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Abstract iv

Abstract

Consider a sequence of equally spaced points along a helix in three-dimensional

space, which are observed subject to statistical noise. In this thesis, maximum

likelihood (ML) method is developed to estimate the parameters of the helix.

Statistical properties of the estimator are studied and comparisons are made to

other estimators found in the literature.

Methods are established here for the fitting of unkinked and kinked helices.

For an unkinked helix an intial estimate of a helix axis is estimated by a modified

eigen-decomposition or a method from the literature. Mardia-Holmes model can

be used to estimate the initial helix axis but it is often not very successful one

since it requires initial parameters. A better method for initial axis estimation

is the Rotfit method. If the the axis is known, we minimize the residual sum

of squares (RSS) to estimate the helix parameters and then optimize the axis

estimate. For a kinked helix, we specify a test statistic by simulating the null dis-

tribution of unkinked helices. If the kink position is known, then the test statistic

approximately follows an F-distribution. If the null hypothesis is rejected i.e. the

helix has a change point, and then cut the helix into two sub-helices between the

change point where the helix has the maximum statistic. Statistics test are stud-

ied to test how differ these two sub-helices from each other. Parametric bootstrap

procedure is used to study these statistics. The shapes of protein α-helices are

used to illustrate the procedure.
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Chapter 1

Introduction

1.1 Overview

Polypeptides, or proteins, are biomolecule compounds that consist of a chain

of amino acid residues, which are of particular importance as they can be found in

every living organism. An amino acid is formed of four parts: the amine (NH2),

the carboxyl (COOH), the R groups, and a hydrogen (H) atom all attached to

the carbon Cα atom. In a protein, two adjacent amino acids are bonded together

(a peptide bond) and a H2O (water) is released; these amino acids are then called

amino acid residues. The primary structure of the protein has two components:

the main chain made up of carbon, nitrogen and oxygen atoms; and the side chain

of R-groups which may differ from one residue to another. There is a remaining

connected sequence NCαCNCαC. . . of carbon and nitrogen atoms, which form one

of three possible 3-dimensional curves (secondary structure), see Section 1.4.1. Of

these, we are interested only in the α-helix and the Cα atoms for the purposes of

this thesis since this is the most common structure. We wish to study the shape

of a helix and, more generally, a helix with kinks (i.e. points where the helix

axis changes direction see Wilman et al. (2014a)), since kinks are functionally

important in membrane proteins.

1
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Many researchers have developed their own procedure for meeting the follow-

ing objective: given a helix, determine if it is kinked; and, if so, find the position

of the kink, see for example, the Kinkfinder by Wilman et al. (2013) and Kink-

Detector by Mardia et al. (2018). In this thesis we produce a new procedure,

called the Bending-Detector, to meet the same objective. The Kinkfinder uses all

the atoms on the helix, whereas the Kink-Detector and our Bending-Detector use

the Cα atoms. On the other hand, Kinkfinder and Kink-Detector give a region

of points as a kink position, but with the Bending-Detector we identify a single

point. In order to draw a meaningful comparison between Bending-Detector and

Kink-Detector by Mardia et al. (2018), we used the same data helices as these

used by Mardia et al. (2018).

For the remainder of this section we outline in more detail the content of each

chapter. In this chapter, we begin by defining the mathematical and statistical

models for the helix and specify some special cases. In addition, we review some

background materials on the structure of a protein, and in particular the α-helix

which appears most frequently as the secondary structure.

Chapter 2 is dedicated to matrix algebra. The purpose of this chapter is to

review some of the theory that is used in this thesis and to provide more details

where desirable. In Section 2.1 we present how to obtain the first perturbation of

an eigenvalue from a 3× 3 square symmetric matrix that has been perturbed. In

Section 2.2 we discuss the full and reduced forms of the spectral decomposition

(SD) and the singular value decomposition (SVD) of a given matrix. However,

the standard version of the SD is not quite unique because: firstly, we may always

make choices of signs for the eigenvectors; and secondly, the matrix may have an

eigenvalue of multiplicity at least 2, which implies that the corresponding eigen-

vectors are not unique (see Section 2.2.1.1 for more details). More importantly,

a unique version can be constructed using projection matrices. Furthermore, we

show how one of these decompositions can be derived from the other in Sec-

tion 2.2.3. In the case of a square matrix, we modify the SVD to obtain three
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more related decompositions; and we demonstrate how one of these may be used

in matrix optimization. The last section, 2.3, discusses the Cholesky decompo-

sition (CD) that is used in the special case when the given matrix is symmetric

positive definite.

In Chapter 3 we fit the straight or as we call it regular helix, which be-

gins by estimating the helix axis. We start by presenting our modified principal

component method for estimating the helix axis, we called it Difeigenfit. We

also investigate three of the five methods studied by Christopher et al. (1996)

for estimating the unkinked (straight) helix axis. These are the parametric least

squares (Parlsq) method; the Eigenvector (Eigenfit) method; the Rotational least

squares (Rotfit) method. In Section 3.5, we develop our own method, which we

call “Optimized least squares” (OptLS), for estimating the helix parameters. The

OptLS method consists of three stages: in stage 1 we estimate an initial helix

axis; by knowing the helix axis, in stage 2 we estimate the other parameters by

least squares and get the residual sum of squares (RSS); and in last stage we

improve the helix axis estimation by optimizing this RSS function over the he-

lix axis. In Section 3.6, we compare the OptLS method to the three methods

mentioned above (Christopher et al., 1996). We conclude from simulation studies

that the Parlsq and Eigenfit methods give a poor initial estimation of the helix

axis, whereas Rotfit and Difeigenfit give a much better initial estimation. How-

ever, our OptLS iterative method outperforms any initial estimate of the axis,

which is evident from a comparison of the variances of the estimated helix axes

(see Table 3.3). In Section 3.8 we analyse Difeigenfit by finding the asymptotic

distribution, using perturbation theory, of the variance of Difeigenfit helix axis

estimate. In addition, we fit our OptLS to real α-helix data in Section 3.9, and

to a simulated cone helix in Section 3.10, in order to study further how accurate

the OptLS method is.

Another way to estimate the helix axis could be the Mardia-Holmes (M-H)

model, (see Mardia and Holmes, 1980), in Chapter 4. We start by investigating
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the fitting of an ellipse (and, as a special case, a circle) using the M-H model. We

develop a series of programs to estimate the parameters (location, concentration,

ellipse major and minor axis) of an ellipse under various restricted versions of the

M-H model. The first of these programs assumes just concentration is unknown,

whereas the last supposes all the parameters are unknown. These programs work

by iteratively optimizing the likelihood given starting values of the parameters,

and we are able to make these programs work faster in R by building a new

unconstrained parametrization for some of the parameters. Overall, we find that

the maximum likelihood estimate (MLE) of the concentration noticeably increases

as we increase the numbers of unknown parameters in our model. In addition, we

prove that the asymptotic distribution of the M-H model under high concentration

is normal in Section 4.5. The M-H model can be used to estimate a helix axis,

which we explain in Section 4.6, and by simulation we find that the OptLS method

is still a better method.

In Chapter 5, we develop a strategy that depends on the likelihood ratio

test (statistic) which is based on the likelihood ratio of the null model (regular

helix) to the alternative model (bent helix). This allows us to decide if a given

helix has a change point (bent helix) or not. If we assume the position of the

potential change point is known, then this test statistic approximately follows an

F-distribution (see Section 5.2). For a large value of this test statistic we reject

the null hypothesis and conclude that the helix has a change point. The threshold

is specified by simulating from the null distribution and the threshold value is

the (1 − α)% quantile of the simulated test statistics. If the null hypothesis

is rejected, we look at 6 features at the change point. We call this procedure

Bending-Detector.

The regular helix is fitted using OptLS in Chapter 3. For a bent helix, we

work on a helix that is known to contain at least one kink and determine the

change point(s) of this helix. Our Model is essentially a classic Change Point

model (see e.g. Chen and Gupta, 2011, pp. 7-35). In addition, we give a direct
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comparison between our Bending-Detector procedure and the Kink-Detector by

Mardia et al. (2018).

1.2 Helix geometry

Here we begin by defining the mathematical helix (continuous or discrete)

at various levels of standardization (canonical coordinates, semi-canonical coor-

dinates, and general coordinates); we then introduce a statistical helix incorpo-

rating errors. The discrete statistical helix is fitted to protein α-helix data.

1.2.1 The mathematical helix model

A mathematical helix is a smooth curve spiralling along an axis w in 3-

dimensional space, where the helix axis direction is w. Then a helix can be

defined as a function of an independent variable t, as

f(t) = r cos(t)u+ r sin(t)v + ctw + b, (1.1)

where

• Γ =
[
u v w

]
is an orthogonal matrix whose three columns define the

frame of the helix. In particular the vector w defines the helix axis, and

the vectors u and v define the plane normal to the helix axis, where u is

the direction of the initial point (i.e. at time t=0). These vectors are called

orientation parameters.

• r > 0 is the helix radius,

• 2πc > 0 is the helix pitch,
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• b ∈ R3 is an intercept, which is a shift vector (location parameter),

and the constant speed t denotes “time” , where t increases along the curve (see

e.g. O’Neill, 1997, p. 16).

The parameters of a helix can be divided into two types. The registration

parameters are the orthonormal 3 × 1 vectors u,v and w, and the 3 × 1 vector

b = [b1, b2, b3]T . The shape parameters are the radius of the helix r, and the pitch

c. Helices can be regarded as right-handed or left-handed depending on whether

det(Γ) = +1 or −1, respectively.

There are two helpful ways to think about whether the helix is right or left-

handed. First find the helix axis w, together with the direction determined by

increasing t. Position the axis so that it is perpendicular to the plane of your

face with the smallest value of time nearest to you. Thus, the helix axis moves

away from you as time increases. Next consider points on the helix; if increasing

time induces a clockwise screwing motion, then it is called a right-handed helix;

otherwise, it is a left-handed helix, see Figure 1.1, where the eye is at the bottom

of the figure and the helix axis moves upward as time increases.

Alternatively, for a right-handed helix take your right hand and identify the

three orthonormal directions u,v and w with the first finger, the second finger,

and the thumb, respectively, where the fingers are positioned perpendicular to

each other. Place the hand in front of the eyes so that the thumb is pointing

away from you. As t increases from 0 the corresponding point on the helix rotates

clockwise from the u direction to the v direction as presented in Figure 1.2. In

this thesis we are interested in a right-handed helix since the protein α-helix is a

right-handed helix (see e.g. Campbell and Farrell, 2009).
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Figure 1.1: The right/left handed helices, where the time axis goes from
−∞ to ∞. Adopted from (Quizlet: https://quizlet.com/68685155/c41202-12-
structure-of-dna-and-rna-flash-cards/).

 

Figure 1.2: The right handed orientation.



Chapter 1. Introduction 8

1.2.2 The discrete mathematical helix model

There is also a discrete version of the helix obtained by restricting equation

(1.1) to a finite set of equally spaced times, ti = (i− 1)δ, where i is the sequence

number i = n1, n1 + 1 . . . , n2 − 1, n2, n1 and n2 are the first and last points on

the helix and n1 < n2. Then the discrete mathematical helix model is given by

f(ti) = r cos(ti)u+ r sin(ti)v + ctiw + b, (1.2)

where δ is the spacing parameter i.e. the turn angle. If n1 = 1, then the initial

time is t1 = 0, and then the initial point is f(0) = ru+ b.

1.2.3 Special cases

1. Canonical coordinates : In this case Γ = [u v w] = Γ0, where Γ0 =

[u0 v0 w0] = I3 is the identity matrix. In particular, w0 = [0 0 1]T is

aligned with the z-axis in (1.2).

2. Semi-canonical coordinates : We have in (1.2) w = w0, u and v are unre-

stricted other than being orthogonal to one another and w0. Then

Γ =


cos τ sin τ 0

− sin τ cos τ 0

0 0 1

 ,

where for n1 = 1, τ is the angle between the helix initial point (x1, y1, z1)

and the point

ΓTf(t1) = (r, 0, 0)T .

3. General coordinates : In this case there are no restrictions on the orthonor-

mal matrix Γ = [u v w] in (1.2).
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1.2.4 The statistical helix model

A discrete statistical helix is defined to be a discrete mathematical helix

(1.2) with errors. We have points {yi := y(ti) := (yi1, yi2, yi3)T , i = n1, . . . , n2},

n1 < n2, n1, n2 ∈ N, of n = n2 − n1 + 1 points or landmarks around the helix in

three dimensions which satisfy the model

y(ti) = r cos(ti)u+ r sin(ti)v + ctiw + b+ εi, (1.3)

where the εi ∈ R3 are error terms, taken here to follow independent isotropic

normal distributions N3(0, σ2I). In this thesis, we assume points are equally

spaced along a helix, and the time ti = (i−1)δ. We call this straight or unkinked

statistical helix model the regular statistical helix model.

1.3 Proteins

Proteins are important to the structure and function (as enzymes, antibodies,

hormones and transport molecules) of organic cells. Some protein examples are:

membrane proteins, soluble globular proteins, fibrous proteins, and disordered

proteins, where the most common type is the membrane proteins. The study of

protein 3-dimensional structure is helpful to understand a protein’s functions, so

that we can know if anything is wrong with them. This is important since proteins

participate in many processes in the cells. Overall, the study of helix structures,

especially the kink of the helix, helps in the search of new drugs (Rigoutsos et al.,

2003).
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1.4 Protein structure

The functional properties depend on protein structure; therefore studying

this structure has much benefit experimentally and computationally. Protein

structure is arranged in a hierarchical organization as follows

1.4.1 Protein primary structure

Protein primary structure is a sequence of amino acids. There are 20 different

types of amino acids in proteins, each represented by an alphabetical code. The

main chain of the amino acid is the backbone. Each amino acid consists of a

hydrogen atom H, a carboxyl group (COOH), and an amino group (NH2). In

addition, amino acids also contain a side chain R-group which differ from one

amino acid to another (and that gives amino acids their chemical properties), it

is attached to the carbon Cα atom as shown in Figure 1.3; for more details see

Mardia (2013), Branden and Tooze (1999) and Creighton (1993).

In amino acids the carboxyl group (COOH), known as the C-terminal, and

the amino group (NH2), known as the N-terminal, connect amino acids to each

other by the peptide bonds. Therefore, a protein sometimes called a polypeptide,

since it is a linear sequence of amino acids connected by peptide bonds. Proteins

can contain two or more polypeptide chains, called subunits (see Chou and Cai,

2003). The N-terminal is always written on the left of a protein chain.

1.4.2 Protein secondary structure

The secondary structure is the formation of the polypeptide into regular

and repetitive patterns of amino acids. The polypeptide (the linear sequence

of amino acids) forms of itself into a 3-dimensional structure held together by
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Figure 1.3: Amino acid diagram. (About education: http://biology.
about.com/od/molecularbiology/ss/amino-acid.htm).

hydrogen bonds. The hydrogen bonds are between C=O and H-N groups. These

3-dimensional structures are α-helices and β-pleated sheets.

The 3-dimensional protein structure is a key property to identify the protein

function, which can be determined by X-ray crystallography, X-ray diffraction or

nuclear magnetic resonance (NMR). X-ray crystallography has an issue as it is

not easy to let some proteins form crystals (see Miao et al., 1999). NMR also has

an issue as it applies to only small protein molecules (see Heise et al., 2013, p.

98). The most common way to explain protein structure is X-ray diffraction. The

Protein Data Bank (PDB) has released protein structures to the public domain

(for more information see Berman et al., 2007).

1.4.3 Tertiary structure and Quaternary structure

Tertiary structure is the overall folding of the whole polypeptide, the 3-

dimensional structure, where the atoms of the side chains of the amino acids are

bonded together (for more information see Campbell and Farrell, 2009, pp. 98-99;

Chou and Cai, 2003).

Quaternary protein structure is a combination of several protein chains into

a single larger shape, where the subunits can work together to give the special
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properties not as a single subunit. Some examples of quaternary structure protein

are haemoglobin and ion channels, (see Campbell and Farrell, 2009, p. 106; Chou

and Cai, 2003).

1.5 α-helix

The most common type of protein secondary structure is the α-helix. A

protein chain can organize itself into a helix, called an α-helix. A protein α-helix,

for our purpose, can be treated as a time-ordered sequence of points (Cα) in R3.

The α-helix known parameters are: the pitch of a helix is the vertical distance

covered by one complete helix turn, 2πc = 5.4Å; and the radius r = 2.3Å. There

are 3.6 Cα atoms per turn of 2π radians. Therefore, Cα atoms are plotted every

360/3.6 = 100o around a circle, as shown in Figure 1.4 (see Mardia, 2014). We

can project the 3-dimensional helix onto xy-plane that is perpendicular to the

axis, see e.g. Figure 1.5, which clearly presents three turns of 3.6 amino-acid

residues per turn of the helix. The “times” ti = (i − 1)δ presents moving along

the helix, and the “spacing” parameter is δ = 2π
3.6

radians, i=1, . . . , n, where n is

the number of Cα atoms (landmarks or points).
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Figure 1.4: Protein α-helix. (Indian Biological Sciences and Research
Institute, Biology: http://ibripharmacy.blogspot.co.uk/2014/05/structural-
biology.html).
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Figure 1.5: Projected helix mimics protein α-helix.

1.5.1 Helix kink

As we said before, a kink is a region of points where the helix axis changes

direction, where the axis is no longer straight; for more details about kink see
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Wilman et al. (2014a); Deville et al. (2008); Kumar and Bansal (2012). It is

actually break in the hydrogen bonds in the amino acid backbone and thus the

helix will lose its flexibility of bending (see Hall et al., 2009). An α-helix could

be straight or it could consist of one kink as shown in Figure 1.6, (Mardia et al.,

2018). Since a kink is a common distortion feature of α-helix and a functionally

important structural feature in soluble and membrane proteins. Various studies

are available on protein helix kinks, such as Kinkfinder by Wilman et al. (2013)

and Kink-Detector by Mardia et al. (2018). For more details see Section 1.1.

It is more common in membrane proteins than in soluble proteins because the

membrane protein α-helices are usually longer (i.e. number of landmarks n ≥ 20).

Most α-helices in soluble protein are shorter (see Wilman et al., 2014b).

Figure 1.6: Straight and kinked α-helix. (Oxford university, Oxford Protein
Informatics Group: http://www.blopig.com/blog/2013/09/what-is-a-kink/).

A biochemical helix is allowed to bend (see Mardia et al., 2018) and such

bending is not considered a kink. Second, and related to this bending, in reality a

kink in the α-helix is not a sharp change in direction of the helix axis (see Mardia

et al., 2018), but it is more of a gradual change. In this thesis we study a simple
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version of a kink, as it is a global change on the helix axis rather than a local

change. Our straight helix is a regular helix with no bend, i.e. we do not allow

for a curve as sometimes occurs in a real protein helix. Our bent helices include

kinked and curved helices.



Chapter 2

Matrix algebra

The purpose of this chapter is to review some matrix properties that we use

later in our calculations. There is a section on perturbation theory (for exam-

ple see Mardia et al., 1979, Appendix A). We discuss various matrix decomposi-

tions including the spectral decomposition (SD), the singular value decomposition

(SVD), the Cholesky decomposition (CD) and the optimally signed singular value

decomposition (OS-SVD).

More generally, we identify the full and reduced versions of relationship be-

tween the spectral decomposition (SD) and the singular value decomposition

(SVD). The standard version of the SD is not quite unique when some singular

values are equal. However, a unique version can be constructed using projection

matrices.

Moreover, we discuss the relationship between spectral decomposition (SD)

and the singular value decomposition (SVD) by showing how to determine the

SD from SVD.

Also we present the Cholesky decomposition and the optimally signed singu-

lar value decomposition (OS-SVD) techniques. Then we describe the use of the

16
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optimally signed singular value decomposition (OSR-SVD) in matrix optimiza-

tion. Finally we present an application to Procrustes Analysis.

2.1 Perturbation theory

Given a symmetric matrix A3×3 with distinct eigenvalues, we can perturb A

for small ε, by Taylor expanding in ε, as follows

A(ε) = A(0) + εA(1) + ε2A(2) +O(ε3),

where A(0) = A(0) = A is the unperturbed matrix and εA(1) is the first pertur-

bation term, and ε2A(2) the second perturbation term (see Kato, 2013, pp. 63-64;

Kent et al., 1983, and appendix A). The matrices A(0), A(1) and A(2) of size 3× 3

are assumed symmetric.

An eigenvalue λ = λ(ε) of A(ε) satisfies det(A(ε) − λI) = 0. The corre-

sponding eigenvector ν = ν(ε) satisfies (A(ε) − λI)ν = 0 and can be expanded

in powers of ε as:

λ = λ(0) + ελ(1) + ε2λ(2) +O(ε3),

ν = ν(0) + εν(1) + ε2ν(2) +O(ε3).

The eigenvalue equation A(ε)ν = λν, up to the first perturbation term, is

(A(0) + εA(1))(ν(0) + εν(1)) = (λ(0) + ελ(1))(ν(0) + εν(1)),

so that

A(0)ν(0) = λ(0)ν(0), (2.1)

A(0)ν(1) + A(1)ν(0) = λ(0)ν(1) + λ(1)ν(0). (2.2)
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If we know A(1), λ(0) and ν(0) then we can derive λ(ε) up to first perturbation.

Multiply the equation (2.2) on the left by ν(0)T to give

ν(0)TA(0)ν(1) + ν(0)TA(1)ν(0) = λ(0)ν(0)Tν(1) + λ(1)ν(0)Tν(0). (2.3)

Secondly after using equation (2.1), the first term of the left-side of equation (2.3)

becomes

ν(0)TA(0)ν(1) = (ν(1)TA(0)ν(0))T = (ν(1)Tλ(0)ν(0))T = λ(0)ν(0)Tν(1). (2.4)

Then substitute (2.4) into equation (2.3) to get

λ(1) = ν(0)TA(1)ν(0),

where ν(0)Tν(0) = 1, then the perturbed eigenvalue is given by

λ(ε) = λ(0) + εν(0)TA(1)ν(0).

Next, the formula of ν(1) by Kent et al. (1983) is

ν(1) =

 ∑
λi 6=λ(0)

(λ(0) − λi)−1νiν
T
i

A(1)ν(0), (2.5)

where νi is the ith eigenvector corresponding to eigenvalue λi ofA. Let for example

A =


λ1 0 0

0 λ2 0

0 0 λ3

 ,
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where λ1 = λ(0) and ν(0) = ν1, where ν1 = [1, 0, 0]T . Now we can use equation

(2.5) to derive the first perturbed eigenvector,

ν(1) =


0 0 0

0 1
λ2−λ1 0

0 0 1
λ3−λ1



a1,1 a1,2 a1,3

a1,2 a2,2 a2,3

a1,3 a2,3 a3,3




1

0

0



=


0

a
(1)
1,2

λ2−λ1
a
(1)
1,3

λ3−λ1



2.2 Spectral decomposition (SD) and singular

value decomposition (SVD)

In this section we present the spectral decomposition (SD) and singular value

decomposition (SVD) of matrices in both full and reduced forms. The SD is not

quite unique as usually presented, whereas it can be made unique using symmetric

projection matrices. In addition, we view the relationship between SVD and SD,

and show how to start with the SD of matrices C = ATA and B = AAT , and from

this evaluate the SVD of A. The standard properties are adopted from Mardia

et al. (1979), pp. 469-474, Golub and Reinsch (1971), and Lay (2006), pp. 266-

270, 398 and 414-420.

2.2.1 Spectral decomposition (SD)

A spectral decomposition of a square symmetric positive semi definite matrix

An×n has eigenvalues λi ≥ 0, i = 1, . . . , n which can be reduced to p non-zero

eigenvalues. The SD of An×n with p non-zero eigenvalues takes the reduced form

as follows:

A = ΓΛΓT =

p∑
i=1

λiγ(i)γ
T
(i) (2.6)
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where Γ is an orthogonal matrix whose columns are the eigenvectors of A, and Λ

is a diagonal matrix whose entries are the non-zero eigenvalues of A. The λi are

eigenvalues of the columns of Γ, which are eigenvectors, i.e. Aγ(i) = λiγ(i).

Note that we pad out Γ and Λ in the reduced form of the SD in (2.6), to get

Γ? and Λ?. The full SD of An×n can takes the form of

Γ?n×n Λ?
n×n ΓT?n×n =

[
Γn×p Γ⊥n×(n−p)

]
n×n

 Λp×p 0p×(n−p)

0(n−p)×p 0(n−p)×(n−p)


n×n

 ΓTp×n

ΓT⊥(n−p)×n


n×n

,

where 0 is a zero matrix. The matrix Γ?n×n is an orthogonal and Γ⊥ is an or-

thonormal column matrix with (n− p) columns, and each column vector in Γ is

perpendicular to each column vector in Γ⊥, Γ⊥Γ⊥, that is the dot product of one

column from Γ and one column from Γ⊥ is zero.

2.2.1.1 A spectral decomposition is not unique

A spectral decomposition is not quite unique, in the following sense. Firstly,

changing the sign of any column of Γ does not affecting the validity of (2.6). For

example, since A = ΓΛΓT , if we change the sign of one column of Γ, the result

will be the same because of the multiplicity of the sign (the change in sign will

cancel itself out in the product γ(i)γ
T
(i) = (−γ(i))(−γT(i))).

