
Distributed Model Predictive Control
for Reconfigurable Large-Scale

Systems

Pablo R. Baldivieso Monasterios

Department of Automatic Control and Systems Engineering

The University of Sheffield

A thesis submitted for the degree of Doctor of Philosophy

September 2018





To my family





i

Acknowledgements

I would like to thank Dr Paul Trodden for his guidance, and above all his patience while working
with me in the various topics that compose this thesis. His advice helped me to organise my scattered
thoughts and channel them towards the right direction. And to Dr Anthony Rossiter and Dr Mark
Cannon who dedicated time and effort to improve this document. I would like to express my sincere
gratitude to Bernardo for his friendship and the lengthy conversations on set invariance and MPC;
they helped clear my thoughts and catch errors in my work.

This thesis would have never come together without the endless support and love of Anastasia
(who I suppose might be even qualified to get a PhD of her own of MPC after listening to all my
rumble). Her presence in my life has been, is, and always will be the source of inspiration and my
driving force.

To my parents, Balo and Edith, I owe the opportunity to come to the UK in the first place. Any
text I could write would be pale in comparison to the immense gratitude I have for them. Not only
that, their support and love across thousands of miles has been a source of strength to carry on with
my studies. To my older brothers, Jesús and Rodrigo, who encouraged me to dream big and lit the
spark of my curiosity. To my little sister Mariana who had to put up with my constant complaints,
but always had the right words for me. This thesis is dedicated to my grandmother Arminda who is
for me the epitome of kindness and love.

Last, but not least, I want to thank to my friends without whom my experience during this PhD
would have been the same. In Gabriele, I found the family and the brotherly love that made me
feel like home; I’m grateful for the long conversations about life, experiences, and chess matches.
To Olie and Pete who offered me their sincere friendship and some of the best moments I had in
England.

And to David Hilbert, whose words "Wir müssen wissen – wir werden wissen!" have guided my
academic life.





Abstract

Large-scale Systems are gaining more importance in the modern world requiring flexible techniques
capable of handling interactions. This thesis is concerned with the development of suitable algo-
rithms based on Model Predictive Control (MPC) that guarantee stability, recursive feasibility and
constraint satisfaction. In the first part of this thesis, the main properties and control challenges for
controlling an Large-Scale System are brought together, and the main distributed approaches for
solving these problems are surveyed. Also, two novel Distributed MPC algorithms are presented. A
non-centralised approach to the output-feedback variant of tube-based model predictive control of
dynamically coupled linear time-invariant systems with shared constraints. A tube-based algorithm
capable of handling the interactions–not rejecting them– that replaces the conventional linear distur-
bance rejection controller with a second MPC controller, as is done in tube-based nonlinear MPC.
Following this, a smart-grids application of the developed algorithm is presented to solve the load
frequency control for a power network. The approach achieves guaranteed constraint satisfaction,
the recursive feasibility of the MPC problems and stability while maintaining on-line complexity
similar to conventional MPC. The second part of the thesis covers reconfigurable distributed MPC.
Two novel approaches are considered: a nominal MPC methodology that incorporates information
of external disturbances, and a coalitional approach for robust distributed MPC. The first approach
uses available disturbance predictions within a nominal model predictive control formulation is stud-
ied. The main challenge that arises is the loss of recursive feasibility and stability guarantees when a
disturbance, which may change from time step to time step, is resent in the model and on the system.
We show how standard stabilising terminal conditions may be modified to account for the use of
disturbances in the prediction model. Robust stability and feasibility are established under the as-
sumption that the disturbance change across sampling instances is limited. The proposed coalitional
approach to robust Distributed MPC aims to tackle the existing trade-off between communication
and performance in Large-Scale System by exploiting the different network topologies of system
dynamics. The algorithm employs a method to switch between topologies using a multi-rate control
approach. The optimal topology selection problem is solved using a consensus approach appropri-
ately constrained to reduce the effects of any combinatorial explosion. The robust control algorithm
is capable of recomputing the necessary parameters online to readjust to new partitions. Robust
constraint satisfaction, recursive and stability are guaranteed by the proposed algorithm.

Keywords: Control of constrained systems; Decentralised and distributed control; Model predic-
tive and optimisation-based control; Load frequency control; automatic generation control. Uncer-
tain systems.
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Chapter 1

Introduction

This thesis aims to study the control of large evolving interconnected systems using techniques
of MPC. This particular class of systems has attracted attention because of its relevance within
engineering, finance, and biology to name a few. The sheer size of these systems make a traditional
approach to control impractical. For this reason we seek a different approach to control, where the
interconnectedness plays a crucial role. This thesis consists of two parts, the first one is dedicated to
introduce the problem of controlling LSS with MPC. The second one describes a method developed
to control systems whose structure changes in time.

1.1 Motivation

A mathematical model can be obtained for almost any phenomena, as technology improves more
efficient methods are developed to capture the nature of a given problem. This technological explo-
sion has allowed researchers and practitioners to focus on modelling and controlling larger and more
interconnected phenomena. These large-scale models impose new challenges to the control com-
munity since traditional methods cannot be applied in a practical way. These challenges range from
handling the sheer model size, regarding high dimensionality and spatial distribution; to analysing
the impact of the model interconnection structure in its control, the communication constraints aris-
ing from the network topology is an example of the effects of the interconnection in the control
algorithm. What many of these large-scale, interconnected systems have in common is that their
make-up evolves over time: for example, actuators, sensors and even subsystems are often added
or removed [144]. However, to date, the vast majority of monolithic control techniques require re-
design or recalibration once a substantial change has occured in the system dynamics. As a result,
the ever bigger and more interconnected systems require a scalable framework capable of offering
online adjustments of their control laws.

The required control laws can be synthesised using reconfigurable control methods. This type
of control emerged from fault-tolerant control, and for many years the literature focused only on the
fault-tolerant capabilities of control reconfiguration [106]. But in recent years, reconfigurable control
has awoken new interest after the explosion of computational capabilities of modern processors
and the introduction of new control challenges with application in financial systems, transportation

1



2 1.2. Control of large-scale systems

networks and smart-grids [73]; one of the chapters of this thesis focuses on the later application.
The aim of the thesis is to develop new methodology for controlling large-scale systems based on
an MPC approach to reconfigurability. The choice of MPC as the base controller lies in its inherent
properties for constraint handling and optimality.

1.2 Control of large-scale systems

The goal of this section is motivate and frame our understanding of the term ‘Large-scale System"
and explain its relevance within the control, or, even more generally, the engineering community.
The idea of controlling LSS employing non-centralised methods has captured the interest of re-
searchers for at least the last 50 years. As Lunze [72] and Siljak [141] mention, a LSS is a system
which is big enough to admit a partition into several interconnected subsystems. There are additional
properties that this class of systems possess such as high state dimensionality, presence of severe un-
certainty, which can be structured and non-structured, an evolving topology, such as new subsystems
that are added or removed from the LSS. The interconnectedness of these systems is particularly rel-
evant when analysing systems whose overall large-scale model cannot be obtained directly. In this
scenario each subsystem has only access to its local information and to “some" information from
its neighbours to synthesise its control law. Within these systems the performance requirements not
only demand optimality and stability of the overall LSS, but also structural robustness, and reliability
i.e. robustness against uncertainty on the network topology.

Despite the large varieties of LSSs a common feature among them is the existence of constraints
on the information sharing capabilities among the subsystems. This feature limits the applicability
of standard techniques from classical multivariable control; the information available to each sub-
system is limited either a priori, full model of the interaction terms is available, or a posteriori,
only measurements of the interactions are available. Therefore, this problem is highly non-trivial
and requires “new" control philosophies. The problem as broadly stated is completely intractable;
therefore some assumptions are required in order to facilitate a decentralised or distributed controller
design. On top of the constraints imposed above, each of the subsystems is subject to local hard con-
straints on the state, inputs and outputs. A control technique capable of including such conditions
into its formulation is MPC.

In this thesis, MPC is chosen as a control technique for LSS. The rationale behind this choice
is the inherent constraint handling capabilities that MPC offer. The control law used in an MPC
controller is not designed offline; the online optimisation paradigm allows the controller to handle
changes in the dynamics and disturbances in a systematic manner. Despite that MPC was conceived
as a centralised approach to control, its formulation lends itself to be expressed in distributed or
decentralised terms. In the literature, many approaches to MPC for large-scale system have been
proposed; these methods are fundamentally divided into two categories: iterative methods, and ro-
bust methods. The first one uses concepts of distributed optimisation and relies on iteration between
subsystems in order to achieve convergence of the large-scale optimisation. The second approach
employs robust control methods on each subsystem in order to handle interactions. This last method
fits in the above description of the desired properties for controlling a LSS and it is the one we exploit
through this thesis. DMPC adapt the idea of optimality, in a sense that will be made precise in later
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chapters, with constraint handling, and a forecast of the behaviour of each subsystem which makes
it a suitable control technique for LSS.

1.3 Outline and summary of contributions

The following subsections list the contributions made in each chapter of this thesis:

1.3.1 Chapter 2

This chapter presents the building blocks of an LSS such as the system partition, dynamics, local
and coupled constraints. Based on the definitions of the LSS, a literature review of existing DMPC
methods is presented. As a result, these methods are classified into two main categories: iterative
and non-iterative methods. This thesis focuses on robust non-iterative methods for DMPC. The first
contribution of the chapter is the characterisation of the ISS properties of a completely decentralised
control approach. Comparisons are drawn between the behaviour and feasible sets of the above
approach and the centralised one.

1.3.2 Chapter 3

This chapter presents an output feedback algorithm capable of handling coupled constraints based
on the author’s work in [5]. The approach emphasises the modularity of MPC to handle problems
regarding output feedback. This problem is addressed through an additional layer of robustness to
ensure boundedness of the estimation error. On the other hand, coupled constraints are handled
through cooperation, i.e. a convex combination of the locally optimal solutions when the overall
solution does not satisfy the coupled constraints. The proposed algorithm exhibits strong theoretical
properties: guaranteed recursive feasibility and, as consequence, stability of a neighbourhood of the
origin.

1.3.3 Chapter 4

This chapter presents a novel robust DMPC algorithm based on implicit usage of invariant sets. The
controller employs a tube based technique to control the interconnected system robustly. As opposed
to traditional Robust Positive Invariant (RPI) sets for the tube control, we employ and exploit the
structure of an RCI set to synthesise appropriate control laws. Also, we employ two optimisation
problems: one for steering the system to its equilibrium, and a second one to handle the interactions
between subsystems. The complexity of both optimisation problems is comparable to that one of a
nominal MPC controller. The two optimisation problems allow to split the interactions into nominal
or predicted part and an uncertain part. The separation of the disturbance into two summands allows,
similarly, the separation of the invariant sets into two summands. Furthermore, the method used to
compute invariant sets allows the possibility of using tubed-based techniques for high order systems.
The new DMPC algorithm has been applied to a load frequency control where no other robust DMPC
method had been applied.
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1.3.4 Chapter 5

This chapter examines the limitations of the Nested DMPC in terms of ensuring recursive feasibility.
The solution of this problem coincides to that of a nominal MPC with scheduled or predicted loads.
A naive usage of terminal conditions yields an ill-posed problem. We show how standard terminal
ingredients for nominal MPC [122] may be modified to account for the disturbance appearing in the
prediction model; we consider a general form of terminal conditions permitting the use of a nonlinear
terminal control law. Under the modifications, the ill-posedness of the optimal control problem is
removed, and the desirable properties of invariance of the terminal set and monotonic descent of
the terminal cost hold for the perturbed model. Then we study the inherent robustness (to changing
disturbances) of the controlled system; we find that, as in inherently robust nominal MPC, the system
states converge to a robust positively invariant set around the origin, the size of which depends on the
limit assumed (or imposed) on the step-to-step change of the disturbance. Illustrative examples show
the advantage of including the disturbance in the prediction model: namely, the region of attraction
is enlarged in comparison with that for an inherently robust nominal controller.

1.3.5 Chapter 6

This Chapter presents a novel method for controlling LSS. The idea stems from the concept of
coalitional control; a LSS admits other partitions aside from the centralised and decentralised one.
Coalitions of agents are groupings of subsystems that cooperate to synthesise their control laws. The
proposed algorithm minimises a bipartite cost that penalises the energy of the system and commu-
nications between subsystems. The contributions of the Chapter are the solution of the coalition
formation problem using a consensus setting. The second contribution is the implementation of a
reconfigurable control structure capable of handling different scenarios using a trade-off between
communication and performance. The resulting controller guarantees recursive feasibility of the op-
timisation problem and stable convergence towards the desired equilibrium. Illustrative examples
are provided to illustrate the different components of the controller: the difference in performance
of each partition of the LSS, the overall behaviour of the controller on an academic example, and the
feasibility properties of the algorithm.

1.4 Notation and elementary results

This section aims to provide the basic definitions and technical results that will be used through out
the thesis:

1.4.1 Convex analysis

Definition 1.1. A C-set is a compact and convex set containing the origin, a PC-set is a C-set

containing the origin in its nonempty interior.

Definition 1.2. A Polyhedron is the intersection of a finite number of closed and/or open hyper-

planes.
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Definition 1.3. A Polytope is a closed and bounded polyhedron

Definition 1.4 (Representation of a Polyhedron). A Polyhedron A ⊂Rn is in its H -representation
if and only if x ∈A ⇐⇒ PA x≤ qA for some matrices PA ∈RnA ×n and qA ∈RnA .

Definition 1.5 (Set operations). Let A and B be subsets of Rn

i) (Minkowski Addition) A ⊕B = {a+ b : a ∈A , b ∈B}.

ii) (Pontryagin Difference) A 	B = {a : a+ b ∈A , ∀b ∈B}.

Definition 1.6. The image of a polytope A ⊂ Rn under a linear transformation T : Rn → R is a

polytope TA = {T x : x ∈A }.

1.4.2 Stability and feasibility

Definition 1.7 (Recursive feasibility). A controlled discrete-time system is said to be recursively

feasible if the existence of a solution to its optimal control problem at time k0 implies the existence

of solutions to all subsequent control problems at times k > k0.

Definition 1.8 (Metric in Rn). A metric or distance d : Rn 7→ R is a function such that for any

x,y,z ∈Rn the following conditions are satisfied

• d(x,y) ≥ 0,

• d(x,y) = 0 ⇐⇒ x = y,

• d(x,y) = d(y,x),

• d(x,z) ≤ d(x,y)+ d(y,z).

In addition, for any subset S ⊂ Rn, the distance from any x ∈ Rn to S is defined in terms of the

metric as d(x,S) = inf
{

d(x,y) : y ∈ S
}

. The metric defines a norm ||x||d = d(x,0), the notation

|| · || implies the standard Euclidean 2−norm. The weighted norm by a positive definite matrix Q is

denoted || · ||Q.

Definition 1.9 (Radially unbounded function). A function f : Rn → R is radially unbounded if

||x|| → ∞ implies f (x)→ ∞.

Definition 1.10 (Stability of the origin). The origin is Lyapunov stable for the system x+ = f (x) if

for all ε > 0, there exists a δ > 0 such that d(x(0),0)≤ δ implies that d(x(k),0)≤ ε for all k ∈N.

Definition 1.11 (Attractivity of the origin). The origin is asymptotically attractive for the system

x+ = f (x) with domain of attraction X if, for all x(0) ∈X , 0 ∈ interior(X ), d(x(k),0)→ 0 as

k→ ∞.

Definition 1.12 (Asymptotic stability of the origin). The origin is asymptotically stable for the

system x+ = f (x) with domain of attraction X if it is stable and asymptotically attractive.
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Definition 1.13 (Exponential stability of the origin). The origin is exponentially stable for the system

x+ = f (x) with a region of attraction X if there exist two constants c > 1 and γ ∈ (0,1) such that

for all x(0) ∈X , d(x(k),0) ≤ cγkd(x(0),0), ∀t ∈N and is stable with domain of attraction X .

Definition 1.14 (Robust stability of a set R). A set R is robustly stable for the uncertain system

x+ = f (x,w), w ∈W if, for all ε > 0, there exists a δ > 0 such that d(x(0),R) ≤ δ implies that

d(x(k),R) ≤ ε for all k ∈N and for all admissible disturbance sequences w ∈W.

Definition 1.15 (Robust attractivity of a set R). A set R is asymptotically attractive for the uncertain

system x+ = f (x,w), w ∈W if d(x(k),R)→ 0 as k→∞ for all admissible disturbance sequences.

Definition 1.16 (Robust exponential stability of a set R). A set R is robustly exponentially stable for

the uncertain system x+ = f (x,w), w ∈W with domain of attraction X if there exist two constants

c > 1 and γ ∈ (0,1) such that for all x(0) ∈X , d(x(k),R) ≤ cγkd(x(0),R), ∀kN; and the system

is stable for all admissible disturbance sequences.

Definition 1.17 (K -function, K∞-function, and K L -function). A function α : R+→R+ is said

to be K -function if it is continuous, zero at zero and strictly increasing. The function α : R+→R+

is said to be K∞-function if it is a K -function function and is radially unbounded. A function

β : R+ ×N → R+ is a K L -function if β (·, t) ∈ K∞ for every fixed t ∈ R+ and β (r, ·) is a

decreasing function for each r ∈R+.

Definition 1.18 (Lyapunov function). A function V : Rn → R+ is said to be a Lyapunov function
for x+ = f (x) if there exists functions α1(·), α2(·), α1(·) ∈K∞ such that for all x ∈Rn:

• α1(||x||) ≤V (x) ≤ α2(||x||),

• V ( f (x))≤V (x)−α3(||x||).

Definition 1.19 (ISS stability). The system x+ = f (x,w) is input-to-state stable ISS if there exists

β ∈K L and γ ∈K such that for each input w ∈Rm and each initial state ξ ∈Rn

∥∥x(k,ξ )
∥∥≤ β (

∥∥ξ
∥∥ ,k)+ γ(‖w‖). (1.1)

Definition 1.20 (ISS Lyapunov function). A function V : Rn→R+ is said to be an ISS Lyapunov
function for x+ = f (x,w) if there exists functions α1(·), α2(·), α1(·) ∈K∞, and σ ∈K such that

for all x ∈Rn:

• α1(||x||) ≤V (x) ≤ α2(||x||),

• V ( f (x,w)) ≤V (x)−α3(||x||)+σ(||w||).

1.4.3 Set invariance

Definition 1.21 (PI set). A set P ⊂ Rn is a Positive Invariant (PI) set for x+ = f (x) if for any

x ∈P , its successor state satisfies x+ ∈P .
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Definition 1.22 (CI set). A set C ⊂Rn is a Control Invariant (CI) set for x+ = f (x,u) with constraint

set U if for any x ∈R, ∃u ∈U such that its successor state satisfies x+ ∈ C .

Definition 1.23 (RPI set). A set R ⊂Rn is a Robust Positive Invariant (RPI) set for x+ = f (x,w)+w

with constraint set (X,W) if for any x ∈R, its successor state satisfies x+ ∈R for all w ∈W.

Definition 1.24 (RCI set). A set R ⊂Rn is a RCI set for the system x(t+1) = f (x(t),u(t), t)+w(t)

and the constraint sets U⊆Rm and W⊆Rn if ∀x(t)∈R, there exists u∈U such that x(t+1)∈R,

∀w(t) ∈W.

1.4.4 Graph theory

Definition 1.25 (Weighted Directed Graph). A weighted directed graph is a triple G = (V ,E ,dG )

where V is the set of vertices, E ⊂ V ×V is the set of edges, and a weighting function dG : E 7→R+

assigning a positive value to each link.

Definition 1.26 (Complete graph). A complete graph CG has V 2 as its set of edges.

Definition 1.27 (Subgraph). A subgraph SG of a graph G is a pair (V ,E ′) where E ′ ⊂ E and its

weighting function is the restriction of dG to E ′.

Definition 1.28 (Paths). A path P in G linking the vertices v0,vk ∈ V is a subgraph G with vertex

set VP = {v0,v1, . . . ,vk} such that the set of edges contain EP = {v0 : v1, . . . ,vk−1 : vk}.

Definition 1.29 (Connected graph). A graph G = (V ,E ) is a connected graph if for every pair of

vertices vi,v j ∈ V , there exists a path Pi j linking them.

Definition 1.30 (Connected component). A connected subgraph SG of G = (V ,E ) is a connected

component of the graph G .
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Chapter 2

Robust DMPC

This chapter aims to describe the philosophy and methods that make robust DMPC. The primary
focus of the chapter is based on tube DMPC and its interactions with large-scale systems. Control of
interconnected networks is not viable from a centralised point of view because of high computational
demands, high state dimensionality, sparse geographical locations, and more. A method to circum-
vent such complications is to decompose the problem into smaller coupled subproblems. Each of
those subproblems has assigned to it a controller; and in the case of this thesis, this controller is
based on MPC methods. The objective of such group of controllers is to emulate, if not enhance, the
behaviour of a centralised controller. To this aim, such controllers form a network where information
is exchanged to meet the control objectives.

The outline of the chapter is the following: Section 2.1 presents an introduction to the basic
elements of DMPC: the large-scale system partition, the system global and local constraints, and
the control objective. A comprehensive literature review is presented in Section 2.1.2, this review
categorises DMPC approaches between iterative, and non-iterative methods. Section 2.2 presents a
basic approach for non-iterative DMPC highlighting its benefits and limitations. New results on the
convergence and region of attraction of this controller are also presented in this section. Section 2.3
presents tube-based DMPC in its basic and improved forms. A novel proof of the stability of the
origin, as opposed to a set, is also given. Finally, Chapter 3 develops and presents an algorithm for
DMPC capable of handling couple constraints and noisy measurements, this approach is based on
the work developed by the author in [6].

2.1 DMPC

Before discussing what DMPC algorithms are and what their classification is, it is necessary to
define the LSS and its components. In the simplest terms, a LSS can be defined as any other system
which is composed of a rule for its evolution or dynamics and some sets– the state space– where
this evolution takes place. The critical difference lies in the sheer size of the system– high state
dimension– or its geographical distribution. Under this point of view, implementing a classical
controller is impractical since it would require a considerable computational effort for the synthesis
of the control law, or it would need measurements of quantities that are located far away from the

11
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control room which may induce delays in the dynamics. A solution to this problem is to divide the
system and controller into smaller interacting and collocated parts which we define as the partition
of the LSS.

This interpretation of the LSS allows us to consider a “systems of systems" structure; the com-
ponent parts of the LSS are smaller and heterogeneous systems themselves. The partition of the
LSS offers the distributed or decentralised controller a flexibility to handle structural changes. Each
component or subsystem is equipped with constraint sets on states and inputs, a cost or performance
criteria to be optimised, and a robust receding horizon control law.

2.1.1 large-scale systems

Consider a linear discrete time invariant LSS

x+ = Ax+Bu (2.1)

where x ∈ Rn is the state at the current time, u ∈ Rm the control input, x+ is the successor state,
and the system matrices have appropriate dimensions. This system may be partitioned into M non-

overlapping subsystems given by the set M = {1, . . . ,M}; for each i ∈M , the associated dynamics
satisfy

x+i = Aiixi +Biiui + ∑
j∈M

Ai jx j +Bi ju j, (2.2)

where xi ∈ Rni , and ui ∈ Rni are the subsystem state and input respectively. The local dynamics
satisfy the following Assumption:

Assumption 2.1 (Local Controllability). For each i ∈M , the pair (Aii,Bii) is stabilisable.

A non-overlapping LSS partition satisfies:

i) The state and control dimension are n = ∑
i∈M

ni and m = ∑
i∈M

mi.

ii) The large-scale matrices are partitioned into block matrices, A = [Ai j]i, j∈M and B = [Bi j]i, j∈M .

Assuming a non-overlapping partition of the LSS is not restrictive since Šiljak et al. showed in [140]
and [53] that an overlapping partition can be transformed into a non-overlapping one following a
procedure of expansion of the state space. In this procedure, a non-overlapping partition induces a
linear transformation between the original state x ∈Rn and x̃ = T x ∈Rn+nr

where nr is the dimen-
sion of the repeated state. Another feature of LSS is that the complete model is not necessarily known
by all the subsystems. This absence of knowledge is one of the main reasons why it is necessary
to distribute the problem; only predictions about local dynamics are available, and necessary steps
are required to coordinate each subsystem decisions. The dynamic neighbouring set of subsystem i

collects all subsystems interacting with i such that:

Definition 2.1 (Dynamic Neighbour Set). For subsystem i ∈M , the set of dynamic neighbours is

defined as N D
i = { j ∈M : [Ai j Bi j] 6= 0}.
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All subsystems affecting i’s dynamics belong to Ni, the family of such sets defines a topology
on the LSS which can be described rigorously by means of graph theory ∗ as in [72, 141, 142]. Let
G = (M ,L ) be a directed graph with the set of subsystems as its set of vertices, and the set of
edges defined by the collection {Ni}i∈M such that

L D = {i : j : j ∈N D
i } (2.3)

where i : j is the link from i to j. A directed graph represents more accurately the possible partitions
of the LSS because it allows non-symmetrical interactions, i.e. j ∈N D

i and i 6∈N D
i , to be repre-

sented. As a consequence of this, there are two types of interactions: the subsystems affecting i and
the subsystems affected by i.

One of the benefits of using MPC for LSS is its systematic handling of constraints. In this
Section, we define rigorously the constraints imposed on the system and analyse its impact on the
topology of the network. These constraints arise from different reasons, such as physical limitations,
performance requirements, and communication restrictions to name a few. These requirements can
be translated into relations grouped in the form of sets in a Euclidean space. For simplicity of the
analysis, these sets mostly involve open, closed, or compact sets. Assuming a system partition given
by M = {1, . . . ,M}, each subsystem is subject to local constraints on states and inputs xi ∈Xi⊂Rni ,
ui ∈Ui ⊂Rmi , both of these sets satisfying the following Assumption:

Assumption 2.2 (Local Constraints). For each i ∈M , the sets Xi and Ui are PC-sets.

The reason of asking these sets to be convex and compact will be clear in later section when the
Optimal Control Problem (OCP) is formulated. As a consequence of defining local constraints, the
large-scale system is constrained by the product of these local sets, i.e. x ∈ ∏

i∈M
Xi, u ∈ ∏

i∈M
Ui.

From (2.2), the interaction terms can be considered as a process disturbance to the local dynam-
ics.

x+i = Aiixi +Biiui +wi (2.4)

where wi , ∑ j∈N D
i
(Ai jx j +Bi ju j). This disturbance is, in view of the constraints on each x j and u j,

contained within the set
Wi ,

⊕
j∈N D

i

Ai jX j⊕Bi jU j, (2.5)

From Assumption 2.2, each disturbance set is also a PC-set. This disturbance set takes into account
the structure of the large-scale system. A common design assumption on this disturbance set is

Assumption 2.3. For each subsystem i, the disturbance set is constraint admissible, i.e. Wi ⊂
interior(Xi).

Assumption 2.3 is essentially a weak coupling assumption, the idea behind this is the following:
If the disturbance sets satisfy Wi 6⊆ Xi, then a decentralised or distributed controller cannot be
designed for such partition of the LSS. A coarser partition solves this problem, and will be discussed
further in Chapter 6. On the other hand if Assumption 2.3 is satisfied, various robust methods for
MPC can be applied to the system.

∗See Section 1.4.4 for the relevant definitions from Graph Theory.
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X j
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Figure 2.1: Illustration of a coupled constraint set: given the local constraints Xi, X j, the product
set Xi×X j and the XC ⊂Xi×X j. If each system satisfies its local constraint set, it does not imply
that the coupled constraints are satisfied, because of the strict inclusion, i.e. (xi,x j) ∈Xi×X j 6=⇒
(xi,x j) /∈XC.

In addition, the sets Xi and Ui do not portray the overall picture of constraints for the LSS. More
general constraints, XC ⊂Rn, can be defined on the system, see Figure 2.1, such that XC ⊂ ∏

i∈M
Xi

is a proper subset of the product of local constraints. This type of constraints are known as coupled
constraints, and induce another layer of interconnection in the LSS. Coupled constraints present
a formidable challenge in controller design since they require a level of cooperation between sub-
systems, some of the approaches that tackle these constraints are [6, 36, 151, 153, 154] by em-
ploying iterative methods, and extra tightening of the constraints sets. Similarly to the system dy-
namics, these shared constraints induce coupling on the system, and therefore a topology on the
system. The coupled constraint set Z is composed of c ∈ C constraints with Mc subsystems in-
volved with this constraint, and acts on the collection of coupling outputs of those subsystems:
zc = (zc1,zc2, . . . ,zcMc) ∈Zc, where zci = Ecixi +Fciui ∈Rqci and
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Zc ⊂ ∏
i∈Mc

Zci , ∏
i∈Mc

EciXi⊕FciUi. (2.6)

Next, the set of subsystems involved with the shared constraint c∈C is, by construction, Mc =
{

i∈

M : [Eci Fci] 6= 0
}

. Similarly, the subset of shared constraints in which subsystem i is involved is

Ci =
{

c ∈ C : [Eci Fci] 6= 0
}

. Then the coupling neighbours of the ith subsystem are those in the set
of constraint neighbours.

Definition 2.2 (Constraint Neighbour Set). For subsystem i ∈M , the set of constraint neighbours
is defined as N C

i =
⋃

c∈Ci

Mc \{i}.

This set allow us to define the set of links corresponding to the constraint structure of the LSS
arising from a collection of the neighbour set, {N C

i }i∈M

L C = {i : j : j ∈N C
i or j ∈N D

i } (2.7)

The overall topology for the LSS is given by the union of both sets of links L = L D ∪L C. As
pointed out by [141] these topologies are a crucial aspect to take into account when designing suit-
able controllers for LSS since they determine the degree of robustness the controller with respect to
structural perturbations. In Chapter 6, a novel method that switches between several of these topolo-
gies ensuring stability and feasibility is presented. The general control objective for the controller is
the minimisation of the infinite horizon control cost

min{
∞

∑
k=0

`(x(k),u(k))} (2.8)

where ` : X×U→ R is the stage cost of the system, and it is assumed to be positive definite, in
many application this function is a quadratic function of the states and controls. This cost is aimed
to reflect the requirements imposed by the designer. The method to handle the optimisation in (2.8)
yields different approaches to DMPC. When the stage cost function has crossed terms arising from
different subsystems, the LSS is said to be coupled by cost. Introducing coupling in the cost function
has cooperation connotations, see Section 2.1.2 for different methods handling such coupling.

From the premise that each subsystem is aware only of its local dynamics, constraints, a similar
approach can be taken with the cost. A decoupled stage cost has the form:

`(x,u) = ∑
i∈M

`i(xi,ui) (2.9)

where `i(·, ·) is the stage cost for each subsystem i of M . This decomposition of the cost allows
robust control methods to be used for each subsystem, as in [5, 22, 23, 127, 128, 130, 150] for
example. By splitting the cost into M summands, we allow the possibility of competing subsystems.
This scenario arises because each subsystem seeks to minimise its respective cost while rejecting or
ignoring the interactions in the network. A standard Assumption on the stage cost is continuity and
boundedness.

Assumption 2.4. The stage cost function `i(·, ·) for each i∈M is continuous and satisfies `i(0,0) =
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0 and there exists a α1i ∈K∞-function satisfying `i(xi,ui) ≥ α1i(‖xi‖) for all xi ∈Xi and ui ∈Ui.

2.1.2 Existing methods of DMPC in the literature

The earliest results on analysis and synthesis of LSS have been done by the likes of Šiljak and
Lunze during the 70s and 80s, these contributions are summarised in the monographs [72, 142]. The
main objective focus of these are to identify the challenges, limitations, and opportunities in LSS.
This class of systems differs from its classical counterparts, not only because the state and control
dimensions are high, but also in the sense that they can be geographically scattered. As a result of
this, centralised or monolithic techniques are not suitable because of limited computing power, or
excessive amounts of delays [141]. From [72], the system can be viewed as a system of systems, in
the sense that the LSS can be partitioned into smaller systems that are interconnected. Therefore, a
LSS is subject to structural constraints, arising from the interconnectedness of its components, and
to classical constraints such as physical limitations.

Early approaches for DMPC

One of the earliest forms of DMPC is the one of [1], where the authors have developed a method of
controlling a network of M interconnected systems, N D

i 6= /0 for some i ∈M that are not subject
to constraints on the state nor input, X = Rn and U = Rm, and N C

i = /0 for all i ∈M . The LSS
is controlled by a family of M MPC independent controllers. The main contribution is the stabil-
ity proof; stability of the system as a whole is ensured for interactions of ε magnitude. If this is
not the case, a lower bound on the prediction horizon is given to ensure the required properties.
These results formalise the notion that decentralised control of LSS resembles that of a centralised
controller for sufficiently small interactions. A bound on the interactions depends on the tuning
of each MPC controller. Other early approaches include [157] and [165]; they tackle the problem
of controlling large-scale systems through more efficient methods of optimisation. The latter em-
ployed novel techniques of the time, such as truncation of an infinite horizon cost for continuous
nonlinear systems, to solve high dimensional nonlinear optimisation problems. The approach, al-
beit novel, cannot be applied to systems that are geographically sparse. On the other hand, [157]
proposed efficient Quadratic Program (QP) methods to solve large optimisations targeting industrial
applications. The same conclusion can be drawn from this approach, the algorithm, albeit numer-
ically efficient, cannot control systems across large geographical areas because of its dependence
on information exchange. The rationale behind these two approaches is a natural one, in the sense
that better optimisation methods are needed for MPC as the number of states and decisions vari-
ables grow. This search for new and better methods for controlling and optimising LSS led to the
application of distributed optimisation methods for DMPC. In the seminal articles of [56] and [16],
the formulation of DMPC has been stated in its modern form: A LSS partitioned into M different,
non-overlapping interconnected subsystems, each one endowed with a separate MPC controller, see
Figure 2.2. Depending on how these controllers interact, different approaches and paradigms can be
defined. When no communication occurs the overall controller is known as decentralised, otherwise
is distributed. In [56], each subsystem in addition to constraints on the states and inputs xi ∈ Xi

and ui ∈Ui is subject to stability constraints ‖xi‖2 ≤ l2
i for some li > 0. These constraints ensure
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Figure 2.2: Distributed controller scheme for a LSS, an interaction exists between subsystems of the
LSS and among their respective local controllers. Each controller limits its action to one subsystem.

stability and feasibility of the closed loop system, albeit in a conservative way. Camponogara et al.
[16] present several ways in which the controllers may interact between them: cooperation, when the
subsystems share a common objective; coordination for stability, when the objective is to emulate a
centralised performance; and heuristic approaches to cooperation. These modes of operation define
the goal of each DMPC algorithm. From the literature, see the surveys [20, 77, 101, 136], two main
types of algorithms have been identified: iterative methods based on distributed optimisations, and
non-iterative methods based on robust control techniques.

Non-robust methods for DMPC

Iterative methods for DMPC take the path of solving the centralised problem using distributed op-
timisation techniques. This type of approach tackles the problems of cooperation and coordina-
tion for stability. In [160, 161], an iterative approach is proposed to ensure convergence towards
a Pareto optimal solution for input coupled systems. The proposed optimisation problems, such
as communication-based DMPC and feasible cooperation DMPC, tackle the problems of coordi-
nation for stability and cooperations paradigms. Both of these problems require a solution of the
decentralised optimisation problem u0

i for each subsystem of the network and iterate this solution
within each sampling time to converge to a global equilibrium point for the LSS. The paper [161]
applies these concepts to a power network, in particular, an AGC setting. Modern iterative tech-
niques include the ones of [39, 143], [29, 41–43], and [15, 27]. All of these contributions use either
dual decomposition, gradient descent, or alternating direction method of multipliers techniques to
solve the centralised problem in a distributed fashion; Conte et al. [24] propose a distributed opti-
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misation method based on a Linear Matrix inequality (LMI) design phase for the terminal set. In
[156], an iterative DMPC algorithm is proposed based on game bargaining to achieve convergence
to a Nash equilibrium. The survey of Hermans et al. [49] provides, from an application point of
view, a comparison between different DMPC methods available at the time; specifically, they com-
pare decentralised stabilising contractive constraints of [16] and the iterative approaches from [162].
The most important conclusions drawn from this paper are: decentralised or distributed forms of
MPC suffer from a prediction mismatch compared to its centralised form, hence deteriorating per-
formance; competing subsystems, i.e. minimising local cost functions, tend to converge towards a
Nash equilibrium point as opposed to Pareto optimal.

Despite iterative algorithms achieving theoretical guarantees, their main drawback is its depen-
dence on the number of iterations to achieve such properties; this implies solving the optimisation
problem several times in between time steps. An early truncation of the iterations may result in a loss
of performance since only suboptimal solutions are used to control the system. These approaches
defeat the purpose of MPC where a single optimisation problem is solved per sampling time. As a
result, the present thesis will focus on non-iterative methods. To avoid resorting to distributed op-
timisation methods, the interactions between agents are modelled as external disturbances, and the
information structure is exploited to synthesise non-iterative controllers.

Several non-robust and non-iterative approaches exist in the literature. Early works such as
[59, 60] consider a completely decentralised controller, where each subsystem knows the neigh-
bouring models. These approaches obtain a closed-loop performance similar to that of a centralised
controller, but as the number of subsystems increases the algorithms lose their applicability. Du et al.
[31] solve the problem of coordination for stability using games, and the system converges towards a
Nash equilibrium. On the other hand, a completely decentralised approach was proposed by [82] for
state coupled systems based on contractive constraints. Other non-iterative optimisation algorithms
are [32, 33]; the proposed scheme controls a LSS that is dynamically and constraint decoupled,
i.e. N D

i = N C
i = /0, but coupled through the objective function.

Robust methods for DMPC

The different existing robust control approaches and techniques generate a plethora of DMPC meth-
ods that handle different scenarios: dynamic, cost, and constraint couplings, communications delays,
nonlinearities. The earliest approach using robust control for DMPC, of which the author is aware,
is given in [30]. In this paper, a min-max approach to DMPC was developed where the subsystems
share bounds on the interactions, obtained through information sharing. This approach uses feed-
back parameterisation, and information sharing to reduce conservatism of the approach. In [124]
and [125], the authors presented a robust control algorithm for dynamically decoupled systems but
coupled with constraints. The constraint coupling can only be handled via coordination between
the subsystems involved. The coordination step, in this case, is given by information sharing, and
sequential updating: at time k only one subsystem optimises its control actions N steps ahead, while
the rest use their previously updated trajectory. At the next instant of time, a different agent updates
its control plan while the rest use past control plans. The main drawback of this approach is that
the as the number of subsystems increase, the longer each subsystem remains without updating its
control plan.



Chapter 2. Robust DMPC 19

Other approaches in the literature aim to exploit the inherent robustness properties of MPC to
obtain bounds on the interactions. Hermans in [47] and [48] develops a non-centralised controller
that exploits the interconnections between agents to guarantee the stability of a network of systems
using a structured family of Control Lyapunov Functions. The resulting Lyapunov function for the
overall system guarantees desired properties through an ISS-like behaviour. The results in this paper
show the tight relation between the overall stability of the system and the interconnection magnitude;
a concern raised previously in [1]. In [111], the authors propose a decentralised technique that relies
on ISS and small gain arguments to guarantee stability of the LSS via min-max control. One of
the tools in the Lyapunov analysis of the system is that of a level set of the Lyapunov functions for
each subsystem is a positively invariant set for the system. The authors of [12] analyse the relation
between stability and the structural properties of a LSS, focusing on the class of Lyapunov functions
to be used; polyhedral Lyapunov functions offer advantages over standard quadratic ones regarding
the characterisation of the region of attraction. The properties of the cost functions, in particular,
its class, determine the convergence properties for the LSS. Blanchini et al. in [11] show that
differentiability of the cost function is enough to guarantee ISS behaviour; this observation follows
from the relationship between Lipschitz and continuous differentiability. Groß and Stursberg [45]
proposes a distributed scheme for coupled constraints and costs with delays in the communication.
The cost coupling is defined through the characterisation of a convergence set Ω ⊂ R where the
cost vanishes; this set can describe from isolated equilibrium points, consensus sets, to a continuum
of equilibria. Each subsystem solves the problem by sharing predictions and resorting to robust
optimisation methods to handle any delays.

The tube-based approaches for model predictive control, see [89], have attracted attention from
the DMPC research community because of its theoretical properties and simplicity of implementa-
tion. In [153] and [151] a robust tube-based MPC algorithm is used to control a LSS coupled through
constraints, but dynamically decoupled subject to additive process noise. The proposed algorithm
achieves exponential stability of an RPI set and robust recursive feasibility through appropriate con-
straint tightening and information scheme. The limitations of this algorithm lie in its sequential
optimisation of the subsystems control problems. the problem of updating the OCP, and that of cou-
pled constraints is improved in [148, 152], where a parallel optimisation procedure endowed with an
adaptive constraint tightening to account for coupled constraints is proposed. Also, these two papers
include coupling via dynamics in the problem formulation. The inclusion of coupling in the dynam-
ics exacerbates the problem of the conservatism of the tube based approach. The closed-loop system
needs to be robust not only to the process noise but also to the interactions between subsystems that
lie in a bounded set Wi, see Equation (2.5). Additional approaches to robust DMPC include those
of [23, 36, 131] where different techniques are employed to reduce the conservativeness of the tube-
based approaches. Farina and Scattolini [36] use admissible reference trajectories that are shared
among the members of the LSS to minimise any possible deviations from a prescribed behaviour. In
[131] and [50] tube controllers are used in cascade fashion; each subsystem generates a trajectory
based solely on local dynamics and measurements, the solution of such optimisation is then piped
into a second OCP that includes information on the neighbouring trajectories. A similar method
that uses signals and information from the neighbouring agents is that one of [71], where each agent
shares predictions of reachable sets as an estimation of where the state will be. In [127, 163], the
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authors add Plug and Play (PnP) operations to the controller, thus opening the possibilities of a time-
varying number of agents. Tracking capabilities can be added as an additional layer of complexity
to the system as in [38, 40]. Two of the latest paper in the literature, [150, 155], tackle the problem
of conservatism by employing online updates on the size of the interactions and recomputation of
the required invariant sets online.

