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Abstract

We consider a multidimensional extension of Thomas-Rössler systems, that
was inspired by René Thomas’ earlier work on biological feedback circuits,
and we report on our first results that shows its ability to sustain spatio-
temporal behaviour reminiscent of chimera states. The novelty here is that
its underlying mechanism is based on “chaotic walks” discovered by René
Thomas during the course of his investigations on what he called Labyrinth
Chaos. We briefly review the main properties of these systems and their
chaotic and hyperchaotic dynamics and discuss the simplest way of coupling,
necessary for this spatio-temporal behaviour that allows the emergence of
complex dynamical behaviours. We also recall René Thomas’ memorable
influence and interaction with the authors as we dedicate this work to his
memory.

1. Introduction

During the last part of René Thomas’ brilliant scientific life, we had
the opportunity to collaborate with him working on a class of models that
he and, his good friend and equally brilliant scientist, Professor Otto E.
Rössler (of the “Rösler attractor” fame) had proposed in the course of their
investigations on the fundamentals of chaotic dynamics [1, 2].

Our interaction started by René, “naively” asking questions and seeking
for assistance on tricks and tips for his favourite computational platform. He
was always presenting the most profound and fundamental questions related
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to his work, as if it was just his joyful occupation, now that he had retired,
as he was putting it. You can imagine our enthusiasm when he asked if
we could assist him and his friend Otto, with certain issues they were pon-
dering at the time. From the knowledge we acquired from both, we now
know, that it is one of those experiences most cherished! Besides René’s
vast scientific knowledge and contributions, which this volume celebrates,
our every-day interaction was a wonderful intellectual journey. Along with
his scientific discourse of the highest quality (telling us about his circuits and
loops, the necessary conditions of chaos; the utility of graph theory in study-
ing dynamics much before the explosion of the work on network-dynamics;
the importance of logic that underlies dynamics), René would interweave the
plethora of his intellectual passions. We learned from him about the con-
tributions of amateur astronomers like himself; when things were gloomy he
could always encourage us with stories and metaphors from his past climb-
ing expeditions and activism. Of course, he would never cease to mention
music even when he, so generously, shared his thoughts and work on some of
his favourite toy-models, such as “Labyrinth chaos” and the “Arabesques”
[1, 3]. By the way, we also learned that Haydn, his favourite music composer,
had a piece on chaos, called “Die Vorstellung des Chaos”! Among all these,
we naturally came to consider him as an epitome of the benefits of basic
research. Always driven by his intellectual curiosity, René opened avenues
that nobody else could see them opened; he had such a great fun doing it!
These are fond memories indeed, and will always stay with us to guide us in
our future scientific endeavours.

Going now back to René’s favourite toy-models: The purpose of this
paper is to revisit and propose new directions of research that stem from his
seminal investigations on hyperchaos [1, 2, 3].

Within the framework developed by him, M. Kaufman, D. Thieffry and
coworkers [4, 6, 7, 5], the dynamical basis of regulatory networks, cell differ-
entiation, multistationarity, homeostasis and memory can be analysed and
understood by studying theoretical models based on feedback circuits. The
conceptual and analytic tools therein were also extended and can be used in
the study of emergence of complex behaviour from simple circuit structures
[8], not only in systems pertaining to biological models per se. One of the
seminal contributions of René’s work is his proposition of general rules in the
dynamics of systems. In more details, (i) a positive circuit is necessary to
display multiple stable states, and (ii) a negative circuit is necessary to have
robust sustained oscillations. Later on, René proposed a necessary condition
for chaos and suggested that both a positive and negative circuit are needed
to generate deterministic chaotic behaviour.

René and, O. E. Rössler and coworkers [1], have shown further that for
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dimensionsD ≥ 4, the same simple logical structure of more than one positive
and at least one negative circuit can generate “hyperchaos” of arbitrary order
m, i.e., chaotic behaviour characterised by more than m positive Lyapunov
exponents. As well known, among René’s contributions to the theory of
dynamical systems (for details see also references within this volume), are
“feedback circuits” or simply “circuits”, defined as sets of nonzero terms of
the Jacobian matrix (linearisation) of the dynamical system such that their
row and column indices can form cyclic permutations of each other. In that
sense, hyperchaos of order m requires the existence of m positive circuits and
at least one negative. What an elegant result!