Secondly, if an eigenvalue has multiplicity of two or more, then there is a set

of distinct linearly independent eigenvectors. For example, if all the eigenvalues

are equal to three (λ1 = λ2 = 3) in the case n=2, then

A =

 3 0

0 3

 = 3I,

is a scalar multiple of the identity matrix, i.e. the SD is 3I = Γ3IΓT , where Γ

can be any orthogonal square matrix. Thus the eigenvector matrix is not unique.
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The eigenvectors, for example, can be taken as

γ(1) =

 0

1

 ,γ(2) =

 −1

0

 ,

or

γ(1) =

 1

1

 /√2 ,γ(2) =

 1

−1

 /√2.

2.2.1.2 A unique version of spectral decomposition

A unique version of the SD can be constructed using symmetric projection

matrices (see e.g. Ohya and Watanabe (2008), p. 218). Recall a projection

matrix P is idempotent and symmetric, i.e. P = P 2 and P = P T . A projection

matrix has eigenvalues either 1 or 0 and this result can be proved as follows: Let

λ be an eigenvalue of P corresponding to eigenvector v 6= 0. Then

Pv = λv

⇒ λ2v = P 2v = Pv = λv

⇒ λ2 = λ

⇒ λ = 0 or 1.

There are two ways to label the eigenvalues of An×n. First let (λ(1), . . . , λ(q))

be the q distinct eigenvalues and then let (λ1, . . . , λn) be all the eigenvalues (some

with multiplicity at least two), where q ≤ n. Then

An×n = ΓΛΓT =
n∑
i=1

λiγ(i)γ
T
(i) =

q∑
j=1

∑
i:λi=λ(j)

λ(j)Pj,
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and Pj =
∑q

j=1 γ(j)γ
T
(j). We consider an explicit example. Let

A =



3 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 2


= ΓΛΓT =

n∑
i=1

λiγ(i)γ
T
(i) =

q∑
j=1

∑
i:λi=λ(j)

λ(j)Pj

= 3(γ(1)γ
T
(1) + γ(2)γ

T
(2) + γ(3)γ

T
(3)) + 2(γ(4)γ

T
(4) + γ(5)γ

T
(5)),

where λ1 = λ2 = λ3 = λ(1) = 3, and λ4 = λ5 = λ(2) = 2. The projection matrices

are

P1 = γ(1)γ
T
(1) + γ(2)γ

T
(2) + γ(3)γ

T
(3),

=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0


,

and

P2 = γ(4)γ
T
(4) + γ(5)γ

T
(5),

=



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


.
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2.2.2 Singular value decomposition (SVD)

The SVD is a decomposition of a rectangular matrix An×m, where n > m,

into two orthonormal column matrices and a diagonal matrix. Let rank(A) be

the rank of matrix A and p = rank(A) ≤ min(n,m). The SVD of A takes the

form

A = ULV T =

p∑
i=1

`iu(i)v
T
(i), (2.7)

where Un×p is a column orthonormal matrix of left singular vectors, Vm×p is

column orthonormal matrix of right singular vectors, and L = diag(`1, `2, . . . , `p)

is a diagonal matrix of singular values, `1 > `2 > . . . > `p > 0. Note that

Av(i) = ULV Tv(i),

= UL


vT(1)

...

vT(p)

v(i) = ULe(i) = U`ie(i),

= `i

[
u(1) . . . u(p)

]



0
...

0

1

0
...

0


= `iu(i).

Conversely, ATu(i) = `iv(i).
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Comment:

1. Equation (2.7) is sometimes called the “reduced” form of SVD. If n ≥ m

then the full SVD takes the form

U?
n×mL

?
m×mV

T?
m×m =

[
Un×p U⊥n×(m−p)

]
n×m

 Lp×p 0p×(m−p)

0(m−p)×p 0(m−p)×(m−p)


m×m

 V T
p×m

V T⊥
(m−p)×m


m×m

,

where 0 is a zero matrix. The matrix V ?
m×m is orthogonal; U?

n×m is a col-

umn orthonormal matrix; V ⊥ is a column orthonormal matrix with m− p

columns, and V⊥V ⊥; U⊥ is a column orthonormal matrix with m − p

columns, and U⊥U⊥.

2.2.3 Relationship between singular value decomposition

and spectral decomposition

Start with A = ULV T , let B = AAT and C = ATA. Then the SDs of B and

C can be deduced from the SVD of A as follows:

Cm×m = ATm×nAn×m,

= (Un×pLp×pV
T
p×m)T (Un×pLp×pV

T
p×m),

= Vm×pL
T
p×pU

T
p×nUn×pLp×pV

T
p×m,

= Vm×pL
T
p×pLp×pV

T
p×m,

= Vm×pΛp×pV
T
p×m,

=

p∑
i=1

`2
iv(i)v

T
(i).
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Similarly, we deduce the SD of B as follows:

Bn×n = An×mA
T
m×n,

= (Un×pLp×pV
T
p×m)(Un×pLp×pV

T
p×m)T ,

= Un×pLp×pV
T
p×mVm×pL

T
p×pU

T
p×n,

= Un×pLp×pL
T
p×pU

T
p×n,

= Un×pΛp×pU
T
p×n,

=

p∑
i=1

`2
iu(i)u

T
(i).

We explain the deduction: since U and V are column orthonormal matrices,

UT
p×nUn×p = Ip and V T

p×mVm×p = Ip. Let LTp×pLp×p =: Λp×p, i.e. `2
i = λi >

0 where λi is the ith diagonal entry of Λ and `i is the ith diagonal entry of

L. Recall that Lp×p is a diagonal matrix; thus B and C have the same p non

zero eigenvalues. The SD for C is Vm×pΛp×pV
T
p×m where Vm×p contains the p

eigenvectors corresponding to the p non-zero eigenvalues Λ = diag(λ1, λ2, . . . , λp)

for C. The SD of B is Un×pΛp×pU
T
p×n, where Un×p contains the p eigenvectors

corresponding to the p non-zero eigenvalues Λ = diag(λ1, λ2, . . . , λp) for B.

The columns of the matrix U are orthonormal eigenvectors of AAT . The

columns of the matrix V are orthonormal eigenvectors of ATA. The eigenvectors

of C are known as the right singular vectors for A and the eigenvectors of B are

known as the left singular vectors of A.

Proof of how the singular value decomposition may be derived from

the spectral decomposition

Start with An×m where n > m and let p = min(n,m). Let C = ATA and consider

the SD of C, C = V ΛV T , where the columns of V are orthogonal eigenvectors of

C for the non zero eigenvalues p. Set L = Λ
1
2 i.e. `i =

√
λi for all i. From V if
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we define U = AV L−1, then An×m = ULV T and UTU = I, since

C = ATA = V L2V T

= ATAV L−1 = V L

= ATU = V L,

then AT = V LUT , and

UTU = LV TATAV L−1 = I,

hence we can say that the unique SD of B = AAT from C is constructed as

follows: We choose an orthogonal matrix V and a diagonal matrix Λ = L2 of

distinct eigenvalues. Also we constructed ui from vi, in other words u(i) depends

on our choice of v(i), and individually the sign is not determined but the pair

(u(i),v(i)) is determined up to sign.

2.2.4 Optimally signed singular value decomposition (OS-

SVD)

In this section, we consider three main modified versions of the standard

singular value decomposition (SVD) for a square matrix. For clarity we call

the standard singular value decomposition the positive singular value decomposi-

tion (P-SVD), also the three variants are the signed singular value decomposition

(S-SVD), the signed rotation singular value decomposition (SR-SVD), and the

optimally signed singular value decomposition (OSR-SVD).

The standard singular value decomposition, or P-SVD, of a square matrix A

of size n× n is given by

A = UpLpV pT , (2.8)
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where Up and V p are orthogonal matrices of size n × n, and Lp is a diagonal

matrix of non-negative values `pi , i = 1, 2, . . . , n. In the variants of the SVD, the

elements of L are allowed to be negative and in some of the variants the matrices

U and V are required to be rotation matrices.

• Signed singular value decomposition (S-SVD), A = U sLsV sT . In this version

the elements of Ls are allowed to be positive or negative; U s and V s are

still just required to be orthogonal matrices.

• Signed rotation singular value decomposition (SR-SVD), A = URLRV RT .

The elements of LR are allowed to be positive or negative; UR and V R are

required to be rotation matrices.

• Optimally signed singular value decomposition (OSR-SVD), A = ULV T .

This is a special version of SR-SVD where at most the smallest singular

value is negative (if |A| < 0).

All previous definitions are adopted from Kent and Mardia (2001).

It is possible to obtain the variants from the P-SVD decomposition through

the use of diagonal matrices D1 and D2 of size n× n with entries ±1 by

A = (UpD1)(D1L
pD2)(D2V

pT ). (2.9)
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In particular

1. If det(A) > 0 then either det(Up) = det(V p) = 1 or det(Up) = det(V p) =

−1. If the case of det(Up) = det(V p) = −1, then for example, by choosing

D1 = D2 = diag(−1, 1, . . . , 1), we have det(UpD1) = det(V pD2) = 1. Then

UpD1 and V pD2 are rotation matrices and we have a rotation version of

P-SVD decomposition.

2. If det(A) < 0, then we have det(Up) (or det(V p)) is -1, but not both. We

can change the sign of the last diagonal entry of D1 (or D2), so that UpD1

and V pD2 are rotation matrices. The smallest singular value in Lp has be-

come negative in (D1L
pD2), and thus we have the OSR-SVD decomposition.

3. If det(A) = 0, we have det(Lp) = 0 i.e `i = 0 for all i, and we can change

the sign of the last column in Up and V p in UpD1 and V pD2 to ensure

det(UpD1) and det(V pD2) are positive, so we have SR-SVD.

2.2.5 The use of the OSR-SVD in matrix optimization

Theorem 2.1

Let Z be a n×n square matrix and let the OSR-SVD of Z be given by Z = ULV T .

Let f(R) = tr(ZTR), and consider the optimization problem max f(R) over R ∈

SO(n) where SO(n) is the rotation group. Then maxR tr(ZTR) = trL and Ropt =

UV T .

Proof

Note that if det(Z) ≥ 0, then the proof is easy as all entries of L are non-negative.

If not, then the proof need to some work as the smallest entry of L is negative, see

for example Mardia et al. (1979) pp. 416-417, and Dryden and Mardia (2016),

pp. 70-71. We use this result later in Section 3.4.
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The proof proceeds in three steps. The first step is to show that if Ropt is the

optimal choice of R, then H = ZTRopt is symmetric. Secondly for any symmetric

matrix, we note that the eigenvalues are equal to the singular values up to sign.

The third step is to find the optimal choice of signs.

Step 1 Suppose Ropt is the optimal choice of R. We claim H = ZTRopt is

symmetric. We prove this claim by contradiction. Hence, suppose H is not

symmetric. Recall the following construction of a rotation matrix. If S is a skew

symmetric matrix S = (sij)1≤i,j≤n (i.e. sij = −sji) then

Q(S) = exp(S) = I + S +
(S)2

2!
+ · · ·+ (S)k

k!
+ · · · , (2.10)

is a rotation matrix, (see Marsden and Ratiu, 1995, p. 285).

Next replace S by εS and let the magnitude ε > 0 be small. Multiplying the

equation (2.10) by H and taking the trace gives

trHQ(εS) = trH(I + εS +O(ε2))

= trH + εtr HS +O(ε2). (2.11)

The second term of equation (2.11), can be simplified as follows

ε tr HS = ε
∑
ij

hijsij

= ε
∑
i<j

(hij − hji)sji,

as sij = −sji for all i, j = 1, . . . , n. Since H is not symmetric, then there exist

io, jo such that hiojo − hjoio 6= 0. Construct a matrix So whose elements are all

zeros except for positions (io, jo) and (jo, io), with sio,jo = −sjo,io=1. Set

g(ε) =: trHQ(εSo)

= trH + ε(hiojo − hjoio) +O(ε2),
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then

g(0) = trH,

and by optimality of Ropt

∂

∂ε
g(0) = 0. (2.12)

Then

g(ε)− g(0) = ε(hiojo − hjoio) +O(ε2).

this implies the first derivative of g(0) with respect to ε is

∂

∂ε
g(0) = (hiojo − hjoio) 6= 0,

that is a contradiction with the result in equation (2.12), and hence H is sym-

metric.

Step 2 Any real symmetric matrix can be decomposed by the spectral decompo-

sition theorem. The spectral decomposition of the symmetric matrix H is almost

the same as the standard singular value decomposition up to the sign of the

singular values. In particular, the SD here is an example of S-SVD, so that

H = ZTR

= GΛGT

= U sLsV sT ,

where U s = G, V s = G and Ls = Λ. Thus `si = λi, and λi = (−1)αi`i, where

`i ≥ 0, i = 1, . . . , n and αi = 0 or 1.

Step 3 We want to find the optimal choice for the signs i.e. the optimal choice

of the αi. If H is symmetric matrix then the eigenvalues are equal to the singular
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values up to sign i.e. `i = |λi| > 0, and to maximize trZTR we need to minimize

the sum of the negative eigenvalues,
∑
λi, so that we choose Z to be OSR-SVD,

then

1. If det(Z) > 0, then the number of αi = 1 is even. Thus trH is largest if

αi = 0, for all i.

2. If det(Z) < 0, then the number of αi = 1 is odd. Thus trH is largest if only

one αi = 1, namely αn = 1 and other αi = 0.

Application to Procrustes Analysis

Let x1,x2, . . . ,xn be vectors of n points in p-dimensions with mean x̄ and

suppose y1,y2, . . . ,yn, with mean ȳ, i = 1, 2, . . . , n, are related by the model

xi = ATyi + b+ εi,

where A3×3 is a rotation matrix and b3×1 is a shift vector. Assume εi = [ε1i, ε2i,

ε3i]
T is independent and identically distributed N3(0, σ2I3).

Our aim is to estimate the rotation matrix A and the shift vector b by least

squares. To do this we first centre the response variable y′ = yi − ȳ, and the

explanatory variable x′ = xi − x̄, for i = 1, 2, . . . , n, so the new variables have

a sample mean equals zero. The shift vector changes to b′ = x̄′ − AT ȳ′ = 0.

The initial centring remove the translation parameter. We want to minimize the

residual sum of squares of the data, with respect to A and b′. The residual sum

of squares is, as follows:

M2 =
n∑
i=1

(x′i − ATy′i − b′)T (x′i − ATy′i − b′). (2.13)
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Substituting b′ = 0 in equation (2.13), and it can be written in matrix form as

M2 = tr(X ′ − Y ′A)T (X ′ − Y ′A),

= tr(X ′TX ′ −X ′TY ′A− ATY ′TX ′ + ATY ′TY ′A),

= trX ′TX ′ − trX ′TY ′A− trATY ′TX ′ + trATY ′TY ′A,

= trX ′TX ′ − trX ′TY ′A− tr(X ′TY ′A)T + trATAY ′TY ′, (trace properties),

= trX ′X ′T + trY ′Y ′T − 2trX ′TY ′A, (2.14)

since tr(X ′TY ′A) = tr(ATY
′TX ′). In equation (2.14) only trX ′TY ′A depends on

A, so that

Min M2 = Max trX ′TY ′A.

Then using the result in the previous section, Y
′TX ′ = V LUT is OSR-SVD and

the optimal rotation matrix A = UV T , we conclude that

Max trX ′TY ′A = trL,

where L is a matrix of optimal signed singular values. Taking eigen-decomposition

of the Procrustes rotation matrix A = UV T gives one real eigenvalue 1 and the

other eigenvalues are complex. This result will be used in Section 3.4.

2.3 Cholesky decomposition

The Cholesky decomposition is a factorization of a symmetric positive definite

matrix A into a unique product of a lower unit triangular matrix L, a diagonal

matrix G and a transpose of the lower unit triangular matrix LT , (see Boyd and
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Vandenberghe, 2004, pp. 669-671), which is presented as follows, where n=2:

A = LGLT ,

=

 1 0

l12 1

 g1 0

0 g2

 1 l12

0 1

 ,

=

 g1 g1l12

g1l12 g1l
2
12 + g2


=

 a11 a12

a21 a22

 ,

where, g1 = a11, g2 = a22− a212
a11

, and l12 = a12
a11

. We use Cholesky decomposition in

Section 4.3.1.



Chapter 3

Estimation process for fitting a

regular helix

The α-helix is a smooth curve in 3-dimensional space, as we highlighted pre-

viously in Section 1.2. In this chapter our aim is to estimate the registration

parameters (orthonormal vectors and shift vector) and the shape parameters (ra-

dius and pitch) of the α-helix. Note that, the radius and the pitch are known

parameters in the α-helix. The helix spacing parameter is assumed to be known

as the ideal value of α-helix parameter.

The estimation of a regular helix’s parameters is divided into two stages.

In the first stage, an initial estimate of the helix axis is produced. After this,

the data are rotated to “semi-canonical” form, for which the estimated helix

axis is vertical. After transforming to semi-canonical coordinates we use a least

squares method to estimate the remaining parameters. Then, we update our

initial estimate of the helix axis by an optimal estimate. We call this method the

Optimized Least Squares (OptLS), which is defined explicitly later in this chapter

in Section 3.5.

Several methods of finding the axis of a regular α-helix were discussed

by Christopher et al. (1996). Among these methods we study parametric least

34
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squares (Parlsq), eigenvector method (Eigenfit), and rotational least squares

(Rotfit). Finally, we draw a comparison between previous methods and our

OptLS. We conclude that our OptLS is the most accurate method to find the

axis, followed by Rotfit.

3.1 The difference eigenvector method (Difeigen-

fit)

This section shows how to estimate the initial helix axis for a regular discrete

statistical helix in general coordinates. Given data helix Hn×3 with points yi =

[yi1, yi2, yi3]T , i = n1, . . . , n2, where n1 = 1, and n2 = n, define the increments as

di = yi −
yi+1 + yi−1

2
, i = n1 + 1, . . . , n2 − 1. (3.1)

Put the vectors di into an (n − 2) × 3 matrix D, and set E = DTD. Taking

the eigen-decomposition of this matrix E gives one very small eigenvalue and

two large eigenvalues which are approximately equal to each other. The helix

axis w is the eigenvector corresponding to the smallest eigenvalue. In canonical

coordinates, vectors di have most of the variability in the xy-plane and very small

variability along the z-axis. For a mathematical helix,

di = r(−1

2
cos ti−1 −

1

2
cos ti+1 + cos ti)u+ r(−1

2
sin ti−1 −

1

2
sin ti+1 + sin ti)v + 0w,

the vectors di is perpendicular to w. Then Dw = 0, and Ew = 0. Thus,

the helix axis is the eigenvector w of E corresponding to eigenvalue zero. The

collection of vectors di lies in a plane perpendicular to the helix axis. Figure 3.1

illustrates the behaviour of di for the mathematical helix in canonical coordinates.

The eigen-decomposition of E determines an initial estimate of a helix axis

w, but it does not specify the sign of w. That is, if w is an eigenvector then so



Chapter 3. Estimation process for fitting a regular helix 36

dx

−2 −1 0 1 2

●

●

●

●

●

●

●

●

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

−
2

−
1

0
1

2

●

●

●

●●

●

●

●

dy

●

●

●

●●

●

●

●

−2 −1 0 1 2

●● ● ●● ● ●● ●●● ●●● ● ●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

dz

Figure 3.1: Pairs plot of a mathematical helix, where variables di represent
the difference between the original point and the midpoint. All pairs of different
variables are plotted as scatter plots above and below the diagonal. The scatter
plot between dx and dy presents a circle, and the scatter plot between dz and
any other coordinate presents a line since dz = 0.

is −w. We need to choose the sign of w and to determine if the helix is right-

or left-handed. Consider a mathematical helix Hn×3 in general coordinates, (see

Section 1.2.2),

yi = r cos tiu+ r sin tiv + ctiw + b.

We determine w by Difeigenfit up to sign. Then we calculate the vertical distance
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between the first and last helix points to make sure that the helix is winding up-

ward i.e. c > 0.

yd = wT (yn − y1)

= wT (r cos tnu+ r sin tnv + ctnw + b− r cos t1u− r sin t1v − ct1w − b)

= wT ((r cos tn − r)u+ r sin tnv + c(tn − t1)w)

= c(tn − t1).

We have ti = (i− 1)δ, and δ = 2π
3.6

, then tn− t1 = (n− 1) 2π
3.6

> 0 i.e. c > 0. If this

distance wTyn −wTy1 < 0, i.e. c < 0, then we have to change the sign of w, as

in the definition of the helix the pitch c is positive, see Section 1.2.1. Next, to

know whether the helix is right- or left-handed, first we project the helix onto the

horizontal plane. Let the projection matrix onto vertical axis w be P = wwT

and then the projection matrix onto xy-plane be I−P . We can project the helix

onto xy-plane as follows

yp,i = (yi − b)− P (yi − b)

= (r cos tiu+ r sin tiv + ctiw + b− b)−wwT (r cos tiu+ r sin tiv + ctiw + b− b)

= r cos tiu+ r sin tiv.

Let yc,i be the cross product of the two successive (adjacent) projected points yp,i

and yp,i+1, i = 1 . . . n− 1, as follows

yc,i = yp,i × yp,i+1

= (r cos tiu+ r sin tiv)× (r cos ti+1u+ r sin ti+1v)

= (r2 cos ti sin ti+1u+ r2 cos ti+1 sin tiv)w

= r2 sin(ti+1 − ti)w.
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Then

yc =
n−1∑
i=1

wTyc,i

=
n−1∑
i=1

r2 sin(ti+1 − ti)

If yc > 0, then the helix is right-handed, otherwise, left-handed. For example,

imagine we have a protein α-helix where r = 2.3, ti = (i− 1)δ, and δ = 2π
3.6

, then

ti+1− ti = 2π
3.6

and sin(ti+1− ti) = 0.98 > 0. Thus, we need ti+1− ti < 180 degrees

so that sin(ti+1 − ti) > 0.

3.2 Parametric least squares (Parlsq)

Christopher et al. (1996) concluded in their study that the Parlsq is the fastest

method. In this section, we will present the Parlsq method.

For n points on a helix, time ti = (i − 1)δ, where δ = 2π
3.6

, i = n1, . . . , n2,

n1 = 1, and n2 = n, Christopher et al. (1996) identified three linear equations

yi1 = b1 + tiw
∗
1 + εi1, (3.2)

yi2 = b2 + tiw
∗
2 + εi2, (3.3)

yi3 = b3 + tiw
∗
3 + εi3, (3.4)

where bj, j = 1, 2, 3, are the shift parameters, and wj =
w∗j√

w∗21 +w∗22 +w∗23
are the

helix axis parameters, for all j. Equations (3.2), (3.3) and (3.4) are a special

case of equation (1.3) if r = 0.

Christopher et al. (1996) fitted each equation separately by using ordinary

least squares to find unknown parameters. Finally, they standardized the vector

ŵ∗ to get the direction of the helix as a unit vector ŵ = [w1, w2, w3]T . This

method is illustrated by examples later in Sections 3.6.1 and 3.7.



Chapter 3. Estimation process for fitting a regular helix 39

3.3 Eigenvector method (Eigenfit)

Christopher et al. (1996) did not require the helix points to be equally spaced

as in the previous methods. Their method is easy to follow: First they started by

centring the data yi = [yi1, yi2, yi3]T . Second they found the eigen-decomposition

of the least squares information matrix HTH (i.e. the principal component anal-

ysis (PCA). The eigenvector with the highest eigenvalue is an approximation of

the helix axis w, which has the most variation, other eigenvalues are expected to

be approximately equal. However, this is not always the case. As Christopher

et al. (1996) mentioned, this method is more accurate for long helices than for

short ones. In biology most of helices are long, see Section 1.5.1. The eigenvalues

for a short helix are almost equal to each other, so that we can not determine

which of the axes is the helix axis. We illustrate Eigenfit by simulation later in

Sections 3.6.2 and 3.7.

3.4 Rotational least squares (Rotfit)

The Rotfit method was recommended by Christopher et al. (1996) as most

accurate method for identifying helix axis among their studied methods (more

details are in Section 3.7). To motivate the method, we start with a mathematical

helix Hn×3 with landmarks yi, i = n1, . . . , n2, where n1 = 1, and n2 = n. Consider

two modified versions of Hn×3, the first one is H1 of size (n− 1)× 3, obtained by

deleting the last point of the original dataset (the nth point). The second one is

H2 of size (n− 1)× 3, obtained by deleting the first point (the 1th point). These

two data sets are related. If you twist one of the helices about its axis and shift

it along its axis, this screwing action maps H1 onto H2, i.e. mapping from yi to

yi+1.

