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Abstract—Abstract Syntax Trees (ASTs) are intermediate rep-
resentations widely used by compiler frameworks. One of their
strengths is that they can be used to determine the similarity
among a collection of programs. In this paper we propose a novel
comparison method that converts ASTs into weighted strings
in order to get similarity matrices and quantify the level of
correlation among codes. To evaluate the approach, we leveraged
the corresponding strings derived from the Clang ASTs of a set of
100 source code examples written in C. Our kernel and two other
string kernels from the literature were used to obtain similarity
matrices among those examples. Next, we used Hierarchical
Clustering to visualize the results. Our solution was able to
identify different clusters conformed by examples that shared
similar semantics. We demonstrated that the proposed strategy
can be promisingly applied to similarity problems involving trees
or strings.

I. INTRODUCTION

Computer programs exhibit similarities that can be detected
before, upon and after execution time. Being similar means
sharing syntactical or semantical structure in a significant
proportion. Programs that are similar tend to behave in sim-
ilar manner too. This can be utilized, for example, in the
analysis and improvement of the overall performance of a
set of programs by focusing on finding patterns that behave
similar but have a different performance. The detection of
program similarities has been identified as an emerging topic
in software engineering areas [1].

From the perspective of code sharing, finding similar code
can, for example, assist the programmer in finding code that
is already implemented in a library and hinting users to utilize
the library instead of recoding. Developers might be even able
to find syntactically dissimilar, yet more efficient, versions
of their algorithms with similar semantics. The optimizations
implemented in an algorithm might benefit similar programs,
once the similarity relation has been established.

Furthermore, the search could be specialized on finding
common mistakes at designing or writing programs, the so-
called code smells [2]. A possible way to do this could be
by comparing our own code against a collection of code
excerpts already recognized as containers of code smells, and
subsequently applying machine learning to extract knowledge
from the similarity scores.

On the counter direction of code sharing, we have code
plagiarism, a phenomena that has increasingly motivated re-
search in program similarity. Starting from Computer Science
lectures where teachers need to verify the originality of their
students’ work, till the protection of copyrighted code that
might have been illegally used, plagiarism detection is a very
active research field.

Abstract Syntax Trees (ASTs) are one of the most com-
monly used Intermediate Representations (IRs) inside com-
piler infrastructures (e.g. LLVM’s Clang AST). They act as the
central data structure where almost most of the transformations
and analysis are done. Though ASTs can be used to determine
how similar two code fragments are, there is not so much
available work related to the use of string kernels to compare
data structures of this particular nature.

This work extends the state-of-the-art in detecting code
similarities using string kernels. In this sense, the contributions
in this paper are twofold: a) we propose a strategy to convert
ASTs from Clang into flat weighted strings; this way we can
use string kernels for the comparison process; b) we propose
a novel string kernel function called kast1 spectrum kernel;
this kernel delivers a similarity score among two strings that
is determined by the contributions of matching substrings.

This paper is organized as follows: in Section II, the basic
foundations of Compiler’s Intermediate Representations and
String Kernels are presented. Section III revisits some related
works in the area. Section IV explains the rational behind both
the proposed string representation and the kernel function. The
evaluation of the approach is conducted in Section V. Finally,
Section VI summarizes the results and details possible future
paths for the current research efforts.

II. BACKGROUND

In this section we describe the main topics related to this
research: compiler intermediate representations, strategies and
techniques for code similarity, background on string.

A. Compiler Intermediate Representations

According to Torczon and Cooper [3], the Intermediate
Representation (IR) of a program is the central data structure in



a compiler. Around it, analysis, transformations and optimiza-
tions are performed. Complex compiler infrastructures might
work with different interconnected IRs, some of them closer to
the source code, others closer to the machine instruction level.
IRs can be classified in the following three broad categories:

• Graphical IRs store the program information in a graph-
like data structure.

• Linear IRs are simple linear sequences of operations,
similar to machine code.

• Hybrid IRs combine elements of the previous two cate-
gories.

Among the graphical IRs, Abstract Syntax Trees (ASTs)
are widely used. ASTs are defined as contractions of parse
trees where most non-terminal symbols are ignored while the
precedence and the meaning of the expressions are preserved,
thus saving space. Their level of abstraction is not far from
the original source code.