The computation of robust control laws, in general, represent a bottleneck in the implementation
of robust MPC within any application. In this thesis, we consider only robust methods based on
invariant sets; in the literature different methods are available such as min-max methods of [111] or
small gain methods of [26]. The computation of invariant sets for large-scale systems has received
much attention on the last few years: [113] presents the concept of practical invariance for the LSS
based on a family of RPI sets for the individual subsystems. This concept is extended to RCI sets in
[132]. In [23], [22] and [24] a distributed computation of terminal invariant conditions is presented
and applied alongside a cooperative DMPC approach. Despite all of these attempts to compute
invariant sets, the basic question that arises is under what circumstances these local invariant sets
can be designed. These design conditions differ from standard robust MPC approaches in the sense
that the disturbances affecting the system have an inherent structure and information .

2.2 Naive non-iterative DMPC

One of the available tools for analysing the problem of controlling a family of interconnected sub-
systems is that of ISS. The interactions between systems can be considered as exogenous signals
which a suitably designed MPC controller can handle via Definition 1.19. This implies that each
of the subsystems remain stable when subject to interactions. Another way to interpret the results
are that the subsystems in closed loop with the MPC controllers dissipate more energy than the one
injected by the interactions. This idea, however, has severe limitations in terms of the size of the
interactions allowed into the system. Most of the results on ISS, see [57] for further details, assume
the existence of a bound on the allowed disturbance.

2.2.1 Problem formulation

A naive approach to DMPC considers only local dynamics, neglects the interactions between subsys-
tems, and applies an MPC controller to each of these subsystems. As a result of this, M optimisation
problems are solved in parallel involving only local dynamics and local constraints. For subsystem
i, the decentralised OCP has the following structure:

Pi(xi) : min{V N
i (xi,ui) : ui ∈U N

i (xi)} (2.10)

where U N
i (xi) is defined by the constraints

xi(0) = xi, (2.11a)

xi(k+ 1) = Aiixi(k)+Biiui(k), (2.11b)

xi(k) ∈Xi, (2.11c)
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ui(k) ∈Ui, (2.11d)

xi(k+N) ∈X
f
i . (2.11e)

and V N
i is a finite-horizon approximation to i’s share of (2.8):

V N
i (xi,ui) = V f

i (xi(N))+
N−1

∑
k=0

`i

(
xi(k),ui(k)

)
The solution of this OCP is a sequence of N control actions u0

i (xi) = {ui(0), . . . ,ui(N−1)}, yielding
the optimal state sequence x0

i (xi) = {xi(0), . . . ,xi(N)}. The standard MPC control law is given by
the first element of the control sequence κMPC

i (xi) = u0
i (0;xi) and its feasible region is given by

X N
i , {xi ∈ Rni : U N

i (xi) 6= /0}.The standard necessary ingredients to guarantee stability of an
MPC controller are outlined in [88], and require a stabilising terminal control law ui = Kixi such
that ρ(Aii +BiiKi) < 1, a Positive Invariant (PI) set X

f
i ⊂ Xi for x+i = (Aii +BiiKi)xi, and V f

i (·)
a Control Lyapunov Function (CLF) on X

f
i . These requirements are summarised in the following

assumptions:

Assumption 2.5 (Invariance and admissibility). The set X
f
i is a local-constraint admissible, positive

invariant set for x+ = (Aii +BiiKi)xi; that is, (Aii +BiiKi)X
f
i ⊆X

f
i , X

f
i ⊆Xi, KiX

f
i ⊆Ui.

Assumption 2.6 (Control Lyapunov function). The function V f
i (·) is a local control Lyapunov func-

tion, with control action ui = Kix:

V f
i

(
AK

i xi

)
−V f

i (xi) ≤−`i(xi,Kixi),∀xi ∈X
f
i .

The ith subsystem equipped with a terminal control law, terminal set, and terminal cost is stable
on its own when neglecting the interactions. Unfortunately, despite all subsystems being stable re-
spect to the local dynamics, the overall LSS might not be stable because of the neglected interactions.
However some conclusions can be drawn from a deeper analysis of the problem.

2.2.2 Inherent robustness of DMPC

Considering linear dynamics, and a quadratic optimisation problem as described above, see Equa-
tions (2.2) and (2.10), the control problem is endowed with an inherent robustness property. Our
first results aim to characterise this robustness by finding the maximum size of disturbances and
establishing appropriate bounds on the cost. The following result is an application of the arguments
given in [69, 122] to a distributed setting.

Proposition 2.1 (ISS for nominal MPC). Suppose Assumptions 2.2–2.6 hold. For each i ∈M with

local nominal dynamics x+i = Aiixi + Biiui in conjunction with the MPC control law κMPC
i (x) =

u0
i (0;xi), the value function on a subset ΩR

i ⊂X N
i , V 0

Ni : ΩR
i 7→ R+, is an ISS Lyapunov function,

see Definition 1.20, for sufficiently small disturbances wi ∈Bw
i and region of attraction X N

i ⊆Rn.

Proof. The proof is based on two parts, i) ensure uniform continuity of the value function, and ii) use
this property to guarantee ISS behaviour inside the set X N

i . For the first part, given Assumptions
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2.4, and 2.6 hold, then the cost function V N
i (·, ·) is continuous. Furthermore, if Assumption 2.2

holds, there exists polyhedral sets satisfying XP
i ⊆Xi ⊆ εXP

i , and UP
i ⊆Ui ⊆ εUP

i , any C-set can
be approximated arbitrarily by a polyhedral set, since these sets are dense in the space of C-sets of
Rn. Using the results from [21, Chapter3] and [122, Appendix C], the value function V 0

Ni(·) is a
continuous function on X N

i , the feasible region for the OCP (2.10). Finally, the feasible region for
the optimal control problem is a compact set when the constraints are compact sets, and the dynamics
are continuous. This together with the Heine-Cantor theorem yields a uniformly continuous value
function on such set. A further implication of uniform continuity is that, see [67, Lemma 10],
V 0

Ni(·) is K -continuous on X N
i , i.e. for any x,y ∈X N

i , |V 0
Ni(x)−V 0

Ni(y)| ≤ σV
i (‖x− y‖), with σV

i a
K -function.

The ISS property for the value function follows from its uniform continuity, let the decrease of
the value function from along the uncertain dynamics xd

i = Aiixi +Biiui +wi, where wi ∈Bw
i , be:

V 0
Ni(x

d
i )−V 0

Ni(xi) = V 0
Ni(x

d
i )−V 0

Ni(x
+
i )+V 0

Ni(x
+
i )−V 0

Ni(xi)

≤ σ
V
i (
∥∥∥xd

i − x+i
∥∥∥)− `i(xi,κN(xi))

≤ σ
V
i (‖wi‖)− `i(xi,κN(xi))

Therefore V 0
Ni : X N

i 7→R+ is ISS for the each nominal subsystem i.

Proposition 2.1 characterises the inherent robustness of each MPC controller. An intuitive view
of this property is the following: each subsystem dissipates energy much faster than the rate at
which it is injected through interactions with the Lyapunov function acting as a storage function. A
natural question regarding this problem is given the state xi what is the largest disturbance allowed
to guarantee convergence towards the equilibrium. The next proposition establishes such bound on
the interactions

Proposition 2.2. Suppose Assumptions 2.2–2.6 hold. Let V 0
Ni(·) be the value function for (2.10) with

αsi ∈K -function for s = 1,2,3 as bounding functions. For the states contained in a ball of radius

ri > 0, xi ∈Bri , then x+i ∈Bri if the size of disturbances satisfy

‖wi‖ ≤
(

Id−α
−1
1i ◦ (α2i−α3i)

)
(ri) (2.12)

Proof. From the previous proposition, the value function is an ISS Lyapunov function. The proof
follows directly from the definition of an ISS Lyapunov function, and [107, Theorem 1]. Consider∥∥∥xd

i

∥∥∥≤∥∥∥x+i
∥∥∥+‖wi‖, from Lyapunov theory the state evolution is bounded by

∥∥∥x+i
∥∥∥≤ α

−1
1i ◦ (α2i−

α3i)(‖xi‖). As a result, the disturbed state evolution remains bounded by
∥∥∥xd

i

∥∥∥ ≤ α
−1
1i ◦ (α2i −

α3i)(‖xi‖)+‖wi‖. If the state is contained within a ball of radius r, xi ∈Br,
∥∥∥xd

i

∥∥∥ ≤ α
−1
1i ◦ (α2i−

α3i)(r) +‖wi‖. To achieve xd
i ∈Br the previous upper bound must be no greater than this radius

such that α
−1
1i ◦ (α2i−α3i)(r)+‖wi‖= r. Finally, the desired bound on the disturbance is given by

‖wi‖ ≤
(

Id−α
−1
1i ◦ (α2i−α3i)

)
(r) as desired.
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Figure 2.3: Value function bounds for subsystem 1 for Qi = 1, Ri = 1 and Pi = 1.3, ( ) is the value
function V 0

Ni(x1); ( ) is the lower bound α11(‖x1‖); and ( ) is the upper bound α21(‖x1‖).

Corollary 2.1. If the previous Assumptions hold, and the value function satisfies

c1i‖xi‖a ≤V 0
Ni(xi) ≤ c2i‖xi‖a

V 0
Ni(x

+
i )−V 0

Ni(xi) ≤−c3i‖xi‖a

the bounds on the disturbance satisfy

‖wi‖ ≤
(

1−
(c2i

c1i

(
1− c3i

c2i

))1/a)
(ri) (2.13)

Proof. The proof follows as a direct consequence of Proposition 2.2.

2.2.3 Results and challenges

Corollary 2.1 presents a closed form for the bounds for the maximum allowed disturbance that is
sufficient to ensure that the local MPC controllers converge exponentially. This type of convergence
is generally ensured by the following estimates:

• a = 2,

• c1i = λm(Qi),

• c2i = ηiξi
√

max{λM(Qi),λM(Pi)}λM(Ri)(‖A‖+‖B‖),

• c3i =
(

1+ λm(Ri)
c2i

)
λm(Qi)
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where ηi and ξi are such that

max{λM(Qi),λ (Pi)}‖xi‖2 +λM(Ri)‖ui‖2 ≤ ηi

√
max{λM(Qi),λ (Pi)}∗λM(Ri)‖xi‖‖ui‖

‖ui‖ ≤ ξi‖xi‖

Example 2.1. As an example of this, consider the LSS composed of two one dimensional subsystems

with dynamics: x1

x2

+ =

 1 0.25
−0.5 1.3


︸ ︷︷ ︸

A

x1

x2

+
1.5986 0.4581

0.6931 1.5986


︸ ︷︷ ︸

B

u1

u2

 (2.14)

Each subsystem is subject to state and control constraints Xi = {xi ∈ R : |xi| ≤ 10}, and Ui =

{ui ∈ R : |ui| ≤ 1} respectively. Furthermore, the value function of the OCP for each subsystem

is a Lyapunov function for both systems such that the bounding scalars are given in Table 2.1,

see also Figure 2.3. It is possible to apply Corollary 2.1 to obtain the maximum bounds on the

disturbance. For example, given a state on the boundary of the feasible region for naive DMPC, in

which interactions are neglected, x1 = 6.87, the maximum allowed disturbance is
∥∥wmax

1

∥∥= 0.9294,

and for x2 = 3.6065 the corresponding disturbance is
∥∥wmax

2

∥∥= 0.0997.

In Figure 2.4, the volume for the decentralised MPC is bigger than the one for the centralised, but
not all of these points are guaranteed to be recursively feasible as can clearly be seen in Figure 2.4.
The feasible region for the centralised dynamics (2.14) is the 3− step controllability set X 3

C = {x ∈
X1×X2 : ∃u ∈ (U1×U2)3 s.t. A3x+[A2B AB B]u ∈X

f
C} with X

f
C a PI set for x+ = (A+BK)x,

and K such that ρ(A+BK) < 1. Similarly, the feasible region for the each subsystem, neglecting
any interactions, is given by the constraints 2.11, such that X 3

i = {xi ∈Xi : U 3
i (xi) 6= /0}, and the

decentralised feasible region is X 3
D = X 3

1 ×X 3
2 . From Figure 2.4, the centralised feasible region

is not comparable to the decentralised one, the inclusion relation fails to hold in either of the senses:
X 3

D 6⊆X 3
C nor X 3

C 6⊆X 3
D , a precise relation between the feasible regions for different partitions of

the LSS will be given in Chapter 6. One of the first observations drawn from Figure 2.4 is that there
exists points in the state space that can be stabilised despite neglecting the interactions. On the other
hand, there are points in the state space that belong to the centralised region that cannot be stabilised
if the interactions are not taken into account.

Subsystem 1 2

a 2 2
c1i 1 1
c2i 2.3954 2.5694
c3i 1.6778 1.6543

Table 2.1: Bounds for Naive DMPC.
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Figure 2.4: Closed loop feasibility analysis for LSS (2.14), composed of two subsystems each
controlled with decentralised MPC. ( ) is the centralised feasible region, ( ) is the product
of both feasible regions X N

1 ×X N
2 , ( ) are the points that converge towards the origin; ( ) are the

points that become infeasible after 1 step time; ( ) are the infeasible points after 2 time steps; finally
( ) the infeasible points after 3 steps. The prediction horizon for this example is N = 3, the state
constraint set is given by ( ).

Proposition 2.2 provides only sufficient conditions to guarantee stability of the overall approach
when the interactions are small. When the system is initialised in the down-left corner of X N

1 ×
X N

2 , i.e. the point x(0) = (−6.40,−2.40)>. A feasible decentralised solution exists yielding the
control action u(0) = (1,1)>. When this control action is applied, the disturbance free state evolves
to x(1) = (−4.81,−1.52)>. However, the interaction between these two subsystems is nonzero,
w1(0) = −0.14 and w2(0) = 3.89; the disturbed successor state is xd(1) = (−4.95,2.37)>. The
disturbance acting on subsystem 2 is bigger than the bound established in Proposition 2.1, which
is ‖wmax‖ ≤ 0.58 for the state ‖x‖ ≤ 9.44. In this case, the disturbed state is still a feasible point,
its associated MPC control action is u(0) = (1,1)>. This control action yields the disturbances
w1(1) = 0.21 and w2(1) = 2.25, with feasible successor state x(2) = (−3.13,−2.71)>. This last
state is still feasible, but the next one is not xd(3) = (−1.31,4.18)> /∈X N

1 ×X N
2 . The initial state

can be steered to a point inside the feasible despite the disturbance having a bigger magnitude than
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the predicted bound because this computed bound takes into account a ball of disturbances. Within
this ball, some of the disturbances may still render feasible successor states, as shown in the example.
On the other hand, when the system is initialised close to the origin, i.e. within the set ΩR ⊂X 3

D , the
controller steers the state towards the origin much faster than the action of the disturbance, therefore
obtaining the desired convergence. This implies in turn the dependance of the ISS properties on
the tuning parameters of the controller: The faster the systems drives the nominal states towards its
equilibrium, the more robust the system to exogenous signals.

2.3 Robust approaches to non-iterative DMPC

2.3.1 Robust MPC

In this Section, we briefly discuss the available robust MPC methods available in the literature.
Robust MPC per se has advanced rapidly in the last decade, as mentioned in [87], and is at the heart
of several DMPC methods. We put more emphasis on the linear tube based methods, as described in
[65, 122], because these are widely used in DMPC and this thesis. The model considered is linear
time invariant and subject to additive uncertainties

x+ = Ax+Bu+w, (2.15)

where the state x ∈ X, the control input u ∈ U, and the uncertainty w ∈W at the current time,
and x+ is the successor state. A standard assumption is that X is a PC-set, and U and W are C-
sets. These assumptions on the constraint sets on states and outputs guarantee a unique solution
of an MPC optimisation problem, and the compactness and convexity of W allows the designer
to compute appropriate invariant sets [66]. It is invariant sets which are at the heart of tube-based
control methods; the two main components of this control technique are the nominal– disturbance
free– dynamics and a fixed linear gain to handle the uncertainty. The nominal system satisfies
x̄+ = Ax̄+Bū, this system can be interpreted as a trajectory generator around which the uncertain
trajectory will evolve. As a result, the control law has two terms

u = ū+K(x− x̄) (2.16)

The first term steers the nominal system towards its equilibrium while the second term reject the
disturbances. This control method ensures that the optimal control problem complexity is similar to
a standard MPC. The simplest version of the OCP is:

min
ū

{
V (x̄, ū) : ū ∈U N(x̄)

}
(2.17)

where U N(x̄) is defined by the constraints

x̄(0) = x̄, (2.18a)

x̄( j+ 1) = Ax̄( j)+Bū( j), j = 1 . . .N−1 (2.18b)

x̄( j) ∈ X̄, j = 0 . . .N−1 (2.18c)



Chapter 2. Robust DMPC 27

ū( j) ∈ Ū, j = 0 . . .N−1 (2.18d)

x̄(N) ∈ X̄ f . (2.18e)

The structure of the problem is the same as the standard MPC with the caveats that the constraint sets
are appropriately tightened to account for the disturbances. Another interesting feature of this OCP is
the initialisation of the nominal prediction model: the initial constraint (2.18a) requires the value of
the nominal state at time k. This implies that the controller runs and updates an internal disturbance
free model; such that at time k = 0, the states of the nominal and uncertain dynamics coincide,
i.e. x̄(0) = x(0). This approach, however, shrinks the uncertain dynamic region of attraction to that
one of the nominal system.

The region of attraction for MPC controllers with polytopic constraints and linear dynamics
coincides with the projection feasible region set, and is given by the recursion of controllability sets,
with X0 = X̄ f such that

X̄h+1 , {z ∈ X̄ : ∃u ∈ Ū,Az̄+Bū ∈Xh}. (2.19)

For an MPC controller with a horizon N the region of attraction is the N− step controllability set.
The concept of a tube-based method lies in the evolution of the uncertain system under the control
law (2.16), given an invariant set R ⊂ X for the error, e = x− x̄, dynamics e+ = (A+BK)e+w

with ρ(A + BK)) < 1, and a solution of the OCP ū = {ū(0), . . . , ū(N − 1)}, the state evolution
satisfies x(k)∈ x̄(k)⊕R, and similarly for the control input u(k)∈ ū(k)⊕KR. Tube based methods
guarantee both recursive feasibility and asymptotic stability which follow from standard results on
MPC, c.f. Appendix A. Despite the nominal system converging towards a desired equilibrium, the
“true" system can only converge to a neighbourhood of the equilibrium point given by the invariant
set R.

There are several methods in the literature that improve on this concept of tube MPC where the
first improvement is the enlargement of the region of attraction, as described in [89]. One source
of conservativeness of the tube-based approach is constraint (2.18a) which limits the size of the re-
gion of attraction. A suitable modification is to include the the invariant set into the constraints,
i.e. x ∈ x̄(0)⊕R. This new constraint uses the initial state of the prediction model as a decision
variable, and introduces a notion of feedback– the measured state is the parameter of the OCP. The
improved region of attraction is XN = X̄N ⊕R. The caveat of this approach is that the complex-
ity of the optimisation problem increases significantly depending on the invariant set used. This
improvement does not affect the performance of the closed-loop system, which in the presence of
large uncertainties can be poor. A larger uncertainty set implies a larger invariant set and a smaller
nominal constraint sets X̄ and Ū. This is not convenient because the performance is dominated
by the linear part of the control law (2.16). A method to circumvent this conservative performance
problem is to relax the rigidity of the invariant set, as in [115, 120], by allowing it to change its size
R(k) = αkS for k = 0, . . . ,N−1. This parameterisation of the invariant sets allows to characterise
the interactions between the uncertainty, dynamics and performance. A remarkable fact of this tube
approach is that it captures all possible robust controllers.
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2.3.2 Basic tube-based DMPC

As opposed to the “Naive" approach of Section 2.2, in this Section the interactions are taken into
account alongside the nominal, i.e. disturbance-free, dynamics for the design of suitable controllers.
One of such controllers is based on tube MPC methods of [66, 89] applied to a distributed scenario.
The controller employs a two-term control law that uses state measurements and nominal predictions
such that

κN(xi) , ūi +Ki(xi− x̄i) (2.20)

where Ki ∈Rmi×ni is a static gain such that ρ(Aii +BiiKi) < 1, xi is the current measured state, and
x̄i is the nominal state satisfying:

x̄+i = Aiix̄i +Biiūi (2.21)

The second term of (2.20) acts on the error between the measured and nominal states. This error
ei = xi− x̄i obeys the linear dynamics:

e+i = (Aii +BiiKi)xi +wi. (2.22)

The error dynamics are stable by construction, and admit an RPI set. a broad range of RPI set exist
for a particular dynamics, in this case the minimal one is of interest. Furthermore, Several methods
exists to compute RPI sets, such as those given in [63], [58]. The minimal RPI set can be constructed
by iterating the dynamics starting from the origin.

Ri ,
∞⊕

k=0

(Aii +BiiKi)
kWi. (2.23)

The direct computation of such sets remains a formidable challenge, depending on the dynamics the
infinite sum might not converge if ρ(Aii +BiiKi)≥ 1 which can be overcome with suitable assump-
tions on the dynamics. Even in the case of ρ(Aii +BiiKi)< 1, the sum may converge asymptotically
to the minimal RPI set. In such case, the representation of the resulting set may not be finite. Alter-
natively, if the sum converges and Wi is a polytopic C-set, the sum is not guaranteed to be a polytope
unless Ki is nilpotent. This issue is addressed by [116] which proposes an algorithm to find outer
polytopic invariant approximations to the minimal set, [149] proposes a new method for computing
RPI with a pre-established complexity by solving a single Linear Program (LP). This set, regardless
of the way it is computed, is used to tighten both the state and input constraint sets; this procedure
allows the controller to account for the current mismatch between nominal and “true" dynamics.

X̄i = Xi	Ri Ūi = Ui	KiRi (2.24)

Bounding the error within the minimal RPI set ensures that the mismatch between states does not
take much constraint space. Similarly to the “naive" approach, the OCP uses the disturbance-free
dynamics to forecast predictions of the local behaviour of each subsystem. The constraints used in
this problem, however, tighten to account for the state mismatch which is constrained within an RPI



Chapter 2. Robust DMPC 29

set. The resulting OCP for subsystem i

P̄i(xi) : min{V N
i (x̄i) : xi ∈ x̄i(0)⊕Ri, ūi ∈ Ū N

i (x̄i)} (2.25)

where Ū N
i = {ūi : x̄i(k) ∈ X̄i, ūi(k) ∈ Ūi, x̄i(N) ∈ X

f
i , x̄i(k + 1) = Aiix̄i(k) + Biiūi(k) for k =

0, . . . ,N−1}. The solution of (2.25) yields the optimal control sequence ū0
i , with the nominal MPC

control law κ̄N(x̄i), and its respective state sequence x̄0
i . In this OCP, the initial prediction x̄i(0)

is also a decision variable. The nominal system tries to converge towards its equilibrium as fast
as it can; to this end, it places x̄i(k) as close to the origin as possible. Once the nominal system
has converged, the performance relies entirely on the linear control action. The benefit of using a
tube-based method to control a system is that the complexity of the OCP is the similar to that of
a nominal MPC as opposed to a min−max approach, where the optimisation problem handles a
worst case scenario as in [138] and [112], and tends to be computationally expensive. To guarantee
constraint satisfaction for the “true" states, it is sufficient to guarantee that the nominal state remains
inside the tightened constraints:

Proposition 2.3 (Constraint satisfaction). Suppose Assumptions 2.1–2.3 hold. For each i ∈M , the

set Ri ⊂Rni is RPI for e+i = (Aii +BiiKi)ei +wi. Furthermore, if ei ∈Ri and x̄i ∈ X̄i, then xi ∈X

for all subsequent times.

Proof. If ei ∈ Ri, then e+i ∈ Ri since Ri is RPI, xi ∈ x̄i⊕Ri. It is clear that x̄+i ∈ X̄i, therefore
x+i ∈Xi.

The feasible region for the nominal OCP (2.25) is the N-step controllability set such that X̄ N
i =

{x ∈ Xi : Ū N
i (xi) 6= /0}, i.e. the set that contains every state that can be steered into X

f
i subject to

the tightened constrains of (2.25) with N control actions. If the terminal ingredients satisfy As-
sumptions 2.6 and 2.5, then the feasible region is contractive, in the sense that the next state lies
in X N−1

i ⊂X N
i . Furthermore, if these assumptions are satisfied, the family of sets {X k

i }∞
k=0 are

nested
X f = X 0

i ⊆ . . .X N
i ⊆X ∞

i (2.26)

For tube-based DMPC, the feasible region, following the observations in [89], has the same structure
as nominal MPC, with the addition of the invariance set:

X N
i = X̄ N

i ⊕Ri. (2.27)

The tube-based DMPC feasible region takes into account the interactions by means of an appropriate
constraint tightening. The feasible set arising from these tightening procedures differ greatly to those
of the centralised problem. As the interactions grow stronger, the tightening is more aggressive,
therefore reducing the available nominal states, and the influence of the MPC controller in system
performance. When the coupling is sufficiently weak, it is possible to design a tube controller for
each subsystem that offers recursive feasibility and stability guarantees. Before stating the results on
recursive feasibility and stability, we present the following example, based on the Example 2.1:
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Figure 2.5: Feasible regions for the system described in (2.14). ( ) is the state constraint for the
LSS; ( ) is the centralised feasible set; ( ) is the nominal feasible region; ( ) is the overall
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Example 2.2. Consider the dynamics (2.14)x1

x2

+ =

 1 0.25
−0.5 1.3


︸ ︷︷ ︸

A

x1

x2

+
1.5986 0.4581

0.6931 1.5986


︸ ︷︷ ︸

B

u1

u2



Each subsystem is subject to state and control constraints Xi = {xi ∈R : |xi| ≤ 10}, and Ui = {ui ∈
R : |ui| ≤ 1} respectively. The disturbance sets are W1 = 0.25X2⊕0.46U2 and W2 = −0.5X2⊕
0.69U2. The RCI sets are computed using nilpotent K1 and K2. Figure 2.5 displays the feasible

regions for the LSS when the constraints are suitably tightened. It is clear that this approach yields

a conservative feasible region yielding a poor performance because the nilpotent part of the control

laws dominate the MPC part. In contrast to the example with the Naive DMPC there are no states

that can be stabilised with a decentralised controller outside the set X1×X2. This method trades

off the size of the overall feasible region for theoretical guarantees.
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The results on recursive feasibility and stability are

Theorem 2.1 (Recursive Feasibility). Suppose Assumptions 2.1–2.6 hold for each i ∈M . Suppose

in addition that xi ∈ X N
i , a feasible state for P̄i(xi), at time k. Then, for all successor states:

x+i ∈ Aiixi +BiiκN(xi)⊕Wi ⊂X N
i , the successor state is feasible for P̄i(x+i ). Furthermore, the

value function satisfies V 0
Ni(x

+
i )−V 0

Ni(xi) ≤−`(xi,κN(xi)).

Proof. The proof follows standard procedures, the details can be found in [89, 122].

The stability result follows as a consequence of Theorem 2.1, xi therefore converges exponen-
tially to the set Ri: d(Ri,xi)→ 0 as k→∞ for any disturbance sequence with wi ∈Wi, the reasoning
behind this approach is feasibility implies stability as in [137]. The proof of the following theorem
is a standard result on robust MPC, see [89, 122] and has been used in the context of distributed
schemes as in [153].

Theorem 2.2 (Exponential stability of Ri). The set Ri×{0} ⊂Rni ×Rni is robustly exponentially

stable for the uncertain closed loop dynamics x+i = Aiixi +BiiκN(xi) +wi and nominal dynamics

x̄+i = Aiix̄i + κ̄N(x̄i) with region of attraction X̄ N
i ⊕Ri×X̄ N

i .

Proof. The proof of stability relies on the cost descent property established in Theorem 2.1, further
details can be found in [89]. From Assumption 2.4 the cost function, and therefore, the value function
V 0

Ni(·) is bounded below by α3i ∈K − function. Furthermore, it is upper bounded if Assumption 2.6
holds. As a consequence, the distance to the set Ri, d(Ri,xi)→ 0 as k → ∞ for any wi ∈Wi,
therefore Ri is robustly exponentially stable.

When only the uncertainty bounding set is known, the best we can achieve is exponential sta-
bility of a set, but in this case the uncertainty depends on the states and inputs of the neighbouring
systems. The large-scale dynamics once the states enter their respective RPI sets are defined by
AD = diag({Aii}i∈M ), BD = diag({Bii}i∈M ), K = diag({Ki}i∈M ), AC = A−AD, and BC = B−BD

since x̄i = 0 and ūi = 0. The following Corollary to Theorem 2.2 establishes convergence of the
disturbances, this result is novel to the best of the author’s knowledge.

Corollary 2.2 (Disturbance decay). For all i ∈M , if the Assumptions of Theorem 2.2 hold and

ρ(Aii+BiiKi)< 1, and PK is the solution of the Lyapunov equation, (AD+BDK)>PK(AD+BDK)−
PK =−Q, associated with K for some positive matrix Q. The disturbance wi ∈Wi arising from the

interactions between subsystems converge towards zero if

∥∥∥AC +BCK
∥∥∥< √

λm(PK)λm(Q)

λM(PK)
(2.28)

And the origin is exponentially stable for the system .

Proof. The large-scale dynamics are x+ = (AD +BDK)x+(AC +BCK)x for all x ∈ ∏
i∈M

Ri. Inside

the set Ri the constraints are not active, and the control law is purely linear for each subsystem.
Let V D(x) =

√
x>PKx be an associated Lyapunov function to the stabilising gain K. Since V D(·)
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is Lyapunov, and continuous in ∏
i∈M

Ri, then V D(·) is uniformly continuous by virtue of the Haine-

Cantor theorem, and therefore is an ISS Lyapunov function on ∏
i∈M

Ri. In addition, V D(·) satisfies:

|V D(x+ y)−V D(y)| ≤ λM(PK)√
λm(PK)

‖x‖

The descent property of such Lyapunov function yields

V D(x+)−V D(x) = V D(x+)−V D((AD +BDK)x)+V D((AD +BDK)x)−V D(x)

≤ λM(PK)√
λm(PK)

∥∥∥(AC +BCK
∥∥∥‖x‖−√λm(Q)‖x‖

V D(x+) ≤

((
λM(PK)√

λm(PK)

∥∥∥(AC +BCK
∥∥∥−√λm(Q)

)
1√

λm(P)
+ 1

)
V D(x)

to guarantee V D(x+) <V D(x),

∥∥∥AC +BCK
∥∥∥< √

λm(PK)λm(Q)

λM(PK)

This implies that the Lyapunov function dissipates more energy than the one supplied by the inter-
actions convergence of the LSS states towards its equilibrium, and therefore wi→ 0 as k→ 0.

The exponential stability guaranteed by Corollary 2.2 is a natural result since the disturbances
affecting each subsystem are “fictitious” in the sense they have a well defined structure and arise
from deterministic signals. The system has clearly two modes of operation, the first one ruled by
the tube MPC controllers that ensures convergence to the RPI set, and once this is achieved the
robustness of the auxiliary control law steers the system towards its equilibrium.

2.3.3 Improved forms of tube-based DMPC

In this section we survey DMPC approaches that deal with the problem of the excessive conservatism
of tube-based control for LSS. One method to improve system performance for distributed systems
is to share information between the components of the network. This method allows to compensate
for and take into account the interactions arising from the physical coupling, or constraint coupling.
Among many methods outlined in the literature two are the most remarkable ones: trajectory and
constraint set information sharing, see Figure 2.6. The rationale for this approach is:

Problem 2.1. Each subsystem i solves (2.25), P̄i(xi), for the measured state xi at time k using the

information {x̄0
j , ū

0
j} j∈Ni gathered from its dynamical neighbours, yielding the sequences ū0

i (xi) and

x̄0
i (xi). Subsystem i then shares its solution with the subsystems in its neighbouring set Ni.

Trajectory information sharing

The are multiple approaches to improve performance: extend the region of attraction and relax
convergence rates of a robust approach to DMPC. Information sharing is one of the most well-known
techniques to improve such properties since each agent can compute their respective control actions
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Figure 2.6: Parallel information sharing paradigm. Each subsystem updates its own optimal solution
based on the information gathered from its neighbours and then proceeds to broadcast its solution to
the rest of the network

taking into account plans of neighbouring subsystems. Exchanges of information are not a new
idea within DMPC, iterative approaches such as [29, 32, 160] arising from a distributed optimisation
point of view, require subsystems to exchange partial solutions to iterate towards a global optimum.∗

This approach of trajectory sharing relies on performing an exchange of trajectories per time
step, and to exploit this information to achieve the desired control objectives. One of the earliest ap-
proaches was that of [16] where past trajectories of neighbouring systems are included into the opti-
misation problem; one of the disadvantages of using the optimal trajectories of past instances of time
is that feasibility is at risk. However, this problem is solved employing contractive constraints on the
system; these ensure feasibility and stability but limit the applicability of the algorithm to a class of
state decoupled systems. Trajectory sharing is used by [36] to exchange a priori computed reference
trajectories {(xref

i (k),uref
i (k))}N−1

k=0 satisfying the constraints, these are updated online when needed
and included into the optimisation problem. The idea is to bound the deviations of the states from the
designed trajectories. A similar approach is given by [131] and [50] where a two-layer controller is
proposed. The first controller generates a nominal trajectory {x̄i(k), ūi(k)}N−1

k=0 which is then shared
among neighbouring subsystems and incorporated into the controller second layer to compute the
desired control action. Some algorithms use a different class of invariant sets, in [129] RCI sets,
computed using algorithms presented in [115], are used to tighten the constraints and generate a
control law, based on an LP problem.

∗This global optimum is the solution of the centralised optimisation problem, as opposed to the decentralised optimum
obtained by solving each OCP separately.
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Set information sharing

A tube controller ensures stability and recursive feasibility of the solutions of the state trajectories by
acting over the effect of the coupling. The biggest drawback of this scheme is its conservativeness
when the disturbance sets are “large" [155]. The authors of [22–24] employ a distributed optimisa-
tion approach that shares information about the terminal set to ensure stability of the LSS. These
methods are based on the notion of practical invariance and robust families of invariant sets intro-
duced by [113]. In [71] each subsystem has a desired trajectory and a sequence of sets enclosing
each element of such sequence trajectory– in this case these sets are the reachable sets; the subsys-
tems share this set sequence and include it within their optimisation problems. The inclusion of sets
among the information exchanged between subsystems allows the controller to enhance system be-
haviour in more ways than by only sharing trajectories. By sharing sets, the feasible regions for each
subsystem can be precisely estimated or computed in the deterministic or uncertain cases, and the
dependancy on the interaction is made clearer. We shall emphasise the approach given in [155] and
[150] because these allow for potential online operations within DMPC. The proposed optimisation
problem aims to parameterise the size of the constraint sets Xi and Ui by the constants ai > 0 and
bi > 0. These parameters have a direct impact on the computation and size of the RPI sets for the
LSS, i.e. qi = qi(ai,bi). The solution of the OCP for each subsystem generates a sequence of control
and state sequences {x̄i(k), ūi(k)}N−1

k=0 , these predicted variables determine the amount of constraint
space used by each subsystem. At time instant k subsystem i solves the following OCP:

P̄i(x̄i;qi) : min
ui

{
Vi(x̄i, ūi)+ρ‖ai + bi‖1 : ūi ∈Ui(x̄i;ai,bi,qi)

}
(2.29)

where Ui(x̄i;ai,bi,qi) is defined by the constraints

x̄i( j+ 1) = Aiix̄i( j)+Biiūi( j), j = 1 . . .N−1 (2.30a)

x̄i(0) = x̄i, (2.30b)

x̄i( j) ∈Xi(ai)	Ri(qi), j = 0 . . .N−1 (2.30c)

ūi( j) ∈Ui(bi)	KiRi(qi), j = 0 . . .N−1 (2.30d)

x̄i(N) = 0. (2.30e)

(ai,bi) ∈ [0,1]× [0,1]. (2.30f)

where ρ is a weighting factor. The optimisation problem (2.29) not only minimises the control
sequence ūi, but also the effective size of the constraint sets. The scaling factors (ai,bi) factors are
shared with the neighbouring subsystems so a new disturbance set can be computed as

Wi(gi) =
⊕
j∈Ni

Ai jX j(a j)⊕Bi jU j(b j). (2.31)

This new disturbance set is used to compute a new RPI set for subsystem i based on the algorithm
proposed by [149]. These new RPI sets are much smaller than the original ones, and contain more
reliable information about the interactions. One of the key properties of such sets is that their size
shrinks as the states of the LSS approach the origin. This shrinkage, alongside a feasibility check,
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Figure 2.7: (a), (b), (c), and (d) represent state evolution of subsystems 1, 2, 3, and 4 respectively
controlled by different algorithms. ( ) is the improved tube algorithm; ( ) system response
to the approach proposed in [128]; ( ) Traditional tube-based DMPC; ( ) is the centralised
controller. ( ) is the traditional RPI set, and ( ) denotes the optimised RPI.

ensures recursive feasibility, and as a consequence stability of the of the LSS. This approach allows
the controllers to use more of the available input to regulate the system rather than to reject interac-
tions while guaranteeing recursive feasibility and stability. In Figure 2.7, the states controlled with
the above set-sharing version of tube DMPC approaches the centralised performance, and shows
a significant improvement over a standard tube-DMPC approaches and one of the state-of-the-art
algorithm proposed by [128].

Example 2.3. The system taken into consideration is the one given in [131], the four-truck problem,

where each truck is considered to be a two state system with continuous dynamicsṙi

v̇i

= Ac
ii

ri

vi

+
 0

100

ui +wi
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where ri is the displacement of truck i from an equilibrium position, vi is its velocity and ui is the

acceleration which is used as a control input. The disturbance wi arises via the coupling between

trucks: truck 1 (mass m1 = 3 kg) is coupled to truck 2 (mass m2 = 2 kg) via a spring stiffness

k12 = 0.5) and damper (h12 = 0.2). Likewise, truck 3 (mass m3 = 3 kg) is coupled to truck 4 (mass

m4 = 6 kg) via k34 = 1 and h34 = 0.3. However, in this example we modify the system to also couple

trucks 2 and 3 via k23 = 0.75 and h23 = 0.25, so that the 4 trucks are coupled as one group. The

problem considered is controlling the trucks to equilibrium from initial states of

x1 =

1.8
0

 x2 =

−0.5
0

 x3 =

1
0

 x4 =

−1
0

 .

The constraints imposed on these trucks satisfy |ri| ≤ 4, |vi| ≤ 1 and input constraints |ui| ≤ 1 for

i = 1,2,3, |u4| ≤ 2. The controller parameters are: a sampling time of 0.1 seconds, treating the state

couplings as exogenous disturbances in order to preserve sparsity, the MPC controllers are designed

with Qi = I and Ri = 100, a control horizon of N = 25, and Ki is a nilpotent controller.

In Figure 2.6 the benefits of recomputing the invariant sets online are evident, they lead towards
an improvement in performance. One of the most remarkable feature is the size of such sets; the
ordinary, static, RPI sets act on the whole of the neighbouring constraint sets producing excessive
conservativeness. When the states of the system are initialised well within the constraint sets, as in
Figure 2.7b, there is no significant effect of computing new RPI sets; on the other hand whenever the
states attempt to reach the constraints, the tightening of the sets affects system performance, as seen
in Figure 2.7a. In the example, subsystems 2 and 3 are affected by excessive tightening, because of
the RPI set size.

2.4 Summary

In this Chapter, the problem formulation and existing literature of DMPC was presented. The con-
cept of LSS was defined rigorously alongside with its main components. The concepts of dynamic
and constraint neighbouring sets have been established through graph-theoretic concepts. A lit-
erature review of the existing DMPC methods was presented. The review separates the existing
algorithms into two main categories: iterative and robust non-iterative methods. The remainder of
the chapter focuses on the latter because of its conceptual and implementation advantages.

The first encounter with non-iterative DMPC is the denominated “naive" DMPC. This method
provides conceptual insight and justification for robust DMPC methods. The problem formulation
and challenges have been presented. A large-scale system controlled with M independent MPC
controllers has inherent robustness properties that allow the system to handle a limited amount of
interaction. This inherent robustness is characterised by the Lyapunov function of each controller;
explicit bounds for the MPC value function have been presented within the distributed setting.

The next section introduces the core technique used throughout the thesis: tube-based DMPC.
Both its intrinsic properties and limitations are presented in this chapter. The main problem found
with this technique is its excessive conservatism when the interactions are large; several methods
have been proposed to remedy this by sharing information of sets and planned trajectories.
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Output feedback for DMPC with
coupled constraints

One of the standing assumptions of many DMPC algorithms is the availability of full state infor-
mation, while the case of having noisy measurements and process disturbance has received little
attention as pointed out by the surveys [20, 136]. Any step towards a practical implementation
of a DMPC algorithm requires the notion of output feedback, because, as is widely known, full
information feedback cannot be guaranteed. However, the inclusion of noise in the system poses
an interesting theoretical challenge [136] since the noise propagates through the interactions of the
system.

The approach of [162], one of the first algorithms in the literature tackling the output feedback
problem, uses a distributed state estimation to support DMPC controllers. The iterative nature of
the algorithm proposed limits the class of observers to be used. Using a distributed estimator results
in suboptimal state estimations that are exponentially stable; local controllers solve their share of
the centralised problem using the information generated by these estimators to iterate the solution
towards an equilibrium point. Other approaches to DMPC include those of [35], an extension of
[36] to the output feedback case, where a tube-based robust approach is used to remove the need
for iteration. Similarly to its full state information counterpart, this algorithm uses shared reference
trajectories to guarantee recursive feasibility and stability. More algorithms dealing with this prob-
lem are: [41] for system coupled by inputs where the noise and estimation errors are handled using
the inherent robustness properties of an MPC controller; [130, 132] for state coupled systems where
the state estimator is designed in a distributed way, i.e. the structure of the gain matrices takes into
account the structure of the state coupling.