In order to fit the helix, we need to estimate how much the helix moves

forward and rotates as time moves forward one step. We rotates the helix one
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atom ahead i.e. rotate H1 one point ahead to reach H2. This is obtained by

solving the equation

yi+1 = Γyi, (3.5)

where i = n1, . . . , n2−1, n1 = 1, n2 = n, the rotation matrix is Γ. The movement

forward is representing by the reindexing from i to i+ 1. We centre two datasets

H1 and H2 and denote them by H ′1 and H ′′2 respectively, where

y′i = yi − ȳ
′
,

y′′i+1 = yi+1 − ȳ
′′
,

where ȳ
′

= [ȳ
′
1, ȳ

′
2, ȳ

′
3]T is the mean of the first dataset, and ȳ

′′
= [ȳ

′′
1 , ȳ

′′
2 , ȳ

′′
3 ]T is

the mean of the second data set, as follows

ȳ
′

1 =
1

n− 1

n−1∑
i=1

yi1, ȳ
′

2 =
1

n− 1

n−1∑
i=1

yi2, ȳ
′

3 =
1

n− 1

n−1∑
i=1

yi3,

and

ȳ
′′

1 =
1

n− 1

n−1∑
i=1

yi+1,1, ȳ
′′

2 =
1

n− 1

n−1∑
i=1

yi+1,2, ȳ
′′

3 =
1

n− 1

n−1∑
i=1

yi+1,3;

and (3.5) can be written as

y′i+1 = Γy′′i . (3.6)

To find the helix axis and the rotation matrix, which rotates about the axis, we

can use the Procrustes procedure (see Kent and Mardia, 2001). The Procrustes

procedure is easy to implement in R. For the mathematical helix, the Procrustes

procedure gives the exact rotation matrix that rotates one version onto the other.
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For a statistical helix, we follow the same equation (3.6) and add noise as follows

y′i+1 = Γy′′i + εi+1,

where εi+1 is the error vector. Let Z = H
′T
2 H

′
1, then we decompose Z using

the standard singular value decomposition (in Section 2.2.4), Z = ULV T . The

optimal choice of the rotation matrix can be found as Γ = UV T (see Section 2.2.5

and Andrade et al. (2004) for more details). Taking eigen-decomposition of the

Procrustes rotation matrix Γ gives the helix axis, which is the eigenvector corre-

sponding to the real eigenvalue 1. Other eigenvalues are complex. An illustration

of this method on simulated data is given in Sections 3.6.1 and 3.7.

3.5 Estimation process for fitting regular helix

This section describes the estimation process of a regular statistical data helix

parameters yi, i = n1, . . . , n2, where the dataset is assumed to follow the model

given in equation (1.3). As we described earlier, the estimation process consists

of two stages. The first stage is to estimate an initial helix axis w. From the

helix axis we can first find a 3 × 3 rotation matrix, which rotates the helix into

“semi-canonical coordinates”, so that the new axis direction w is the north pole.

After that, we obtain the least squares estimates of the other six unknown helix

parameters: the radius r; the pitch c; the shift parameters b1, b2, b3; the angle τ ;

and the residuals sum of squares (RSS). Finally, we optimize these estimates by

minimizing the residual sum of squares over the choice of axis w.

In addition, a special case is when the helix axis is known, which could be

in general coordinates, or in semi-canonical coordinates. If the known axis is

in general coordinates, then we need to rotate the helix to be in semi-canonical

coordinates to be able to estimate the other parameters, which is described in

detail in Section 3.5.4.
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3.5.1 Stage 1: Estimate of an initial axis

In this section, we estimate the initial helix axis for a regular discrete sta-

tistical helix in general coordinates Hn×3. We can estimate the initial axis

by our estimation method Difeigenfit described in Section 3.1 or by a method

from the literature, such as Rotfit method described in Section 3.4. The exact

choice does not matter since we update this initial estimate later in last step

(see Section 3.5.3). Recall, the regular discrete statistical helix model (1.3) for

y(ti) = [yi1, yi2, yi3]T , i = n1, . . . , n2, n1 = 1 and n2 = n, points around the helix

is

y(ti) = r cos(ti)u+ r sin(ti)v + ctiw + b+ εi.

After we estimate the initial axis we can define a 3× 3 rotation matrix, Γ1,

which takes the helix axis to point to the north pole i.e. wTΓ1 = [0, 0, 1]T , where

w is the third column, and other two columns are any orthonormal columns

that satisfy the properties of a rotation matrix (e.g. Arfken and Weber, 2001,

pp. 195-197). This rotation matrix, Γ1, is not uniquely determined the third

column, but not the first and second columns. For Difeigenfit, we can choose

these columns to be the eigenvectors of E (see Section 3.1). The right-handed

helix winds clockwise upwards to north pole (i.e. the pitch c is positive) after

multiplying it by the rotation matrix Γ1, where det(Γ1) = 1, (e.g. see Murray

et al., 1994). If, however, the determinant of Γ1 is negative, then we need to

change the sign of u or v. Overall, we need to look at the sign of determinant of

Γ1 = [u v w] to understand if this is a rotation matrix or a reflection matrix.
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3.5.2 Stage 2: Estimation of the shape and registration

parameters

After the first stage, the helix data matrix of size n×3 is in the semi-canonical

coordinates (see Section 1.2.3)

Ho = HΓ1

=


zn1,1 zn1,2 zn1,3

...
...

...

zn2,1 zn2,2 zn2,3

 ,

where the new axis direction w1 is to the north pole i.e. wT
1 = wTΓ1 = wT

0 ,w0 =

[0, 0, 1]T . This section focuses on rotating of the helix about w1 and shifting it to

the origin, so that the initial point is proportional to [r, 0, 0]T . The helix model

in equation (1.3) can now be expressed as

z(ti) = r cos(ti − τ)


1

0

0

+ r sin(ti − τ)


0

1

0

+ cti


0

0

1

+ bo

= (α1 cos ti + α2 sin ti)


1

0

0

+ (α1 sin ti − α2 cos ti)


0

1

0

+ cti


0

0

1

+ bo,

(3.7)

where i = n1, . . . , n2, α1 = r cos τ , α2 = r sin τ and τ is the angle measured

between the standard starting point (r, 0, 0) and the initial point after the first

rotation yT1 Γ1. The equation (3.7) can be written in matrix form as a multivariate

linear regression

z = Xβ + ε,
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where the response vector of size 3n× 1 is

z =
[
zn1,1 · · · zn2,1 zn1,2 · · · zn2,2 zn1,3 · · · zn2,3

]T
=
[
zT1 zT2 zT3

]T
,

and the design matrix of size 3n× 6 is

X =



1 0 0 cos tn1 sin tn1 0
...

...
...

...
...

...

1 0 0 cos tn2 sin tn2 0

0 1 0 sin tn1 − cos tn1 0
...

...
...

...
...

...

0 1 0 sin tn2 − cos tn2 0

0 0 1 0 0 tn1

...
...

...
...

...
...

0 0 1 0 0 tn2



,

which can be written as a matrix of vectors

=


1 0 0 c s 0

0 1 0 c −c 0

0 0 1 0 0 t

 ,

where

c =


cos tn1

...

cos tn2

 , s =


sin tn1

...

sin tn2

 , t =


tn1

...

tn2

 , 1 =


1
...

1

 , 0 =


0
...

0

 ,
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and the regression parameters bo, α1, α2 and c can be viewed as a 6× 1 vector

β =
[
b1 b2 b3 α1 α2 c

]T
=
[
βT0 βT1

]T
,

where β0 = [b1, b2, b3]T , and β1 = [α1, α2, c]
T . To estimate the parameters, the

least squares method seeks to minimize the sum of squared errors (residuals) of the

helix model (Mardia et al., 2018). The least squares solution provides estimates

of the unknown parameters. These estimates are also the maximum likelihood

estimates in a general regression model with normal errors (see Garthwaite et al.,

2002, p. 61). Our model is a special case of the general regression model, so least

squares gives the same result as maximum likelihood estimation.

In order to fit the regression model, we centre each vector zj = [zn1,j · · · zn2,j]
T , j =

1, 2, 3, of size n×1, to simplify the algebra. We also centre the design data matrix

X, so that the mean of each column becomes zero, as

X ′ =


c′ s′ 0

s′ −c′ 0

0 0 t′

 .

Note that the columns of X ′ are orthogonal. The centred variables are

c′ =


c′n1

...

c′n2

 , s′ =


s′n1

...

s′n2

 , t′ =


t′n1

...

t′n2

 ,

where

c′i = cos ti − C, s′i = sin ti − S, t′i = ti − T ,

C =
1

n

n2∑
i=n1

cos ti, S =
1

n

n2∑
i=n1

sin ti, T =
1

n

n2∑
i=n1

ti, R =

√
C

2
+ S

2
,
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and z̄ = [z̄1, z̄2, z̄3]T , z′ = z−z̄ = [z′n1,1
, . . . , z′n2,1

, z′n1,2
, . . . , z′n2,2

, z′n1,3
, . . . , z′n2,3

]T ,

where z̄j = 1
n

∑n2

i=n1
zi,j for all j = 1, 2, 3 and n = n2 − n1 + 1. We can also derive

the shift vector b̂ = [b̂1, b̂
o
2, b̂3]T as follows

b̂1 = z1 − α̂1C − α̂2S,

b̂2 = z2 − α̂1S + α̂2C,

b̂3 = z3 − cT̄ .

Then the corresponding least squares estimator is given by

||z′ −X ′β1||2. (3.8)

The least squares estimator of the parameter vector β1 can be derive by taking

the first derivative of (3.8) with respect to each parameter, and setting it equal to

zero (MLE of the parameters). Then the least squares estimator takes the form

α̂1 =

n2∑
i=n1

(c′iz
′
i1 + s′iz

′
i2)/{n(1−R2

)},

α̂2 =

n2∑
i=n1

(s′iz
′
i1 + c′iz

′
i2)/{n(1−R2

)},

ĉ =

n2∑
i=n1

t′iz
′
i3/{

n2∑
i=n1

(ti − T )2}.

Since α1 = r cos τ and α2 = r sin τ , then r̂ can be derived as

r2(cos2 τ + sin2 τ) = α2
1 + α2

2

r2 = α2
1 + α2

2.

Then

r̂ =
√
α̂2

1 + α̂2
2,
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and the angle τ̂ can be derived as

r sin τ

r cos τ
=
α2

α1

tan τ =
α2

α1

,

so that

τ̂ =atan2(α̂2, α̂1).

The least squares fitted values for z(ti) is

ẑ(ti) = r̂ cos(ti − τ̂)


1

0

0

+ r̂ sin(ti − τ̂)


0

1

0

+ ĉti


0

0

1

+


b̂1

b̂2

b̂3

 .

In addition, we can derive the residual sum of squares, which is a function of the

helix axis w, as

RSS(w) = ||Z − Ẑ||2,

where Z and Ẑ are the data and the fitted matrices respectively. After estimating

the parameters for the helix, where the axis direction is wTΓ1 = w0, the nu and

v take the form

[
u v

]
=

 cos(τ̂) sin(τ̂)

− sin(τ̂) cos(τ̂)

 .
To put the helix in canonical form, we can rotate the helix about its axis w1 by

the rotation matrix Γ2(τ̂), where

Γ2(τ̂) =


cos(τ̂) sin(τ̂) 0

− sin(τ̂) cos(τ̂) 0

0 0 1

 .
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Overall, after the first rotation of the axis (applying Γ1) i.e. w = w0, we

rotate the data helix about the axis (applying Γ2), and finally we shift the data

helix by b̂ = [b1, b2, b3]T , so that the data helix is in canonical coordinates, as

follows

Z∗(n×3) = (Z(n×3) − 1nb̂(3×1))Γ2.

3.5.3 Optimized least squares (OptLS) method

In stage 2, in Section 3.5.2, we have assumed that w is known and constructed

a goodness of fit statistic given by the residual sum of squares RSS(w). In this

section, we improve the fit by minimizing RSS(w) over w. The function RSS(w)

can be evaluated for any w, and can be minimized numerically using for example

the function nlm in R (see R Core Team, 2014).

We have an optimization problem of curved manifold, namely the sphere,

where the unit vector w is under the constraint ||w||2 = 1, but optimization

methods work more easily with unconstrained parameters. To parametrize w,

first it is helpful to rotate an initial estimate winit to point towards the north

pole [0, 0, 1]T . Then a general 3-dimensional unit vector w can be represented

in 2-dimensional stereographic coordinates about winit by a 2-dimensional vector

[p1, p2]T , where

ŵ1 =
2p̂1

1 + p̂2
1 + p̂2

2

,

ŵ2 =
2p̂2

1 + p̂2
1 + p̂2

2

,

ŵ3 =
−1 + p̂2

1 + p̂2
2

1 + p̂2
1 + p̂2

2

.

Then the nlm procedure works on the two free parameters p1 and p2 with an initial

value [p1, p2]T = [0, 0]T . Minimizing the residual sum of squares is equivalent to
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maximizing the log likelihood since the log likelihood for the axis, after optimizing

over the other parameters, is given by

−n
2

log(2π)− n

2
log(

RSS(w)

n
)− n

2
.

3.5.4 A known helix axis

We previously described in detail how to fit a regular helix in general coor-

dinates where the axis is unknown. In this subsection, we discuss two special

cases in which the helix axis w is known. First we discuss the case when the

helix axis is in general coordinates, and second the case when the helix axis is in

semi-canonical coordinates.

Known helix axis w in general coordinates

For a known helix axis w in general coordinates, we start from stage 2 of our

estimation procedure which is described in Section 3.5.2, and Γ1 is a 3×3 rotation

matrix where the third column is the axisw, and the other two vectors can be any

two columns that satisfy the rotation matrix properties. We can determine the

other two columns of Γ1 by w. The matrix Γ1 can be taken as the eigenvectors

of R = I3 −wwT , where I3 is the 3× 3 identity matrix. We make sure that the

Γ1 will rotate the helix so that c > 0, if wTyn2 −wTyn1 > 0, otherwise, we need

to change the sign of the third column of the matrix Γ1. In addition, we need to

make sure that Γ1 is a rotation matrix not a reflection matrix, so the determinant

of R should be equal to 1, otherwise we need to change the sign of one of the

columns 1 or 2. After that we can use the OptLS from stage 2 in Section 3.5.2.

Known helix axis w in semi-canonical coordinates

For a known vertical helix axis w = w0 we start the OptLS from stage 2 in

Section 3.5.2 of our estimation procedure and we can set the rotation matrix

Γ1 = I3.
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3.6 Drawbacks of Parlsq, Eigenfit, and Rotfit

methods

In this section, we look at several other methods of estimating helix axis and

investigate their drawbacks. We study Parlsq in Section 3.2, Eigenfit in Sec-

tion 3.3, and Rotfit in Section 3.4 methods in order to study how these methods

estimate helix axis in different shapes of helices. Helices can come short fat like

tuna can or tall and thin like beans can.

We start by illustrating each method on a single example of a mathematical

helix. In addition, we carry out q = 1000 simulation studies, simulating each as

follows: first we create n points that lie on an regular helix in canonical coordi-

nates (see Section 1.2.1); then we simulate q independently and identically dis-

tributed random errors from N3(0, σ2I3), σ2 = 0.05 see Mardia et al. (2018),(for

simulation see Lele and Richtsmeier, 2001, Section 2.8). The helix parameters are

chosen to closely mimic a protein α-helix, which has radius r = 2.3, pitch c = 5.4
2π

,

and the angle between successive points on the helix is δ = 2π
3.6

radians. For con-

venience we set the shift parameter b = 0 and the times t = (i− 1)δ. There are

3.6 points per loop, fewer points per loop than were used in Christopher et al.

(1996) (approximately 12 points per loop). These simulation studies are carried

out on various n, r, c and δ to study different shapes of helices. Helices can be

short and fat, like a tuna can, or tall and thin like a baked bean can.

Let the angle between the estimated axis ŵ and the true axis w be θ. If

θ = 0, the estimated axis is a perfect fit, so ŵwT = cos θ = 1 (Deville et al.,

2008), and 1 − ŵTw = 0. If the estimated axis is not a perfect fit and the true
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axis w = [0, 0, 1]T , then

1− ŵTw = 1− ŵ3

= 1−
√

1− ŵ2
1 − ŵ2

2

≈ 1

2
(ŵ2

1 + ŵ2
2), (from Taylor series).

For a sample j = 1, . . . , q, we have q estimated axes ŵj and the average of these

estimated axes is

ˆ̄w =
1

q

q∑
j=1

ŵj.

Then the sample mean

ˆ̄wTw =
1

q

q∑
j=1

ŵ
(j)
3 ,

and

1− ˆ̄wTw =
1

q
(q −

q∑
j=1

ŵ
(j)
3 )

≈ 1

q

1

2

q∑
j=1

(ŵ
(j)2
1 + ŵ

(j)2
2 ).

If the helix is balanced, then 1 − ˆ̄wTw is the mean squared error (MSE). Then

for a helix which balance almost balanced,

1− ˆ̄wTw ≈ 1

2
(var(ŵ1) + var(ŵ2)),

since E(ŵ1) = 0 = E(ŵ2).

From these simulation studies, we conclude that Rotfit is the most accurate

method among these three methods that studied by Christopher et al. (1996),

whereas, Parlsq and Eigenfit are not effective methods for estimating the helix
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axis. For a short fat helix Parlsq gives a poor estimation of a helix axis and

Eigenfit can not even estimate the helix axis.

3.6.1 Parlsq method

In this subsection, we simulate three sets of data and we apply the methods

discussed by Christopher et al. (1996), in order to study how Parlsq estimates the

helix axis in different shapes of helices. The first set of helices contains far fewer

points (n = 7) than Christopher et al. (1996) used in their example (n = 36) to

show the effect of changing the number of points. The second set of helices are

also short with n = 7 points but with wider radius r = 7 to show the effect of

changing the number of points relative to the radius. The third set of helices are

also short n = 7 with wider radius r = 7 but with shorter distance per one turn

c = 0.1 to show the effect of radius r relative to the length of the helix nc.

First we start with one set of n = 7 points on a mathematical helix in

canonical form (see Section 1.2.1). The helix axis in this case is w = [0, 0, 1]T .

In order to apply Parlsq to the data, we carry out an ordinary least squares

estimation for each of the three coordinate components as in equations (3.2),

(3.3) and (3.4).

Figure 3.2 shows one plot of our simulated helix and a plot for each set of

coordinates versus the index i which is related to the “time” by ti = (i − 1)δ.

Panels (b), (c) and (d) display the theoretical behaviour of the equation of a

mathematical helix in canonical coordinates. Panel (d) shows that the z-axis

is the helix axis because it is straight. Further, the vertical axis of panel (d)

is the highest scale axis between the other three panels which is lies between

z = 0 and z = 8.899. The chart also displays panels (b) and (c) of each set of

x and y coordinates, respectively, which both have vertical scale axis with fewer

scaling options that lie between −r and r. The panel of the y-coordinate versus

ti presents sine waves in dots and the panel of the x-coordinate versus ti presents
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cosine waves in dots. If we ignore the waves and deal with each equation as a line,

we can find the slope wj and the intercept bj. After applying the least squares

method to each line, we standardized the estimated vector to get the helix axis

ŵ = [−0.2026,−0.1170, 0.9722]T . (3.9)

Figure 3.2 also shows the fitted line (dashed line) for the three coordinates. We

expect the two fitted lines for x and y plots to be flat (horizontal), but in fact

they are sloped, so this is not a good fit.

(a) Helix scatter plot
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Figure 3.2: Plot of simulated discrete mathematical helix of seven points in
canonical coordinates. Panel (a): the 3d simulated helix plot; panels (b)-(d):
each coordinates versus index i. The solid black line connects the points of the
helix. The dashed blue lines in (b) - (d) show the fitted by Parlsq.

It can be seen from (3.9) that the estimate of the helix axis using the Parlsq

is different from the canonical helix axis w = [0, 0, 1]T . In addition, the residual

sum of squares for each linear model shows that all the variability is in the x and

y coordinates, whereas there is zero variability on the z coordinate (i.e. a perfect

fit) for our simulated data without errors. This is because z is essentially the

index number multiplied by c and δ.
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Next, we simulate q = 1000 helices with n = 7 points as explained in Sec-

tion 3.6. The mean squared error of the helix axis estimate 1−( ˆ̄wTw) from Parlsq

is 0.031. Secondly, we simulate a set of 1000 helices with n = 7 points around a

canonical helix with a wide radius of r = 7 and keep all other parameters, as in

the previous simulation, identical to the protein α-helix. To check the effect of

the ratio of radius to cn on the estimation of a helix axis, we then carry out an

ordinary least squares as in the previous example. The MSE 1 − ( ˆ̄wTw), from

Parlsq is 0.207. This shows that Parlsq gives a poorer estimation for a short fat

helix, where the ratio of r to cn is greater than 1, compared to the estimation in

the previous simulation, where this ratio was less than 1.

In addition, we simulate a set of 1000 short fat helices with n = 7 points,

r = 7 but shorter than the previous set as the vertical distance of one helix turn

is shorter c = 0.1 and fewer points per loop, as δ = 4π
3.6

. The estimate of the

helix axis becomes much poorer by Parlsq when the ratio of r to cn is 10, as

1− ( ˆ̄wTw) = 0.612 see Table 3.1.

Table 3.1: MSE comparison of different simulated set of 1000 helices of n = 7
and σ2 = 0.05 with various r, c and δ.

Method set 1 set 2 set 3

r 2.3 7 7

c 5.4
2π

5.4
2π

0.1

δ 2π
3.6

2π
3.6

4π
3.6

Parlsq 0.031 0.207 0.612

OptLS 6× 10−4 3× 10−4 3× 10−4

Overall, after applying the Parlsq method to various datasets, we conclude

that OptLS is effective for all data helices, whereas Parlsq is not. Table 3.1

presents the MSE for all simulations provides by OptLS which show that the

helix axis estimates are much better by OptLS than Parlsq. There are four

characteristics of the helix that can be problematic with Parlsq: the total number

of points; the number of points per loop; the pitch; and the ratio of r relative to

cn. As n increases we obtain a better estimation of the canonical α-helix axis and
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a better least squares fit. However, it is not enough only to increase the number

of points; one must also check whether the data helix is more than one loop and

that there are at least 3 points per loop. Furthermore, Parlsq does not work with

a helix if the ratio of r relative to length of the helix cn is greater than or equal

to one. As soon as one has a reasonable value of n, you could obtain a good

estimate of the axis. We obtained good results for n = 15 points on a canonical

α-helix.

3.6.2 Eigenfit method

In order to study Eigenfit we simulate two sets of 1000 helices as explained

in Section 3.6. A set of long thin helices of n = 30 and a set of short fat helices

of n = 7, and r = 7.

We start with a mathematical helix (see Section 1.2.1) with n = 30 points

in canonical form, where the parameters mimic a protein α-helix. For this data,

Eigenfit provides three eigenvalues: 19248.9, 81.5 and 76.9. The eigenvector

corresponding to the largest eigenvalue of the covariance matrix always points in

the direction of the largest variance of the data, i.e. the helix axis.

In addition, we create another mathematical helix of n = 9 points in canonical

form, where the radius of the helix is r = 9, and shorter distance per helix turn c =

0.1. Here the Eigenfit provides eigenvalues 364.690, 364.500, and 6.024. Recall

the axis according to the concept of Eigenfit is the eigenvector corresponding to

the largest eigenvalue. Thus this result did not provide us with a clue for a helix

axis since the first two eigenvalues are approximately equal. Whereas, OptLS

provides us with eigenvalues of 409.9, 371.1 and 0, and according to the OptLS

the helix axis is the eigenvector that corresponds to the smallest eigenvalue λ=0

in canonical form, which is w = [0, 0, 1]T . Therefore, OptLS provides a better

result than the Eigenfit method does.
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Next, we simulate 1000 long helices of n = 30 mimic protein α-helix with

σ2 = 0.05 as in Section 3.6 and we obtained a good estimation of the helix axis by

Eigenfit and OptLS as the MSE 1−( ˆ̄wTw) are 2×10−5 and 8×10−6, respectively.

Moreover, we simulate 1000 short fat helices of n = 7 points and wider radius

of r = 7 and obtained MSE 1 − ( ˆ̄wTw) from Eigenfit is 0.665, which suggests a

poor estimation.

In conclusion, for a short helix, the Eigenfit method gives two eigenvalues

that are approximately equal, so we do not know which of these eigenvectors is the

helix axis. However, for a long α-helix it works well, as mentioned in Christopher

et al. (1996). Thus, the simulation of short helices shows a poorer estimation of

the helix axis by Eigenfit for a short helix, whereas OptLS works well in all the

cases.

3.6.3 Rotfit method

In this section, we study Rotfit. We begin by applying the Rotfit method

(explained in section 3.4) to mathematical helices, and it works well as the input

helix matches the estimated helix. For a simulated helix that mimic protein α-

helix with n = 15 and the errors are assumed normally distributed with mean

0 and variance 0.05, the axis estimate by Rotfit and by OptLS methods are

ŵT
Rw = 0.999995, and ŵTw = 0.999998, respectively. Then the MSE of the

helix axis estimate with the true axis 1− ˆ̄wTw by Rotfit 5× 10−6 and by OptLS

2× 10−6 indicate good estimates of the helix axis by the two methods. The MSE

for OptLS shows that the OptLS estimate of the helix axis is more accurate than

the Rotfit estimate. Figure 3.3 shows the estimate of the helix axis using Rotfit

in red as it rotates the helix one atom ahead.

We simulate 4 sets of 1000 helices as explained in Section 3.6: the parameters

of the first and second sets are mimic protein α-helix with n = 15 and n = 7,

respectively; for the third set we set n = 7 and r = 7 whilst keeping the other
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Figure 3.3: The figure presents two helices: the data helix in black and the
fitted helix using Rotfit in red.

parameters as before; and finally a set helices with n = 7, r = 7, c = 0.1 and

δ = 4π
3.6

. We summarize the MSE 1 − ( ˆ̄wTw), of the estimates of the helix axis

using Rotfit and OptLS in Table 3.2. Table 3.2 shows that for all simulated sets,

Rotfit gives good estimate of the helix axis but OptLS gives a better one.

Table 3.2: Variance comparison of different sets of 1000 helices.