Moreover, René and O. E. Rössler considered the generation of complex
symmetric attractors (which they termed “labyrinth chaos”)[1, 2] and its
peculiar special case of a chaotic phase-space where a countable-infinite set
of unstable fixed points with no attractors is generated by a set of m ≥ 3
first order differential equations. Based on such systems, René then created
a class of conservative systems which he termed “Arabesques” [3].

The discovery and subsequent definition of hyperchaos [10, 9] is due to the
seminal work of O. E. Rössler, and describes a more flexible type of chaotic
behaviour where the sensitive dependence on initial conditions coexists in
more than one directions. In other words, there are more than one positive
Lyapunov exponents in the dynamics of such systems. Hyperchaos has been
studied initially in experimental works on systems with coupled lasers [11],
on Navier-Stokes equations [12] to recent studies on large arrays of coupled
oscillators [13]. Surprisingly, the higher dimensional chaotic motion is more
amenable to control and synchronisation and quite evidently empowers the
design of controllers in circuit theory and applications [14]. It also has good
utility in studies in biological modelling in areas such as Bioinformatics [15],
biorythms and chronotherapy [20], and neural dynamics [21].

In Sec. 2, we revisit and review the system of ordinary differential equa-
tions for hyperchaos introduced initially by René and O. E. Rössler [1, 2].
Since they called this type of dynamics “labyrinth chaos”, we shall use the
term Thomas-Rössler (TR) systems, as it has been proposed in the liter-
ature [18]. In Sec. 3, we extent the original investigations by considering
first linearly coupled systems of two and then, of a larger number of TR
systems arranged in networks in a circle with nearest-neighbour interactions.
In Sec. 4, we conclude and discuss briefly possible future research based on
these investigations and provide an outlook of the fruitful continuation of
this direction of research that was initiated by René [1, 3].
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2. Labyrinth Chaos & Hyperchaos

In [1], René, O. E. Rössler and coworkers proposed a system of coupled
ordinary differential equations to elucidate, in terms of feedback circuits, the
necessary conditions for chaotic and hyperchaotic motion. Particularly, they
considered the equations

dxi
dt

= −bxi + f(xi+1), i = 1 . . . n (mod n), (1)

where 0 < b < 1. The circuits of this system can be positive or negative de-
pending on the location in the phase space. This constitutes an “ambiguous”
circuit, in the terminology established by René [5, 6, 7]. As it had already
been shown, under proper conditions, a single circuit might be sufficient to
generate chaotic dynamics. René and O. E. Rössler confirmed and gener-
alised this proposition, and showed that hyperchaos of order m > 1 can be
generated by a single ambiguous circuit of dimension 2m. The function f was
taken to be nonlinear. In this case, either f(u) = u3−u or f(u) = sin(u) and,
used n = 3 for chaos and n = 5 for hyperchaos. René termed a special class
of such systems, with b = 0 and f assuming different forms, as “Arabesques”
(for a detailed discussion, see [3]).

Let us focus now on the case where f(u) = sin(u) and n = 3. The
3-dimensional version of the system then reads

dx

dt
= −bx+ sin(y),

dy

dt
= −by + sin(z), (2)

dz

dt
= −bz + sin(x),

and its Jacobian is given by

J =


−b cos (y1) 0

0 −b cos (z1)

cos (x1) 0 −b

 . (3)

System (2) exhibits a rich repertoire of dynamical behaviours for different
b > 0 values [1]. For example, for b = 0.18 there is a single chaotic attractor
and for b = 0.19, a complicated but stable periodic orbit. More complex
dynamical regimes can also appear. For example, for b = 0.2, the system
possesses two coexisting chaotic attractors, which are shown in Fig. 1(a).
In the special case where b = 0, quite an exotic chaotic behaviour appears,
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without any attractors. In this case, system (2) is conservative with an
infinite lattice of unstable fixed points. The behaviour shown in Fig. 1(b) is
what René termed “chaotic walks in labyrinth chaos”.