In this sense, we highlight the LLVM [4] compiler in-
frastructure, a framework that uses different IRs to perform
program analysis, transformation and code generation. Among
the variety of tools available under this infrastructure, there
exists Clang [5], a frontend for C/C++/Objective C programs.
Upon compilation, Clang first captures the syntactical structure
of the program in an AST [5]. Afterwards, the AST is traversed
to generate the linear IR that is used by LLVM to perform
transformation and optimizations, and finally generate machine
specific code. There are three core classes of AST nodes:
Declarations, Statements, and Types [6]; all the class hierarchy
of Clang inherit directly or indirectly from them. For example,
for the expression: a = b × c + d ÷ e, the abbreviated Clang
AST would look similar to the diagram in Fig. 1.

[BinaryOperator]
(=)

[DeclRefExpr]
(a)

[BinaryOperator]
(+)

[BinaryOperator]
(×)

[ImplCastExpr]

[DeclRefExpr]
(b)

[ImplCastExpr]

[DeclRefExpr]
(c)

[BinaryOperator]
(÷)

[ImplCastExpr]

[DeclRefExpr]
(d)

[ImplCastExpr]

[DeclRefExpr]
(e)

Fig. 1. Example of abbreviated Clang AST for the expression a = b×c+d÷e.

B. Code similarity
Code plagiarism is an emerging topic that increasingly

motivated research in code similarity. For instance, the work
of Beth [7] listed the general strategies used to obscure
plagiarism: comment alteration, whitespace padding, identi-
fier renaming, code reordering and algebraic expressions. In
general, code clones are a measure of plagiarism. In this
sense, Dang et al. [8] defined code clones as portions of code
with high similarity in syntax or semantics. They listed four
different types of code clones:

• Type-1: this type of clones stand for pieces of code con-
taining differences in the layout, spaces and comments.

• Type-2: these codes also present differences in data types
and identifiers.

• Type-3: this clone types also include additions, modifica-
tions and deletions of lines of code.

• Type-4: represent codes that present different implemen-
tation but the same functionality.

On the other hand, the work of Vislavski et al. [9] made
a classification of level of approaches to detect code clones.
These approaches are the following:

• Textual approach: this approach treats code merely as text
and it is useful for Type-1 clones.

• Lexical approach: at this approach level, tokens are the
unit of comparison and add a bit more of sophistication
to the textual approaches.

• Syntactical approach: this approach is characterized by
the usage of either ASTs or Source Code Metrics.

• Semantic approach: this approach is different to the
previous ones, as they make use of more complex tools
e.g. Control and Data Flow Analysis.

Following this classification, the higher the level, the better
the detection can be made. In this paper, we leverage a
syntactical approach based on the AST associated to a given
program.

C. String kernels

In machine learning and data mining, a string kernel is a
kernel function that operates on strings, i.e. finite sequences of
symbols that need not be of the same length. String kernels can
be intuitively understood as functions measuring the similarity
of pairs of strings: the more similar two strings a and b are,
the higher the value of a string kernel K(a, b) will be. In
particular, string kernels check the number of shared substrings
among a collection of strings [10]. These substrings should
comply with certain weighting factors, which produce different
kernel functions:

• The bag-of-characters kernel only takes into account
single-character matching.

• The bag-of-words kernel searches for shared words
among strings.

• The k-spectrum kernel only counts sub-strings of length
k [11].

• The blended spectrum kernel only counts sub-strings
whose length are less or equal to a given number k [12].

In this work, we leverage the aforementioned string kernels
in the domain of code plagiarism in order to detect similar-
ities between string-represented ASTs from a collection of
programs.

III. RELATED WORK

Given the aforementioned background, the string kernel
version proposed in this paper extends the current state-of-
the-art in the field of code similarity detection. This is based
on a previous kernel proposed by Torres et al. [13], where the



authors proposed a string kernel and a string representation
for the detection of patterns in I/O traces.

In a similar way, in the work of Fu et al.[14] it was
proposed a weighted kernel method for source code plagiarism
detection based on ASTs. The weights of each AST node were
determined by a technique called TF-IDF (Term Frequency-
Inverse Document Frequency). The authors claimed that their
method resulted on improved detection in comparison with
two other plagiarism detection tools, namely JPlag [15] and
Sim [16].