Method set 1 set 2 set 3 set 4

Rotfit 9× 10−5 8× 10−4 3× 10−4 4× 10−4

OptLS 7× 10−5 6× 10−4 2× 10−4 2× 10−4

3.7 Comparison of different methods of estimat-

ing helix axis

Our particular interest is the performance of the various methods with regard

to estimation of the helix axis. In this subsection, the proposed methodologies

Difeigenfit and OptLS in subsections in Sections 3.5.1 and 3.5.3, respectively,

are compared via simulations of regular statistical helices, with Parlsq (in Sec-

tion 3.2), Eigenfit (in Section 3.3) and Rotfit (in Section 3.4).

To compare different methods we simulate 1000 helices of n = 30 landmarks

as in Section 3.6 where σ2 = 0.05. We study the estimate of r and c for a helix in
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canonical form with parameters that mimic a protein α-helix. We expect that for

Difeigenfit and OptLS, the estimates are close to the true α-helix parameters. In

addition, we will compare the estimates of the helix axis ŵ by all methods with

the axis in the canonical form w = [0, 0, 1]T .

Using the OptLS for 1000 simulated helices gives samples of r̂, ĉ and 1−wT ŵ.

We draw histograms of these samples in Figure 3.4 and Figure 3.5 which show

bell-shaped curves around the true values of r and c, respectively. These figures

present that the distribution of r and c are around the α-helix parameters value

where Difeigenfit has the variability (σ2
r = 0.003 and σ2

c = 1.2 × 10−5) greater

than the OptLS (σ2
r = 0.002 and σ2

c = 1.1× 10−5).
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Figure 3.4: Histograms of simulated sample of estimates r̂.
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Figure 3.5: Histograms of simulated sample of estimates ĉ.
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Figure 3.6: Histograms of simulated sample of estimates wT ŵ.

The histograms of Difeigenfit and OptLS in Figures 3.6 present the distribu-

tion of the MSE 1− ˆ̄wTw of the q = 1000 helices for each method. These figures

show a skewed longer tail going off to the right, where Difeigenfit has greater

variability than OptLS. In other words, the range of 1 − ŵT
j w, j = 1, . . . , q for

Difeigenfit and OptLS are [9×10−8, 9×10−3] and [8×10−9, 5×10−5], respectively,

where w = [0, 0, 1]T . That is, in both approach, all the simulated helices have

variance very close to 0, hence our approach works well. Overall we conclude that

OptLS is more accurate than Difeigenfit.
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Next, we use the simulated data to find the helix axis by Parlsq, Eigenfit

and Rotfit and compare the results with Difeigenfit and OptLS methods. The

main characteristic that differentiates one method from another for finding the

axis is the MSE of the axis, (1− ˆ̄wTw) which is presented in Table 3.3. For 1000

simulated helices mimic protein α-helix with n = 30 landmarks and σ2 = 0.05,

as in Section 3.6, OptLS determines the best fit as seen in Figure 3.7, where the

variation of estimate w by ŵ is baseline variance which is very small. The Rotfit

axis variance is close to OptLS axis variance, whereas Parlsq and Eigenfit have are

10 times worse than OptLS. The Difeigenfit has the worst variance. Therefore,

Rotfit is the second best method. In addition, the histograms of the distribution

of 1−ŵT
j w for OptLS and Rotfit are skewed to the right of zero, which are placed

in the top of Figure 3.7. The Parlsq and Eigenfit are approximately symmetric

and slightly far from 0, so they determine bad estimates of w. In addition to the

first set of simulated data, we simulate 3 more sets of 1000 different shapes of

helices: the first set of short fat helices where n = 12, r = 7, c = 0.1 and δ = 2π
3.6

;

the second set of long thin helices of n = 30, r = 1, c = 5.4
2π

and δ = 2π
3.6

; and the

third set of helices mimic protein α-helix with n = 20. Table 3.3 also shows that

Eigenfit cannot estimate the axis for short fat helix in set 2 where the variance is

very large, as we discussed before in Section 3.6.1. Parlsq has also large variance

of estimate w for set 2. Overall, OptLS and Rotfit have the smallest variance

among other methods, where OptLS has the smallest variance.

Table 3.3: Variance comparison of different methods.

set OptLS Rotfit Eigenfit Parlsq Difeigenfit

1 8.21× 10−6 9.13× 10−6 2.58× 10−5 2.88× 10−5 1.17× 10−3

2 2.05× 10−4 2.13× 10−4 0.987 0.285 5.86× 10−4

3 8.34× 10−6 9.31× 10−6 1.03× 10−5 1.23× 10−5 6.90× 10−3

4 3.37× 10−5 3.72× 10−5 6.86× 10−5 5.56× 10−5 1.75× 10−3
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Figure 3.7: The histogram of the frequency of the MSE 1−wT ŵ of different
methods.

3.8 Distribution of 1−ŵTw using the Difeigenfit

method

Our aim in this section is to find the asymptotic distribution of 1 − ŵTw

for small σ2 (see Mardia et al., 1979, p. 230), where ŵ has been obtained by

using Difeigenfit method. This presents how close the true axis vector is to

the estimated one. In order to compute the distribution of 1 − ŵTw, we use

asymptotic distribution (see Harris, 2001) by using perturbation (see Kent et al.,

1983; Kato, 2013), respectively. We first find the distribution of ŵTw by the

perturbation of the estimated helix axis ŵ, then we deduce the distribution of

1 − ŵTw from this. If we have small errors in the original model, these errors

percolate through almost linearly into small perturbations in ŵ.
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For a data helix H of size n × 3, where yi = [yi1, yi2, yi3]T , recall the helix

model (1.3)

yi = y(ti) = r cos(ti)u+ r sin(ti)v + ctiw + b+ εi,

where ti = (i − 1)δ, δ = 2π
3.6

, and εi = [εi1, εi2, εi3]T , where all εij are assumed

to be independent and N(0, σ2) for i = 1, . . . , n and j = 1, 2, 3. We expand the

increments in (3.1) as follows

di = yi −
yi+1 + yi−1

2

= r(cos ti −
1

2
cos(ti + δ)− 1

2
cos(ti − δ))u

+ (sin ti −
1

2
sin(ti + δ)− 1

2
sin(ti − δ))v

+ 0w + (εi −
1

2
εi+1 −

1

2
εi−1)

= r(cos ti −
1

2
(cos ti cos δ − sin ti sin δ + cos ti cos δ + sin ti sin δ))u

+ r(sin ti −
1

2
(sin ti cos δ − cos ti sin δ + sin ti cos δ + cos ti sin δ))v + ei

= r((cos ti − cos ti cos δ)u+ r(sin ti − sin ti cos δ)v) + ei

= r(cos ti(1− cos δ)u+ sin ti(1− cos δ)v) + ei.

Recall δ = 2π
3.6

, then 1− cos δ = 1.17, so

di = 1.17r(cos tiu+ sin tiv) + ei

= 1.17r


cos ti

sin ti

0

+


ei1

ei2

ei3

 .

Let µi = 1.17r[cos ti, sin ti, 0]T and ei = εi − εi−1+εi+1

2
, i = 1, . . . , n. In conse-

quence, we have that ei ∼ N3(0, 3
2
σ2I3). Since di = yi − yi+1+yi−1

2
, the vectors

di are dependent. We treat the ei as independent to simplify the analysis below.

Then the di are identically distributed, following the normal distribution with
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mean vector [αi, βi, 0]T and with variance-covariance matrix 3
2
σ2I3, and we treat

them as independent.

Recall that the eigen-decomposition of E = DTD gives that the first and

second principal components are expected to be approximately equal and have

larger variation (λ1 ≈ λ2) than the third component. The third component is

orthogonal to the first and second components and has the smallest variation

(λ3) since di are computed in such a way that the z-coordinate of each point

are zero for a mathematical helix and a small value for a statistical helix (see

Section 3.5.1). Then E =
∑n−1

i=2 did
T
i can be written as

E =
n−1∑
i=2

did
T
i

=
n−1∑
i=2

µTi µi + (µTi ei + eTi µi) + eTi ei

= A+B + C,

whereA =
∑n−1

i=2 µ
T
i µi, B =

∑n−1
i=2 µ

T
i ei+e

T
i µi of order ||ei||, and C =

∑n−1
i=2 e

T
i ei

of order ||e2
i ||, where A,B and C are symmetric. We can rewrite E as

E =

n−1∑
i=2

did
T
i

=

n−1∑
i=2

(1.17)2


r cos ti + ei1

r sin ti + ei2

ei3

[ r cos ti + ei1 r sin ti + ei2 ei3

]

=
n−1∑
i=2

(1.17)2


(r cos ti + ei1)2 (r cos ti + ei1)(r sin ti + ei2) (r cos ti + ei1)ei3

(r cos ti + ei1)(r sin ti + ei2) (r sin ti + ei2)2 (r sin ti + ei2)ei3

(r cos ti + ei1)ei3 r(sin ti + ei2)ei3 e2
i3

 ,
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where

A =
n−1∑
i=2

(1.17r)2


cos2 ti cos ti sin ti 0

cos ti sin ti sin2 ti 0

0 0 0

 ,

B =
n−1∑
i=2

1.17r


2ei1 cos ti ei2 cos ti + ei1 sin ti ei3 cos ti

ei2 cos ti + ei1 sin ti 2ei2 sin ti ei3 sin ti

ei3 cos ti ei3 sin ti 0

 ,

C =
n−1∑
i=2


e2
i1 ei1ei2 ei1ei3

ei1ei2 e2
i2 ei2ei3

ei1ei3 ei2ei3 e2
i3

 .

The points (cos ti, sin ti) are “almost balanced” points in the sense that their

centre of gravity is near the origin. There would be exact balance if it were the

case that δ = 2π
k

for some k ≥ 2 and n were a multiple of k; see Appendix A.2.

Then A can be written approximately as

A ≈ n(1.17r)2

2


1 0 0

0 1 0

0 0 0

 .

Therefore, eigenvalues of A = diag(λj), j = 1, 2, 3 are approximately λ1 = λ2 =

(1.17r)2 n
2

and λ3 = 0. The Moore-Penrose generalized inverse of A , (see Magnus

and Neudecker, 2003, pp. 172-175), is

T = − 2

n(1.17r)2


1 0 0

0 1 0

0 0 0

 .
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Then we can derive the perturbation of the unit vector ŵ by w(1) = TBw as

w(1) = −
n−1∑
i=2

2(1.17r)

n(1.17r)2


1 0 0

0 1 0

0 0 0




2ei1 cos ti ei2 cos ti + ei1 sin ti ei3 cos ti

ei2 cos ti + ei1 sin ti 2ei2 sin ti ei3 sin ti

ei3 cos ti ei3 sin ti 0




0

0

1



= − 2

1.17rn


∑n−1

i=2 ei3 cos ti∑n−1
i=2 ei3 sin ti

0

 .

Since the helix axis ŵ is a unit vector, the third component of ŵ can be deduced

from w(1) as

1− ((− 2

1.17rn

n−1∑
i=2

ei3 cos ti)
2 + (− 2

1.17rn

n−1∑
i=2

ei3 sin ti)
2)

= 1− 4

(1.17rn)2
((
n−1∑
i=2

ei3 cos ti)
2 + (

n−1∑
i=2

ei3 sin ti)
2).

Then 1 − ŵTw is half the squared distance between w and ŵ which can be

written as

1

2
||w − ŵ||2 = 1− ŵTw,

=
4

(1.17rn)2
((
n−1∑
i=2

ei3 cos ti)
2 + (

n−1∑
i=2

ei3 sin ti)
2).

Recall 2
1.17rn

∑n−1
i=2 ei3 cos ti and 2

1.17rn

∑n−1
i=2 ei3 sin ti are approximately normal

with mean 0 and approximate variance 6σ2

(1.17rn)2

∑n−1
i=2 cos2 ti and they are ap-

proximate uncorrelated, where ei3 is assumed to follow N(0, 3
2
σ2). Then 1-wT ŵ

follows (1.17rn)2

6σ2
∑n−1
i=2 cos2 ti

χ2
2. But this is not quite true for two reasons: first we as-

sumed that ei3, i = 1, . . . , n are independent; second we also assumed cos ti and

sin ti are perpendicular to each other in equally spaced points around the helix.

The second perturbation w(2) is derived by the equation

w(2) = TBw(1) − 1

2
{w(1)Tw(1)T}w − λ(1)T 2Bw + TCw,
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and

TBw(1)

=
n−1∑
i=2

4(1.17r)

n2(1.17r)3

 1 0 0

0 1 0

0 0 0


 2ei1 cos ti ei2 cos ti + ei1 sin ti ei3 cos ti

ei2 cos ti + ei1 sin ti 2ei2 sin ti ei3 sin ti

ei3 cos ti ei3 sin ti 0


 ei3 cos ti

ei3 sin ti

0



=
n−1∑
i=2

4

(1.17rn)2


2ei1 cos ti ei2 cos ti + ei1 sin ti ei3 cos ti

ei2 cos ti + ei1 sin ti 2ei2 sin ti ei3 sin ti

0 0 0



ei3 cos ti

ei3 sin ti

0



=
4

(1.17rn)2



2
∑
ei1ei3 cos2 ti +

∑
ei2ei3 cos ti sin ti +

∑
ei1ei3 sin2 ti∑

ei2ei3 cos2 ti +
∑
ei1ei3 cos ti sin ti + 2

∑
ei2ei3 sin2 ti

0


,

and

{w(1)Tw(1)}w =
4

(1.17rn)2

[ ∑n−1
i=2 ei3 cos ti

∑n−1
i=2 ei3 sin ti 0

]
∑n−1

i=2 ei3 cos ti∑n−1
i=2 ei3 sin ti

0




0

0

1



=
4

(1.17rn)2


0

0

(
∑n−1

i=2 ei3 cos ti)
2 + (

∑n
i=1 ei3 sin ti)

2

 ,

where

T 2 =
4

n2(1.17r)4


1 0 0

0 1 0

0 0 0

 ,
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and

T 2Bw =

n−1∑
i=2

4(1.17r)

n2(1.17r)4


1 0 0

0 1 0

0 0 0




2ei1 cos ti ei2 cos ti + ei1 sin ti ei3 cos ti

ei2 cos ti + ei1 sin ti 2ei2 sin ti ei3 sin ti

ei3 cos ti ei3 sin ti 0




0

0

1



=

n−1∑
i=2

4

n2(1.17r)3


2ei1 cos ti ei2 cos ti + ei1 sin ti ei3 cos ti

ei2 cos ti + ei1 sin ti 2ei2 sin ti ei3 sin ti

0 0 0




0

0

1



=

n−1∑
i=2

4

n2(1.17r)3


ei3 cos ti

ei3 sin ti

0

 ,

and

TCw = −
n−1∑
i=2

2

(1.17rn)2


1 0 0

0 1 0

0 0 0




e2
i1 ei1ei2 ei1ei3

ei1ei2 e2
i2 ei2ei3

ei1ei3 ei2ei3 e2
i3




0

0

1



= −
n∑
i=1

2

(1.17rn)2


1 0 0

0 1 0

0 0 0



ei1ei3

ei2ei3

e2
i3



= −
n∑
i=1

2

(1.17rn)2


ei1ei3

ei2ei3

e2
i3

 .
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Then

w(2) =
4

(1.17rn)2



2
∑
ei1ei3 cos2 ti +

∑
ei2ei3 cos ti sin ti +

∑
ei1ei3 sin2 ti∑

ei2ei3 cos2 ti +
∑
ei1ei3 cos ti sin ti + 2

∑
ei2ei3 sin2 ti

0



− 2

(1.17rn)2


0

0

(
∑n

i=1 ei3 cos ti)
2 + (

∑n
i=1 ei3 sin ti)

2



−
n−1∑
i=2

2

1.17rn


ei3 cos ti

ei3 sin ti

0

−
n∑
i=1

2

(1.17r)2


ei1ei3

ei2ei3

e2
i3

 .

We know that the helix axis w perturbation as follows

w = w(0) +w(1) +w(2),

then

1 = wTw

= [w(0) +w(1) +w(2)]T [w(0) +w(1) +w(2)]

= w(0)Tw(0) + 2w
(1)
3 + 2w

(2)
3 +w(1)Tw(1)

= 1 + 0 + (2w
(2)
3 +w

(1)2
1 +w

(1)2
2 ),

So that the third component of w(2) up to the first order perturbation is

w
(2)
3 = −1

2
(w

(1)2
1 + w

(2)2
1 ),

which makes us sure that w(1) is correct.
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3.9 Fitting OptLS method to the data α-helix

For a real dataset of n = 15 points on α-helix from Mardia et al. (2018) (see

Appendix B, helix 8 in Table B.8) which is presented in Figure 3.8, we apply

OptLS to estimate the parameters.

−26 −24 −22 −20 −18 −16

 5
10

15
20

25
30

42

44

46

48

50

52

54

56

x

y

z

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.8: The data helix of 15 points.

The first rotation matrix Γ̂1 is

Γ̂1 =


0.212 0.924 0.318

0.762 −0.360 0.537

0.612 0.129 −0.780

 ,

where the third column of Γ̂1 is the helix axis ŵ corresponding to the smallest

eigenvalue of E (see Section 3.1). Figure 3.9 presents the helix after the first

rotation. Recall, to estimate the other helix parameters we put the helix into

semi-canonical coordinates by rotating the n× 3 data matrix H by this rotation

matrix Γ̂1, Ho = HΓ̂1, which is explained in Section 3.5.2.

The least squares estimates of the shape parameters (radius r and pitch c)

and the registration parameters (shift vector b and angle τ) are shown in the
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Figure 3.9: The data helix of 15 points after applying the first rotation.

following least squares fit equation

ẑ(ti) = 2.279 cos(ti + 1.655)


1

0

0

+2.279 sin(ti + 1.655)


0

1

0



+ 0.851ti


0

0

1

+


44.848

−35.384

−6.416

 .

We also need to note that the estimate τ̂ gives the rotation matrix Γ̂2, which

rotates the helix about the z-axis,

Γ̂2 =


−0.084 −0.996 0

0.996 −0.084 0

0 0 1

 .

Then Figure 3.10 presents the data helix in canonical coordinates after shifting

and rotating.
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Figure 3.10: The data helix of 15 points in canonical coordinates.

The least squares procedure also provides the standard deviation of the resid-

uals σ = 0.246, which measures how close the fitted helix is to the data helix.

The residual sum of squares has a length measurement unit, angstroms Å2, and

can be calculated as

SSE = (3n− p)σ2

= 39 · (0.061) = 2.379,

where p = 6 is the number of parameters. The squared multiple correlation

coefficient R2 = 0.996 and the adjusted R2 demonstrate that the model has good

fit to real data. In other words, the variables explain 99.6% of the variability

in the data. The multiple correlation coefficient R = 0.998 suggests that the

correlation between the predicted and observed values is strong.

In general, we fit the helix very closely. Comparing the standard deviation

σ = 0.246 Å to the radius r = 2.3 Å suggests that the fitted helix is a good fit,

but not as highly as the computed R2 claimed.

We are interested in estimating the relation of z′i1, z
′
i2 and z′i3, for all i, with

the helix model (i.e. design matrix X ′), so that we minimize the deviations
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Figure 3.11: The data helix three coordinates residuals.

corresponding to the three coordinates. Figure 3.11 presents three residuals cor-

responding to the fitted values of the three coordinates: the left panel presents

the residuals which are perpendicular to the helix axis (ei1 =
∑n2

i=n1
(z′i1 − ẑ′i1)2),

the middle panel presents the residuals which are along the helix axis (ei3 =∑n2

i=n1
(z′i3 − ẑ′i3)2), and the right panel presents the residuals which are perpen-

dicular to helix axis (ei2 =
∑n2

i=n1
(z′i2− ẑ′i2)2), n1 = 1, n2 = 15. Figure 3.11 shows

a quadratic behaviour (V-shape) between the residuals of x-coordinate and time,

and between the residuals of y-coordinate and time, which is not captured by

the OptLS method. The V-shape suggests that the axis could be bent. In order

to investigate x and y coordinates residual plots to check for any indication of a

bend, we test the null hypothesis H0 : ‘all of the quadratic coefficients are zero’

i.e. the helix has no bend.

We fit two quadratic functions to each of the x and y residuals plots against

time using least squares. Let ρi be the x residual quadratic function and γi the

y residual quadratic function of the form

ρi = a0 + a1ti + a2t
2
i + εi, (3.10)

γi = b0 + b1ti + b2t
2
i + νi, (3.11)

where εi and νi are the errors and aj, bj ∈ R. Our null hypothesis is thus H0 :
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b2 = 0 = a2. The estimate of the quadratic coefficient from the quadratic fit

of x residuals is â2 = −0.059 with small standard error of 9 × 10−4 and p-

value of 3 × 10−4 < 0.01. The null hypothesis is rejected and we need to add

this parameter to the model. The estimate of the quadratic coefficient from the

quadratic fit of y residuals is b̂2 = 0.005 with small standard error of 6 × 10−4

and p-value of 4 × 10−4 < 0.01. The null hypothesis is rejected and we need to

add this parameter to the model.

We choose to rotate the helices clockwise about the z-axis so that the axis

of the sub-helix H(2), after the change point position, will lie on the x-axis. We

will, therefore, expect changes in the x and y residuals plots such that one shows

random noise, since the quadratic coefficient will become 0, and the other vividly

displays a quadratic behavior. To this end, we find the angle φ between the H(2)

axis and the positive x-coordinate. Hence, the 3D clockwise rotation matrix R is

R =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 .

Since we rotate about the z-axis, no z-coordinate changes and it is sufficient

to work with just the x− and y-coordinates. Hence, R rotates the column vector

[â2, b̂2]T clockwise to [a∗2, b
∗
2]T as follows:

 a∗2

b∗2

 =

 cosφ − sinφ

sinφ cosφ

 â2

b̂2

 ∝
 1

0

 .
So that [a∗2, b

∗
2]T is given by

a∗2 = â2 cosφ− b̂2 sinφ ∝ 1,

b∗2 = â2 sinφ+ b̂2 cosφ ∝ 0,
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and then the angle φ between the two vectors [â2, b̂2]T and [1, 0]T can be derived

as

φ̂ = atan2(b̂2, â2).

Table 3.4: The estimates of quadratic coefficients before and after rotation
from the quadratic fit of the x and y residuals plots.

coordinates â2 a∗2 b̂2 b∗2

x -0.059 0.135 0.002 0.005
y -0.121 −1× 10−3 0.005 0
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Figure 3.12: The data helix three coordinates residuals after rotation.

Figure 3.12 shows a quadratic behaviour (V-shape) in the x residual plot

and the y residuals are randomly distributed. This result agrees with the data

presented in Table 3.4. Panel (c) is not affected by the rotation since we rotate

about the z-axis. This V-shape in the x residual plot indicates a bend where

there is a need for further investigation (which we test by bootstrapping later in

Chapter 5, see Section 5.5).
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3.10 Cone helix

We fit a cone-helix of 36 landmarks using our estimation method of regular

helix OptLS. The purpose of fitting a cone helix is to compare the residuals plot

of a regular helix with the residuals plot of the cone helix. We can see below that

the cone-helix residual plots present strong pattern.

Figure 3.13 displays four figures illustrating how the fitted points behave.

The residual plots in panels (a), (b) and (c) presents each coordinate’s residuals

against time. Panels (a) and (b) show non-random patterns as the differences

between the simulated and predicted points are very high and then decrease to

close zero at the middle of the helix and then get higher again. These Panels

confirm what we can see in the first panel of Figure 3.13 that the fitted points in

red at the middle of the cone-helix are very close to the simulated points in black.

Panel (c) shows a non-random pattern as the residuals spreads in a cone-shaped

pattern.

3.11 Conclusion

We developed a method, OptLS, for fitting a regular helix. If we know w,

then we can use least squares method to estimate the parameters (r, c, b, and τ)

and calculate the residual sum of squares. If we do not know w, then we let

w vary and minimize the residual sum of squares, which we do numerically and

need an initial axis to start. Several methods have been developed for estimating

the helix axis which can be used to estimate the initial axis. Some of these

methods are parametric least squares (Parlsq), eigenvector method (Eigenfit),

and rotational least squares (Rotfit). We studied these methods and found that

Parlsq and Eigenfit gave poor estimates of the axis for a fat short helix (tuna

can), while Rotfit gave an accurate estimate. We also developed a new method

based on modified principal components to estimate the initial helix axis for a
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Figure 3.13: Four figures illustrate how the fitted of a cone helix of 36 land-
marks: (a) Scatter plot presents the simulated helix in black and the fitted
helix in red. Both (b), and (c), present the x- and y-coordinates residuals
show bow tie shaped pattern. (d) The z- coordinates residuals clearly shows a
cone-shaped pattern.

regular helix, called the difference eigenvector method (Difeigenfit). We did some

simulations to study OptLS and Difeigenfit and found that the distributions of

our estimates of r and c show bell-shaped curves around the real protein α-helix

values. After that, we compared OptLS and Difeigenfit with Parlsq, Eigenfit, and

Rotfit by simulation and found OptLS is the most accurate method among these

methods and Rotfit comes after.

Finally, we fitted a real data helix by OptLS and found the estimated pa-

rameters r and c are close to the ideal values and the square of the coefficient

of multiple correlation R2 is close to 1, which indicates that the fitted helix is

a good fit. In addition, σ̂2 = 0.061 is close to the theoretical σ2 = 0.065 as

empirically based estimate of a number of straight helices (unkinked as called

by Mardia et al. (2018)). On the other hand, the x-coordinates residuals plot

showed a V-shape pattern which indicates a bend that certainly required further

investigation which we shall return to later in Chapter 5.
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Further, we investigated fitting a simulated cone helix. The residual plots

showed a non-random pattern in the three coordinates which suggests that OptLS

did not fit the data well.