Figure 1: Chaotic attractors and labyrinth chaos in the 3-dimensional version of the system
of Eq. (1). (a) Two coexisting attractors for b = 0.2. (b) “Chaotic walks and labyrinth
chaos” for b = 0 for which the system is conservative. The red and blue trajectories exhibit
sensitive dependence on initial conditions and diverge exponentially in time. In the inlet,
the 3 Lyapunov exponents as a function of 0 ≤ b < 1/3 are shown (see [1]).

Similar behaviour appears for n = 5 [1] as well. A detailed study of
this system was undertaken in [16] and it is presented as a prototype of
chaos in [17]. As it is noted in [16], “Despite its mathematical simplicity,
this system of ordinary differential equations produces a surprisingly rich
dynamic behaviour that can serve as a prototype for chaos studies”. It is
also noted that in the case of chaotic walks, the approach of an ensemble
of initial conditions to equilibrium is by way of fractional Brownian motion
with a Hurst exponent approximately equal to 0.61 and a slightly leptokurtic
distribution. To the best of our knowledge, this might be the only example of
a simple system that links fractional-Brownian motion to nonlinear feedback!

Last but not least, let us note that the simple, underlying structure of
the TR system provides for the equally simple and elegant form of the char-
acteristic equation of its Jacobian matrix J. In this case, the n×n Jacobian
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of Eq. (1), for a sinusoidal nonlinearity (i.e. for f(u) = sin(u)), reads

det (J− eiI) = (−1)n

[
(b− ei)n −

n∏
i=1

cos (xi) cos (yi) cos (zi)

]
, (4)

where ei, i = 1, . . . , n are the n eigenvalues of J. Since only those terms in
J that belong to one or more circuits are represented in the characteristic
equation and hence, take part in the calculation of the eigenvalues, ei, it
bears significant effect on the calculation of the Lyapunov exponents, λi, of
the system.

3. Revisiting the TR class of systems

3.1. Two linearly coupled 3-dimensional TR systems

Motivated by the above discussion, we turn here to the study of the
effect the simplest linear coupling has to two 3-dimensional TR systems, (i.e.
N = 2, where N denotes the number of coupled systems). As we shall see
below, the linearly coupled 6-dimensional system can produce hyperchaotic
behaviour. Yet, this is due to a different underlying logic of its feedback
circuits.

Obviously, the simplest way to couple two such 3-dimensional systems is
by means of a linear coupling involving their x variables. This is considering
two copies of Eq. (2)

dx1,2
dt

= −b1,2x1,2 + sin(y1,2) +
d

2
(x1,2 − x2,1),

dy1,2
dt

= −b1,2y1,2 + sin(z1,2), (5)

dz1,2
dt

= −b1,2z1,2 + sin(x1,2),

coupled with the last term in the first and fourth equations where d ≥ 0 and
b1,2 ≥ 0. The coupling has a direct effect on the structure of the Jacobian J
of the coupled system. If J1 and J2 are the 3 × 3 Jacobian matrices of the
two 3-dimensional copies, then the Jacobian Jd of the coupled system of Eq.
(5) is the 6× 6 matrix

Jd =

[
J1 D
D J2

]
, where D =


−1

2
d 0 0

0 0 0

0 0 0

 . (6)
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The characteristic equation of Jd then reads

det (Jc − eiI) = det(J2 − eiI) · det((J1 − eiI)−DJ−1
2 D) (7)

using the Shur complement for the blocks of matrix Jc, where I is the 6× 6
identity matrix. Evidently, Eq. (6) cannot be reduced via Eq. (4) for any
value of N . Even setting b1 = b2 = b, the simplification is insignificant as in
Eq. (6) we encounter all terms of b1,2, ei, d, and all their powers combined
up to order N , as well as the products of the cosines of all variables in an
irreducible manner.