A tree kernel-based approach for clone detection can be
found in [17]. Similar to their work, we used in our research
an abstraction for while and for control flow instructions.
In their work, the similarity score of two nodes was limited to
six values that were adjusted by the authors, and depended on
the proximity in terms of the class/context system they defined.
Experimental evaluation on a set of Java code examples
resulted on proper detection of Type-1, Type-2 and Type-3
clones.

Research in this direction, e.g. Bandara et al. [18], used an
unsupervised technique called sparse auto-encoder to extract
the features from a piece of code. Logistic regression was used
to predict the author of a code segment. In the direction of
code smells detection, Danphitsanuphan et al. [19] proposed
an approach to find a relationship between code smells and
software structure bugs.

On the other hand, the work of Park at al. [20] used a
combined approach of parse trees and function-call graphs.
They created a composite kernel, with the parse tree kernel
and the graph kernel. Similar works, such as by Sharma et
al. [21], used a bag-of-words approach to characterize intru-
sion, where the words corresponded to the system calls that
the program performed. In the work of Wang et. al [22], a new
methodology was developed to detect Platform-Specific Code
Smells (PSCSs) in High Performance Computing applications
using Abstract Syntax Tree (AST) and XML.

IV. METHODOLOGY

In this section, we describe our method for converting Clang
ASTs into weighted strings. We also present a novel kernel
function to compare the resulting strings.

A. Creation of strings from Abstract Syntax Trees

1) From trees to strings: To create the strings, ASTs are
traversed in a pre-order fashion. During the traversal, the
identifiers of the visited nodes are appended as tokens in the
string, except from comment nodes and their eventual children.
Basically, these tokens consists of a literal part and a weight
value. The literal part is the class name of the node given by
Clang AST, while the weight is the number of consecutive
occurrences of the token, which at first always equals to 1.

In order to achieve generality, we transform loop statement
classes, such as ForStmt and WhileStmt into the new
token [LoopedStmt]. Additionally, to preserve information
about the tree structure, we introduce a new token that does
not correspond to any node of the AST but gives a notion of

distance between nodes; this node is the [LEVEL_UP] token
and represents the change to an upper level when doing the
pre-order traversal. Its weight is simply the amount of levels
jumped until the next new node is found. Notice that there is
no need for a token to indicate a change to a lower level. This
is due to the fact that in the pre-order traversal the number of
levels jumped from a parent to a child is always 1. This effect
is implicitly expressed when two tokens are written one after
the other.

Fig. 2 shows a worked example of conversion from an AST
to a string; first the AST (Fig. 2a) is traversed in a pre-order
fashion; during the traversal its tokens are extracted (Fig.2b)
and appended at the end of the final string (Fig. 2c).

(a) Abstract Syntax Tree.

Tokens Repetitions
[IfStmt] 1
[BinaryOperator] 1
[BinaryOperator] 1
[ImplicitCastExpr] 1
[LEVEL_UP] 2
[BinaryOperator] 1
[ImplicitCastExpr] 1
[LEVEL_UP] 3
[BinaryOperator] 1
[ImplicitCastExpr] 1
[DeclRefExpr] 1
[LEVEL_UP] 1
[DeclRefExpr] 1
[LEVEL_UP] 3
[CompoundStmt] 1
[ReturnStmt] 1
[IntegerLiteral] 1
[LEVEL_UP] 4

(b) Extracted tokens.

[IfStmt]1[BinaryOp]1[BinaryOp]1...[LEVEL_UP]4
(c) Final string.

Fig. 2. Creation of a string of tokens from an Abstract Syntax Tree.

2) Compression of strings: Once the string is generated,
space can be saved when a set of consecutive tokens follows
a pattern that can be expressed as a single token. The resulting
token will have, as weight, the summation of weights of all
involved tokens, in order to preserve the original weight of
the string. This space-saving technique is applied in order to
compress the string when it is traversed from left to right. The
following transformations are applied depending on the form
of the string:

1) Consecutive tokens with the same literal part are repre-
sented as a single token and their weights are summed
up. For instance:
[BinaryOp]1[BinaryOp]1[BinaryOp]1[BinaryOp]1

↓
[BinaryOperator]4

Rationale: The motivation of this transformation is
merely to save space.