The problem of shared constraints is a formidable challenge, even in the full information case,
for a DMPC algorithm as pointed out by [123]. To solve the problem of coupled constraints, the
available DMPC techniques can be broadly classified into iterative-based and iteration-free methods.
Approaches such as [15, 143] belong to the former, and for the latter those using robust methods.
Also, solving the problem of coupled constraints induces a more intensive level of cooperation,
which is essential to ensure recursive feasibility. Within the techniques using robust control are those
that solve local problems in a sequential fashion such as [125, 153]; by solving one local problem at

37
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the time, while using the tail solutions for the rest of the subsystems, a feasible solution is guaranteed
to exist. The main drawback of such approach is evident when the number of subsystems is “large";
since each agent optimises its trajectory only after M time steps. For a large number of agents,
the system loses the ability to respond to unforeseen disturbances. To remedy this problem, each
subsystem optimises its own cost at each sample time, as in [36, 45, 60, 148] and to ensure feasibility
and stability some extra tightening is needed. Among the output feedback approaches, [35] considers
an extra tightening to account for potential mismatches in the information. However, depending on
the nature of the constraints present, this tightening can introduce highly conservative tightening.
The rest of the robust approaches, e.g., [41] and [130], do not consider coupled constraints within
their formulation.

This section examines the approach developed by the author in [5] where an iteration-free output
feedback DMPC algorithm subject to coupled dynamics and constraints is presented. The approach
exploits tube MPC methods, as seen in [89, 90], for the control and estimation problems to guarantee
recursive feasibility and therefore stability of control and estimation despite the presence of distur-
bances on states and outputs. The main differences of this approach with the existing ones are that
the estimation and control are done in a completely decentralised way, and only coupled constraint
handling requires cooperation between agents. The design phase of the algorithm requires only de-
centralised steps for the observer and controller gains, as opposed to [130] where the observer design
is performed in a non-centralised way.

Both [35] and [41] use different assumptions to permit decentralized observers for what is a
distributed (i.e., coupled) estimation problem when the system dynamics are coupled: [35] consid-
ers state coupling but limits states to deviations around reference trajectories, while [41] considers
only input coupling, which decouples the estimation problem. On the other hand, [130] uses a dis-
tributed observer and develops a procedure for its design in a non-centralized way. We consider state
coupling and design decentralised observers to perform the state estimation based on local output
measurements for each subsystem. Each subsystem is equipped with a decentralised tube controller,
that rejects the interactions with its neighbours. This step of the design phase might result in a
more conservative controller than its counterparts [35, 130], this is offset by the way coupling con-
straints are handled by adding no extra tightening to the constraints. Controllers share predictions:
if the coupled constraints are to be violated within these predictions, the affected controllers take
convex combinations of their newly optimal infeasible solutions to restore feasibility. The resulting
algorithm is a tube based output feedback DMPC controller that is simpler to implement than its
counterparts in the literature.

3.1 Problem statement

System dynamics and structure

The large-scale system considered is a discrete time-invariant with output noise:

x+ = Ax+Bu,

y =Cx+ν ,
(3.1)
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where x ∈ Rn, u ∈ Rm, y ∈ Rp, ν ∈ Rp are, respectively, the state, control input, output and mea-
surement noise, and x+ is the successor state. This system is partitioned as in (2.2) using a set
M = {1, . . . ,M}; this procedure renders M state-coupled, and measurement decoupled subsystems:

x+i = Aiixi +Biui +∑
j 6=i

Ai jx j,

yi =Cixi + vi,
(3.2)

where xi ∈ Rni , ui ∈ Rmi , yi ∈ Rpi are the state, input and output of subsystem i ∈M , with the
aggregate state, control, and ouputs x = (x1, . . . ,xM), u = (u1, . . . ,uM), and y = (y1, . . . ,yM). The
output matrix C has a diagonal structure; measurements are collected only at a local level, i.e. yi is a
function of local states xi and output noise vi ∈Rpi . A local assumption, common to most of DMPC
approaches is controllability and observability, in addition to boundedness of local perturbations.

Assumption 3.1. For each i ∈M , (Aii,Bi) is controllable and (Aii,Ci) is observable.

Assumption 3.2. For each i ∈M , the measurement noise is bounded as vi(k) ∈Vi ⊂ Rpi where

Vi is a compact set that contains the origin.

System Constraints

The system is subject to local and global constraints, as described in Section 2.1.1, on the states,
inputs, and coupling outputs. For each i ∈M , the local constraints are given by:

xi ∈Xi, ui ∈Ui.

These sets satisfy Assumption 2.2, i.e. they are both PC-sets. This approach to output-feedback
DMPC considers as well coupling arising from constraints. The system is subject to NC coupled
constraints, each of which involves a number of agents Mc ⊆M , c ∈ {1, . . . ,NC}, and acts on a
coupling output related to that constraint.

zc = (zc1,zc2, . . . ,zcMc) ∈Zc,

The coupled constraint set is defined in (2.6) as Zc ⊂∏i∈Mc Zci = ∏i∈Mc EciXi⊕FciUi, such that
zci = Ecixi +Fciui ∈Zci ⊂Rqci .

Assumption 3.3. For each c ∈ C , Zc is a PC-set.

The interactions between the components of the LSS, both dynamic and constraint wise, generate
a system topology. Following 2.1, 2.2, the set of neighbours for subsystem i:

N D
i = { j ∈M \{i} : Ai j 6= 0},

N C
i =

⋃
c∈Ci

Mc \{i}.
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where Ci = {c∈C : [Eci Fci] 6= 0} is the set of constraints involving subsystem i. This neighbouring
sets, as mentioned in previous sections, generate a topology on the system, see equations (2.3)-(2.7)
. This topology induces a graph with the set of agents as its vertices; an important property is that of
connected components of graphs. The induced connected components generate partitions of the set
of vertices. A disjoint partition P = {P1 . . . ,PS} for S≥ 1, where Pj ∪Pj = /0 and

⋃S
i=1 Pi = M .

Control objective

The standard control objective is to steer the state of each subsystem towards its equilibrium point,
while satisfying both local and coupled constraints, and minimising the infinite-horizon cost:

∞

∑
k=0

∑
i∈M

`i

(
xi(k),ui(k)

)

where `i(xi,ui) = 1/2
(
‖xi‖2

Qi
+‖ui‖2

Ri

)
, the stage cost, is a positive definite function for all i ∈M .

Local Disturbances

The dynamics of subsystem i may be written as uncertain dynamics, (2.4), where dynamic interac-
tions are the disturbances to local dynamics wi = ∑ j∈N D

i
Ai jx j

x+i = Aiixi +Biui +wi,

The disturbance wi is bounded within

wi ∈Wi ,
⊕

j∈N D
i

(
Ai jX j ∩

( ⋂
c∈C j

ProjX j
Zc

))
.

From the construction of the sets Xi and Zc, it follows that Wi is a C-set.

Local estimation errors

The presence of output noise and availability of partial measurements of the state forces the need for
a state estimator. This state estimator can be designed in a decentralised fashion, given that the output
matrix C has a diagonal structure. The simplest observer is a Luenberger observer and is the one
used in the approach in conjunction with a tube-based controller as in [35, 41]. This algorithm results
from an application of [90] to a distributed setting; where a state observer neglecting couplings is
used:

x̂+i = Aiix̂i +Biui +Li(yi−Cix̂i) (3.3)

with Li satisfying ρ(Aii−LiCi) < 1; this matrix exists as a consequence of Assumption 3.1. The
objective of this gain is, as usual, to drive the state estimation error, êi = xi− x̂i, towards the origin.
The error dynamics are

ê+i = Aii−LiCi︸ ︷︷ ︸
AL

i

êi + ξ̂i. (3.4)
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These are uncertain dynamics where the disturbance is defined as ξ̂i = wi−Livi; from the assump-
tions on Vi and Wi, ξ̂i is bounded within Ξi = Wi⊕ (−Li)Vi, a C-set. A RPI set R̂i exists, since
being AL

i a stable matrix, and Ξi a bounded set, such that

êi ∈ R̂i =⇒ AL
i êi + ξ̂i ∈ R̂i,∀ξ̂i ∈ Ξ̂i.

Local control errors

The “true" state of the each subsystem i is affected by uncertainty, and so is the estimated state. To
circumvent this problem, following the procedures in [90], a nominal, disturbance free, system is
proposed, see equation (2.21) :

x̄+i = Aiix̄i +Biūi,

The mismatch between the state of this nominal system and observer state is ēi = x̂i − x̄i, with
dynamics

ē+i = AK
i ēi + ξ̄i.

The two-term tube MPC control law is ui = ūi +Kiēi; where ūi is the nominal control input to be
optimised, and Ki, chosen to satisfy ρ(Aii−BiiKi) < 1, rejects the disturbance. This disturbance is
defined as ξ̄i = LiCiêi +Livi, and bounded by Ξ̄i = LiCiR̂i⊕LiVi which is a C-set by construction.
Similarly to the estimation case, a RPI set exists for the control error

ēi ∈ R̄i =⇒ AK
i ēi + ξ̄i ∈ R̄i,∀ξ̄i ∈ Ξ̄i.

Overall Errors

Both errors, ēi, êi are coupled through its corresponding bounded sets, the true state of the system
depends also on both errors, i.e. xi = x̄i + ēi + êi. The overall error, xi− x̄i lies in the RPI set

Ri = R̂i⊕ R̄i (3.5)

The size of the set is a potential limitation to the scope of the approach, to circumvent this problem
a weak coupling between agents is assumed limiting interaction and noise strength.

Assumption 3.4 (Sufficiently weak coupling and low noise). The sets R̂i and R̄i satisfy Ri ⊆
interior(Xi),∀i ∈M , KiR̄i ⊆ interior(Ui),∀i ∈M , and Tc ⊆ interior(Zc), ∀c ∈ C , where Tc ,

∏i∈Mc EciRi⊕FciKiR̄i.

3.2 Output Feedback Quasi-Distributed MPC

Decentralised optimal control problem

The optimal control problem, similarly to [90], uses nominal variables and predictions to compute
appropriate control actions. The interactions are neglected, and the estimated state is used as an
initial parameter. Both local, and coupling constraints are suitably tightened to ensure constraints
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satisfaction. At an estimated state x̂i, the optimal control problem for subsystem i is Pi(x̂i : z∗i ),
defined as

min
{x̄i,ui}

{
VNi(x̄i,ui) : ui ∈Ui(x̄i;z∗i ), x̂i ∈ x̄i⊕ R̄i

}
. (3.6)

The set Ui(x̄i;z∗i ) is defined by, for j = 0, . . .N−1, by

x̄i( j+ 1) = Aiix̄i( j)+Biūi( j), (3.7a)

x̄i(0) = x̄i, (3.7b)

x̄i( j) ∈Xi	Ri, (3.7c)

ūi( j) ∈Ui	KiR̄i, (3.7d)

x̄i(N) ∈X
f
i , (3.7e)(

z̄ci( j), z̄∗c(−i)( j)
)
∈Zc	Tc,∀c ∈ Ci. (3.7f)

In addition to the initial estimated state, past information about the coupling outputs, z∗i = {z̄∗c(−i)}c∈C

and z̄∗c(−i) = {z̄
∗
c j : j ∈M \ {i}}, is included in the optimisation problem (3.6) to evaluate con-

straint (3.7f). The cost function VNi(·) is the share of subsystem i of (2.8)

VNi(x̄i,ui) ,V f
i

(
x̄i(N)

)
+

N−1

∑
j=0

`i

(
x̄i( j), ūi( j)

)

where V f
i (xi) = (1/2)‖xi‖2

Pi
, Pi positive definite. Together with the terminal set X

f
i , it satisfies

Assumptions 2.5–2.6 together with:

Assumption 3.5 (Coupled constraint admissibility). For each c ∈ C ,

∏
i∈Mc

(Eci +FciKi)X
f
i ⊆Zc	 ∏

i∈Mc

EciRi⊕FciKiR̄i.

These tightenings ensure constraint satisfaction when coupled constraints are not taken into ac-
count. When this is not the case, unfortunately, constraint satisfaction is not guaranteed by simply
tightening Zc 6= /0 if all subsystems are updating their plans simultaneously. More conservative
approaches, [35, 148] as an example, require more tightening to compensate for the coupled con-
straints. In the next Section, the coupled constraints for systems updating plans simultaneously is
handled through coordination and convex combinations.

The solution to each optimisation problem Pi(x̂i,z∗i ) at time k are the state and control sequence(
x̄0

i (x̂i;z∗i ),u0
i (x̂i;z∗i )

)
. The associated tube-based control law for subsystem i is:

u0
i = κi(x̂i;z∗i ) = ū0

i (x̂i;z∗i )+Ki

(
x̂i− x̄0

i (x̂i;z∗i )
)

. (3.8)

Given that subsystem i is involved with Ci coupled constraints, the parameter z∗i collects all the
related coupling outputs. From constraint (3.7f), z∗i contains the both i’s share of the constraint z̄ci,
and the previous optimal coupling outputs of the neighbouring agents z̄∗c(−i). The feasible region for
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Algorithm 3.1 OFQDMPC for subsystem i

1: procedure (Initial data)
2: Sets Xi, Ui, Zc,∀c ∈ Ci, R̃i, R̄i; matrix Ki.
3: end procedure
4: procedure (Initialisation)
5: At k = 0, run Algorithm 3.2.
6: end procedure
7: procedure (Online)
8: At time k and estimated state x̂i, solve Pi(x̂i;z∗i ) to obtain (x̄0

i ,u0
i ).

9: Transmit z̄0
ci(·) and λi to controllers q ∈N C

i ; having received z̄0
cq(·) from q ∈N C

i , build z0
i .

10: if For all c ∈ Ci, j ∈ {0, . . . ,N−1},
(

z̄0
ci( j), z̄0

c(−i)( j)
)
∈Zc	Tc. then

11: Set (x̄i,ui,zi) = (x̄0
i ,u0

i ,z0
i )

12: else
13: Set

(x̄i,ui) = λi(x̄0
i ,u0

i )+ (1−λi)(x̄∗i ,u∗i ) (3.10a)

zi =
{

λqz̄0
cq( j)+ (1−λq)z̄∗cq( j)

}
j,q,c

(3.10b)

where j ∈ {0, . . . ,N−1}, q ∈Mc, c ∈ Ci, i ∈Ps.
14: end if
15: Obtain ūi = ui(0) and apply ui = ūi +Ki(x̂i− x̄).
16: Measure yi and update estimated state, nominal state, control sequence and coupling infor-

mation as

x̂+i = Aiix̂i +Biui +Li(yi−Cix̂i), (3.11a)

x̄+i = Aiix̄i +Biūi, (3.11b)

u+
i = {ui(1 : N−1),Kix̄i(N)}, (3.11c)

z+i = {zi(1 : N−1),z f
i (N)}. (3.11d)

17: Set k = k+ 1, x̄i = x̄+i , ēi = ē+i , w̄i = w̄+
i , V ∗i = V ∗+i .

18: Set (x̂i,z∗i ) = (x̂+i ,z+i ) and (x̄∗i ,u∗i ) = (x̄+i ,u+
i ). Set k = k+ 1.

19: goto Step 8.
20: end procedure

the OCP Pi(x̂i,z∗i ) is given by

X̄i(z∗i ) ,
{

xi ∈Rni : Ui(xi;z∗i ) 6= /0
}

. (3.9)

Distributed control algorithm

All subsystems execute the following algorithm in parallel fashion using Pi(x̂i,z∗i ). The first online
step of Algorithm 3.1, i.e. Step 5, is concerned to obtain a feasible starting point; to this end, an
auxillary algorithm is run, see Algorithm 3.2. This algorithm computes solutions for the OCP given
by 3.12, if the solution is feasible and satisfies coupled constraints, the algorithm stops. Otherwise,
it computes another OCP to minimise the distance of the initial point to the coupled constraint set.
This process is iterative, and as soon as a point that satisfies all the constraints is found the algorithm
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Algorithm 3.2 Initialization for controller i

1: Input data:
2: procedure
3: Obtain x̂i(0), set p = 0, and obtain u[p]

i as solution to

min
{x̄i,ui}

VNi(x̄i,ui) (3.12)

s.t. x̂i(0) ∈ x̄i⊕ R̃i, constraints (3.7a)–(3.7e), and z̄ci( j) ∈ ProjZc	Tc,Rqci ,∀ j ∈ {0, . . . ,N−
1},c ∈ Ci.

4: Transmit z̄[p]ci (·) to controllers q ∈N C
i .

5: if for all c ∈ Ci, j ∈ {0, . . . ,N−1},
(

z̄[p]ci ( j), z̄[p]c(−i)( j)
)
∈Zc	Tc. then

6: Terminate.
7: else
8: Obtain (x̄[p

+ ]
i ,u[p+ ]

i ) as solution to

min
{x̄i,ui}

N−1

∑
j=0

∑
c∈Ci

1
|Mc|

d
((

z̄ci( j), z̄[p]c(−i)( j)
)

,Zc	Tc

)

s.t. x̂i(0) ∈ x̄i⊕ R̃i, constraints (3.7a)–(3.7e).

9: Set (x̄[p+1]
i ,u[p+1]

i ) = λi(x̄
[p+ ]
i ,u[p+ ]

i )+ (1−λi)(x̄
[p]
i ,u[p]

i ).
10: Increment p.
11: goto Step 4.
12: end if
13: end procedure

stops. For the subsequent steps of Algorithm 3.1, the state of each subsystem is estimated and used
to solve Pi(x̂i,z∗i ) along with the coupling constraint information, z∗i , from the previous time. Once
an optimal solution is found, the subsystems exchange their optimised coupling outputs to their
respective neighbours in N C

i , i.e. zci( j) for all c ∈ Ci, is transmitted to each j ∈N C
i . The last part

of Step 6 involves forming the optimal coupling output from the collected information

z0
i =

{
z̄cq( j)

}
j=0...N−1,q∈Mc,c∈Ci

.

At time k, if Constraint (3.7f) is satisfied for z̄0
ci and the information from previous time z̄∗c(−i)(·). This

does not imply constraint satisfaction for the actual values z̄0
ci(·) and z̄0

c(−i)(·), see Figure 3.1. Step 10
solves this issue using a feasibility check, if the coupled constraints are satisfied by the solutions
{u0

i }i∈M , then these solutions are implemented. Otherwise, corrective actions must be taken to
ensure constraint satisfaction and recursive feasibility. In this approach, a convex combination is
taken from the previous and current solutions; this process, illustrated in Figure 3.1, takes a number
of points lying in Zc	Tc and combines them to obtain a point that remains inside the coupled
constraint. The weights used to take this convex combination are:

λi ∈ [0,1],∀i ∈M , and ∑
i∈Ms

λi = 1,∀s = 1 . . .S (3.13)
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ui

u j

UC

u∗j (k|k−1)

u∗i (k|k−1)

µ j(k|k)

µ i(k|k)

(u0
i (k|k),u0

j (k|k))

u(k|k)

Figure 3.1: Convex combination of two optimal, but not feasible solutions. The solution of the
optimisation problem for subsystem i and j at time k is denoted by µi(k|k) and µ j(k|k); the point
(µi(k|k), µ j(k|k)) does not satisfy the coupled constraints, but a convex of these two points ū(k|k) =
λiµi(k|k)+λ jµ j(k|k) does satisfy these constraints.

these weights are also used in Algorithm 3.2 to obtain a feasible initial point. The convex combina-
tions are taken over the partitions of the agent set generated by the dynamic and constraint topologies.
If the number of partitions is S≥ 1, there is no exchange of information between different connected
components. To satisfy (3.13), coordination between each connected component is needed, [160]
provides some guidelines for choosing the weights: λi = (1/|Ms|),∀i ∈Ms. The remaining steps
of the Algorithm apply the control action to the true system and update the respective dynamics, and
coupling outputs.

3.3 Recursive feasibility and stability

Proposition 3.1. i) For each subsystem i ∈M , if the “true" and observer initial states satisfy

xi(0)− x̂i(0) ∈ R̂i then xi(k) ∈ x̂i(k)⊕ R̂i, ∀k ∈N and all disturbances wi ∈Wi, vi ∈Vi.

ii) For each subsystem i ∈M , if the nominal and observer initial states satisfy x̂i(0)− x̄i(0) ∈ R̄i

then x̂i(k) ∈ x̄i(k)⊕ R̄i, ∀k ∈N and all disturbances wi ∈Wi, vi ∈Vi.

iii) Suppose i), and ii) hold, then xi(k) ∈ x̄i⊕ R̄i⊕ R̂i, for all k ∈N.

iv) If x̄i(k) ∈ X̄i, and ū(k) ∈ Ūi, the control action is computed according to Step 3.1-10, then
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xi(k) ∈Xi, and ui(k) ∈Ui.

Proof. The proof follows as a consequence of applying the results of [89, 90], and [153].

Proposition 3.2 (Coupled constraint satisfaction). Suppose that M is partitioned into S ≥ 1, such

that {P1, . . . ,PS} and
⋃S

s=1 Ps = M . Further suppose that, for all i ∈Ps,s ∈ {1, . . . ,S}, (x̄∗i ,u∗i )
is a feasible solution to Pi(x̂i,z∗i ), where z∗i is the collection of z̄∗cq( j) over all j ∈ {0, . . . ,N− 1},
q ∈Mc, c ∈ Ci. Consider, for each i ∈M , some other feasible but suboptimal solution (x̄0

i ,u0
i ) to

Pi(x̂i,z∗i ). Then (i) if
(

z̄0
ci( j), z̄0

c(−i)( j)
)
∈Zc	Tc for all j ∈ {0, . . . ,N− 1}, c ∈ Ci, then (x̄0

i ,u0
i )

is also feasible for Pi(x̂i,z0
i ); (ii) the convex combination (x̄c

i ,uc
i ) = λi(x̄0

i ,u0
i ) + (1− λi)(x̄∗i ,u∗i )

where λi ∈ [0,1], ∑i∈Ps λi = 1,∀s ∈ {1, . . . ,S}, is a feasible solution to Pi(x̂i,zc
i ), where

zc
i =

{
λqz̄0

cq( j)+ (1−λq)z̄∗cq( j)
}

j,q,c

with j ∈ {0, . . . ,N−1}, q ∈Mc, c ∈ Ci.

Proof. From the construction of the distributed optimal control problem, (i) follows. Part (ii) is a
consequence of the convexity of Zc and the fact that it is a closed set.

The previous results ensure constraint satisfaction at a given instant of time k; the next result
aims to guarantee recursive feasibility for the nominal system under local and shared constraints.
The main result shows that system-wide robust feasibility and stability is guaranteed from any initial
control sequence {ūi(k0)}.

Theorem 3.1 (Recursive feasibility). Suppose that, for each i ∈M , xi(0)− x̂i(0) ∈ R̃i, x̂i(0)−
x̄i(0) ∈ R̄i and xi(0), x̃i(0), x̄i(0) lie in Xi. Then (i) xi(0) ∈ x̄i(0)⊕Ri. Suppose further that

(x̄i(0),ui) are such that ui ∈ Ui(x̄i(0);zi(0)) 6= /0, where zi(0) is the collection of z̄cq( j|0) over

j ∈ {0, . . . ,N− 1}, q ∈Mc, c ∈ Ci. Then (ii) the system controlled according to Algorithm 3.1 is

recursively feasible and (iii) the state, control and coupling outputs of the controlled system satisfy

the original constraints xi(k) ∈Xi, ui(k) ∈Ui, for i ∈M , and zc ∈Zc for c ∈ C .

Proof. The result, is a direct consequence of Propositions 1, 2 and 3 in [90] and Proposition 3.2.

Theorem 3.2 (Stability). Suppose, for each i ∈M , that xi(0)− x̂i(0) ∈ R̃i and there exists a col-

lection of feasible solutions to problems Pi

(
x̂i(k0);z∗i (k0)

)
at time k0, so that x̂i ∈ X̄i(z∗i (k0))⊕R̄i.

Then (i) the set R̄i× R̂i is asymptotically stable for the composite subsystem

x̂+i = Aiix̂i +Biκi(x̂i;z∗i )+ ξ̄i, ξ̄i = LiCiêi +Livi

ê+i = AL
i êi + ξ̂i, ξ̂i = wi−Livi.

The region of attraction is
(
X̄i(z∗i (k0))⊕ R̄i

)
× R̃i. (ii) The true states xi(k0) = x̂i(k0)+ êi(k0) ∈

X̄i(z∗i (k0))⊕Ri are steered towads Ri asymptotically while satisfying all constraints.

Proof. Given that solution at the initial time ūi(k0) is a feasible solution for the distributed problem
Pi(x̂i(k0|k0),z∗i (k0)), with a given cost of VN i(x̂i(k0),z∗i (k0)). From [89, Proposition 3] the sequence

ũi(k0) = {ūi(k0 + 1), . . . ūi(k0 +N−1),Kix̄i(k0 +N)}
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is a feasible solution of PD
i (x̂i(k0 +1),z∗i (k0 +1)) satisfying the constraints imposed to the system,

and the following inequality holds

VNi(x̂i(k0 + 1),z∗i (k0 + 1))≤VNi(x̂i(k0),z∗i (k0))+ `i(x̄i(k0), ūi(k0))

The next step in the proof requires an upper bound on the cost at the next instant of time, following
standard receding horizon techniques, VNi(x̂i(k1),z∗i (k1)) which is the solution of the optimisation
problem at time k1 = k0 + 1. Since the algorithm uses two different control laws, depending on
whether the coupled constraints of the system are active or not, the system cost will vary according to
the control law used. Let us denote as V cnv

Ni (x̂i(k1),z∗i (k1)) the cost that uses the control law with the
convex combination. From the construction of the control law, V cnv

Ni (x̂i(k1),z∗i (k1)) ≤ VNi(x̂i(k0 +

1),z∗i (k0)). But VNi(x̂i(k1),z∗i (k1)) is a minimum and thus the following inequality holds

VNi(x̂i(k1),z∗i (k1)) ≤VNi(x̂i(k0),z∗i (k0)))− `i(x̄i(k1), ūi(k1))

Theorem 3.1, the above result, and the feasible solution for Pi(x̂i(k0),z∗i (k0)) at time k0 implies
that the solutions of the optimisation problem for the next steps remain feasible for k > k0,i.e. the dis-
tributed problem Pi(x̂i(k),z∗i (k)) admits a solution k≥ k0. Regarding stability properties of the sys-
tem, from the previous result V 0

Ni(x̂i(k0 +1),z∗i (k0 +1))−V 0
Ni(x̂i(k0),z∗i (k0))≤−`i(x̄0

i (k0), ū0
i (k0).

From [153, Theorem 1.iii] it is possible to conclude that as k→∞ the nominal state x̄i(k)→ 0. Since
the cost decreases monotonically, given that every system updates its control plan ūi(k), and using
(3.8), the control law has the form

ui(k) =
1
|Pl |

(
(|Pl |−1)ū∗i (k)+ ū0

i (k)
)
+Ki(x̂i(k)− x̄i(k)

Where ui(k)→ Kix̂i(k). Since the convex control law decreases asymptotically towards 0, the opti-
mal control law does the same since the term ū0

i is also decreasing. Using Proposition 3.1, x̂i→ R̄i

and ui(k)→ KiR̄i. Besides the results given in [90, Therorem 2] show that the local error between
estimation and nominal state, and the state estimation error of each subsystem are robustly stable.
So it can be assumed that each subsystem runs an independent controller with the above control
law. Thus, xi(k)→ R̃i ⊂Ri, ∀i ∈M , the origin has an asymptotically stable neighbourhood inside(
X̄i(z∗i (k0))⊕ R̄i

)
× R̃i.

3.4 Simulations and examples

The example used to test this algorithm is a modified version of the one presented in Section 2.3.3,
i.e. the four truck problem of [131], with modification to fit in the framework presented. The output
noise affecting the system vi is bounded in the set Vi = {v∈R : |v| ≤ 0.01}. The problem is to steer
the trucks to equilibrium while satisfying constraints on displacement (|ri| ≤ 2), speed (|vi| ≤ 8) and
acceleration (|ui| ≤ 4 for i = 1,2,3, and |u4| ≤ 6). Furthermore, the system is subject to coupled
constraints that limit the separation between each adjacent pair, as |ri− ri+1| ≤ 1.72, for i = 1 . . .3.
These constraints define the sets Xi, Ui and Zc, from which the disturbance sets Wi are calculated.
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Figure 3.2: Comparison between the state and coupling output time evolution of the proposed algo-
rithm against the state of the art. ( ) is the Centralised MPC, ( ) is the PnP-OFDMPC from
[130] ( ) is the OFDMPC from [35], ( ) is Algorithm 3.1 employing a convex combination at
all times, and ( ) is the proposed algorithm.

CMPC PnP-OFDMPC [130] OFDMPC [35] Alg. 3.1–CC Alg. 3.1

5.483 9.336 11.102 10.021 8.118

Table 3.1: Closed-loop costs, ∑k ∑i `i

(
xi(k),ui(k)

)
.

The system is controlled by five different algorithms, see Figure 3.2 for a comparison of the state
and coupling output time evolution for each of the these:

1. The proposed output feedback DMPC (Alg. 3.1).

2. OFQDMPC albeit taking the convex combination (3.10) at every step (Alg. 3.1–CC).

3. The algorithm of [35] (OFDMPC) which uses reference trajectories.

4. The “Plug-and-Play” algorithm of [130] (PnP-OFDMPC).

5. Centralized OFMPC, based on [90] (CMPC).

We employ similar design parameters for each of these algorithms in order to obtain meaningful
comparisons between each of the algorithms. In each case, the controllers are designed with Qi =

C>i Ci, Ri = 0.08 and horizon N = 25. The feedback and observer gain matrices, Ki and Li, are
chosen to be nilpotent for the dynamics (Aii,Bi) and (Ci,Aii) respectively. The terminal sets X f

i

are the maximal admissible positively invariant sets associated with the nilpotent dynamics x+i =

(Aii + BiKi)xi. However, further parameters are needed for [35] and [130]: for the former extra
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feasible reference trajectories are needed, whereas for the later extra RCI sets are needed, the steps
taken to design these parameters were those ones suggested in them. For CMPC, the prediction
model is x+ = Ax+Bu, and the only constraint tightening is to account for the sensing noise and
estimation errors. For the terminal dynamics, a diagonal stabilising gain is taken into consideration to
design the maximal admissible positively invariant set. A comparison between the closed-loop cost
of each algorithm is given in Table 6.2. The benchmark performance is the centralised controller,
CMPC; the proposed algorithm, see Alg. 3.1 is the one that exhibits the most similar performance.
The rest of the algorithms show higher costs, but the one given in [35] can be improved by a different
choice of the reference trajectories. The overall advantage of the proposed algorithm is its simplicity,
no additional parameters are needed to achieve similar objectives as its counterparts in the literature.

3.5 Summary

The last section of the chapter is devoted to the problem of coupled constraints and output-feedback.
This section shows that the problem of output feedback can be added to the formulation of a tube-
based DMPC; the price to pay for this extension is the addition of an extra layer of complexity to the
problem. Necessary tightenings are needed to ensure the respective errors remain bounded. On the
other hand, the problem of coupled constraints is handled using information exchanging and convex
combinations without resorting to extra tightenings of the constraint sets. As a result, both of these
problems can be integrated into any tube-based DMPC algorithm only with mild modifications to
the original optimisation problem.





Chapter 4

Nested DMPC and applications

4.1 Introduction

In this Chapter, a new method for controlling linear time-invariant LSS coupled by dynamics and
inputs is presented. This problem is complicated because the states and inputs of one subsystem
affect different subsystems as well. As previously explained, a straightforward application of MPC
with terminal conditions [122], i.e. a “naive" DMPC approach, does not guarantee stability nor
recursive feasibility of the overall system. This problem has led to the development of a plethora
of techniques for DMPC [77]. These methods focus on decomposing the large-scale problem into
smaller subproblems; these subproblems are solved individually but require a level of coordination
to achieve control objectives or system guarantees. The price to pay for attaining such guarantees
is excessive amounts of communication, conservative performance, or, if iterations are required, a
long time to solve the optimisation problems.

The communication and iteration issues are solved by using tube-based approaches; in gen-
eral, a direct application of a robust tube approach to a LSS based on [89] rejects the interac-
tions between subsystems as disturbances, and leads to a conservative performance. The authors
of [36, 50, 131, 155] have exploited different properties of robust controllers by adding extra layers
to handle the interactions and not to reject them bluntly. Most of the above algorithms employ a
fixed controller gain, and a fixed RCI set. The idea presented in this Chapter is to implement an ex-
tra MPC ancillary controller instead of the fixed gain, and use RCI sets as opposed to RPI ones. This
ancillary controller is designed to handle and employ the interactions to forecast predictions that will
be used to obtain an appropriate control action. Similar approaches in the literature, employing a
second MPC controller, are [131] where a tube controller is used twice to improve the predictions,
and [50] that also uses two tube controllers connected in series. Both approaches take the solution
of the first MPC controller as trajectory generators, while the second controller attempts to minimise
any mismatch between the generated trajectories and the new forecasts that include the interaction
information. On the other hand, Trodden et al. [155] propose a more straightforward design, with
only one disturbance rejection controller and no reference trajectories, but optimise disturbance-
invariant sets online to reduce conservatism. In all of these cases, fixed ancillary control laws are
used to reject the corresponding disturbances. The approach presented also employs two MPC con-
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Area iMain
MPC-i

Ancillary
MPC-i

+
ū0

i

x̄i

f 0
i

ui xi

(ei, x̄i)

x̄ j , j 6= i

Figure 4.1: Block diagram of the proposed DMPC scheme. The main MPC computes the optimal
nominal control ū0

i based on local state measurements. The ancillary MPC provides a control f 0
i ,

computed taking into account shared predictions x̄ j from other control areas.

trollers, the first controller, is used to steer the state towards the desired equilibrium, whereas the
second controller employs the solutions of the first MPC controller alongside with the information
gathered from the subsystem neighbours to obtain an adequate control action. This second MPC
controller replaces the static gain obtaining a nested architecture. Hence the name, see Figure 4.1.
This approach is inspired by the work of [91] on nonlinear MPC; in that approach, the controller
adopts a nested architecture to handle nonlinearities in the system. In this approach the ancillary
controller is used to handle interactions between subsystems, not to reject them. The consequences
of using such controller lead to improvements of not only performance but also regarding the region
of attraction and implementability. The proposed ancillary controller uses an implicit notion of in-
variance to guarantee constraint satisfaction; this notion removes the need of computing invariant
sets explicitly–which are prohibitive complex objects for high-dimension order systems.

The Chapter is based on the contribution of the author in [5] and is structured as follows. Sec-
tion 4.2 sets the problem statement and control objectives. In Section 4.3.4 presents the differ-
ent components of the algorithm, Section 4.3.1 describes the main optimal control problem, Sec-
tion 4.3.2 and 4.3.3 introduce the ancillary controller and its properties. The proposed Nested DMPC
controller is presented Section 4.3, its properties established in Section 4.4, and the design procedure
given in Section 4.5. In Section 4.6, an application of the proposed algorithm to power networks– in
particular to Automatic Generation Control, and Load Frequency Control– is given. Such application
is based on the journal article [7] by the author.

4.2 Problem Statement

We consider the discrete-time dynamics, recall from equation (2.1)

x+ = Ax+Bu

where x∈Rn and u∈Rm are the state and control input, and x+ is the state at the next time instance.
The system is partitioned into M non-overlapping subsystems, as descried in Section 2.1.1. Each
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subsystem i has associated dynamics, recall (2.2).

x+i = Aiixi +Biiui +∑
j 6=i

Ai jx j +Bi ju j.

The system topology is given by the set of dynamic neighbours Ni of each subsystem i. Furthermore,
we assume each subsystem, as usual, to be controllable:

Assumption 4.1. For each i ∈M , (Aii,Bii) is controllable.

Each subsystem i ∈M is subject only to local constraints on its states and inputs satisfying
Assumption 2.2, i.e. the constraint sets are PC-sets.

xi ∈Xi, ui ∈Ui. (4.1)

The control objective is to steer the states of all subsystems to the origin while satisfying the con-
straints and minimising the infinite-horizon cost as in (2.8) and (2.9):

∞

∑
k=0

∑
i∈M

`i(xi(k),ui(k)) (4.2)

where `i(xi,ui), (1/2)(x>i Qixi +u>i Riui) and Qi, Ri are positive definite for all i ∈M . With these
conditions on constraints, objective and dynamics, the topology of the system is defined only through
the dynamic neighbouring sets {Ni}i∈M .

4.3 Nested Distributed MPC

As mentioned previously, the main challenge of controlling the LSS dynamics (2.1) using indepen-
dent, decentralised controllers lies in managing interactions between neighbouring subsystems; for
the states and inputs of a given subsystem are affected by others through the coupling graph. A naive
approach to DMPC neglects these interactions, using nominal, i.e. disturbance free, dynamics given
by (2.21):

x̄+i = Aiix̄i +Biiūi (4.3)

within an MPC optimisation, (2.10), to provide the receding horizon control law ui = κ̄i(xi), obtained
by applying the first control ū0

i (0;xi) in the optimised sequence. However, this approach, as shown
in Chapter 2, leads to potential constraint violations and a loss of stability and recursive feasibility,
unless further actions are taken to coordinate these controllers [136]. Tube-based methods solve
this problem by treating all interactions as disturbances to be rejected. The interactions between
subsystems, arising from dynamic coupling, induce uncertainties upon each subsystem; the uncertain
dynamics of subsystem i are then given by (2.4):

x+i = Aiixi +Biiui +wi (4.4)

where wi ∈Wi, as in (2.5), is constrained in a C-set. This fact follows directly from Assumption 2.2
and (2.5). These interactions, however, are not common interactions; a well defined structure can be
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formed using the coupling topology. In traditional methods, as mentioned in the previous Chapter,
such as a direct application of [89] to this setting and many other existing works in the literature,
rejecting these disturbances lead to algorithms that guarantee both recursive feasibility and stability.
To achieve this, a two-termed control law is proposed in (2.20):

ui = κ̄i(x̄i)+Ki(xi− x̄i).

The latter term acts on the state mismatch of the nominal and “true" dynamics rejecting the interac-
tion between agents. These controllers are designed to be robust to the whole space of disturbances
and lead towards a conservative approach. Conservativeness and other drawbacks can be handled
by suitably modifying (2.20) to include the interaction information into the synthesis process. This
“third method" is capable of retaining the guarantees mentioned above while lessening the conser-
vatism and other drawbacks of tube-based approaches.

ui = κi(xi) = κ̄i(x̄i)+ κ̂i(xi− x̄i; x̄−i, ū−i), (4.5)

where (x̄−i, ū−i) represent the collections of states and inputs from the subsystems in M \ {i}.
This control law is inspired by [91] and replaces the static gain Ki from (2.20) with a predictive
law that takes into account the interactions of subsystem i with its neighbours. The interactions
are characterised by the predicted states and inputs, obtained by solving the OCP associated to the
nominal controller, of the neighbouring subsystems; the states and inputs of both controllers work in
a nested fashion. Weak coupling between subsystems, i.e. satisfying Assumption 2.3, is a necessary
condition for the design of this new predictive controller. Such Assumption is common among
DMPC techniques, and methods to circumvent it are topic of ongoing research.

4.3.1 Main optimal control problem

The main optimal control problem for subsystem i employs the nominal model (2.21) to determine,
subject to appropriately tightened constraints, an optimal control sequence and associated nominal
state predictions. This problem, Pi(x̄i), is defined as

V̄i
0(x̄i) = min

ūi

N−1

∑
k=0

`i(x̄i(k), ūi(k)) (4.6)

subject to

x̄i(0) = x̄i, (4.7a)

x̄i(k+ 1) = Aiix̄i(k)+Biiūi(k),k = 0, . . . ,N−1, (4.7b)

x̄i(k) ∈ α
x
i Xi,k = 1, . . . ,N−1, (4.7c)

ūi(k) ∈ α
u
i Ui,k = 1, . . . ,N−1, (4.7d)

x̄i(N) = 0. (4.7e)
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In this problem, the decision variable ūi is the sequence of (nominal) controls

ūi = {ūi(0), ūi(1), . . . , ūi(N−1)}.

The main difference with (2.10) is the original state and input constraint sets, Xi and Ui, are scaled
by factors αx

i ∈ (0,1] and αu
i ∈ (0,1] respectively, to account for the existing disturbances. These

sets have the same complexity as the original sets; in traditional tube-based methods, the result of
this tightening is the output of a Pontryagin difference which can itself be computed with some LP.
A detailed and comprehensive design procedure for these scalars is given in Section 4.5. The origin
is chosen as the terminal set for simplicity reasons; this will allow us to appreciate the interaction
between the collected information and control action synthesis, a more general approach is given in
Chapter 5.

The solution of Pi(x̄i) at nominal state x̄i yields the optimal control and state sequences ū0
i (x̄i) =

{ū0
i (0), . . . , ū

0
i (N− 1)} and x̄0

i (x̄i) = {x̄0
i (0), . . . , x̄

0
i (N)}. It also defines the implicit MPC control

law
κ̄i(x̄i) = ū0

i (0; x̄i). (4.8)

4.3.2 Ancillary optimal control problem

An ancillary MPC controller is proposed to handle the interactions, and reduce the error between
true states and nominal ones. This error, as opposed to (2.22), considers, in addition to ei = xi− x̄i,
a deviation in the control signal fi = ui− ūi that does not depend linearly on the error. The resulting
error dynamics satisfy:

e+i = Aiiei +Bii fi + ∑
j∈Ni

Ai jx j +Bi ju j. (4.9)

In a conventional single tube MPC controller approach, fi = Kiei, and an invariant set is constructed
to bound this error. In the algorithm, we aim to handle the error using a predictive control law includ-
ing neighbouring information. The above dynamics are not suitable for prediction purposes, since
they depend on true neighbouring states x j and u j. These interactions have an inherent structure, and
can be decomposed into two terms: a nominal value, w̄i arising from the solution of (4.6) for each
j ∈Ni, and its uncertain part ŵi arising from the state and control errors. A second nominal system
including nominal interaction terms is proposed

x̂+i = Aiix̂i +Biiûi + w̄i. (4.10)

The disturbance term w̄i is composed of the predictions (x̄ j, ū j) gathered from each of the neigh-
bours, j ∈Ni, of agent i such that w̄i = ∑ j∈Ni Ai j x̄ j +Bi jū j and w̄i = {w̄i(0), . . . , w̄i(N)}. From this
model, we define a nominal state error ēi = x̂i− x̄i, and control error f̄i = ûi− ūi, whose dynamics
evolve as

ē+i = Aiiēi +Bii f̄i + w̄i (4.11)
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It is this model that is employed in the following, ancillary optimal control problem, P̂i(ēi; w̄i):

V̂ 0
i (ēi; w̄i) = min

f̄i

H−1

∑
k=0

`i(ēi(k), f̄i(k)) (4.12)

subject to, for k = 0, . . . ,H−1,

ēi(0) = ēi, (4.13a)

ēi(k+ 1) = Aiiēi(k)+Bii f̄i(k)+ w̄i(k), (4.13b)

ēi(k) ∈ β
x
i Xi,k = 0, . . . ,H−1 (4.13c)

f̄i(k) ∈ β
u
i Ui,k = 0, . . . ,H−1 (4.13d)

ēi(H) = 0. (4.13e)

In this problem, the decision variable is the sequence of controls f̄i = { f̄i(0), . . . , f̄i(H − 1)}; the
horizon is H. The cost function has the same structure as the one used in the main problem. The
parameter w̄i denotes the collection of disturbance predictions for subsystems j ∈Ni. The state and
input constraints are, similar to the ones in the main problem, albeit scaled this time by different
factors β x

i ∈ (0,1] and β u
i ∈ (0,1]; detailed design steps for these constants are given in Section 4.5.