Figure 2: The parameter space (b1, b2) for two linearly coupled 3-dimensional TR systems
of Eq. (5). The colour-code denotes the relative difference ∆λ (see text) between the first
two positive Lyapunov exponents λ1 and λ2. Where these exponents are negative, they
are assigned the value zero (depicted by dark blue). Hyperchaotic regions are depicted
by the colours that correspond to ∆λ between 0 and 1. Light blue: weaker hyperchaos
and green to red: stronger hyperchaos. The coupling values were chosen as follows: (a)
d = 0.01; (b) d = 0.1; (c) d = 0.3.
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As well known, the computation of the Lyapunov exponents, λi, of a flow
is based on the evaluation of an infinite, or sufficiently large for numerical
purposes, product of their Jacobian matrices along their trajectories [18] or
equivalently, for a sufficiently long integration time [22]. Figure 2 shows
an estimation of the relative difference ∆λ = λ1−λ2

λ1
of the first two largest

Lyapunov exponents λ1, λ2 of Eq. (5). One can see that as d increases
(from panel (a) to (c)), the dark blue region where the Lyapunov exponents
are non-positive, recedes. This means, the larger the coupling strength, the
larger the hyperchaotic region in the parameter space (b1, b2) as seen in Fig.
(2).

3.2. Can N linearly coupled 3-dimensional TR systems support chimera-like
states?

A remarkable, novel discovery in the area of nonlinear dynamics and chaos
was made by Kuramoto and Battogtokh in 2002 [23] when they discovered
the coexistence of coherent and incoherent behaviour in populations of non-
locally coupled phase oscillators. As remarkable as counter intuitive it might
sound, since then, their seminal work has triggered a fascinating interest for
an ever growing research community witnessed by a rapid growth of pub-
lications, spanning the areas of physics, biology and mathematics, among
others. As such states were later termed “chimera states” [26], this new
synchronisation phenomenon still lacks a complete and rigorous mathemat-
ical definition. However, chimera states can be defined as spatio-temporal
patterns in networks of coupled oscillators in which synchronous and asyn-
chronous oscillations coexist. This state of broken symmetry, which usually
coexists with a stable spatially symmetric state, has intrigued the nonlinear
dynamics community since its discovery in the early 2000 [23]. Neverthe-
less, recent experiments and its relevance to biological networks keeps an
unceasing interest in the origin and dynamics of such states (see for example
[29, 19, 25, 30] and references therein). For a recent review on chimera states
we refer the reader to [27].

Chimera states as phenomena of spatio-temporal patterns in networks
of coupled oscillators have apparently the following generic characteristics:
(i) robust but varying coherent-incoherent patterns in both space and time
(spatio-temporal patterns in which phase-locked oscillators coexist with drift-
ing ones) and (ii) broken symmetry coexisting with a stable spatially sym-
metric state that depends on initial conditions as well as on the parameters
of the system. So far, perfect or imperfect [24] chimera states have not been
detected for just local [28] or global coupling but are typical of the interme-
diate case: a nonlocal coupling comprising of a significant number of nearest
neighbours.
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In this work, we present preliminary results for N linearly coupled TR
systems (see Eq. (2)) which are the generalisation of system (5), that provide
evidence they can exhibit spatio-temporal phenomena of coherent and inco-
herent patterns that alternate dynamically in time, reminiscent of chimera
states in networks of non-locally coupled oscillators [23, 26].

In particular, the system of N linearly coupled TR systems is given by

Figure 3: Three examples of a network topology with N = 20 nodes arranged in a circle
where each node is connected with P = 3 nearest-neighbours in either side of the node.
For illustration purposes, we only show the 6 nearest neighbours of node 1 in (a), of node
10 in (b) and of node 20 in (c). All other nodes are similarly connected with their 6
nearest neighbours. Notice the periodic boundary conditions for the 1st (panel (a)) and
20th nodes (panel (c)).
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dxk
dt

= −bkxk + sin(yk) +
d

2P

k+P∑
j=k−P

(xk − xj),

dyk
dt

= −bkyk + sin(zk), (8)

dzk
dt

= −bkzk + sin(xk),

where k = 1 . . . N , P is the number of nearest neighbours in either side of
node k, d ≥ 0 is the strength of the linear coupling and bk ≥ 0 for all k.
The term 1/(2P ) is a normalisation constant for the linear coupling among
the N 3-dimensional TR systems and the connectivity can be visualised by
a similar network as in Fig. 3.

