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Leveraging DNA-Methylation Quantitative-Trait Loci
to Characterize the Relationship between Methylomic
Variation, Gene Expression, and Complex Traits

Eilis Hannon,1 Tyler J. Gorrie-Stone,2 Melissa C. Smart,3 Joe Burrage,1 Amanda Hughes,3 Yanchun Bao,3

Meena Kumari,3 Leonard C. Schalkwyk,2 and Jonathan Mill1,*

Characterizing the complex relationship between genetic, epigenetic, and transcriptomic variation has the potential to increase under-

standing about the mechanisms underpinning health and disease phenotypes. We undertook a comprehensive analysis of common

genetic variation on DNA methylation (DNAm) by using the Illumina EPIC array to profile samples from the UK Household Longitudi-

nal study. We identified 12,689,548 significant DNA methylation quantitative trait loci (mQTL) associations (p < 6.52 3 10�14) occur-

ring between 2,907,234 genetic variants and 93,268 DNAm sites, including a large number not identified by previous DNAm-profiling

methods. We demonstrate the utility of these data for interpreting the functional consequences of common genetic variation associated

with > 60 human traits by using summary-data-based Mendelian randomization (SMR) to identify 1,662 pleiotropic associations be-

tween 36 complex traits and 1,246 DNAm sites. We also use SMR to characterize the relationship between DNAm and gene expression

and thereby identify 6,798 pleiotropic associations between 5,420 DNAm sites and the transcription of 1,702 genes. OurmQTL database

and SMR results are available via a searchable online database as a resource to the research community.
Introduction

DNA methylation (DNAm), an epigenetic modification

to cytosine, is involved in mediating the developmental

regulation of gene expression and function, as well as

transcriptional processes such as genomic imprinting and

X chromosome inactivation.1,2 Although often regarded

as a mechanism of transcriptional repression, the relation-

ship between DNAm and gene expression is highly com-

plex and not fully understood.3 Gene-body DNAm, for

example, is often associated with active expression4 and

also influences other transcriptional processes, including

alternative splicing and promoter usage.5 This dynamic

property of DNAm means it can vary across samples and

might underlie phenotypic differences. There is growing

interest in characterizing the variation of DNAm across

populations6,7 and in the role of DNAm in disease, and

recent epigenome-wide association studies (EWASs) have

identified robust associations between variable DNAm

and cancer,8 as well as a diverse range of other complex

phenotypes, including rheumatoid arthritis [MIM:

180300],9 body-mass index,10 schizophrenia [MIM:

181500],11 and Alzheimer disease [MIM: 104300].12 Char-

acterizing the complex relationship between genetic,

epigenetic, and transcriptomic variation will increase un-

derstanding about the mechanisms underpinning health

and disease phenotypes. Twin and family studies have

demonstrated that population-level variation in DNAm is

under considerable genetic control, although these effects

vary across genomic loci, developmental stages, and

different cell and tissue types.13–17 Studies in a variety of

tissues, including brain, whole blood, pancreatic islet cells,
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and adipose tissue, have identified widespread associa-

tions between common DNA sequence variants and

DNAm.17–22 These DNAm quantitative trait loci (mQTLs)

are primarily cis-acting, are enriched in regulatory chro-

matin domains and transcription-factor binding sites,

and have been shown to colocalize with gene expression

quantitative trait loci (eQTLs).3,17,23

There is considerable interest in using mQTLs, along

with other types of molecular QTLs, to interpret the func-

tional consequences of common genetic variation associ-

ated with human traits, especially because the actual

gene(s) involved in mediating phenotypic variation are

not necessarily the most proximal to the lead SNPs identi-

fied in genome-wide association studies (GWASs). Of note,

GWAS variants are enriched in enhancers and regions of

open chromatin,24,25 reinforcing the hypothesis that

most common genetic risk factors influence gene regula-

tion rather than directly affecting the coding sequences

of transcribed proteins.26 Importantly, evidence for the

co-localization of genetic variants associated with both

phenotypic and regulatory variation is not sufficient to

show that the overlapping association signals are causally

related; additional analytical steps are needed to distin-

guish pleiotropic effects—i.e., where the same variant is

influencing both outcomes, although not necessarily

dependently—from those that are an artifact of linkage

disequilibrium (LD). We recently extended the use of

one approach—summary-data-based Mendelian randomi-

zation (SMR), which was initially used in conjunction

with expression quantitative trait loci (eQTL) data27—to

prioritize genes for GWAS-nominated loci using mQTL

data.28
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Building on our previous work, we used the Illumina

EPIC array and imputed SNP data to identify mQTLs asso-

ciated with variable DNAm at �850,000 sites across the

genome in samples from the Understanding Society UK

Household Longitudinal Study (UKHLS) (n ¼ 1,111). We

then used these mQTLs within the SMR framework to

refine genetic association data from publicly available

GWAS datasets in order to prioritize genes involved in

63 complex traits and diseases. We subsequently used the

SMR approach to identify pleiotropic relationships be-

tween DNAm and variable gene expression by using pub-

licly available whole-blood gene eQTL data. Our mQTL

database and SMR results are available via a searchable on-

line database as a resource to the research community (see

Web Resources).
Subjects and Methods

Sample Description
The British Household Panel Survey (BHPS) began in 1991, and in