The solution, f̄ 0
i (ēi, w̄i), of P̂i(ēi, w̄i) defines an implicit control law

κ̂i(ēi; w̄i) = f̄ 0
i (0; ēi, w̄i).

This control law alone does not guarantee the required properties of stability nor recursive feasibility,
since the uncertain components of the disturbance, wi− w̄i are not considered. The effects of this
uncertainty on the system can be studied by analysing the mismatch between the defined errors,
êi = ei− ēi, and its associated dynamics. If the adopted control law considers only both predictive
terms, ui = κ̄i(x̄i)+ κ̂i(ēi; w̄i)), the error mismatch dynamics,

e+i − ē+i = Aii(ei− ēi)+ (wi− w̄i),

depend only on the open loop dynamics and is subject to a disturbance ŵi = wi− w̄i. This situation
is problematic: a spectral radius satisfying ρ(Aii) > 1 leads to divergence between the errors, and
there is no guarantee of robustness to account for ŵi. This uncertainty arises as a consequence of
distributing the control problem; each subsystem may have access only to a nominal value of the
interactions w̄i and not to the actual value of the disturbance.

4.3.3 Modified ancillary control law

Consider the error êi , ei− ēi, and the uncertain quantity ŵi; it is clear that xi = x̄i + ei = x̄i +

ēi + êi. For the system to converge towards its equilibrium the errors ēi and êi are to be regulated
towards zero. As a consequence, another control term, f̂i, is added to the ancillary control law,
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i.e. κ̂i(ēi; w̄i) = f̄ 0
i (0; ēi, w̄i)+ f̂i, so that

ê+i = Aiiêi +Bii f̂i + ŵi.

These error dynamics use a feedback control law, f̂i = µi(êi), to deal with disturbances ŵi, and to
regulate êi while keeping it inside a bounding set around the origin. A candidate for such invariance
inducing control law is the one arising from an RCI set, see Definition 1.24. The approach taken for
RCI sets and their control laws is the one outlined in [118]. Given an RCI set R, Definition 1.24
implies the existence of a control law µ : Rm 7→Rn, such that the set mapping µ(R) , {µ(x) : x ∈
R}= {u ∈U : x+ ∈R,∀w ∈W} is nonempty.

Given a bounding RCI set for êi, its corresponding invariance inducing control law is f̂i = µi(êi);
the existence, design and computation of such invariant set and control law is discussed in detail on
Section 4.5. The modified ancillary control law is

κ̂i(ēi, êi, w̄i) = f̄ 0
i (0; ēi, w̄i)+ µi(êi), (4.14)

and comprises the ancillary MPC control law plus the additional feedback term, and the overall
control law for subsystem i is

ui = κ̄i(x̄i)+ κ̂i(ēi, êi; w̄i) = ū0
i (0; x̄i)+ f̄ 0

i (0; ēi, w̄i)+ µi(êi). (4.15)

This control has interesting properties based on the terms that compose it. The first term acts on
the nominal subsystem i, the second term regulates the error accounting for the interactions with
its neighbours, and the last term acts on the unplanned error arising from the nominal mismatch
dynamics. Therefore, using a three termed control law allows to tackle the individual parts of the
problem in a systematic way.

4.3.4 Distributed Control Algorithm

The optimisation problems Pi(x̄i) and P̂i(ēi, w̄i) are used in Algorithm 4.1. In Step 8, subsystem i

solves the ancillary problem using the optimised predictions of the states and controls as parameters
gathered from its neighbours. Each of these predictions is optimised in Step 5. Feasibility is a
key issue with the ancillary problem, since the optimised predictions change at every step time. If
this problem, given by (4.12), is not feasible or its cost function does not decrease with respect to
its previous value, the problem is re-solved albeit with the previous disturbance sequence, which
is feasible regardless of the infeasibility of the new one. A feasible solution is possible to obtain
without explicitly solving the problem, i.e. using the tail of the previous feasible sequence. This,
however, may not be beneficial for the LSS when model uncertainty is present. A possible way to
remedy this potential issue is to add degrees of freedom to the controller; an alternative solution to
this issue will be presented in Chapter 5.

Recursive feasibility of the ancillary is guaranteed if the disturbance sequences are stationary,
however, when the later varies on time guaranteeing this property is not a trivial problem. To this
end, a solution to this problem is to use a different horizon H for the ancillary problem, such that
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Algorithm 4.1 NeDMPC for subsystem i

1: procedure (Initial data)
2: Sets Xi, Ui; matrices (Ai j,Bi j) for j ∈Ni; constants αx

i , αu
i , β x

i ,β u
i ; states x̄i(0) = xi(0),

ēi = 0, w̄i = 0, V̂ ∗i = +∞.
3: end procedure
4: procedure (Online)
5: At time k, controller state x̄i, solve Pi(x̄i) to obtain ū0

i and x̄0
i .

6: Transmit (x̄0
i , ū0

i ) to controllers j ∈Ni.
7: Compute w̄0

i = {w̄0
i (l)}l from received (x̄0

j , ū
0
j), where w̄0

i (l) = ∑ j∈Ni(Ai j x̄0
j(l)+Bi jū0

j(l)),
l = 0 . . .N.

8: At controller state ēi, solve P̂i(ēi; w̄0
i ) to obtain f̄ 0

i .
9: if P̂i(ēi; w̄0

i ) is feasible, and V̂ 0
i (ēi; w̄0

i ) ≤ V̂ ∗i then
10: set w̄i = w̄0

i and V̂ ∗i = V̂ 0
i (ēi; w̄0

i ).
11: else
12: solve P̂i(ēi; w̄i) for f̄ 0

i .
13: end if
14: Measure plant state xi, calculate êi = xi− x̄i− ēi, and apply ui = ū0

i + f̄ 0
i + µi(êi).

15: Update controller states as x̄+i = Aiix̄i + Biiū0
i and ē+i = Aiiēi + Bii f̄ 0

i + w̄i —where w̄i =
w̄i(0)—w̄+

i = {w̄i(1), . . . , w̄i(N),0}, and V ∗+i = V ∗i − `i(ēi, f̄ 0
i ).

16: Set k = k+ 1, x̄i = x̄+i , ēi = ē+i , w̄i = w̄+
i , V ∗i = V ∗+i .

17: goto Step 5.
18: end procedure

H ≥ N + 1. The disturbance sequence w̄i has N nonzero elements with w̄i(N) = 0. The ancillary
controller employs N degrees of freedom to deal with the disturbance and the remaining ones to deal
with the regulation problem.

4.4 Recursive feasibility and stability

The main results of the Chapter are the recursive stability and stability of Algorithm 4.1. The sig-
nificance of these results lie in the reliability that these bring to the algorithm. This reliability may
open room for future improvements as well as the integration of the algorithm into a much larger
control scheme.

Recursive Feasibility

Guaranteeing recursive feasibility is the main task and challenge for this approach. This property
does not follow straightforwardly from the main optimisation problem in contrast to conventional
tube MPC. The predictive ancillary controller is not a linear function of the error, hence an exact
determination of the tightening is not available. We rely on outer approximations, via appropriate
scaling factors, of these measurements to tighten the constraints. The previous Sections presented
the approach and its inner workings, here we aim to formalise its properties and guarantees. Our
approach relies implicitly on the RCI sets of [118]. The scaling factors, αx

i , αu
i , β x

i and β u
i , are

computed using only the structure of the set, not from an explicit representation. The error of the
controlled system is bounded by such RCI sets ensuring constraint satisfaction and feasibility.

An analysis of the feasible region gives the necessary conditions to ensure global constraint
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satisfaction, i.e. the state xi of subsystem i must be bounded by a RPI set, X N
i ⊂Xi, for the uncertain

dynamics (2.4), constraint sets (Xi,Ui,Wi), and control law ui = κi(xi). Therefore, our objective
lies in characterising such set and ensuring: given xi ∈X N

i ⊆ Xi, Aiixi +Biiκi(xi) +wi ∈Xi and
κi(xi) ∈Ui. The “true" state satisfies xi = x̄i + ei = x̄i + ēi + êi, where x̄i lies inside the set, X̄ N

i ,
defined by the feasible set of the main optimisation problem Pi(x̄i):

X̄ N
i , {x̄i : Ū N

i (x̄i) 6= /0}, (4.16)

where Ū N
i (x̄i) , {ūi : (5.2a)–(4.35e) are satisfied}; the planned error ēi, given w̄i, resides within

Ē N
i (w̄i), the feasibility region of P̂i(ēi; w̄i):

Ē N
i (w̄i) , {ēi ∈Xi : F̄ N

i (ēi; w̄i) 6= /0}, (4.17)

where F̄ N
i (ēi; w̄i), {fi : (4.13b)–(4.13e) are satisfied}; finally, we suppose that the unplanned error

êi belongs to some set R̂i, see Figure 4.2 for an illustration of such sets. This Section focuses on
proving the following statements: Given a feasible state xi ∈ X̄ N

i ⊕ Ē N
i (w̄i)⊕ R̂i, we have

i) x+i ∈ X̄ N
i ⊕ Ē N

i (w̄+
i )⊕ R̂i,

ii) xi(k) ∈Xi and ui(k) ∈Ui for all k ∈Z+.

iii) x̄+i ∈ X̄ N
i and ē+i ∈ Ē N

i (w̄+
i ).

To this end, we make the following assumptions, which may also be interpreted as design conditions
that guide Section 4.5:

Assumption 4.2. The set R̂i is RCI for the system ê+i =Aiiêi+Bii f̂i+ŵi and constraint set (ξ x
i Xi,ξ u

i Ui,Ŵi),

for some ξ x
i ∈ [0,1) and ξ u

i ∈ [0,1), and where Ŵi ,
⊕

j∈Ni
(1−αx

j )Ai jX j⊕ (1−αu
j )Bi jU j. An

invariance inducing control law for R̂i is f̂i = µi(êi).

Assumption 4.3. The constants (αx
i ,β x

i ,ξ x
i ) and (αu

i ,β u
i ,ξ u

i ) are chosen such αx
i +β x

i +ξ x
i ≤ 1 and

αu
i +β u

i + ξ u
i ≤ 1.

Before proceeding we need some preliminary definitions and results. Given a disturbance se-
quence w̄i = {w̄i(0), . . . , w̄i(N−1),0}∈ W̄ N

i = W̄i×W̄i×·· ·×W̄i×{0}, w̃i = {w̄i(1), . . . , w̄i(N−
1),0,0} is the tail of that sequence.

Lemma 4.1 (Feasibility of the tail). If ēi ∈ E N
i (w̄i) then ē+i ∈ E N

i (w̃i)

Proof. Given a feasible error ēi ∈ E N
i (w̄) generating the feasible control and state sequences f̄0

i =

{ f̄i(0), . . . , f̄i(N− 1)} and ē0
i = {ēi(0), . . . , ēi(N− 1)} for a fixed w̄i. Taking the tail of the control

sequence f̃i = { f̄i(1), . . . , f̄i(N− 1),0} is a feasible control sequence for ē+i with w̃i since ēi(N +

1) = 0.

The following result establishes recursive feasibility of Algorithm 4.1 under Assumptions 4.2-
4.3.

Theorem 4.1 (Recursive feasibility). Suppose that Assumptions 4.2–4.3 hold. Then, for each sub-

system i ∈M ,



60 4.4. Recursive feasibility and stability

(i) If x̄i ∈ X̄ N
i then x̄+i ∈ X̄ N

i .

(ii) If ēi ∈ Ē N
i (w̄i), for some w̄i ∈ W̄ N

i , then ē+i remains feasible.

(iii) Given x̄i(0) = xi(0) ∈ X̄ N
i , the subsystem x+i = Aiixi +Biiui +wi under the control law ui =

κ̄i(x̄i) + κ̂i(ēi, êi; w̄i) = ū0
i (0; x̄i) + f̄ 0

i (0; ēi, w̄i) + µi(êi) satisfies xi ∈ Xi and u ∈ Ui for all

time.

Proof. For part (i), because the nominal model is linear, αx
i Xi and αu

i Ui are PC-sets, and the
terminal constraint is control invariant, the set X̄ N

i is compact, contains the origin and satisfies
X̄ N

i ⊇ X̄ N−1
i ⊇ ·· · ⊇ X̄ 0

i = {0}. Moreover, X̄ N
i is positively invariant for x̄+i = Aiix̄i +Biiκ̄i(x̄i),

which is sufficient to prove the claim. (For a detailed proof, see Rawlings and Mayne [122, Proposi-
tion 2.11]). For (ii), Lemma 4.1 guarantees the feasibility of Step 8 since ē+i ∈ Ē N

i (w̃i) for all times.
Therefore, the error remains feasible at all times.

For (iii), suppose that at time k, x̄i ∈ X̄ N
i , ēi ∈ Ē N

i (w̄i) with w̄i ∈ W̄ N
i , and êi ∈ R̂i. Then

xi ∈ X̄ N
i ⊕ Ē N

i (w̄i)⊕ R̂i ⊆ αx
i Xi⊕β x

i Xi⊕ ξ x
i Xi = (αx

i + β x
i + ξ x

i )Xi ⊆ Xi. The applied control
is ui = ū0

i (0; x̄i) + f̄ 0
i (0; ēi, w̄i) + µi(êi) ∈ αu

i Ui⊕ β u
i U⊕ ξ u

i Ui ⊆Ui. Then, because of parts (i)
and (ii), x+i = Aiixi +Biiui +wi ∈ X̄ N

i ⊕ Ē N
i (w̄+

i )⊕ R̂i. To complete the proof, however, we must
consider the possibility that the disturbance sequence at the successor state is w̄0

i 6= w̄+
i : in that case,

if P̂i(ē+i ; w̄0
i ) is feasible then x+i ∈ X̄ N

i ⊕ Ē N
i (w̄0

i )⊕ R̂i, which is still within Xi by construction,
and ui = ū0

i (0; x̄+i )+ f̄ 0
i (0; ē+i , w̄0

i )+µi(ê+i )⊆Ui. If P̂i(ē+i ; w̄0
i ) is not feasible, then P̂i(ē+i ; w̄+

i ) is

feasible (by the tail), and ui = ū0
i (0; x̄+i )+ f̄ 0

i (0; ē+i , w̄+
i )+µi(ê+i )⊆Ui. This establishes recursive

feasibility of the algorithm.

Finally, if, at time 0, x̄i = xi ∈ X̄ N
i then ēi = 0. Moreover, if w̄i = 0, then—trivially—ēi ∈ Ē N

i (0)
and both the main and ancillary problems are feasible. By recursion, feasibility is retained at the next
step, and the proof is complete.

Stability Analysis

Having established recursive feasibility and constraint satisfaction, the main result follows. As a first
step, we aim to guarantee decentralised stability of the system.

Lemma 4.2 (Decentralised stability). An RCI set, R̂i ⊂ Rni , exists for each i ∈M , such that the

collection {µi : R̂i→Ui}i∈M stabilise all the subsystems ê+i = Aiiêi +Biiµi(êi)+ ŵi.

Proof. This result follows as a consequence of Theorem 2.2 and Corollary 2.2.

Stability of Algorithm 4.1 follows:

Theorem 4.2 (Asymptotic stability). For each i ∈M , (i) the origin is asymptotically stable for the

composite subsystem

x̄+i = Aiix̄i +Biiκ̄i(x̄i)

ē+i = Aiiēi +Bii f̄i(0; ēi, w̄i)+ w̄i.
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Figure 4.2: (a) The overall feasible region ( ) for the nominal error ēi is given by the union⋃
w̄i∈W̄ N

i
Ē N

i (w̄i). For each w̄i ∈ W̄ N
i the corresponding feasible region, ( ), is a proper subset of

the overall feasible set. A change in w̄i shifts the such set as in ( ) and ( ).(b) The overall
feasible region of attraction for the system ( ) compared to the projection of the centralised region
onto Xi ( ), and the feasible region for a standard tube DMPC X̄ N

i ⊕Ri, ( ). The nominal
region of attraction, X N

i ( ) is the same for the standard tube DMPC and the proposed algorithm.

(ii) The origin is asymptotically stable for x+i = Aiixi +Biiκi(xi) +wi. The region of attraction is

X̄ N
i ⊆ αx

i Xi.

Proof. For (i), asymptotic stability of 0 for x̄+i = Aiix̄i +Biiκ̄i(x̄i) follows from the following facts:
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the value function V̄ 0
i (x̄i) satisfies, for all x̄i ∈ X̄ N

i ,

V̄ 0
i (x̄i) ≥ `i(x̄i, κ̄i(x̄i)),

V̄ 0
i (0) = 0,

V̄ 0
i (x̄

+
i )−V̄ 0

i (x̄i) ≤−`i(x̄i, κ̄i(x̄i)).

Therefore {V̄ 0
i (x̄i)}→ 0 and x̄i→ 0, ūi→ 0. Similar arguments applied to V̂ 0

i (ēi; w̄i)—together with
the fact that because w̄i is a linear function of (x̄ j, ū j) for j ∈Ni, then w̄i→ 0 and w̄i→ 0—establish
that ēi → 0; the possibility that V̂ 0

i (ēi; w̄i) does not attain the necessary decrease between (ēi, w̄i)

and (ē+i , w̄0
i ) (where w̄0

i 6= wi) is eliminated by the checking step in the algorithm.

For (ii), because xi ∈ x̄i + ēi + êi and x̄i, ēi→ 0, then xi→ êi and ui→ µi(xi). Under the decen-
tralized stabilizability assumption, then x→ 0 and so each xi→ 0.

4.5 Selection of the scaling constants

In this section, we present a detailed methodology for designing the scaling factors for the the main
and ancillary optimisation problems. These design steps include a characterisation of control set
invariance, and invariance inducing control law µi(·). The structure of these sets, given by [118],
is exploited to obtain suitable values for these factors; the explicit construction of these sets is not
required.

4.5.1 Revision of optimised robust control invariance

The procedure to compute RCI sets R ⊂ Rn for x+ = Ax+Bu+w and constraint set (X,U,W)

with Wi a C-set, outlined in [118], is an LP provided the constraint sets are polyhedral.

Characterisation of Ri

The set, and corresponding control set, are the polytopes

Rh(Mh) =
h−1⊕
l=0

Dl(Mh)W, µ(Rh(Mh)) =
h−1⊕
l=0

MlW, (4.18)

where the matrices Dl(Mh), l = 0 . . .h are defined as

D0(Mh) = I, Dl(Mk) , Al +
l−1

∑
j=0

Al−1− jBM j, l ≥ 1 (4.19)

with M j ∈Rm×n and Mh , (M0,M1, . . . ,Mh−1), such that Dh(Mh) = 0,h≥ n which is a generalisa-
tion of a deadbeat control. The set of matrices that satisfy these conditions is given by Mh , {Mh :
Dh(Mh) = 0}. Constraint satisfaction is guaranteed if Rh(Mh)⊆ ηX and µ(Rh(Mh))⊆ θU, with
(η ,θ ) ∈ [0,1]× [0,1].
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Figure 4.3: Minimal selection control law ( ) for the RCI set ( ). This control law remains
linear over the set R10 and can be identified with an RPI set. The colouring of the graph of µ(R)
reflects the strength of the control action, for example when the states are both negative, the required
control action has a larger value to counteract the disturbances. Similarly for the positive states, the
value of the control action is negative so that the state can be steered back in the set.

The optimisation problem defined to compute these sets is

PR
h : min{δ : γ ∈ Γ}, (4.20)

where γ = (Mh,η ,θ ,δ ), and the set Γ= {γ : Mh ∈Mh,Rh(Mh)⊆ηX, µ(Rh(Mh))⊆ θU, (η ,θ )∈
[0,1]× [0,1], qη η + qθ θ ≤ δ}; qη and qθ are weights to express a preference for the relative con-
traction of state and input constraint sets. Feasibility of this problem is linked to the existence of
an RCI set: if PR

h is feasible, then Rh(Mh) satisfies the RCI properties [118]. The computation
of the invariance inducing law, µ : Rh(Mh)→U, does not require an explicit computation of the
respective RCI set. The only required information is the structure of the given set, i.e. the solution
of (4.20), from which a suitable selection map is computed, see [118].

4.5.2 Design procedure for each subsystem

Recall that in the control algorithm proposed in the previous section, the state error ei = xi− x̄i was
decomposed into planned error ēi = x̂i− x̄i and an unplanned error êi = xi− x̂i; thus, ei = ēi+ êi. Our
aim is to determine the RCI control law f̂i = µi(êi) associated with the unplanned error dynamics
ê+i = Aiiêi + Bii f̂i + ŵi. The principal challenge here is that it is not possible, a priori, to define
the unplanned error set Ŵi. Instead, we consider that an RCI problem associated with the error
dynamics e+i = Aiiei +Bii fi +wi and constraint sets (Xi,Ui,Wi), and call this problem P

Ri
h , with
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the set Ri,h defined by adding appropriate i subscripts to its generating sets and matrices. The
rationale for this is as follows.

The disturbance wi = ∑ j∈Ni Ai jx j +Bi ju j arising from the state and input coupling, is decom-
posed into two terms: wi = w̄i + ŵi. The first term, w̄i = ∑ j∈Ni Ai j x̄ j +Bi jū j, is the planned distur-
bance obtained from the predictions, while the second term, ŵi = ∑ j∈Ni Ai j(x j− x̄ j)+Bi j(u j− ū j),
is the unplanned disturbance. Since x̄ j ∈ αx

j X j, ū j ∈ αu
j U j then

W̄i =
⊕
j∈Ni

(αx
i Ai jX j⊕α

u
i Bi jU j). (4.21)

In addition, if we bound e j ∈ (1−αx
j )X j and f j ∈ (1−αu

j )U j, it is possible to write

Ŵi =
⊕
j∈Ni

((1−α
x
i )Ai jX j⊕ (1−α

u
i )Bi jU j), (4.22)

and so, wi ∈Wi = W̄i⊕Ŵi,i.e. W̄i and Ŵi are summands of the known Wi. The next results
follow directly from the definition of RCI sets and the results of [118]:

Proposition 4.1. Suppose Assumptions 4.1–2.3 hold. If P
Ri
h is feasible for i ∈M , then Ri,h(Mi,h)

is an RCI set for e+i = Aiiei +Bii fi +wi and (Xi,Ui,Wi).

The following result

Proposition 4.2. Suppose W̃i ⊂Wi is a PC-set and a summand of Wi. If Ri,h(Mi,h) is an RCI set

for e+i = Aiiei +Bii fi +wi and (Xi,Ui,Wi), then R̃i,h(Mi,h) =
⊕h−1

l=0 Dl(Mh)W̃i ⊂Ri,h(Mi,h) is

an RCI set for e+i = Aiiei +Bii fi +wi and (Xi,Ui,W̃i).

Proof. Consider the RCI set related to the disturbance set W, Rh(Mh) =
h−1⊕
l=0

Dl(Mh)W. Since W

can be expressed in terms of its summands, then the RCI can be described as

Rh(Mh) =
h−1⊕
l=0

Dl(Mh)(W̄⊕Ŵ)

Rh(Mh) =
h−1⊕
l=0

Dl(Mh)W̄⊕
h−1⊕
l=0

Dl(Mh)Ŵ

Rh(Mh) = R̄h(Mh)⊕ R̂h(Mh)

As a result, the RCI set can be expressed as a sum of sets such that R̄h(Mh) ⊂ Rh(Mh) and
R̂h(Mh) ⊂Rh(Mh)

The implication of the second result is that it is possible to first determine an RCI set for the
known disturbance set Wi, and then, from that, determine an RCI set (with the same structure) for
the set Ŵi, because the latter is a summand. Therefore, the design is summarized as follows:

1. The problem P
Ri
h associated with the known Wi is solved to yield γi,h = (Mi,h,ηi,θi,δi),

where ηi ∈ (0,1) and θi ∈ (0,1) are scalings of Xi and Ui such that Ri,h⊂ηiXi and µ(Ri,h)⊂
θiUi respectively.
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Figure 4.4: For an RCI with h = 10, the different scalings of the state constraint set X and the
RCI sets R10 and R̂10: the main controller, ancillary controller and RCI controller operate within
the regions αxX, β xX and ηxX respectively; the space (1−αx)X is divided between the ancillary
controller (β xX) and the RCI controller (ξ xX) such that 1−αx = β x + ξ x.

2. Given that, under the RCI control law, ei ∈Ri,h ⊂ ηiXi and fi ∈ µ(Ri,h) ⊂ θiUi, we select

α
x
i = 1−ηi

α
u
i = 1−θi.

Then xi = x̄i + ei ∈ αx
i Xi⊕ηiXi = Xi, as required, with a similar expression for ui.

3. The selection of suitable ξ x
i and ξ u

i is done by finding values such that the sets R̂i,h and
µ(Ri,h) corresponding to the unplanned disturbance set Ŵi =

⊕
j∈Ni

((1−αx
j )Ai jX j⊕ (1−

αu
j )Bi jU j) are contained within ξ x

i Xi and ξ u
i Ui. The set Ŵi is computed and the RCI prob-

lem P
R̂i
h is solved for γ̃(i,h) = (Mi,h, η̃i, θ̃i, δ̃i) to yield the scaling factors

ξ
x
i = η̃i ∈ (0,1)

ξ
u
i = θ̃i ∈ (0,1).

4. The selection of the constants β x
i and β u

i follows from Assumption 4.3 in order to satisfy
constraint satisfaction

β
x
i = 1−α

x
i −ξ

i
i

β
u
i = 1−α

u
i −ξ

u
i .
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The selection of these scalings constants satisfy β x
i ∈ (0,1) and β u

i ∈ (0,1) by construction.

5. The control law f̂i = µi(êi) is computed from the matrices Mi,h, using the minimal selection
map procedure described in [118].

Comments on control invariance for DMPC

The reasons behind using RCI sets instead of the standard RPI set are twofold: i) the simplicity
of computation of RCI sets compared to that one of RPI sets; ii) the ease of computation, and
low complexity of the resulting tightened constraint sets. The explicit computation of the minimal
RPI set requires an a priori unknown number of Minkowski sums when the controller gain is other
than the nilpotent one. The complexity of this set grows exponentially with each Minkowski sum;
there are methods in the literature such as [149] that fix the complexity of the set and compute an
approximation to the minimal RPI set based on a single LP. This method, despite being effective,
has a potential pitfall: it requires a high number of inequalities in the polytopic case to resemble the
minimal RPI set. On the other hand, the RCI set of [117] requires 1 LP to determine the structure of
the set, and h Minkowski sums to obtain its explicit representation. This RCI optimisation problem
not only yields the structure of the sets, but also scaling factors for the constraint sets.

These factors lead onto the second reason behind the preference of RCI sets over RPI ones;
the complexity of the tightened sets used by the controller, i.e. X	R, is directly related to the
complexity of the robust invariant set used. The tightening procedure plays a major role in the
proposed algorithm. An explicit tightening requires the solution of a number of LPs. To avoid
this, outer approximations based on scaling factors are used to compute appropriate tightenings.
For the RPI case, the computation of these factors require an explicit knowledge of the set. For
the RCI sets, these constants are obtained through the solution of the optimisation problem (4.20).
This procedure of set tightening by means of scaling factors is conservative when the volume of
the robust invariant set differs from its corresponding outer approximation. However, this issue is
tackled by the introduction of the ancillary controller. The employment of scaling factor also eases
the computation of the parameters of the ancillary controller as shown in the design procedure.

4.6 Application to Automatic Generation Control

Power networks constitute one of the prime examples of LSS, and many authors, as in [136], cite
them as motivation to develop efficient ways to control large-scale phenomena. In particular, the
problem of load frequency control has attracted attention of the power networks community, and
several classical and modern control techniques have been implemented, see [34, 103, 139] for
recent surveys on the topic. Within the architecture of a power network, the AGC problem resides
at the secondary level above the primary control; the requirements and challenges for such control
architecture are well understood [55].

In the simplest case the AGC layer can be summarised as: adding integral action to a proportional
controller in order to eliminate steady state offset from the rotor frequencies. This method, albeit
simple, cannot be implemented easily when the system grows, i.e. the number of areas or generators
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are increased; another drawback of classical PI control is its lack of systematic constraint handling,
and its inherent centralised nature renders it impractical when controlling several areas.

MPC controllers offer a solution to many of the aforementioned problems including constraint
handling, and has been identified as of the leading techniques for LFC/AGC, and for smart grids as
hinted by [86, 109, 121, 122]. One of the earliest approaches of MPC applied to an AGC scheme is
that of [161], wherein the authors develop an iteration based DMPC scheme to control a multi-area
power system. They consider control areas subject only to control inputs, each of these areas solves
an optimisation problem and shares the optimised control actions for the respective iterative steps.
This approach guarantees constraint satisfaction and stability, even in the case of earlier termination
of the iterations which lead to poor performance, and does not offer any guarantees in terms of
robustness. The problem that many robust MPC controllers face when implementing is related with
the complexity and tractability of the optimisation problems. In the case of tube-based controllers
this complexity lies in the invariant set computation times, more precisely, the bottle neck is the
Minkowski sum operation. Our algorithm avoids an explicit computation of such invariant sets. In
fact, our approach only requires a single LP to obtain the structure of the required sets, it is with this
structure that the control law is computed. In fact, our approach uses two optimisation problems per
sampling time, however the complexity of such problems is kept to a minimum since the constraints
are only scaled versions of the original constraints. The ACG problem is presented in Section 4.6.1,
the suitable rearranged problem and algorithm are given in Section4.6.2, and the implementation
and discussions given in Section 4.6.3.

4.6.1 The load frequency control problem

Multi-area power system

The power network is composed of M independent areas governed by the classical linearised swing
equation as in [134]:

Mi∆ω̇i = ∆pm
i −∆pe

i , (4.26)

where ∆ωi is the rotor frequency deviation for each area. The parameter Mi represents the mechan-
ical steering time measured in seconds. The rate of change of rotor speed is proportional to the
deviation between the mechanical ∆pm

i and electrical ∆pe
i power; both power quantities are mea-

sured in p.u. The later term depends on the frequency Di∆ωi, a frequency independent term ∆pd
i

and the interconnection to the rest of the network ∆pi j for all j ∈Ni:

∆pe
i = ∆pd

i +Di∆ωi + ∑
j∈Ni

∆pi j. (4.27)

And the tie-line power deviation ∆pi j is given by the linearised power flow equation

∆ ṗtie
i = ∑

j∈Ni

∆ ṗi j = ∑
j∈Ni

Ps
i j(∆ωi−∆ω j) (4.28)

with Pi j is the synchronising power coefficient constant of line (i, j). Combining the above equations,
(4.26)–(4.28), renders the damped swing model; the relation between damping power to and the
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frequency dependant part of the load allows to consider multiple generators per area.

Mi∆ω̇i +Di∆ωi = ∆pm
i −∆pd

i −∆ptie
i . (4.29)

The rest of the model involves the governor and prime mover (tubine) dynamics. Both models are
first order approximations. The speed governor provides an output power to the mismatch between
a set point ∆pref

i and power drop 1
R ∆ωi because of frequency deviations, with Ri a regulation factor.

T g
i ∆ ṗv

i = −∆pv
i +∆pref

i −
1
R

∆ωi (4.30)

The turbine dynamics provide mechanical power ∆pm
i in response to the speed governor; this power

is the actual input to the system.
T t

i ∆ ṗm
i = −∆pm

i +∆pv
i . (4.31)

The overall dynamic system is a linear and fourth order. Albeit more complex models of this phe-
nomenon exist in the literature, the one presented in this thesis encompasses the essential details to
allow a clear exposition of the distributed control algorithm acting on the system.

AGC objective and system constraints

The objective of the automatic generation control (AGC) is to provide a suitable control that min-
imises frequency deviations from its nominal value, the power tie-line close to scheduled value. This
requirements are condensed in the Area Control Error (ACE),

ACEi = βi∆ωi + ∑
j∈Ni

∆pi j

which is the performance measurement associated to the AGC. The objective for any AGC controller
is to minimise ACE or keep it at zero. To this aim, if ∆ωi is regulated towards zero in each area
despite changes in the load, ∆pd

i , then ACEi = 0. From equations (4.29)–(4.31), the state of the
system is (∆ptie

i ,∆ωi,∆pm
i ,∆pv

i ) ∈R4 is regulated such that:

(∆ptie
i ,∆ωi,∆pm

i ,∆pv
i ) = (0,0,∆pd

i ,∆pd
i ).

is a fixed point of the system, with known disturbance di = ∆pd
i , and control input ui = ∆pref

i . Each
area i is subject to constraints only on the frequency, |∆ωi| ≤ Ωi. The reason behind constraining
only the frequency deviations lies in the nature of the model used for the system. Each area might
be composed of several generators, therefore the state is an aggregate of the states of each generator.
When this is is the case, the overall model can be reduced by employing “fictitious" states that
capture power generation within an area; these states, as a result, do not have a direct physical
meaning.
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Challenge for control

Combining all dynamic equations, the overall continuous dynamic system for each area i in compact
form is

ẋi = Āiixi + B̄iui + B̄d
i di + ∑

j∈Ni

Āi jx j. (4.32)

The system dynamics are affected by two disturbance sources: the load load power deviation di

which is a known quantity, and the subsystem interconnection, i.e. the power flow between each area.
The model represented by (4.32) is continuous, a discrete model is needed to apply Algorithm 4.1.
Exact discretisation destroys the sparsity and structure of the problem leading to M densely coupled
areas via states and inputs. An alternative method is to discretise each area separately assuming
the interactions as exogenous inputs. This approach preserves system structure, but might lack in
accuracy relative to its continuous counterparts; a consequence is close-loop performance detriment.
This discretisation method requires only of local dynamic knowledge of area i and Ai j, the latter
depending only on the tie-line power coefficient, a discussion of this phenomena is given in [37].

4.6.2 Distributed predictive AGC

In this section, the procedures of Section 4.3 are conditioned to meet the AGC problem. The first
issue that arises regarding a naive application of a DMPC approach to the problem is computational
bottle-neck because of invariant set computations in high order systems.

Control architecture for area i

The discretised uncertain equation considers only state coupling, given by (2.4) with Bi j = 0,

x+i = Aiixi +Biui +Bd
i di + ∑

j∈Ni

Ai jx j

with x+i the successor state. As explained previously, this model cannot be used for predictions, to
circumvent this problem two nominal systems are proposed to account for trajectory generation and
interaction handling respectively. The nominal systems dynamics, defined as in (4.3) and (4.10),
provide adequate predictions

x̄+i = Aiix̄i +Biūi +Bd
i di,

x̂+i = Aiix̂i +Biûi +Bd
i di + ∑

j∈Ni

Ai j x̄ j, .

With respective state and control errors ēi = x̂i− x̄i, ê = xi− x̂i. The overall control law for area i, as
given by (4.15), is

ui = uss
i + κ̄i(x̄i− xss

i )+ κ̂i(ēi; w̄i)+ κ̃i(êi) (4.33)

Disturbance bounding

The disturbance entering each area can be divided into two: the load, di, as a known disturbance,
and the interactions between areas wi. The first disturbance is handled using the prediction models
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and is incorporated into the optimisation problem. The second disturbance, as described in previous
sections, has two parts: the planned and unplanned disturbances. The third term of the control law
handles the planned disturbance, whereas the last term (4.33) rejects the unplanned disturbance using
an invariance inducing law. Given the constraints on the system Xi, and Ui satisfy Assumption 2.2,
then the overall disturbance set defined as

Wi =
⊕
j∈Ni

Ai jX j

This set is required to satisfy a weak coupling, like Assumption 3.4, to limit the strength of interac-
tions and allowing controller design for each area i. This assumption is easily met with a suitable
choice of state constraint; these constraints are only dependant on the frequency deviations, render-
ing the set Wi to be polytopic.

MPC control problem for area i

The proposed Nested DMPC control scheme uses two optimisation problems, (4.6) and (4.12), to
obtain the desired control law (4.33). In this case, however, the main problem needs modification to
allow for the known disturbance, the power load on each area, and for appropriate tracking of the
nominal power reference.

V̄i
0(x̄i;di) = min

ūi

N−1

∑
k=0

`i

(
x̄i(k)− xss

i , ūi(k)−uss
i

)
(4.34)

subject to, for k = 0 . . .N−1,

x̄i(0) = x̄i, (4.35a)

x̄i(k+ 1) = Aiix̄i(k)+Biūi(k)+Bd
i di, (4.35b)

x̄i(k) ∈ α
x
i Xi, (4.35c)

ūi(k) ∈ α
u
i Ui, (4.35d)

x̄i(N) = xss
i . (4.35e)

with `i(·, ·) an appropriate quadratic positive definite function. The load disturbance is assumed to
to satisfy:

Assumption 4.4 (Piecewise constant disturbances). The disturbance di = ∆pd
i for area i is piecewise

constant.

Assumption 4.5 (State and disturbance measurements). The state xi and disturbance di are known

at each time instant by the local controller.

These Assumptions allow the optimal control problems to be well defined. Assumption 4.5
implies that the load is known at each time step, in practice this is achieved employing disturbance
observers; a state observer can be implemented naturally to an MPC framework as mentioned in
[37, 90] and to a DMPC scheme in [6]. In practice, only measurements of the tie-line power and
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frequency deviations are available to the controller, therefore, a state observer is needed to complete
the state information.

This disturbance measurement is used to compute steady state pairs (xss
i ,uss

i ); these values satisfy
the following assumption

Assumption 4.6 (Steady state feasibility). For each area i, the steady-state values satisfy xss
i ∈αx

i Xi

and uss
i ∈ αu

i Ui.

The ancillary controller optimisation problem is the same as the one defined in (4.12):

V̂ 0
i (ēi; w̄i) = min

f̄i

H−1

∑
k=0

`i

(
ēi(k), f̄i(k)

)
subject to, for k = 0 . . .H−1,

ēi(0) = ēi,

ēi(k+ 1) = Aiiēi(k)+Bi f̄i(k)+ w̄i(k),

ēi(k) ∈ β
x
i Xi,

f̄i(k) ∈ β
u
i Ui,

ēi(H) = 0.

The scaling factors in both problems are chosen as described in Section 4.5 to ensure recursive
feasibility and stability of the large-scale system. The solutions of the optimisation problems are the
control sequences:

ū0(x̄i) ={ū0
i (0), . . . , ū

0
i (N−1)}

f̄0(ēi; w̄i) ={ū0
i (0), . . . , ū

0
i (H−1)}

In addition to the solution of each optimisation problem, the control law (4.33) employs an invari-
ance inducing control law. This control law is computed via an optimisation procedure, outlined in
Section 4.5.

4.6.3 Implementation example

The application of Algorithm 4.1 to an AGC context is shown via an example taken from [126],
which is benchmark system for AGC. The power network is composed of 4 interconnected genera-
tion areas, see Figure 4.5. The respective network parameters are given in Table 4.1. The magnitude
of the control input– the reference power ∆pref

i – is constrained to U1 = {u1 ∈Rm1 : |u1| ≤ 0.5 p.u.},
U2 = U3 = {u3Rm3 : : |u1| ≤ 0.65 p.u.}, and U4 = {u4 ∈ Rm4 : |u4| ≤ 0.55 p.u.}. The tie-line
power coefficients are the following:

Ps
12 = Ps

21 = 2 Ps
23 = Ps

32 = 2 Ps
34 = Ps

43 = 2.

The state constraints for each area are defined as Xi = {xi ∈ Rmi : |x2
i | ≤ 0.05 p.u.}, i.e. only
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Area 2 Area 3

Area 4Area 1

Figure 4.5: Network topology for the benchmark problem of [126]. The set of neighbours arising
from this topology is N1 = {2}, N2 = {1,3}, N3 = {2,4}, and N4 = {3}.

the second state, x2
i = ∆ωi, is constrained. As a result of this, the constraint set is a polyhedron,

closed but not bounded, and the disturbance set Wi, in view of the coupling parameters Ai j, is a
polytope satisfying Assumption 2.3. The dynamics are discretised using a zero-order hold method
with a sample period Ts = 0.1sec; this parameter is chosen according to the time constants of each
control area to avoid any error induced by sampling. The cost function matrices are set to Ri = 10,
Qi = diag(500,0.01,0.01,10), the output of the design procedure outlined in Section 4.5 can be
seen in Table 4.2. The state and control constraints are scaled such that αx

i and αu
i are used in the

main MPC-i problem, factors β x
i and β u

i in the ancillary MPC-i problem; the robust control invariant
set, computed implicitly, is bounded by a region of, respectively, ξ x

i and ξ u
i times the state and input

constraints. These scale factors divide the constraint sets into three regions; for instance, the partition
of area 2 is 95.4% for the main optimal control problem, 4.3% for the ancillary control problem, and
0.3% for the unplanned error. This partition allows the controller to act on a larger portion of the
state space reducing performance conservatism; the reasons behind this are: the size of the original
RCI set is significantly smaller than RPI sets commonly used in DMPC, the control law arising
from such set allows more degrees of freedom to handle disturbances as opposed to a fixed gain
Ki, and lastly, the disturbances arising from the interconnections are have an inherent structure that

Area 1 Area 2 Area 3 Area 4

Mi 12 10 8 8
Ri 0.05 0.0625 0.08 0.08
Di 0.7 0.9 0.9 0.7
T t

i 0.65 0.4 0.3 0.6
T g

i 0.1 0.1 0.1 0.1

Table 4.1: Parameters of the example power system.

Table 4.2: Designed values of constraint scaling factors.

