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Abstract

Antimalarial drug resistance is a major constraint for malaria control and elimination efforts.

Artemisinin-based combination therapy is now the mainstay for malaria treatment. However,

delayed parasite clearance following treatment with artemisinin derivatives has now spread

in the Greater Mekong Sub region and may emerge or spread to other malaria endemic

regions. This spread is of great concern for malaria control programmes, as no alternatives

to artemisinin-based combination therapies are expected to be available in the near future.

There is a need to strengthen surveillance systems for early detection and response to the

antimalarial drug resistance threat. Current surveillance is mainly done through therapeutic

efficacy studies; however these studies are complex and both time- and resource-intensive.

For multiple common antimalarials, parasite drug resistance has been correlated with
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specific genetic mutations, and the molecular markers associated with antimalarial drug

resistance offer a simple and powerful tool to monitor the emergence and spread of resistant

parasites. Different techniques to analyse molecular markers associated with antimalarial

drug resistance are available, each with advantages and disadvantages. However, proce-

dures are not adequately harmonized to facilitate comparisons between sites. Here we

describe the target product profiles for tests to analyse molecular markers associated with

antimalarial drug resistance, discuss how use of current techniques can be standardised,

and identify the requirements for an ideal product that would allow malaria endemic coun-

tries to provide useful spatial and temporal information on the spread of resistance.

Background

Antimalarial drug resistance is a major concern for malaria control and elimination pro-

grammes. Indeed, Plasmodium falciparum parasites have consistently developed resistance to

the most widely used antimalarials, pushing national malaria control programmes to regular

changes in antimalarial drug policy [1]. Artemisinin-based combination therapy (ACT) is now

the mainstay for malaria treatment in endemic regions, following recommendations from the

World Health Organization (WHO) [2]. However parasites with decreased susceptibility to

artemisinin derivatives have emerged over the last ten years in different parts of the Greater

Mekong Sub region (GMS) [3–7]. ACTs are failing due to both decreased susceptibility to arte-

misinin compounds and resistance to their partner drugs in Southeast Asia [8–14]. Strength-

ening of existing surveillance systems is needed to detect drug resistance in malaria endemic

countries as it emerges or spreads to other regions. Antimalarial drug resistance surveillance is

currently done through three different strategies: in vivo studies such as therapeutic efficacy

studies (TESs), in vitro/ex vivo studies of cultured malaria parasites, and molecular studies

assessing known markers of antimalarial drug resistance. These three techniques are comple-

mentary, but each has advantages and disadvantages [15]. TES remains the gold standard for

informing antimalarial drug policy change, as outcomes have direct clinical relevance [16], but

these studies are challenging to conduct due to heavy financial and logistical constraints [17],

and they cannot always confirm resistance, especially for combination therapies [18]. Indeed,

only monotherapy studies allow for the accurate differentiation of the drug component caus-

ing apparent ACT treatment failure [19]. In vivo/ex vivo studies, such as measurement of IC50

(50% inhibitory concentration of a drug) or ring stage survival assays, can provide useful infor-

mation about parasite susceptibility to antimalarial drugs, but require heavy infrastructure for

parasite culture. Performance of these assays is generally restricted to well-equipped laborato-

ries to validate new molecular markers of antimalarial drug resistance [20], or to link a resis-

tance phenotype to a genotype [21]. Molecular studies of antimalarial drug resistance markers

provide information about the parasite genetics associated with resistance, i.e. single nucleo-

tide polymorphisms (SNPs) or gene copy number variations (CNVs) that are associated with

decreased susceptibility of parasites to antimalarial drugs. After markers of resistance have

been identified by genotype-phenotype discovery studies, detection of these molecular mark-

ers provides a feasible means of tracking emergence and/or spread of antimalarial drug resis-

tance, as easy-to-collect dried blood spot (DBS) samples can be used [22,23]. While numerous

methodologies for blood spot collection, DNA extraction, PCR amplification, and analysis of

molecular markers have been described, standardisation of these approaches is lacking [1].