2010 it was incorporated into the larger UKHLS29 (also known as

Understanding Society), which is a longitudinal panel survey of

40,000 UK households from England, Scotland,Wales, and North-

ern Ireland. Since 1991, annual interviews have collected sociode-

mographic information, and in 2011–2012, biomedical measures

and blood samples for BHPS participants were collected during a

nurse visit in the participant’s home. Respondents were eligible

to give a blood sample if they had taken part in the previous

main interview in English; were 16 or older; lived in England,

Wales, or Scotland; were not pregnant; and met other conditions

detailed in the user guide.30 For each participant, non-fasting

blood samples were collected through venipuncture; these were

subsequently centrifuged so that plasma and serum were sepa-

rated, and samples were aliquoted and frozen at �80�C. DNA

has been extracted and stored for genetic and epigenetic analyses.
Genome-wide Quantification of DNAm
DNAm was profiled in DNA extracted from whole blood for 1,193

individuals who were aged from 28 to 98; who were eligible for

and consented to both blood sampling and genetic analysis;

who had been present at all annual interviews between 1999

and 2011; and whose time between blood sample collection and

processing did not exceed 3 days. Eligibility requirements for

genetic analyses meant that the epigenetic sample was restricted

to participants of white ethnicity. The EZ-96 DNA Methylation-

Gold kit (Zymo Research) was used for treating 500 ng of DNA

from each sample with sodium bisulfite. DNAm was quantified

with the Illumina Infinium HumanMethylationEPIC BeadChip

run on an Illumina iScan System according to the manufacturer’s

standard protocol. Samples were randomly assigned to chips and

plates so that batch effects would be minimized. In addition, the

inclusion of a fully methylated control (CpG Methylated HeLa

Genomic DNA; New England BioLabs) in a random position on

each plate facilitated sample tracking and helped to resolve exper-

imental inconsistencies and confirm data quality.
DNAm Data Preprocessing
Raw signal intensities were imported from.idat files into the R sta-

tistical environment31 and converted into beta values (the propor-
2 The American Journal of Human Genetics 103, 1–12, November 1,
tion of DNA methylation at individual sites was measured) with

the bigmelon package.32 These data were processed via a standard

pipeline including the following steps: (1) detection of outlier

samples via principal-component analysis and Mahalanobis dis-

tance equivalents, (2) confirmation of complete bisulphite conver-

sion via control probes, (3) comparison of estimated age from the

data via the Horvath Epigenetic Clock algorithm33 and reported

age at sampling, and (4) visualization of principal components.

Data were normalized with the dasen function within the

wateRmelon package,34 which performs background adjustment

and between-sample quantile normalization of methylated (M)

and unmethylated (U) intensities separately for type I and

type II probes. Samples that were dramatically altered as a result

of normalization were excluded on the basis of the difference

between the normalized and raw data; those with a root mean

square and standard deviation > 0.05 were removed. Samples

were then filtered so that those with >1% of sites with a detection

p value> 0.05 were excluded. Finally, DNA-methylation sites with

a bead count <3 were excluded along with those in which >1%

of the sample had a detection p value > 0.05. The raw DNA

methylation data from the final sample set was then re-nor-

malzsed with the dasen function. The final dataset included

857,071 DNA-methylation sites and 1,175 individuals for subse-

quent analysis. These DNAm data are available upon request

through the EuropeanGenome-Phenome Archive under accession

code EGAS00001001232.
Annotation of DNAm Sites
The genomic location of DNAm sites along with genic, DNase

hypersensitivy sites and open chromatin annotation were taken

from the manifest files provided by Illumina and downloaded

from the product support pages (see Web Resources).
Genotyping and Imputation
UKHLS samples were genotyped with the Illumina Infinium

HumanCoreExome BeadChip Kit as previously described

(12v1-0).35 This array contains a set of >250,000 highly informa-

tive genome-wide tagging single-nucleotide polymorphisms

(SNPs) as well as a panel of functional (protein-altering) exonic

markers, including a large proportion of low-frequency (MAF

1%–5%) and rare (MAF < 1%) variants. Genotype calling was per-

formed with the gencall algorithm within GenomeStudio (Illu-

mina). After only the samples with matched DNAm data were

selected, variants were refiltered prior to imputation. PLINK36

was used for removing samples with >5% missing data. We also

excluded SNPs characterized by >5% missing values, a Hardy-

Weinberg equilibrium p value < 0.001, and a minor-allele fre-

quency of <5%. For identification of related samples, SNPs under-

went LD pruning, and the –genome command in PLINK was used

for calculating the proportion of identity-by-descent for all pairs

of samples; 58 pairs of related samples (PI_HAT > 0.2) were iden-

tified, and randomly excluding one individual from each pair

ensured that the samples were independent. These data were

then imputed with the 1000 Genomes phase 3 version5 reference

panels SHAPEIT and minimac3.37 Best-guess genotypes were

called, and variants were filtered to those with a minor-allele fre-

quency >0.01 and an INFO score >0.8. Because variants were

named using their locations (‘‘chr:pos’’) and variant type (SNP/

INDEL), duplicate variants were also excluded. Principal compo-

nents were calculated from the imputed genotype data via GCTA

(a tool for genome-wide complex-trait analysis).38 16 samples
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were identified as being outliers (defined as more than 2 standard

deviations from themean) in a scatterplot of the first two principal

components andwere excluded from subsequent genetic analyses.

Principal components were then recalculated for inclusion as

covariates in QTL analyses. The imputed genetic variants were

then filtered so that variants characterized by>5%missing values,

a Hardy-Weinberg equilibrium p value <0.001, a minor-allele

frequency of <5%, and a minimum of five observations in each

genotype group were excluded. These genotype data are available

on application through the European Genome-phenome Archive

under accession code EGAS00001001232.
DNAm Quantitative-Trait Loci
Cross-hybridizing probes, probes with a common SNP (European

population minor-allele frequency > 0.01) within 10 bp of the

CpG site or a single base extension39,40 and probes on the sex

chromosomes were excluded from the QTL analysis. In addition,

977 substandard probes identified by Illumina were also excluded.