Chapter 4

Helix modelling through the

Mardia-Holmes model framework

4.1 Introduction

A circle is a special case of a helix as we will describe later in this chapter.

Recall the mathematical helix model (1.1), with b = 0, is

y1 = r cos(t),

y2 = r sin(t),

y3 = ct. (4.1)

The first two coordinates y1 and y2 of the mathematical helix model (4.1) draw

points around a circle, but the third coordinate y3 varies as t varies, 0 ≤ t ≤ 2π.

78
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The projected helix (4.1) onto xy-plane is a circle

y1 = r cos(t),

y2 = r sin(t),

y3 = 0, (4.2)

where y1 and y2 are the coordinates form a circle with radius r. The statistical

circle equation is exactly equation (4.2) but with added noise, as follows

y1i = r cos(ti) + ε1i,

y2i = r sin(ti) + ε2i. (4.3)

The errors ε1i and ε2i are assumed to be from independent normal distributions

with mean 0 and variance σ2. The starting point is (r, 0) at t = 0, and the points

move counter-clockwise around the circle if we look from above. A special case

of this, is when r = 1, then the coordinates give a unit circle as t varies, with

starting point (1, 0).

In this chapter, we adapt the model by Mardia and Holmes (1980) for fitting

circle and ellipse to data helix, to estimate the helix axis. It was originally

designed for stone uniformly spread on circle or ellipse. This model has the mode

set of circle or ellipse. The unknown parameters in the M-H model from Mardia

and Holmes (1980) are the positive real κ (concentration), the vector α = [a b]T

(location) and the 2 × 2 matrix Σ. If we have data points zi = [y1i y2i]
T ∈ R2,

i = 1, . . . , n, then the M-H model is

f(z) = C(κ)|Σ|−1/2 exp{−1

2
κ[(z −α)TΣ−1(z −α)− 1]2}, (4.4)

where the normalization constant is C(κ) = (κ/2π)1/2

πΦ(κ1/2)
, and the ellipse, (z −

α)TΣ−1(z −α) = 1, is the mode.

We would like to fit a data set of n points zi = [y1i y2i]
T , i = 0, . . . , n, in the
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two-dimensional plane using Mardia-Holmes (M-H) model. If we could write the

2 × 2 matrix Σ as Σ = ρ2I2, where ρ2 ∈ R+ and I2 is the identity matrix, then

the model gives a circle with radius ρ, otherwise this model gives an ellipse. We

will estimate the unknown parameters in five cases.

Case 1 Unit-circle with one unknown parameter κ (concentration), where Σ = I

and α = 0.

Case 2 Unit-circle with unknown parameters κ and α, where Σ = I.

Case 3 Circle with unknown parameters κ, α and radius ρ, where Σ = ρ2I.

Case 4 Ellipse with Σ unknown but κ and α are known.

Case 5 Ellipse with all the parameters, κ, α and Σ are unknown.

To illustrate we create a toy dataset of 10 points around the circle in Section 4.4.

In addition, we use the algorithm nlm (the unconstrained optimization al-

gorithm routine in R, see R Core Team (2014)), which minimizes the negative

log-likelihood function (equivalent to maximizing the log-likelihood function) to

estimate the unknown parameters. The nlm algorithm is a straightforward algo-

rithm since we can give the function without adding the derivative. In order to

work faster in R we add the gradient to the algorithm.

Since we want to use an unconstrained optimizer such as nlm, it is neces-

sary to parameterize the constrained parameters. The parameters κ and ρ are

constrained by κ > 0, and ρ > 0, so we transform using the natural logarithm

to the unconstrained parameters η = log(κ) and τ = log(ρ). Then taking the

exponential of these new parameters guarantees that the values of κ and ρ are

positive.

In addition, we must be careful when choosing the starting values as a bad

choice for the starting point of the location parameter can lead to a singularity

of the likelihood. More specifically, the likelihood blows up to +∞ as the initial
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value for the center of the circle moves far away from the origin and the other

parameters are suitably chosen. In particular, if α = sα0 where α0 is any

unit two-dimentional vector, the negative log likelihood function (Section 4.2.3)

satisfies

− logL(κ,α, ρ) ' κ

2

n∑
i=1

[
|zi − sα0|2

ρ2
− 1

]2

− n

2
log κ

=
κ

2

n∑
i=1

[
zTi zi
s2
− 2zTi α0

s

]2

− n

2
log κ

=
1

2

[
n∑
i=1

(zTi zi)
2

s2
− 4

∑n
i=1(zTi zi)(z

T
i α0)

s
+ 4

n∑
i=1

(zTi α0)2

]
− n

2
log s2

→ −∞,

as κ = ρ2 = s2 →∞.

The M-H model can be used to estimate the helix axis; we shall give examples

in Section 4.6. The mode is an ellipse or a circle. The M-H model can be

used to describe the behaviour of the helix data after projecting on the plane

perpendicular to the helix axis. The parameter ρ is matched to the helix radius

r and the concentration parameter κ ia asymptotically the helix variance σ2, see

Section 4.5. Start by estimating the initial helix axis w using any helix axis

estimation method as we discussed in Chapter 3. After that, we can project the

helix data on the xy-plane so that data point are fall around circle. Then we can

fit the M-H model to the data on the xy-plane and obtain residual sum of squares

RSS(w) which is a function of the helix axis. The estimate of the helix axis is the

value which minimises RSS(w), see Section 4.6. There are two problems, one is

we need to estimate an initial helix axis in order to project the data and then find

the axis. The other problem is that M-H method is not a stable method since

the nlm optimizer in R needs initial values, and it could fail to find the accurate

axis if the initial values are bad.

In the following two sections we estimate the unknown parameters in the
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M-H model for the circle and the ellipse cases. We split the circle case into 3

cases and the ellipse into two cases.

4.2 Fitting a circle using the Mardia-Holmes

model

The angular distribution θi = atan2(y2i, y1i) of pair data points here are dis-

tributed uniformly around the circle, i.e. the distribution of the angle θi between

the points is uniform with density of 1
2π

within the interval [0, 2π). Looking at the

M-H model (4.4), for the circle case we have Σ = ρ2I2 where ρ2 > 0 is the radius

of the circle. For estimation of the unknown parameters, we begin by assuming

κ is unknown, then both κ and α are unknown, and finally all κ, α and ρ2 are

unknown. In the first two cases for estimating the parameters we assume ρ = 1,

and in the very first case we translate the plane to assume α = 0.

4.2.1 One unknown parameter κ

In this subsection, we have a unit circle centred at the origin (ρ = 1,α = 0)

with κ unknown. The aim here is to estimate κ using maximum likelihood estima-

tion (MLE), see Mardia and Holmes (1980). For large κ the squared Mahalanobis

distance (z − α)TΣ−1(z − α) is asymptotically normally distributed (for more

details see Section 4.5 when κ = 100), so that the MLE estimates are the same

as the least squares estimates (LSE), (see e.g. Garthwaite et al. (2002), p. 61).

Then under these assumptions, the M-H model (4.4) simply becomes

f(zi) = C(κ) exp{−κ
2

(r2
i − 1)2}, (4.5)
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where zi = [y1i y2i]
T and r2

i = y2
1i + y2

2i, ri ≥ 0, i = 1, · · · , n. The likelihood

function is

L(κ | zi) =
n∏
i=1

f(zi | κ). (4.6)

So the log-likelihood function is

logL(κ | zi) = n logC(κ)− κ

2

n∑
i=1

(r2
i − 1)2.

The first derivative of the log-likelihood with respect to κ is

∂ logL(κ | zi)
∂κ

=
n

2

(
1

κ
− 1√

κ

φ(
√
κ)

Φ(
√
κ)

)
− 1

2

n∑
i=1

(r2
i − 1)2, (4.7)

where 1
n

∑n
i=1(r2

i − 1)2 is the variance of r2 about 1, does not depend on κ.

The first derivative of the log of the normalization constant with respect to κ

is positive, and this matches Figure 4.1 which shows that it is monotonically

decreasing. Then C(κ) is increasing as in Figure 4.2.

The second derivative of the log-likelihood with respect to κ in equation (4.8)

is negative which shows that C(κ) is concave. A concave function plus the linear

function of the data is still a concave function (see Simon and Blume (1994),

chapter 21), thus the log likelihood function is concave.

∂2 logL(κ | zi)
∂κ2

=
−n
2κ2

+
1

2k3/2

φ(
√
κ)

Φ(
√
κ)

+
n

2κ

√
κ√
2π
e−

k
2 Φ(
√
κ) + φ(

√
κ)

Φ(
√
κ)

. (4.8)

It is difficult to compute an estimate of κ by hand, so we use numerical

optimization. The likelihood takes the form of an exponential family therefore

we can maximize the function by nlm, (e.g. Moller and Waagepetersen (2004) or

Garthwaite et al. (2002)) . Since the function ∂ logC(κ)
∂κ

is monotonically decreasing,
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Figure 4.1: The plot of ∂ logC(κ)
∂κ .

then we can search to the left of the function to get the positive values and to

the right to get the negative value called bounds of κ, see Section 4.4, then the

initial value in nlm of κ is chosen here the lower bound value of 10.

4.2.2 Unknown parameters κ and α

For the unit circle ρ = 1, Σ = I, κ and α = [a b]T we substitute our

assumptions in the M-H model (4.4), and this gives

f(zi) = C(κ)|I|−1/2 exp{−κ
2

[(zi −α)T I−1(zi −α)− 1]2}

= C(κ) exp{−κ
2

[(zi −α)T (zi −α)− 1]2}, (4.9)

where I−1 = I, |I|−1/2 = 1, and C(κ) = (κ/2π)1/2

πΦ(κ1/2)
. The likelihood function is

L(κ,α | zi) =
n∏
i=1

f(zi | κ,α),
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Figure 4.2: The plot shows the function C(κ) is increasing.

while the log-likelihood function is

logL(κ,α | zi) = n logC(κ)− κ

2

n∑
i=1

[(zi −α)T (zi −α)− 1]2.

We calculate the first derivatives of the log-likelihood with respect to α =

[a, b]T . We differentiate with respect to a by letting vi = (zi−α)T (zi−α)− 1 =
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(y1i − a)2 + (y2i − b)2 − 1 and m = −κ
2

∑n
i=1 v

2
i , then

∂ logL(κ,α | zi)
∂a

=
∂

∂a
(−κ

2

n∑
i=1

[(zi −α)T (zi −α)− 1]2)

=
∂

∂a
(−κ

2

n∑
i=1

[(y1i − a)2 + (y2i − b)2 − 1]2)

=
∂

∂a
(−κ

2

n∑
i=1

v2
i )

=
n∑
i=1

∂m

∂vi

∂vi
∂a

= (−κ
n∑
i=1

vi)(−2(y1i − a))

= 2κ
n∑
i=1

viy1i − 2κ
n∑
i=1

via. (4.10)

To estimate a we let the first derivative of the log-likelihood with respect to

a in equation (4.10) be equal to zero, and then

â =

∑n
i=1 viy1i∑n
i=1 vi

.

The derivative with respect to b is

∂ logL(κ,α | zi)
∂b

=
∂

∂a
(−κ

2

n∑
i=1

v2
i )

= (−κ
n∑
i=1

vi)(−2(y2i − b))

= 2κ
n∑
i=1

viy2i − 2κ
n∑
i=1

vibi. (4.11)

To estimate b, let the first derivative of the log-likelihood with respect to b in

equation (4.11) be equal to zero. We get

b̂ =

∑n
i=1 viy2i∑n
i=1 vi

,
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where each vi is dependent on a and b. We have to guess initial values of a

and b to substitute into vi. Another way to try to estimate a and b is to use

the polyroot function in R. Since the gradient with respect to a in (4.10) is

a polynomial in a for each b and the gradient with respect to b in (4.11) is a

polynomial in b for each a. We start with an initial guess of a and update b, and

iteratively cycle back and forth until the estimates converge. This is an example

of alternating optimization procedure as each variable optimize give the other. In

a limited simulation study it has been found to yield the same soluation as nlm,

as expected. However, the method still requires an initial estimate of a or b, and

so it does not avoid the problem of needing sensible initial estimates. Further, in

general, alternating optimization procedures are typically slower than methods

that treat a and b jointly, such as nlm.

The first derivative of the log-likelihood with respect to κ is

∂ logL(κ,α | zi)
∂κ

= n

(
1

2κ
− 1

2
√
κ

φ(
√
κ)

Φ(
√
κ)

)
− 1

2

n∑
i=1

v2
i . (4.12)

We used the iterative procedure nlm in R to estimate all the parameters

α = [a, b]T and κ with the same dataset in the previous case and we attribute

nlm with the gradient vector to make the nlm work faster. The initial parameters

values are chosen to be α = [ȳ1, ȳ2]T , where ȳ1 = 1
n

∑n
i=1 y1i, ȳ2 = 1

n

∑n
i=1 y2i, and

κ = 10.

4.2.3 Unknown parameters κ, α and ρ

In this case we estimate the unknown parameters κ, α, and ρ, where we have

a circle of radius ρ centred at α = [a b]T with concentration κ. Thus, we have

Σ = ρ2I and the M-H model is

f(zi) = C(κ)|ρ2I|−1/2 exp{−κ
2

[(zi −α)Tρ−2I−1(zi −α)− 1]2},
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where I−1 = I, |I|−1/2 = 1, and C(κ) = (κ/2π)1/2

πΦ(κ1/2)
. The likelihood function is

L(κ,α, ρ | zi) =
n∏
i=1

f(zi | κ,α, ρ),

and the log-likelihood function is

logL(κ,α, ρ | zi)

= n logC(κ)− n

2
log(|ρ2I|)− κ

2

n∑
i=1

[(zi −α)Tρ−2I(zi −α)− 1]2

= n logC(κ)− n

2
log(ρ4)− κ

2

n∑
i=1

[
1

ρ2
(y1i − a)2 +

1

ρ2
(y2i − b)2 − 1]2,

where n logC(κ) = n
2
(log(κ)− log(2π))−n(log(π)+ log Φ(

√
κ)). The first deriva-

tives of the log-likelihood with respect to κ, a and b are the same as in the

unit-circle except v is different, since Σ = ρ2I. We denote the new v by w, where

wi = 1
ρ2

(y1i − a)2 + 1
ρ2

(y2i − b)2 − 1, so we have the following first derivatives

∂ logL(κ,α, ρ | zi)
∂κ

= n(
1

2κ
− 1

2
√
κ

φ(
√
κ)

Φ(
√
κ)

)− 1

2

n∑
i=1

w2
i ,

∂ logL(κ,α, ρ | zi)
∂a

=
2κ

ρ2

n∑
i=1

wi(y1i − a),

and

∂ logL(κ,α, ρ | zi)
∂b

=
2κ

ρ2

n∑
i=1

wi(y2i − b).
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The first derivative of the log-likelihood with respect to ρ is

∂ logL(κ,α, ρ | zi)
∂ρ

=
∂

∂ρ
(−n

2
log(ρ4)− κ

2

n∑
i=1

w2
i )

= −4nρ3

2ρ4
+

2κ

ρ3

n∑
i=1

wi((y1i − a)2 + (y2i − b)2)

= −2n

ρ
+

2κ

ρ3

n∑
i=1

wi((y1i − a)2 + (y2i − b)2).

then

ρ̂ =

√
2κ
∑n

i=1wi((y1i − a)2 + (y2i − b)2)

2n

As in previous case, we used iterative procedure nlm in R adding the gradient

vector to estimate all the parameters α, κ and ρ. The initial values are α =

[ȳ1, ȳ2]T , ρ = 1, and κ = 10.

4.3 Fitting an ellipse using the Mardia-Holmes

model

4.3.1 The matrix Σ is unknown

The aim of this section is to fit an ellipse with known location, assume (0, 0),

using the M-H model, we assume the concentration parameter κ = 10, since in

practice the lower boundary of κ is 1 and the upper bound of 64. (see Section 4.4).

Then the function (4.4) can be written as

f(zi) =
(2.303/2π)

1
2

(πΦ(
√

2.303))
|Σ|−1/2 exp{−2.303

2
[zTi Σ−1zi − 1]2}.

The unknown symmetric positive-definite matrix Σ can be decomposed by

the Cholesky decomposition (see Section 2.3) into a unique product of a lower unit
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triangular matrix, a diagonal matrix and a transpose of the lower unit triangular

matrix, which is presented as follows:

Σ = LGLT ,

=

 1 0

l12 1

 exp(g1) 0

0 exp(g2)

 1 l12

0 1


=

 exp(g1) exp(g1)l12

exp(g1)l12 exp(g1)l212 + exp(g2)

 . (4.13)

The matrix Σ contains three unknown parameters, namely l12, exp(g1) and

exp(g2). The parameters l12, g1 and g2 are unconstrained. The resulting matrix

Σ is then positive-definite.

Before writing down the log-likelihood function, we need to calculate det(Σ),

Σ−1 and zTΣ−1z as follows. First,

det(Σ) = exp(g1)× (exp(g1)l212 + exp(g2))− exp(g1)2l212

= exp(g1)2l212 + exp(g1) exp(g2)− exp(g1)2l212

= exp(g1) exp(g2).

From that and equation (4.13) we have

Σ−1 =
1

exp(g1) exp(g2)

 exp(g1)l212 + exp(g2) − exp(g1)l12

− exp(g1)l12 exp(g1)
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since exp(g1) exp(g2) > 0. Finally,

zTΣ−1z =
(
x y

) l212
exp(g2)

+ 1
exp(g1)

− l12
exp(g2)

− l12
exp(g2)

1
exp(g2)

 x

y


=
(
x(

l212
exp(g2)

+ 1
exp(g1)

)− yl12
exp(g2)

− xl12
exp(g2)

+ y
exp(g2)

) x

y


=

x2l212

exp(g2)
+

x2

exp(g1)
− xyl12

exp(g2)
− xyl12

exp(g2)
+

y2

exp(g2)

=
x2l212

exp(g2)
+

x2

exp(g1)
− 2xyl12

exp(g2)
+

y2

exp(g2)
.

Letting v = zTΣ−1z − 1, the log-likelihood function is

logL(Σ|zi) =
n

2
log(

2.303

2π
)− n log(πΦ(

√
2.303))− n

2
(g1 + g2)− 2.303

2

n∑
i=1

v2
i .

Now we find the analytical solution to our log-likelihood function. To do this

we start by taking the first derivative of the log-likelihood function with respect

to g1

∂ logL(Σ|zi)
∂g1

=
∂ log

∂g1

(−n
2

(g1 + g2)− 2.303

2

n∑
i=1

v2
i )

= −n
2

+ 2.303
n∑
i=1

vi
y2

1i

exp(g1)
.

The first derivative of the log-likelihood with respect to g2

∂ logL(Σ|zi)
∂g2

= −n
2

+ 2.303
n∑
i=1

vi

(
y2

1il
2
12

exp(g2)
− 2y1iy2il12

exp(g2)
+

y2
2i

exp(g2)

)
.

Finally, the first derivative of the log-likelihood with respect to l12

∂ logL(Σ|zi)
∂l12

= −2.303
n∑
i=1

vi

(
2y2

1il12

exp(g2)
− 2y1iy2i

exp(g2)

)
.
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We used the iterative procedure nlm in R to estimate all the parameters l12, g1

and g2 as in the previous case and we attribute nlm with the gradient vector to

make the nlm work faster. The initial values of these parameters are l12 = 0, and

g1 = log(1) = g2, so that exp(log(1)) = 1.

4.3.2 The parameters α, κ and the matrix Σ are unknown

We want to estimate the unknown parameters κ, α and Σ to fit an ellipse.

As in the previous case we decompose the matrix Σ using the Cholesky decom-

position. Therefore, we need to estimate six parameters, which are κ, a, b, g1, g2,

and `12. Recall the M-H model in (4.4)

f(zi) =
(κ/2π)

1
2

πΦ((κ)
1
2 )
|Σ|−1/2 exp{−κ

2
[(zi −α)TΣ−1(zi −α)− 1]2},

and,

(z −α)TΣ−1(z −α) =
(
y1 − a y2 − b

) l212
exp(g2) + 1

exp(g1) − l12
exp(g2)

− l12
exp(g2)

1
exp(g2)

 y1 − a

y2 − b


=
[

(y1 − a)( l212
exp(g2) + 1

exp(g1))− (y2−b)l12
exp(g2) − (y1−a)l12

exp(g2) + y2−b
exp(g2)

] y1 − a

y2 − b


=

(y1 − a)2l212

exp(g2)
+

(y1 − a)2

exp(g1)
− (y1 − a)(y2 − b)l12

exp(g2)
− (y1 − a)(y2 − b)l12

exp(g2)
+

(y − b)2

exp(g2)

=
(y1 − a)2l212

exp(g2)
+

(y1 − a)2

exp(g1)
− 2(y1 − a)(y2 − b)l12

exp(g2)
+

(y2 − b)2

exp(g2)
.

Let vi = (zi − α)TΣ−1(zi − α)− 1, then the log-likelihood of the M-H model is

logL(κ,α,Σ|zi) =
n

2
log(κ)− n

2
log(2π)− n log(π)− n log(Φ(

√
κ))

− n

2
log(exp(g1) exp(g2))− κ

2

n∑
i=1

v2
i .
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As in the previous case we used nlm in R to estimate all the parameters

a, b, κ, l12, g1 and g2. The initial values of these parameters are a = ȳ1, b =

ȳ2, l12 = 0, g1 = log(1) = g2 and κ = 10.

4.4 Applications

We want to estimate the unknown parameters of the M-H model, which are

the concentration κ, the centre vector α, and the ellipse major and minor axes

that are obtained from Σ. We started from the simplest case, where we had a unit

circle centred at the origin (since circle case is a special case of the ellipse), with

a single unknown parameter, then worked our way up to the general case of the

ellipse with all parameters κ, α and Σ are unknown. We estimated the unknown

parameters in each of these cases using the nlm package in R. We give to nlm

the negative log likelihood using the data and an initial guess of the unknown

parameters. We can give the nlm function for the gradients by hand, to make the

program run faster.

We create a toy example, to illustrate these five cases, of n = 10 points around

a unit circle using equation (4.3) by letting r = 1, ti = 2π
360

37i, i = 0, · · · , 9 and

ei be simulated from a normal distribution N(0, σ2 = 0.1). Figure 4.3 presents a

toy dataset of 10 points around a circle which is also presented in tabular form

in Table 4.1.

For a unit circle centred at the origin as discussed in Section 4.2.1, we use the

nlm function to estimate κ which require an initial value, so that we want to find

the lower and the upper bounds for κ. To find these bounds for κ, we develop an

R program using a “while loop” using this first derivative (4.7) and try to reach

conditions. Since ∂ logC(κ)
∂κ

> 0, we note that C(κ) is increasing and so we can find



Chapter 4. Helix modelling through the Mardia-Holmes model 94

●

●

●

●

●

●

●

●
●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

x

y

Figure 4.3: The 10 point artificial data set.

Table 4.1: The 10 point data set.

x y

0.937 -0.063
0.817 0.620
0.192 0.878
-0.199 1.093
-0.815 0.563
-1.078 -0.169
-0.694 -0.620
-0.117 -0.908
0.496 -0.841
0.860 -0.485

unique crossing bounds of the horizontal axis. Starting with an arbitrary κ = 1

and keep moving to the left by a factor of 2 until reach the condition ∂ logC(κ)
∂κ

< 0

and then keep moving to the right until reach the condition ∂logC(κ)
∂κ

> 0. The

output gave us a lower bound of 1, and an upper bound of 64. Then the nlm

function gave us an estimate κ̂ = 3.66

For unit circle with unknown parameters κ and α = [a, b]T in Section 4.2.2,
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we used nlm to estimate a, b and κ, where the starting points of the centre α is

chosen to be the means of y1i and y2i and κ = 10, within the boundary of κ. We

have tried many starting points and all of them gave us the same result. Next,

for a circle with unknown parameters κ, α = [a, b]T and ρ in Section 4.2.3, as in

previous case we used nlm to estimate the unknown parameters. The initial point

of the centre as in previous case is chosen to be the means of xi and yi, κ = 10,

and using protein knowledge that radius is 2.3 we choose ρ = 1, which is a bit

different to check the behaviour of the algorithm. Both (κ), log(ρ) and κ, ρ can

be estimated. After the estimation of these parameters we take the exponential

function of the estimates.

For the ellipse cases, case 1: Σ is unknown and the other parameters are

known, which has been studied in Section 4.3.1. We assume α = [0 0]T and

κ = 10 to estimate the parameters l12, exp(g1) and exp(g2) of Σ in equation

(4.13), as before we use the nlm to estimate these parameters. The initial values

of these parameters are chosen using the protein knowledge (circular helix) to be

l12 = 0 and g1 = g2 = log(1). In the second case the parameters Σ,α and κ

are unknown, see Section 4.3.2. We use the nlm to estimate these parameters.

The starting values of these parameters are as the previous ones, the centre is

the means of y1i and y2i, κ = exp(log(10)), l12 = 0 and g1 = g2 = log(1). All the

results are summarized in Table 4.2.

In particular, κ̂ = 3.66 in case 1 where the model does not fit well and

κ̂ = 72.17, a much higher value, in case 5, which fits data much more closely.

