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Abstract. Parallel application I/O performance often does not meet
user expectations. Additionally, slight access pattern modifications may
lead to significant changes in performance due to complex interactions
between hardware and software. These issues call for sophisticated tools
to capture, analyze, understand, and tune application I/O.

In this paper, we highlight advances in monitoring tools to help address
these issues. We also describe best practices, identify issues in measure-
ment and analysis, and provide practical approaches to translate parallel
I/O analysis into actionable outcomes for users, facility operators, and
researchers.

1 Introduction

The efficient use of I/O systems is of prime interest for data-intensive appli-
cations, since storage systems are increasing in size and the use case of a sin-
gle system is so diverse, especially in the scientific community. As computing
centers grown in size, and the high-performance computing (HPC) community
approaches exascale [1, 2], it has become increasingly important to understand
how these systems are operating and how they are being used. Additionally,
understanding system behavior helps light the path for future storage system
development and allows the purveyors of these systems to ensure performance is
adequate to allow for work to continue unimpeded. While industry systems are
typically well understood, shared storage systems in the HPC community are
not as well understood. The reason is their sheer size and the concurrent usage
by many users, which typically submit disparate workloads. Most applications
achieve only a fraction of theoretically available performance. Hence, optimiza-
tion and tuning of available knobs for hardware and software are important. This
requires that the user to understand the I/O behavior of the interaction between
application and system, since it determines the runtime of the applications.

However, measuring and assessing observed performance are already non-
trivial tasks and raise various challenges around hardware, software, deployment,
and management. This paper describes the current state of the practice with
respect to such tools.

The final publication is available at Springer via https://doi.org/10.1007/978-3-030-02465-9_4
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The paper is structured as follows: First, an introduction to concepts in per-
formance analysis is given in Section 2. Various tools and concepts are described
in Section 3. In Section 4 small example studies illustrate how these tools could
be used to identify inefficient system behavior. In Section 5 we discuss com-
mon issues and sketch potential roads to overcome these issues. In Section 6 we
summarize our conclusions.

2 Introduction to Performance Analysis

In computer science, performance analysis refers to activity that fosters un-
derstanding in timing and resource utilization of applications. Understanding
resource utilization includes understanding runtime behavior of the application
and the system. For parallel applications, the concurrent computation, commu-
nication, and parallel I/O increase the complexity of the analysis.

In industry, the process of system and application tuning is often referred to
as performance engineering. Software engineers design special methods to em-
bed performance engineering into the application development. With these ap-
proaches, performance is considered explicitly during the application design and
its implementation. Tools and methodologies such as Computer-aided software
engineering (CASE) serve the developer in the phases of the software life-cycle,
namely, requirement engineering, analysis, design, coding, documentation, and
testing. Such tools try to encourage software engineers to incorporate the per-
formance relevant aspects early in the development cycle. Unfortunately, the
research and processes in industry are not integrated in state-of-the-art HPC
application development, although a few tools do assist in the development of
parallel applications. Instead, a closed loop of performance tuning is applied that
optimizes programs after a running version exists.

So far, we discussed the situation from the point of view of the user or appli-
cation. For facility operators or file system administrators, the I/O performance
of the whole system or of one parallel file system is the primary concern: Does the
system provide the expected or degraded performance, is the system is efficiently
used, or do some applications create such a high load that other applications see
a significant performance impact?

2.1 Closed Loop of Performance Tuning

The localization of a performance issue on an existing system is a process in
which a hypothesis is supported by measurement and theoretic considerations.
Measurement is performed by executing the program while monitoring runtime
behavior of the application and the system. In general, tuning is not limited to
source code; it can be applied to any system. The typical iterative optimization
process is the closed loop of performance tuning consisting of the phases:

Measurement of performance in an experiment. The environment, consisting
of hardware and software including their configuration, is chosen; and the ap-
propriate input (i.e., problem statement) is decided. Since monitoring is limited
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to instances of program input, optimizations made for a particular configuration
might degrade performance on a different setup or program input. Typically, the
measurement itself perturbs the system slightly by degrading performance. Pick-
ing the appropriate measurement tools and granularity can reveal the relevant
behavior of the system.

Analysis of obtained empirical performance data to identify issues and op-
timization potential in the source code and on the system. Particularly, hot
spots—code regions where execution requires significant portions of runtime (or
system resources)—are identified. Then, the optimization potential of the hot
spots is assessed based on potential performance gains and the estimated time
required to modify the current solution.

Changing a few code lines to improve runtime by 5% is more efficient than
recoding the whole input/output of a program, especially if I/O might account
for only 1% of the total runtime. However, care must be taken when the potential
is assessed; depending on the overall runtime, a small improvement might be
valuable. From the view of the computing facility, decreasing by 1% the runtime
of a program which runs for millions of CPU hours yields a clear benefit by
saving operational costs in form of 10,000 CPU hours (about 1.5 CPU years).

Generation of alternatives. Based on the insight gained by the analysis,
alternative implementation and tuning options are explored, and system modi-
fications are considered that may mitigate the observed performance issue. This
is actually the hardest part of the tuning because it requires that the behavior
of the new system can be predicted or estimated. In practice, however, multiple
potential options often are evaluated; and, based on the results, the best one
is chosen. With increasing experience and knowledge of the person tuning the
system, the number of options is reduced as the future behavior can be better
anticipated.