Area 1 Area 2 Area 3 Area 4

αx
i 0.9545 0.9545 0.9545 0.9545

β x
i 0.0434 0.0434 0.0434 0.0434

ξ x
i 0.0021 0.0021 0.0021 0.0021

αu
i 0.9909 0.9588 0.9917 0.9544

β u
i 0.0085 0.0389 0.0078 0.0431

ξ u
i 0.0006 0.0023 0.0004 0.0025
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Figure 4.6: State trajectories of area 3: (top) deviations in mechanical input power (p.u.) and
governor output power (p.u.); (bottom) deviations in tie-line power (p.u.) and rotor speed (rad s−1).
( ) are the trajectories corresponding to Algorithm 4.1 and ( ) correspond to the centralised
controller.

once exploited offers performance improvement. For the simulations, each area is subject to a load
schedule, see Table 4.3, which is used to compute the steady state pairs. Figure 4.6 shows the time
evolution of area 3, the states settle to the desired steady state values, while the frequency deviations
are kept bounded around zero. As expected, the largest errors are produced when the load changes,
and the effects of such changes can be seen at their respective times. The planned error has bigger
magnitude than its unplanned counterpart and justifies the choice of this approach to control the

Table 4.3: Timing, location and magnitude of load power changes, ∆pd
i .

Time step 5 15 20 40 40

Area i 1 2 3 3 4
∆pd

i +0.15 −0.15 +0.12 −0.12 +0.28
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network; this network cannot be easily controlled using standard DMPC methods because of the
high state dimension.

4.7 Summary

This Chapter presents the Nested DMPC algorithm and its application to power networks. The al-
gorithm belongs to the class of tube-based methods since it relies on set invariance and constraint
tightening. However such operations are performed with online implementation in mind. The tight-
ened constraint sets are scalings of the original constraint sets, and the algorithm does not require
explicit computation of invariant sets. Another difference with standard tube-based approach lies in
the invariant sets used; standard tube algorithms use RPI sets to contain any control or state mis-
matches, whereas here RCI sets are employed for such purposes.

The implementation of the proposed algorithm requires two MPC controllers per subsystem.
The first controller acts on the nominal dynamics and generates desired trajectories; the second con-
troller handles the interaction between agents. The interactions among subsystems are not rejected
as in normal tube-based DMPC methods. These interactions are divided into two: the nominal and
uncertain interactions. Nominal predictions are shared among controllers in order to optimise the
necessary control action. The proposed control law has three terms: the regulation term arises from
the nominal control problem, the interaction term arises from the ancillary controller and optimises
a control action based on the interaction, and lastly an invariance inducing term for the “true" uncer-
tainty.

A detailed design procedure has been proposed for the controller. Under this procedure, each
controller needs only local information about constraints, plus a description of the overall distur-
bance set. The design procedure requires the offline solution of a LP to obtain the structure of the
RCI set. Based on this invariant set, the scaling constants are computed to tighten the constraint
sets. For the online procedure, the subsystems solve first the nominal OCP, then share their nominal
predictions with their dynamic neighbours, with the information gathered a corrective control law
is computed by solving the ancillary OCP, and finally the most suitable invariance control law is
computed based on the structure of the RCI set.

The framework developed in this Chapter has been applied to the AGC for power networks.
The problem in question, AGC for a multi-area power network, poses a significant challenge to any
robust control algorithm. The proposed algorithm is capable of robustly controlling each of the areas
and system as a whole. Other robust approaches based on invariant sets cannot control such system
because of the high dimensionality of the state space of each subsystem. One of the reasons of the
success of the proposed algorithm is that it uses the origin as terminal constraints. This selection of
constraints limits the size of the feasible set, and forces aggressive control laws on the system. A
solution to such problem is presented in the next Chapter.



Part II

Reconfigurable DMPC

75





Chapter 5

Generalised Nested DMPC

5.1 Introduction

Nested DMPC offers advantages over other DMPC algorithms but the constraints it imposes on the
system can be restrictive. Consequences of having zero terminal constraints are a small region of
attraction and aggressive control actions, similar to a deadbeat control. Relaxing such conditions is
not a trivial task. For the main MPC controller the generalisation is straightforward; for the ancillary
controller a naive generalisation may incur in a loss of feasibility and invariance since the predicted
disturbances propagate through the prediction model. This predicted disturbance is incorporated
into the prediction model, and to the best of the author’s knowledge the problem of regulation of a
disturbed system by nominal MPC when a forecast or schedule of future disturbances is available
for use in the prediction model has received little attention in the literature. Therefore, the aim of
this chapter is to develop new MPC methodology for systems that are subject to known disturbances,
and apply this to the ancillary controller in order to obtain a generalisation of the Nested DMPC.

This problem does not exactly fit the descriptions of robust or stochastic MPC, and yet it has not
been addressed in the literature on the inherent robustness of nominal MPC either: the disturbance
forecast is included in the prediction model, unlike in nominal MPC, but the MPC formulation
is otherwise a nominal one (i.e. no constraint restrictions or min-max optimisation). The closest
match appears to be the topic of tracking MPC, wherein it has been known for some time that a
disturbance model must be included in the predictions in order to obtain offset-free tracking [75];
in that context, different classes of disturbance signals have been investigated, including piecewise
constant [18, 68] and periodic [70]. In the regulation setting, the inclusion of some disturbance
information in the control problem was studied in [114]. The distinction was made between inf–sup

type and sup–inf type problems, in which the current disturbance is not known and, respectively,
known to the controller. The uncertain load scheduling problem, in which a linear system is subject
to a disturbance (load) that is partly known and partly unknown, has also been tackled by [102];
the approach employs a robust predictive controller acting on the uncertain error dynamics, thus
eliminating the scheduled disturbance in the prediction model.

Our problem description—when a disturbance prediction is available and desired to be used in
an otherwise-nominal MPC controller—can arise naturally in several applications. In frequency

77
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control of an electrical power system, for example, the controller aims to regulate the frequency
deviation from a nominal level despite load disturbances [74], and predictions or forecasts of the
latter are usually available to use within a predictive controller; indeed, in deregulated networks,
the load disturbance is partly deterministic (scheduled by contract) and partly non-deterministic
(unscheduled) [34]. Another example are distributed forms of MPC for systems of dynamically
coupled linear subsystems, an additive disturbance arises on each subsystem as a consequence of
the mutual interactions caused by the physical coupling in the system [20]. If each subsystem has
an MPC controller that optimises the future control sequence and associated state predictions, then
by controllers exchanging planned trajectories, each MPC controller thus has a forecast of the future
disturbances available to use within its prediction model at the next step. Distributed MPC schemes
essentially differ in how they use this information: it is known that the direct inclusion into the MPC
formulation is problematic, and therefore iterative [161] and robust [36, 150] methods are typically
used.

The proposed methodology analyses the use of an a-priori known disturbance forecast within
a nominal MPC controller and develops conditions for the recursive feasibility, stability and inher-
ent robustness of such a controller without resorting to taking a robust or stochastic approach. We
consider a linear time-invariant, constrained system subject to an additive disturbance, with the as-
sumption that a sequence of future disturbances (over the prediction horizon of the controller) is
known to the controller at the current time, but—given the uncertain, non-deterministic nature of
the disturbance—this sequence may change arbitrarily (within a bounded set) at the next step. It is
known that nominal MPC controllers for linear systems do possess robustness to bounded additive
disturbances [69], but these results are restricted to the case where the prediction model omits the dis-
turbance. New technical challenges arise when the disturbance is included in the prediction model:
(i) the origin is no longer a stable equilibrium point for the system model, making the regulation
objective in the optimal control problem ill-posed; (ii) the desirable properties of stabilising termi-
nal conditions [122], conventionally designed for the nominal model, do not hold for the perturbed
model. These issues, together with the possibility that the disturbance acting on the real system
(and the forecast of future disturbances to use in the prediction model) changes from time-step to
time-step, mean that constraint satisfaction, recursive feasibility and stability are not assured, even
when standard stabilising terminal conditions are employed.

The structure of the chapter is the following. Section 5.2 lists the limitations of using standard
terminal conditions for Nested DMPC and serves as motivation for the main topic of the chapter.
Section 5.3 defines the problem and presents the basic MPC formulation that will be studied. In
Section 5.3.2, modifications to the optimal control problem, and the standard terminal conditions
employed in MPC, are developed to allow for the inclusion of the predicted disturbance. In Sec-
tion 5.4, feasibility and stability of the system are studied, under both unchanging and changing
disturbances. Illustrative examples are given in Section 5.4.3. Finally, an application of the pro-
posed methodology to the Nested DMPC formulation is given in Section 5.5.
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5.2 Limitations of Nested DMPC

The previous chapter focuses on developing an algorithm capable of robustly controlling a LSS
containing high dimensional subsystems. The advantages of this approach lie in its design phase,
employing implicitly robust control invariant sets, and associated scaling factors to tighten the con-
straints. Despite these advantages, the algorithm imposes some restrictive constraints on the system
in detriment of performance. Another consequence of imposing an equality constraints of the type
X

f
i = {0} is that the region of attraction is relatively small respect to the state constraint set. The

immediate consequences of employing such constraint are twofold: the size of the feasible region
is affected, and recursive feasibility is at risk because of numerical errors in the implementation. In
addition, the feasible region is a N−step null-controllability set, and any initial state lying on the
boundary will be steered towards the origin with an aggressive control law. This, from a practical
perspective, is not a desirable property for the system.

A method to circumvent this problem is to include terminal conditions, to enlarge the feasible
regions and smooth the control action applied to the system. The first modification to the algorithm
presented in Chapter 4 is the inclusion of terminal conditions for the main optimisation problem.
The current zero terminal constraint (4.35e) set is replaced by a nonzero terminal set X f

i 6= {0}. A
terminal cost V f

i : X
f
i 7→R+ is appended to the original cost (4.6); these are the result of employing

a dual-mode approach with a stabilising terminal control law, κ̄ f (·). All of the above conditions
must satisfy Assumptions 2.5, 2.6, which are the basic assumptions on terminal conditions. The
main optimisation problem has the same structure as a standard MPC, and no further modification is
needed. The modified main optimisation problem for subsystem i is

P̄i(x̄i) : min
ūi

{
V̄i(x̄i, ūi) : ūi ∈ Ū N

i (x̄i)
}

(5.1)

where Ū N
i (x̄i) is defined as:

x̄i(0) = x̄i, (5.2a)

x̄i(k+ 1) = Aiix̄i(k)+Biiūi(k),k = 0, . . . ,N−1, (5.2b)

x̄i(k) ∈ α
x
i Xi,k = 1, . . . ,N−1, (5.2c)

ūi(k) ∈ α
u
i Ui,k = 1, . . . ,N−1, (5.2d)

x̄i(N) ∈ X̄
f
i . (5.2e)

The cost function

Vi(x̄i, ūi) = V f
i (x̄i(N))+

N−1

∑
k=0

`i(x̄i(k), ūi(k)) (5.3)

The solution of P̄i is a sequence of control actions ūi = {ūi(0), . . . , ūi(N−1)} and its corresponding
state sequence x̄i = {x̄i(0), . . . , x̄i(N)}. For each subsystem, the family of sequences {(x̄ j, ū j} j∈Ni

define the nominal disturbances w̄i affecting i’s dynamics.The disturbance set, W̄i, is given by Equa-
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tion (4.21), whereas the terminal disturbance set is computed from the neighbouring terminal sets:

W̄
f
i =

⊕
j∈Ni

Ai jX
f
j ⊕Bi jκ̄

f
j (U j) (5.4)

The predicted disturbance set is, consequently, W̄i = W̄× ·· ·×W̄
f
i . Proceeding similarly for the

ancillary controller, appending terminal conditions yields the OCP:

P̂i(ēi, w̄i) : min
f̄i

{
V̂i(ēi, f̄i, w̄i) : f̄i ∈ F̄ H

i (ēi, w̄i)
}

(5.5)

such that F̄ H
i is defined as

ēi(0) = ēi, (5.6a)

ēi(k+ 1) = Aiiēi(k)+Bii f̄i(k)+ w̄i(k), (5.6b)

ēi(k) ∈ β
x
i Xi,k = 0, . . . ,H−1 (5.6c)

f̄i(k) ∈ β
u
i Ui,k = 0, . . . ,H−1 (5.6d)

ēi(H) ∈ Ē
f
i , (5.6e)

and cost function

V̂i(ēi, f̄i, w̄i) = V̂ f
i (ēi(N))+

N−1

∑
k=0

`i(ēi(k), f̄i(k), w̄i) (5.7)

where the set Ē
f
i and cost V̂ f

i (·) arise as a consequence of defining a suitable terminal control law
κ̂

f
i (·), and satisfy Assumptions 2.5 and 2.6. Finally, the three term control law generated by the

solutions of P̄(x̄i) and P̂(ēi, w̄i) is

ui = κ̄i(x̄i)+ κ̂i(ēi; w̄i)+ κ̃i(êi).

The last term of this control law is an invariance inducing term that can be computed from the design
procedure in Section 4.5. This, however, leads to a loss of feasibility: by using a non-zero terminal
set for the main optimisation problem, X f

i 6= {0}, implies that the predicted disturbances do not
vanish at the end of the horizon w̄i(H) 6= 0. This leads to problems in guaranteeing invariance of Ē

f
i

since these disturbances are part of the prediction model, and change every time step. The precise
impact of such disturbances will be made clear in Section 5.3. The above arguments proved the
following result on the limitations of a naive modification of the optimisation problems (5.1) and
(5.5)

Proposition 5.1 (Infeasibility of the tail). For each i ∈M , Suppose that ūi ∈ Ū N
i and f̄i ∈ F̄ H

i are

feasible solutions of P̄i(x̄i) and P̂i(ēi, w̄i) respectively. If the disturbance sequence w̄i 6= 0, then

i) The sequences ũi = {ū(1), . . . , κ̃ f
i (x̄i(N))} and f̃i = { f̄ (1), . . . , κ̂ f

i (ēi(N), w̄)} are not necessar-

ily feasible for P̄i(x̄+i ) and P̂i(ē+i , w̃i) with w̃i = {w(1), . . . ,w(N),w(N + 1)}.

ii) The trajectories {(xi(k),ui(k))}k∈N do not necessarily satisfy all the constraints.
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This non-vanishing perturbation steers the nominal error, ēi, away from the origin. Therefore a
zero nominal error cannot be guaranteed which results in loss of recursive feasibility. This situation
requires an additional relaxation for the terminal constraints of the ancillary OCP. There are two
approaches that can be taken to tackle this problem: a parameterisation of the terminal conditions in
terms of the disturbance, or a robust approach. The later approach implies designing a controller to
reject the disturbance, but this is what we sought to avoid by introducing the ancillary controller.

The critical part of the algorithm, from a recursive feasibility point of view, is the ancillary
controller. This controller admits a prediction of disturbances into its prediction model, so that a
corrective, not rejective, action could be taken. The perturbations entering the system can be viewed
more as a scheduled load than a disturbance, since the value of the sequence is known up to N steps
ahead in the future. This class of problems are denoted as sup-inf type by [114]. The synthesis of a
controller for such class of systems is the main objective of the chapter. The proposed algorithm can
then be applied to Algorithm 4.1, where the new controller replaces the ancillary one.

5.3 MPC with scheduled disturbances

Consider the regulation problem for a discrete-time, linear time-invariant (LTI) system subject to an
additive disturbance:

x+ = Ax+Bu+w (5.8)

where x ∈Rn, u ∈Rm, and w ∈Rp are the state, input, and disturbance at the current time; x+ is the
successor state. The control objective is to regulate the system state x ∈Rn to the origin, despite the
action of disturbances, while satisfying constraints on states and inputs:

x ∈X, u ∈U, (5.9)

where X⊆Rn, U⊆Rm satisfy Assumption 2.2, i.e. both of these sets are PC-sets, and the system
dynamics satisfy Assumption 2.1. In addition, the disturbance set satisfies:

Assumption 5.1 (Constraint sets). The set W⊂Rp is a C-set.

In this setting, we assume the controller has knowledge of a disturbance sequence up to N-steps
ahead in the future. The structure and availability of disturbance information is the sup-inf type
[114], and such that:

Assumption 5.2 (Information available to the controller).

1. The state x(k) and disturbance w(k) are known exactly at time k; the future disturbances are

not known exactly but satisfy w(k+ i) ∈W, i ∈Z+.

2. At any time step k, a prediction of future disturbances, over a finite horizon, is available.

In general scenarios, full-state availability is a standard assumption but assuming disturbance
observability is not common. This, however, can be relaxed using disturbance observers and estima-
tors, the price of such estimation is an extra layer of complexity as explained in Chapter 3. Based
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on this observation, we consider it safe to assume full-disturbance information. The disturbance
predictions of Assumption 5.2 and their interaction with a nominal MPC formulation are at the heart
of the analysis in present chapter. In particular, the consequences of including such information in
stability and recursive feasibility.

5.3.1 Basic optimal control problem

The interplay of the inclusion of the disturbance predictions and a standard nominal MPC controller
are our main interest throughout this section. As a consequence of Assumptions 5.2, the information
available to the controller is the current state x ∈X and the collection of the disturbance predictions,
w , {w(0), . . . ,w(N)}, where the initial term w(0) = w correspond to the measurement and lies– as
each of the other terms w(k), k = 1, . . . ,N– in W. The resulting MPC optimisation is the following:

P(x,w) : min
{

VN(x,u;w) : u ∈U ol
N (x;w)

}
(5.10)

where U ol
N (x;w) is defined by the following constraints for i = 0 . . .N−1:

x(0) = x, (5.11a)

x(i+ 1) = Ax(i)+Bu(i)+w(i), (5.11b)

x(i) ∈X, (5.11c)

u(i) ∈U, (5.11d)

x(N) ∈X f (w). (5.11e)

In this problem, the cost function comprises, in the usual way, a stage cost plus terminal penalty:

VN(x,u;w) ,Vf

(
x(N);w

)
+

N−1

∑
i=0

`
(

x(i),u(i);w
)

, (5.12)

The stage and terminal costs are functions such ` : Rn×Rm 7→R+, Vf : Rn 7→R+; and both depend
on the values of the predicted disturbance sequence. The terminal set X f (w), and, as a byproduct,
the feasible region XN(w) ,

{
x ∈X : U ol

N (x;w) 6= /0
}

depend on the predicted disturbances.
The solution of this problem at a state x and with disturbance sequence w yields an optimal

control sequence

u0(x;w) ,
{

u0(0;x,w),u0(1;x,w), . . . ,u0(N−1;x,w)
}

.

The application of the first control in the sequence defines the control law

u = κN(x;w) = u0(0;x,w).

At the successor state x+ = Ax+BκN(x;w)+w(0;w), the problem is solved again, yielding a new
control sequence. The disturbance sequence used in the problem at x+ may, however, have changed
arbitrarily from w.

The resulting optimisation problem has the complexity of a standard MPC controller, and the
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availability of predicted disturbance sequences can be interpreted as feedforward information. This
information affects the convergence properties of the closed loop system. A convergence to the
origin is ensured if the disturbance is decaying; whereas a convergence to a neighbourhood of the
origin is the best we can achieve in the case of persisting disturbances.

The standard stabilising conditions for nominal MPC, assuming w ≡ 0, require the terminal set
to be positive invariant for the system dynamics, the terminal cost to be a CLF on the terminal set,
and the stage cost to be a positive definite function bounded from below. These conditions for the
stage cost and terminal set are met if Assumptions 2.4 and 2.5 of Section 2.2 hold. However, the
conditions presented here for the terminal cost are more general to the one given in Assumption 2.6.

Assumption 5.3 (Cost function bounds). The functions `(·, ·), Vf (·) are continuous, with `(0,0) = 0,

Vf (0) = 0 and such that, for some c1 > 0, c2 > 0, a > 0,

`(x,u) ≥ c1|x|a for all x ∈XN ,u ∈U (5.13)

Vf (x) ≥ c2|x|a for all x ∈X f (5.14)

Assumption 5.4 (Basic stability assumption).

min
u∈U

{
Vf (Ax+Bu)+ `(x,u) : Ax+Bu ∈X f

}
≤Vf (x), for all x ∈X f . (5.15)

Assumption 5.5 (Control invariance of X f ). The set X f is control invariant for x+ = Ax+Bu and

the set U.

When Assumption 5.4 is met, the terminal cost can be chosen from a wider class of functions,
and allows for a more flexible control law. In the normal case, the origin is required to lie inside
the control set, in this case it can lie on the boundary of such set. As consequence of Assump-
tions 2.4,2.5, 5.3, and 5.4, the recursion of controllability sets

Xi+1 = {x ∈X : ∃u ∈Us.t.Ax+Bu ∈Xi} with X0 = X f , (5.16)

is control invariant. Furthermore, the set XN (and XN−1) is positively invariant for x+ = Ax+Bu

under the MPC control law u = κN(x) and admissible with respect to the constraints. Consequently,
if x(0) ∈XN then (i) the optimal control problem is recursively feasible, (ii) constraints are satisfied
for all times, and the origin is asymptotically stable for the closed-loop system, with region of
attraction XN [122]. If the disturbance predictions are nonzero, then the above Assumptions are
not met, and stability of the closed-loop system cannot be guaranteed. The reasons behind this are
the way the disturbance predictions propagate through the prediction model, the value of the cost
function at the equilibrium point, and the controllability structure of the system dynamics.

Ill-posed objective and unknown setpoint

If the prediction model is x+ =Ax+Bu+w and w is not identically zero, then (x= 0,u= 0) is not, in
general, an equilibrium pair for the system, and the regulation objective is not achievable: the origin
is an inconsistent set-point. Consequently, employing a cost function that satisfies Assumptions 5.3
and 5.4 will not ensure that the value function satisfies the conditions of a Lyapunov function. If the
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disturbance employed in the predictions is assumed, beyond the end of the horizon, to converge to a
constant, say w f , then there may (depending on (A,B) and the terminal control law u = κ f (x)) exist
an equilibrium (x f ,u f ); how this relates to the desired regulation objective of x = 0 is, however,
unclear.

Loss of invariance of X f for the terminal dynamics

Control invariance of X f for x+ = Ax+Bu does not imply control invariance for x+ = Ax+Bu+w,
even when w is constant. Yet, control invariance of X f is (in the presence of a state constraint set X

that is not control invariant) a necessary condition for the controllability sets to be control invariant
and nested (i.e. X1 ⊆X2 · · · ⊆XN) [85]. These properties offer an easy route to recursive feasibility
of the optimal control problem: the nestedness and control invariance of the sets {Xi}i=0...N is
sufficient. On the other hand, in the absence of these properties, recursive feasibility is non-trivial
to establish [46]. This issue could be avoided in at least two ways. Firstly, robust invariant sets can
be employed to construct an X f that is control invariant for all possible w ∈W. However, this is
conservative and what we seek to avoid in this Chapter.

As a simple but less comprehensive alternative, a particular (and restrictive) structure can be
assumed on the disturbance sequence beyond the end of the horizon and the dynamics according to
which it changes. For example, if at time k the N-length disturbance sequence is continued beyond
the end of the horizon, and assumed to be zero, i.e.

w(k) =
{

w(k),w(k+ 1), . . . ,w(k+N−1),0,0, . . .
}

,

then, in the optimal control problem at state
(

x(k),w(k)
)

, the terminal dynamics are known to be
x(i+1) = Ax(i)+Bu(i) for i≥ N. If X f is designed, in the usual way, to satisfy Assumptions 2.5–
5.4 for these nominal dynamics, then the prediction x(N) ∈ X f implies there exists a u ∈U such
that x(N + 1) ∈X f . Moreover, if the disturbance sequence at the next time step is obtained as the
“tail” of the previous one:

w(k+ 1) =
{

w(k+ 1),w(k+ 2), . . . ,w(k+N−1),0,0,0, . . .
}

,

then it is readily shown that the optimal control problem at k + 1 is feasible. However, the zero
disturbances move forwards in the disturbance sequence, until the point that the model includes
no disturbances at all, which is not useful. In Section 5.3.2, we develop a generalisation of this
approach, considering constant disturbances beyond the end of the horizon. We go on, however,
to permit the whole disturbance sequence to change from sample time to sample time, so that the
constant disturbances recede with the prediction horizon, and do not propagate forwards toward the
current time.
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Loss of nesting of the controllability sets

Supposing the previous issue can be overcome, there is also a more subtle issue that arises. Consider
again that the disturbance sequence is continued indefinitely, beyond the horizon, i.e.

w =
{

w(0), . . . ,w(N−1),w f

}
where w f , {w(i)}i≥N . Suppose that X f is control invariant for the terminal dynamics x+ = Ax+

Bu+w, where w follows the sequence w f , but not robustly so—not for all w∈W. That is, elements
in the sequence w f are limited, by assumption, to something stronger than mere membership of W,
such as the zero sequence described in the previous subsection. On the other hand, the elements
w(i), i = 0...N− 1, take any value in W. Then it is possible to show that the nested property of
the controllability sets does not necessarily hold. Indeed, the controllability sets are defined by the
iteration

Xi+1(wi+1) = X∩A−1
(
Xi(wi)⊕−BU⊕−{w(N− i)}

)
, (5.17)

with X 0(w0) = X f (w f ), w0 = w f and where, for i = 1 . . .N, wi is defined by:

wi =
{

w(N− i), . . . ,w(N−1),w f

}
.

The final summand in (5.17) is problematic, for {w(N − i)} is a point, not a set containing the
origin, and therefore induces translation of the controllability sets between iterations. Moreover, if
A is unstable, then with each iteration the controllability set is shifted further away as the disturbance
propagates through the unstable predictions. The implication is that XN(w) is not control invariant
for x+ = Ax+Bu+w, and recursive feasibility may not be trivial to establish, even if X f is control
invariant for the terminal dynamics. In the next section we outline a procedure to overcome such
limitations by suitably modifying the stabilising ingredients of nominal MPC.

5.3.2 Modifications to the cost and terminal ingredients

The stability analysis of a nominal MPC controller for regulation relies on the assumption that the
origin is an equilibrium state for the system consistent with zero control input. It is well-known from
linear optimal control theory that an infinite horizon is stabilising—with the limiting prediction x =

0—but because constrained infinite-horizon problems are not tractable, a common and systematic
approach is to instead employ a terminal cost Vf (·) and terminal constraint x(N) ∈X f that together
satisfy Assumptions 2.5, 5.3–5.5; the implication is that the state predictions beyond the end of
the horizon, under a terminal control law κ f (x), remain within X f and, moreover, x(i)→ 0 as the
prediction step i→ ∞.

When the prediction model is x+ = Ax + Bu + w, the pair (x = 0,u = 0) is not, in general,
an equilibrium, and even if x(N) is known the behaviour (and stability) of predictions beyond the
end of the horizon is unclear, depending on the system properties, the assumed control law and
the disturbance sequence. In this section, therefore, under suitable assumptions on the terminal
disturbances we develop modifications to the cost `(·, ·) and terminal ingredients Vf (·), X f for the
model predictive controller that aim to overcome the first two of the fundamental issues outlined in
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the previous section. With respect to the third issue, we show in Section 5.4 that recursive feasibility
of the control problem can be established without relying on nestedness of the controllability sets;
in fact, we show that a different kind of nested property holds here.

When the stage cost is quadratic (`(x,u) = ‖x‖2
Q +‖u‖2

R), with Q ∈Rn×n and R ∈Rn×n positive
definite matrices, a suitable and standard choice [122] of terminal conditions is to select a terminal
control law κ f (x) = Kx that is stabilising for (A,B), a terminal cost Vf (x) = ‖x‖2

P, where P is
the solution of the Lyapunov equation, and X f = O∞, the maximal constraint admissible set for
x+ = AKx, where AK , A+BK. Moreover, if K is selected as the unconstrained optimal controller
for (A,B,Q,R) then closed-loop performance is optimal with respect to the infinite-horizon objective.
Recently, it has been shown that, even in the context of LTI systems with quadratic costs, it can be
advantageous to employ a nonlinear terminal control law, non-quadratic terminal cost and/or a non-
standard choice of terminal set. For example, [44] uses a polyhedral Lyapunov function [10] as the
terminal cost, with a λ -contractive terminal set; the associated terminal control law is set-valued,
and may be implemented as a linear variable-structure controller [10]. In this case, the region of
attraction may be enlarged. To allow such possibilities, therefore, we permit a terminal set and cost
function satisfying the general form of Assumptions 2.5, 5.3–5.5.

Our basic approach is to consider a constant-disturbance terminal prediction model, take sta-
bilising ingredients designed for its nominal counterpart, and translate the costs and terminal set
to account for the non-zero equilibrium caused by the disturbance; as we shall show, the resulting
ingredients achieve the required properties of invariance and monotonicity with respect this new
predicted equilibrium instead of the origin, which we exploit in the recursive feasibility and stability
results presented in Section 5.4. These techniques are frequently used in tracking MPC to com-
pensate for any offset caused by either constant disturbances or any nonzero steady state, see for
example [100, 104, 105]. In view of this, however, the previous discussion adds a complication, for
it permits the use of non-linear terminal dynamics.

Constant-disturbance terminal dynamics

According to the preceding arguments, in order to synthesise appropriate terminal ingredients one
first needs to consider the terminal (beyond the horizon) dynamics of the prediction model. This
motivates the next assumption, regarding the disturbance sequence: by definition, the disturbance is
constant after N steps ahead in the future, and therefore to consider the terminal dynamics we setup
the predicted disturbance sequence in the following way:

Definition 5.1. An admissible disturbance sequence w = {w(0), . . . ,w(N−1)} has w(i) ∈W, i =

0 . . . (N− 2), and w(N− 1) ∈W f ⊆W; we write w ∈ W , W×·· ·×W×W f . For i ≥ N, the

sequence is continued as w(i) = w f (w) , w(N−1).

The disturbance sequence is stationary after N steps, and each term is equal to w f (w) = w(N−
1) after the N first steps, where the operator w f : W 7→W f , and W f ⊆W. A consequence of
Definition 5.1, for an admissible disturbance sequence w ∈W , the terminal dynamics are given by
x+ = Ax+Bu+w f (w), with w f (w) constant. At the next time instant, the terminal value of the
disturbance w f (w+) need not to be equal to w f (w). Under this interpretation, the system subject to
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scheduled disturbances can be seen as a family of modes with affine dynamics that switch between
them with a dwell time of 1.

Equilibria of the terminal dynamics

To proceed, we first assume the availability of terminal ingredients for the nominal system:

Assumption 5.6. There is known a set X̄ f and functions ¯̀(·, ·), V̄f (·) satisfying Assumptions 2.5,

5.3–5.5 for the dynamics x+ = Ax+Bu and constraint sets (βxX,βuU), where βx,βu ∈ [0,1).

The set X̄ f is a control invariant set (for the nominal dynamics) that resides within βxX, which
is the state constraint set scaled to allow for the effect of non-zero disturbances on the terminal
dynamics; the selection of suitable scaling factors βx and βu is described in the sequel.

Assumption 5.6 implies the existence of a (possibly set-valued) control law, u f : Rn 7→ 2Rm
that

induces invariance of the set X̄ f with respect to the nominal dynamics.

u f (x) =
{

u ∈ βuU : Ax+Bu ∈ X̄ f ,V̄f (Ax+Bu)+ ¯̀(x,u) ≤ V̄f (x)
}

, for x ∈ X̄ f . (5.18)

We denote the system x+ = Ax+Bu under the control law u = κ̄ f (x)—where, if necessary, κ̄ f (x) is
an appropriate selection from u f (x), but is otherwise equal to u f (x)—as x+ = fκ̄ f (x) = Ax+Bκ̄ f (x)

(so that fκ̄ f : X̄ f 7→ X̄ f ). The following result is an immediate consequence of the existence of κ̄ f (·)
satisfying the conditions of Assumptions 2.5, 5.3–5.5.

Lemma 5.1 (Stabilizing terminal control law). Suppose Assumptions 2.1 and 5.6 hold. The origin

is an asymptotically stable equilibrium for the system x+ = fκ̄ f (x), with region of attraction X̄ f .

The difficulty with translating the terminal ingredients to the new steady state or equilibrium
point of the system perturbed by w f is that this point is not immediately known, since the terminal
control law is nonlinear and/or set-valued. The approach we take, therefore, is to linearise the
terminal dynamics and control law around the equilibrium point x = 0 ∈ X̄ f , for which we make the
following assumption.

Assumption 5.7. The control law κ̄ f (·) is continuous, with κ̄ f (0) = 0, and continuously differen-

tiable in a neighbourhood of x = 0.

In reality, this is a mild assumption: as discussed, a ready choice of κ̄ f (·) is a linear, stabilising
K. Even if κ̄ f (·) is piecewise linear, as in [44], in order to maximise the size of X̄ f , the control law
is typically linear (for a linear system) in a neighbourhood of the origin when X and U are PC-sets.

Equipped with this, the linearisation of x+ = fκ̄ f (x) yields

Π ,
∂ κ̄ f (x)

∂x

∣∣∣∣∣
x=0

(5.19)

Φ ,
∂

(
Ax+Bκ̄ f (x)

)
∂x

∣∣∣∣∣∣∣
x=0

= A+BΠ (5.20)
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Taking into account the arguments above, the equilibrium pair of the linearised system x+ = Φx+w f

is,

x f (w f ) = ΨBww f (w), where Ψ ,
(

I−Φ
)−1

, (5.21)

u f (w f ) = ΠΨBww f (w). (5.22)

In view of Lemma 5.1 and Assumption 5.7, Φ = (A+BΠ) is well defined and strictly stable, hence
Ψ = (I−Φ)−1 exists and is unique. This proves the following.

Lemma 5.2 (Existence of equilibrium). Suppose Assumptions 2.1, 5.6 and 5.7 hold. The point

x f (w f ) exists and is the unique equilibrium of x+ = Φx+w f , with w f constant.

Modified terminal conditions: translation and properties

We propose to translate the cost function, terminal sets and control law to this new point (x f ,u f ):

`(x,u;w f ) , ¯̀
(

x− x f (w f ),u−u f (w f )
)

Vf (x;w f ) , V̄f

(
x− x f (w f )

)
X f (w f ) , X̄ f ⊕

{
x f (w f )

}
κ f (x;w f ) , κ̄ f

(
x− x f (w f )

)
+ u f (w f )

The translated sets and functions are then the ones employed in the optimal control problem with
perturbed prediction model. The main result of this section then establishes that the resulting ter-
minal ingredients satisfy the required conditions (counterparts to Assumptions 2.5, 5.3–5.4). for
x+ = Ax+Bu+w f . First, the following assumption is required.

Assumption 5.8. There exist scalars αx,αu ∈ [0,1) such that

ΨW f ⊆ αxX ΠΨW f ⊆ αuU

This assumption affirms the existence of scaling constants that approximate the terminal distur-
bance set, W f , with respect to the state and input constraint sets. These constants are needed for
implementation reasons, by computing an outer scaling the complexity of any tightening does not
increase from the original constraints. The following result discusses the invariance properties of the
new terminal ingredients.

Proposition 5.2. Suppose that Assumptions 2.1,2.2, 5.2, 5.6,5.8 hold. For any w f (w) ∈ W̄, (i) the

set

X f (w f ) = X̄ f ⊕
{

x f (w f )
}

(5.23)

is positively invariant for x+ = Ax+Bκ f (x;w f )+w f , and (ii) the functions `(x,u;w f ) and Vf (x;w f )

satisfy
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Vf

(
[Ax+Bκ f (x;w f )+w f ];w f

)
+ `
(

x,κ f (x;w f );w f

)
≤Vf (x;w f ) for all x ∈X f (w f ).

Furthermore, (iii) X f (w f ) ⊆X, and κ f (X f ;W f ) ⊆U if αx +βx ≤ 1 and αu +βu ≤ 1.

Proof. Consider some w f ∈W f . The point x f = x f (w f ) = Ψw f = (I−Φ)−1w f exists and is unique
because I−Φ = I− (A+BΠ) is invertible; the latter follows from the fact that x+ = Ax+Bκ̄ f (x) is
exponentially stable, κ̄ f (·) is smooth in a neighbourhood of x = 0, Π is well defined, and (A+BΠ)

is strictly stable.
Let X f (w f ) = X̄ f ⊕{x f }, and consider some x ∈ X f (w f ) and a corresponding z = x− x f ∈

X̄ f . The successor states are z+ = Az+Bκ̄ f (z), which is in X̄ f by construction, and x+ = Ax+

Bκ f (x;w f ) + w f , which, using the control law definition κ(x;w f ) = κ̄ f (x− x f ) + Πx f , may be
rewritten as

x+ = Ax+Bκ̄ f (x− x f )+BΠx f +w f

= A(z+ x f )+Bκ̄ f (z)+BΠx f +w f

= Az+Bκ̄ f (z)+ (A+BΠ)x f +w f

= z++Φx f +w f

= z++ x f

where the last line follows from Φx f + w f = ΦΨw f + w f = (ΦΨ + I)w f , and since Ψ = (I −
Φ)−1 = (I−Φ)−1Φ+ I, then (ΦΨ+ I) = Ψ and Ψw f = x f . Then x+ ∈X f (w f ) because z+ ∈ X̄ f .
This establishes positive invariance of X f (w f ), for any w f ∈W f , under u = κ f (x;w f ).

To prove constraint admissibility, by Assumption 5.8, we have that ΨW f ⊆ αxX and ΠΨW f ⊆
αuU, with αx,αu ∈ [0,1). On the other hand, by Assumption 5.6, X̄ f ⊆ βxX and κ̄ f (X̄ f ) ⊆ βuU,
with βx,βu ∈ [0,1). Then X f (W f ) = X̄ f ⊕ΨW f ⊆ βxX⊕αxX ⊆ X, if αx + βx ≤ 1. Similarly,
κ f (X f ;W f ) = κ̄ f (X̄ f )⊕ΠΨW f ⊆ βuU⊕αuU⊆U if αu +βu ≤ 1.

Next, to prove the claimed properties of the functions `(·, ·) and Vf (·). For some w f ∈W f ,
x ∈X(w f ) and corresponding z = x− x f ∈ X̄ f , we have

V̄f (z+)−V̄f (z) ≤− ¯̀
(

z, κ̄ f (z)
)

by construction (Assumption 5.6). Then, as required, for x+ = Ax+Bκ f (x;w f )+w f ,

Vf (x+)−Vf (x) = V̄f (x+− x f )−V̄f (x− x f )

= V̄f (z++ x f − x f )−V̄f (z+ x f − x f )

= V̄f (z+)−V̄f (z)

≤− ¯̀
(

z, κ̄ f (z)
)

= − ¯̀
(

x− x f , κ̄ f (x− x f )
)

= − ¯̀
(

x− x f ,κ f (x;w f )−Πx f

)
= −`(x,u;w f ) where u = κ f (x,w f )
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This result implies that the set X f (w f ) is control invariant for the system x+ = Ax+Bu+w f , w f

constant, and input set U. In particular, the set is positively invariant for x+ = Ax+Bκ f (x;w f )+w f ,
and within this set, Vf (·, ·) is a control Lyapunov function. Thus, we have established stability of the
predicted terminal dynamics to an equilibrium point under the assumption of a constant disturbance
w f . To successfully implement these modified invariance conditions, it is necessary to compute their
nominal counterparts: X̄ f and V̄f (·). Both the nominal terminal set X̄ f and its respective control
law κ̄ f (·) should satisfy the conditions and hypothesis of Assumption 5.6, Assumption 5.8, and
Proposition 5.2. To this end, we propose the following design procedure:

1. Design X̄ f , κ̄ f (·) and Vf (·) to satisfy Assumption 5.6, with some βx < 1 and βu < 1.

2. Check Assumption 5.8. If αx > 1−βx or αu > 1−βu, decrease βx and/or βu and go to Step 1.

Finally, the gradient Dκ̄ f can be computed from Equation (5.19) (and subsequently Φ and x f (w f (w))).
If the terminal control law is not differentiable at x = 0 (for example, in the case of a piecewise lin-
ear law), then Proposition 5.2 still holds when employing sub-derivatives and appropriate selections.
Both matrices Π and Φ may be computed offline.

In view of the regulation objective, the stabilisation of the perturbed system under constant dis-
turbances to x f (w f ) = Ψw f may seem unambitious. Ultimately, however, this is an issue of available
degrees of freedom: if x = 0 is required to be an equilibrium of x+ = Ax+Bu+w f , then standard
results from offset-free tracking inform us this is possible, in general, if and only if m≥ n—a strong
condition that is typically not met unless the system is over-actuated. On the other hand, it is known
from robust MPC that the smallest neighbourhood of the origin that the states of a perturbed system
x+ = Φx+w, under bounded w ∈W, can stay within is the minimal robust positively invariant
(mRPI) set

R∞ ,
∞⊕

i=0

ΦiW.

There is a strong connection between this set and the equilibrium point x f (w f ) = Ψw f under a
constant disturbance w f : x f (w f ) ∈R∞ and, moreover,

x f (w f ) = (I−Φ)−1w f

= (I +Φ+Φ2 + . . . )w f

=
∞⊕

i=0

Φi{w f }.

When the terminal ingredients are chosen in the usual way for linear MPC with a quadratic cost, the
modifications developed in the preceding section revert to simple forms. In particular, if κ̄ f (·) = K,
X̄ f is positively invariant for x+ = AKx, where AK , (A+BK), and V̄f (x) = x>Px where P is the
solution of the Lyapunov equation

A>K PAK−P = −(Q+K>RK),
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then Π = K, Φ = AK and Ψ = (I−AK)−1. Moreover,

x f (w f ) = (I−AK)
−1w f

which is nothing other than the solution of the steady-state equation

x f = AKx f +w f ⇐⇒ (I−AK)
−1x f = w f .

5.4 Feasibility and stability under changing disturbances

In this section, we analyse the properties of the MPC controller with the proposed cost and terminal
set modifications, considering the possibility that the disturbance sequence provided to the controller
changes over time. We exploit the properties of the optimisation problem to obtain sufficient condi-
tions for recursive feasibility.

Given a disturbance sequence w, the set of states for which the problem P(x,w) is feasible is
XN(w) = {x ∈ X : UN(x,w) 6= /0}. The challenge that arises is a consequence of the receding
horizon implementation of MPC: if P(x,w) is feasible and yields an optimal sequence of control
actions u0(x,w), {u0(0;x,w),u0(1;x,w), . . . ,u0(N−1;x,w)}, then the first control in this sequence
is applied (the implicit control law is κN(x;w) , u0(0;x,w)), the system evolves to x+ = Ax +

BκN(x;w) +w, and the problem to be solved at the subsequent time is P(x+,w+). The question
is, when is this problem feasible, given that the disturbance sequence may have changed (perhaps
arbitrarily) from w to w+?

