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Abstract
Background: The epidemic of obesity, metabolic syndrome, type 2 diabetes and non-alcoholic fatty liver disease is currently 
unsustainable for Public Health systems, and preventive and therapeutic approaches are urgently sought to improve health out-
comes for affected individuals.

Aim: In this study, we aim to further explore and synthetize available evidence on the effects of selected Plant Polyphenols (PP) 
upon molecular mechanisms associated with oxidative stress and inflammatory pathways. We also aim to briefly discuss PP 
supplementation as therapeutic tool for the prevention and management of prevalent obesity-associated metabolic disorders.

Methods: This narrative review was performed in the PubMed database in June 2018 without restriction of publication period.

Results: PP influence a broad range of cell signalling pathways; by modulating the activity of nuclear transcription factors, PP 
modulate gene expression and antioxidant responses, as well as inflammation and its resolution. Several interventional studies 
have investigated the effects of PP supplementation in a variety of sample populations, but no consensus has yet been reached 
regarding composition, dosage or course of treatment for therapeutic purposes. However, overall results tend to suggest a posi-
tive effect of PP in either improving metabolic profile or minimizing negative disease outcomes. Careful consideration on PP 
supplementation is paramount; adverse effects have already been described.

Conclusion: The successful prevention and management or treatment of obesity-associated metabolic disorders may be achieved 
through an effective multidisciplinary approach to tackle their modifiable risk factors. A balanced diet, which includes naturally 
occurring sources of PP associated with lower consumption of ultra-processed foods, is a relevant approach for the positive 
health outcomes desired.
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Introduction
Amassing amounts of epidemiological data confirm the 

positive associations and common risk factors between obesity 
and Non-Alcoholic Fatty Liver Disease (NAFLD) with other 
chronic metabolic conditions such as metabolic syndrome, 
Type 2 Diabetes (T2D) and cardiovascular diseases [1,2]. These 
arguably preventable chronic metabolic disorders are known to 
reduce life expectancy, and their combined burden to the global 
Public Health system is currently unbearable. Their prevalence 
is believed to be increasing [3], and their negative impact upon 
the quality of life and wellbeing of affected individuals is highly 
detrimental. Metabolic syndrome covers a cluster of comorbidities 
including hypertension, dyslipidaemia, hyperglycaemia and 
obesity, particularly visceral obesity [3], which in turn are also 
major risk factors for cardiovascular disease and T2D [4]. In the 
USA, the prevalence of Metabolic Syndrome is believed to be at 
approximately 22.5% of the adult population [5]; but other studies 
have found higher prevalence, for example in 56.3% of individuals 
aged 50 years or older [6]. 

NAFLD covers a broad term of conditions affecting the liver, 
but their common manifestations include excessive accumulation 
of fat in hepatocytes, insulin resistance and metabolic syndrome 
[7]. The prevalence of NAFLD is estimated at 10 to 40% of adults 
worldwide, and approximately 40% of the affected individuals 
show increased levels of pro-inflammatory biomarkers [7]. As the 
prevalence and costs of obesity-associated metabolic disorders 
are predicted to increase, modern societies welcome new and 
affordable approaches for the effective prevention, management 
and possibly treatment of such conditions. Recent studies have 
suggested that resveratrol and flavonoids, molecules belonging to 
the large family of Plant Polyphenols (PP), have beneficial effects 
against the development and manifestations of metabolic disorders 
[8,9,10]. 

Plant Polyphenols (PP) are organic compounds characterized 
by the presence of phenolic structural units, highly relevant in plant 
biology for their properties in defence against ultraviolet radiation 
and pathogens [11]. PP include heterogeneous families of over 
8,000 molecules commonly classified as phenolic acids, stilbenes, 
lignans and flavonoids [12]. In specific regards to flavonoids, 
these are members of a large subfamily of PP featuring over 6,000 
compounds including flavones, flavonols, flavanols, flavanones, 
isoflavones, anthocyanins and chalcones, which are found in a 
vast range of fruits and vegetables [13,14]. Fruits rich in PP may 
contain up to 200 to 300 mg of PP per 100 g wet weight, whilst up 
to 100 mg of PP can be found in a cup of tea, coffee or a glass of 
red wine [13]. 