We performed a genome-wide mQTL analysis; in total, we tested

766,714 DNAm sites against 5,210,475 genetic variants by using

the R package MatrixEQTL.41 This package enables fast computa-

tion of QTLs by only saving those more significant than a pre-

defined threshold (set to p ¼ 1 3 10�8 for this analysis). We fitted

an additive linear model to test whether the number of alleles

(coded 0,1,2) predicted DNAm at each site; we included covariates

for age, sex, six estimated cellular composition variables (B cells,

CD8 T cells, CD4 T cells, monocytes, granulocytes, natural killer

T cells),42,43 two binary batch variables, and the first ten principal

components from the genotype data to control for ethnicity

differences. We used a Bonferroni-corrected multiple-testing

threshold, set to genome-wide significance for GWAS and divided

by the number of DNAm sites tested (i.e., 5 3 10�8/766714 ¼
6.523 10�14). We used the clump command in PLINK36 to identify

the number of independent associations for each DNAm site

with more than 1 significant mQT by using the following param-

eters: –clump-p1 1e-8–clump-p2 1e-8–clump-r2 0.1–clump-kb 250.
Bayesian Co-localization
Out of all DNAm sites with at least 1 significant mQTL (p < 1 3

10�10), all pairs of DNAm sites located on the same chromosome

and within 250 kb of each other were tested for co-localization.

Because data for all SNPs (regardless of significance) are required

for this analysis, first, the mQTL analysis was rerun for these

DNAm sites so that all association statistics (p value, regression

coefficient, and t-statistic, so that the standard error could be in-

ferred) could be recorded for all SNPs within 500 kb of the

DNAm site. Co-localization analysis was performed as previously

described44 with the R coloc package (see Web Resources). From

our mQTL results we input the regression coefficients, their vari-

ances, and SNP minor-allele frequencies, and we left the prior

probabilities as their default values. This methodology allowed

us to quantify the support across the results of each GWAS for

five hypotheses by calculating the posterior probabilities, denoted

as PPi for hypothesis Hi.

H0: there exist no causal variants for either CpG site;

H1: there exists a causal variant for CpG1 only;

H2: there exists a causal variant for CpG2 only;

H3: there exist two distinct causal variants, one for each

CpG; or

H4: there exists a single causal variant common to both CpGs.
The Am
Summarized Mendelian Randomization Analysis 1:

Identifying Putative Pleiotropic Relationships between

DNAm and Complex Traits
SMR analysis between DNAm and complex traits was performed

with publicly available software (see Web Resources) as previously

described.27,28 Publicly available genome-wide association study

(GWAS) results were downloaded from a range of sources and con-

verted to the appropriate format for the SMR analysis.We renamed

SNPs in the 1000 Genomes format (chr:bp) to align them with the

mQTLoutput by using dbSNPversion 141 (where SNP locations for

hg19 were not provided in the results file). Where allele frequency

was not provided, it was taken from the European subset of 1000

Genomes (phase 3, version 5). Details for how each set of results

was processed can be found in Table S4.We used significantmQTLs

(p< 13 10�10) calculated in the UKHLS sample to identify genetic

instruments for 126,457DNAmsites thatwere included in the SMR

analysis. The SMR test comprises of two steps. First, we performed a

two-sample Mendelian randomization with the two-step least-

squares (2SLS) approach by using the effect size of the top cis-

QTL SNP and its corresponding effect in the GWAS. The signifi-

cance threshold for this part of test was set at 3.95 3 10�7, calcu-

lated by the Bonferroni correction method and adjusted for the

number of DNAm sites tested (0.05/126,457). Second, we tested

for heterogeneity of effects by using alternative SNPs as the instru-

mental variable, on the basis of the theory that if both DNAm and

the GWAS trait were associated with the same causal variant, the

choice of SNP would be irrelevant, whereas if they were associated

with different causal variants, the differing linkage disequilibrium

relationships between the instruments and each causal variant

would lead to variation in the estimated effect between the trait

and DNAm. Non-significant heterogeneity (heterogeneity in

dependent instruments [HEIDI] p > 0.05) indicates that there is a

pleiotropic effect on a GWAS trait and DNAm. This approach was

repeated with publicly available eQTL data from Westra et al.;45

in this analysis, significant pleotropic associations between gene

expression and complex traits were selected as those with SMR p

< 8.38 3 10�6 (corrected for 5,966 gene expression probes tested)

and HEIDI p > 0.05.
Summarized Mendelian Randomization Analysis 2:

Identifying Putative Pleiotropic Relationships between

DNAm and Gene Expression
We used a second application of the SMR analysis to identify pleio-

tropic relationships between DNAm and gene expression. Gene

eQTL results from the Westra eQTL study45 were downloaded

along with the SMR software. SNP IDs were converted to the

1000 Genomes format (so they would match the mQTL output),

and SNP frequencies were taken from the European subset of

1000 Genomes (phase 3, version 5). These data included eQTLs

at 5,966 probes. All pairs of CpG and genes where tested as long

as (1) the CpG had a significant mQTL (p < 1 3 10�10), (2) the

gene had a significant eQTL (p < 5 3 10�8), and (3) there was a

common genetic variant tested within 500 kilobases of the gene

expression probe and DNAm site. In total, 488,342 pairs of

DNAm sites and gene expression transcripts were tested; therefore,

the significance threshold for the first stage of the SMR test was set

to p < 1.02 3 10�7 after a Bonferroni correction for the number

of tests was applied. Consistent with all other SMR analyses in

this manuscript, a non-significant heterogeneity test (HEIDI

p > 0.05) in step 2 of the SMR analysis was used for classifying

pleiotropic relationships from artifacts of linkage disequilibrium.
erican Journal of Human Genetics 103, 1–12, November 1, 2018 3