Implementation. At the end of a loop the current system is modified; that
is, one of the performance relevant layers is adjusted, to realize the potential
improvement of the new design. The system is re-evaluated in the next cycle until
the time required to change the system outweighs potential improvements or
potential gains are too small because the performance measured is already near-
optimal. In practice, however, in most cases the efficiency of the current solution
is not estimated; instead, the current runtime is considered to be potentially
saved.

These phases are then repeated until the desired performance is achieved or
until further tuning is not cost effective.

2.2 Measurement

In the closed loop, data is collected that characterizes the application run and
system utilization. Many types of data can be collected. For example, the oper-
ating system provides a rich set of interesting characteristics such as memory,
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network, I/O, and CPU usage. These characterize the activity of the whole sys-
tem, and sometimes usage can even be assigned to individual applications.

The semantics of this data can be of various kinds. Usually, a metric de-
fines the measurement process and the way subsequent values are obtained. For
example, time is a simple metric that indicates the amount of time spent in a
program, function or hardware command. The throughput of a storage system,
that is, the amount of data transferred per second, is another metric.

One way of managing performance information is to store statistics, for ex-
ample, absolute values such as number of function invocations, utilization of a
component, average execution time of a function, or floating-point operations
performed. Statistics of the activity of a program are referred to as a profile.
A profile aggregates events by a given metric, for example by summing up the
inclusive duration of function calls. Many tools exist that generate profiles for
applications.

In contrast to a profile, a trace records events of a program together with a
timestamp. Thus, it provides the exact execution chronology and allows analysis
of temporal dependencies. External metrics such as hardware performance can
be integrated into traces as well. Tracing of behavior produces much more data,
potentially degrading performance and distorting attempts of the user to analyze
observation. Therefore, in an initial analysis, often only profiles are recorded. A
combination of both approaches can be applied to reduce the overhead while
still offering enough information for the analysis. Events that happen during a
timespan can be recorded periodically as a profile for an interval, thus allowing
analysis of temporal variability. By generating profiles for disjoint code regions,
behavior of the different program phases can be assessed. Another approach is
to enable tracing conditionally, for example by capturing the coarse-grained I/O
behavior of the application with statistics and starting tracing when observed
performance drops.

The performance data must be correlated with the interesting application’s
behavior and source code. Depending on the measurement process, assigning
information to the cause can be impossible. For example, a statistic cannot reveal
the contribution of concurrent activity. Some low-level tools exploit compiler-
generated debug symbols to localize the origin of triggered events in the source
code.

Several approaches can be used to measure the performance of a given appli-
cation. A monitor is a system that collects data about the program execution.
Approaches can be classified based on where, when and how runtime behavior is
monitored. A monitor might be capable of recording activities within an appli-
cation (e.g., function calls), across used libraries, activities within the operating
system such as interrupts, or it may track hardware activities; in principle, data
can be collected from all components or layers. For I/O analysis, monitors rely
on software to measure the state of the system. Data from available hardware
sensors is usually queried from the software on demand. Hardware monitors are
too expensive, complicated, and inflexible to capture program activity in detail,
yet some metrics such as network errors may be provided by the hardware itself.
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File system administrators typically measure on the file system server side.
Many measurements are independent from the file system type, for example, the
load on the servers or the summarized throughput on network adapters or on
storage subsystems. Some statistics, however, are only available with special file
system types (e.g., Lustre, Spectrum Scale, BeeGFS, NFS).

2.3 Preparation of Applications

Although the Linux operating system offers various statistics in the /proc file
system, this information is often insufficient for I/O analysis. Usually, changes
are made to the program under inspection in order to increase analysis capa-
bilities; the activity that alters a program is called instrumentation. Popular
methods are to modify source code, to relink object files with patched functions,
overriding dynamic library calls at execution time with LD PRELOAD, or to
modify machine code directly [3]. During execution, such a modified program
invokes functions of the monitoring environment to provide additional informa-
tion about the program execution and the system state. This instrumentation
functionality could also be supported directly by the (operating) system, and
hence one could collect performance data without modifying the application.

Since a software monitor requires certain resources to perform its duty (those
can be considered as overhead), monitoring an application perturbs the original
execution. Observed data must be kept in memory and might be flushed to
disk if memory space does not suffice. Additionally, computation is required
to update the performance data. The overhead depends on the characteristics
of the application and system: it might perturb behavior of the instrumented
application so much that an assessment of the original behavior is impossible.
In I/O analysis, particularly storing the profile or trace in memory and flushing
it to secondary storage incurs considerable overhead that causes additional I/O.

Several techniques can be used to combat potential overhead (and thus ap-
plication perturbation) in I/O instrumentation. Some tools constrain their in-
strumentation to summary statistics [4] or compressed representations [5] to
minimize overhead. Others may automatically filter activity if an event is fired
too often or if the overhead of the measurement system itself grows too high. If
filtering still incurs too much overhead, then interesting functions can be man-
ually instrumented, i.e., by inserting calls to the monitoring interface by hand.

Additionally, a selective activation of the monitor can significantly reduce the
amount of recorded data. A monitor could sample events at a lower frequency,
reducing the overhead and the trace detail level on the same extent.

2.4 Analysis of Data

Users analyze the data recorded by the monitoring system in order to local-
ize optimization potential. Performance data can be recorded during program
execution and assessed after the application has finished; this approach of post-
mortem analysis is also referred to as offline analysis. An advantage of this
approach is that data can be analyzed multiple times and compared with older

5/22



results. Another approach is to gather and assess data online, while the program
runs. In this approach, feedback is provided immediately to the user, who could
adjust settings to the monitoring environment depending on the results.