The digestion, absorption and metabolism of flavonoids 
are heavily dependent on their molecular presentation, whether 
monomeric, also known as aglycones, or glycosylated forms. 
The digestion of flavonoid glycosides begins with the process of 
mastication, supported by the action of the oral microbiota, which 
is known to secrete β-glucosidase [15,16]. Only approximately 5% 
to 10% of flavonoid glycosides are absorbed in the small intestine 
[16,17]; the largest proportion usually reaching the intestinal colon 
undigested, where they are partially hydrolysed by enterobacteria, 
with the corresponding aglycones subsequently released for 
absorption [16]. Glycosylated flavonoids are poorly absorbed by 
the gastrointestinal tract due to their hydrophilic properties [18].

Once digested and absorbed by the gastrointestinal tract, 
a complex process heavily dependent upon the gut microbiota 
[15-17], flavonoids are metabolized in the liver by complex 
hydroxylation, methylation, glucuronidation and sulphation 
reactions [16]. Their conjugated metabolites are released into 
the bloodstream and target extra-hepatic tissues; it is however 
understood that any excess of circulating conjugated flavonoid 
is reabsorbed by the liver and excreted with bile into the small 
intestine, subsequently being either re-hydrolysed and reabsorbed 
by enterocytes or excreted in the faeces [19]. 

Resveratrol is a polyphenol belonging to the class of stilbenes 
[20] with several reported beneficial effects for human health 
[8,9]. Resveratrol is found abundantly in purple grapes, red wine 
and other products derived from grapes, blueberries, gooseberries, 
blackberries and pomegranate [13,14]. Resveratrol appears to 
show high absorption rate but low bioavailability [21], possibly 
due to a range of bioconversion events involving hydroxylation 
[22], glycosylation, methylation [23], and hydrolysis [24], not 
only in the liver but also in other peripheral tissues.

The Influence of Plant Polyphenols in Signal 
Transduction Pathways

PP can act as receptor ligands, promoting interactions 
with various cell-signalling pathways, and disturbances in these 
pathways may be associated with the aetiology of chronic diseases. 
For example, the binding of dihydroxyflavone, a PP commonly 
found in flowering plants, to Tropomyosin Receptor Kinase (TRK) 
triggers autophosphorylation and subsequent activation of these 
receptors [25]. This particular signalling system not only is relevant 
for the activity of brain-derived factors for maintenance of neural 
tissue homeostasis, but also may be involved in neurodegeneration. 
The activation of the Adenosine Monophosphate-Activated Protein 
Kinase (AMPK) triggers intrahepatic fatty acid oxidation, inhibits 
lipogenesis and cholesterol synthesis, and modulates insulin 
secretion by pancreatic beta cells [26]; pathways constitutively 
activated as result of decreased energy availability for the cell [27]. 
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It has been described that PP, including anthocyanins and others, 
can stimulate AMPK activation [13,28]; consequently, PP-AMPK 
interactions may be potential molecular targets for metabolic 
disarrangements.