Figure 1. DNA-Methylation Quantitative-
Trait Loci Are Predominantly cis-Acting
and Enriched in Sites at Which DNAm Is
Highly Heritable
(A) The genomic distribution of Bonferroni-
significant (p ¼ 6.52 3 10�14) mQTLs in
whole blood; the position on the x axis indi-
cates the location of Illumina EPIC array
probes, and the position on the y axis indi-
cates the location of genetic variants.
The color of the point corresponds to the
difference in DNA methylation per allele
compared to the reference allele; the largest
effects are plotted in dark red. A clear posi-
tive diagonal can be observed, demon-
strating that the majority of mQTLs are
associated with genotype in cis.
(B) A bar plot of the percentage of DNA-
methylation sites associated with common
genetic variation and grouped by previous
reported estimates of heritability (percent

variation in DNAm is explained by additive genetic factors taken from van Dongen et al.13). Each bar plot demonstrates the percentage
of DNA-methylation sites with Bonferroni significant genetic effects in cis only (blue), trans only (green), and both cis and trans (red) and
with no significant genetic effects (white).
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Enrichment Analyses
DNAm sites were annotated to genes and CpG islands with the in-

formation provided in the Illumina manifest file, which is based

on the UCSC RefGene and CpG island databases. Sites are anno-

tated to genes if they are located within the gene body or up to

1,500 base pairs form the transcription start site. Sites are anno-

tated to CpG islands if they are located within the boundaries of

a CpG island, to a shore if they are located up to 2,000 base pairs

from an island, or to a shelf if they are between 2,000 and 4,000

base pairs from an island. Frequency tables were used for recording

the number of sites annotated to each feature category, and Chi-

square tests were used for identifying different distributions across

these annotation categories between all tested DNAm sites and the

subset of sites considered for enrichment analysis (e.g., all DNAm

sites with at least one significant mQTL).

Data Availability
Summary statistics for all Bonferroni-significant DNA-methyl-

ation quantitative-trait loci are available for download from the

Complex Disease Epigenomics Group website, where readers can

also explore many of the results included in this manuscript

through our interactive web application. Analysis scripts used in

this manuscript are available on GitHub, and data on phenotypes

linked to DNA methylation are available on METADAC. See the

Web Resources and the Accession Numbers sections.
Results

Additional mQTL Associations Identified with the

Illumina EPIC Array

An overview of our study design is presented in Figure S1.

We tested 5,210,475 imputed genetic variants against the

766,714 DNAm sites that were on the Illumina EPIC array

and that passed our stringent QC criteria (see Subjects and

Methods).We identified 12,689,548 significantmQTL asso-

ciations (we used a conservative Bonferroni-corrected

threshold of p < 6.52 3 10�14) between 2,907,234 genetic

variants and 93,268 DNAm sites (Table S1; Figure 1A); there
4 The American Journal of Human Genetics 103, 1–12, November 1,
was a mean percentage point change in DNAm per addi-

tional reference allele of 3.46% (SD ¼ 3.01%) across all

mQTL-associated sites. Existing mQTL databases have

been almost exclusively generated with the Illumina 450K

array; more than half of the DNAm sites (n ¼ 48,099,

51.6%; Table S2) that we identify as being associated with

genetic variationwith the Illumina EPIC array involve addi-

tional content not previously interrogated (Figure S2).

Importantly, these additional mQTL associations are anno-

tated to 5,172 genes not included inmQTLdatabases gener-

ated with the Illumina 450K array (Figure S3). DNAm sites

associated with genetic variation are associated with a me-

dian of 65 (interquartile range¼ 22–162) mQTLs, probably

reflecting linkage disequilibrium (LD) relationships be-

tween proximal variants. In contrast, each mQTL variant

is associated with a median of two (interquartile range ¼
1–5) DNAm sites, and the majority of mQTL SNPs

(n ¼ 1,003,238, 34.5%) are associated with DNAm at only

a single site (Figure S4). We performed LD clumping of the

results for each DNAm site to identify the number of

independent associations for each DNAm site (see Subjects

and Methods); this process reduced the number of mQTL

associations (p< 6.523 10�14) to 161,761 (1.27%of the to-

tal number of unclumped significantmQTL associations); a

median of 1 (interquartile range¼ 1–2) mQTL variant asso-

ciated with each DNAm site (Figure S5). At a more relaxed

‘‘discovery’’ threshold (p < 13 10�10), we identified a total

of 17,051,673 mQTL associations between 3,281,391 ge-

netic variants and 114,595 DNAm sites; these results are

available in a searchable database (see Web Resources).
mQTL Associations Predominantly Occur in cis and

Influence DNAm at Sites Known to Be Influenced by

Heritable Factors

Consistent with the results of previous studies, we found

that the majority of mQTL associations (n ¼ 11,679,376;
2018
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92%) occur in cis, defined as situations where the distance

between mQTL SNP and DNAm site is %500 kb17,18,20,22

(Figure 1A). Cis mQTL variants are typically associated

with larger effects on DNAm than those acting in trans

(average cis effect ¼ 3.48% change in DNAm per allele,

average trans effect ¼ 3.26% change in DNAm per allele;

Mann-Whitney p < 2.23 3 10�308) (Figure S6). Further-

more, among cis mQTL associations, both significance

and effect size increase as the distance between the genetic

variant and DNAm site decreases (Figure S7). Compared to

other tested DNAm sites, those associated with at least one

mQTL variant (after correction for the number of tests per-

formed [see Subjects and Methods], p < 6.52 3 10�14) are

significantly enriched in intergenic regions and less likely

to be located within both gene bodies (Chi square test:

p < 2.23 3 10�308; Figure S8; Table S3A) and CpG islands

(Chi square test p < 2.23 3 10�308; Figure S9; Table S3B).