TPP molecular assays for antimalarial resistance
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Given the potential role of molecular surveillance of drug resistance markers, a standardised

approach is important to allow for comparability across the globe.

Here we describe the target product profile (TPP), with minimal and optimal characteris-

tics, for techniques to analyse molecular markers associated with antimalarial drug resistance.

This TPP was developed by a group of experts from academic institutions, public health insti-

tutions and industry at a meeting convened by the Foundation for Innovative New Diagnostics

(FIND).

Methodology

A draft TPP was developed based on a landscape analysis of antimalarial drug resistance sur-

veillance methods performed by FIND [1]. The listed properties were defined according to

FIND’s standard procedures (https://www.finddx.org/target-product-profiles/), with charac-

teristics described as either “minimal” or “optimal”. The experts were selected based on their

experience and expertise in the field of molecular markers of antimalarial drug resistance. The

participants selection was based on a review previously conducted by FIND on the methods

used for surveillance of antimalarial drug resistance [1]. Identified experts were contacted by

email, invited to participate in the meeting and provided with a brief summary of the meeting’s

objectives (S1 Table). Those who confirmed their attendance were provided with the draft

TPP prior to the meeting including a questionnaire (S2 Table). The meeting was organised by

FIND and held in Geneva on 21 and 22 September 2017 to reach consensus on the TPP. The

experts were asked to present the different molecular techniques that are used in their labora-

tories and discussed their advantages and disadvantages (Table 1).

A session was organised to go through the draft TPP using the pre-established question-

naire as a guideline. Experts were asked to provide their opinion on the different assay charac-

teristics, and discuss about them to reach a consensus. The discussion was moderated by one

of interviewer from FIND. All the final decisions were made by consensus; none of the deci-

sions were taken by voting. Comments and suggestions from the experts were collected and

compiled in the meeting’s report. After the meeting, a revised draft TPP following suggestions

from the experts’ meeting was sent to the meeting participants along with the meeting’s report.

The experts were asked to review the revised draft and the meeting report, and confirm that

both documents accurately reflected the discussions they had during the meeting. They were

asked as well to provide additional suggestions on the revised TPP, and based on those com-

ments, the TPP was finalised and sent to all participants for final review and approval. More

details about the meeting can be found in S3 Table.

Results

Participants

Twenty seven experts (including four observers) were invited to the meeting. Eighteen experts

(including four observers) were able to attend the meeting, whereas nine experts were not

available. All the experts are working in the field of antimalarial drug resistance. The majority

of the participants (n = 13 [72.2%]) were research group leaders from academic institutions;

other participants were coming from public health institutions such as WHO and the Centers

for Disease Control and Prevention (CDC) or industry (Table 2). Most of the participants

were coming from institutions based in the United States of America (USA), the United King-

dom (UK), Switzerland and France, while only 7 of them were female (Table 2).

TPP molecular assays for antimalarial resistance
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Table 1. Laboratory methods to assess molecular markers associated with antimalarial drug resistance.

Assay Required equipment

and reagents

Required

personnel

Assay

duration

(From DNA

extraction to

results)

Cost per

sample

(USD)

Excluding

labour

Positive and

negative

controls

Limitations Appropriate setting

for use

Ref.

Mutation-specific-

PCR

Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Reagents

DNA extraction

reagents

PCR reagents

Trained staff < 8h 8–10 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput

- National reference

laboratory

- Research laboratory

[24–

27]

PCR-RFLP Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Reagents

DNA extraction

reagents

PCR reagents

Restriction enzymes

Trained staff >24h 7–10 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput

- National reference

laboratory

- Research laboratory

[28,29]

Molecular beacons Equipment

Incubator

Centrifuge

Hood

Thermocycler

Computer

spectrofluorometer

Reagents

DNA extraction

reagents

PCR reagents

Fluorescent

oligonucleotide

probes

Trained staff <8h 9–12 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput

- National reference

laboratory

- Research laboratory

[30]

Dot blot

hybridization

Equipment

Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Dot blot unit

Reagents

DNA extraction

reagents

PCR reagents

Dot blot reagents

Oligonucleotide

probes

Trained staff >24h 9–12 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput

- National reference

laboratory

- Research laboratory

[31]

(Continued)
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Table 1. (Continued)

Assay Required equipment

and reagents

Required

personnel

Assay

duration

(From DNA

extraction to

results)

Cost per

sample

(USD)

Excluding

labour

Positive and

negative

controls

Limitations Appropriate setting

for use

Ref.