This improvement was expected, since we estimate more parameters by fitting

an ellipse, i.e. model fit the data better, and hence gives us a better result. The

estimates of the centre in cases 3 and 5 are equal.
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Table 4.2: Parameters estimates of the M-H model under the circle and the
ellipse cases.

Case Unknown Known Estimates of

parameters parameters the parameters

1
κ Σ = I κ̂ = 3.66

α = [0 0]T

2
κ Σ = I κ̂ = 4.56

α α̂ = [−2.02 − 1.09]T

3

κ κ̂ = 65.63

α - α̂ = [−0.03 0.04]T

Σ = ρI ρ̂ = 0.99

4
Σ κ = 15.413

Σ̂ =

 0.66 −0.01

−0.01 0.87


(g1, g2, `12) α = [0 0]T

5

κ κ̂ = 72.17

α - α̂ = [−0.03 0.04]T

Σ
Σ̂ =

 1.02 −0.04

−0.04 0.95


(g1, g2, `12)

Our initial ellipse is a unit circle centred at (x̄, ȳ) and κ = 10, shown in

blue in Figure 4.4. The fitted ellipse is presented in green in Figure 4.4, where

concentration κ = 72.17, centre (-0.03,-0.04), and

Σ =

 1.02 −0.04

−0.04 0.95

 ,

The nlm algorithm needs initial values for the parameters. The choice is im-

portant because for a bad starting point the nlm will not converge. For example,
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Figure 4.4: Plot of the fitted ellipse in solid line and initial started ellipse in
dashed line.

for the dataset (10 points around a circle) in Table 4.1 a suitable choice of initial

values of the centre is the mean of y1i and the mean of y2i since the points lie on

a circle.

4.5 Asymptotic behaviour

Our goal in this section is to prove that the distribution specified by M-H

model is asymptotically normal in distribution for large κ for the circular case in

Section 4.2.1. Let us discuss the M-H model for the unit circle (or at least r > 1)

centred at the origin. Recall the model is

f(z) ∝ exp{−κ
2

(zTΣ−1z − 1)2}, (4.14)

with mode on the ellipse zTΣ−1z = 1 and z = r[cos θ, sin θ]T where ∂z = r∂r∂θ.

Let Σ = I, then zTz = r2 where r2 > 0 and let zTz = s + 1, so s = r2 − 1 and

s > −1.
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The equation (4.14) can be witten as a joint function of s and θ as

g(s, θ) ∝ 1

2
e−

κ
2
s2 .

Then the marginal distribution of s is

g(s) =

∫ 2π

0

g(s, θ)∂θ

∝ e
− 1

2
s2

1
κ ∂s,

which is proportional to the truncated normal density with mean 0 and variance

1
κ
. Therefore, the variance decreases as κ increases which produces a narrower

curve in Figure 4.5 for κ = 100.

0 1 2 3 4

0.
0

0.
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0.
4

0.
6

0.
8

1.
0

r

f(r
)

Figure 4.5: The M-H model density for κ = 1 in red and for κ = 100 in
black.

Under high concentration κ, the mass of the M-H model is close to the mode,

for example the M-H model of a unit circle centred at the origin (4.5) is close

to the mode zTi Σ−1zi = 1 when κ = 100 as seen in Figure 4.5. Expanding the

horizontal axis of Figure 4.5 for the κ = 100 curve, gives Figure 4.6 that the
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Figure 4.6: The M-H model density for κ = 100.

density looks normal (bell shape). Figure 4.5 shows that for κ = 100 case, when

we go a little bit away from the mode, the density is zero. The truncation point

is far away from the body of the distribution; hence the truncated normal is

essentially the same as the normal distribution.

4.6 Estimating the helix axis using the M-H

model

The Mardia-Holmes model is designed to fit a dataset consisting of points

that are reasonably equally spread around a circle, and we can determine this by

looking at the helix from above. Since the protein α-helix meets this criterion,

we may project the helix data onto 2-dimensions (after estimating the helix axis)

and then use the M-H model to find the optimal helix axis by maximizing the

log-likelihood of the M-H model.
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Now we describe what must happen before using the M-H model. Firstly, we

estimate the initial helix axis ŵ using the OptLS method (see Section 3.5.3), and

then we rotate the 3-dimensional data helix to semi-canonical coordinates as in

the previous chapter (see section 3.5 specifically section 3.5.1).

If we want to project the 3-dimensional data helix points onto the 2-dimensional

plane, that is perpendicular to the helix axis, we use the standard projection

f : R3 → R2, gives by (yi1, yi2, yi3)→ (yi1, yi2). The projection matrix can be de-

rived from the helix axis ŵ as follows: Let A be a rank one positive semi-definite

matrix

A = ŵŵT .

Now we take the spectral decomposition of the matrix A = ULUT , where

U =
[
u(1),u(2),u(3)

]
is a matrix of orthonormal eigenvectors of A and L =

diag(`1, `2, `3) is a diagonal matrix of corresponding eigenvalues. Since A is a

projection matrix, then the eigenvalues are either 0 or 1, where `1 = 0. The

eigenvector u(1) correspond to the smallest eigenvalue is the helix axis ŵ, that is

ŵ = u(1). Thus, if we want to project the helix onto the plane that is perpendic-

ular to the helix axis, then we need to use the second and the third, eigenvectors

of A as the first and second columns of the projection matrix P . Hence, the

projection matrix (see Lay (2006) , 452-453) is

P =
[
u(2) u(3)

]
3×2

, (4.15)

Recall that our aim here is finding the optimal axis which maximizes the log-

likelihood of the M-H model, and in order to do this we need two functions, say f1

and f2. Note that f1 is nested in f2. Function f1 maximizes the log-likelihood of

the M-H model in equation (4.6) numerically in R using nlm as in Section 4.2.2,

assuming the helix axis is known. This function outputs the maximized the log

likelihood. The idea behind the second function f2 is to find the optimal axis that

maximizes the output of f1 over w using nlm. The inputs are the 3-dimensional
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data helix points (yi1, yi2, yi3), i = 1, . . . , n. Recall w is parameterized using p1

and p2 in stereographic coordinates, see Section 3.5.3.

Given w, f2 projects the data onto the plane perpendicular to w and fits the

M-H model in equation (4.6) to the 2-dimensional projected data. The analysis

maximizes the log-likelihood of the M-H model using nlm. The initial parameters

of the circle (the parameters are concentration κ = 10, radius ρ = 2.3, two

location parameters a = mean(yi2) and b = mean(yi3)), as discussed in Section

4.2.3.

Then f2 maximizes the output of f1 over w using nlm. The initial choose for

p1 and p2 is (0,0) in f2 since we point the helix to north pole. Multiple starting

point near the optimal answer were trial; we always obtained the same estimator.

Note that the use of nlm both inside and outside f2 slows our program in R.

The M-H program takes 3.6 times longer than OptLS to estimate the helix axis.

4.6.1 Simulation studies

We now present an example of a helix that mimics a protein α-helix in semi-

canonical form, with n = 30, and with errors that are simulated from the normal

distribution with mean 0 and variance 0.05. First we estimate the helix axis

using the OptLS method, and project the helix to the xy-plane. Then we use the

functions described in Section 4.6 to fit the circle and to find the optimal axis.

In order to run the functions, nlm requires initial values for the circle parameters

and for the helix axis parameters. We use the means of the projection data as the

initial parameters of the location (i.e. a = ȳ1, b = ȳ2); r = 2 as initial parameter

for the radius (since the protein α-helix has radius 2.3); and κ = 10 as the initial

parameter for the concentration of the data around a circle. The estimate of

the helix axis acquired by the OptLS method to obtain the initial parameters of

p1 and p1 of the second function, but since our helix is in semi-canonical form

then initial parameters are chosen to be (0,0). Upon running nlm we find that
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the maximum log-likelihood of the M-H model is 43.4. The estimated axis by the

OptLS mean square error from the true axis w = (0, 0, 1)T is 1−ŵTw = 5×10−6

(Section 3.6). Then M-H program for estimating the axis gives the maximum log-

likelihood of the M-H model is 42.8 and the estimated axis by M-H model mean

square error is 1− ŵT
M−Hw = 2× 10−5.

Next we simulate 100 helices that mimic a protein α-helix for different choices

of sample size n and parameter values r, c, and σ2. After implementing the OptLS

and M-H models on the simulated helices, we get 100 estimates of the helix axis

ŵM−H,i using the M-H model and 100 estimates of ŵi using the OptLS method.

The mean square error (see Section 3.6) allows us to calculate how accurate these

estimates are. The mean square error of the M-H model 1 − ˆ̄wT
M−Hw is greater

than the mean square error of the OptLS 1− ˆ̄wTw as shown in Table 4.3 below

(see Section 3.6) from large number of simulated helices for different choices of

sample size or parameter values r, c and σ2. From the results shown on Table 4.3

we can conclude that OptLS is always better than M-H model, as sometimes by

a factor of two interms of variance, othertimes is much worse.

Table 4.3: Comparison between M-H model and OptLS by the mean square
error computed from different simulated helices.

set1 set 2 set 3 set 4 set 5 set 6

n 30 30 12 12 12 12

r 2.3 2.3 2.3 2.3 7 7

c 5.4
(2π)

5.4
(2π)

5.4
(2π)

5.4
(2π)

0.1 5.4
(2π)

σ2 0.001 0.05 0.05 0.1 0.05 0.05

M-H 2.8× 10−7 1.5× 10−5 2.4× 10−4 4.5× 10−4 1.2× 10−2 2.3× 10−4

OptLS 1.2× 10−7 5.9× 10−6 1.4× 10−4 2.8× 10−4 1.6× 10−4 8.1× 10−5

Overall, the M-H model gives us a way to estimate a helix axis, but this is

not better than our OptLS method. As seen in Table 4.3, the mean square error

of the M-H model is much larger than that of the OptLS method, and so we may

conclude that the M-H model is less accurate than OptLS method.
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The M-H model uses nested optimization functions (nlm within another nlm),

which drastically slows down the program. Moreover, the use of nlm requires

initial parameters, but in the M-H model some of these must be guessed; for a

bad choice it will either not converge at all, or it will converge to a local optimal

solution rather than a global optimal. Even though the OptLS method uses nlm

to optimize the helix axis estimate, no initial parameters for the helix axis need

to be guessed because they are obtained from the stage one of the algorithm.



Chapter 5

Estimation process for fitting a

bent helix

Recall that a kink in a helix is where the helix axis changes its direction (see

Section 1.5.1). A kink can also be thought of as a change point. In this chapter

we treat the location of a change point as occurring half way between two data

points, and label the change point position by the last point of the first block of

data. A helix with a change point is accordingly called a bent helix. Bend sounds

more gradual than the helix. This terminology goes against the normal English

usage which would define ‘kink’ and ‘bend’ the other way round.

In chapter 3 we described a method, the OptLS method in Section 3.5, to fit

a regular helix. In this chapter, however, we develop a methodology to deal with

bent helices. We will see in Section 5.1 that this strategy, the change point phase

of Bending-Detector, encompasses the OptLS method.

The change point literature is large e.g Chen and Gupta (2011), and Kim

and Siegmund (1989). Much of the literature focuses on changes in means and

variances, but there is some discussion of change in slope, e.g. Miao (1989). A

change in slope for an original process, e.g. {Xt}, means a change point in the

mean in the differenced process, Yt = Xt−Xt−1. A helix change point is a change

104
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in the 3-dimensional direction of an axis; hence it can be regarded as a change in

slope for a 3-dimensional process.

The general idea of the change point phase of Bending-Detector (see Sec-

tion 5.1) is thus: firstly, find all the possible change points; make appropriate

cuts of the helix at these points to obtain regular helices; and then use the OptLS

to fit these resultant helices.

In order to test for the presence of a change point we develop a simulation

based test in Section 5.2, called the testing phase of Bending-Detector. We simu-

late from the null hypothesis H0 : ‘the helix has no change point’ of regular helices

with various σ2 and various number of landmarks to establish a threshold (95%

quantile). The null distribution of the test statistic depends on: (a) whether the

change point location is known or not; (b) number of points n; (c) variance σ2.

In this chapter we take the protein α-helix value of δ = 2π
3.6

.

If we find that the helix has a change point, we investigate further to under-

stand more about the change point. In particular, we define six statistics which

describe how the two blocks of the whole dataset differ. We study these statis-

tics using a parametric bootstrap procedure in Section 5.3. We call this step the

features analysis phase of Bending-Detector.

Overall, we have a procedure to look for a change point in a helix. First, we

test the hypothesis H0 : ‘the helix has no change point’ against the hypothesis H1 :

‘the helix has a change point’ (the testing phase of Bending-Detector). Second,

if the null hypothesis is rejected, then we find the change point or bend position,

once a change point has been identified, we fit each sub-helix separately (the

change point phase of Bending-Detector). Third, we investigate the reasons for

the change point (the features analysis phase of Bending-Detector). In conclusion,

a statistical test using the parametric bootstrap is used to categorise if the helix is

bent or not (in Section 5.2), find a change point (in Section 5.1), and to study the

reasons of this bend (in Section 5.3). We call this procedure Bending-Detector,
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see Alfahad et al. (2018). We compare our Bending-Detector with Kink-Detector

by Mardia et al. (2018). Kink-Detector is a technique which categorises a helix

with a kink or not, and if so locates the kink position. It starts by looking at

a moving window of 12 points on a helix, and each time it calculates the dot

product of the two axes (cos θ), the first six points axis and the second six points

axis, where θ is the angle between these two axes. If a helix has a region of

four consecutive points with cos θ < 0.9818, then this helix is categorised as

a kinked helix. This procedure permits a helix to have some curvature in its

axes but not be categorised as a kink. Since we study the protein α-helix which

is allowed to have some bending, and this bending is not classified as a kink

(change point). Bending-Detector treats a change point from a global point of

view, whereas, Kink-Detector treats a change point from a local point of view.

Differences between the two methods on a sample data helices are discussed in

Section 5.5.

5.1 Bending-Detector Change Point

In this section, our main goal is to describe the change point phase of Bending-

Detector. We define the change point phase of Bending-Detector for a helix which

is known to have just one kink (change point), see Section 5.1.1.

5.1.1 A helix with a single kink

Our strategy for finding a change point in a bent helix is to start by choosing

one or more points that we think it may be the change point. We take each of these

points in turn, and each time cut the helix at the point and fit each resultant part

of the helix using OptLS. In this way we will obtain a collection of residual sum

of squares and the minimum of these values will indicate the estimated change
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point. We call this the change point phase of Bending-Detector. Note that OptLS

is nested with the change point phase of Bending-Detector.

More explicitly, we start by assuming each point k, n1 ≤ k ≤ n2 is a potential

change point. However, to avoid estimation problem near the endpoints we follow

Mardia et al. (2018) and limit attention to display n1 + 5 ≤ k ≤ n2 − 6,

Step 1 First we need to put the whole helix, H, into semi-canonical coordi-

nates, so Ho is in semi-canonical where w = [0, 0, 1]T , using our OptLS from

Section 3.5.3. We recall (3.7) for convenience that Ho can then be described by

the equation

z(ti) = r cos(ti − τ)u+ r sin(ti − τ)v + ctiw + b+ εi,

where ti = (i − 1)δ, where δ = 2π
3.6

is assumed to be known as in the protein

α-helix, and Γ = [u v w] = Γ0, where Γ0 = I3. After that, the helix axis is the

z-coordinate (the vertical axis) and the x and y coordinates are in the horizon-

tal plane. We cut this helix Ho between zk and zk+1. This yields two helices

H
(1)
k , H

(2)
k , which we call sub-helices of Ho, where H

(1)
k consists of the points

zi, i = n1, . . . , k, and H
(2)
k consists of the points zi, i = k + 1, . . . , n2. However,

the two sub-helices H
(1)
k and H

(2)
k cannot be in semi-canonical coordinates si-

multaneously, so that the estimated matrices Γ(`) = [u(`),v(`),w(`)] for ` = 1, 2

in (3.7) cannot both be the identity matrix. Therefore, H(`), can be modelled by

y(`)(ti) = r(`) cos(ti)u
(`) + r(`) sin(ti)v

(`) + c(`)tiw
(`) + b(`) + ε

(`)
i , (5.1)

where n1 ≤ i ≤ k for ` = 1 and k + 1 ≤ i ≤ n2 for ` = 2.

Step 2 Apply OptLS (Section 3.5.3) to H
(1)
k and H

(2)
k , and obtain the residual

sum of squares RSS
(1)
k , and RSS

(2)
k , respectively and set SSWk = RSS

(1)
k +RSS

(2)
k .

Then SSWk is called the within residual sum of squares.

Step 3 Let SSWmin := min{SSWk|n1 + m − 1 ≤ k ≤ n2 −m}, m = 6. The
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corresponding estimated change point location will be denoted k̂ where SSWmin =

SSWk̂. Note that H
(1)

k̂
and H

(2)

k̂
will be two regular helices (since we are assuming

H has a single change point), which we have already fitted in step 2.

5.2 The testing phase of Bending-Detector

To decide if the helix is bent or not we specify a test statistic to test the null

hypothesis H0: ‘the helix has no change point’ against the alternative hypothesis

H1: ‘the helix has a change point’. Our proposed test statistic determines if

the change point phase of Bending-Detector gives a significantly better fit to the

data. Recall that we assumed from the beginning that the errors are independent

and isotropic normally distributed. For this reasons we choose an F-test (as in

analysis of variance) as it meets our need for the test statistic, (see e.g.; Mood

et al., 1974, p. 437; Knight, 2000, Section 8.1).

Fitting the whole (single) helix using OptLS gives the total residual sum of

squares SST . The change point phase of Bending-Detector for a given value of

k0 gives the within residual sum of squares SSWk. Note that SST ≥ SSWk

since the single helix model is a special case of the change point model. Finally,

define SSBk = SST − SSWk. In the classical ANOVA setting SSBk also has

an explicit representation as a between residual sum of squares; however, in the

helix setting, it can only be defined as a difference.

There are 8 parameters needed to specify a helix: two for the helix axis w;

and six in stage 2 which are r, c, b1, b2 and b3; see Section 3.5. The total degrees

of freedom is df = 3n, and the residual degrees of freedom after fitting a single

helix is dfT = 3n− 8. The residual degrees of freedom after fitting a bent helix is

dfW = dfT − 8 = 3n − 16, because the two sub-helices are estimated separately

and each has 8 unknown parameters. We can also obtain the between degrees of
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freedom dfB = dfT − dfW = 8. Then the function for the F-statistic is

Fk =
SSBk/dfB
SSWk/dfW

∼ F0.05(8, 3n− 16). (5.2)

If this statistic is greater than the critical value we reject the null hypothesis and

then we conclude the helix is a bent helix i.e. there is a change point. We expect

the Fk-statistic defined by equation (5.2) to have an F-distribution Fα(dfB, dfW ),

α = 0.05, because we assumed that the errors are independent isotropic normal

distributions N3(0, σ2I3) with small σ2. Thus we expect SSB and SSW to be

approximately independent and have σ2×chi-squared distribution with dfB and

dfW degrees of freedom, respectively, (see e.g.; Mood et al., 1974, p. 437; Rice,

2007, p. 482; Knight, 2000, Proposition8.2). Note σ2 can be estimated either by

the residual variance σ̂2 after fitting the single helix (under the null hypothesis),

or by the pooled residual variance σ̂2
p (see e.g. Reddy, 2011, p. 109) after fitting

the bent helix (under the alternative hypothesis), as follows

σ̂2 =
SSBk + SSWk

dfB + dfW
, σ̂2

p =
SSWk

dfW
. (5.3)

Note that as SSWk decreases, Fk will increase, so if SSWmin corresponds to the

estimated change point then

Fmax := max{Fk : n1 +m− 1 ≤ k ≤ n2 −m}, (5.4)

will also correspond to the estimated change point.

A threshold value indicates how extreme any observed results need to be in

order to reject the null hypothesis. More explicitly, if the statistic is greater than

or equal to the threshold, then we reject the null hypothesis and conclude the

helix has a change point.

In this section, we derive the threshold by simulation (as in Section 3.6)

from the null hypothesis. We create a mathematical regular helix (1.1), with n
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landmarks where the parameters r, c, and δ mimic a protein α-helix (see Sec-

tion 1.5). For various values of σ2 we simulate 3n × nboot sets of random errors

from N(0, σ2I) and add each set to the mathematical regular helix, so we have

nboot = 10, 000 regular statistical helices (see Section 1.2.4). For each simulated

bootstrap sample j we calculate the maximum Fk, denoted F ∗max,j, which yields

the simulated distribution of F ∗max. Then the threshold F
∗(α)
max is the (1 − α)%

quantile of the values {F ∗max,j}
nboot
j=1

In order to derive the threshold in practice for a given dataset, we carry

out a parametric bootstrap simulation of the null hypothesis. The simulation by

parametric bootstrap is carried out in the following way:

• We fit the single helix by OptLS to estimate the 8 parameters (i.e. we have

the fitted data).

• We fit the helix by the change point phase of Bending-Detector to estimate

pooled residual variance estimate, σ̂2
p.

• We simulate 3n×nboot sets of random errors from N(0, σ̂2
pI) and add each

set of errors to the single fitted data, so we have nboot = 104 new helices.

If the F ∗max statistic follows an F-distribution, then the simulated threshold

F
∗(α)
max will be close to the tabulated value from F table at α-level (adapted from

Sullivan (2008), p. 125). However, we can still use the statistic F ∗max without any

reference to the F-distribution, and in this case we choose the threshold to be the

1− α quantile for the simulated F ∗max distribution.

A Q-Q plot can be used to assess whether the Fmax-statistic follows an F-

distribution or not. We plot the statistics of 10 000 helices, sort in ascending

order, versus 10 000 equally-spaced quantiles from an F-distribution with degrees

of freedom 8 and 74. If the points in the Q-Q plot approximately lie on a straight

diagonal line, then we can say that the statistic Fmax is F-distributed.
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In the following, we split our study into two cases: (a) when we assume the

change point position (the fixed location) is known; and (b) when the change

point position is unknown. In the first case, the simulated distribution of the

test statistic is generally close to an F-distribution. In the case (b) the simulated

distribution of the test statistic is always far away from an F-distribution. Hence

we cannot use the F-distribution tabulated critical value to find the threshold

when k is unknown so we use bootstrap.

5.2.1 Known change point position

For this subsection we assume that the change point position of our helix is

known. Recall from Section 5.1.1 that the change point will lie between points

n1 + 5 and n2 − 6. We assume here that the change point location k = 8, which

is the 8th landmark y8.

We simulate 104 regular helices that mimic protein α-helix with 30 landmarks,

where the errors follow N3(0, 0.05I3), as in Section 5.2. We compute the statistic

F ∗max in equation (5.4) for each simulated helix. This gives a sample form the

distribution of F ∗max. The 95th quantile is F
∗(0.05)
max = 2.058, which is very close

to the F-distribution threshold (tabulated critical value) F0.05(8, 74) = 2.066 at

α = 0.05, i.e. the statistic approximately follows an F-distribution. There are

487 F ∗max statistics greater than the critical value i.e. p-value of 0.0487. Since the

significance level appears to be α = 0.0487 (the probability of rejecting the null

hypothesis when it is true), then we can say that approximately 5% of the F ∗max

statistics are greater than the critical value of F0.05(8, 74). This explains the Q-Q

plot in Figure 5.1; most of points lie on the diagonal but there is some deviance

on the upper end, i.e. the simulated distribution disagrees in the upper tail, only

around 500 points are above the 0.95 quantile, so this is not enough to say it is

not an F-distribution.
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Figure 5.1: The Q-Q plot of F-distribution: 10 000 simulated ordered Fmax-
statistics versus quantiles from an F-table, note the upper tail apart from the
F distribution.

To test if α = 0.0487 is compatible with the usual choice of α = 0.05, we carry

out a binomial test to test the null hypothesis H0 : α = 0.05 and the alternative

hypothesis H1 : α 6= 0.05. We do not have evidence to reject the null hypothesis

with an obtained p-value of 0.5663 and the 95% confidence interval for α is (0.045,

0.054). Therefore, we can say that 0.0487 is compatible with the used 0.05.
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Figure 5.2: The plot of 10 000 CDF simulated F ∗max-statistics in black and a
F-distribution CDF in red, where n = 30 and σ2 = 0.05. Note the two curves
are matched perfectly.
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Furthermore, Figure 5.2 shows that the F cumulative distribution function

(CDF) with dfB = 8 and dfW = 74 degrees of freedom closely matches the CDF

for F ∗max. Therefore, we reject the null hypothesis if the Fk statistic value from

the data helix is greater than the critical value Fα(dfB, dfW ). In other words, we

can categorize a data helix as bent helix if the Fk statistic obtained from the data

exceeds the threshold of Fα(dfB, dfW ) = 2.066 with α = 0.05.

5.2.2 Unknown change point position

Having considered the known change point case in Section 5.2.1, we now

carry out a 10 000 simulation of regular protein α-helices, with n landmarks

and where the errors are drawn from N3(0, σ2I3), but for which we do not know

where the change point is. We vary σ2 and n independently, whilst fixing all the

other parameters, in order to see how this affects the threshold value and how

close the F ∗max statistics follow an F-distribution. We carried out 5 simulations

each of nboots = 1000 as follows: (a) n = 15, σ2 = 0.05; (b) n = 25, σ2 = 0.05; (c)

n = 30, σ2 = 0.05; (d) n = 30, σ2 = 0.01; and (e) n = 30, σ2 = 0.1. Our results are

presented in Table 5.1 below. For each case, the Q-Q plot in Figure 5.4, shows that

the F ∗max statistic distribution is far away from the F-distribution. Furthermore,

for fixed σ2 = 0.05 but varying n, the threshold F
∗(0.05)
max varies. We conclude that

the simulated distribution is affected by the number of landmarks. Therefore, for

each different dataset we obtain the threshold value F
∗(α)
max separately.

