follows the Student-t distribution with 𝑑𝑘 degrees 

of freedom. The ARMA(1,1)-tGARCH(1,1) model is estimated by the quasi-maximum 

likelihood method. 

Specifying the correct marginal models is a key step. With incorrect marginal models, the 

estimated copula model is unable to capture the correct dependence structure of two series. The 

𝑄-statistic and the 𝑄2-statistic are applied to examine the hypothesis of no serial correlation in 

the estimated standardized residuals. The ARCH-LM statistic is employed to ensure that no 

heteroscedasticity is in the estimated standardized residuals. 

Regime-dependent Copula 

We further assume that the copula function is time-varying, depending on an unobservable state 

variable 𝑆𝑡. 

𝐶𝑆𝑡
= {

𝐶𝐺(𝑢, 𝑣) = exp (−[(− ln 𝑢)𝜃1 + (− ln 𝑣)𝜃1]
1

𝜃1)                               if 𝑆𝑡 = 1

𝐶𝑅𝐺(𝑢, 𝑣) = exp (−[(− ln(1 − 𝑢))𝜃0 + (− ln(1 − 𝑣))𝜃0]
1

𝜃0)       if 𝑆𝑡 = 0

    (A13) 

where 𝑢  and 𝑣  are the “probability integral transforms” of the GFSI and RBC. 𝜃1  is the 

parameter for the Gumbel copula, and 𝜃0  is the parameter for the rotated Gumbel copula. 

The unobservable state variable 𝑆𝑡 follows a two-state Markov chain. 𝑆𝑡 transits between 

two states according to the transition probabilities. 

𝑃 = [
𝑃11 𝑃10

𝑃01 𝑃00
] 

where 𝑃𝑖𝑗 = 𝑃(𝑆𝑡 = 𝑗|𝑆𝑡 = 𝑖) for {𝑖, 𝑗} ∈ {0,1}.     (A14) 

The bivariate density function of the above model is defined as 

𝑓𝑡
𝑇𝑉(𝑥, 𝑦) = ∑ 𝑃(𝑆𝑡 = 𝑖)𝑐𝑖(𝑢, 𝑣)𝑓𝑋(𝑥)𝑓𝑌(𝑦)1

𝑖=0    (A15) 

where 𝑐𝑖(𝑢, 𝑣) is the copula under regime 𝑖 ∈ {0,1}, i.e. 𝑐1(𝑢, 𝑣) =
𝜕2𝐶𝐺(𝑢,𝑣)

𝜕𝑢𝜕𝑣
,  and 𝑐0(𝑢, 𝑣) =

𝜕2𝐶𝑅𝐺(𝑢,𝑣)

𝜕𝑢𝜕𝑣
. Notice that we assume the copula functions are different under different regimes; 

however, the two marginal densities are the same across different regimes. The model with 
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dependence switching enables us to discuss the asymmetric tail dependence and the transition 

between the left-tail dependence regime and the right-tail dependence regime. The log likelihood 

of the model of a parameter set 𝚯 = {𝜽𝑐, 𝜽𝑋 , 𝜽𝑌} with a given data 𝑫 is 

𝑳(𝚯) = 𝑳𝑐(𝜽𝑐) + 𝑳𝑋(𝜽𝑋) + 𝑳𝑌(𝜽𝑌) 

where 𝑳𝑐(𝜽𝑐) is the log likelihood of the copula density; 𝑳𝑋(𝜽𝑋)  and 𝑳𝑌(𝜽𝑌)  are the log 

likelihood of the two marginal densities. 

𝑳𝑐(𝜽𝑐) = log [∑ 𝑃(𝑆𝑡 = 𝑖)𝑐𝑖(𝑢, 𝑣)

1

𝑖=0

] 

𝑳𝑋(𝜽𝑋) = log[𝑓𝑋(𝑥)] 

𝑳𝑌(𝜽𝑌) = log[𝑓𝑌(𝑦)] 
 (A16) 

where 𝜽𝑐 = {𝑃00, 𝑃01, 𝑃10, 𝑃11 }, 𝜽𝑋 and 𝜽𝑌 are the parameter set for the two marginal models, 

respectively. Because of the structure of the log likelihood function, its three components can be 

optimized independently. Table A1 reports the results for the regime-dependent copula model; 

the result shows that the regime-switching effect is absent for our dataset (see Table A1), as 𝑃11 

is exactly 1.000 with SD 0.000. Hence, the regime-switching is not suitable in our study. The 

Gumbel will always be chosen, and the rotated Gumbel will never be chosen. This finding can 

also be confirmed by smooth probability. This result is not surprising because Table 4 shows that 

there is no left-tail dependence for whatever copula is used, and there is very weak right-tail 

dependence only when the Gumbel copula is used. 

 

Table A1. Estimation of the dependence-switching copula model. 

    Value SD 

Gumbel 𝜃1 1.008 0.011 

Rotated Gumbel 𝜃2 1.108 0.230 

Regime 

 Switching 

𝑃11 1.000 0.000 

𝑃22  0.956 0.102 

Copula LV -0.378 

 AIC 0.775 

 BIC 0.827   

 

Notes: 𝜃𝑖 is the shape parameter of the dependence-switching copula. “Copula LV” denotes the estimated log 

likelihood value for the copula function. 𝑃11 and 𝑃22 are two transition probabilities. SD denotes the standard 

deviation.   
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