5.4.1 Unchanging disturbance sequences: exponential stability of an equilib-
rium point

Our first result on feasibility and stability arises as an immediate consequence of the developments
in the previous section: feasibility is maintained when the disturbance sequence is shifted in time but
otherwise unchanged, i.e. the sequence w+ is the tail of the sequence w, and the disturbance acting
on the plant is equal to the first element in the sequence at each sampling instant.

Before presenting the results, we briefly collect some of the notation and conventions that will be
used: in the optimal control problem at a state x, without explicit time dependence, w is an N-length
sequence of future disturbances

w =
{

w(0),w(1), . . . ,w(N−2),w(N−1)
}

.

The tail of w is defined as

w̃(w) ,
{

w(1), . . . ,w(N−1),w(N−1)
}

.

i.e. the first N−1 elements of w augmented by continuing the final value w(N−1) for one further
step. The i-step ahead element of the sequence w is w(i;w), or just w(i) when the context is clear.
When time dependence of the state is explicit, the disturbance sequence at sample time k is w(k);
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the i-step ahead disturbance is w
(

i;w(k)
)

, and the disturbance acting on the plant at time k is

w(k) = w
(

0;w(k)
)

. Finally, (and with some abuse of notation) wN(k) denotes an infinite-length
disturbance sequence formed from concatenating w(k) and w f (k):

wN(k) =
{

w
(

0;w(k)
)

, . . . ,w
(

N−1;w(k)
)

,w f (k)
}

.

The latter is the infinite sequence of constant disturbances obtained by holding the final value of
w(k)—that is, w f (k) =

{
w f

(
w(k),w f

(
w(k), . . .

)}
where w f

(
w(k)

)
= w

(
N−1;w(k)

)
. Finally,

wi(k), for i = 0 . . .N, is a version of wN(k) of omitting the first N− i elements:

wi(k) =
{

w
(

N− i;w(k)
)

, . . . ,w
(

N−1;w(k)
)

,w f (k)
}

.

Note that w0(k) = w f (k). The next Lemma establishes the first result on feasibility:

Lemma 5.3 (Feasibility under unchanging disturbance). Suppose Assumptions 2.1–5.2, 5.6 and

5.8 hold. Let w = {w(0),w(1), . . . ,w(N− 1)} ∈ W . If w+ = w̃(w), then (i) x ∈XN(w) implies

x+ = Ax+BκN(x;w)+w(0;w) ∈XN(w+). (ii) Given w(0), the set

∞⋃
k=0

XN

(
w(k)

)
with w(k+ 1) = w̃

(
w(k)

)

is control invariant for x(k+ 1) = Ax(k)+Bu(k)+w(k) and U, where w(k) = w
(

0;w(k)
)

. (iii)

The unions of controllability sets are nested:

∞⋃
k=0

XN

(
wN(k)

)
⊇

∞⋃
k=0

XN−1

(
wN−1(k)

)
⊇ ·· · ⊇

∞⋃
k=0

X0

(
w0(k)

)
,

where

Xi+1(wi+1) = X∩A−1
(
Xi(wi)⊕−BU⊕−{w(N− i)}

)
, (5.24)

with X 0(w0) = X f (w f ), and wi(k+ 1) = w̃
(

wi(k)
)

.

Proof. For (i), given x ∈XN(w) there exists a u(x;w) ∈U (x;w) with associated state predictions
x(x;w) =

{
x0(0;x,w),x0(1;x,w), . . . ,x0(N;x,w)

}
with x0(0;x,w) = x. The successor state x+ =

Ax+Bu0(0;x,w)+w(0;w) = x0(1;x,w), and so, by Proposition 5.2, the sequences

x̃(x+;w) =
{

x0(1;x,w), . . . ,x0(N;x,w),

Ax0(N;x,w)+Bκ f

(
x0(N;x,w);w f

)
+w f

}
ũ(x+;w) =

{
u0(1;x,w), . . . ,u0(N;x,w),

κ f

(
x0(N;x,w);w f

)}
w̃(w) =

{
w(1),w(2), . . . ,w(N−2),w(N−1)

}
are feasible for all constraints that define UN

(
x+, w̃(w)

)
; in fact, the same solution omitting the ter-
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minal steps is also feasible for all constraints that define UN−1

(
x+, w̃(w)

)
. Thus, x+ ∈XN−1(w+)⊆

XN(w+) if w+ = w̃(w).

Part (ii) follows directly from the above and recursion. If x ∈XN(w) and x+ ∈XN−1(w+) ⊆
XN(w+) under w+ = w̃(w) and u = κN(x;w), then, given x(0) ∈ XN

(
w(0)

)
and the distur-

bance update rule w(k+ 1) = w̃
(

w(k)
)

, the state trajectory
{

x(k)
}

k
remains within the union of

XN

(
w(k)

)
. Hence, the latter set is positively invariant for x+ = Ax+BκN(x;w)+w, and control

invariant for x+ = Ax+Bu+w and U.

The nested property of the set union follows from the key observation that, under the tail-
updating law, wN(k+1) = wN−1(k). Thus, since x(k) ∈XN

(
wN(k)

)
implies the successor state to

lie in x(k+1) ∈XN−1

(
wN−1(k)

)
⊆
⋃

k XN−1

(
wN−1(k)

)
, it also implies x(k+1) ∈XN

(
wN(k+

1)
)
⊆
⋃

k XN

(
wN(k)

)
. Therefore,

⋃
k XN

(
wN(k)

)
⊇
⋃

k XN−1

(
wN−1(k)

)
.

Whereas the individual sets XN ,XN−1, . . . ,X0 are not necessarily control invariant and nested,
their unions are, provided the disturbance sequence updates by taking the tail. Owing to the nilpo-
tency of the dynamics of the disturbance sequence (that is, wN(k+ 1) = w̃

(
w(k)

)
converges from

w(0) to w f in N steps), the set unions in Proposition 5.3 are finitely determined:

∞⋃
k=0

XN

(
w(k)

)
=

N⋃
k=0

XN

(
w(k)

)
The previous lemma states the recursive feasibility as a consequence of the new terminal set. The
next proposition establishes stability of x f (w f ), which is a consequence of using the new terminal
cost.

Proposition 5.3 (Exponential stability of x f (w f )). Suppose Assumptions 2.1–5.2, 5.6 and 5.8 hold,

and let w(0)∈W and x(0)∈XN(w(0)). If the disturbance sequence is updated as w+ = w̃(w) then

the point x f (w f ) is an exponentially stable equilibrium point for the system x+ = Ax+BκN(x;w)+

w. The region of attraction is XN(w(0)).

Proof. From the definitions of Vf , ` and VN , and the bounds in Assumption 2.4 and 5.3, we have, for
all x ∈XN(w)

V 0
N(x;w) ≥ `(x,κ f (x;w f );w f ) ≥ c1|x− x f |a,

while the fact that the costs are continuous and the sets X f , X, U are PC-sets means there exists a
c3 ≥ c2 > 0 such that

V 0
N(x;w) ≤Vf (x;w f ) ≤ c2|x− x f |a for all x ∈X f (w f ) =⇒

V 0
N(x;w) ≤ c3|x− x f |a for all x ∈XN(w)

Recursive feasibility and the descent property of Vf yields, for all x ∈XN(w),

V 0
N(x

+; w̃) ≤V 0
N(x;w)− `(x,κ f (x;w f );w f ) ≤ γV 0

N(x;w)
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where γ , (1− c1/c3) ∈ (0,1) (since c3 > c1 > 0). Thus,

V 0
N

(
x(k);w(k)

)
≤ γ

kV 0
N

(
x(0);w(0)

)
and, because c1|x− x f |a ≤V 0

N(x;w) ≤ c3|x− x f |a,

c1|x(k)− x f |a ≤ γ
kc3|x(0)− x f |a =⇒ |x(k)− x f | ≤ cδ

k|x(0)− x f |

where c , (c3/c1)1/a > 0 and δ , γ1/a ∈ (0,1).

The proof of Proposition 5.3 relies on the exponential decrease of the cost function

V 0(x+, w̃(w))≤ γV 0(x;w),

where γ , (1−c1/c2) based on the constants in Assumption 2.4 and 5.3. For a more general setting
where the bounds of the value function are not constants, but K − functions, a similar descent
property can be established.

So far the unchanging disturbance has been studied, but the problem of changing disturbances is
still unresolved. If w+ takes a different value in W , then Lemma 5.3 and Proposition 5.3 fail to hold.
The reason is the loss of invariance of the terminal conditions. The set X f (w f (w)) is only invariant
for x+ = Ax+Bu+w f (w), and not for any other value w f (w′). The next section contains the main
contributions of the chapter: first, we show that if the change to the disturbance sequence from step
to step lies within a given convex polytope, then recursive feasibility holds and asymptotic stability
of the closed-loop system may be established.

5.4.2 Rate-of-change constrained disturbance sequences: robust stability of
a set

The main challenge to the present approach lies in guaranteeing recursive feasibility for changing
disturbances, mainly for any x ∈X N(w), what are the conditions under which x+ ∈X N(w+)? An
intuitive notion to tackle this problem is to use Theorem 5.3, which offers an optimal solution for the
successor state x+. The problem can be reformulated in terms of perturbation analysis of an optimal
control problem, see [14]. The solution of P(x+,w+) can be characterised in terms of an optimal
solution to P(x+, w̃), say ũ0(x+, w̃). In this setting, the new disturbance w+ can be described as the
tail of the previous sequence plus a perturbation or error term

w+ , w̃+ t∆w, for t ∈R. (5.25)

The parameter t allows us to consider perturbations of different sizes along the direction of ∆w,
which generates the shiftings in the feasible regions. The optimal solution, as expected, also changes
accordingly with the parameters ū+ = ū0 + tue. The parameters of the optimisation are the state at
the current time, and the associated predicted disturbance; consider the composite state z , (x,w),
and In this setting we are interested only in variations of the disturbance, since we assume x+ is kept
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constant. As a result,
z+ = (x+,w+) = (x+, w̃)+ (0,∆w) = z̃+ ze.

The optimisation problem in terms of this augmented state is defined as:

P(z) : min
{

VN(u,z) : ū ∈UN(z)
}

, (5.26)

where
UN(z) =

{
ū ∈UN : (u,z) ∈Θ

}
. (5.27)

In this case, the set Θ is a PC-set, given the constraint set are PC-sets and the dynamics linear, in fact,
this set can be described by (5.11c) to (5.11e), and the prediction model (5.11b). In the polytopic
case. The projection of Θ onto Rn+(N+1)p defines the augmented feasible region:

Z N ,
{

z = (x,w) : w ∈W ,x ∈XN(w)
}

. (5.28)

Using the properties of W and X N(w), the resulting Z N is a PC-set. This set can be consid-
ered as the graph of the set-valued map, the feasibility map, X N : W 7→ 2Z N

, and in addition, this
map is compact-valued, see [2–4] for extensive monographs on set-valued analysis. With all these
arguments, the problem of feasibility can be translated into conditions under which the change in
disturbance sequence occurs in a "smooth" way. In fact, we are interested in the feasible perturba-
tions for a given disturbance sequence; the minimiser ũ0(x+, w̃) is not necessarily continuous on any
of the parameters, and may lie at the boundary of the feasible set constraining the possible directions
of interest. These are those along where the state is kept constant, i.e. all the first order feasibility
paths z(t) = z+ tze such that ze = (0,∆w). If this path is feasible, it generates a path of optimal
solutions ũ(t) ∈U N(z(t)), such that ũ(t) = ũ0 + tue. We recall from [14], that a condition for ue

to be a feasible direction, given the convexity of Θ, is

(ue,ze) ∈TΘ(ũ0,z) (5.29)

Where TΘ(ũ0,z) is the tangent cone of Θ at (ũ0,z). The above arguments are formalised in the
following result:

Lemma 5.4. Given a feasible state x ∈X N(w) at time k for the disturbance sequence w ∈W . The

successor state satisfies x+ ∈XN(w+) for a new sequence w+ ∈W , if w+− w̃ ∈ ProjW TΘ(ũ0,z).

Proof. Given a sequence w ∈WN , such that x ∈X N(w), the system is recursively feasible, from
Theorem 5.3, when the tail of w is taken as the new disturbance sequence, i.e. x+ ∈X N(w̃). Further-
more, w+− w̃ ∈ ProjW TΘ(ũ0,z) implies that ∃ue with ũ0 +ue ∈U N(x+, w̃+∆w) 6= /0, therefore
x+ ∈X N(w+).

The value function V 0
N(·) has as its domain the augmented feasible region Z N . The following

lemma is a consequence of the properties of the cost function, compactness of the constraint set as
in [122] and [67].

Lemma 5.5 (K − continuity of the value function). The value function V 0
N(·) satisfies |V 0

N(y)−
V 0

N(x)| ≤ σV (‖y− x‖) over ZN with σV a K − f unction.
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The K − continuity of the Value function guarantees a bound on the admissible disturbance
change

Assumption 5.9. The disturbance sequence evolves as w+ = w̃+∆w, where ∆w = w+− w̃(w) ∈
∆W ⊆W . Moreover, ∆W is chosen such that

λ , max
{∥∥w−w′

∥∥ : w ∈W ,w′ ∈W , (w−w′) ∈ ∆W
}

satisfies

λ ≤ σ
−1
V

(
(ρ− γ)r

)
for some ρ ∈ (γ ,1) and r > 0 such that Ωz

r , {z = (x,w) : V 0
N(z) ≤ r} ⊂ZN .

From [107], a procedure for computing the biggest set of admissible disturbances is given; this
procedure relies on the value function bounds. Another consequence of Lemma 5.5 is that the system
in closed-loop with the controller is ISS. This inherent robustness is the key property that will ensure
recursive feasibility since it allows us to handle disturbance changes lying in ∆W . The next result
illustrate the robustness of the system for small perturbation of w = 0.

Lemma 5.6 (Robust stability of nominal MPC). Let w(0) ∈ W and x(0) ∈ ΩR(w = 0) ,
{

x :

V 0
N(x;w = 0) ≤ R0

}
⊂XN(w = 0). If W is sufficiently small, then ΩR(0) is a robust positively

invariant set for x+ = Ax+ BκN(x;0) +w. Moreover, if the disturbance sequence is updated as

w+ = w̃, the system states converge to a robust positively invariant set Ωr(0) ⊆ΩR(0), the size of

which depends on W f .

Proof. Consider a level set of the value function x(0)∈ΩR(w= 0). By Theorem 5.3 and Lemma 5.5,
the value function is ISS such that

V 0
N(x

+,0)−V 0
N(x,0) ≤−`(x,κN(x;0))+σV (‖w‖)

for some sufficiently small w ∈Bw. In the absence of uncertainty the value function decreases at a
exponential rate

V 0
N(x

+,0) ≤ γV 0
N(x,0)

Take an arbitrary x(0) ∈ΩR(w = 0) so that V 0
N(x(0),0), then at k = 1, and k = 2, the value function

satisfies

V 0
N(x(1),0) ≤ γV 0

N(x(0),0)+σV (
∥∥w(0)

∥∥)
V 0

N(x(2),0) ≤ γ
2V 0

N(x(1),0)+ γσV (
∥∥w(0)

∥∥)+∥∥w(1)
∥∥

For the kth instant of time,

V 0
N(x(k),0) ≤ γ

kV 0
N(x(0),0)+

k−1

∑
h=0

γ
h
σV (
∥∥w(k−1−h)

∥∥)
The disturbance lies in a bounded set such that Mw = max{‖w‖ : w ∈ W }, then the K -function
σV (·) hits a maximum at Mw. Taking the limit in the above equation k→ ∞, the sequence {γk}k∈N
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Figure 5.1: Illustration of the ISS property of a level set. The initial state is subject to disturbances
lying in the ball of radius r that propagate through the dynamics. The successor states lie in a set
( ) that is contained within the level set ( ). The trajectories of the perturbed states converge
towards the set ( ).

converges to 0, its associated series also converges to (1− γ)−1.

V 0
N(x(∞),0) ≤ σV (Mw)(1− γ)−1

As a consequence, the state converges to the level set x(∞) ∈ Ωr(w = 0), where r = σV (Mw)(1−
γ)−1.

An illustration of such convergence despite small disturbance is given in Figure 5.1. The next
theorem states the desired convergence properties for changing disturbance sequences, and is our
main result. In essence this result shows the converse of a widely known result: Feasibility =⇒
Stability which was shown in several MPC results. In this Chapter, we prove that ISS and preview
information on the disturbance imply recursive feasibility of the closed-loop system. This result
allows non-robust MPC to be applied in a number of phenomena such as power systems and water
distributions where preview information is ubiqutous.

Theorem 5.1. Suppose Assumptions 2.1,5.2, 5.6–5.9 hold, and let z(0) =
(

x(0),w(0)
)
∈ Ωz

R =

{(x,w) : V 0
N (z) ≤ R} ⊂ ZN , for some R ≥ r. The set Ωz

R is positively invariant for the composite

system

x+ = Ax+BκN(x;w)+w,

w+ ∈ w̃(w)⊕∆W

and the states of the system enter Ωz
r in finite time and remain therein.
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Figure 5.2: Feasible set for different disturbance sequences w ∈W . For each disturbance sequence
the corresponding feasible region is translated in order to contain its equilibrium point. The overall
feasible region ( ) is given by the union of the individual feasible sets.

Proof. Consider some z = (x,w) ∈Ωz
N . We have

V 0
N(x

+, w̃(w))≤ γV 0
N(x,w) ≤ γR.

By K −continuity,

V 0
N(x

+,w+) ≤V 0
N(x

+, w̃(w))+σV

(∣∣∣w+− w̃(w)
∣∣∣).

Therefore, since L
∣∣∣w+− w̃(w)

∣∣∣≤ Lλ ≤ (ρ− γ)r,

V 0
N(x

+,w+) ≤ γR+(ρ− γ)r ≤ ρR < R.

Moreover, if
(

x(0),w(0)
)
∈Ωz

R \Ωz
r, then

V 0
N

(
x(1),w(1)

)
≤ γV 0

N

(
x(0),w(0)

)
+(ρ− γ)V 0

N

(
x(0),w(0)

)
≤ ρV 0

N

(
x(0),w(0)

)
.

Consequently,
V 0

N

(
x(k),w(k)

)
≤ ρ

kR

from which it follows that V 0
N

(
x(k′),w(k′)

)
≤ r after some finite k′.

Corollary 5.1. If x(0) ∈ ΩR

(
w(0)

)
= {x :

(
x,w(0)

)
∈ Ωz

R} ⊂XN(w(0)), then the system state
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x(k) remains within ΩR

(
w(k)

)
= {x :

(
x,w(k)

)
∈ Ωz

R} ⊂XN

(
w(k)

)
provided that the distur-

bance sequence update rate is limited as specified. Moreover, all optimisation problems remain

feasible, and for all k after some finite time k′, the state enters and remains in a set Ωr

(
w(k′)

)
=

{x :
(

x,w(k′)
)
∈Ωz

r} where r ≤ R.

The set Ωz
R can be chosen to be the largest sub-level set of V 0

N(z) within ZN ; the result says then
that the system converges to the smallest sub-level set that satisfies Assumption 5.9. By comparing
this result with the result of Lemma 5.6, the advantage of the disturbance sequence inclusion be-
comes clear: the region of attraction without the disturbance predictions is ΩR(0) while the region
of attraction for the proposed scheme is

⋃
k=0 ΩR

(
w(k)

)
. Figure 5.2 presents a comparison between

the feasible regions for different w ∈W and the level set for standard MPC; all these level sets are
computed so that R = 80.

5.4.3 Illustrative examples

Consider the neutrally stable dynamics subject to external disturbances

x+ =

1 1
0 1

x+

0.5
1

u+

1
1

w (5.30)

and state and input constraints X = {x ∈R2 :‖x‖
∞
≤ 10}, U = {u ∈R : |u| ≤ 3}. The disturbance

takes values in the C-set W= {w∈R : |w| ≤ 2}. The nominal stage and terminal costs are quadratic:

¯̀(x,u) = x>Qx+ u>Ru

V̄f (x) = x>Px,

where Q = I, R = 1, and P is solution of the Lyapunov equation (A+BK f )>P(A+BK f )−P =

−(Q+K>f RK f ) for a stabilising gain K f ∈ Rm×n characterising the nominal terminal control law
κ̄ f (x) = K f x. The matrices Φ and Π are determined according to (5.20) and (5.19), respectively,
using the nominal terminal control law, and are Φ = AK f = A+BK f and Ψ = (I−AK f )

−1. The
nominal terminal set, X̄ f , and scaling constants βx, βu, αx and αu are designed in line with the
requirements of Assumptions 5.6 and 5.8: X̄ f is the maximal constraint admissible invariant set for
x+ = AK f x within the state set βxX and input set βuU, while ΨW f and K f ΨW f must fit within
αxX and αuU respectively. Following the design procedure for the nominal terminal sets, with the
assumption that W f = W, we obtain βx = 0.672, βu = 0.7, αx = 0.328 and αu = 0.3.

We consider controlling the system from different initial states using a horizon of N = 3 and the
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Figure 5.3: Closed-loop trajectories of the system under switching disturbances, from different
initial states, and the level sets ΩR(wi), i = 0 . . .4, for R = 100, corresponding to the disturbance
sequences wi, i = 0 . . .4.

following disturbance predictions at each sampling instant k:

w(k) =



w0 = {+0.9,−0.9,−0.9} mod (k,5) = 0

w1 = {+0.9,+0.9,+0.9} mod (k,5) = 1

w2 = {−0.9,−0.9,−0.9} mod (k,5) = 2

w3 = {−0.9,+0.9,−0.9} mod (k,5) = 3

w4 = {0,0,0} mod (k,5) = 4

That is, the disturbance prediction cycles between five different sequences, while the disturbance
applied to the plant at time k is always the first in the sequence w(k): i.e. w(k) = w

(
0;w(k)

)
, so that

w(0) = +0.9, w(1) = +0.9, w(2) =−0.9, etc. Figure 5.3 shows the trajectories of the closed-loop
system from five different initial states, together with the level sets of the value function, ΩR(wi) =

{x : V 0
N(x;wi) ≤ R} for i = 0 . . .4 and R = 100. Each of the trajectories begins in ΩR(w0)—the

level set corresponding to the disturbance sequence at k = 0—and each subsequent state lies within
the appropriate Ω(w(k)); however, x(k) ∈ΩR(w(k)) does not imply x(k+ 1) ∈ΩR(w(k)), as can
be seen with the trajectory initialised at x(0) = [1.9 2.5]>, which begins in ΩR(w0) and moves
outside to ΩR(w1). Since the disturbances and their associated predictions are switching between
non-decaying values, the states do not converge to zero, but rather to a neighbourhood of the origin.

Figure 5.4 compares the union of R = 100 level sets over w ∈ W with the corresponding level
set for a conventional MPC controller, omitting the disturbance. As we pointed out in the previous
section, the region of attraction for the conventional controller is at least as large as ΩR(w = 0)
in the proposed approach, because the latter requires the terminal set to fit within βxX, rather than
merely X as the conventional controller requires. Despite this, the overall region of attraction for
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Figure 5.4: The union of level sets ΩR(w) over w ∈ mcW for R = 100, and the corresponding level
set Ωstandard

R for a conventional MPC formulation (omitting the disturbance predictions).

the proposed approach—as the union of ΩR(w), following Corollary 5.1—is larger.

5.5 Application to Nested DMPC

Section 5.2 outlines the limitations of Algorithm 4.1 in terms of the effective region of attraction, its
flexibility, and aggressiveness of the resulting control actions. The later problem can be solved by
introducing relaxed terminal conditions; these, however, cannot be incorporated lightly, see Propo-
sition 5.1. The novel MPC approach, developed in the previous sections, is used to solve the issue
of the terminal sets.

5.5.1 Nested DMPC with flexible terminal conditions

The problem of appending terminal constraints to the ancillary control problem P̂i(ēi, w̄i) is not a
trivial task, and requires the machinery developed in the previous sections. Consider the terminal
control law κ̄

f
i (·), cost V̄ f

i (·), and constraint set Ē
f
i of the main optimisation problem, albeit suitably

modified to accommodate Assumption 5.6 for some appropriate scaling constant. The terminal
control law is continuous at the origin, from Assumption 5.7, thus it is possible to compute the
matrices Ψ and Π from Equations 5.20 and 5.19 respectively. These matrices together with the
terminal disturbance set W̄

f
i ⊂ W̄i, defined in Equation 5.4, are required to satisfy Assumption 5.8.

For every subsystem i, the disturbance sequence generated by its dynamical neighbours satisfy
Assumption 5.1 by construction, and the information gathered from the dynamics neighbours satisfy
Assumption 5.2. With the above considerations, the modified terminal conditions for the ancillary
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controller are

ˆ̀i(ēi, f̄i; w̄ f
i ) = `i

(
ēi− e f (w̄

f
i ), f̄i− f f

i (w̄
f
i )
)

V̂ f
i (ēi; w̄ f

i ) = V̂ f
i

(
ēi− e f (w̄

f
i )
)

Ê
f
i (w̄

f
i ) = Ē f ⊕

{
e f (w̄

f
i )
}

κ̂
f

i (ēi; w̄ f
i ) = κ̂

f
i

(
ēi− e f

i (w̄
f
i )
)
+ f f

i (w̄
f
i )

where e f
i (w̄

f
i ) = Ψw̄ f

i (w̄i) and e f
i (w̄

f
i ) = ΠΨw̄ f

i (w̄i) are the translation terms. These are chosen
appropriately from the controllability properties of each subsystem with respect to the disturbance,
see Section 5.3. The disturbance predictions change at each time step, following Assumption 5.2,
but w̄+

i does not acquire a random value in W̄i. On the contrary, the values adopted for the successor
disturbance predictions satisfy Assumption 5.9 as illustrated in the next result.

Lemma 5.7. For each i ∈M , the nominal disturbance sequence w̄i ∈ W̄i generated by the solutions

of the neighbouring OCPs P̄ j(x̄ j) with j ∈Ni satisfies Assumption 5.9.

Proof. The solutions (x̄ j, ū j) of P̄ j at time k for all j ∈ Ni satisfy x̄ j ∈ Ω̄R
j , where Ω̄R

j = {x j ∈
X j : V̄j(x̄ j) ≤ R} is a value function level set for the main OCP. The evolution of the nominal sys-
tem x̄+j under the nominal control law κ̄ j(x̄ j) ∈ αu

j U j lies in the set Ω̄S
j = {x j ∈X j : V̄j(x̄ j)≤ S} for

S < R. As a result, using the descent property of the nominal value function, see Theorem 2.2, the
norm of the successor state is at most as big as the state at time k,

∥∥∥x̄+j
∥∥∥≤∥∥x̄ j

∥∥. In fact, the norm of

the state and control sequence satisfy
∥∥∥x̄+j

∥∥∥≤∥∥x̄ j
∥∥ and

∥∥∥ū+
j

∥∥∥≤∥∥ū j
∥∥. This, in turn, implies that the

disturbance generated by such sequences is not increasing
∥∥∥w̄+

i

∥∥∥ ≤‖w̄i‖. Consequently, the distur-

bance rate of change is bounded, i.e.
∥∥∥w̄i− w̄+

i

∥∥∥≤ λ such that w+
i ∈Ωr

j = {(xi,wi) : V̂ N
i (xi,wi)≤ r}

for some r > 0. This bound in conjunction with the ISS properties of the ancillary value function
V̂i(·, ·) inside Ωr

j fulfils the premises of Assumption 5.9.

These proposed terminal conditions modifications to P̂i(ēi, w̄i) satisfying Assumptions 5.6, 5.7
allow us to use Theorem 5.1 to guarantee stability, and 5.1 to establish stability and recursive feasi-
bility. Theorem 5.2 not only allow us to employ more general terminal conditions, but also removes
the need of the feasibility check, see Step 8, in Algorithm 4.1.

Theorem 5.2. Suppose Assumption 2.1– 2.4, 2.3, 4.2 and 4.3 hold. In addition, Assumptions 2.5 and

2.6 hold for the main OCP, and Assumption 5.6 holds for the ancillary OCP. For each subsystem

i ∈M with dynamics x+i = Aiixi +Biiui +wi such that wi = ∑ j∈Ni Ai jx j +Bi ju j, controlled with

ui = κ̄i(x̄i)+ κ̂i(ēi; w̄i)+ κ̃i(êi) satisfies:

i) For any xi ∈ X̄ N
i ⊕ Ē N(w̄i)⊕ R̂i, the successor state is constraint admissible, x+i ∈ X̄ N

i ⊕
Ē N(w̄+

i )⊕ R̂i.

ii) The origin is exponentially stable for composite system

x̄+i = Aiix̄i +Biiκ̄i(x̄i)



Chapter 5. Generalised Nested DMPC 103

ē+i = Aiiēi +Biiκ̂i(ēi; w̄i)+ w̄i

ê+i = Aiiêi +Biiκ̃i(êi)+ ŵi

with region of attraction X̄ N
i ×

( ⋃
w̄i∈W̄i

Ē N(w̄i)
)
× R̂i.

Proof. For i), let the state at time k be xi ∈ X̄ N
i ⊕ Ē N(w̄i)⊕ R̂i such that xi = x̄i + ēi + êi. The

sets X̄i and R̂i are positive invariant for x̄+i = Aiix̄i +Biiκ̄i(x̄i) and ê+i = Aiiêi +Biiκ̂i(x̂i)+ êi. As a
consequence of this, x̄+i ∈ X̄ N

i and ê+i ∈ R̂i trivially follow. For the nominal error ēi ∈ Ē N(w̄i), it
follows from Lemma 5.7 and Corollary 5.1 that ē+i ∈ Ē N

i (w̄+
i ). Therefore x+i ∈ X̄ N

i ⊕ Ē N(w̄+
i )⊕

R̂i.
For ii), the proof is divided into two parts: the first one is concerned with the convergence of

the triplet (x̄i, ēi, êi) towards the set {0}×Ωr× R̂i; the second part tackles the convergence of the
states towards the origin. The former part relies on the value function descent properties for the main
optimisation problem. This value function, because of the compactness of the constraint set Ū N

i , the
boundedness properties from Assumptions 2.4 and 2.6, is a Lyapunov function such that V̄i(x̄i(k))→
0 exponentially as k → ∞. Furthermore, the nominal state converges, also exponentially, to the
origin

∥∥x̄i(k)
∥∥→ 0. By Theorem 5.1, Corollary 5.1 and Lemma 5.7 the nominal error converges

to a set Ωr. Lastly, the error êi lies in R̂ by construction. For the second part, as
∥∥x̄i(k)

∥∥→ 0,
the disturbance sequence decreases in size

∥∥w̄i(k)
∥∥→ 0. This guarantees the convergence to the

origin of the nominal error
∥∥ēi(k)

∥∥→ 0, and using Theorem 4.2 the convergence of êi to the origin
is guaranteed.

5.6 Summary

This Chapter presents a generalisation of the algorithm proposed in Chapter 4. The fundamental
limitations relied on the restrictive terminal conditions and their implications for recursive feasibility.
It has been shown that a naive generalisation of the terminal constraint results in a loss of feasibility
and constraint satisfaction. The part of the controller exhibiting this issue is the ancillary controller
because of its dependence on the information gathered from neighbouring agents.

A novel MPC methodology for MPC has been developed in this chapter to remedy the issues
of the ancillary controller. This problem falls in the class of systems that are subject to known or
predicted disturbances. These type of problems had not received much attention in the literature,
and the new method uses nominal methods to solve the optimisation problem, i.e. there is no need
for constraint tightenings or invariant sets. This issue is solved leveraging on the inherent robustness
of an MPC controller. Based on this fact, the converse result of feasibility implies stability is proved
in the context of this class of systems.

Combining the new MPC methodology for the ancillary controller together with a nominal MPC
controller for the main OCP results in a robust and more flexible controller. The check steps in
Algorithm 4.1 are removed; the feasible region of the modified Nested Algorithm has a larger volume
than the one presented in the previous chapter.





Chapter 6

Coalitional DMPC

6.1 Introduction

In this Chapter, the problem of synthesising a robust controller capable of reconfigurability of archi-
tecture is addressed. The motivation behind seeking such controller is to cope with the new needs of
the industry. The authors of [19] present the problems that the manufacturing and process industries
are facing respect to a growing demand for highly customised products. This demand together with
the need of controlling ever larger and more complex systems have led to the "systems of systems"
structure of modern control problems. This approach to the system structure allows considering
large plants having many different components with various functionalities and operational ranges,
examples of which can be found in [17, 135] where complex systems in the oil and gas industry are
modelled using a system of systems approach. Further consequences of considering this class of
systems are the need for PnP operations in the system as signalled by [144].

For some decades now, MPC has become one of the most popular/used modern techniques on
industrial control applications, see [109] for further details. The main reasons for its success lie in
its inherent constraint handling and optimal nature of its control law. In its beginnings, MPC was
considered a monolithic control approach, but late developments have explored the possibility of
using non-centralised methods for MPC. The study and analysis of such methods have been the
centre of attention of the first part of this thesis. The decentralisation of MPC was the first step
towards tackling the challenges outlined above. However, one of the fundamental assumptions for
controlling LSS lies in the decomposition of the system itself. Most of the existing approaches for
LSS control consider a constant partition and perform the required design steps to synthesise the
control law, see for example [77, 136].

Depending on the partition chosen for the LSS, the degree of interconnectedness of the dis-
tributed controller changes. Increasing the interactions between controllers affect the system perfor-
mance hence by changing the partition of the dynamics the controller may adapt to meet the specified
design criteria. The choice of dynamic partition for the LSS has been addressed in the literature by
analysing the best partition that would suit the controller, and then by considering algorithms capa-
ble of switching between partitions online. The reconfiguration of the LSS into different partitions
happens only at the controller level, the physical components retain their modularity. The authors

105
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of [108] explore the effects of using different partitions to control a chemical system, and, not sur-
prisingly, have found that using different partitions may boost aspects of system performance–like
transient behaviour. However, finding an optimal way of partitioning a LSS is the focus of ongoing
research. Early approaches, such as that one of [93], handle the partitioning of the system based on
the interconnection graph and open-loop performance indices. The authors in [145] and [25] study
the problem of finding an optimal system partition for nonlinear DMPC purposes. The aim for these
methods of partitioning the LSS is to find adequate components so that suitable controllers can steer
the states to their respective origin while minimising the interactions between the subsystems.

The approaches aiming to exploit these different partitions or topologies using dissipative meth-
ods for DMPC can be found [146, 147]. In both cases, the network topology influences the overall
dissipativity function, and through this, necessary control actions are taken to account for changes in
the topology of the system. Other approaches in the literature see the problem of switching between
topologies as a coalitional formation game, see [78–80, 99]. When viewed as a game, several new
metrics can be taken into account to assess each topology for the LSS; among these is the Shapley
value [76, 96], Harsanyi power solutions [98], and the Banzhaf value [97]. Each one of these game
solutions introduces different notions of the worth of each subsystem as part of the whole LSS. The
controller employs linear feedback for each existing network topology; these linear gains are com-
puted offline via LMIs that solve the respective OCP. In this game representation of the problem, the
players are not the subsystems themselves but the potential links between them. Another approach
for DMPC for this problem is [152] wherein the authors aim to use a cooperative DMPC approach to
coalition formation to promote different types of cooperation between agents within an interconnec-
tion graph. The controller guarantees robust feasibility and stability against persistent disturbances
and absence of interactions between subsystems. The problem of robustifying a coalitional con-
troller to the interactions is not a trivial task. This robustness problem is initially addressed in the
context of multi-agent systems [110] where invariant sets are computed for each agent to guarantee
robustness against interactions, and global invariant sets–depending on the topology of the system–
to ensure boundedness of the state. When the system topology changes so does the global invariant
set.

The existing methods and algorithms existing in the literature have partially addressed the prob-
lem of robustly controlling a LSS with a time-varying partition. However, the issue regarding the
implementability of such approaches is an open question since many robust control approaches re-
quire the computation of invariant sets or controller gains which need to be modified online accord-
ing to topology changes. The synthesis of such gains or sets may be done offline, but the number of
possible coalitions experiences a combinatorial explosion as the number of subsystem increases ren-
dering this approach impractical. On the other hand, the existing approaches to optimal partitioning
and online switching detection rely on solving mixed integer optimisation problems. This approach
does not scale to larger number of subsystems generally because of lack of computational power.

The proposed algorithm aims to solve the problem of robustly switching between topologies us-
ing a multi-rate control approach. The controller allows the partition of the LSS to vary with time;
at a given instant of time, the partition the system uses is built upon the members of an existing
basic partition. From a physical point of view, the essential, indivisible parts of a system compose
the basic partition such as individual motors or drives, tanks, generators. To the best of the author’s
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knowledge, the solution of the system partitioning or coalition formation problem has not been tack-
led using a consensus approach. We address the problems of coalition switching using consensus
mechanisms where the subsystems of the LSS negotiate on the topology that would fit their inter-
est most. Similarly to other existing consensus approaches in the literature, such as [84], only one
subsystem is allowed to choose the partition of the LSS at a time based on the information gathered
from its neighbours and its own, further changes in the topology of the system occur every Υ sample
times. The decision of each subsystem to change the current topology is based on the state mea-
surements and past nominal trajectories from neighbouring subsystems. The controller recomputes
the necessary invariant sets every time there is a change in topology. This is made possible by ex-
ploiting the design phase in Section 4.5, such that the structure of the new invariant sets is computed
via a single LP but the overall set is not computed explicitly. Stability and recursive feasibility are
guaranteed by imposing continuity constraints on the switching moments. The resulting algorithm
is a tube-based reconfigurable controller for LSS. The contributions made in the chapter are the
following. First, we provide a solution to the coalition forming problem using the consensus theory.
Secondly, the solution space for the available topologies is appropriately constrained to limit the
combinatorial explosion. Thirdly, we guarantee a stable switching between partitions. Lastly, we
propose a robust algorithm capable of exploiting the benefits from the Nested approach of Chapter 4
in terms of reconfigurability.

The organisation of the remainder of the chapter is as follows: Section 6.2 states the problem,
challenges, and the basic definitions. Section 6.3 presents the control problem for coalitional control;
a modified version of Algorithm 4.1 is proposed to control each topology. Section 6.4 states the
consensus problem for switching between partitions and Section 6.5 shows how both the switching
and control problem are intertwined in order to achieve a convergence. Finally, Section 6.6 provides
examples where the coalitional formulation is able to solve problems that the other existing methods
in the literature cannot solve and provides comparisons between existing methods.

6.2 Preliminaries and problem statement

In this section, the LSS and its basic partition into dynamic subsystems are defined. We then define
the coalitional control objective, which relies on the notion of subsystems grouping into coalitions
over time.

6.2.1 LSS and its basic partition

We consider a discrete-time, linear time-invariant LSS

x+ = Ax+Bu, (6.1)

where x⊆Rn, u⊆Rn are the global state and control input, and x+ is the state at the next instant of
time. We consider the particular class of linear systems where a basic decomposition or partitioning

of (6.1) into a number, M, of subsystems is known. The dynamics of subsystem i ∈ V , where
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V = {1, . . . ,M} is the collection of M subsystems, are

x+i = Aiixi +Biiui + ∑
j∈Ni

Ai jx j +Bi ju j. (6.2)

where xi ∈ Rni , ui ∈ Rmi are the state and input of subsystem i ∈ V , with x = (x1, . . . ,xM), u =

(u1, . . . ,uM). That is, the subsystems are non-overlapping in the sense that they share no states or
inputs, but interconnected because the off-diagonal block matrices in A and B give rise to dynamic
coupling between subsystems, visible in the exogenous term ∑ j∈Ni Ai jx j +Bi ju j. The latter gives
rise to the definition of the set of neighbours of subsystem i as

Ni ,
{

j ∈ V | [Ai j Bi j] 6= 0
}

. (6.3)

Assumption 6.1 (Controllability). For each i ∈ V the pair (Aii,Bii) is controllable.

The LSS is constrained via local, independent constraints on the states and inputs of each sub-
system. For subsystem i,

xi ∈Xi ui ∈Ui.

Assumption 6.2 (Constraint sets). The sets Xi ⊂Rni and Ui ⊂Rmi are PC-sets.

The general control objective is to regulate the states of the system while satisfying constraints.
There are two obvious possibilities here: (i) control of the LSS (6.1) by a single controller, which
requires complete access to the state, can achieve optimal performance with respect to a system-wide
control objective, results in a high-dimensional or high-complexity controller; (ii) decentralised or
distributed control of the individual subsystems, which leads to low-dimensional or low-complexity
controllers, but with potentially poor performance owing to the difficulty in handling the exoge-
nous interactions [136]. In this Chapter, we seek to capture this trade-off in the control objective,
and tackle it using the idea of coalitional control. Before the control objective is formally stated,
therefore, we introduce the key concepts of subsystem coalitions and partitions of the LSS.

6.2.2 Coalitions of subsystems and partitions of the system

The setting of the chapter is to consider that subsystems may grouped together into coalitions [81,
96, 99]. The idea is that each coalition of subsystems operates and is controlled as a single entity; a
coalitional controller, assumed to have access to the states and control inputs of subsystems within
its coalition, replaces the local subsystem controllers, and may achieve better performance, albeit at
a higher cost of complexity and communication.

The coalitional problem aims to rearrange the M subsystems forming the LSS into L≤M groups
or coalitions, which induces an alternative partitioning of the LSS. Under this procedure, the sub-
systems are the building blocks for achieving different decompositions of the large-scale dynamics.
Formally, a coalition and a partitions of the LSS are defined as follows:

Definition 6.1 (Coalition of subsystems). A coalition of subsystems Γ is a non-empty subset of V .



Chapter 6. Coalitional DMPC 109

Definition 6.2 (Partition of the LSS). A partition of the LSS is an arrangement of the M subsystems

into L≤M coalitions: formally, the partition of V = {1, . . . ,M} is the set Λ = {1, . . . ,L}, satisfying

the following properties:

1. Coalition c ∈ Λ contains subsystems Γc ⊂ V ;

2. Coalitions are non-overlapping:
⋂

c∈Λ
Γc = /0;

3. Coalitions cover the set of subsystems:
⋃

c∈Λ
Γc = V .