Because of the vast amount of data, sophisticated tools are required in order
to localize performance issues of the system, correlate them with application
behavior, and identify the source code causing them. Tools operate either man-
ually (i.e., the user must inspect the data) or automatically. A semi-automatic
tool could give hints to the user where abnormalities or inefficiencies are found.
Tool environments that localize and tune code automatically, without user in-
teraction, are on the wishlist of all programmers. Because of the system and
application complexity, however, such tools are only applicable for a very small
set of problems. Usually, tools offer analysis capability in several views or dis-
plays, each relevant to a particular type of analysis.

At best a system-wide monitoring of all applications can be conducted to
reveal issues; in other words, all applications running on a supercomputer are
constantly monitored in a non-intrusive fashion while additional analysis is trig-
gered upon demand. In order to better understand the behavior of a single
application, separate analysis runs may be conducted, since it is important to
reduce the complexity of scientific software in order to find the cause of the
behavior.

The performance analysis is usually done in an ad hoc manner because of
the nature of the logs produced by these large scale machines: they are machine
specific, and despite having similar attributes, do not share a single format for
their trace behavior. This situation extends past HPC storage, and applies more
broadly to HPC in general and, additionally, to individual application traces.

Because of this difference in log/trace format, system analysis is usually done
per system. Such analysis can produce useful results on the behavior of a par-
ticular system, but sheds no light on how it compares to other similar systems,
HPC or otherwise [6–9]. Additionally, programmer effort is wasted analyzing
each system when the generated analytics are the same or similar for each sys-
tem. Because of the difference in traces and techniques, these are not typically
comparable, leading to most systems being analyzed in a vacuum, never com-
pared to one another.

3 Tools

This section gives an overview of existing tools.

3.1 Darshan

Darshan [10, 11] is an open source I/O characterization tool for post mortem
analysis of HPC applications’ I/O behavior. Its primary objective is to cap-
ture concise but useful information with minimal overhead. Darshan accom-
plishes this by eschewing end-to-end tracing in favor of compact statistics such
as elapsed time, access sizes, access patterns, and file names for each file opened
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by an application. These statistics are captured in a bounded amount of mem-
ory per process as the application executes. When the application shuts down,
it is reduced, compressed, and stored in a unified log file. Utilities included with
Darshan can then be used to analyze, visualize, and summarize the Darshan log
information. Because of Darshan’s low overhead, it is suitable for system-wide
deployment on large-scale systems. In this deployment model, Darshan can be
used not just to investigate the I/O behavior of individual applications but also
to capture a broad view of system workloads for use by facility operators and
I/O researchers. Darshan is compatible with a wide range of HPC systems.

Darshan supports several types of instrumentation via software modules.
Each module provides its own statistical counters and function wrappers while
sharing a common infrastructure for reduction, compression, and storage. The
most full-featured modules provide instrumentation for POSIX, MPI-IO and
standard I/O library function calls, while additional modules provide limited
PNetCDF and HDF5 instrumentation. Other modules collect system informa-
tion, such as Blue Gene runtime system parameters or Lustre file system striping
parameters. The Darshan eXtended Tracing (DXT) module can be enabled at
runtime to increase fidelity by recording a complete trace of all MPI-IO and
POSIX I/O operations.

Darshan uses LD PRELOAD to intercept I/O calls at runtime in dynamically
linked executables and link-time wrappers to intercept I/O calls at compile time
in statically linked executables. For example, to override POSIX I/O calls, the
GNU C Library is overloaded so that Darshan can intercept all the read, write
and metadata operations. In order to measure MPI I/O, the MPI libaries must be
similarly overridden. This technique allows an application to be traced without
modification and with reasonably low overhead.

3.2 Vampir

Vampir1 [12] is an open source graphical tool for post mortem performance anal-
ysis of parallel systems. It supports off-line analysis of parallel software (MPI,
OpenMP, multi-threaded) and hardware-accelerated (CUDA and OpenCL) ap-
plications. The analysis engine allows a scalable and efficient processing of large
amounts of data. Vampir uses the infrastructure of Score-P2 for instrumenting
applications. Score-P stores events in a file, which can be analysed by Vampir
and converted to different views; for example, events can be presented on a time
axis or compressed to different statistics. Some views have elaborate filters and
zoom functions that can provide an overview but can also show details. Effec-
tive usage of Vampir requires a deep understanding of parallel programming.
Although the program enables one to capture and analyze sequences of POSIX
I/O operations, it gives little or no information about the origin or evaluation
of I/O.

1 http://www.paratools.com/Vampir
2 http://www.vi-hps.org/projects/score-p/
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3.3 Mistral/Breeze

Mistral is commercial command-line tool from Ellexus3 used to report and re-
solve I/O performance issues of misbehaving complex Linux applications on HPC
clusters. It has real-time monitoring abilities and can change the I/O behavior of
applications in order to delay I/O operations and prevent overloading of shared
storage. Rules for monitoring and throttling I/O are stored as plain text in con-
figuration files called contracts, which can be modified at runtime by privileged
users for systemwide changes and by users application-wide. A sophisticated
logging mechanism registers monitoring and throttling events and stores them
in files; but with an appropriate plug-in, the logging information can be redi-
rected to any location, for example, in a central database such as Elasticsearch
or InfluxDB so that the results can be viewed with Grafana.4 Administrators
can use Mistral to identify applications that are running with bad I/O patterns
and harming performance of shared file systems. It can also be used outside
of production to run quality assurance tests on complex applications prior to
deployment. The key idea behind Mistral is that the information collected is
configurable and easily aggregated so that Mistral can be run at scale. Mistral
supports POSIX and MPI (MPICH, MVAPICH, OpenMPI) I/O interfaces.