Primer extension

(Snapshot)

Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Sequencer

Reagents

DNA extraction

reagents

PCR reagents

Oligonucleotide

probes

Trained staff >10h 12–15 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput

- National reference

laboratory

- Research laboratory

[32]

Real time PCR Equipment

Equipment

Incubator

Centrifuge

Hood

Thermocycler

Computer

Reagents

DNA extraction

reagents

PCR reagents

Oligonucleotide

probes

Trained staff <6h 13–20 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- National reference

laboratory

- Research laboratory

[33–

35]

Sanger sequencing Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Sequencer

Reagents

PCR reagents

Sequencing reagents

Highly trained

staff, especially

for data

analysis

>72h 6–40 - Reference

strain

- High initial

investment

- Requires high

volume computing

system for data

analysis

- Regional reference

laboratory

- Research laboratory

[36,37]

SSOP-ELISA Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

ELISA reader

Reagents

DNA extraction

reagents

PCR reagents

Oligonucleotide

probes

ELISA plates

Trained staff <12h 12–14 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput

- National reference

laboratory

- Research laboratory

[38]

(Continued)

TPP molecular assays for antimalarial resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0204347 September 20, 2018 5 / 18

https://doi.org/10.1371/journal.pone.0204347


Table 1. (Continued)

Assay Required equipment

and reagents

Required

personnel

Assay

duration

(From DNA

extraction to

results)

Cost per

sample

(USD)

Excluding

labour

Positive and

negative

controls

Limitations Appropriate setting

for use

Ref.

Microarray Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Fluorescence scanner

Reagents

DNA extraction

reagents

PCR reagents

Fluorescent

oligonucleotide

probes

Microarray spotted

slides

Trained staff <8h 6–8 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- National reference

laboratory

- Research laboratory

[39,40]

Next generation

sequencing

(WGS, amplicon

sequencing)

Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Sequencer

Reagents

PCR reagents

Sequencing reagents

Highly trained

staff, especially

for data

analysis

>48h 10–200 - Reference

strain

- Higher coverage

needed to increase

specificity

- Requires high

volume computing

system for data

analysis

- Regional reference

laboratory

- Research laboratory

[41,42]

Ligase detection

reaction fluorescent

microsphere

(LDR-FM)

Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Magpix instrument

Reagents

DNA extraction

reagents

PCR reagents

Fluorescent

oligonucleotide

probes

Trained staff <8h 4–6 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- National reference

laboratory

- Research laboratory

[29,43]

(Continued)
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Table 1. (Continued)

Assay Required equipment

and reagents

Required

personnel

Assay

duration

(From DNA

extraction to

results)

Cost per

sample

(USD)

Excluding

labour

Positive and

negative

controls

Limitations Appropriate setting

for use

Ref.

Nucleic acid lateral

flow immunoassay

(NALFIA)

Equipment

Incubator

Centrifuge

Hood

Thermocycler

Gel electrophoresis

unit

Gel imaging system

Computer

Reagents

DNA extraction

reagents

PCR reagents

oligonucleotide

probes

Lateral flow test

Trained staff <6h 5–10 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput

- National reference

laboratory

- Research laboratory

[44]

Loop mediated

isothermal

amplification

(LAMP)

Equipment

Incubator

Centrifuge

Hood

Reagents

DNA extraction

reagents

LAMP reagents

Staff with

minimal

training

<4h 20–120 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput>

- Field laboratory [45,46]