We used quantitative genetic data from a study of DNAm

in monozygotic and dizygotic twins13 to show that

DNAm at sites associated with at least one mQTL variant

is more strongly influenced by heritable (additive genetic)

factors than are other tested DNAm sites (mQTL sites:

median heritability, h2, ¼ 55% [interquartile range ¼
38%–71%]; all DNAm sites: median h2 ¼ 12% [interquar-

tile range ¼ 5%–31%]; Mann-Whitney p < 2.23 3 10�308;

Figure S10). Overall, the proportion of sites at which

DNAm is associated with an mQTL variant increases as a

function of the estimated additive genetic influence

derived from twin analyses (Figure 1B). Interestingly, there

is no significant difference in the contribution of additive

genetic effects to variance in DNAm at sites associated

with cis (median h2 ¼ 56%; interquartile range ¼ 39%–

72%) and trans (median h2 ¼ 57%; interquartile range ¼
32%–76%) mQTL variants (Mann-Whitney p ¼ 0.910).

Proximal DNA-Methylation Sites Share Genetic

Associations

Similar to the LD relationships that exist between prox-

imal genetic variants, DNAm levels are often correlated

between proximally located DNAm sites.14,46 To further

characterize the genetic architecture of DNA methylation,

we investigated whether shared genetic effects on multiple

DNAm sites underlies this regional correlation structure.

Although genetic variants are often associated with varia-

tion at multiple DNAm sites (Figure S4), this does not

establish a shared genetic effect; shared genetic signals

influencing a pair of DNAm sites might result from two

distinct causal genetic variants that are in strong LD. To

formally test whether neighboring DNAm sites are influ-

enced by the same causal variant, we used a Bayesian co-

localization approach44 to interrogate all pairs of DNAm

sites characterized as being located within 250 kb of each

other and associated with at least one significant mQTL

variant at our ‘‘discovery’’ significance threshold (p < 1 3

10�10). Our analyses assessed 3,535,812 pairs of DNAm

sites with a median distance between DNAm sites of

110,493 bp (interquartile range ¼ 47,914–178,085) and
The Am
compared the pattern of mQTL associations for both

DNAm sites to test whether they index an association

with either the same causal variant or two distinct causal

variants. We found that the posterior probabilities for

virtually all of these (n ¼ 3,520,781 [99.6%], median dis-

tance of 110,319 bp [interquartile range ¼ 47,803–

177,948]) supported a co-localized association within the

same genomic region (PP3 þ PP4 > 0.99). Of these,

281,898 pairs (8%) had sufficient support for the associa-

tion of both DNAm sites with the same causal mQTL

variant (PP3 þ PP4 > 0.99 and PP4/PP3 > 1; Table S4);

234,460 pairs (6.6%) had ‘‘convincing’’ evidence (PP3 þ
PP4 > 0.99 and PP4/PP3 > 5) for co-localization of the

same mQTL association according to the criteria of Guo

and colleagues.47 DNAm sites that shared genetic effects

with at least one other DNAm site co-localize with a me-

dian of three other DNAm sites, indicating a complex rela-

tionship between genetic variation and DNAm in cis.

Figure 2, for example, demonstrates that chromosome 9

contains a broad genomic region (>400 kb) where 38

DNAm sites—spanning seven genes—have a common un-

derlying genetic signal. Of note, these DNAm sites are not

contiguous; a small number of genetically mediated

DNAm sites located within this region do not share the

same mQTL signal. Pairs of DNAm sites with a shared

causal mQTL variant are enriched for concordant direc-

tions of effect (71.2% pairs with positive correlations

versus 28.8% pairs with negative correlations, binomial

test p ¼ 1.48 3 10�323; Figure S11). Furthermore, these

pairs are located relatively close together (median distance

between convincing co-localized pairs ¼ 12,394 bp [inter-

quartile range ¼ 1,004–49,110]), with evidence that the

shared genetic architecture is structured around annotated

genomic features. Co-localized pairs of DNAm sites are

significantly more likely to be annotated to the same

gene (OR ¼ 6.08, Fisher’s test p < 2.23 3 10�308) or CpG

island (OR ¼ 1.54, Fisher’s test p < 2.23 3 10�308) than

non-co-localized pairs. Where pairs of DNAm sites with a

shared genetic signal are annotated to the same gene,

they are nominally less likely to be annotated to the

same feature than are pairs of DNAm sites annotated to

different genes (OR ¼ 0.956, Fisher’s test p ¼ 2.52 3 10�7),

suggesting that where genetic variation influences DNAm

at multiple sites across a gene these sites do not necessarily

cluster by genic feature and can be located anywhere from

the transcription start site to the end of the last exon.

DNAm is more likely to be positively correlated between

pairs of co-localized sites annotated to the same gene

than between pairs of sites annotated to different genes

(OR ¼ 1.85, Fisher’s p < 2.23 3 10�308), a result driven

predominantly by pairs of DNAm sites annotated to the

same feature within that gene (OR ¼ 1.57, Fisher’s test

p¼ 3.413 10�135) rather than those annotated to different

features within a gene. Finally, pairs of DNAm sites with

shared genetic effects annotated to the same genic feature,

although not necessarily the same gene, are more likely to

be positively correlated than pairs annotated to different
erican Journal of Human Genetics 103, 1–12, November 1, 2018 5
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Figure 2. Shared Genetic Architecture be-
tween Neighboring DNA-Methylation Sites
Heatmap of Bayesian co-localization results
for all pairs of DNA-methylation sites with
at least one significantmQTL (p< 13 10�10)
in a genomic region on chromosome 9
(chr9:124783559–125216341). Columns
and rows represent individual DNA-methyl-
ation sites (ordered by genomic location).
The color of each square indicates the
strength of the evidence for a shared genetic
signal (from yellow [weak] to red [strong]);
this strength is calculated as the ratio of the
posterior probabilities that they share the
same causal variant (PP4) compared to two
distinct causal variants (PP3). The ratio was
bounded to a maximum value of 10; gray in-
dicates pairs of DNA-methylation sites that
were not tested for co-localization.
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genic features (OR ¼ 1.73, Fisher’s p < 2.23 3 10�308;

Figure S12).