Ellexus Breeze is a user-friendly, self-explained, and well-documented off-line
analysis tool with command-line, GUI, and HTML reporting modes. All the
information gathered during the application runtime is presented in a compre-
hensive format and can be of great help to developers. The detailed information
about environment can help support teams reproduce and understand problems.
The most valuable piece of information is the list of application dependencies so
that users and administrators can get a list of every file, library, program, and
network location used by an application. Breeze also includes a breakdown of
how each program accessed each file so that performance issues such as inefficient
metadata access can be found and resolved.

The analysis tool is delivered with a tool called “trace-program.sh” that can
capture MPI-IO and POSIX function calls and information about the environ-
ment and store them in binary trace files. It uses LD PRELOAD to wrap original
I/O function and, therefore, works only with dynamically linked I/O libraries.
Breeze uses either a proprietary binary trace format or plain text output files re-
ported similar to the popular diagnostic tool strace. The binary format has some
performance advantages and can be decoded to a human readable representation
by the included decode-trace.sh tool.

Another feature is the ability to compare two different application runs,
thereby identifying changes in an application’s behaviour and providing valu-
able feedback to the application’s developers.

3 https://www.ellexus.com/products/
4 https://grafana.com/
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3.4 SIOX

SIOX [13] is a highly modular instrumentation, analysis, and profiling frame-
work. It contains an instrumentation tool “siox-inst”, a trace reader “siox-trace-
reader”, and a set of plug-ins and wrappers.

It has wrappers for MPI, POSIX, NetCDF, and HDF5 interfaces that contain
reimplementations of the original I/O functions. Inside a reimplemented func-
tion is a call to the original function or syscall, and instrumentation code, that
generates an activity after each execution. Activities in SIOX are structures that
contain various information about the calls. The wrappers can be dynamically
linked to an application by using LD PRELOAD and the creation of wrappers
during link-time.

Extreme modular design is a key feature of SIOX. The tools siox-inst and
siox-trace-reader can be considered as pure plug-in infrastructures. In other
words, there is no functionality inside until some plug-ins and wrappers are
loaded. Usage of different sets of plug-ins and wrappers may result in “new”
tools that exactly fit the problem. There is no restriction on the number of
wrappers and plug-ins that can be loaded simultaneously, so that the function-
ality of SIOX can be easily extended to perform complex tasks. It has been used
to research various aspects such as triggering tracing depending on unusual sys-
tem behavior, the creation of replayers for recorded behavior, the mutation of
I/O calls rerouting targets or replacing system calls, and online analysis. Online
analysis can be done by siox-inst, by collecting activities from the wrappers and
forwarding them to the registered plug-ins. Off-line analysis is based on both
tools. Most of the SIOX plug-ins use plug-in interfaces that are supported by
siox-inst and siox-trace-reader, and consequentially these plug-ins can be used
by both tools. SIOX has also been coupled with OpenTSDB and Grafana to
support online monitoring [14].

By using an instrumented version of FUSE, we found that the complexity of
I/O tracers can be reduced and one can monitor mmap() of applications. Note
that because of the popularity of other tools, SIOX is primarily maintained as
a research vehicle.

3.5 PIOM-MP

PIOM-MP (formerly known as PAS2P-IO [15, 16]) represents the MPI appli-
cation’s I/O behavior by using I/O phases. A phase is a consecutive sequence
of similar access patterns into the logical view of a file. Because HPC scientific
applications show a repetitive behavior, m phases will exist in the application.
PIOM-MP identifies applications’ phases with their access patterns and weights.
By using phases of the applications, the analysis focuses on the functional model
of the applications.

The I/O phases are used as units for analyzing the performance and scalabil-
ity of parallel applications. Our approach [17] depicts the global access pattern
(spatial and temporal) at the MPI-IO and POSIX-IO level. Figure1 shows different
components of PIOM-MP. It comprises three modules: PIOM-MP Tracer, PIOM-MP
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PIOM-MP AnalyzerPIOM-MP Tracer

PIOM-MPI
(MPI-IO events)

PIOM-PX
(POSIX-IO 
operations)

PIOM-MP Visualizer
Clasification of 
I/O operations

 for each file open

Identification of 
temporal/Spatial

 Patterns and
I/O Phases 

3D representation
file offset, MPI 
rank, ticks and 

request size

2D representation
file offset and

MPI rank

PIOM: Files 
Metadata, I/O 

Phases per File

Running a MPI 
Application

Trace
Files

HPC system where it intends to 
instrument MPI-based applications

System where it intends to analyze trace files

Preloading dynamic
 library libpiommp.so

Collecting I/O operations
at MPI-IO and POSIX-IO level

Fig. 1. PIOM-MP modules

Analyzer, and PIOM-MP Visualizer. The first module must be in the HPC sys-
tem in which the parallel application is executed; the other modules can be in a
different system.

With PIOM-MP, the user can define the relation between the phase’s pattern
and the I/O system configuration by using the concept of the I/O requirement
in order to explain the I/O performance in a specific system [18]. Furthermore,
the user can extrapolate the phases for another number of MPI processes and
workloads to evaluate the parallel application I/O scalability.

3.6 Additional User-Level Tools

The Linux kernel monitors various statistics and provides them in the /proc

file system. These statistics are updated with a certain frequency—typically
1 second—and can be queried by various Linux tools to monitor system and
application behavior. Since these counters are incremented, they can be used
to derive certain statistics for any interval such as the amount of data accessed
during the execution of an application. For example, collectl5 can be used to
capture and analyse Lustre throughput or metadata statistics or throughput on
an InfiniBand network. Other similar tools include Ganglia and Nagios.