LAMP-lateral flow

dipstick

Equipment

Incubator

Centrifuge

Hood

Reagents

DNA extraction

reagents

LAMP reagents

Lateral flow test

Oligonucleotide

probes

Staff with

minimal

training

<4h 20–120 - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Cannot detect

copy number

variations

- Low throughput

- Field laboratory [45,47]

MinION Equipment

Incubator

Centrifuge

Hood

MinION device

Reagents

DNA extraction

reagents

MinION reagents

Staff with

minimal

training for

samples

analysis

Highly trained

staff for data

analysis

<3days 25–50 - Reference

strain>

- High coverage

needed to improve

specificity

- Field laboratory for

sample analysis

- National reference

laboratory/Research

laboratory for data

analysis

[48–

50]

Q-POC Equipment

QPOC device

Reagents

QPOC cassettes

Reagents

Staff with

minimal

training

<30min TBD - Parasite DNA

sample with

known

genotype

- Sample

without DNA

template

- Point of care [51]

https://doi.org/10.1371/journal.pone.0204347.t001
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General characteristics

Intended use. The goal of a molecular assay is to detect genetic markers associated with

antimalarial drug resistance in P. falciparum parasites using blood samples from infected indi-

viduals. Discussions were held to assess whether Plasmodium vivax should also be included in

the TPP. The final consensus was that priority should be given to P. falciparum, as molecular

markers are well characterised for decreased susceptibility to artemisinins and resistance to

partner drugs for P. falciparum, but not for P. vivax. Rather, currently there is no clear evi-

dence of P. vivax resistance to artemisinins, and for P. vivax resistance to chloroquine (CQ),

amodiaquine (AQ) and sulfadoxine-pyrimethamine (SP), molecular markers have not been

validated [52].

Target population. The target population is any individual infected with P. falciparum.

Target users. The target users are highly trained laboratory technicians. There was a con-

sensus that surveillance of antimalarial drug resistance with current technologies would be

best conducted by national or regional reference laboratories that receive samples from senti-

nel sites or other national sources.

Implementation level. The target implementation level is regional or national reference

laboratories. Having reference laboratories performing all the analyses at a centralised facility

will probably be most cost-effective and provide the most accurate results. In addition, con-

straining the implementation level to reference laboratories simplifies reporting, data monitor-

ing, and procedure harmonization.

Table 2. Participants’ characteristics.

Number Percentage (%)

Affiliation

• Academic institutions 13 72.2

• Public Health Institutions /International Organizations 3 16.7

• Industry 2 11.1

Gender

• Female 7 38.9

Professional qualifications

• PhD 10 55.6

• MD & PhD 3 16.7

• MD 3 16.7

• MD & ScD 1 5.6

• ScD 1 5.6

Institutions’ countries�

USA 5 25

France 4 20

Switzerland 3 15

UK 3 15

Austria 1 5

Denmark 1 5

Kenya 1 5

Netherlands 1 5

Thailand 1 5

�Some participants have a double affiliation.

https://doi.org/10.1371/journal.pone.0204347.t002
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Technical and performance characteristics

The most important performance criteria were analytical sensitivity, analytical specificity, the spe-

cific molecular markers to be analysed, test sensitivity, and test specificity (Table 3). Because most

samples will come from cross-sectional surveys, the minimum sensitivity for parasitaemia detec-

tion was set at the same level as that being used to characterise symptomatic infections. The opti-

mal sensitivity was set to be equivalent to the most sensitive techniques currently used either for

molecular diagnosis of malaria or detection of molecular markers associated with antimalarial

drug resistance. The consensus about analytical specificity was that the method should be particu-

lar for P. falciparum. As above, it was agreed that molecular markers for P. vivax resistance are not

yet adequately validated. A list of validated P. falciparum molecular markers was suggested

(Table 3). The technique of choice should be able to analyse all relevant molecular markers associ-

ated with antimalarial drug resistance. The outcome of the test should be easy to read and interpret

(mutant or wild type for SNPs or number of gene copies for CNVs). Optimally, it should be possi-

ble to quantify the percentage of each genotype in samples with multiple infections. The sensitivity

and specificity of the testing was set to be at least 90% (ideally 95%) compared to Sanger sequenc-

ing. The repeatability and reproducibility of the technique were set at kappa>0.8 and>0.7,

respectively, for minimal conditions, and>0.9 and>0.8, respectively, for optimal conditions.