The Mitogen-Activated Kinase (MAPK) and the Kinase 
Regulated by Extracellular Signals (ERKs) proteins are intracellular 
signalling proteins constitutively activated by various growth 
factors, leading to activation of pathways involved in control of 
proliferation, differentiation, survival, apoptosis and cell migration 
[25,29]. Flavonoids are known to interact with MAPK and ERKs 
[30], possibly modulating inflammatory mechanisms, and also 
likely to modulate the risk of metabolic disarrangements related 
to these pathways. ERKs belong to the superfamily of MAPKs, 
and are responsible for phosphorylation of the cyclic Adenosine 
Monophosphate (cAMP)-Responsive Element-Binding Protein 
(CREB) [25]. CREB is a transcription factor that recognizes 
the sequence of nucleotides located in its target genes, known 
as Cyclic AMP-Response Elements (CRE). CRE can be found 
in the regulatory regions of genes such as tyrosine hydroxylase, 
somatostatin, corticotropin-releasing hormone, as well as in genes 
involved in circadian rhythms such as the Period Circadian Protein 
Homolog 1 and 2 (PER1 and 2). When CREB binds to the CRE 
domain, the newly formed dimer acts as a transcriptional regulator 
of genes related to cell protection, modulated by the nuclear factor-
erythroid 2-related factor 2 (Nrf2) pathway [25], which will be 
discussed in more detail later.

It is understood that CRE is responsive to resveratrol, 
but it does not present the very same level of response to other 
phytochemicals such as quercetin, curcumin and naringenin [31], 
which suggests not all PP can act as signalling molecules and activate 
CREB-mediated gene transcription. The effects of resveratrol 
in the positive regulation of CRE-mediated gene transcription, 
as well as its potential for transcriptional activation of CREB 
and Activating Transcription Factor 2 (ATF2) [31], suggest this 
polyphenol may have important functions in cell protection. The 
activation of Protein Kinase B (Akt) is induced by cAMP, which is 
also involved in the activation of the Exchange Protein Activated 
by cAMP (Epac1) [32,33]. It has been shown in High Fat Diet 
(HFD)-fed obese mice that resveratrol supplementation induces 
effects similar to those of calorie restriction, inhibiting the cAMP-
degrading Phosphodiesterase (PDE) activity, as well as activating 
the cAMP-Akt pathway, leading to Epac1 activation [34]. Epac1 
activation may provide protection against metabolic manifestations 
induced by obesity and glucose intolerance induced by diet.

Resveratrol administration to murine 3T3-L1 pre-adipocytes 
has not only increased the expression of the Sirtuin 1 (SirT1) gene 
and protein levels, but also reduced the expression of Survivin [35], 
a protein involved in inflammatory and apoptotic pathways and 

whose overexpression is positively related to tumour progression 
[36,37]. The modulation of AMPK, Akt and Survivin pathways 
by resveratrol suggests the possible therapeutic applications of 
PP in the prevention and possibly treatment of obesity and related 
metabolic disorders [35,38].

An in vitro study showed a dose response effect of resveratrol 
administration on differentiation of vascular smooth muscle 
cells, involving various signalling pathways. After low dose (3-5 
µM) resveratrol, cell differentiation occurred via SirT1 and Akt 
activation, independently of AMPK. However, after higher dose 
(30 µM), the stimulus for differentiation occurred via a more 
complex signalling pathway, involving not only AMPK activation 
but also inhibition of the Mammalian Target of Rapamycin 
Complex 1 (mTORC1) pathway [39]. SirT1 and Akt activation 
induced by resveratrol improved insulin sensitivity and decreased 
the gene transcription and activity of pro-inflammatory proteins 
[40]. The inhibition of the mTOR pathway induced by higher 
doses of resveratrol is particularly relevant in obesity-associated 
metabolic disorders as this pathway is involved in a range of 
intracellular events, including regulation of gene transcription and 
protein translation, energy homeostasis, ribosome biogenesis and 
cell response to hypoxia [41].