Additional user-level tools can be executed to get a basic understanding of
what the application is doing. For example, one can compare the capacity and
node quotas before and after job execution to check how much permanent data
and how many files have been created. Some tools work only for special file
system or network types and need to be executed on client nodes where the
application is running.

5 collectl, http://collectl.sourceforge.net/
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Additional tools of note are the Integrated Performance Monitoring for HPC6,
IOSIG [19], RIOT [20], ScalaIOTrace [5], and Linux blktrace.

3.7 Further Administrative Tools

Most preassembled parallel file system appliances provide a monitoring system
with a GUI. It displays various aspects of the servers such as load and I/O
activity for current and previous time slots. Typically, it also shows a number
of file-system-specific statistics. In many cases, the monitoring systems are only
accessible by system administrators, and hence only a few HPC sites expose such
information to their users.

However, statistics can be gathered from either each client node or the server
nodes. Correlation of a parallel application with the triggered activities on I/O
servers is non-trivial since these are shared. With Lustre, jobstats [21] provide a
way to easily collect I/O statistics of batch jobs with little overhead, for example,
the number of open operations or the total amount of written data. To activate
jobstats, a system administrator selects the environment variable that holds the
batch job ID on the client nodes. Lustre clients send the content of this variable
with the standard Lustre protocol to the servers, and the servers sum up all I/O
activity on this content. An example of how these statistics can be easily made
available for users is described in [22]. The Lustre Monitoring Tool (LMT) [23]
is also available for collecting server-side time series statistics from Lustre file
systems, although data produced with LMT does not distinguish traffic from
different applications.

The first tool that combined actual client and server traces of I/O into one
view to show a comprehensive timeline of activities was PIOviz [24].

3.8 Tools for Unifying Trace Formats

The diversity of file formats for profiles and tracing is approached by tracing
formats such as OTF [25], TAU, and EXTRAE by providing converters between
the formats. Since the formats differ slightly, sometimes some information is lost.
Besides such generic trace formats, various specialized trace formats exist.

Work is being done at the University of California, Santa Cruz, to produce
a tool that provides field per record access to traces with the ability to convert
them to another trace schema format on the fly. By giving the ability to translate
traces directly to other formats, there is the expectation that analysis will not be
done ad hoc for different storage systems. This enables the creation of a standard
set of tools for analyzing the behavior of parallel file systems without converting
typically large traces.

While the database community has allowed programmable data presentation
for some time [26], through views and computed columns, these techniques have
not worked their way into trace analysis, despite many system traces being
stored in database formats, such as Parquet, a Spark SQL queryable columnar

6 IPM, https://github.com/nerscadmin/IPM
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format [27]. Presenting data in a uniform format, similar to a trace, is essential
but does not require the overhead of a database, since most analysis is done in
place, usually in a time series format.

The trace unification tool being developed borrows techniques from NoDB
systems as well as from the database community at large. Because of the sequen-
tial nature and read-only analysis properties of trace analysis, our aim is a way
to enable low-latency translation from one format to another. This approach can
be used to unify traces based on the information they share and allow for the
information to be analyzed directly, either from a storage system trace analysis
tool that we plan to create or from an API that we plan to add in future work.

This system ingests minimal information about each file in order to allow
for field-per-record addressing, which is a good interface for analysis tools to
access trace data. This mechanism of trace addressing is used to create field and
record primitives, which serve as the basis for our schema translation language.
By allowing for records and fields to be used as primitives, a simple mechanism
for traces to be unified is provided. This is achieved with a simple translation
language based on s-expressions that allows for simple translation to occur, with
more functionality coming in future work.

Other projects, such as TOKIO [28,29], have explored the possibility of syn-
thesizing normalized data on demand via modular libraries rather than stan-
dardizing on an at-rest trace format. This approach is well-suited to integration
of vendor instrumentation tools that utilize proprietary formats or are other-
wise difficult to modify. It also enables the integration of multiple data sources
simultaneously for holistic analysis and correlation.

4 Example Studies

This section gives examples about how the aforementioned tools can be used to
identify performance issues. First, we describe some performance issues that can
arise.

System administrators typically try to identify users with the highest I/O
activity because of the huge impact that can be realized by helping such users
reduce their I/O. Often users are not aware of what they are doing; for example,
a user may forget to remove debugging output, and the application will write
many times more data than normal. Sometimes this is sufficient to crash the
storage completely.

Many sites have different options for storing data: local SSDs on the cluster
nodes, burst buffers, different parallel file systems, and so forth. Frequently,
application runtime can be improved by selecting an appropriate storage device.
For example, with the application OpenFoam [30], one usually can use local disks
to store scratch data. Doing so increases the scalability of the application and
reduces the load on the central parallel file system, thus helping accelerate other
applications. While these optimizations are simple to apply, users commonly
store data in the wrong place and hence increase the load on the file system
inadvertently.
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With Lustre jobstats and a simple perl script [22], one can display all jobs
with I/O activity above a high-water mark, for example, jobs that have done
more than 5 million open operations. Huge amounts of metadata operations
should be omitted because each operation requires communication with the re-
sponsible server. Lots of small read and write operations have a similar effect and
additionally might cause numerous slow seeks on the file system disks. Again,
jobstats can be used to find jobs doing a huge number of read or write operations
with a small average I/O size. For more detailed information about job I/O pat-
terns one would need to combine the file system metrics with application-level
tracing from a tool such as Mistral.