These definitions include the trivial cases of (i) a single, grand coalition of all subsystems (L = 1,
Γ1 = V ), which we will term the centralized partition and (ii) the basic partitioning of the system,
in which each subsystem is a coalition (L = M, Λ = V , Γi = {i} for each i ∈ V ); we call this the
decentralized partition. More generally, the set of all possible partitions is

ΠV , {Λ | Λ is a partition of V } (6.4)

The cardinality of the set ΠV is given by the Bell number BV [83], and experiences a combi-
natorial explosion with the number of subsystems: for example, B3 = 5, B5 = 52, B8 = 4140,
B13 = 27644437, etc.

To see the relevance of coalitions and partitions to the control problem, consider their effect on
the system dynamics. Given a partition Λ, the state and input of coalition c ∈ Λ are, respectively,
the collection of states and inputs from each of the subsystems that make up the coalition: we write,
with some abuse of notation ∗, xc = (xi)i∈Γc and uc = (ui)c∈Γi . Then the dynamics of coalition c are

x+c = Accxc +Bccuc + ∑
d∈Λ\{c}

Acdxd +Bcdud , (6.5)

where the matrices Acc and Bcc comprise the relevant matrices of the subsystems within the coalition:
Acc = [Ai j]i, j∈Γl , Bcc = [Bi j]i, j∈Γl . Similar to the basic decomposition of the systems into subsystems,
the coalitions are coupled via their dynamics: coalition c is coupled with coalition d via the matrices
Acd and Bcd , defined as

Acd =
[
Ai j

]
i∈Γc, j∈Γd ,d 6=c

Bcd =
[
Bi j

]
i∈Γc, j∈Γd ,d 6=c

It is useful to define, as we did for the basic partition of the LSS into subsystems, the set of neigh-
bours of a coalition c:

Nc ,
{

d ∈ Λ | [Acd Bcd ] 6= 0
}

.

This set can replace the index set for the summation in (6.5). The main point to note here is that the
grouping of subsystems into coalitions reduces the degree of exogenous interactions in the system:
if subsystem i is to be controlled by its own controller, then the interactions ∑ j∈Ni Ai jx j +Bi ju j have

∗Our intention is to make the notation as simple as possible by employing a single subscript to denote both a variable
of a subsystem and a variable of a coalition; typically i for the former and c for the latter. Although there is potential for
confusion, the meaning will be clear from the context.
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to be managed; however, if subsystem i is in a non-trivial coalition c, then its interactions with sub-
systems j ∈ Γc∩Ni are absorbed into the local matrices Acc, Bcc, and the coalition needs to manage
only the interactions with other coupled subsystems not in the same coalition. Indeed, if the cen-
tralised partition is selected, then Acc = A, Bcc = B, Nc = /0, and the original large-scale dynamics
are recovered: the system can be controlled (easily) by a single controller, with no exogenous inter-
actions to consider. Between the extremes of the centralised and decentralised partitions, however,
there is a trade-off between the size of the coalitions (and the resulting dimension or complexity of
the control law, the communication network required to support it) and control performance. The
control objective, defined in the next subsection, aims to take this into account.

An important issue is that of controllability for the new partitions of the LSS, we seek to transfer
the controllability properties from the basic partition on the other members of the ΠV . To achieve
this, we need a preliminary result on the controllability of systems subject to bounded disturbances
developed in [159] and [8]∗:

Lemma 6.1 (Controllability under disturbances). Consider the linear system subject to bounded

disturbances x+ =Ax+Bu+w where u∈U and w∈W C-sets. The disturbed system is controllable

to a target state set XT ⊆Rn if and only if the disturbance free system y+ = Ay+Bu is controllable

to YT (k) = {y ∈Rn : a>y≤ b(a,k), ∀||a||= 1}, where

b(a,k) = max
x∈XT

a>x−
k−1

∑
j=0

max
w( j)∈W

a>Ak−1− jw( j)

The above result implies that the system is able to steer any state towards a target set XT if
and only if the disturbance free system can steer its state towards a tightened version of the target
set, namely YT (k) = XT 	Ak−1W	 . . .	W. The set YT (k) is time-varying and its size decreases
according to k. An important consequence of the previous lemma is that the control sequence u∈Uk

used to steer the disturbance free system to YT (k) also steers the perturbed system to XT .

Proposition 6.1. Suppose Assumption 6.1 holds, then the pair of matrices (Acc,Bcc) is controllable,

for each c ∈ Λ and every Λ ∈ΠV .

Proof. Given V = {1, . . . ,M} as the base partition of the system, by hypothesis (Ai,Bi) is a control-
lable pair for each i ∈ V with associated dynamics x+i = Aixi +Biui +wi. For any two subsystems
i, j ∈ V forming a coalition Γc = {i, j}, controllability follows trivially for the system

x+c = Adiag
cc xc +Bdiag

cc uc,

where Adiag
cc = diag(Ai,A j) and Bdiag

cc = diag(Bi,B j). The coalition dynamics are composed, however,
of block matrices that do not have, in general, a diagonal structure but the dynamics of the coalition
can be rewritten as

x+c = Adiag
cc xc +Bdiag

cc uc +Acoup
cc xc +Bcoup

cc uc +wc,

with wc = ∑d∈Λ\{c}Acdxd +Bcdud , Acoup
cc = Acc−Adiag

cc and Bcoup
cc = Bcc−Bdiag

cc . The coupling be-
tween the elements in the coalition lie in a bounded set W

coup
c (k) = Acoup

c Xc⊕Bcoup
c uc(k), where

∗The proof of Lemma 6.1 can be found in Theorem 1 of [159] which is based on Theorem 4.1 of [8].
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uc = {uc(0), . . . ,uc(T − 1)} is the control sequence used to steer the diagonal system to the ori-
gin. Since the diagonal dynamics are controllable, using Lemma 6.1 the perturbed dynamics are
controllable to the set

XT =
T−1⊕
j=0

Adiag
cc

T−1− j
(Acoup

cc Xc⊕Bcoup
cc uc( j))

Furthermore, this set is a C-set by construction. The controllability of the diagonal system implies
the existence of a deadbeat matrix Kdiag

c ∈ Rmi+m j×ni+n j such that uc(k) = Kdiag
c x(k), ρ(Adiag

cc +

Bdiag
cc Kdiag

c ) < 1 and x(T ) = 0. The diagonal system admits the Lyapunov function V diag
c (xc) =√

x>c Pdiag
c xc that is Lipschitz in the C-set XT with constant LK = λmax(P

diag
c )

λmin(P
diag
c )

.

As a consequence the following property holds for every x(k) with k ∈ {0, . . . ,T}

V diag
c (xc(k+ 1))−V diag

c (xc(k))≤−x>c (k)(λmin(QC)−LK

∥∥∥Acoup
cc +Bcoup

cc Kdiag
c

∥∥∥)xc(k).

Provided λmin(QC)− LK

∥∥∥Acoup
cc +Bcoup

cc Kdiag
c

∥∥∥ ≥ 0, the system is able to reach the origin from an
initial state xc(0) in finite time. As a result, controllability of the coalition Γc = {i, j} follows. This
line of reasoning can be extended to a coalition that is composed of multiple agents.

6.2.3 Control Problem

The main objective is to solve the following optimal control problem: from a state x(0), determine
the control policy and coalitional policy that minimises the bi-criteria cost

J(ΛΛΛ)+
∞

∑
k=0

x>(k)Qx(k)+ u>(k)Ru(k)︸ ︷︷ ︸
V ∞(x,ΛΛΛ)

(6.6)

and satisfies all constraints. Here, u denotes the sequence of controls, and ΛΛΛ the sequence of par-
titions, over the infinite horizon. As shown by [81, 96, 99] via a range of applications, there is a
potential benefit to employing different coalitions over time. The idea here is to optimise the control
sequence, with respect to control performance measure that is a standard LQ cost, minimised using a
suitable finite horizon approach, and simultaneously the sequence of coalitions or system partitions
employing consensus methods. The cost on the latter, J(ΛΛΛ), is supposed to measure the practical
cost of controlling subsystems in coalitions: it may include, for example, costs on communication,
computation and complexity. It is anticipated that these costs are competing: fewer, larger coalitions
deliver a lower control performance cost, V ∞(x,ΛΛΛ), but at the expense of a higher coalitional cost,
J(ΛΛΛ).

6.2.4 Outline of the proposed approach

As pointed out by [81, 99], this optimal control problem is generally intractable, even when J(ΛΛΛ)

is well defined, and there are no constraints, and as such the problem is conceptual rather than im-
plementable. The existing approaches to this problem [81, 96–99] have ignored constraints and use
linear quadratic optimal control theory to design, off-line, stabilising regulators for all combina-



112 6.3. DMPC for fixed partitions

tions of coalitions, employing then switching of coalitions over time (based on the expected value
of the cost (6.6) at each time). Research has mostly focused on quantifying the costs and benefits of
communication links between subsystems and developing algorithms for switching based on this.

In this Chapter, we propose an approach to solving the coalitional control problem (with the con-
straints) that uses distributed and robust MPC and concepts from consensus theory. The organisation
of the development is as follows: in the next section, we assume that the coalitions are fixed in time,
and present a distributed MPC algorithm that controls the coalitions with guarantees of constraint
satisfaction, feasibility and stability. Following that, we study the problem of switching between
coalitions and propose an algorithm for this based on consensus theory. Finally, we combine the
control algorithm and the switching algorithm and show how the desirable control guarantees can be
maintained despite the switching between coalitions.

6.3 DMPC for fixed partitions

The controller used to control the LSS for a fixed partition, Λ ∈ΠV , is based on the Nested DMPC
approach developed in Chapter 4. The algorithm handles the coupling between coalitions by solving
two optimisation problems; the main problem steers the states of the system towards the desired
equilibrium or steady state, and the ancillary problem handles the effects of a “planned" distur-
bance while the “unplanned" disturbance is handled through an invariant inducing control law. The
complexity of such problems is comparable to one of a standard MPC problem. This algorithm is
particularly useful because it allows us to robustly control coalitions of high state dimensions using
invariant set related methods.

6.3.1 Limitations of traditional robust methods for DMPC

The main goal of this Section is to describe a suitable algorithm that robustly controls each coali-
tion c ∈ Λ to a desired steady state or equilibrium. Tube-based robust methods have the desired
properties for controlling a system subject to bounded disturbances. These methods rely on apply-
ing the techniques from [89] to a distributed setting, and consider interactions between subsystems
as bounded uncertainties, as done by [153], [131], and [36] for example. These robust DMPC
methods for large scale systems use a static partition Λ = {1, . . . ,L} and control laws of the form
uc = κ̄c(x̄c)+ κ̂c(xc− x̄c) where xc is the measured state, and x̄c is the state for the nominal, distur-
bance free, system x̄+c = Accx̄c +Bccūc. Constraint satisfaction is achieved through an appropriate
tightening of the original constraint sets (Xc,Uc) to account for bounded disturbances Wc. There-
fore, the first term of the control law steers the states towards a desired equilibrium and the second
term acts on the mismatch of the “real" and nominal states. This second term of the control law
forces the error between states to remain within an invariant set Rc(Λ). The computation of such
set is the main hurdle in the application of tube-based methods to some of the partitions of M .
This method relies on the computation of the invariant set Rc to solve the optimal control prob-
lem (A.3), and to guarantee stability and feasibility (we refer the reader to Mayne et al. [89] for the
relevant proofs). However, these sets are known to be prohibitively difficult to compute for higher
dimensional systems, i.e. nc ≥ 4. This is a significant barrier when applying these methods to a



Chapter 6. Coalitional DMPC 113

reconfigurable environment, because the complexity of the computation does not allow for online
re-computation of the sets. Another minor drawback of traditional robust DMPC methods lies in the
fact that the interactions are rejected as spurious signals; these signals carry information about the
other subsystems and can be exploited in order to reduce the conservativeness of the approach. These
limitations make this control scheme difficult, and not practical, to scale up to larger subsystems or
to a reconfigurable framework. To avoid such barriers, we propose to apply the Nested DMPC ap-
proach proposed in Chapter 4 to the coalitional problem; the next sections tailors the nested approach
to this problem.

6.3.2 Nested DMPC controller structure for coalitions

The Nested DMPC controller, as defined in Chapter 4, requires two auxiliary systems: the nomi-
nal system and the nominally disturbed system with their associated dynamics x̄+c = Accx̄c +Bccūc

and x̂+c = Accx̂c +Bccûc + w̄c respectively. The first system is used to regulate the coalition to its
equilibrium, the later one incorporates nominal interaction information into the prediction model;
this information is then used to handle and exploit not reject the coupling between coalitions. The
control law used to steer the LSS from an initial state x(0) to its equilibrium point using the partition
Λ is the three termed law:

κ
N
c (xc,Λ) = κ̄

N
c (x̄c)+ κ̂

N
c (ēc;wc)+ κ̃

N
c (êc). (6.7)

where the “true" states of the coalition satisfy xl = x̄l + ēl + êl , where ēl = x̂l− x̄l is the nominal error
and êl = xl− x̂l the uncertain error; the state of the system, therefore, depends on two nominal quanti-
ties, x̄l and ēl , and an uncertain one êl . The first two terms arise as solutions of the main and ancillary
optimisation problems while the third one is an invariance inducing control law. By employing these
nominal systems, it is possible to partition the disturbances set into two summands: Wc = W̄c⊕Ŵc

corresponding to the planned and unplanned disturbance; these planned disturbance arises through
the nominal predictions such that w̄c = ∑d∈Nc Acd x̄d +Bcd ūd .

Main optimal control problem

The main controller regulates the state of the nominal, i.e. interaction free, dynamics of coalition c.
The formulation of this problem is the same to that of a standard MPC with the existing partition as
an additional parameter:

P̄c(xc,Λ) : min
ūc

{
V N

c (x̄c, ūc,Λ) : ūc ∈ Ū N
c (x̄c,Λ)

}
(6.8)

where Ū N
c (x̄c,Λ) is defined by the constraints

x̄c(0) = xc, (6.9a)

x̄c( j+ 1) = Accx̄c( j)+Bccūc( j), j = 1 . . .N−1 (6.9b)

x̄c( j) ∈ X̄c, j = 0 . . .N−1 (6.9c)

ūc( j) ∈ Ūc, j = 0 . . .N−1 (6.9d)
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x̄c(N) = {0}. (6.9e)

and V̄ N
c is a finite-horizon approximation to c’s share of the LQ part of (6.6):

V̄ N
c (x̄c,uc,Λ) =

N−1

∑
j=0

`c

(
x̄c( j), ūc( j),Λ

)
The solution of this problem yields the sequence of nominal control actions ū0

c(x̄c) = {ū0
c(0), . . . , ū

0
c(N−

1)} and the applied control law is the first element of the sequence, κ̄c(x̄c) , ū0
c(0; x̄c). The con-

straints the coalition is subject on the states and inputs are only scalings of the original constraint sets
such that X̄c = αx

c Xc and Ūc = αu
c Uc. The terminal set is chosen to be the origin, i.e. X

f
c = {0}, to

ease the implementation of the controller. The feasible set for P̄c(xc,Λ) is given by the N-step null

controllability set X̄ N
c (Λ) , {x̄c : Ū N

c (x̄c,Λ) 6= /0}.

Ancillary optimal control problem

Similarly, the ancillary optimisation problem is formulated to act on the nominal error ēc = x̂c− x̄c

and the prediction of the planned disturbance w̄c = {w̄c(0), . . . , w̄c(0)}.

P̂c(ēc; w̄c,Λ) : min
f̄c

{
V̂ N

c (ēc, f̄c; w̄c,Λ) : f̄c ∈ F̄ N
c (ēc; w̄c,Λ)

}
(6.10)

where F̄ N
c (ēc; w̄c,Λ) is defined by the constraints

ēc(0) = ēc, (6.11a)

ēc( j+ 1) = Accēc( j)+Bcc f̄c( j)+wc( j), j = 1 . . .N−1 (6.11b)

ēc( j) ∈ Ēc, j = 0 . . .N−1 (6.11c)

f̄c( j) ∈ F̄c, j = 0 . . .N−1 (6.11d)

ēc(N) = {0}. (6.11e)

Similarly to the main OCP, the solution of the optimisation problem yields the sequence of con-
trol actions f̄0

c(ēc; w̄c) = { f̄ 0
c (0), . . . , f̄ 0

c (N− 1)} that minimise the effect of the interactions on the
coalition dynamics and the control law, the second term in (6.7), is the first element of such se-
quence κ̂c(ēc, w̄c) , f̄0

c(0; ēc, w̄c). The cost function V̂ N
c is a finite-horizon approximation to c’s

share of (6.6):

V̂ N
c (ēc, fc; w̄c,Λ) =

N−1

∑
j=0

`c

(
x̄c( j), ūc( j); w̄c,Λ

)
.

This objective function, despite having the same structure as the objective of the main OCP, cap-
tures the effect of the sequence of predicted disturbances. The constraint sets are scaled such that
Ēc = β x

c Xc and F̄c = β u
c Uc. The feasible region, similarly to the previous case, is the N-step null

controllability set Ē N
c (w̄c,Λ) , {ēc : F̄ N

c (ēc, w̄c,Λ) 6= /0}.
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Constant selection and set invariance

This section presents a brief recapitulation of Section 4.5 adapted to the current setting. The RCI sets
used in these approach correspond to those ones defined in [117]. This RCI set induces an invariant
control law µR̂c(Λ)(·) which is the last term in the control law (6.7) and acts on the unplanned error
and disturbance.

i) Find the structure for a RCI set Rc(Λ) ⊂Xc associated with the disturbance set Wc such that
the constants (ηc,θc) satisfy Rc(Λ) ⊂ ηcXc and µ(Rc(Λ)) ⊂ θcUc. The scaling constants
are therefore αx

c = 1−ηc and αu
c = 1−θc.

ii) The selection of ξ x
c and ξ u

c is done by finding a smaller disturbance set Ŵc =
⊕

d∈Nc(ηcAcdXd⊕
θdBcdUd) corresponding to the unplanned disturbance. and the parameters of a smaller– scaled
version– RCI set R̂c(Λ) yield the desired constants ξ x

c = η̃c and ξ u
c = θ̃c.

iii) The constants β x
c and β u

c satisfy, in order to guarantee constraint satisfaction, β x
c = 1−αx

c −ξ x
c

and β u
c = 1−αu

c −ξ u
c respectively.

iv) The invariance inducing control law µR̂c(Λ)(·) can be computed from the parameters of the RCI
set R̂c(Λ) itself.

The computational complexity of selecting the scaling constants is that of solving two linear pro-
grams, to compute the invariant set structure. The total computational complexity of the control
scheme is, therefore, the complexity of solving an LP for the invariant set, and two QPs, for the
MPC optimisation problems. Since all the calculation can be computed in polynomial time, the al-
gorithm is suited for an on-line implementation; in addition, the proposed control law (6.7) offers a
reduced conservatism compared to its robust counterparts.

6.3.3 Performance comparison for each partition

The different partitions of the LSS generally yield a different performance index value. The control
cost (6.6) reflects how hard is for the controller to steer the system in different regions of the state
space. Employing different partitions of the LSS may attenuate the effects of the proximity to the
constraints on the performance index. To illustrate this phenomena, the example chosen is the one
described in Section 2.3.3. The system is composed of 4 coupled subsystems, see figure 6.1, with
dynamics:

˙ri

vi

= Ac
ii

ri

vi

+
 0

100

ui +wi (6.12)

constraints on the position ri and velocity vi are given by

Xi ={(ri,vi) : −4≤ ri ≤ 4∧−1.2≤ vi ≤ 1.2};

Ui ={ui : −1≤ ui ≤ 1}

The coupling structure is the following: N1 = {2}, N2 = {1,3}, N3 = {2,4} and N4 = {3}. The
parameters of the system and controller are the same as those used in Section 2.3.3. The initial
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m1 m2 m3 m4

k12

c12c12

k23

c23c23

k34

c34c34

u1 u2 u3 u4

Figure 6.1: 4-truck problem: 4 mass point trucks coupled by pairs using springs and dampers.

conditions are:

x1(0) =

1.8
0

 ; x2(0) =

−0.5
0

 ; x3(0) =

1
0

 ;x4(0) =

−1
0


The number of possible partitions is |ΠV | = 15. The state trajectories are shown in Figure 6.2

and the associated costs for the large scale system are shown in Table 6.1. From the simulations,
the partitions Λ7 = {{1,3}{2,4}} and Λ8 = {{1,3}{2},{4}} are not feasible. The reason for the
infeasibility of these partitions lies in the tightening needed to synthesise the controllers. For Λ7

and Λ8, the scaling constants are αx
7,1 = αx

8,1 = 0.5, αx
7,2 = αx

8,2 = 0.4616 and αx
7,3 = 0.8144; the

subsystems 2 and 4 are not coupled and therefore any coalition based on {2,4} does not bring any
benefit to the LSS. This is the reason why the scaling constants for the first coalition of each partition
have the same value.

In terms of performance, the centralised partition achieves the lowest cost-to-go and the associ-
ated state trajectory does not exhibit any saturation. On the other hand, the performance of Λ3 =

{{1,2,4},{3}}, Λ4 = {{1,2},{,4,3}}, and Λ5 = {{1,2},{,4},{3}} are affected the most by the
tightening procedure and this is reflected on their cost values. The performance of the completely de-
centralised partition Λ15 = {{1},{2},{3},{4}} is worse than the partition Λ11 = {{1},{2,3},{4}}
which groups together the systems having the biggest coupling. As a result of these simulation, we
can identify the potential of using different partitions for the LSS. The cost presented in Table 6.1

Λ V ∞(x(k),Λ)

Λ1 {{1,2,3,4}} 73.1327
Λ2 {{1,2,3},{4}} 73.6061
Λ3 {{1,2,4},{3}} 73.8282
Λ4 {{1,2},{4,3}} 73.8376
Λ5 {{1,2},{4},{3}} 73.8270
Λ6 {1,2,4},{3} 73.3287
Λ7 {{1,3}{2,4}} Infeasible
Λ8 {{1,3}{2},{4}} Infeasible
Λ9 {{1,4}{2,3}} 73.2006
Λ10 {{1},{2,3,4}} 73.2008
Λ11 {{1},{2,3},{4}} 73.1890
Λ12 {{1,4},{2},{3}} 73.2027
Λ13 {{1},{2,4},{3}} 73.1910
Λ14 {{1},{2},{3,4}} 73.2016
Λ15 {{1},{2},{3},{4}} 73.1910

Table 6.1: Closed-loop costs for different partitions of the LSS.
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does not take into account the value of the communication costs that would penalise larger coalitions.
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x(k;Λ12)

x(k;Λ13)
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Figure 6.2: A comparison between the system performance using different partitions of the LSS for
V = {1,2,3,4}. The performance of the centralised partition Λ1 ( ) is better in terms of con-
straint handling. The robustness properties of each partition are also evident; Λ3 = {{1,2,4},{3}}
( ), Λ4 = {{1,2},{,4,3}} ( ), and Λ5 = {{1,2},{,4},{3}} ( ) are the partitions for
which subsystem 1 experiences the largest tightening and the highest cost. The performance of the
rest of the partitions lie in between the performance of the centralised and Λ3, Λ4, and Λ5.

6.4 Switching between partitions

As seen from the previous example, if the system was allowed to change between partitions over
time, then there is the potential of simultaneously minimising the coalitional cost (6.6). The solution
of the coalitional control problem requires a reconfigurable robust control law capable of switching
between partitions of the LSS. The problem of switching between partitions is part of the coalition
forming problem. In this chapter, we propose a solution to this problem using a consensus approach
and the methods of differential games. It is to the best of the knowledge of the authors that the
present method has not been applied to solve the coalition formation problem.

6.4.1 A consensus approach to coalition formation

At first glance, and naively, it would seem that forming the grand coalition or the decentralised
coalition would be the best options for the system to adopt for minimising performance and commu-
nications respectively, but there exist costs associated with communication and coalition formation
that constrain these scenarios as stated in [52]. To this end, we will suppose that a partition of the
LSS carries an associated cost c(Λ,k) on the communication used, and assume that the value of this
cost is related to the measure of size of each coalition.
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{{1,2,3,4}}

{{1,2,3},{4}} {{1,2,4},{3}} {{1,3,4},{2}}{{2,3,4},{1}}{{2,3},{1,4}}
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Figure 6.3: Refinement relation defined over Π{1,2,3,4}. Each path of different colour points towards
the elements that are related to each other, through refinement. Black lines are used to represent the
only possible move.

In addition, the set of partitions ΠV is a partially ordered set; this order relation, denoted as
partition refinement, is defined as: given Λ,Λ′ ∈ ΠV the partition Λ refines Λ′, Λ � Λ′, if ev-
ery member of Λ is contained in some member of Λ′. The set ΠV , ordered with the refinement
relation, has members that are not comparable to each other, see Figure 6.3 for an example when
V = {1,2,3,4}. In this example, the comparable partitions are joined using solid lines in the Hasse
diagram of Figure 6.3, whereas the incomparable ones are joined using dashed lines. The existence
of subsets of incomparable and comparable elements is one of the underlying properties of a partially
ordered set. A set C ⊂ ΠV is a chain when all the elements Λ ∈ C are comparable to each other;
on the other hand, a subset A is an anti-chain when no two elements in A are comparable to each
other. The number of anti-chains determines the cardinality of the maximum chain within the set
ΠV . The partition set ΠV equipped with the refinement order relation together with the consensus
formulation from Marden et al. [84] allows us to state the problem of partition selection as a consen-
sus problem. In [84], the consensus framework is concerned with a set of agents, V , endowed with
a set of actions, A , that move in a state space, M ∗, until they achieve an agreement on a specified
metric by means of an evolution rule and shared interaction information. In our setting, the set of

∗The set M can be either finite or infinite.
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agents is given by the set of subsystems V = {1, . . . ,M}; the set of partitions ΠV represent the space
where the subsystem choice of partition evolve in time; the position of each agent in such set is given
by a partition function Λ : V 7→ΠV assigning an element of ΠV

∗ to each i, and the consensus point
is such that Λ1 = Λ2 = . . .= ΛM .

From the consensus formulation of Marden et al. [84], the agents move on the state space ac-
cording to specified dynamics; in our setting, these “movements" are constrained to the partition set.
The fact that ΠV is a partially ordered set affects the way in which subsystems move in it, subsystem
i is restricted to move only towards a partition that is comparable within the order relationship. This
movement can be interpreted as each subsystem deciding upon which partition suits best the LSS.
Each subsystem has an initial “opinion" on the best partition for the LSS; the partition induced by
its set of neighbours Ni is a candidate for an initial partition. This method of forming coalitions of
agents is a progressive or gradual method, whereby coalitions evolve by the addition/removal of one
agent at a time rather than complete disbanding and regrouping at every instant.To summarise, we
invoke the following assumption on the allowable movements in ΠV .

Assumption 6.3 (Consensus movements). Given a subsystem i ∈ V , and a partition chosen by this

subsystem Λi ∈ ΠV . The next possible partition choice belongs to a chain, C ⊂ ΠV , satisfying

Λi ∈ C .

The method used for each subsystem to choose its next move is given by the following dynamics,
∀i ∈ V :

Λ+
i = νi(Λi;Λ−i) (6.13)

where νi(Λi,Λ−i) is a feedback control policy, Λi is the partition chosen by subsystem i, Λ−i are
the partitions chosen by the neighbours of subsystem i satisfying Λ−i = (Λ j) j∈Ni , and Λ+

i is the
successor partition– the partition that suits the subsystem best– for subsystem i. This control law is
the argument of the following consensus optimisation problem

P̃i(Λi;Λ−i) : min
Λi∈ΠV

Vi(Λi,Λ−i) (6.14)

subject to

Λi ∈ Ci ⊆ΠV (6.15a)

|Λ+
i |= |Λi|+ 1 or |Λ+

i |=|Λi|−1 or Λ+
i = Λi. (6.15b)

where Vi(·) is a cost functional that measures the deviation of each agent from the consensus point,
and the control input for (6.13) is νi = argmin{Vi(Λi,Λ−i) : (6.15a) and (6.15b) are satisfied}. The
cost function is designed in such a way that Vi(Λi,Λ−i) = 0 for the consensus point, this implies
that subsystem i has no incentive to leave the partition. The quantities Λ−i are kept constant and
represent the information collected on the choice of partition from the neighbouring subsystems. As
the decision space, ΠV , experiences a combinatorial explosion in the number of possible partitions
which makes the decision problem not practical; to ameliorate this issue, constraints (6.15a) and

∗With some abuse of notation we denote a function mapping the set of agents to the partition set with the same symbol
that denotes a member of ΠV , i.e. Λ(i) = Λi an appropriate distinction will be made when the meaning is not clear from
context.
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(6.15b) are introduced restrict the size of the action space. Following the example shown in Fig-
ure 6.3, if an initial choice is given by a partition of 2 elements such as Λ6 = {{1,2,4},{3}}, its
possible actions are restricted to the relatable partitions that have either 3–Λ6 = {{1,2},{3,4}}– or
1–Λ1 = {{1,2,3,4}}– elements. In this example the action set is reduced from 15 to 5 possibilities.

The domain of the cost function of the optimal problem P̃i(Λi,Λ−i) is the Cartesian product
of |Ni|+ 1 copies of ΠV . A solution to this consensus problem can be found using a game theo-
retic framework, as detailed in Bauso [9], Marden et al. [84]. The general form of the desired cost
functional for subsystem i in discrete time is given by

Vi(Λi,Λ−i,νi) =
∞

∑
k=0

Fi(Λi(k),Λ−i(k)) (6.16)

Where Fi(·, ·) is the stage cost penalising the deviation from a consensus point. This cost, however,
is intractable, because of the infinite sum. In the next section we aim to construct a tractable version
of the consensus cost (6.17) based on a receding horizon approach and a method for measuring the
partition.

6.4.2 Partition measurement

The consensus approach states that the system switches among the possible partitions defined on
ΠV . In this section, we aim to assign a measure to each of these partitions based on the strength of
the coupling between elements of V . A measurement for a partition Λ ∈ΠV is a function that maps
the set ΠV and the positive real numbers; this measurement associates a sense of size, similar to a
norm, to each member of ΠV . A partition Λ = {1, . . . ,L} induces a directed graph, GΛ = (V ,LΛ),
on the set of subsystems V . The set of links or edges, LΛ, is characterised by the coalitions Γc of
Λ. A link between two vertices i : j exists if i, j ∈ Γl for some l ∈ Λ. The norm of the adjacency
matrix of this directed graph is a measure candidate for Λ [28]:

Definition 6.3 (Adjacency matrix of a directed graph). Let G be a directed graph with V as its set

of vertices, and L the set of links. The Adjacency matrix of the graph G is the matrix HG = [hi j] ∈
RM×M such that

hG i j =

 ||Ai jx j +Bi ju j|| i f i : j ∈L

0 i f i : j /∈L

The entries hi j of HG reflect the interactions among The entries hi j of HG reflect the interactions
among subsystems, i.e. the disturbance size or coupling strength. Similarly, Maestre et al. [76] define
a time-varying set of links L (k) that accounts for different partitions of the LSS. Each partition of
the Λ can then be identified with a matrix∗, Λ 7→HΛ ∈RM×M . The norm of this matrix yields a time-
varying measurement of each partition that depends on the coupling strength between subsystems.
The dependence on time follows from the idea that partitions change according to the needs of the
system as it evolves in time, being these needs: constraint satisfaction, feasibility or performance
improvement. This mapping from partitions of the LSS to matrices, f : ΠV → RM×M , changes

∗The notation MΛ is an abuse of notation of the adjacency matrix MG of the graph G that induces the partition Λ ∈ΠV
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an inherently discrete set into a continuum of matrices. The next Proposition outlines some of the
desired properties of this function and its range, the set of matrices that correspond to each partition.

Proposition 6.2. i) Let SΛ = f (ΠV ), the function f : ΠV →SΛ is a bijection.

ii) The set SΛ ⊂RM×M is a C-set.

Proof. For i), given a matrix HΛ ∈SΛ, from the definition of the set hii = 0, ∀i ∈ 1 : M. So HΛ

corresponds to a graph with no self loops. So each matrix of SΛ represents a directed weighted
graph with no self loops. As a consequence of the definition, the map f is one-to-one, and by
restricting the range only to the set SΛ, the map is onto.

For ii), considering the matrices, HΛ1 ,HΛ2 ∈SΛ and the scalar λ ∈R, it is clear that λHΛ1 +

(1− λ )HΛ2 ∈ SΛ. So the set SΛ ⊂ RM×M is a convex subset. Since the matrices of SΛ, by i)

are the image of a given weighted graph Λ. These weights on the links of each graph are given by
the coupled dynamics and constraints, so ci j(k) =

∥∥Ai jx j⊕Bi ju j
∥∥ which is in turn a finite quantity

ci j < ∞ given the constraint sets Xi, and Ui are C-sets. Moreover, an upper bound on the norm of
each matrix can be found‖HΛ‖ ≤ ∆ for any HΛ ∈SΛ, so SΛ is bounded.

Taking a converging sequence of matrices {Lk}k∈N ⊂ RM×M \SΛ such that the elements of
the diagonal are li j = 1/k when i = j and li j = 0 otherwise. It is clear that Lk → 0, but from the
definition of convergence it is always possible to find a set B(LkΛ,δ ) ⊂RM×M \SΛ, making the
set open. Since RM×M \SΛ is open, SΛ is closed. Thus SΛ is a C-set.

The partition measurement is not the matrix HΛ associated with each Λ per se but the norm
of this matrix. Therefore the function mapping Λ 7→ HΛ 7→ ||HΛ|| is the desired metric. As a
consequence, two different noninteracting systems i, j ∈ V do not have any effect on the system
performance, i.e. there is no gain in joining two such subsystems, when forming a coalition [152];
the dynamics of such coalition has a diagonal structure and its value is the same as the sum of its
components. With a measurement of the partition Λ ∈ ΠV established, a choice for the consensus
functional is:

Vi(Λi,Λ−i) = ∑
j∈Ni

(∥∥∥HΛ j

∥∥∥−∥∥HΛi

∥∥)2
(6.17)

The cost functional for the consensus problem (6.17) penalises the deviation of the partition chosen
by subsystem i from the choice of its neighbours Ni.

6.5 Combining DMPC with the switching law

This section addresses the problem of combining the robust control approach defined in Section 6.3
and the switching paradigm of Section 6.4.

6.5.1 Switching signal design

This section aims to construct the required switching signal that will allow the LSS to switch among
the partitions defined on ΠV . At each instant of time k, subsystem i interacts with its neighbours, Ni,
to decide the next move on the state space ΠV . Given the switching nature of our approach, we need
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to guarantee that the overall systems remain stable when changing partitions. At time k, each of the
subsystems of V belong to a coalition, Γc, for some c ∈Λ(k).∗ The state dimension of the coalition
to which subsystem i belongs to is, therefore, changing with time. The techniques outlined in [133]
and [92] ensure the stability of the switching scheme. These techniques establish the continuity of
the trajectories, and suitable Lyapunov behaviours of given states when the dimension of switching
modes is not the same, and are referred as “glueing" conditions. The following technical definitions
are used to establish stable switching behaviours.

Definition 6.4. i) A continuous function f : Rn → Rm, is locally Lipschitz if for each x ∈ Rn

there exist a ball of radius δx > 0, B(x,δx), and a constant λx > 0, such that || f (z)− f (y)|| ≤
λx||z− y|| holds for any y,z ∈ B(x,δx).

ii) A locally Lipschitz function V : D⊂Rn→R is a Lyapunov-like function if it satisfies V (x+)−
V (x) ≤−α(||x||) with α : R→R a K -function.

The set of subsystems V = {1, . . . ,M} together with a collection of Lyapunov-like functions
{VΛ : X→R}Λ∈ΠV

define qualitative properties of the LSS and its partitions, i.e. the convergence
towards a desired equilibrium. To guarantee a stable switching between partitions, we employ upper
and lower bounds on each VΛ(·). Suppose V L

Λ(·) and VU
Λ (·) is a lower and upper bound for a

Lyapunov function respectively; and given two partitions, Λ, Λ′, with their respective Lyapunov-
like functions, VΛ, and VΛ′ , the stability criteria is obtained by a reduction of the overall Lyapunov
value when switching from Λ to Λ′

VU
Λ′(x) ≤V L

Λ(x) (6.18)

This decreasing condition of the Lyapunov functions of two partitions ensures a stable switching
between partitions. This condition is incorporated as part of the constraints imposed on the optimi-
sation problem (6.14) to ensure only that stable switchings are allowed. Upper bounds for Lyapunov
functions can be constructed using LMI techniques as in [64] or [76], or employing approximations
to the infinite horizon cost as in [158]. On the other hand, the unconstrained LQR cost constitutes a
lower bound for the Lyapunov function.

Together with the stability issues, the problem of communication costs associated with each
partition of the LSS form an essential component of the consensus problem. These communication
costs can be characterised through the graph induced by a given partition. Since a partition Λ =

{1, . . . ,L} has L members, with each Γc representing a connected component of a graph, then the
bigger the number of links, the higher is the cost on the communications. Each connected component
is a complete subgraph; the number of links is given by (r

2) where r is the number of subsystems of
the given coalition [28]. Hence, the number of links for a partition is:

Vcom(Λ) = ρcom

L

∑
c=1

(
rc

2

)
, (6.19)

The constant ρcom > 0 is associated with the cost value assigned to each link; [76] use the Shapley
value and other game theoretic concepts to assign a worth to each link of the graph. In this thesis, we
assume that ρcom can be any solution concept from a coalitional game theoretic setting; the particular

∗We adopt the notation Λ(k) to indicate that the partition changes in time.
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Algorithm 6.1 Switching law σ : N→ΠV

1: Input data:
2: procedure (Initial data)
3: The coupling structure Ni, ∀i ∈ V , initial nominal state x̄(0).
4: Each subsystem chooses its initial coalition as Λi(0) = {Ni∪{i},{i1}, . . . ,{i|V \Ni|}}.
5: end procedure
6: procedure (Online routine)
7: if i = mod(k,M)+ 1 then
8: Solve optimisation problem (6.21) to obtain the next partition, Λ = Λi(k).
9: else

10: Λ j(k) = Λ j(k−1), ∀ j ∈ V \{i}.
11: end if
12: Set k = k+ 1 and go to Step 7.
13: end procedure

choice of one solution over the other existing ones is situational and depends on the applications. By
taking into account these modifications, the consensus cost for each subsystem is:

V s
i (x,Λi,Λ−i) = Vcom(Λi)+VΛi(x)+Vi(Λi,Λ−i) (6.20)

Where VΛi is the Lyapunov function for the partition Λi chosen by subsystem i. The three terms of
cost function (6.20) represent i) the communications costs associated the partition Λi, ii) the energy
of the states at a given instant of time, and iii) the consensus-promoting cost described above. The
minimiser of the cost (6.20) yields the partition that offers the best trade-off between performance
and communication among subsystems. The optimisation problem that allows switching between
partitions of the LSS is:

Pσ
i (x,Λi,Λ−i) : σi = arg min

Λi∈ΠV

V s
i (x,Λi,Λ−i) (6.21)

subject to (6.15a), (6.15b) and (6.18). The overall switching law is given by Algorithm 6.1 which is
run by each subsystem sequentially.

6.5.2 Algorithm for coalitional control

The main contribution of the Chapter is to establish an interplay between Algorithm 6.1 and an ap-
propriate robust controller algorithm capable of reconfigurability, i.e. the robust algorithm described
in Section 6.3. Since the building blocks for every partition are given by the set V , then each sub-
system runs Algorithm 6.2. The coalitional DMPC algorithm requires only the original constraint
sets, Xi and Ui, and the information about the dynamic couplings,i.e. the nominal trajectories from
the dynamic neighbours. Each subsystem chooses the partition induced by its neighbour set as an
initial condition for Algorithm 6.1. This information about the partition choice is transmitted to the
network; similarly from the received information, the vector Λ−i is formed. The switching optimi-
sation problem, Pσ

i , is solved at time k = 0 by subsystem 1 to obtain the initial partition, Λ(0), of
the system. The system assumes this partition and sends a message to the rest of the coalitions to
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Algorithm 6.2 Coalitional DMPC for subsystem i

1: procedure (Initial data)
2: Sets Xi, Ui; states x̄i(0) = xi(0), ēi(0) = 0; the initial partition Λinitial

i .
3: end procedure
4: procedure (Online)
5: Gather the choice of partition from the rest of the subsystems and form Λ−i.
6: if k = hΥΠΛ then
7: if i = mod(k,M)+ 1 then
8: Solve optimisation problem Pσ

i (x̄,Λi,Λ−i) to obtain νi ∈ΠV .
9: Set Λi(k) = νi.

10: Set the partition for the large scale system Λ(k) = Λi(k).
11: else
12: Keep the current partition Λi(k).
13: end if
14: end if
15: if Λ(k) 6= Λi(k) or k = 0 then
16: for c ∈ Λ do
17: Compute the scaling constants αx

c , αu
c , β x

c , β u
c , ξ x

c , and ξ u
c with the guidelines of

Section 4.5.
18: Form the appropriate state vectors, control inputs by aggregation, xl = col(xh)h∈Γl ,

x̄l = col(x̄h)h∈Γl , and x̂l = col(x̂h)h∈Γl .
19: end for
20: end if
21: Execute Algorithm 4.1 for coalition c ∈ Λ(k) such that i ∈ Γc and apply uc = ū0

c + f̄ 0
c + f̂c.

22: Update controller states x̄+c = Accx̄c + Bccū0
c and ē+c = Accēc + Bcc f̄ 0

c + w̄c—where w̄c =
w̄c(0)—w̄+

c = {w̄c(1), . . . , w̄c(N),0}, and V ∗+c = V ∗c − `c(ēc, f̄ 0
c ).

23: Set k = k+ 1, x̄c = x̄+c , ēc = ē+c , w̄c = w̄+
c , V ∗c = V ∗+c

24: Reconstruct the state for subsystem all i ∈ Γc and go to Step 5.
25: end procedure

compute the necessary scaling factors required by Algorithm 4.1. The control law for each c ∈ Λ
can be computed and implemented via coordination among the elements of the coalition. How the
agents forming Γc coordinate is out of the scope of the present thesis; a coalition is seen as a unity
and therefore capable of synthesising its own control law.