2) Tokens representing cast expressions, parent expressions
and function calls are deleted, but their weights are
added up to the weight of the next subsequent token.
For example:
[CStyleCastExpr]1[CallExpr]1[ImplicitCastExpr]1

[DeclRefExpr]1
↓

[DeclRefExpr]4



Rationale: Cast expressions are used to assist the com-
piler in the conversion of values between similar data
types; although this is important at compilation time, it
was proved to be cumbersome in the similarity study.
This is because the process introduced different tokens
in two strings that otherwise would be semantically iden-
tical, obstructing the achievement of a suitable abstrac-
tion level, necessary to establish a similarity measure
among code examples. Likewise, parent expressions are
internal constructions of the Clang AST, whose omission
improves abstraction.
The same is the case for function calls; keeping a token
for a function call also broke the structure of string
segment. The idea behind these omissions was to obtain
the largest possible matching substrings. Experimenta-
tion showed that ignoring these tokens helped to increase
the identification of Type-2 clones.

3) All tokens between a Declaration Statement token
([DeclStmt]) and a [LEVEL_UP] token are deleted
but their weights are summed up to the weight of the
former. For instance:
[DeclStmt]1[VarDecl]1[DeclRefExpr]1[LEVEL_UP]4

↓
[DeclStmt]3 [LEVEL_UP]4

Rationale: Similar to cast expressions, the tokens of a
declaration statement introduced a level of detail that
made the abstraction difficult. Omitting them eased the
detection of similar declaration blocks.

4) If two pairs of tokens have the same literal part, they
are collapsed as one pair and their weights are added up
to the corresponding token. For example:

[IntegerLiteral]1[LEVEL_UP]5
[IntegerLiteral]1[LEVEL_UP]2

↓
[IntegerLiteral]2[LEVEL_UP]7

Rationale: The motivation in this case is also space
saving, as the resultant string is semantically equivalent
after this transformation.

B. String comparison

This kernel is based on the kast spectrum kernel, presented
by Torres et al. [13]. Given two weighted strings A and B,
the kernel proposed in this paper must follow the conditions
given below:

1) The algorithm precises a minimum weight value as
parameter (from here on referred simply as cut weight).

2) The aim is to find the longest matching substrings of A
and B, whose weights are greater than or equal to the
cut weight. They are called valid matching substrings.
Invalid matching substrings have a weight value that is
smaller than the cut weight, and are hence ignored.

3) A valid matching substring can appear more than once
in each string.

4) A valid matching substring must not be a substring of
another valid matching substring in at least one of the
original strings.

In order to find the longest valid matching substrings effi-
ciently, the algorithm starts searching for matches of maximum
size. The maximum size is the number of tokens of the
shortest string of the comparison (A or B). This size is
reduced progressively until 1, but always checking that the
substrings weights are equal or above the cut weight. A copy
of each one of the original strings is used to mark down
the already found valid matching substrings. Potential valid
matching substrings have to be checked against those copies
to assure that condition 4 is met.

1) The cut weight parameter: One the one hand, the cut
weight selection has an effect on the computation cost, as the
algorithm takes into account all the substrings whose weights
are equal or greater than the cut weight. If the cut weight is
1, all substrings have to be compared. An increase on the cut
weight allows the filtering of substrings with small weights.
If the cut weight is closer to the weight of the strings (A or
B), the amount of substrings having a valid weight is reduced
considerably. Hence, the higher the cut weight, the cheaper
the computation.

On the other hand, the cut weight controls the size of the
consecutive parts that are shared. If the cut weight is equal to
the smallest weight between A and B, we are only accepting
that either A or B is contained fully on the other string. This
might be useful to perform code search: specific segments of
code can be survey in library or a project. A decrease on
the cut weight permits that segments of the strings can be
considered as valid matching substrings. If the cut weight is
closer to 1, short sequences of tokens will contribute on the
similarity score. In this sense, a trade-off has to be found.
Experimentation showed that cut weight values up to 32 were
optimal for the construction of good similarity matrices.