Metadata operations are often a source of performance degradation. Common
issues include trawling the file system looking for a file, which results in lots of
failed stat or open operations. Programs also commonly check the existence of a
file before opening it, producing an extra stat for every open. A better approach
would be to try to open the file and to fail gracefully if it is not there. Users also
can significantly slow metadata servers by opening a file every time it is written
to. This usually happens when the open operation has been placed inside a for
loop.

In general, parallel file systems show better performance with large sequential
read/write operations than with small random operations (huge IOPS rates).
Therefore, applications should read or write data in huge chunks. One area of
HPC that is known for small I/O operations is the life-sciences industry [31]
where applications often use one-byte reads and writes and almost always use
32 kB reads and writes. Although small I/O operations may be justifiable when
the algorithms employed in mapping genomes lend themselves to the generation
of lots of small files of around 4 kB, often the I/O operations are far smaller,
leaving room for improvement.

Another easy improvement with parallel file systems can be achieved by
setting the appropriate stripe count. If many files are used and if they are not
accessed at the same time by many tasks, a stripe count of 1 is appropriate. On
the other hand, if files are shared by many tasks or if only a few tasks use huge
files, increasing the stripe count usually improves performance.

With MPI-IO, the MPI library, underlying libraries, and its adaption for the
underlying file system can make a huge difference. For example, some vendors
provided MPI versions with activated Lustre support providing further optimiza-
tions. With the main optimization each collective buffering node collects the I/O
for one OST, in other words, small I/O buffers are collected into bigger buffers,
and there are no locking conflicts between different nodes which try to access
the same area of data. Thus, selecting the right number of collective buffering
nodes for a given application and problem size might improve its runtime.

4.1 I/O Performance Analysis at the Application level

The interaction between the I/O system and the application pattern can report
poor performance in some HPC systems. In order to identify the root cause of
the problem, the I/O pattern along the I/O path needs to be analyzed. Because
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the I/O system spans between user (compute nodes) and administrator domains,
sometimes it is very difficult to coordinate work to find a possible solution.

On the one hand, administrators have several monitoring tools and com-
mands to control, identify, and solve problems. Usually, these tools are not ac-
cessible by the users, however. Problems on this level are related mainly to
parallel file systems, the network, and storage devices.

On the other hand, users have several performance analysis tools that, de-
pending on the problem, can be used as profiling or tracing to identify or analyze
the I/O. At this level, I/O issues are related mainly to application pattern and
I/O libraries. The user needs to understand the impact that a specific access pat-
tern can have on the performance. Achieving such understanding is not simple,
however, because a real application can use several files and the user must evalu-
ate each file to weigh the impact of each one, which not always is related directly
with file size. An appropriate tool to start with for I/O performance analysis is
Darshan, which provides I/O time and throughput for each file opened by a
parallel application.

To illustrate this, Figure2a shows the I/O time and the relation with total
time for a strong scaling case that was obtained using Darshan. Two files are
selected for analyzing the application scalability: (1) the fieldgrid.h5 (red
line) is the file that the user considers more important for the application because
move a total of 400GiB, which after optimizations shows a scalable behavior; and
(2) a small file that corresponds to ghost cells (gc stencils.h5 in black line)
that is avoiding scaling to the application. Figure 2b shows the offset for the
ghost file, whose size is 2.9 G. Concurrent accesses can be observed in Figure2c
for all the MPI processes in lowest and highest offsets, which serialize the I/O as
can be seen in Figure2d. The application presents an I/O imbalance observed for
the first 1024 MPI processes. The I/O pattern represented in Figure2b is similar
for the different cases showed in Figure2a in which there are several rewriting
operations that are moving more data into the file system as the number of MPI
processes increases. In this case, one must redesign the I/O pattern in order to
remove the problem.

4.2 Online Monitoring

DKRZ maintains a monitoring system that gathers various statistics from 3,340
client nodes, 24 login nodes, and Lustre servers. The monitoring system is re-
alized mainly by open source components such as Grafana, OpenTSDB,7, and
Elasticseach but also includes a self-developed data collector. Additionally, the
monitoring system obtains various information from the Slurm workload man-
ager. A schematic overview is provided in Figure3.

The data is aggregated and visualized by a Grafana web interface, which is
available to all DKRZ users. The information is structured in three sections:
login nodes, user jobs, and queue statistics.

7 Consists of various additional components from the Hadoop Stack
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(a) I/O Problem (b) gc stencils.h5 file offset

(c) The stencils file temporal pattern (d) Timestamp for the stencils file

Fig. 2. Example of I/O performance analysis. (a) Identifying the file with more
impact on run time using Darshan. (b) Analyzing the I/O pattern with a focus
on the gc stencils.h5 file offset for 4608 MPI processes using PIOM-MP. (c)
The gc stencils.h5 file temporal pattern based on the application logical using
MPI events as ticks. (d) The gc stencils.h5 file temporal pattern using system
timestamps.