HFD-fed mice supplemented with 0.1% resveratrol showed 
significantly increased mRNA expression of Uncoupling Protein 
1 (UCP1), PGC-1α, Cytochrome C and Pyruvate Dehydrogenase 
[42]. In the same study, adipocytes harvested from these animals 
and incubated with resveratrol showed higher phosphorylation 
of AMPKα1 and increased fatty acid oxidation [42]. In another 
study with HFD-obese mice, 0.4% resveratrol supplementation 
significantly reduced the expression of key genes involved in 
adipogenesis, including Peroxisome Proliferator-Activated 
Receptor Gamma 2 (PPARγ2), Sterol Regulatory Element-Binding 
Protein 1c (SREBP-1c), Fatty Acid Synthase, Lipoprotein Lipase 
(LPL) and Adipocyte P2 Protein (aP2), as compared to control 
mice fed the HFD only [43]. Collectively, these results suggest 
resveratrol may ameliorate metabolic disarrangements induced by 
obesity.

As resveratrol increases the bioavailability of cytosolic 
cAMP, it amplifies signalling transduction cascades involving 
Epac1, Ca++/calmodulin-dependent protein kinase kinase β 
(CaMKKβ) and AMPK. The Epac1/CaMKKβ/AMPK pathway 
is controlled by the SirT1/PGC-1α signal [34] and is known to 
regulate metabolic processes including energy metabolism, fatty 
acid oxidation, gluconeogenesis, mitochondrial biogenesis and 
respiration [27]. In a relatively small randomized double-blind 
crossover study involving obese men, resveratrol supplementation 
for 30 days increased Citrate Synthase activity in skeletal muscle, 
favouring mitochondrial metabolism via AMPK-SIRT1-PGC1α 
activation [44].
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A combined in vitro and in vivo study showed that resveratrol 
treatment increased cAMP, SirT1, phosphorylated Protein Kinase 
A (pPKA), AMPK and SirT activity in HepG2 cells. In mice with 
induced hepatic steatosis, resveratrol administration reduced 
palmitate-induced lipid accumulation, increased fatty acid 
β-oxidation in harvested hepatocytes, and ameliorated hepatic 
steatosis, results partially attributed to induction of hepatocyte 
autophagy via activation of the cAMP-pPKA-AMPK-SirT1 
signalling pathway [45]. In summary, these results suggest 
resveratrol may have a potentially preventative role, and possibly a 
therapeutic one, in the pathogenesis and manifestations of obesity, 
NAFLD, metabolic syndrome, T2D and cardiovascular disease. 
The effects of PP, obtained either from diet or supplementation, 
upon the modulation of metabolic disarrangements is a relatively 
new field of research worth of further detailed investigation.

Plant Polyphenols Modulate Inflammation and 
Oxidative Stress

Recent evidence suggests PP can influence gene expression 
by binding to specific transcription factors, influencing metabolic 
pathways related to the modulation of inflammation and 
Oxidative Stress (OS). The well documented NF-kB pathway, 
which transcribes pro-inflammatory mediators and is involved in 
various cell processes such as apoptosis and differentiation [46], 
is activated by a variety of endogenous and exogenous triggers of 
inflammation, including monosodium glutamate, fructose, alcohol, 
tobacco, glucocorticoids, Lipopolysaccharide (LPS), ultraviolet 
radiation, inducible Nitric Oxide Synthase, Cyclooxygenases 1 
and 2 (COX-1 and COX-2), pro-inflammatory cytokines such as 
interleukin 1 (IL-1) and Tumour Necrosis Factor alpha (TNF-α) 
[47,48], and others.

Procyanidin, a potent PP belonging to the family of flavonoids 
and found in grape skin, grape seeds and green tea, appears to 
regulate NF-kB at various steps of its signalling cascade. In the 
earlier steps of this pathway, procyanidins may modulate IkappaB 
kinase activity as well as cytoplasmic retention of the dimer p65: 
p50. In the subsequent steps, procyanidins appear to inhibit the 
nuclear translocation of NF-kB pro-inflammatory dimers, and their 
subsequent binding to the promoter regions of target genes [49]. It 
has been demonstrated that microglial cells submitted to hypoxia 
and supplemented with resveratrol significantly decrease NF-kB 
activation and increase Brain-derived Neurotrophic Factor (BDNF) 
and IL-10 gene expression [50]. In a similar way, activation of 
the SirT transcription factor by resveratrol induces deacetylation 
of the NF-kB-p65 active dimer, inhibiting its binding to DNA, 
consequently suppressing the expression of cyclooxygenases, 
peroxidases and lipoxidases associated with various inflammatory 
pathways.