The kernel presented in this paper is an asymmetric kernel,
which means that the kernel value depends on the order in
which two string are compared. Because the substrings con-
forming the first string are always the base for the search, there
might be a difference when the strings are swapped. Given the
kernel function starts always searching for the longest match-
ing substrings, these changes happen with smaller matching
substrings only, so the the difference between the kernel values
is not significantly high. This also shows that the smaller is
the cut weight, the highest is the probability of this difference
to appear.

2) The Kast1 Spectrum Kernel: Consider the strings A and
B of Fig. 3, and a cut weight value of 4. The first valid
matching substring with the longest size (S1) is found once
in A and twice in B (see Fig. 3). The second longest valid
matching substring (S2) is found twice in A and twice in
B (see Fig.4). This substring appears at least once as an
independent substring in one of the strings, hence complying
with condition 4. Notice that an extra occurrence is ignored
because its weight is smaller than 4. The last and shortest valid
matching substring (S3) is found twice in A and twice in B
(see Fig. 5). As the substring appears as an independent case
in both strings, it complies with condition 4 as well. Here also
an extra occurrence is ignored due to a smaller weight.



A64 =

19︷ ︸︸ ︷
[a]3[b]2[c]4[d]2[e]1[f]5[g]1[h]1 [i]1[j]2[k]1[l]3[m]1[n]2[f]3[g]1[h]2[o]1[p]1[q]1[r]2[s]1[t]5[u]9[b]7[c]2

B52 = [v]2

17︷ ︸︸ ︷
[a]5[b]1[c]1[d]3[e]1[f]4[g]1[h]1 [w]2[x]2[y]1

18︷ ︸︸ ︷
[a]1[b]2[c]6[d]1[e]3[f]1[g]1[h]3 [z]1[b]5[c]1[f]1[g]1[h]1

Fig. 3. S1 is the largest substring found on both examples.

A64 = [a]3[b]2[c]4[d]2[e]1

7︷ ︸︸ ︷
[f]5[g]1[h]1 [i]1[j]2[k]1[l]3[m]1[n]2

6︷ ︸︸ ︷
[f]3[g]1[h]2 [o]1[p]1[q]1[r]2[s]1[t]5[u]9[b]7[c]2

B52 = [v]2[a]5[b]1[c]1[d]3[e]1

6︷ ︸︸ ︷
[f]4[g]1[h]1 [w]2[x]2[y]1[a]1[b]2[c]6[d]1[e]3

5︷ ︸︸ ︷
[f]1[g]1[h]3 [z]1[b]5[c]1

3 (ignored)︷ ︸︸ ︷
[f]1[g]1[h]1

Fig. 4. S2 appears once as an independent case.

A64 = [a]3

6︷ ︸︸ ︷
[b]2[c]4 [d]2[e]1[f]5[g]1[h]1[i]1[j]2[k]1[l]3[m]1[n]2[f]3[g]1[h]2[o]1[p]1[q]1[r]2[s]1[t]5[u]9

9︷ ︸︸ ︷
[b]7[c]2

B52 = [v]2[a]5

2 (ignored)︷ ︸︸ ︷
[b]1[c]1 [d]3[e]1[f]4[g]1[h]1[w]2[x]2[y]1[a]1

8︷ ︸︸ ︷
[b]2[c]6 [d]1[e]3[f]1[g]1[h]3[z]1

6︷ ︸︸ ︷
[b]5[c]1 [f]1[g]1[h]1

Fig. 5. S3 appears twice as an independent case.

The kast1 spectrum kernel has the following definition:
• Each valid matching substring embeds a new feature for

A and B. Hence, the size of the new embedding vector
for both strings is equal to the number of valid matching
substrings.

• Only the weight of the independent valid matching sub-
strings is taken into account to build the feature value,
which corresponds to the summation of these weights.

• If the string does not present and independent occurrence
of a particular valid matching substring, the feature value
is set to 1, to avoid zero values when calculating the inner
product.

• The kernel value corresponds to the inner product of the
new feature vectors of A and B.