In the first place, a monitoring service gives the users an overview of the
current state of the system, namely, the current load of login nodes and num-
ber of used nodes on Slurm partitions. For each single machine, a detail view
also provides information about system load, memory consumption, and Lustre
statistics, as well as historical data. Job monitoring is enabled by default in a
coarse-grained mode but can be modified by a Slurm parameter. When enabled,
the monitoring system gathers information about CPU usage and frequency,
memory consumption, Lustre throughput, and network traffic for each client
node. Statistics about the usage of Mistral nodes (Figure4) show the current
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Fig. 3. DKRZ-monitoring

Fig. 4. Statistics about the usage of Mistral nodes

state and history of node allocation, queue status, and waiting time of both
Slurm partitions. Additionally, DRKZ runs xdmod on the client nodes for view-
ing historical job information as well as real-time scientific application profiling.
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4.3 Online Monitoring with LLview

In 2004 the Jülich Supercomputing Centre (JSC) began to develop LLview [32],
an interactive graphical tool to monitor job scheduling for various resource man-
agers such as SLURM or LoadLeveler. In its stand-alone and web-based clients
LLview provides information about currently running jobs and how they are
mapped on the individual nodes of an HPC cluster, using an intuitive visual
representation of the underlying cluster configuration. In addition, it includes
statistical information on completed jobs as well as a prediction for scheduled
future jobs [33]. LLview is client-server based. Internally it uses an XML schema
named LML [34] as an extensible abstraction layer to encode monitor data. The
data itself is obtained from various server and application interfaces and subse-
quently transferred to the clients of LLview. LML is a simple, extensible, and
independent description of node- and job-related information. A subset of the
LLview dashboard elements are also integrated in Parallel Tools Platform, an
extension to Eclipse to develop, run, and debug parallel programs on a remote
HPC system [35].

Recently, a number of extensions to LLview have been designed and imple-
mented that allow users to acquire, store, and display job performance metrics
such as node CPU load, memory usage, interconnect activity, and I/O activ-
ity. In practice at JSC these have greatly facilitated the analysis of HPC codes
that either show unsatisfactory performance or behave incorrectly. With regard
to metrics about I/O, the subject of this paper, LLview uses performance data
generated with the GPFS mmpmon command [36] within the framework of the
IBM Spectrum Scale (GPFS) file system. At JSC, all GPFS clients running on
cluster compute nodes are configured to frequently write (every 1–2 minutes)
such mmpmon data to a log file that itself resides in a local GPFS files system.
The LLview server components collect the I/O performance data (e.g., number
of bytes written/read, number of open/close calls) from these files and match it
to user jobs that are running on these nodes. This mapping is possible because
node sharing is not applied on JSC systems. The job-based data is then stored in
an internal database, from which individual performance reports are generated.

Since the minimum update frequency of LLview is not more than once a
minute, JSC has integrated this to help users monitor job behavior on a coarse
level and to help detect performance issues while jobs are running on the system.
Within a web portal (LLview jobreports) access is provided to timeline-based
performance data of current and recently finished jobs on the system, ranging
two weeks into the past. In addition to interactive charts displaying the vari-
ous performance data, the portal provides PDF reports for all jobs, which can
be collected and archived by users to document their production runs. These
extensions of LLview have proven useful as a first step of performance analysis
and code tuning, thanks to the integrated coarse view on the most essential per-
formance metrics of user jobs. In this way it greatly facilitates the detection of
situations where deeper performance analysis and tuning should be started with
additional tools such as Darshan or SIOX (Section 3).
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5 Challenges in Analyzing I/O

The following list represents issues that we see as a community that must be
overcome to ensure effective and efficient monitoring in future HPC systems.

– Ability to monitor I/O at all levels: The involvement of many layers
in the I/O stack that are not instrumented limits the ability to identify
issues. Today, parallel file systems typically have disks, storage controllers,
storage servers, and clients. All are connected with different network types.
Hardware and firmware or software can cause performance degradation at
each layer. Above the parallel file systems are MPI-IO, MPI libraries, and
upper-level libraries such as HDF5. In many cases administrative power and
deep knowledge are required in order to capture data from certain layers. In
an ideal case, one should be able to easily investigate the I/O at each level.

– Adaption of tools to new programming models: The HPC applica-
tion community has long been (and still is) dominated by MPI simulations
written in Fortran or C. However, other paradigms such as deep learning
and big data use their own programming models, languages, and runtime
environments. Parallel I/O analysis tools must adapt to keep pace as these
models are more widely adopted in HPC.

– Adaption to new hardware technologies: Analyzing parallel I/O at the
moment basically means analyzing I/O access to a parallel file system, but
a number of emerging technologies call for a broader interpretation of I/O.
Future systems may include nonvolatile memory (which may be accessed as
a memory device or a file system) and multiple tiers of storage that hold the
simulation working set, campaign data, or archival data. The performance
of each subsystem is best interpreted in the context of the complete stor-
age hierarchy. These new technologies must provide means to systematically
report performance data for the analysis.

– Integrating analysis data: Data analysis of performance data is often
an afterthought, done after the application was executed (post mortem).
Projects such as TOKIO 8 are working toward integrating data from multiple
components of the storage system, but this remains a pressing problem. Each
storage system component is typically designed by a specialized vendor and
is serviced by its own instrumentation framework. Aligning and synthesizing
data from job schedulers, applications, file systems, storage devices, and
network devices remain a significant challenge.

– Feature replication and sustainability: Many of the technologies in-
cluded in this survey serve overlapping purposes and implement their own
variation of tasks such as function interception, time series indexing, and
visualization. Increased standardization and code sharing could potentially
reduce the engineering effort involved in each project while at the same time
increasing portability.

8 http://www.nersc.gov/research-and-development/storage-and-i-o-
technologies/tokio/
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– Performance assessment: Monitoring and recording performance data are
part of the process. However, it is often hard for experts to assess whether the
observed behavior and performance is acceptable or not. End users typically
do not understand what a runtime of X seconds or an achieved performance
of Y GiB/s means. Guidance for assessing the quality is a necessary step.