Table 5.1: Threshold F
∗(0.05)
max for unknown k with nboot = 1000 simulations

in each case as the number of landmarks and error variance σ2 vary.

n σ2 F
∗(0.05)
max

15 0.05 2.877
25 0.05 3.073
30 0.05 3.008
30 0.01 3.008
30 0.1 3.015
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(b) Q−Q plot when n=25 and σ2=0.05
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(c) Q−Q plot when n=30 and σ2=0.05
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(d) Q−Q plot when n=30 and σ2=0.01
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(e) Q−Q plot when n=30 and σ2=0.1
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Figure 5.3: The Q-Q plots of various n and σ2 where 10 000 F
∗(0.05)
max statistics

versus quantiles from the F-distribution.

5.3 Analysis of Fk

Given a data helix, we can determine the threshold F
∗(α)
max by simulation using

parametric bootstrap. Recall, if the data statistic Fmax is greater than the thresh-

old F
∗(α)
max we reject the null hypothesis, i.e. the given helix has a change point, say

at landmark k. In this situation, we have two regular sub-helices H(`), ` = 1, 2.

The real α-helix may have one change point or none (Mardia et al., 2018). Since

our numerator degrees of freedom (df) of the Fk statistic is 8, there are 8 features

in which the two sub-helices may agree. Note that for a regular helix, these two

sub-helices meet perfectly and so they agree on all 8 features. We now explain the

8 characteristics in which the two sub-helices may differ, and we separate these

into six groups of features.
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Figure 5.4: The CDF simulated F
∗(0.05)
max statistics in black and a F-

distribution CDF in red plots for various n and σ2.

(a) Separation distance between the sub−helices axis lines

(b) Offset distance between the sub−helices axis lines

Figure 5.5: Example showing the separation between the two axes lines.
Panel (a) presents the the separation explain in group 2 and panel (b) presents
the separation explain in group 3.
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Group 1 If the two sub-helices H(1), H(2) do not have the same helix axis direc-

tion, then w(1) 6= w(2). Note that w(`), ` = 1, 2 has 3 coordinates, w(`)

is a unit vector and so any two coordinates determine the third (2 df).

Group 2 The two sub-helices H(1) and H(2) can differ by a shift along the helix

axis (1 df) as presented in Figure 5.5 (a).

Group 3 The two sub-helices H(1) and H(2) can differ by an offset perpendicular

to the helix axis (2 df) as presented in Figure 5.5 (b).

Group 4 One of the sub-helices H(1) or H(2) can spin with respect to the other

(1 df).

Group 5 If the two sub-helices, H(1) and H(2), do not have the same helix radius

then r(1) 6= r(2) (1 df).

Group 6 If the two sub-helices, H(1) and H(2), do not have the same helix pitch

then c(1) 6= c(2) (1 df).

From the discussion above, we have six statistics A1, . . . , A6, where these

statistics are not necessarily independent and correspond to the differences that

are detailed in Group 1, . . . , 6, respectively. Before defining A1, . . . , A6 explicitly,

we need to introduce the theoretical point at which the sub-helices H(1) and H(2)

“meet”. Recall for a helix in semi-canonical coordinates and change point k, z(tk)

is the last point on H(1), while z(tk+1) is the initial point of H(2). Thus, we may

take the point at which they meet to be at time tk+ 1
2
, which is between time tk

and tk+1. Let Γ̂ = [û v̂ ŵ] be the orientation matrix after the fitting the whole

helix H. Let the transform data q(`) = (q
(`)
1 , q

(`)
2 , q

(`)
3 )T be the fitted helix point in

semi-canonical coordinates at time tk+ 1
2

for H(`), which can be defined as follows

q(`) = Γ̂y(`)(tk̂+ 1
2
),
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and recall each of the sub-helices can be modelled as in equation (5.1), then the

equation of landmark y(`)(tk̂+ 1
2
), for ` = 1, 2, is

y(`)(tk̂+ 1
2
) = r̂(`) cos(tk∗+ 1

2
)û(`) + r̂(`) sin(tk∗+ 1

2
)v̂(`) + ĉ(`)tk∗+ 1

2
ŵ(`) + b̂(`).

and the projection function is

g(`)(tk̂+ 1
2
) = ĉ(`)tk∗+ 1

2
ŵ(`) + b̂(`).

After projecting the helix onto its axis, we can find the fitted helix axis point

p(`) = (p
(`)
1 , p

(`)
2 , p

(`)
3 )T of this notional landmark under the model for H` as

p(`) = Γ̂g(`)(tk̂+ 1
2
),

The difference between q(1) and q(2) will be used in testing the spin parameters.

In addition, the difference between p(1) and p(2) is of our interest in testing the

shift and offset parameters.

Group 1 We want to determine if the two sub-helix axis directions ŵ(1) and

ŵ(2) are equal or not. For this consider the following statistic

A1 := 1− cos θ,

where ŵ(1)T ŵ(2) = cos θ and θ is the angle between the two sub-helices axis. If

the helix axis directions of H(1) and H(2) are equal, i.e. H is a regular helix,

then we will have ŵ(1)T ŵ(2) = 1, and hence A1 = 0. So we are interested in the

magnitude of A1.

Group 2 The two sub-helices H(1) and H(2) can be shifted from each other, as it

is seen in Figure 5.5 (a). We want to test this difference of the fitted axis points’
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third component p
(1)
3 , p

(2)
3 so we define the shift parameter statistic as follows

A2 := (p
(1)
3 − p

(2)
3 )2

Group 3 Similarly, the H(1) and H(2) might be offset from each other as it is seen

in Figure 5.5 (b). This means they may differ in the 2 perpendicular directions

to the axis direction, i.e. p(1) may differ from p(2), and any discrepancy can

be detected by computing the Euclidean distance between these points in R2.

Therefore, we define the offset parameters to be

A3 := (p
(1)
1 − p

(2)
1 )2 + (p

(1)
2 − p

(2)
2 )2

Group 4 The spin parameter will test if the two sub-helices are aligned or if

there is some twisting. We estimate the angles ϕ1 and ϕ2 between the fitted

points q̂(1) and q̂(2) and the axis fitted points p̂(1) and p̂(2), and then the spin

parameter is the difference between these angles. The estimates of ϕ1 and ϕ2 is

ϕ̂1 = atan2(q
(1)
2 − p

(1)
2 , q

(1)
1 − p

(1)
1 ),

ϕ̂2 = atan2(q
(2)
2 − p

(2)
2 , q

(2)
1 − p

(2)
1 ).

Then the spin parameter statistic is given by

A4 :=| ϕ̂ |=| ϕ̂1 − ϕ̂2 |,

where ϕ̂ ∈ [−π, π).

Group 5 and 6 The final two differences are the radius r(`) and pitch c(`) of the

two sub-helices ` = 1, 2. The radius parameter is

A5 :=| r̂(1) − r̂(2) |,
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and the pitch parameter is

A6 :=| ĉ(1) − ĉ(2) | .

In order to test all these statistics A1, . . . , A6, we first simulate two datasets

one of a regular helix and the other of a bent helix. In addition, we use a

1000 parametric bootstrap for each of the nine real data helices from Mardia

et al. (2018). For each helix this proceeds is follows. Using the fitted data,

we simulate q helices of the same size where the errors are simulated from a

normal distribution N(0, σ̂2
pI3), and σ̂2

p is the estimated pooled variance (under

the alternative hypothesis i.e. fit the helix by the change point phase of Bending-

Detector). For each simulated helix we calculate A∗1, . . . , A
∗
6 as described above

and we have a distribution for each statistic. For each statistic we reject the null

hypothesis if the computed statistic for our data helix falls in the upper right tail

of this distribution, i.e. above 0.95 quantile.

5.4 Simulation studies

In this section we apply our method to two simulated datasets (for regular and

bent helices) in order to test the accuracy of our Bending-Detector. We simulate

a statistical regular helix with n = 27 landmarks that mimics a protein α-helix

(i.e. r = 2.3, 2πc = 5.4, β = 2π
3.6

) with errors normally distributed with mean 0

and variance σ2 = 0.05. For the bent helix, we simulate the same statistical helix

as above but introduce a bend of θ = 0.3 radians about the x-axis at k = 12.

Table 5.3 presents the results when applying the Bending-Detector to these two

simulated helices and, in parentheses, the p-values using a bootstrap sampling

with nboot = 1000.

First we discuss the results for the regular helix. The residual variance

under the null hypothesis σ2 = 0.039, and the pooled residual variance under the
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Figure 5.6: The Fk statistic against the possible choice of k for the simulated
change point helix, where the maximum Fk at k = 12.

Table 5.2: The frequency table of k∗ from 1000 bootstrap samples for the
bent helix.

k 12 13 14

frequency 728 220 52

alternative σ2
p = 0.035, are approximately equal. Hence we can confirm that the

regular helix has no bend, which agrees with our data. As shown in Table 5.3, the

test statistic Fmax is not significant, which also indicates the helix has no bend.

Although the Fmax is not significant, we analyse Fmax by testing the features

A1, . . . , A6 and these are also not significant.

For the bent helix, the p-value for Fmax is highly significant, suggesting that

the helix is bent. The Bending-Detector estimated the bend position to be k̂ = 12

as shown in Figure 5.6, which is the true bend position. To see how accurate k̂

we generate nboot = 1000 bootstrap replicates of k∗ from a single data set as in

Section 5.2. Table 5.2 presents for 1000 simulated data, the k∗ = 12 is most

frequently value. An estimate of the angle between the two sub-helices θ̂ = 0.32

radians is close to the true θ = 0.3. As shown in Table 5.3, the feature A1 (change

in axis) is highly significant that the helix has a bend, which is due to a change

in axis direction.
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Figure 5.7 presents the fitted helices for the simulated straight and bent

helices. When there is change in axis direction, the evidence above shows that

Bending-Detector works well to detect whether a given helix is bent or not and,

if it is bent, to find the position of the change point and the change in helix axis.

Table 5.3: The Bending-Detector estimates σ̂2, σ̂2
p, k̂, θ̂, the statistics

Fmax, A1, . . . , A6, and the bootstrap of nboots = 1000 p-values (in bracket)
of the simulated regular and bent helices.

Helix regular bent

σ̂2 0.039 0.223

σ̂2
p 0.035 0.045

Fmax 0.924 (0.973) 26.3**

k̂ - 12

θ̂ - 0.32r

A1 1× 10−4 (0.765) 0.051 **

A2 0.134 (0.455) 0.146 (0.447)

A3 0.004 (0.981) 0.012 (0.954)

A4 0.002 (0.965) 0.048 (0.392)

A5 0.046 (0.666) 0.183 (0.125)

A6 0.002 (0.919) 0.010 (0.724)

** indicates p-value < 0.001.

5.4.1 Residual plots for simulated datasets

In this subsection, we look at the three coordinates residual plots of the

simulated regular and bent helices, which are studied in Section 5.4. We also

look at the radial and tangential residual plots.

In Section 3.9 we studied how to rotate the residual plots clockwise about the

z-axis, to investigate for any indication of a bend. In order to do that, we fit two

quadratic functions to each of the x and y residuals plots against time using least
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Figure 5.7: The fitted helix for straight helix and the two fitted sub-helices
for bent helix.

squares method. The changes will be in the x and y residuals plots only, such

that one shows random noise, since the quadratic coefficient will become 0, and

the other vividly displays a quadratic behaviour. Figures 5.8 and 5.9 present the

residuals plots for the simulated bent and regular helices, respectively. Figure 5.8

vividly shows a quadratic behaviour (V-shape) in the x residuals plot in panel (a),

and random pattern in the y and z residuals in panels (b) and (c), respectively,

which suggest the helix could be bent. On the other hand, the residuals plots in

Figure 5.9 show fairly random pattern, which suggest the helix could be regular.
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Figure 5.8: Simulated bent helix three coordinates residuals against time
after rotation about the axis.
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Figure 5.9: Simulated regular helix three coordinates residuals against time
after rotation about the axis.

To investigate further the relationship between the observed data and the

fitted helix, we plot the radial and the tangential residuals of the fitted points

to the simulated points. First we need to explain how to determine the tangent

residual plot. Recall that yi is the data point, and ŷi is the fitted point for

i = n1, . . . , n2, n1 = 1, n2 = 27. Compute the angles δi of the simulated point,

and the angle δ̂i for the fitted point from the origin. If δ̂i > δi, i.e. ŷi is over-

estimated, then the tangent of the fitted point is said to be to the left of the

data point, otherwise it is said to be to the right. Let angle δid be the difference

between the angles of the tangent lines of the fitted and simulated points, then

δi = atan2(yi2, yi1),

δ̂i = atan2(ŷi2, ŷi1),

δid = δi − δ̂i.

If δid > 0, then ŷi is under-estimated, otherwise it is over-estimated. If δid = 0,

then ŷi is a perfect fit.

Figure 5.10 shows 4 panels. Panel (a) presents the 2D-data simulated bent

helix in black and the fitted helix by OptLS in red, which does not fit the data

well. Panel (b) shows the estimated radius values are somewhat under-estimated

and close to the true radius value. Panels (c) and (d) present the angle between
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the tangent lines of the fitted and simulated points. The angle is the difference

between the angles of the tangent lines of the fitted and simulated points. The

tangent residuals in panels (c) and (d) are randomly dispersed. Figure 5.11, panel

(a) presents red helix fits the black helix data well. Panel (b) shows almost half

of the estimated radius values are under-estimated and half are over-estimated

and close to the true radius value. The tangential residuals in panels (c) and (d)

are randomly scattered.
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Figure 5.10: Illustration of the behaviour of the fitted points for the simulated
bent helix (a) 2D-scatter plot presents the fitted helix in red does not fit well
the bent simulated helix in black. (b) The radial plot presents the difference
between the true radius and the radius of each fitted point. Both (c) and (d)
present random positions of the angle between the tangent lines of the fitted
and simulated points, which are either left (positive)/ right (negative) to that
of the simulated points.
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Figure 5.11: Illustration of the behaviour of the fitted points for the simulated
regular helix (a) 2D-scatter plot presents the fitted helix in red fits well the
data helix in black. (b) The radial plot presents the difference between the true
radius and the radius of each fitted point. Both (c) and (d) present random
positions of the angle between the tangent lines of the fitted and simulated
points, which are either left (positive)/ right (negative) to that of the simulated
points.

We can conclude that both the radial and the tangential residual plots for

the simulated bent and regular helices give no difference i.e. no indication of a

bent. On the other hand, the coordinates residual plots after rotation give good

indication of a bent for the simulated bent helix as the x-coordinates residual

plot shows a V-shape. Also the coordinates residual plots after rotation of the

simulated regular helix show no pattern to the residuals.

To learn more about the residual plots of a bent helix, we create three math-

ematical bent helices. These mathematical helices mimic protein α-helix (i.e.

r = 2.3, 2πc = 5.4, β = 2π
3.6

) with n = 20 landmarks. The bend is of θ = 0.3 radi-

ans about the x-axis at k = 8, 10 and 12. We use the OptLS to fit these helices

and then rotate the helices clockwise about the z-axis so that one of the x and

y coordinates residual plots shows random noise and the other vividly displays
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a quadratic behaviour as in Section 3.9. Figures 5.12, 5.13 and 5.14 present the

three coordinates residual plots for each of the mathematical bent helices with

k = 8, 10 and 12, respectively. In these Figures, the x-coordinate residual plot

in panel (a) shows a V-shape. We can conclude that if the x-coordinate residual

plot shows a V-shape, this suggests that the axis is bent.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(a) Residuals of x−coordinate

Time

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
0.

05
0.

00
0.

05

(b)  Residuals of y−coordinate

Time

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4

(c)  Residuals of z−coordinate

Time

R
es

id
ua

ls

Figure 5.12: Simulated mathematical bent helix three coordinates residuals
after rotation about the axis, where k = 8
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Figure 5.13: Simulated mathematical bent helix three coordinates residuals
after rotation about the axis, where k = 10
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Figure 5.14: Simulated mathematical bent helix three coordinates residuals
after rotation about the axis, where k = 12

5.5 Applications

In this section, we implement our Bending-Detector on nine α-helix data-

sets from Mardia et al. (2018) (see Appendix B). For the first seven of these nine

helices, deciding if they were kinked proved to be difficult and Mardia et al. (2018)

found different results to a crowdsourcing analysis carried out by experts in the

protein field (Wilman et al., 2014a). However, for helices 8 and 9 the findings

of Mardia et al. (2018) coincided with this crowdsourcing analysis (Wilman et al.,

2014a). Recall that the regular real data helix eight, studied in Section 3.9, has

V-shaped x-coordinate residuals, and we will investigate this behaviour more in

this section. Note that the theoretical residuals variance σ2 is 0.056 from Mardia

et al. (2018).

Next, Table 5.4 contains: the values and the p-values for each statistic

Fmax, A1, . . . , A6; the residuals estimated variance σ̂2 under the null hypothe-

sis and the pooled residual estimated variance σ̂2
p; the change point position k̂;

and the angle θ̂ between axes of the sub-helices. Table 5.4 shows that all the

helices are bent, since all the p-values of F ∗max are highly significant (< 0.001);

this is mainly due to change in axis statistic A1 (p-value< 0.049). In addition to
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significance in statistic A1, some helices have significant in statistics A3 (offset),

A4 (spin) and A6 (pitch). However, statistics A2 (shift) and A5 (radius) are not

significant in any helix suggests that these are not the reasons for the change point

(bend). Moreover, the variance σ2 obtained from fitting the single helix is greater

than the pooled variance σ2
p obtained from fitting the two sub-helices, so we may

conclude that the helices have a change point. The pooled variances σ2
p obtained

from fitting the two sub-helices for helices 1, 3, 4, 5, 6, 7 and 9 are close to the

theoretical variance σ2 = 0.056 from Mardia et al. (2018), whereas the pooled

variances is large for helix 2 (σ̂2
p = 0.144) and small for helix 8 (σ̂2

p = 0.014).

Table 5.4: Test statistics and estimates from Bending-Detector for helices
1, . . . , 4. The estimates of variance σ̂2, pooled variance estimate σ̂2

p, the position

k̂, the angle θ̂ between the two sub-helices and the test statistics data (and p-
values) of Fmax, A1, . . . , A6 for each of the helices.

Helix 1 2 3 4

n 31 24 24 17
σ̂2 0.318 0.836 0.195 0.179
σ̂2

p 0.083 0.144 0.060 0.034
Fmax 30.9 ** 39.5 ** 18.8 ** 24.0 **

k̂ 14 7 9 10

θ̂ 10.7◦ 25.6◦ 9.2◦ 8.8◦

A1 0.017** 0.098 ** 0.013 ** 0.012 **

A2 0.005 (0.889) 0.454 (0.443) 0.076 (0.615) 0.012 (0.927)
A3 1.983 ** 1.518 (0.014) 0.343 (0.154) 0.880**

A4 0.352 ** 5.039 (0.014) 0.436 (0.008) 0.352 (0.002)
A5 0.014 (0.930) 0.001 (0.998) 0.012 (0.917) 0.038 (0.737)
A6 0.007 (0.803) 0.008 (0.847) 0.010 (0.730) 0.039 (0.141)
** indicates p-value < 0.001.
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Table 5.4: Continued; Test statistics and estimates from Bending-Detector
for helices 5, . . . , 9.

Helix 5 6 7 8 9

n 24 23 19 15 27

σ̂2 0.200 0.108 0.122 0.061 1.684

σ̂2
p 0.065 0.062 0.045 0.014 0.102

Fmax 17.6 ** 6.7 (0.002) 11.5 ** 16.7 ** 142.9**

k̂ 10 12 11 8 11

θ̂◦ 6.6◦ 5◦ 12.6◦ 9.6◦ 31.9◦

A1 0.007 (0.008) 0.004 (0.049) (0.024) ** 0.014 ** 0.151 **

A2 0.191 (0.710) 1e-4 (0.988) 0.012 (0.975) 0.003 (0.978) 0.005 (0.946)

A3 4.935 ** 1.206 (0.002) 0.116 (0.572) 0.026 (0.597) 3.617 **

A4 0.034 (0.599) 0.041 (0.519) 0.054 (0.342) 0.130 ** 1.597 (0.013)

A5 0.140 (0.322) 0.010 (0.964) 0.099 (0.410) 0.043 (0.566) 0.041 (0.813)

A6 0.034 (0.267) 0.020 (0.514) 0.054 (0.052) 0.042 (0.025) 0.028 (0.409)

** indicates p-value < 0.001.

Helix 8 has σ2 = 0.061 which is close to the theoretical variance 0.056 (see

Mardia et al. (2018)), and it is classified as bent by Bending-Detector but as

unkinked by Kink-Detector. Figure 5.15 presents the data and the fitted helices

for helix 8, and the axis is clearly bent as the direction of the H(1) axis (in red)

is different than the direction of the H(2) axis (in blue). In addition, we plot

the statistics Fmax, A1, . . . , A6 in Figures 5.16 and 5.17 respectively. Figure 5.16

shows a highly significant Fmax (Fmax � Fα=0.05
max ), then we can conclude that the

helix is bent which is due to differences in axis A1, spin angle A4, and difference

in pitch A6 between the two sub-helices.

Further, Table 5.5 presents a comparison between our Bending-Detector and

the Kink-Detector by Mardia et al. (2018) using the same nine data helices.

From Table 5.5, we conclude that both methods categorised helices 1, 2 and 8
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Figure 5.15: The data helix 8 in black and the fitted each sub-helices H(`)

and the points p(`), q(`), ` = 1 in red and ` = 2 blue.
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Figure 5.16: Helix 8 has a bend since the data statistic Fmax = 16.692 is
greater than the threshold F

∗(α=0.05)
max = 2.813.

differently, and the estimated change point locations are always quite different.

This seems to be due to the difference in the way the change points are estimated.

Kink-Detector is looking for a local change in the axes as it uses a moving window

of 12 landmarks, whereas our method looks for a global change; the method use

all the n points on the helix. Furthermore, Kink-Detector is a technique built

for a protein α-helix as it looks for a region of four points, whereas we look

for one critical change point so the bending is somewhat sharper. In addition,

Kink-Detector estimates δ, whereas we assumed δ = 2π
3.6
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Figure 5.17: Helix 8 statistics A1, . . . , A6 distributions, where the threshold
is in blue and data statistics are in red.

Table 5.5: The kink position k̂, the angle between the two sub-helices θ̂ in
degrees, and the classification by Kink-Detector ( “k”= kinked, “s”= straight),
and the classification by Bending-Detector ( “b”= bend, “r”= regular).

Helix
Kink-Detector Bending-Detector

k̂ θ̂◦ classification k̂ θ̂◦ classification Fmax

1 – – s 14 10.7◦ b 30.9
2 – – s 7 25.6◦ b 39.5
3 13 18.7◦ k 9 9.2◦ b 18.8
4 7 15.9◦ k 10 8.8◦ b 24.0
5 7 22.8◦ k 10 6.6◦ b 17.6
6 10 20.4◦ k 12 5.0◦ b 6.7
7 13 20.0◦ k 11 12.6◦ b 11.5
8 – – s 8 9.6◦ b 16.7
9 9 30.5◦ k 11 31.9◦ b 142.9

5.5.1 Residual plots for real datasets

We look at the residual plots against time for all the nine helices from fitting

these helices using OptLS (fitting a single helix). We expect that a bent helix
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will have a V-shaped residual plot for one of the coordinates residuals. For each

of the nine helices, x-coordinates residual plot shows a V-shaped. In this section,

we focus on studying helices 1, 2 and 8, since they are categorised as bent helices

by Bending-Detector and unkinked by Kink-Detector.

In order to test the residual plots to check for any indication of a bend, we

first test the null hypothesis H0 : ‘all of the quadratic coefficients are zero’, i.e.

the helix has no bend; for more details see Section 3.9. We fit two quadratic

functions to each of the x and y residual plots against time using least squares

with quadratic coefficients a2, b2, see equations (3.10) and (3.11).

Table 5.6 presents the estimates of the quadratic coefficients â2, b̂2 before the

rotation and the quadratic coefficients a∗2, b
∗
2 after rotation about the z-axis.

Table 5.6: The estimates of quadratic coefficients before and after rotation
from the quadratic fit of the x and y residual plots for helices 1, 2 and 7.

Helix coordinates â2 a∗2 b̂2 b∗2

1
x
y

-0.112
0.061

-0.128
−5× 10−4

0.002
-0.001

0.002
0

2
x
y

0.135
0.064

-0.149
−7× 10−4

-0.003
-0.002

0.004
0

8
x
y

-0.059
-0.121

-0.135
−1× 10−3

0.002
0.005

0.005
0

Figures 5.18, 5.19, and 5.20 present the three coordinates residual plots for helices

1, 2, and 8 respectively. These Figures are clearly show V-shape pattern in the x-

coordinate residual plots, which indicate that these are bent helices. In addition,

Figure 5.19 also shows a V-shape pattern in the z-coordinate residual plot, which

suggests some other behaviour.
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Figure 5.18: helix 1 three coordinates residuals against time after rotation.
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Figure 5.19: Helix 2 three coordinates residuals against time after rotation.