DNAm QTL Have Utility for Refining GWAS Signals for

Complex Traits

Genetic variants identified in GWAS analyses rarely index

protein-coding changes. Instead, they are hypothesized

to influence gene regulation because they are enriched

in regulatory motifs, including enhancers and regions of

open chromatin.24,26 There is considerable interest

in using regulatory QTLs to refine genetic association sig-

nals and prioritize potentially causal genes within the

extended genomic regions identified in GWASs.17,27,48,49

We next extended our previous application of the SMR

approach28 to test 126,457 DNAm sites identified at our

‘‘discovery’’ mQTL threshold (p < 1 3 10�10) against

63 complex phenotypes with GWAS data (Table S5). The
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first stage of the SMR approach uses

the most significantly associated

mQTL SNP—that has also been tested

in the GWAS dataset—as an instru-

mental variable and implements a

two-step least-squares (2SLS) approach

to compare the estimated associations.

Using this approach, we identified

5,848 associations (p < 3.95 3 10�7

corrected for 126,457 DNAm sites) be-

tween 40 complex traits and 5,849

unique DNAm sites (Figure S13).

Because the associations identified in

this way potentially reflect two highly

correlated but different causal variants

for the GWAS trait and DNAm, the sec-

ond stage of the SMR method repeats

the analysis with alternative mQTL

SNPs as the instrument. If there is a sin-

gle causal variant associated with both

the phenotype and DNAm, the associ-

ation statistics will be identical regard-
less of the selected instrument. In contrast, if there are two

separate causal variants, each correlated with the instru-

ment, there will be variation in the results. To distinguish

between these scenarios, we applied the heterogeneity in

dependent instruments (HEIDI) test to select associations

with non-significant heterogeneity (HEIDI p > 0.05) and

identified a refined set of 1,662 associations between 36

complex traits and 1,246 DNAm sites (Table S6).

Because the power of the SMR approach to detect pleio-

tropic associations reflects, in part, the power of the initial

complex-trait GWAS, it is unsurprising that the highest

number of SMR associations was found for traits character-

ized by the largest number of GWAS signals, such as height

(423 significant GWAS loci, 506 SMR pleiotropic associa-

tions)50 and inflammatory bowel disease [MIM: 266600 ]

(168 significant GWAS variants, 127 SMR pleiotropic asso-

ciations).51 In contrast, no SMR associations were found
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Figure 3. Summary-Data-Based Mendelian Randomization
(SMR) Analysis Using Quantitative Trait Loci Associated with
DNA Methylation (mQTL) and Gene Expression (eQTL) Impli-
cates a Role for LIME1 in Crohn Disease
Shown is a genomic region on chromosome 20 (chr20: 62335000–
62371000) identified in a recent Crohn disease GWAS performed
by Liu et al.51 Genes located in this region are shown at the
top, exons are indicated by thicker bars, and the red arrows
indicate the direction of transcription. The scatterplot depicts
the –log10 p value (y axis) against genomic location (x axis)
from the SMR analysis (where circles represent Illumina EPIC array
DNA-methylation sites, squares represent gene expression probes,
and solid green and red highlight those with a non-significant
HEIDI test for DNA methylation and gene expression, respec-
tively). The green and red horizontal lines represent the multi-
ple-testing corrected threshold for the SMR test using mQTL and
eQTL, respectively.
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for traits with few or no genome-wide-significant SNPs;

such traits included parental age at death (0–1 significant

GWAS variants),52 insulin secretion rate (no significant

GWAS variants),53 and whether a person has ever smoked

(no significant GWAS variants).54 We compared our SMR

results to those obtained with our previous mQTL data-

set—generated from a smaller number of samples—and

observed high rates of replication for loci that were tested

in both analyses. Because our previous SMR analysis was

based on a subset of 43 traits and the reduced content of

the Illumina 450K array, 842 pleiotropic associations re-

ported in the current analysis were taken forward for repli-

cation; DNAm at 519 (33.0%) of these was associated with

an mQTL variant, and therefore these associations had

been tested in our previous SMR study; 268 (51.6%) were

characterized by significant pleiotropic association in

both studies. Furthermore, the vast majority of associa-

tions tested in both datasets (516; 99.4%) were in the

same direction; this was significantly more than would

be expected by chance (sign test p ¼ 2.72 3 10�149;

Figure S14), suggesting that there are many additional

true signals in those that did not meet the stringent criteria

for significance used in both studies.

In order to prioritize genes for each complex trait, we

characterized the genic location of associated DNAm sites.

1,269 (76.3%) of the identified pleiotropic associations
The Am
involve DNAm sites located either within a gene or less

than 1500 bp from the transcription start site; this rate is

significantly higher rate than that for all DNAm sites tested

in our SMR analysis (OR ¼ 1.64, Fisher’s test p ¼ 1.12 3

10�18). To further explore these 786 pleiotropic associa-

tions—occurring between 577 genes and 32 complex

traits—we extended our SMR analyses to incorporate a pub-

licly available whole-blood gene eQTL (n ¼ 5,311 individ-

uals) dataset.45 Expression of 232 (40.2%) of our identified

genes was significantly associated with an eQTL variant,

and we used these to test for pleiotropic associations be-

tween gene expression level and the GWAS trait. These an-

alysesprovided additional support for 138of thepleiotropic

associations identified with mQTL data, supporting a

relationship between 33 genes and 17 complex traits

(Table S7). Figure 3, for example, highlights an association

between the regulation and expressionofLIME1 andCrohn

disease [MIM:266600]; this association is supportedbySMR

analyses incorporating both mQTL and eQTL data.