Technical and operational characteristics

The operational characteristics of the molecular assay are summarized in Table 4. The discus-

sions during the meeting were mainly on the assay format, assay throughput, and sample

Table 3. Performance characteristics based on the consensus by the meeting of experts.

Characteristic Minimal (M) Optimal (O) Comment Ref.

Analytical sensitivity Limit of detection (LOD)

at 200 parasites/μl

Limit of detection at 1 parasite/μl The optimal analytical sensitivity should be comparable to the

sensitivity of Next generation sequencing (NGS) and RT-PCR.

The minimal requirement should be the detection of parasites

in symptomatic patients

[53,54]

Analytical specificity Specific for P. falciparum Specific for P. falciparum P. falciparum should be prioritized [55,56]

Molecular markers Pfcrt codon 76

Pfmdr1 codons 86/1246

and CNV

Pfdhfr codons 50/51/59/

108/164

Pfdhps codons 436/437/

540/581

PfKelch-13 codons 446/

458/493/539/543/561/580

Plasmepsin 2/3 CNV

Cytbc1 codon 268

All relevant molecular markers

associated with antimalarial drug

resistance

P. falciparum only

Testing outcome Binary for SNPs/ number

of copies for CNVs

Binary for SNPs with quantification of

the different alleles, and number of

copies for CNVs

The outcome should be wild type” or “mutant” for each allele,

ideally with the concentration of each in mixed infections

[41,53]

Testing sensitivity > 90% as compared to bi-

directional Sanger

sequencing

> 95% as compared to bi-directional

Sanger sequencing

Sanger sequencing would be used as the gold standard [41,44]

Testing specificity > 90% as compared to bi-

directional Sanger

sequencing

> 95% as compared to bi-directional

Sanger sequencing

Same as for sensitivity. However, specificity should be given

priority over sensitivity

[41,44]

Repeatability (inter-

operators)

Kappa > 0.8 Kappa > 0.9 The technique should be reproducible between technicians.

Reproducibility

(inter-laboratories)

Kappa > 0.7 Kappa > 0.8 The technique should be reproducible between laboratories.

https://doi.org/10.1371/journal.pone.0204347.t003
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matrix. Concerning the assay format, there was consensus that a requirement for use of sophis-

ticated laboratory equipment was appropriate because analyses should be conducted by

national or regional reference laboratories. High throughput was preferred; however, it was

agreed that the assay should be flexible enough to allow the laboratory to analyse small quanti-

ties of samples when appropriate (i.e. no restriction by batch size). DBS was the preferred

Table 4. Operational characteristics based on the consensus by the meeting of experts.

Operational characteristics

Characteristic Minimal (M) Optimal (O) Comment Ref.

Assay format Lab based equipment at a reference

laboratory

Lab based equipment at a reference

laboratory

Assay throughput High throughput Automated high throughput Throughout should be flexible to allow testing

of low volumes of samples

Assay packaging Standard reagents Package of single kits with individual

reagents sharing user manual

The packaging should be developed for a high

throughput assay

Operation conditions 15˚C to 30˚C

[Up to 60% relative humidity (RH)]

15˚C to 35˚C [Up to 80% RH] The assay should be developed to work in a

reference laboratory in a malaria-endemic

country

Reagents

transportation and

storage stability

Cold chain Cold chain Cold chain is acceptable as the assay would be

developed for reference laboratories

In use stability 4 hours at 15˚C to 30˚C [Up to 60% RH] 4 hours at 15˚C to 35˚C [Up to 80% RH] Once reagents have been prepared, they should

be stable in a reference laboratory

Reagents

reconstitution

All reagents ready to use All reagents ready to use

Equipment Hoods/Thermocycler/ sequencer/

Computer/Gel electrophoresis unit/Gel

imaging system/Other equipment

Hoods/Thermocycler/ sequencer/

Computer/ Gel electrophoresis unit/Gel

imaging system/other equipment

For reference laboratories, different equipment

could be used

Power requirement Electric Electric The equipment needs to be at least electric

operated (M) or have a battery to be used in

places where power cuts could be frequent (O)