Our studies and numerical simulations have shown that, depending on bk,
d and initial conditions, spatio-temporal phenomena of coherent and inco-
herent behaviour that alternate dynamically in time, reminiscent of chimera
states observed in networks of non-locally coupled oscillators [23, 26, 27],
can be seen for P close or equal to 2N (i.e. for near-global to global network
coupling). For this reason, we have decided to focus in this work on the case
where the nodes are globally connected, i.e. for P = N/2.

In the next, we study two interesting cases where: (a) the first half of
the TR systems are conservative, exhibiting labyrinth chaos (i.e. bk = 0 for
k = 1, . . . , N/2) and hyperchaos (i.e. bk = 0.18 for k = (N/2) + 1, . . . , N)
when uncoupled and (b) the first half are conservative again and the rest half
exhibit complex periodic oscillations (i.e. bk = 0.19 for k = (N/2)+1, . . . , N)
when uncoupled. These specific values for bk where taken from [1].

In both cases, when the systems are coupled together and run for suffi-
ciently long integration times, they exhibit hyperchaotic behaviour as mani-
fested by the convergence of more than one Lyapunov exponents to positive,
non-zero, values. We show this in Fig. 4, where we plot the first 3 Lyapunov
exponents as a function of time (final integration time is 1.5× 104) for a sys-
tem of N = 40 TR 3-dimensional systems with P = 20 (i.e. global coupling).
In both cases, these Lyapunov exponents show a clear tendency to converge
to positive, non-zero values.

3.3. Chimera states in a multidimensional TR system with labyrinth chaos
and hyperchaos

Here, we focus on the first case where the system in Eq. (8) exhibits
labyrinth chaos for half of the 3-dimensional TR systems and hyperchaos
for the rest half. In particular, we set N = 40, P = 20, d = 0.6, bk = 0 for
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Figure 4: Hyperchaotic behaviour in a system of 40 linearly coupled 3-dimensional TR
systems. The time-evolution of the first 3 largest Lyapunov exponents λ1, λ2 and λ3 for a
network of N = 40 3-dimensional linearly coupled TR systems as in Eq. (8), where each
node is connected to its P = 20 nearest neighbours, in either side of each node. The system
resides in a hyperchaotic regime in both cases as more than one Lyapunov exponents
are non-zero and positive. In (a) bk = 0 for k = 1, . . . , (N/2) and bk = 0.18 for k =
(N/2) + 1, . . . , N (labyrinth chaos and hyperchaos) and in (b) bk = 0 for k = 1, . . . , (N/2)
and bk = 0.19 for k = (N/2)+1, . . . , N (labyrinth chaos and complex periodic oscillations).
The final integration time is t = 1.5×104 at which convergence of the Lyapunov exponents
to positive, non-zero, values is observed. Note that in both panels, d = 0.6.

k = 1, . . . , 20 (labyrinth chaos) and bk = 0.18 for k = 21, . . . , 40 (hyperchaos),
following René and coworkers [1]. To identify the coherent and incoherent
patterns of activity in the system, we compute at each time step of the
numerical simulation, which xk values are locked

|xi − xj| < h (9)

for all i, j = 1, . . . , 40, i 6= j, where h = 10−3 is a small threshold for locking
detection. At each time step of the simulation, when locking is detected,
the corresponding xk, k = 1, . . . , 40 values are recorded and the simulation
proceeds to the next time step. When the simulation finishes, one obtains
a spatio-temporal phenomenon of coherent and incoherent patters such as
those depicted in Fig. 5(b). In this plot, we show all xk values in the time
interval [104, 1.05 × 104], where blue corresponds to relatively high xk value
and, red, yellow and orange to relatively smaller xk values. It is evident there
are coherent and incoherent groups of xk variables that alternate in time in a
dynamical fashion. To show clearer these patterns, we plot 2 representative
examples of spatio-temporal behaviour in panel (a) of the same figure where
it is evident the existence of the coherent (locked) and incoherent groups of
xk variables. The plots in panel (a) correspond to times t = 14462 (upper
plot) and t = 14515 (lower plot). We have been able to observe similar
patterns of spatio-temporal behaviour at other times as well.
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Figure 5: Spatio-temporal phenomena of coherent and incoherent patterns, reminiscent
of chimera states in 40 3-dimensional TR linearly coupled systems that exhibit labyrinth
chaos and hyperchaos with bk = 0 for k = 1, . . . , 20 (labyrinth chaos) and bk = 0.18 for
k = 21, . . . , 40 (hyperchaos). The upper plot in panel (a) is for t = 14462 and the lower
for t = 14515. Panel (b) shows the spatio-temporal patterns between t = 10000 and
t = 10500. Note that in these plots, d = 0.6.