For future instances of time, the partition switching and the control law update occur at a dif-
ferent rate for feasibility reasons which will be evident in Section 6.5.4; the partition switchings
occur at each multiple of the integer ΥΠΛ ∈ Z+ whereas the robust controller updates its value at
every k ∈N. The sampling rate ΥΠΛ can be considered a dwell-time. At the next switching time,
k = ΥΠΛ , subsystem j solves the switching optimisation problem and determines the partition for
the large-scale system. Only if the chosen partition is different from the previous one, then a recal-
culation of the scaling constants is made across the different coalitions of the new partition. This
algorithm computes the switching signal using the nominal state of the coalition and its neighbours,
as a consequence the nominal dynamics of the system change structure each time switching occurs.
The next section is devoted to the analysis of the convergence properties for the different parts of the
system, the consensus and control, and establishes large-scale recursive feasibility and stability for
the system.
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6.5.3 Consensus convergence

This section shows the convergence of the coalitional DMPC algorithm. The importance of this
section lies in guaranteeing first of all a stable switching between the different modes of the LSS,
and the recursive feasibility of the proposed hybrid DMPC. On the other hand, the performance
improvement relies in the convergence of the consensus part of the algorithm. The combination
of both parts of the algorithm result in an algorithm capable of reconfigurability and opens the
possibility of analysing a scenario where the number of subsystems is time-varying.

The approach taken here to show convergence of the consensus method is to first consider the
basic problem, i.e. minimise (6.17) subject to (6.15a) and (6.15b) and prove the system achieves a
consensus based only on the partition dynamics, see Proposition 6.3. As a second step is to include
the stability constraints (6.18) and a modified cost (6.16) and show that the system is still capable
of achieving consensus, see Proposition 6.5. Consider the consensus problem, P̃i(Λi,Λ−i), subject
to (6.15a) and (6.15b). We require an assumption for the couplings, mi j =

∣∣∣∑ j∈Ni Ai jx j +Bi ju j

∣∣∣, of
each partition,

Assumption 6.4 (Vanishing coupling). For all i, j ∈M , the couplings mi j→ 0 as k→ ∞.

The immediate consequence of this assumption is that the choice of partition converges towards
the decentralised partition, which forces the convergence of the above problem. This can be sum-
marised in the following proposition.

Proposition 6.3. The consensus problem defined by the optimal problem (6.13) and (6.14) for the

subsystem set V = {1, . . . ,M} converges to a common point ΛC ∈ ΠV . And if Assumption 6.4 is

fulfilled, then the consensus point is the decentralised partition ΛC = Λ0.

Proof. Let V = {1, . . . ,M} the set of subsystems, and let the vector Λ = (Λ1, . . . ,ΛV ) ∈ΠM
V repre-

sent the choices of partitions made by each subsystem. A consensus point is ΛC = Λ1 = · · ·= ΛM ,
satisfies |Λi−ΛC| → 0 as k→ ∞. We proceed by induction on the number of subsystems, start-
ing with M = 2. If there are only two subsystems, therefore there are two possible partitions,
ΠV = {Λdec,Λcen}. If both subsystems agree on the initial condition, convergence has occurred.
If Λ1(0) 6= Λ2(0), and considering the first subsystem optimising, then the consensus cost func-
tional (6.16) attains a minimum at Λ1(0) = Λ2(0) since V1(Λ2,Λ−1(0)) = 0. thus Λ1(0) = Λ2.
Since both subsystems have agreed on the partition, the problem has converged.

Now, assuming convergence for M subsystems, we need to prove the convergence of the problem
for M+ 1 subsystems. Consider an extended subsystem set V ′ = {1, . . . ,M,M1}, this set has M+ 1
elements,and given the partition set for V ′ = V ∪{M1}, where ΠV ′ has M+1 anti-chains. Let A be
an anti-chain such that Λi(0) ∈A and Λ1(0) 6= . . . 6= ΛM+1(0). Since only a subsystem optimises
at a time, after the initial M+1 time steps all subsystems have changed their original partition choice
for another lying in the respective chain where they started. By contradiction, assume the problem
does not converge implying that |Λi−ΛC| ≥ ε for some ε > 0. By hypothesis, |Λi−ΛC| → 0
for every i ∈ V . If the converging point lies in the same chain of subsystem i, ΛC ∈ Ci, then by
the definition of the consensus dynamics (6.13), there exists a k > 0 such that |ΛM+1−ΛC| < ε .
If ΛC /∈ Ci, then by consensus dynamics (6.13) and constrains (6.15a) and (6.15b), we have that
ΛM+1 ∈ Ci after a finite time. Therefore, there exist a point ΛC ∈ ΠV ′ such that the consensus
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problem converges. In addition, if Assumption 6.4 is fulfilled, then each matrix MΛ → 0, which is
equivalent to Λi→ Λdec.

The consensus problem as defined in the previous section can be viewed as a game between M

players. The solution concept is that one of a Stackelberg equilibrium since we are dealing with a
problem where a subsystem knows ahead of the move from the rest. To define this, we need the
definition of best reply map.

Definition 6.5 (Best reply map). Given a subsystem i∈ V and a fixed vector Λ−i, then the best reply

map is given by

Ri(Λ−i) = {Λ ∈ΠV : V ∗i (Λ−i) = min
Λ∈ΠV

Vi(Λ,Λ−i)}. (6.22)

Definition 6.6 (Stackelberg equilibrium). The choice of partitions (ΛS
1, . . . ,ΛS

M) ∈ΠM
V is a Stackel-

berg equilibrium if ΛS
i ∈Ri(ΛS

−i).

Proposition 6.4. The consensus point ΛC ∈ΠV for the problem (6.14) is a Stackelberg equilibrium.

Proof. It follows from the Definition 6.6, and the consensus optimisation problem P̃(Λi,Λ−i). Once
a consensus has been achieved, each subsystem has no incentive to deviate from the consensus point
since its cost would increase. This implies that ΛC

i ∈Ri(ΛC
−i) for all i ∈ V .

If Assumption 6.4 is satisfied the consensus point changes in time until it converges to the de-
centralised partition. This consensus problem, however, is not suitable to control the LSS, since it
does not provide a mechanism for stable switching between partitions. A solution to this problem is
the inclusion of a partition and state dependent Lyapunov function to the cost functional (6.17). In
addition to this, an extra term was added to the cost measuring the communication cost of forming
new coalitions and can be chosen similarly to [54]. This new cost functional, see equation (6.20),
subject to constraints (6.15a), (6.15b), and (6.18), is also a consensus problem. This is formalised in
the following proposition:

Proposition 6.5. If Assumption 6.4 holds, then the modified cost function (6.20) solves the consensus

problem.

Proof. First of all, at the consensus point the cost functional satisfies Vi(x,ΛC
i ,ΛC

i ) = 0. By As-
sumption 6.4, since mi j → 0, the state satisfies ||x|| → 0, therefore the consensus state is the origin
or desired target state. The convergence of the algorithm is a consequence of Proposition 6.3.

6.5.4 Recursive feasibility

The recursive feasibility problem for the proposed coalitional DMPC is established through feasi-
ble switching between partitions. A feasible switching corresponds to a specified dwell-time that
ensures the state enters a target invariant set. Given a partition, Λ ∈ ΠV , the feasible sets for the
coalitions of that partition are defined by the constraints of the optimisation problem P̄c(x̄c), and are
the controllability sets.

X̄ N
c = {x̄c ∈ X̄c : Ū N

c (x̄c) 6= /0}
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where Ū N
c (x̄c) = {ūc : (6.9b)–(6.9e) are satisfied} and c ∈ Λ. The nominal feasible region for the

large-scale system is the product of the feasible regions for each of the coalitions, X̄ N
Λ = ∏c∈Λ X̄ N

c .
In a similar way, the feasible sets for the error ēc satisfy

E N
c (w̄c) = {ēc ∈Xc : F̄ N

c (ēc; w̄c) 6= /0},

where F̄ N
c (ēc; w̄c), {fc : (6.11a)–(6.9e) are satisfied}, and the overall feasible set for the partition is

E N
Λ (w̄Λ) =∏c∈Λ Ē N

c (w̄c); the unplanned error ê lies in the invariant set R̂Λ =∏c∈Λ R̂c as described
in the design procedure of Section 4.5.

Assumption 6.5 (RCI for unplanned error). For a partition Λ and each c ∈ Λ, the set R̂c is RCI

for the system ê+c = Accêc +Bcc f̂c + ŵc and constraint set (ξ x
c Xc,ξ u

c Uc,Ŵc), for some ξ x
c ∈ [0,1)

and ξ u
c ∈ [0,1), and where Ŵc ,

⊕
d∈Nc(1−αx

d)AcdXd⊕ (1−αu
d )BcdUd . An invariance inducing

control law for R̂c is f̂c = µc(êc).

Assumption 6.6. For each c ∈Λ, the constants (αx
c ,β x

c ,ξ x
c ) and (αu

c ,β u
c ,ξ u

c ) are chosen such αx
c +

β x
c + ξ x

c ≤ 1 and αu
c +β u

c + ξ u
c ≤ 1.

The “true" state of the system x = x̄+ ē+ ê is feasible when it belongs to the set X N
Λ = X̄ N

Λ ⊕
Ē N

Λ (w̄Λ)⊕R̂Λ. With these considerations, recursive feasibility for each member of a fixed partition
is summarised in the next theorem; the proof of such can be found in Section 4.4.

Lemma 6.2 (Recursive feasibility of each partition). Suppose that Assumption 6.5–6.6 hold. The

system (6.1) using a fixed partition Λ∈ΠV and controlled with Algorithm 4.1 is recursively feasible.

Despite each partition being feasible on its own, switching between these partitions is not neces-
sarily feasible; it is possible that x∈X N

Λ but x+ /∈X N−1
Λ′ if the new partition is not chosen carefully.

An argument of the switching signal is the nominal state, a consequence of this choice is that system
dynamic structure change every time switching occurs. Therefore, each element of ΠV defines a
mode for the large-scale system, with a different feasible region for each of those modes. To ensure
a feasible switching between modes for the system we require the state to enter a specific region
such that it remains feasible for the other modes, as seen in the next proposition.

Lemma 6.3. Assume x ∈X N
Λ . If x+ ∈

⋂
Λ∈ΠV

X N
Λ , then Algorithm 6.2 is recursively feasible.

Proof. If x∈X N
Λ , by recursive feasibility of each mode, Theorem 6.2, the successor state x+ ∈X N

Λ

and using the hypothesis x+ ∈X N
Λ′ for every Λ′ ∈ΠV . Recursively feasibility follows.

Proposition 6.3 is a conservative solution to the paradigm of switching systems since it demands
the successor state x+ to be steered into the interior of the feasible set rapidly. The successor state
lies in the set X N−1

Λ but in general X N−1
Λ ⊂X N

Λ′ does not hold; it is easy to find examples where
the successor state lies in X N−1

Λ \X N
Λ′ . A remedy for this problem is the introduction of a dwell-

time for each mode, as done by [95] and [164], in order to ensure a successor state to lie in the
intersection of feasible regions. Another drawback of using Lemma 6.3 naively is that the size of the
intersection of all feasible regions, as the number of modes experiences a combinatorial explosion
might be small. A method to circumvent this problem is to consider the switching between pairs of
partitions, Λ and Λ′, the dwelling-time is specified in the following Assumption.
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Assumption 6.7 (Dwelling time). There exist a non-zero integer ΥΠV
∈ Z+, such that for a pair

of partitions Λ,Λ′ ∈ ΠV with σ(k) = Λ, σ(k+ΥΠV
) = Λ′, and x̄(k) ∈X N

Λ , the state evolution

satisfy x̄(k+ΥΠV
) ∈X N

Λ ∩X N
Λ′ .

Assumption 6.7 can be easily met as a consequence of the stability of each partition, see Lemma 6.4.
The state enters the set X N

Λ ∩X N
Λ′ in a finite time ΥΛ,Λ′ ∈N since this intersection contains the ori-

gin. The overall dwell time can be taken as ΥΠV
= max{ΥΛ,Λ′ : Λ,Λ ∈ΠV }, sharper dwell-times

can be found depending on the applications and the size of the system. A consequence of defining
an appropriate dwelling time for the switching scheme is feasibility of the switching scheme.

Theorem 6.1 (Feasible switching). Suppose Assumption 6.7 holds. The switching between two

partitions is feasible.

Proof. The proof follows as a consequence of Lemma 6.3.

Therefore, the overall feasible region for the large-scale system, considering all the available
modes, is

X N =
⋃

Λ∈ΠV

∏
l∈Λ

(
X̄ N

l ⊕ Ēl(w̄l)⊕ R̂l

)
, (6.23)

The recursive feasibility properties of Algorithm 6.2 follows from Assumptions 6.6– 6.7 together
with Lemmas 6.1–6.3; the argument follows from the fact that the switching between partitions is
feasible by pairs, which is ensured by the existence of a dwell-time. This result is summarised in the
next theorem.

Theorem 6.2 (Recursive feasibility). Suppose Assumptions 6.6– 6.7 hold. If x is feasible for the

large-scale system, then x+ is also feasible. Furthermore, if x̄(0) is feasible, the large-scale system

under the control law generated by Algorithm 6.2 satisfies x ∈X and u ∈U for all time.

6.5.5 Stability

Because of the switching nature of the proposed algorithm, the closed loop properties of the LSS
do not follow trivially from those of individual partitions. The stability of each partition and the
existence of a Lyapunov function is given by Theorem 4.2 of [5]. In general, a decentralised stability
assumption is forced on the system to ensure global asymptotic stability; This, however, is no longer
required since robust control invariant sets were designed for each partition of the system, following
the observations made in [51]. The stability of the switching scheme can be guaranteed by using the
glueing conditions, imposed by the constraints (6.18) of the consensus optimisation problem. This
section aims to formalise the interplay between the stability results of the proposed robust controller
and the glueing conditions of the consensus problem. Before stating our main results, we require
two technical lemmas, which formalise the notions of stability of each partition, in fact Lemma 6.4
has been established in Section 4.4, and give conditions for a stable switching.

Lemma 6.4 (Stability of each partition). For each Λ ∈ΠV and ∀l ∈ Λ, (i) the origin is asymptoti-

cally stable for the composite subsystem

x̄+l = Al x̄l +Bl ū0
l (x̄l)
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ē+l = Al ēl +Bl f̄l(ēl , w̄l)+ w̄l .

(ii) The origin is asymptotically stable for x+l = Alxl +Bl(ū0
l + f̄ 0

l + µl(êl))+wl with a region of

attraction X̄ N
l ⊕E N

l ⊕ R̂l ⊆Xl .

Lemma 6.5 (Stable switching). Consider the system dynamics for partition Λ ∈ΠV , x̄+ = AΛx̄+
BΛū. If there exists a positive scalar γ > 0; a family of continuous positive definite functions

VΛ : Rn → R+ satisfying α1(||x̄(k)||) ≤ VΛ(x̄(k)) ≤ α2(||x̄(k)||) with σ(k) = Λ ∈ ΠV ; αi ∈
K -function, i = 1,2; and VΛ(x̄(k)) ≤ γVσ(k)(x̄(0)), ∀Λ ∈ ΠV , k ≥ 0. Then, the system is sta-

ble in the sense of Lyapunov of Definition 1.10.

Proof. The proof is outlined in [164].

With the previous lemmas, and recursive feasibility we are in position to state out main result on
stability of the system.

Theorem 6.3 (Stability of Coalitional DMPC). The origin is asymptotically stable for the large-

scale system x+ = Ax + Bu in closed loop with Algorithm 6.2 with region of attraction X̄ N ⊆
∏Λ∈ΠV

αx
ΛX.

Proof. Let x(0) ∈X N with an initial partition Λ(0), and since X N ⊂Rn is compact, there exists
r > 0 such that x(0) ∈Br. Take ζΛ = min

‖x̄‖=r
VΛ(x̄) such that the respective level set is:

SΛ
ζ
= {x ∈Rn : V̄ 0

Λ(x̄) ≤ ζ Λ},

such that SΛ
ζ
⊂ Br. From Assumption 6.7, the system remains on the partition Λ(0) until ΥΠV

samples of time. From Lemma 6.4, the Lyapunov function has an exponential decrease such that

VΛ(x(ΥΠV
)) ≤ ζ η

ΥΠV
Λ ,

for some convergence rate ηΛ ∈ (0,1). At the switching time, the partition changes to Λ′ ∈ΠV and
by Theorem 6.2, the state x belongs to X N

Λ′ . The Lyapunov functions {VΛ(·)}Λ∈ΠV
are bounded

on the respective feasible sets such that θΛ = sup{V̄Λ(x̄) : x̄ ∈X N
Λ } for each Λ; in addition, define

γΛ = ζ
−1
Λ (θΛ + εΛ) for any εΛ > 0, and γ = max{γΛ : Λ ∈ ΠV }. The Lyapunov function for the

new partition satisfy VΛ′(x̄(ΥΠV
)) ≤ θΛ′ ≤ θΛ′ + εΛ′ = γζΛ = γVΛ(x̄(0)). Applying Lemma 6.5

the LSS is stable in the sense of Lyapunov. The next part of the proof shows the attractivity of the
origin.

At the moment of switching, the system assumes a different partition Λ′, this new partition
satisfies (6.18) which requires a Lyapunov decrease VU

Λ′(x̄(k)) ≤ V L
Λ(0)(x̄(k)). As a consequence

VΛ′(x̄(k)) ≤ γVΛ(0)(x̄(k)) which in turn ensures a reduction of the overall cost function; therefore
convergence follows: {V̄ N0

Λ (x̄i)} → 0 and x̄ → 0, ū → 0. Using Lemmas 6.3 and 6.4, and the
result on decentralised stability of [51], attractivity of the origin for the overall system in X N =⋃
Λ∈ΠV

∏
l∈Λ

(
X̄ N

l ⊕ Ēl(w̄l)⊕ R̂l

)
is obtained.
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6.6 Simulations and examples

In this section, we present several examples illustrating the different parts of the Algorithm 6.2; how-
ever, these are only academic examples where the large scale system has a relative small dimension.
In both examples, the communication costs are associated to the Shapley value from coalitional
games. The first example is the one given in Section 6.3.3; the difference lies in the size of the
constraint sets:

Xi ={(ri,vi) | −2≤ ri ≤ 2∧−8≤ vi ≤ 8};

Ui ={ui | −4≤ ui ≤ 4}

and the initial conditions:

x1(0) =

1.9
−7

 ; x2(0) =

−0.5087
4

 ; x3(0) =

−1.7077
0

 ;x4(0) =

1.8
−4


Since the number agents is M = 4, there are |ΠV | = 15 possible partitions. From these par-
titions, the ones used by the algorithm are σ(0) = Λ2 = {{1,2,3},{4}}, the next partition is
σ(1) = Λ14 = {{1},{2},{3,4}}, and finallyσ(4) = Λ15 = {{1},{2},{3},{4}} which is the con-
sensus point, see Figure 6.4. Clearly, partitions close to the centralised are preferred when handling
transients, whereas once the couplings ||mi j|| vanish, then a decentralised partition is favoured. The
initial partition chosen by each agent is

Λ1(0) = Λ2 Λ2(0) = Λ2

Λ3(0) = Λ10 Λ4(0) = Λ14

Using Algorithm 6.2, agents iterate their partition choices until convergence towards the decen-
tralised partition, see Figure 6.4. As explained before, there are partitions that are similar to the
decentralised or centralised ones; the reason for this behaviour is the inherent coupling structure of
the system. The aim of this example is to compare the performance of Algorithm 6.2 to Algo-
rithm 4.1 and the centralised MPC. The cost-to-go from the centralised and from Algorithm 4.1 is
bigger than the algorithm presented in this Chapter which includes the communication costs, see
Table 6.2 and Figure 6.5. This is because of the reconfigurable nature of the approach: when the
system faces large transient signals, agents are grouped in suitable coalitions to reduce the effect
of the couplings; similarly when the system is close to its equilibrium the controller drops all the
communication costs by adopting a decentralised partition. The similarity between the costs reflect
the performance of the proposed algorithms in this thesis respect to the centralised controller; the

Approach Cost
CMPC 153.2547

Algorithm 4.1 153.1433
Algorithm 6.2 153.1339

Table 6.2: Values for the Cost function for different algorithms.
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Figure 6.5: Running cost for the LSS: ( ) cost for the presented algorithm, ( ) cost for [5],
( ) cost for the centralised MPC.

coalitional controller approaches more closely the centralised controller because it exhibits some
centralised behaviours during transient times. A more abstract example is shown next to illustrate
some of the properties of the algorithm. We consider M = 3, with associated dynamics for each
agent:

x+i = 0.6xi + ui +wi. (6.24)

The coupling structure is given by: N1 = {2}, N2 = /0, and N3 = {1}, each Ai j = 0.1 and Bi j =

0. These systems are subject to constraints |xi| ≤ 2 and |ui| ≤ 0.5 for each i ∈M . There are 5
possible partitions of the set M . In this particular case, we focus on the analysis of the chain
C = {ΛCen,Λ2,ΛDec}, where Λ2 = {{1,2},{3}}. The one step feasible regions for each of these
partitions can be seen in Figure 6.6, it is clear that none of these sets satisfy any nesting property,
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Figure 6.6: Feasible regions for the chain C = {ΛCen,Λ2,ΛDec}. is the centralised one step
feasible region, is the one step feasible region for Λ2, and is the one step feasible region
for the decentralised partition.

even more since there exist points such that x ∈X 1
Λ2 and x /∈ X 1

ΛCen or x /∈ X 1
ΛDec , therefore the

Algorithm 4.1 nor the centralised MPC are feasible. To this end we choose the initial point as a vertex
of X 1

Λ2 , x1(0) = 0.9722, x1(0) =−0.8333, and x3(0) = 0.8074. Once we apply Algorithm 6.2 to the
system, the only partition capable of initially controlling the system is, see Figure 6.7, σ(0) = Λ2.
For subsequent times, the controller switches to a decentralised partition. This behaviour can be
seen in Figures 6.8 and 6.9 for the states and controls respectively. Since X 1

Λ2 is the set such that all
the elements in there can be steered to the origin in 1 step, agent 1 and 2 converge quickly, whereas
agent 3, affected by the dynamic coupling, requires more time to converge.

6.7 Summary

This Chapter presents the problem of coalitional control for a LSS. The coalitional paradigm affirms
that different partitions, which have different communication topologies, of the LSS have differ-
ent effects on system performance. The proposed approach proposes a solution to the coalition
formation problem using a consensus approach. The convergence analysis employs concepts from
differential games so that the outcome is a Stackelberg equilibrium. The consensus problem is im-
plemented on the LSS using a sequential switching algorithm. The switching instances occur at
a slower rate than the sampling time for the dynamics. This multi-rate approach allows the con-
troller to guarantee feasible and stable switching between the different partitions while minimising
the communication needed in the LSS respect to its position in the state space.

The switching algorithm is coupled with a robust DMPC algorithm that steers the system towards
its equilibrium or desired target states. The switching nature of the system generates changes in
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Figure 6.7: Switching law for the system (6.24). The system converges towards the decen-
tralised partition after attenuating the feasibility issues of the centralised and decentralised partitions.
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Figure 6.8: State evolution in time, Subsystem 1 and 2 converge after 1 time step, but the third
agents needs more time to get to the origin. ( ) state for the first agent,( ) state for the second
agent, and ( ) state for the third agent.

the nominal dynamics, i.e. the dimension of each coalition is not static; therefore a requirement
for the robust controller is reconfigurability. A natural choice for such controller is Algorithm 4.1
developed in Chapter 4. The algorithm requires the solution of a single LP to compute the necessary
scaling constants needed to ensure robustness against the interconnections. The continuity of the
state trajectories is guaranteed by the glueing conditions, i.e. the Lyapunov decrease conditions of
the switching, in the consensus problem. These glueing conditions also ensure the continuity of the
control actions; albeit the price to pay is a loss of differentiability at the switching instants, i.e. the
control laws are piece-wise differentiable.

The main contribution of the Chapter is the interplay between the switching and control algo-
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rithms. The outcome of such controller offers advantages regarding the region of attraction and
flexibility in handling transients. From the simulations, the coalitional controller can successfully
control a LSS system form a point in the state space that is infeasible for the centralised and de-
centralised partitions. This idea of partitions changing over time allows structural changes in the
controller and can be used to include PnP operations, as defined by [144]. These operations are
taken into account in the sense that subsystems can be added or removed from a connected com-
ponent of the graph; therefore, a generalisation to a framework where the number of subsystems
changes is a natural step.
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Chapter 7

Conclusions and future work

This chapter concludes this thesis by giving a summary of the contributions made and the possible
future directions the research can be extended.

7.1 Contributions

The main contributions of this thesis are in the topics of Robust Distributed Model Predictive Control
and in Model Predictive Control.

7.1.1 Distributed Model Predictive Control

• In Chapter 2, a literature review of the existing DMPC methods is presented. This review
categorises the different approaches into iterative and non-iterative methods. The non-iterative
methods, which is the class to which the methods developed in this thesis belong, are classified
into those using robust control methods and those that do not. This thesis focused on tube
based robust control methods for DMPC; the starting point of the analysis is the “naive"
version of DMPC where the interactions between subsystems are ignored. This basic DMPC
approach is useful to characterise the inherent robustness of networks of linear systems.
The centralised and naive decentralised feasible regions are compared. There is not an evident
relation between the two sets when the prediction horizon is short. The results show that,
as expected, there are states that can be stabilised by means of a centralised MPC and not the
decentralised version; but–surprisingly– the converse is also true: there are states that can only
be stabilised by means of a decentralised control law and not with the centralised MPC. This
property suggests that the decentralised controller with its inherent robustness is capable of
taking advantage of the interaction among subsystems. To the best of the author’s knowledge,
this observation has not been reported in the literature.

• In Chapter 3, an output feedback algorithm for DMPC capable of handling coupled con-
straints was presented. This algorithm shows the flexibility of that MPC controllers offer in
the context of large-scale settings in the sense that different capabilities can be added in a
modular way. In this case, the output feedback capabilities are incorporated in the algorithm

137



138 7.1. Contributions

by adding an extra layer of robustness. Despite adding extra set tightenings, the structure and
complexity of the optimal control problem remain unaltered. The coupled constraint handling
was achieved by coordination of the optimised control actions. This coordination removes the
necessity for extra tightening, thus reducing the conservatism of the approach compared with
other existing approaches. The proposed approach was compared to the existing algorithms in
the literature using an academic example of four trucks coupled by springs and dampers. The
results of the performed test reveal that the presented algorithm exhibits the lowest cost and
can deliver performance close to that of the centralised controller.

• In Chapter 4, a distributed MPC algorithm for dynamically coupled linear systems was pro-
posed. Subsystem controllers solve (once, at each time step) local optimal control problems to
determine control sequences and state trajectories, and exchange information about these. The
main feature of the proposed algorithm is the use of a secondary MPC controller for each sub-
system, which acts on the shared plans of other subsystems and aims to reject the uncertainty
caused by neglecting interactions in the main problems. The complexity of these is similar
to conventional MPC problem. Recursive feasibility and stability are guaranteed under pro-
vided assumptions, and a design methodology was given for the off-line selection of controller
parameters and illustrated with an example. A key advantage of the proposed approach, in ad-
dition to the guaranteed feasibility and stability and despite this being a tube-based method,
is the absence of invariant sets in the optimal control problem. This makes the approach
potentially applicable to higher-dimensional subsystems. The contribution of the chapter is,
thus, a novel robust DMPC algorithm that employs an implicit notion of invariance. The
proposed algorithm was applied to the problem of automatic generation control in multi-area
power systems; robust approaches cannot be readily applied to such problems because of its
high dimensional subsystems. The scheme attains desirable guaranteed properties—constraint
satisfaction, feasibility and stability—by employing a three-term control law in each area; the
first term steers states to steady values, the second handles planned disturbances and errors,
while the third term robustly rejects unplanned disturbances. The price of obtaining the guar-
antees of the proposed approach is conservatism: if the inter-area coupling is too strong, then
the design procedure will fail and the proposed approach will not be applicable. On the other
hand, if the design procedure succeeds then the coupling is sufficiently weak, as was the case
in the 4-area system demonstrated in Section 4.6.3. The only MPC approaches available in
the literature that tackle the AGC problem are either the centralised MPC or DMPC methods
using distributed optimisation algorithms.

• In Chapter 6, A coalitional distributed MPC approach for dynamically and input coupled
systems was presented. Feasibility and stability of the overall system are guaranteed by means
of a carefully chosen switching law, and a tube-based MPC control law, with reduced conser-
vativeness and implicit invariant set calculations. The approach shows how the problem of
controlling a LSS can be viewed as a consensus problem in the selection of the preferred par-
tition of the LSS. The switching law can be obtained as the result of a game defined on the
set of subsystems to solve a consensus problem. The convergence of this consensus problem
is instrumental in achieving the required stability results. The proposed algorithm proposes
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a reconfigurable DMPC method based on switching partitions according to the needs of the
system. The proposed approach is the first method to achieve rigorous guarantees compared
to the existing approaches in the literature that focus on the optimality of the partitioning and
the analysis of the outcome of the coalition formation.

7.1.2 Model Predictive Control

• In Chapter 5, we have studied the use of available disturbance predictions within a conven-
tional linear MPC formulation for regulation. The OCP needs to be modified in order to
include such disturbance predictions. The main goal of such modifications is to remove any
ill conditions from the optimisation problem such as non-zero cost at the origin, or loss of
invariance of the terminal conditions. In particular, the standard terminal ingredients need
modification to compensate for the shifted equilibrium points. For unchanging disturbance
predictions, recursive feasibility is guaranteed and exponential stability of the closed-loop
system is established around an equilibrium point close to the origin. For arbitrarily chang-
ing disturbance sequences, stability of a robust positively invariant set is guaranteed, the size
of which is related to the permitted step-to-step change of the disturbance sequence. This
property can be interpreted as ISS implies recursive feasibility and provides a converse result,
albeit with stronger assumptions, to the widely known feasibility implies stability. The region
of attraction for the resulting controller is taken as the union of the corresponding feasible
regions for each possible predicted disturbance sequence. This approach is then applied to the
Nested DMPC algorithm in order to remove the need of feasibility checks in the algorithm,
and to enlarge the feasible region and basin of attraction of the Nested controller.

7.2 Directions of future research

Possible research directions are:

7.2.1 Distributed model predictive control

• Remove the need for a feasibility check of the coupled constraints in the Algorithm 3.1. This
can be achieved by considering a different class of invariant sets, in particular using the con-
cept of practical invariance developed in [119] coupled with the information sharing approach
of Chapter 4. Of particular interest is the relationship between a practically robust invariant

family of sets {R1,R2, . . . ,RM} and the maximal control invariant set, C max ⊂ Rn, for the
large-scale dynamics, x+ = Ax+Bu, subject to the coupled constraints on the states and in-
puts, Xcoupl ⊆∏i∈V Xi and Ucoupl ⊆∏i∈V Ui. The family of sets have attached to themselves
scalar functions that depend on the interactions of the subsystems. As a consequence the con-
jecture we propose is: If a practical family of invariant sets exists for the large scale system
and an initial state that satisfied all the constraints, then the set dynamics and an information
sharing structure guarantee robust constraint satisfaction and the stability of the origin.
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• Reduction of the conservativeness of the output feedback approach by considering an invari-
ant set taking into account both the control and estimation errors. The approach of [62] is an
starting point for the prospective analysis since it considers the computation of a coupled in-
variant set–for the nominal and estimation error dynamics. An output feedback tube controller
based on this coupled invariant set is shown to exhibit an improved performance compared to
the standard methods of [90]. Further reductions to conservativeness lie in describing the un-
certainty affecting each of the subsystems in a more accurate way; as shown in Chapter 4,
the interactions between subsystems can be split into two terms wi = w̄i + ŵi, a nominal or
planned term and an uncertain part. This description of the uncertainty allows one to include
the information arising from the interconnection into the estimation and control law synthesis
to improve system performance; and to decrease the size the the invariant sets used in the tube
controller.

• Extension to a nonlinear version of the Nested DMPC algorithm of Chapter 4. The presented
algorithm relies on the linearity of the dynamics to compute the control invariant sets. How-
ever, a straightforward generalisation to a nonlinear setting would require the computation of
invariant sets for nonlinear systems. The computation of such sets is an active research topic,
and as a consequence no efficient methods exist in the literature. The proposed idea is to use
a Linear Parameter Varying approach to approximate the nonlinear dynamics and interpolate
the disturbance rejection control law through a finite number of operating points similarly to
[61]. Each of these control laws determines a robust control invariant set. The linearity of the
dynamics at each operating point can be exploited to compute the feasible region and estimate
the region of attraction.

• The extension of the coalitional approach of Chapter 6 to a time-varying setting. Relaxing
the assumption that the number of agents is constant allows to model PnP operations on the
system. The partitions of the set of subsystems, V = {1, . . . ,M}, and the underlying dynamics
are closely related to the set of possible graphs defined over set V . The adjacency matrix
of such graphs defines the coupling structure of the network, hence this matrix defines the
structure of the controller. A possible way to approach the time-varying case is to consider
the truncation of an infinite dimensional operator to define the coupling structure between
subsystems, and a stochastic framework– a Markovian jump model– to assess the impact that
new subsystems joining the network may have on the overall dynamics and interactions.

• A more in depth analysis of the feasible regions for different partitions of the large scale sys-
tem and their relation to the corresponding Lyapunov functions. For a set of subsystems V

and its associated partition set ΠV , the conjecture that for a sufficiently long prediction hori-
zon, N, the feasible regions X (N,Λ) ⊆X enjoy a nesting property along the chains defined
by the partition refinement relation. The works of [13, 46] present a characterisation of the
feasible regions, albeit without terminal constraints, in terms of the prediction horizon length.
This characterisation of the feasible regions coupled with a suitable metric that compares the
dynamics arising from different partitions may be used to estimate the required bound on the
prediction horizon. On the other hand, to synthesise suitable controllers to ensure stability and
feasibility, tighter bounds on the MPC Lyapunov functions are required; this requirement can
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be met by computing upper and lower bounds on the value functions according to the structure
of the interactions of a given partition. The work of [94] offers some guidelines in the design
of tight Lyapunov function bounds for MPC based on the structure of the uncertainty set.

7.2.2 Invariant set and robustness

• The Nested algorithm initialisation procedure involves starting the uncertain dynamics within
the feasible region of the main optimisation problem, xi(0) ∈ X̄ N

i as outlined in Section 4.6.3.
This procedure guarantees recursive feasibility for the algorithm; however, it limits the size
of the effective feasible region to X̄ N

i . From Theorem 4.1, the overall feasible region for
every subsystem is X N

i = X̄ N
i ⊕

⋃
w̄i∈W̄ N

i
Ē N

i (w̄i)⊕ R̂i, a prospective line of research is to
enlarge the set of initial conditions. A method to achieve this is to find an inner approximation,
Di ⊂ Rni to the robust control invariant set D ⊂ Ri. If the initial error ēi = xi− x̄i lies in
Di, then future error will lie in the invariant set Ri. The challenge resides in finding an
inner approximation that has a pre-specified complexity; the requirement of a limit on the
complexity ensures that the approach preserves its advantages over the other algorithms in the
literature.

• The control law arsing from an RCI set is often a set-valued map µR : R 7→ 2U. Under some
mild assumptions the values of this map are PC sets and enjoy some continuity properties
(lower semicontinuity is guaranteed). This continuity allows for a plethora of selection maps,
u : R 7→U, that can be chosen with certain properties in mind such as piece-wise linearity,
Lipschitz continuity. The study of the closed-loop behaviour of these laws and the LSS is an
interesting direction of research.

7.2.3 Model predictive control

• Consider a nonlinear dynamical system subject to predicted disturbances; new modifications
are needed to cope with this scenario. The first problem to tackle is that of the terminal
conditions. In the linear case, this translation is depends only in the dynamics such that x =

x̄+w f with w f ∈
⊕

∞
l=0 Al

KW. In the nonlinear case, the translation point depends not only
on the system dynamics, but also on the state of the uncertain system, i.e. x = x̄ +w f (x).
The problem lies in the initialisation of the MPC algorithm; to offset the terminal conditions,
the state after N steps is required to compute any translation. Further assumptions on the
system dynamics are required to extend the proposed methodology to nonlinear systems. A
method to formulate such assumptions is to study the requirements for the computation of
invariant sets for nonlinear systems given the close relationship between the translation points
and the minimal RPI set for the linear case. A second potential issue is that the ISS property
described in Section 5.4.2 on its own is not enough to guarantee recursive feasibility for more
general dynamics. In the presented approach, the linearity of the dynamics guarantees convex
sets when propagating the dynamics. For the nonlinear case, this no longer hold, in fact, it
is possible to find simple examples of dynamics that map convex sets into non convex ones.
The non-convexity of the constraint and feasible sets pose serious challenges to the recursive
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feasibility results. To circumvent such issues, the problems of recursive feasibility and stability
can be casted in terms of the tangent cones of the constraint set which can be viewed as a set-
valued map. These cones provide useful information about the possible feasible directions of
the optimisation problem.



Part IV

Appendices

143





Appendix A

Model Predictive Control

In this Appendix we describe the basics and elemental properties of an MPC controller. The in-
terested reader is encouraged to revise Chapter 2 of [122] for detailed proofs of the statements and
claims made in this appendix. Consider the discrete time linear time-invariant system:

x+ = f (x,u) (A.1)

The system is subject to constraints on state and inputs:

x ∈X; u ∈U (A.2)

Both of these sets satisfy the following assumption

Assumption A.1 (Implied invariance). The sets X and U are PC-sets.

The MPC controller uses κ(x) = u0(0;x) as a control law which is extracted from the sequence
of N optimal control moves ū0 = {u0(0), . . . ,u0(N−1)}. The optimal control sequence is the solu-
tion of the following constrained optimal control problem:

P(x) : min
{

VN(x,u) : u ∈UN(x)
}

(A.3)

where UN(x) is defined by the following constraints for i = 0 . . .N−1:

x(0) = x, (A.4a)

x(i+ 1) = f (x(i),u(i)), (A.4b)

x(i) ∈X, (A.4c)

u(i) ∈U, (A.4d)

x(N) ∈X f . (A.4e)

For the problem to be well posed, the following regularity assumptions are required:

Assumption A.2 (Continuity of the system). The functions f : X×U→Rn, ` : X×U→R+, and

Vf : X f →R+ are continuous.
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The set of feasible sets is equivalent to the set of the N-step controllable set to X{ such that

XN = {x ∈X : ∃u ∈UN such that x(N) ∈X and x(i) ∈X, for i = 0 . . .N−1} (A.5)

This set coincides with the projection of the constraint set, defined in Equations (A.4a)–(A.4e), such
that XN = ProjX U N . Assumptions A.1 and A.2 guarantee that the optimisation problem has a,
not necessarily unique, solution. These terminal ingredients ensure the stability of the closed loop
system, as can be seen in Theorem A.2.

Assumption A.3 (Basic stability assumption).

min
u∈U

{
Vf (Ax+Bu)+ `(x,u) : Ax+Bu ∈X f

}
≤Vf (x), for all x ∈X f . (A.6)

Assumption A.4 (Control invariance of X f ). The set X f is control invariant for x+ = Ax+Bu and

the set U.

Assumption A.5 (Cost function bounds). The functions `(·, ·), Vf (·) are continuous, with `(0,0) =
0, Vf (0) = 0 and such that, for some c1 > 0, c2 > 0, a > 0,

`(x,u) ≥ c1|x|a for all x ∈XN , u ∈U (A.7)

Vf (x) ≥ c2|x|a for all x ∈X f (A.8)

The MPC control law κN(·) in conjunction with the value function V 0
N(·) of the OCP (A.3)

induce the desired properties of recursive feasibility and stability of the closed-loop system.

Theorem A.1. The set XN is positive invariant set for the dynamics x+ = f (x,κN(x)).

This theorem ensures the recursive feasibility property through the invariance property of the
control law. From the definition of invariance, if x∈XN at a given instant of time, then the successor
state x+ ∈XN which implies that the OCP (A.3) has a solution. The following theorem uses the
value function of the optimal control problem as a Lyapunov function for the overall system to
guarantee stability of the closed-loop system.

Theorem A.2 (Stability). Suppose Assumptions A.1–A.5 hold, X f has an interior containing the

origin and XN is bounded. Then for all x ∈XN

V 0
N(x) ≥ α1(‖x‖) (A.9)

V 0
N(x) ≤ α2(‖x‖) (A.10)

V 0
N( f (x,κN(x))≤V 0

N(x)−α3(‖x‖) (A.11)

in which αi ∈K∞- function for i = 1,2,3.
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[105] G. Pannocchia and E. Kerrigan. OffsetâĂŘfree receding horizon control of constrained linear
systems. AIChE J., pages 1–32, 2005.

[106] R.J. Patton and H. Hu. Fault-Tolerant Control Systems : the 1997 Situation. pages 1033–1054,
1997.

[107] B. Picasso, D. Desiderio, and R. Scattolini. Robustness analysis of nominal Model Predictive
Control for nonlinear discrete-time systems *. IFAC Proc. Vol., 43(14):214–219, sep 2010.



154 Bibliography

[108] D.B. Pourkargar, A. Almansoori, and P. Daoutidis. Distributed model predictive control of
process networks: Impact of control architecture * *Financial support from the Petroleum
Institute, Abu Dhabi, UAE is gratefully acknowledged. IFAC-PapersOnLine, 50(1):12452–
12457, jul 2017.

[109] S.J. Qin and T.A. Badgwell. A survey of industrial model predictive control technology.
Control Eng. Pract., 11(7):733–764, 2003.

[110] Z. Qin, T. Liu, and Z. Jiang. Distributed Control of a Class of Second-Order Nonlinear Multi-
Agent Systems with Switching Topologies. pages 8656–8661, 2017.

[111] D. Raimondo, L. Magni, and R. Scattolini. Decentralized MPC of nonlinear systems: An
input-to-state stability approach. Int. J. Robust Nonlinear Control, 17(17):1651–1667, nov
2007.

[112] D. Raimondo, D. Limon, M. Lazar, L. Magni, and E. Camacho. Min-max Model Predictive
Control of Nonlinear Systems: A Unifying Overview on Stability. Eur. J. Control, 15(1):
5–21, 2008.
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