– Correlation of I/O monitoring with other metrics: In parallel applica-
tions it is often essential to observe more than only one performance metric
such as I/O activity in an isolated manner. Rather, bringing I/O activity in
correlation with other metrics such as CPU activity, memory usage, and in-
terconnect usage is needed in order to identify root causes of faulty behavior
and to distinguish between causes and effects.

– User guidance: A gap remains between what can be learned from expert
I/O analysis and what can be readily adapted by end users. The data pro-
duced by today’s I/O analysis tools requires significant expertise to interpret,
and little guidance is provided as to what I/O performance a user should
expect in a given application scenario.

– Small developer community: I/O tools for HPC suffer from the fact that
the HPC community is small and I/O is often neglected. Massive amounts
of traces are being generated from user applications and other sources out-
side the HPC community but not covered by tools. We have to make the
base of tools (at least) useful outside the HPC community, for example, to
CERN [37,38], in order to speed the development.

We believe that the standardization of monitoring APIs and infras-
tructure is a necessary step facing the overall community. At the moment no
standard API exists to ease the reporting of data; instead, vendors and tool
developers build their own solution. A standard would be beneficial to several
issues mentioned in this list, and might help encourage hardware and software
developers to provide the necessary data. Indeed, we must standardize our ap-
proaches to system analysis, both to allow comparison between like systems and
to avoid the programming overhead of repeatedly creating the same analytics
code again and again. By creating a standardized method of analyzing storage
systems, as well as other system traces, we hope to light the path ahead to ex-
ascale and help computing centers deal with massive growth and data-driven
analysis.

Additionally, by creating a general-purpose method of trace analysis, we can
provide optimizations and features that would be too costly to develop for indi-
vidual tools or systems.

6 Conclusions

In this paper, we have provided an overview of the state-of-the-art in I/O mon-
itoring tools, motivated by our own involvement in the development of the de-
scribed tools. We then gave examples of how monitoring can be used to reveal
I/O issues; because of space limitations, this list is intended as an appetizer
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for the reader to study the tools and mentioned papers further. Furthermore, we
discussed challenges we see as a community that are currently not well addressed
and must be resolved further in future research, development, and engineering.
One step forward for the community is to work on standardization.
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Trace Format 2: The next generation of scalable trace formats and support libraries.
In: PARCO. Volume 22. (2011) 481–490

26. Smith, I.: Guide to using sql: Computed and automatic columns. Rdb Jornal
(2008)

27. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark SQL: Relational data
processing in Spark. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’15, New York, NY, USA, ACM
(2015) 1383–1394

28. Lockwood, G.K., Yoo, W., Byna, S., Wright, N.J., Snyder, S., Harms, K., Nault, Z.,
Carns, P.: UMAMI: a recipe for generating meaningful metrics through holistic I/O
performance analysis. In: Proceedings of the 2nd Joint International Workshop on
Parallel Data Storage & Data Intensive Scalable Computing Systems, ACM (2017)
55–60

29. Lockwood, G.K., Snyder, S., Brown, G., Harms, K., Carns, P., Wright, N.J.:
TOKIO on ClusterStor: Connecting standard tools to enable holistic I/O per-
formance analysis. In: Proceedings of the 2018 Cray User Group. (2018)

30. Jasak, H., Jemcov, A., Tukovic, Z., et al.: OpenFOAM: A C++ library for complex
physics simulations. In: International workshop on coupled methods in numerical
dynamics. Volume 1000., IUC Dubrovnik, Croatia (2007) 1–20

31. Ellexus, Alces-Flight: Maximising hpc performance on AWS public
cloud. https://www.ellexus.com/wp-content/uploads/2017/07/white_paper_

alces_ellexus.pdf

32. Frings, W., Karbach, C.: LLview: Graphical monitoring of batch system controlled
cluster. http://www.fz-juelich.de/jsc/llview/ (2004-2018)

33. Karbach, C.: A highly configurable and efficient simulator for job schedulers on
supercomputers. PARS-Mitteilungen 30(1) (Apr 2013) 25–36

34. Karbach, C.: LML: Large-scale system Markup Language. http://llview.

fz-juelich.de/LML/OnlineDocumentation/lmldoc.html (2013)
35. Watson, G.R., Frings, W., Knobloch, C., Karbach, C., Rossi, A.L.: Scalable control

and monitoring of supercomputer applications using an integrated tool framework.
In: 2011 40th International Conference on Parallel Processing Workshops. (Sept
2011) 457–466

36. IBM: Monitoring GPFS I/O performance with the mmpmon com-
mand. https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.

ibm.spectrum.scale.v5r00.doc/bl1adv_mmpmonch.htm (2018)
37. Peters, A., Sindrilaru, E., Adde, G.: Eos as the present and future solution for

data storage at cern. Journal of Physics: Conference Series 664(4) (2015)
38. Peters, A.J., Janyst, L.: Exabyte scale storage at cern. Journal of Physics: Con-

ference Series 331(5) (2011)

22/22

https://www.ellexus.com/wp-content/uploads/2017/07/white_paper_alces_ellexus.pdf
https://www.ellexus.com/wp-content/uploads/2017/07/white_paper_alces_ellexus.pdf
http://www.fz-juelich.de/jsc/llview/
http://llview.fz-juelich.de/LML/OnlineDocumentation/lmldoc.html
http://llview.fz-juelich.de/LML/OnlineDocumentation/lmldoc.html
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adv_mmpmonch.htm
https://www.ibm.com/support/knowledgecenter/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adv_mmpmonch.htm