Maintenance Every 6 months Once a year Regular maintenance should be possible in

reference laboratories

Sample type Finger stick blood Finger stick blood

Sample matrix Dried blood spot (DBS) Used RDT DBS should be the default matrix for samples

collection, and ideally used RDT should be used

as source of DNA

Sample preparation � 5 steps � 3

Overall test

preparation

� 10 steps, of which�2 are timed � 3 steps, of which�1 are timed Same as above

Time to results 1 months 1 week From sample collection to results

Internal control Included Included Both negative and positive controls should be

included with all assays.

External control Available Included Both negative and positive controls should be

included with all assays.

Assay interpretation Unambiguous, recorded by operator Unambiguous, recorded by operator or

electronically

The interpretation of the results should be

simple

Data capture Manual by operator Electronic automated Data capture should be flexible and adaptable

Data transfer Manual by operator Automated via internet or Global System

for Mobile Communications (GSM)

connectivity

Same as above for data transfer

Training � 1 week for technician with little

experience

� 3 days for technician with little

experience

The technique should be easy to learn

Biosafety Moderate individual and low public

health risk

Low individual and public health risk According to risk-based classification of

diagnostics for WHO prequalification

[59]

https://doi.org/10.1371/journal.pone.0204347.t004
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format to collect samples. However, good quality filter paper should be used to ensure optimal

yield and quality of DNA, especially after long term storage [57]. Optimally, the assay should

be able to use DNA extracted from a positive rapid diagnostic test (RDT), as RDTs are cur-

rently widely used in malaria endemic countries, especially in Africa, offering at times the best

access to samples [58]. Importantly, assays should routinely include negative and positive con-

trols. It is of paramount importance that external controls are included for the assessment of

the assay and calibration, and that a good quality control and quality assurance system is

implemented to ensure good laboratory practice standardisation.

Assay cost characteristics

The cost of the assay should be low enough to be affordable in developing countries. The cost

to analyse one sample for all mutations should ideally not be more than 10 USD, comparable

to or cheaper than widely used PCR-RFLP assays [29].

Discussion

Molecular markers of antimalarial drug resistance have proved to be useful for detection of early

resistance emergence [5,7,60], spread of resistance [61], or absence of resistance [62], and are easy

to interpret [63]. Although TESs provide valuable resistance measurements that are easiest to

directly translate to policy, they are confounded by many factors, including clinical immunity and

varied pharmacokinetics, and they require extensive time for completion, so resistance may only

be apparent once parasites resistant to both components of a drug combination have spread

widely [64]. Molecular techniques have the advantage of providing information in real time about

the prevalence and ideally the frequency of resistant parasite strains circulating in the population

using easily collected DBS or RDT samples [42,58,65], and this information is not typically con-

founded by clinical immunity. Even though, the presence of resistant parasites does not necessar-

ily predict treatment failure [66], increasing prevalence of validated molecular markers of

antimalarial drug resistance is associated with increasing treatment failure, and thus molecular

markers offer a valuable early indicator of resistance emergence [67], and a practicable means of

determining thresholds for policy makers. As an example, the WHO policy on Intermittent pre-

ventive treatment for infants (IPTi) with SP recommends�50% prevalence of Pfdhps 540 muta-

tion as the threshold for implementation of SP-IPTi [68]. A variety of different techniques to

assess molecular markers associated with antimalarial drug resistance are already available

(Table 1), however standardisation is needed to improve the quality of generated data [1].