3.4. Chimera states in a multidimensional TR system with labyrinth chaos
and complex periodic oscillations

Finally, we focus on the second case where the system in Eq. (8) ex-
hibits labyrinth chaos for half of the 3-dimensional TR systems and com-
plex periodic oscillations for the rest half. In particular, we set N = 40,
P = 20, d = 0.6, bk = 0 for k = 1, . . . , 20 (labyrinth chaos) and bk = 0.19
for k = 21, . . . , 40 (complex periodic oscillations), following again René and
coworkers [1]. We follow the same approach as previously to detect locking of
the xk variables and plot in Fig. 6(b) the spatio-temporal patterns of the ac-
tivity of all xk values in the time interval [104, 1.05× 104]. In this plot again,
blue corresponds to relatively high xk value and, red, yellow and orange to
relatively smaller xk. The coherent and incoherent patterns are again evi-
dent and alternate in time in a dynamical fashion. Figure 6(a) shows these
patterns clearer where we plot 2 representative examples of spatio-temporal
behaviour taken at 2 specific times from panel (b). Again, there exists co-

12



herent (locked) and incoherent groups of xk variables that are reminiscent of
chimera states. The plots in panel (a) correspond to times t = 10184 (upper
plot) and t = 10371 (lower plot). As in the previous case, we have been able
to observe similar patterns of spatio-temporal behaviour at other times as
well.

Figure 6: Spatio-temporal phenomena of coherent and incoherent patterns, reminiscent
of chimera states in 40 3-dimensional TR linearly coupled systems that exhibit labyrinth
chaos and complex periodic oscillations with bk = 0 for k = 1, . . . , 20 (labyrinth chaos)
and bk = 0.19 for k = 21, . . . , 40 (complex periodic oscillations). The upper plot in panel
(a) is for t = 10184 and the lower for t = 10371. Panel (b) shows the spatio-temporal
patterns between t = 10000 and t = 10500. Note that in these plots, d = 0.6.

4. Conclusions

During the last decade of his life or so, René Thomas was joyfully preoc-
cupied, among other things, with his Arabesque systems, his labyrinth chaos
and chaotic walkers. With this contribution to the volume, we had the op-
portunity to revisit his later work, where we had the honour to contribute
to. We extended the Thomas-Rössler systems to a spatio-temporal setting
and observed that it can support behaviours reminiscent of chimera states
for a wide range of parameter values of the linear coupling term.
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What we have here is quite a novel case: the locking and drifting patterns
are due to labyrinth chaos and (hyper)chaotic walks, not due to strict period-
icity as in other cases in literature. This suggests that the preliminary results
in this paper rightfully ask for further investigation as the role of coupling
and dissipation are important. Here, we started with the simplest case where
the xk variables of the Thomas-Rössler systems are linearly, globally coupled.
This, in effect, sets apart the parameter b, which controls the dissipation for
the xks, and changes it in time with the (d/2P )xk part of the coupling. This
situation is indeed reminiscent of the case where Arabesques have different
dissipation parameters (like the bs) for each variable in this work.

The role of symmetry, both in the linear coupling among the systems and
in the structure of each individual system itself, in terms of logical circuits is
something worth pursuing in future work. Also, the range of the parameters
bk and d as well as the initial conditions that give rise to various chimera-
states is a new, interesting and open question that stems from this initial
investigation.

It seems that this is one of the last scientific avenues René opened for fur-
ther research, and will lead to investigations and spectacular new results that
will help shed light on the fundamental aspects of the emergence of chimera
states. This research is expected to further provide importance on the math-
ematical modelling of biological significance. René’s work is so hopeful and
inspirational, we are sure will lead to new investigations to elucidate the ba-
sic logic underlying chimera states, one of the most fascinating aspects of
synchronisation in complex systems.
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