Pleiotropic Associations between DNAm and Gene

Expression

Although it is widely hypothesized that DNAm influences

gene expression, its relationship with transcriptional activ-

ity is not fully understood. DNAm across CpG-rich pro-

moter regions, for example, is often assumed to repress

gene expression via the blockage of transcription-factor

binding and the attraction of methyl-binding proteins.55

DNAm in the gene body, in contrast, is hypothesized to

be a marker of active gene transcription5,56 and to poten-

tially play a role in regulating alternative splicing and iso-

form diversity. To identify associations between DNAm

and gene expression, we applied the SMR approach to

DNAm sites identified as being associated with an mQTL

at our ‘‘discovery’’ significance threshold, located within

a megabase of a gene expression probe included in the

eQTL dataset generated by Westra and colleagues.45 In to-

tal, we tested 488,342 pairs and explored relationships be-

tween 96,694 DNAm sites and 4,721 gene expression

probes annotated to 4,049 genes (Figure S15). On average,

each DNAm site was tested against amedian of four expres-

sion probes (interquartile range ¼ 2–7) mapping to a me-

dian of three genes (interquartile range ¼ 2–6). In contrast,

each expression probe was tested against a median of

85 DNAm sites (interquartile range ¼ 56–130). Of these,

40,404 pairs (8.27%)—comprising 22,007 (22.8%) DNAm

sites and 4,201 (89.0%) expression probes mapping to

3,628 (89.6%) genes—were characterized by a significant

SMR result (significance threshold corrected for the

number of DNAm sites and gene expression probe pairs

tested ¼ p < 1.02 3 10�7). 6,798 of these significant SMR

pairs—comprising 5,420 (5.61%) DNAm sites and 1,913

(40.5%) expression probes mapping to 1,702 (42.0%)

genes—also had a HEIDI p > 0.05 (Table S8; Figure S15).

These results suggest that although expression of a large

proportion of genes is associated with DNAm sites, not

all DNAm sites are associated with gene expression in cis.
erican Journal of Human Genetics 103, 1–12, November 1, 2018 7
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Figure 4. Regional Plots Demonstrating
the Complex Relationship between Gene
Expression and DNAMethylation as Identi-
fied by SMR
Shown is an example of (A) a DNA-methyl-
ation site (cg00331210) that is associated
with expression of a gene (FAM173A) that
is not the most proximal to it and (B) a
DNA-methylation site (cg00072720) associ-
ated with the expression of multiple genes
(CLDN7 and ELP5). Each plot contains a
gene track, where red arrows indicate the di-
rection of transcription and a red diamond
indicates the position of the pleiotropically
significant DNA-methylation site. Circles
and squares indicate the location of the
gene expression probes that DNA-methyl-
ation sites were tested against. Color indi-
cates the significance level of the SMR test
(black to gray), and green indicates signifi-
cant associations (p < 1.02 3 10�7). For
significant associations, squares indicate
tests that have non-significant heterogene-
ity (p > 0.05) and are indicative of pleio-
tropic associations.
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The majority of significant gene expression probes

(n ¼ 1,192; 62.3%) are associated with a median of two

DNAm sites (interquartile range ¼ 1–4) spanning a median

distance of 66,846 bp (interquartile range ¼ 19,062–

155,737) at a median density of 19,959 bp (interquartile

range ¼ 6,387–54,445) between sites. Interestingly, DNAm

sites pleiotropically associated with gene expression are en-

riched in the gene body and transcription start sites of genes

and depleted intergenically (Chi square test p ¼ 7.08 3

10�133; Figure S16; Table S9).We identified a small but signif-

icant enrichment of scenarios where DNAm is negatively

associated with gene expression at sites located in the

50 UTR (mean effect ¼ �0.0211; p ¼ 0.00108), TSS200

(mean effect ¼ �0.0479; p ¼ 6.38 3 10�7), TSS1500 (mean

effect ¼ �0.0350; p ¼ 5.82 3 10�11) and 1st exon (mean

effect ¼ �0.0506; p ¼ 6.19 3 10�5), consistent with the

hypothesis that promoter DNAm often represses gene

expression (Figure S17).

Using QTL Data to Refine the Genic Annotation

Associated with DNAm Sites

A key challenge in epigenetic epidemiology relates to the

genic annotation of DNAm sites; such annotation is critical

for the biological interpretation of significant EWAS associa-

tions. DNAm sites are usually annotated to specific genes on

the basis of proximity, although the extent to which this

approach is valid for inferring downstream transcriptional

effects is not known. Among the identified pleiotropic asso-
8 The American Journal of Human Genetics 103, 1–12, November 1, 2018
ciations between DNAm and gene

expression, we selected instanceswhere

the DNAm site is not intergenic—i.e.,

<1500 bp from the transcription start

site of a gene (n ¼ 5,593 [82.3%)]—

and found that these were annotated
to the same gene whose expression level they were associ-

atedwithat amuchhigher rate thanwereDNAmsites signif-

icantly associated with expression levels at another gene

(OR ¼ 9.67; Fisher’s test p < 2.23 3 10�308). Of the 5,460

DNAm sites significantly associated with expression of at

least one gene, 1,790 (32.8%) were associated with the

gene they were annotated to, although 276 (5.05%) of

these were also associated to an additional gene and 2,686

(50.0%) were associated with a different gene. Of note, not

all CpGs were tested against the gene they were annotated

to because the gene lacked a significant eQTL; this was the

case for themajority ofDNAmsites (n¼ 2,701; 80.4%) iden-

tifiedasbeingassociatedwitha geneother than theone they

were annotated to.Of particular interest are the 944 (18.3%)