Example:

Let A and B be the same strings of the previous example
(see Fig. 3). In this case the function of the kast1 spectrum
kernel, weight k1w≥n(S)A returns, either:

• the summation of the weights of all the independent
matching instances of S in A whose weight is greater
than or equal to n,

• or 1 if there are no independent substrings.
This results in three cases of matching substrings (see

Fig. 3, 4 and 5).
For instance, for a cut weight of 4 (n = 4), the respective

weights of each feature in A are calculated with:

weight k1w≥4(S1)A = 19 (1)

weight k1w≥4(S2)A = 6 (2)

weight k1w≥4(S3)A = 9 (3)

Therefore, the new embedding feature vector for A is:

f1w≥4(A) = {19, 6, 9} (4)

Notice in Fig. 4 that S2 does not appear as an independent
valid matching substring in B. Thus, the partial feature value
is set to 1 (see Eq. 6). The respective weights of each feature
in B are calculated with:

weight k1w≥4(S1)B = 17 + 18 = 35 (5)

weight k1w≥4(S2)B = 1 (6)

weight k1w≥4(S3)B = 6 (7)

Thus, the new embedding feature vector for B is:

f1w≥4(B) = {35, 1, 6} (8)

The function k1w≥n(A,B) returns the evaluation of the
kernel value between A and B; this is no more than the inner
product of the new feature vectors:

k1w≥4(A,B) = 〈f1w≥4(A), f1w≥4(B)〉 = 725 (9)

The function k̄1w≥n(A,B) is the normalized version of
the kernel. A normalization step will use the weights of each
string:

k̄1w≥4(A,B) =
k1w≥4(A,B)√

k1w≥4(A,A)× k1w≥4(B,B)

=
k1w≥4(A,B)

weight k1w≥4(A)× weight k1w≥4(B)

(10)

k̄1w≥4(A,B) =
725

64× 52
=

725

3328
≈ 0.2178 (11)

Therefore, it is possible to say that these two strings are
21.78% similar. Thanks to this kernel, we are able to measure
the similarity of two arbitrary strings. Assuming that these
strings are conversions of the AST of two given programs, we
are therefore able to obtain a similarity index between both
programs.



V. EXPERIMENTAL EVALUATION

The experimental evaluation was designed to assess the
capabilities of the proposed kernel to recognize classes of
functions and how the clone types were organized inside each
class. It was not the focus of this research the design of a code
plagiarism tool, that was the reason why it was not evaluated
against the plethora of code detection tools available out there.
The main focus was to provide experimental proof that this
new kernel accomplishes the goals in a similar or even better
way than other kernels from the literature.

Thus, in this section we tested the proposed kernel function
on a set of code examples and compared the results against
two kernel functions from the state-of-the-art: the blended
spectrum kernel [12] and the kast spectrum kernel [13].

A. Experiment configuration

For these experiments, we used 20 different functions. These
functions were divided in four broad classes:

• Class A (String Matching Functions): They are string
kernels of the literature, but the name was changed to
avoid confusion when referring to the kernels used in
this study.

– K-spectrum: matching substrings of size k.
– Blended spectrum: matching substrings of size k or

less.
– Bag-of-characters: matching substrings of size 1.
– Bag-of-words: delimiter based.
– Bag-of-sentences: similar to the latter but with two

delimiters, one for the opening, one for the closing.
• Class B (Sort Functions):

– Bubble sort.
– Insert sort.
– Selection sort.
– Heap sort.
– Merge sort.

• Class C (3D Stencils): Stencils are operations performed
on a structured grid, where the value of a cell is calcu-
lated using the values of the surrounding cells. In this
experiment, the initial value of the cell itself was always
taken into account. The operation was the summation of
all values.

– Compact stencil: compact stencils take into account
only the values of the neighboring cells.

– Side stencil: this one only takes into account neigh-
boring cells sharing the same position in two axes.

– Edge stencil: this stencil only takes into account
neighboring cells sharing the same position in only
one axis.

– Vertex stencil: it only takes into account neighboring
cells on a diagonal position.

– Non-compact stencil 1 layer: Non-compact stencils
go a few layers further the neighboring cells.

• Class D (2D Stencils): Similar to the previous class, but
with the number of dimensions reduced by one. In this
case there is no room for a Side stencil.

– Compact stencil.
– Edge stencil.
– Vertex stencil.
– Non-compact stencil 1 layer.
– Non-compact stencil 2 layers.