5.6 Alternative methods for analysing helices

As discussed earlier, a protein helix is allowed to have some bend, which is

not classified as a kink. From Section 5.5, there are four reasons that Bending-

Detector is distinct from Kink-Detector. Recall that Kink-Detector has four

assumptions: (a) treat δ as unknown; (b) look for a change point in a moving

window of 12; (c) look for a change point as a region of 4 points; and (d) choose 4

points where cos θ̂ ≥ 0.98. In this section, we present a brief summary of altering

Bending-Detector and, in particular, the way in which we determine a threshold

under Kink-Detector assumptions. We will see that this procedure, which we call

the 6 − 6 method (see Section 5.6.1), will alter Bending-Detector to look for a

change point in a moving window of 12. In Section 5.6.2 we permit a helix to
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Figure 5.20: Helix 8 three coordinates residuals against time after rotation.

have some curvature in its axis but not be categorised as kinked i.e. to look for a

change point as a region of 4 points. Finally, in Section 5.6.3, we alter Bending-

Detector to look for a change point as a region of 4 points with cos θ̂ ≥ 0.98 in

a moving window of 12. We can conclude that under the assumption of Mardia

et al. (2018), we get the same result as Mardia et al. (2018) Section 5.6.3.

5.6.1 The 6− 6 method

The idea behind the 6 − 6 method is somewhat adopted from Mardia et al.

(2018). Recall that Bending-Detector assume each of the points n1 +5, . . . , n2−6

is a potential change point, then make an appropriate cut to obtain two sub-

helices. However, this time instead of including all n landmarks amongst the

two sub-helices in each step, we will focus on just a small neighbourhood of a

potential kink, extending six atoms in either direction i.e. 12 in total.

Table 5.7: The change point position, the F
∗(0.05)
max , the angle between two

axes for the helices 1, 2 and 8.

Helix Change point F
∗(0.05)
max statistic θ̂

1 7 15.27 15.7°
2 11 8.03 13.5°
8 12 10.77 13.4°
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Table 5.7 above shows that helices 1, 2 and 8 are still classified as bent since

their p-value of F
∗(0.05)
max are still < 0.001. Furthermore, the bent angle θ̂ ≥ 13.4°,

between the two axes, is large enough to say that it is bent, whereas in Mardia

et al. (2018) these helices are categorised as unkinked. In addition to other helices

3, . . . , 7 and 9 have F
∗(0.05)
max p-value of < 0.001, which implies that all the helices

have a change point.

5.6.2 The kink region method

A kink in protein α-helix is not a single point but a small region of points,

we edit the Bending-Detector in order to reflect this feature. This in turn alters

the threshold value.

We change the method in the following way. We now assume the point k is

a change point, where n1 + 7 ≤ k ≤ n2 − 8, we remove points k − 1, . . . , k + 2

and this naturally yields two sub-helices. So, to calculate the F
∗(0.05)
max statistics,

we must also remove these same 4 points when using the OptLS method. The

p-value of F
∗(0.05)
max statistics for all of the nine helices are still < 0.001, which

imply that all the helices have a change point.

5.6.3 Kink-Detector

Moreover to allow helix bending we look at a kink position as a region of 4

atoms which has cos(θ̂) ≥ 0.98 as in Mardia et al. (2018). This changes the result

in Table 5.7, so that the helices 1, 2, and 8 are classified here as unkinked as we

can see in Figures 5.21, 5.22, and 5.23. This is the same result as in Mardia et al.

(2018).
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cos θj
.99 .99 .99 .99 .99 .76 .99 .99 .99 .88 .34 .99 .99 .99 .90 .34 .99 .99 .99 .99

j

Helix 1

Figure 5.21: Change point possibility from landmark 6 to 24 on helix 1.
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j

Helix 2

Figure 5.22: Change point possibility from landmark 6 to 18 on helix 2.
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Figure 5.23: Change point possibility from landmark 6 to 9 on helix 8.



Chapter 6

Conclusions and further work

In this chapter we summarise the main work in this thesis and discuss some

potential further lines of possible extensions. In particular, we discuss the ex-

tensions needed in order to extend our Bending-Detector. We can relax the

assumption of the helix model, thus increasing the number of parameters to esti-

mate. In addition, we can use our knowledge of the helix shape analysis to study

more examples of helices in real life.

The two main chapters of this thesis are Chapter 3 and Chapter 5. In Chap-

ter 3 we investigated methods to estimate the regular helix axis, and developed

a new algorithm to fit a helix without a change point, OptLS, for the maximum

likelihood estimation (MLE). In Chapter 5 we develop a new algorithm, Bending-

Detector, to fit a helix with change points and used it to find the change points

in helix structures and to investigate the properties of the change points. In ad-

dition, there is a chapter on M-H model, Chapter 4, as a possible way to estimate

a regular helix without a change point, but not really a successful one. Note that

Bending-Detector is applicable for any equally spaced 3-dimensional helix.

In this thesis we looked for at most one kink on a helix but we can look

for more than one. Therefore, a natural generalisation can be done from the

Bending-Detector strategy described in Section 5.1.1. We apply the method in

137
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Section 5.1.1 to a helix H and, consequently, we have two sub-helices H
(1)
k and

H
(2)
k . If it is known that H

(`)
k , ` = 1, 2, is bent then we can repeat the steps in

Section 5.1.1 on H
(`)
k .

Recall that a regular helix is defined here as a set of a points that are equally

spaced in a statistical right circular helix. It is regarded as a function of an inde-

pendent variable t, where the observations are subject to independent isotropic

normally distributed errors with mean 0 and variance σ2I3. As discussed in Sec-

tion 1.2.4, points are located at time ti = (i−1)δ, i = n1, . . . , n2, n1, n2 ∈ N, with

a constant angle δ = 2π
3.6

radians between points around the helix curve. To fit

this helix, we developed the optimization algorithm OptLS which estimates the

axis w, the radius r and the pitch c (the algorithm described in Chapter 3). We

also investigated the accuracy of this method by comparing it with three other

previously studied methods summarized in Christopher et al. (1996). From this

comparison we found that OptLS has the smallest sample variance of the helix

axis estimate. In addition, by simulation of protein α-helices, we found that the

estimates of the parameters r and c are very close to the known values for a

protein α-helix r = 2.3 and c = 5.4
2π

(see Mardia et al., 2018). It would have been

interesting if we allowed the points to be non-equally spaced as in Mardia et al.

(2018). Then the optimization least squares approach, OptLS, which maximizes

the likelihood estimation of unknown parameters would need to be extended to

estimate the unknown parameters ti or basically the angle between the adjacent

points.

Another more realistic extension to the model is changing the assumption of

isotropic errors. We assumed that the errors are independent within and between

the three orientations of the right circular helix y(ti) := (yi1, yi2, yi3)T and the

variance-covariance matrix of size 3n×3n is assumed to be Σ = σ2I3. On the other

hand, in practice, errors could be different for each orientation. Let S2
1 , S

2
2 , S

2
3

be variance-covariance matrices of size n× n of the three coordinates yi1, yi2, yi3,
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respectively, then the variance-covariance matrix Σ can be written as

Σ =


S2

1 0 0

0 S2
2 0

0 0 S2
3

 ,

One can also suggest that the errors for each orientation are correlated, then

covariances between random variables yi1, yi2, and yi3 are not equal to zero. Let

cov(yij, yik) = Sjk, j = 1, 2, 3, k = 1, 2, 3, j 6= k be the variance-covariance matrix

of size n × n between the jth and kth directions, then the variance-covariance

matrix can be written as

Σ =


S2

1 S12 S13

S12 S2
2 S23

S13 S23 S2
3

 .

A more general case is when the normal and tangential errors at each point

on the helix curve are different. Recall the helix equation in (1.3), and let ui and

vi be the normal and tangential components, respectively, for all i as follows

ui =


cos(i− 1)δ

sin(i− 1)δ

0

 , vi =


− sin(i− 1)δ

cos(i− 1)δ

0

 .

The error in the vertical direction is independent from the errors in the horizontal

direction (xy-plane), so that the third column of Σ is [0, 0, γ]T with magnitude γ.

In the plane the variance tangent to the helix is assumed to be different to the

vector perpendicular to the helix. The variance-covariance matrix for variances
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a, b of the normal and tangential errors, respectively, is

Σ = auiu
T
i + bviv

T
i + γ


0 0 0

0 0 0

0 0 1



=
a+ b

2
I3 +

a− b
2


cos 2(i− 1)δ sin 2(i− 1)δ 0

sin 2(i− 1)δ − cos 2(i− 1)δ 0

0 0 0

+ γ


0 0 0

0 0 0

0 0 1

 .

In this thesis, we have also developed the Bending-Detector procedure which:

(1) tests if the helix has a change point; (2) estimates the position of this change

point; (3) cuts the helix into two regular helices by this point and uses OptLS to

fit each sub-helix separately; and (4) investigates the reason for this change point

i.e. tests the six features. These six test statistics test how the two sub-helices

can differ. The two sub-helices can differ by a shift along the helix axis; an offset

perpendicular to the helix axis; a spin parameter; the helix radius; the helix pitch;

and the helix axis direction. We can investigate further the properties of these

test statistics. Such as simulate kinked helices where each time we made a differ

one of the six feature and so we can study these features. In addition, for a bent

helix we expect the x-coordinates residual plot has a V-shape, see Section 5.4.1.

The x-coordinates residual plot of real dataset helix 2 has a V-shape (see Section

5.5.1, which suggest some other behaviour need to investigate.

The helix is a configuration of points in 3-dimensional space, that we can

statistically analyse the shape properties invariant under location and rotation

effects. Shape analysis is the statistical study of the geometrical information of an

object which remains the same under location, scaling, rotation and reflection.

However, in this thesis we are not interested in the scale and reflection effects

because these kind of effects would change the sense and size of the helix. For

example, the radius of an α-helix is a critical parameter as it is universal across

proteins, so any change of the helix that would be affect this cannot be allowed.
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Thus, we cannot scale the helix. Similarly, a reflection would change the helix

axis direction which we also cannot permit. However, in other applications of

shape analysis scale and reflection change points might allowed. We can use our

knowledge to explore different settings of shape analysis.

One possible toy example might be a slinky which is a helix but not as rigid

as a protein α-helix, as we can stretch it to a long helix or compress it to a short

helix or even bend it. A real life example is DNA. DNA consists of two right

handed helices joined together but it can bend, i.e. the DNA analogy has some

similarity to a slinky.

Another toy example of a helix is the spiral staircase in old castles. A circular

spiral staircase is a circular regular helix where the steps spiral around a central

pole. The radius of the staircase is the length of a step from central pole to

the edge of the staircase circle. The size and the depths of each step are almost

equal, so that we can say spiral staircase points are almost equally spaced around

a regular helix. We can investigate the irregularity in stairs. The main difference

between our helix model in (1.3) and spiral staircase is the visibility of the central

pole which supports the steps.
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Basic proofs

This appendix records some elemantary properties of trigonometric functions

used in our thesis.

Lemma A.1.

1.
∫ 2π

0
sin t dt =

∫ 2π

0
cos t dt = 0.

2.
∫ 2π

0
sin t cos t dt = 0.

3.
∫ 2π

0
sin2 t dt =

∫ 2π

0
cos2 t dt = 2π

2
.

Proof. 1. The integral of sin t is

∫ 2π

0

sin t dt = − cos t
∣∣∣2π
0

= 0 (A.1)

and proof that
∫ 2π

0
cos t dt = 0 similar.
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2. The integral of the producot of sin t and cos t is

∫ 2π

0

sin t cos t dt =
1

2

∫ 2π

0

sin 2t dt

=
1

4

∫ 2π

0

sinu du

= −1

4
cos 2t

∣∣∣2π
0

= 0. (A.2)

3. The integral of sin2 t is

1

2π

∫ 2π

0

sin2 t dt =
1

2π

∫ 2π

0

1− cos 2t

2
dt

=
1

2π

∫ 2π

0

1

2
dt− 1

2π

∫ 2π

0

cos 2t

2
dt

=
1t

2π

∣∣∣2π
0
− 1

8π

∫ 2π

0

cosu du

=
1

2
− 1

8π
sin 2t

∣∣∣2π
0

=
1

2
. (A.3)

Similarly, we can derive
∫ 2π

0
cos2 t dt = 2π

2
.

For n points around the circle equally spaced (angles), we claim

Lemma A.2.

1.
∑

sin 2πj
n

=
∑

cos 2πj
n

= 0.

2.
∑

sin 2πj
n

cos 2πj
n

= 0.

3.
∑

cos2 2πj
n

= n
2

=
∑

sin2 2πj
n

.
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Proof.

1. Let x = exp(2πi
n

) = cos 2π
n

+ i sin 2π
n
, i =

√
−1, and note

xj = exp(
2πij

n
) = cos

2πj

n
+ i sin

2πj

n
.

Recall the geometric series formula for the sum of xj is

n−1∑
j=0

xj =
1− xn

1− x
,

Since xn = e
2πin
n = 1,

n−1∑
j=0

(e
2πi
n )j =

1− xn

1− x

=
n−1∑
j=0

(cos
2πj

n
+ i sin

2πj

n
)

= 0.

Hence
∑n−1

j=0 cos 2πj
n

=
∑n−1

j=0 sin 2πj
n

= 0.

2. Recall the geometric series formula for the sum of (x2)j is

n−1∑
j=0

(x2)j =
1− (x2)n

1− x2
,
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Since (x2)n = e
4πin
n = 1,

n−1∑
j=0

(e
4πi
n )j =

1− (x2)n

1− x2

=
n−1∑
j=0

(cos
4πj

n
+ i sin

4πj

n
)

= 0.

Hence
∑n−1

j=0 sin 4πj
n

= 0, then

n−1∑
j=0

sin
2πj

n
cos

2πj

n
=

1

2

n−1∑
j=0

sin
4πj

n

= 0

3. From 1,

n−1∑
j=0

cos2 2πj

n
=

n−1∑
j=0

1− cos 2πj
n

2
=
n

2
.

n−1∑
j=0

sin2 2πj

n
=

n−1∑
j=0

1 + cos 2πj
n

2
=
n

2
.

In real protein α-helix, tj = 2π
3.6

(j − 1), j = 1, . . . , n, the points are bal-

anced approximately around the circle, so that
∑

cos2 tj ≈ n
2
≈
∑

sin2 tj and∑
cos tj sin tj ≈ 0. Table A.1 show that

∑
cos tj ≈ 0 ≈

∑
sin tj,

1
n

∑
cos2 tj ≈

1
2
≈ 1

n

∑
sin2 tj and

∑
cos ti sin tj ≈ 0 for various n arising in real protein α-helix.

The typical α-helix is with n = 11 (see Mardia (2014)), and from our research

the range of n is from 11 to 31.
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Table A.1: For various n, 1
n

∑
cos tj ≈ 0 ≈ 1

n

∑
sin tj ,

1
n

∑
cos2 tj ≈ 1

2 ≈
1
n

∑
sin2 tj and 1

n

∑
cos ti sin tj ≈ 0.

n
1
n

∑
sin tj

1
n

∑
cos tj

1
n

∑
sin2 tj

1
n

∑
cos2 tj

1
n

∑
cos tj sin tj

11 -0.013 0.016 0.497 0.503 -0.016

12 0.016 0.093 0.466 0.534 0.012

13 0.082 0.047 0.487 0.513 -0.022

14 0.030 -0.011 0.482 0.518 0.015

15 -0.015 0.041 0.478 0.522 -0.019

17 0.058 0.010 0.472 0.528 -0.010

18 0 0 0.500 0.500 0

20 0.049 0.041 0.498 0.501 -0.009

23 0.018 0.050 0.489 0.510 0.009

25 0.008 -0.005 0.497 0.503 0.006

27 0.031 0.037 0.500 0.500 0

28 0.030 0 0.482 0.518 0

30 0.007 0.037 0.486 0.514 0.005

31 0.034 0.020 0.495 0.505 -0.009

Note that unexpectedly several entries in Table A.1 are exactly 0 or 1
2
. The

reason is as follows: Let x = 2π
3.6

, tj = jx, and note sin x
2
6= 0. An addition

formulas for sines and cosines, (Gradshteyn and Ryzhik (2014), p. 30), states

that

n−1∑
j=0

sin jx =
sin (n−1)x

2
sin nx

2

sin x
2

. (A.4)

n−1∑
j=0

cos jx =
cos (n−1)x

2
sin nx

2

sin x
2

. (A.5)
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From these formulas we can deduce

n−1∑
j=0

cos jx sin jx =
1

2

n−1∑
j=0

sin 2jx

=
sin (n− 1)x sinnx

2 sinx
. (A.6)

n−1∑
j=0

sin2 jx =
1

2

n−1∑
j=0

(1− cos 2jx)

=
n

2
− cos (n− 1)x sinnx

2 sinx
. (A.7)

n−1∑
j=0

cos2 jx =
1

2

n−1∑
j=0

(1 + cos 2jx)

=
n

2
+

cos (n− 1)x sinnx

2 sinx
. (A.8)

In the first column we have 0 at n = 18 since sinnx = 0 in equation (A.4).

In the second column we have 0 at n = 18, 28 since sinnx = 0 or cos (n−1)x
2

= 0

in equation (A.5). In the third and fourth column we have 1
2

at n = 18, 27

since sinnx = 0 in equations (A.7) and (A.8). In the fifth column we have 0

at n = 18, 27, 28 since sinnx = 0 or sin (n− 1)x = 0 in equation (A.6). More

generally, note that sin nx
2
, sinnx, cos (n−1)x

2
, and sin (n− 1)x equal 0 if either n or

n-1 is a multiple of 9. Since x = 100 degrees then 9x
2

= 900
2

= 450 = 360+90 = 90

degrees.
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Appendix B

In this appendix we present tables of 9 α-helix datasets that are employed in this

thesis for various examples. All the 9 α-helix datasets are from Mardia et al.

(2018).
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Table B.1: Helix 1 dataset.

y1 y2 y3

1 62.45 289.05 168.93
2 59.00 289.89 170.33
3 58.24 286.13 170.32
4 61.44 285.67 172.32
5 60.29 288.26 174.90
6 56.89 286.57 175.27
7 58.54 283.29 176.24
8 60.95 285.11 178.57
9 58.03 286.93 180.23

10 56.09 283.68 180.70
11 59.20 282.29 182.38
12 59.61 285.28 184.69
13 55.90 285.64 185.47
14 55.79 282.04 186.68
15 58.51 282.90 189.19
16 56.61 286.06 190.21
17 53.42 284.00 190.78
18 55.27 281.28 192.65
19 57.12 283.62 195.04
20 54.19 285.96 195.72
21 51.81 283.05 196.40
22 54.47 281.32 198.53
23 54.76 284.52 200.64
24 50.96 284.84 200.90
25 50.78 281.19 201.92
26 53.49 281.49 204.57
27 51.82 284.60 206.03
28 48.60 282.60 206.41
29 50.55 279.65 207.88
30 52.22 281.83 210.56

31, 48.86 283.38 211.52
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Table B.2: Helix 2 dataset.

y1 y2 y3

1 -2.34 -4.29 44.90
2 -2.49 -7.84 43.58
3 -4.99 -7.10 40.85
4 -2.45 -4.39 40.07
5 0.60 -6.68 39.90
6 -0.29 -9.67 37.72
7 -3.08 -7.97 35.78
8 -2.11 -4.32 35.07
9 1.64 -4.89 35.34
1 1.91 -8.04 33.21

11 -0.82 -7.15 30.70
12 0.71 -3.68 30.59
13 4.11 -5.02 29.55
14 2.33 -6.95 26.80
15 0.77 -3.74 25.54
16 4.20 -2.11 25.45
17 5.71 -4.79 23.21
18 2.60 -4.80 21.01
19 3.01 -1.08 20.30
20 6.62 -1.73 19.44
21 5.26 -4.26 16.94
22 3.09 -1.63 15.24
23 6.16 0.37 14.32
24 8.38 -2.72 14.30
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Table B.3: Helix 3 dataset.

y1 y2 y3

1 12.30 29.47 26.39
2 15.22 27.77 24.67
3 12.79 25.68 22.67
4 11.28 28.95 21.35
5 14.65 30.22 20.17
6 15.55 26.88 18.67
7 12.24 26.63 16.85
8 12.45 30.15 15.47
9 16.11 29.88 14.72

10 15.91 26.46 12.97
11 12.91 27.46 10.93
12 14.75 30.41 9.52
13 17.39 28.57 7.48
14 14.88 25.83 6.83
15 12.60 28.27 5.04
16 15.57 29.80 3.43
17 16.83 26.41 2.29
18 13.51 25.84 0.50
19 13.56 29.23 -1.16
20 17.25 28.91 -2.08
21 16.42 25.56 -3.60
22 13.49 27.07 -5.38
23 15.76 29.67 -6.90
24 18.39 27.07 -7.70
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Table B.4: Helix 4 dataset.

y1 y2 y3

1 87.66 1.81 -39.39
2 89.46 5.09 -38.75
3 86.19 6.94 -38.22
4 84.94 4.18 -35.87
5 88.11 4.49 -33.84
6 87.72 8.29 -33.67
7 84.14 8.22 -32.40
8 85.14 5.73 -29.68
9 88.14 7.83 -28.77

10 86.20 11.08 -28.28
11 83.98 9.27 -25.74
12 86.84 7.43 -24.02
13 89.07 10.51 -23.59
14 86.24 12.84 -22.58
15 84.70 10.17 -20.33
16 88.11 10.11 -18.54
17 88.37 13.92 -18.56
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Table B.5: Helix 5 dataset.

y1 y2 y3

1 114.24 -8.43 3.17
2 111.65 -7.60 0.52
3 110.88 -4.22 2.10
4 114.58 -3.43 2.54
5 114.91 -3.75 -1.23
6 112.08 -1.28 -1.76
7 113.53 1.32 0.61
8 116.89 0.84 -1.11
9 115.59 1.61 -4.58

10 112.99 4.23 -3.59
11 114.72 6.32 -0.91
12 117.49 7.35 -3.33
13 114.82 9.24 -5.29
14 115.11 12.05 -2.74
15 118.80 12.37 -3.47
16 118.18 12.59 -7.22
17 115.64 15.40 -6.99
18 117.67 17.21 -4.32
19 120.48 17.24 -6.90
20 118.41 18.37 -9.88
21 117.32 21.38 -7.84
22 120.94 22.28 -7.09
23 121.69 22.09 -10.82
24 119.38 25.07 -11.30
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Table B.6: Helix 6 dataset.

y1 y2 y3

1 -13.82 -1.72 -11.22
2 -17.70 -1.62 -11.33
3 -17.43 2.22 -11.58
4 -14.98 2.26 -14.62
5 -17.19 -0.37 -16.33
6 -20.45 1.70 -16.05
7 -18.74 5.08 -16.63
8 -17.21 3.64 -19.87
9 -20.57 2.23 -21.15

10 -21.98 5.69 -20.30
11 -19.95 7.13 -23.19
12 -20.89 4.12 -25.38
13 -24.69 4.65 -24.80
14 -24.10 8.21 -26.13
15 -22.22 6.94 -29.27
16 -25.35 4.76 -29.96
17 -27.56 7.86 -29.34
18 -25.30 10.10 -31.49
19 -25.44 7.48 -34.33
20 -29.25 7.11 -33.89
21 -29.63 10.94 -34.20
22 -26.92 11.13 -36.99
23 -29.24 9.41 -39.54
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Table B.7: Helix 7 dataset.

y1 y2 y3

1 82.81 124.49 140.71
2 81.83 120.79 140.80
3 83.75 120.09 137.55
4 86.97 120.66 139.40
5 86.52 118.48 142.41
6 85.16 115.81 140.08
7 88.24 115.60 137.88
8 90.32 115.53 141.05
9 88.28 112.54 142.17

10 88.97 110.96 138.80
11 92.67 111.74 139.04
12 92.57 110.44 142.65
13 91.14 107.08 141.60
14 93.90 106.70 138.98
15 96.51 107.77 141.58
16 94.99 105.50 144.20
17 95.24 102.63 141.72
18 98.83 103.54 140.90
19 99.81 103.61 144.57

Table B.8: Helix 8 dataset.

y1 y2 y3

1 -25.71 42.83 25.36
2 -25.48 46.54 26.16
3 -21.76 46.96 25.48
4 -22.28 44.78 22.42
5 -24.93 47.17 21.05
6 -22.98 50.29 22.03
7 -20.17 48.51 20.26
8 -22.24 47.96 17.11
9 -23.42 51.56 17.06

10 -19.97 53.04 17.67
11 -18.50 50.84 14.97
12 -20.88 52.22 12.34
13 -20.08 55.75 13.45
14 -16.40 55.12 12.85
15 -17.24 53.44 9.55
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Table B.9: Helix 9 dataset.

y1 y2 y3

1 -25.71 42.83 25.36
2 -25.48 46.54 26.16
3 -21.76 46.96 25.48
4 -22.28 44.78 22.42
5 -24.93 47.17 21.05
6 -22.98 50.29 22.03
7 -20.17 48.51 20.26
8 -22.24 47.96 17.11
9 -23.42 51.56 17.06

10 -19.97 53.04 17.67
11 -18.50 50.84 14.97
12 -20.88 52.22 12.34
13 -20.08 55.75 13.45
14 -16.40 55.12 12.85
15 -17.24 53.44 9.55
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