intergenic sites that are associated with gene expression;

these potentially enable additional gene annotations for in-

terpreting the results of EWAS analyses. Overall, although

the proximity-based annotation of DNAm sites appears to

be appropriate in many instances, we identified notable ex-

ceptions. For example, Figure 4A shows that the DNAm site

cg00331210, locatedwithin the body ofNARFL on chromo-

some 16, is not associated with expression of that gene but

with the FAM173A gene, which is located 7.9 kilobases

away. Likewise, Figure 4B shows that the DNAm site

cg00072720, located within the gene body of CLDN7, is

not associated with expression of that gene but with

that of two other genes (ACADVL and ELP5/C17ORF81) on

chromosome 17.
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Discussion

In this study we present a comprehensive assessment of

the genetic architecture of DNAm and identify associations

between common genetic variants and specific DNAm

sites (mQTLs) by using the Illumina EPIC array.We utilized

our database of mQTL associations to characterize genetic

influences on individual and proximally located DNAm

sites. We show that there are many instances of shared

genetic signals on neighboring DNAm sites and that these

associations are structured around both genes and CpG

islands. Our results are in line with the GeMes groups re-

ported by Liu et al., who observed that multiple DNAm

sites were influenced by overlapping genetic variants; their

observations included examples where these DNAm sites

were not contiguous.46 Moreover, we report that these

shared genetic effects on DNAm are generally associated

with positive correlations between the DNAm sites.

This has implications for studies of trait-associated differ-

entially methylated regions (DMRs) because it suggests

that associations with phenotypic variation could be

genetically mediated.
In an extension of our work prioritizing genes in GWAS-

nominated regions,28 we found robust agreement with our

previous SMR findings (obtained from mQTLs identified

with the Illumina 450K array) for shared content by using

independent datasets. The additional content present on

the EPIC array, however, enabled us to identify gene-trait

associations not detected with the older array technology,

increasing the potential yield of biological information.

This augments the existing literature integrating results

from GWASs of complex traits and quantitative trait loci

(QTL) studies of gene expression and DNA methyl-

ation27,57–59 and substantiates the hypothesis that GWAS

variants act via gene regulation. Finally, we use these

data to explore the relationship between DNAm and

gene expression by using genetic instruments rather than

correlations to infer associations between specific DNAm

sites and genes. Although most DNAm sites associated

with gene expression were found to be located within

the gene body or close to the transcription start site, there

are many relationships that challenge the commonly used

genic annotation on the sole basis of physical proximity.

Furthermore, although the expression of most genes is

associated with one or more DNAm sites, not all DNAm

sites are associated with gene expression, implying that

variable DNAm does not always have an effect on gene

expression. These findings are consistent with those re-

ported previously by Bonder et al.60 in their expression

quantitative trait methylation (eQTM) analysis; they also

report the association of multiple DNAm sites with each

gene, the presence of both negative and positive correla-

tions between DNAm and gene expression, and an enrich-

ment of DNAm sites associated with gene expression in the

TSS and enhancers. Although we could only test for associ-

ations between DNAm sites with significant mQTLs and

the expression of genes with a significant eQTL, our results
The Am
provide a potentially effective method for annotating

results from EWAS, particularly where the influence of

DNAm on gene expression is hypothesized and candidates

are taken forward for transcriptional analysis.

Our studyhas anumber of important limitations. The an-

alyses presented here are based on an unrelated subset of

participants from the UKHLS; although these represent a

large sample (>1,000) of European ancestry with a broad

age range, the extent to which our results are applicable

to other ethnic groups characterized by a different genetic

architecture is not known. Despite using the most compre-

hensive, high-throughput technology for profiling DNAm

across the genome (the Illumina EPIC array), our study

only assayed a small proportion of the total number of

DNAm sites and included sparse coverage of regulatory fea-

tures that are often represented by a single DNAm site.40

Moreover, DNAm was profiled in whole blood, which

potentially limits the interpretation of candidate disease

genes where the presumed tissue of interest is not blood.

Given the tissue-specificnature of somemQTLand eQTLef-

fects, these associations should be confirmed in additional

disease-relevant tissues and cell types. AlthoughMendelian

randomization is proposed as a methodology for quanti-

fying causal relationships between variables, it relies on a

number of key assumptions,61 all of which also apply to

SMR. Therefore, our approach did not seek to establish the

direction of association between DNA methylation and

outcome; we are consequently careful in our use of termi-

nology and refrain from describing our associations as

‘‘causal,’’ especially because the SMR approach is unable

to distinguish two causal variants in approximately perfect

LD from one causal variant;27 instead, we refer to these as

‘‘pleiotropic’’ associations. Furthermore, given that our

application of MR is based on a single genetic variant, we

cannot rule out the possibility of horizontal pleiotropy.

Finally, a limitation of the HEIDI approach to distinguish-

ing pleiotropic associations from LD artifacts is that it looks

to accept the null hypothesis of homogeneity of effects

rather than reject it. However, we are confident in the

set of pleiotropic associations we report given the strong

replication of our previous results based on mQTLs esti-

mated in an independent dataset.28

Taken together, our results add to an increasing body

of evidence showing that genetic influences on DNA

methylation are widespread across the genome. We show

that integrating these relationships with the results from

GWAS of complex traits and genetic studies of gene expres-

sion can improve our understanding about the interplay

between gene regulation and expression and facilitate

the prioritization of candidate genes implicated in disease

etiology.
Accession Numbers

Individual-level DNA methylation and genetic data are available

upon application through the European Genome-Phenome

Archive under accession code EGAS00001001232.
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