New and improved technologies should focus on simple techniques that can be used by lab-

oratories in malaria endemic countries. Techniques should be highly sensitive to detect minor-

ity strains, but also highly specific to yield accurate results. Indeed, according to the consensus

obtained during the meeting of experts, priority should be given to specificity over sensitivity;

it is better to miss strains at low level than to give inaccurate prevalence data. Increased multi-

plicity of infection in high transmission settings may compromise assessment of antimalarial

drug resistance molecular markers [69]. Indeed, genotyping of samples with multiple infec-

tions is challenging, as it is difficult to link different mutations to a specific strain, and there-

fore accurately assess haplotypes or frequencies of specific strains, in particular when

considering CNV. New technologies under development, including amplicon sequencing,

may allow assessment of drug resistance variants among polygenomic infections [70–74].

However, in the setting of high multiplicity of infection, prevalence data remains useful for

surveillance purposes [75]. Determination of CNV is a minimal requirement in this TPP, as

resistance to some of the important artemisinin partner drugs such as mefloquine and pipera-

quine is associated with changes in gene copy numbers [76,77]. Currently, sequencing
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technologies and real-time PCR offer most of the desired characteristics described in the cur-

rent TPPs, including the determination of CNVs (Table 1), and those technologies are becom-

ing increasingly available and affordable in developing countries [1]. Other new techniques are

in development that could improve standardisation, with no DNA amplification [78,79] or

DNA extraction step requirement [51,80]. However, these techniques are still at an early stage

of development and are mainly under evaluation for diagnosis, and not surveillance.

Recent advances in sequencing technologies, such as next-generation sequencing (NGS)

platforms that enable rapid whole genome sequencing (WGS), can provide in-depth informa-

tion about molecular determinants of resistance, allowing detailed assessment of the spread of

resistant strains [81–83]. They can provide as well information about new emerging mutations

before they can be confirmed by phenotypic data from in vitro assessments and clinical data

when available. The main objective of a molecular-based surveillance system should be the

detection of resistance before it spreads. For artemisinin resistance, different foci have been

discovered, and molecular determinants other than pfKelch13 may be involved [84,85], requir-

ing a continuous search and validation for new molecular markers. The development of a sur-

veillance system included in the local health system could be envisioned; samples would be

collected at health posts, centres or hospitals and sent to reference laboratories for analysis and

validation, while clinical data could be shared through electronic-based information system

[86]. Combined with local epidemiological data; drug usage and treatment efficacy data, WGS

data could provide valuable information for modelling and predicting the spread of antimalar-

ial drug resistance [87]. The recent development of MinION nanopore portable sequencer and

its application to molecular markers of resistance could facilitate as well sample analysis at

point of care, while the data analysis could still be performed in the central reference labora-

tory [48,50]. NGS technologies also allow pooling of different samples by indexing them to

reduce the analysis costs [41,42]. Even though the costs of all these NGS technologies have dra-

matically reduced in recent years and are affordable for developing countries, they still require

high expertise in data analysis, and high computing power that are not always available in

those countries. However, the establishment of centres of excellence or regional reference labo-

ratories could overcome this issue.

To ensure the accuracy and the comparability of the results from different laboratories, a

good external quality assurance (EQA) system should be implemented, providing validated

and standardised external control material [88,89]. Indeed, different laboratories may use dif-

ferent protocols and standard operating procedures (SOPs) for the same methodology, and

there is variability in operating procedures in different laboratories. An analogous EQA

scheme for malaria nucleic acid amplification testing external quality assurance (NAAT EQA)

has been developed by WHO and FIND [90], and could potentially be expanded to molecular

markers of resistance.

Conclusion

In summary, techniques already exist with most of the required characteristics in this TPP for

assays to analyse molecular markers associated with antimalarial drug resistance, and could be

rapidly implemented in reference laboratories. Other techniques in development fulfil most of

the criteria specified by the TPP and could potentially improve data analysis standardisation.

However, the implementation of different techniques for routine surveillance of antimalarial

drug resistance would need a consensus from policy makers to define implementation proce-

dures, optimise their use, and implement good EQA practices. This TPP can also be used by

assay manufacturers to guide development of new technologies to facilitate efficient surveil-

lance of molecular markers associated with antimalarial drug resistance in endemic settings.
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