It was also the interest of this paper to study the structure
of clone types inside each function class; for that reason, each
function was implemented in five different variants with the
same functionality: original version, Type-1, Type-2, Type-3
and Type-4 clones. This resulted then in a set of 100 examples
for the study, whose size ranged from 32 to 124 lines of code.1

We leveraged the Clang AST of each code sample and
converted it into a string. We tested the following cut weight
range: {20, 22, ..., 2n} for n = 9. Note that when the computed
matrices present negative eigenvalues, these eigenvalues were
replaced by zeros and the matrices were recalculated using
these new eigenvalues. All the similarity matrices were ana-
lyzed with Hierarchical Clustering using the simple linkage
method.

B. Baseline kernel 1: Blended Spectrum Kernel

Given the particular form of the proposed string represen-
tation, where a group of subsequent tokens can encode more
meaningful information than a single one, we discarded the
bag-of-characters and the bag-of-words kernels. The experi-
mental evaluation showed also that the k-spectrum kernel was
not successful at finding an acceptable clustering, a task where
the blended spectrum kernel had a better performance.

The best results with this kernel were obtained when using
a cut weight of 16. Hierarchical Clustering separated the
examples in three clusters (see Fig. 6):

• Class A: String kernels.
• Class B: Sort functions.
• Class C and D: 3D and 2D stencils.
There were three examples of Class B, all of them Type-4

clones, that were clustered within Class A. It is important
to notice that classes C and D were detected as single
cluster, which reflected the intuitive similarity among both
classes. The experiment also showed clearly that the ranking in
distances for clone types with respect to the original version,
corresponded most of the times to the expectation according
to the theory. Type-1 clones were almost overlapped with the
original versions.

C. Baseline kernel 2: Kast Spectrum Kernel

Experimentation showed a significant advantage of the
usage of the kast spectrum kernel over the first baseline kernel,
as no misplaced examples were found. For the kast spectrum
kernel, the same basic scheme of clusters was achieved by
Hierarchical Clustering, but with larger intra-cluster distances
and a cut weight of 64 (see Fig. 7). In this case as well,
the ranking in distances to the original version corresponded
to the expectation according to the definition of clone types.

1Available under https://git.wr.informatik.uni-hamburg.de/raul.torres/kast
test functions.

https://git.wr.informatik.uni-hamburg.de/raul.torres/kast_test_functions
https://git.wr.informatik.uni-hamburg.de/raul.torres/kast_test_functions


Fig. 6. Hierarchical clustering for Blended Spectrum Kernel using ASTs (cut weight = 16).

Fig. 7. Hierarchical clustering for Kast Spectrum Kernel using ASTs (cut weight = 64).

Fig. 8. Hierarchical clustering for Kast1 Spectrum Kernel using ASTs (cut weight = 16).



Type-1 and Type-2 clones were found almost overlapped to the
original version, while Type-3 and Type-4 clones were situated
at further distances.

D. Our solution: Kast1 Spectrum Kernel

The experiment showed that the kernel here proposed (kast1
spectrum kernel) yielded a better cluster separation than the
first baseline kernel. The results were similar to those obtained
with the kast spectrum kernel. The best results for Hierarchical
Clustering were obtained using a cut weight of 16, showing
no misplaced examples on any of the clusters (see Fig. 8).
For the kast1 spectrum kernel, the usual basic scheme of
clusters was achieved. Another common point was that the
ranking in distances for clone types with respect to the original
version corresponded to the expectation according to the
theory. The intra-cluster distances were larger than those of
the first baseline kernel. With this kernel, there were also no
misplaced examples and the original version of a function and
its corresponding Type-1 and Type-2 clones were found almost
overlapped.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we showed how to convert ASTs (from Clang)
into weighted strings to subsequently compare them. We also
proposed a novel kernel function to perform such comparison:
the kast1 spectrum kernel.

To evaluate our comparison method, we analyzed a set
of 100 code examples written in C divided in four broad
categories of functions. The proposed kast1 spectrum kernel
and the kast spectrum kernel from the literature had similar
clustering performance when using Hierarchical Clustering,
yielding better results than the blended spectrum kernel. They
showed a consistent formation of three clusters: string kernels,
sorting functions and stencils (3D and 2D) without misplaced
examples. These results indicate that this novel comparison
method can be promisingly utilized to find similarities in
source code snippets.

Future efforts on this research will focus on the linear
intermediate representation delivered by the LLVM Compiler
Infrastructure [4].
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