Fructose-fed diabetic rats treated with resveratrol showed 
decreased activity of the NF-kB-p65 molecular pathway, as 
well as attenuated OS, in heart tissue [51]. These results further 
suggest that the anti-inflammatory properties of PP appear to occur 
mainly via inhibition of the NF-kB pathway [52], with consequent 
reduction of gene expression, translation and secretion of several 
pro-inflammatory mediators. The Early Growth Response Gene-1 
(EGR1) transcribes a superfamily of nuclear transcription factors 
named EGR-1 proteins, which act as modulatory factors for cell 
differentiation, mitogenesis, haematopoiesis, angiogenesis and 
tissue repair [53,54], but are also involved in carcinogenesis, 
atherosclerosis, liver fibrosis, OS and inflammation [54]. Turmeric 
is rich in curcumin, a PP known for its anti-inflammatory properties 
[55,56] and discussed later in this review. The main inflammatory 
signalling pathway inhibited by curcumin is believed to be the one 
controlled by EGR1 [55]. Curcumin is also believed to suppress 
the EGR1 gene activity by interruption of the ERK signalling 
pathway [53]. A study employing Caco-2 and HT-29 cells, which 
are non- and low-mucus producing colorectal adenocarcinoma 
cells, respectively, treated with curcumin showed reduced binding 
activity of the EGR1 transcription factor to its Epidermal Growth 
Factor Receptor (EGFR), which also functions as a responsive 
element to curcumin [53].

PP have been recently described as inhibitors of the gene 
expression of Oestrogen Receptor, EGFR and ERK, as well 
as modulators of ERK phosphorylation and modulators of the 
Phosphatidylinositol 3-kinase / Protein Kinase B (PI3K/Akt) 
pathway [57]. These pathways are involved in vital cell functions 
such as growth, proliferation, differentiation, mobility, survival 
and intracellular transport [57]. The Serine/Threonine Kinase 
PI3K/Akt pathway can be induced by OS, which in turn induces 
pro-inflammatory responses. However, the excessive activation 
of this pathway is linked to the pathogenesis of chronic diseases 
that feature a pro-inflammatory component, such as NAFLD, 
atherosclerosis and myocardial infarction [58]. 

The transcription pathway modulated by Nrf2 is an important 
mechanism employed by the cell to control OS levels. When 
bound to the Kelch-like ECH-Associated Protein (Keap1), Nrf2 is 
inactivated, sequestered in the cytosol and degraded via ubiquitin-
proteasomes. Molecular insults of oxidative nature induce Nrf2 
phosphorylation, which releases Keap1 for degradation by ubiquitin 
proteasomes, with subsequent translocation of the activated Nrf2 
to the cell nucleus. Once in the nucleus, Nrf2 heterodimerizes with 
Small Musculoaponeurotic Fibrosarcoma (small Maf) proteins, 
facilitating its specific binding to the Antioxidant Response 
Element (ARE) promoter regions, transcribing antioxidant and 
phase II detoxifying enzymes that combat the original molecular 
insults [46,59,60]. OS levels modulate the activity of the Keap1/
Nrf2 pathway, and more recently, it has been found this pathway 
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can also be activated by PP [61]. Because the Keap1/Nrf2 
heterodimer induces the expression of detoxifying and antioxidant 
enzymes, PP supplementation could be relevant to minimize the 
biochemical disarrangements observed in the pathophysiology of 
obesity-associated inflammatory metabolic disorders.

In NAFLD for example, the activation of pro-inflammatory 
signalling pathways in hepatocytes due to translocation of 
lipopolysaccharides from the gut lumen, or due to the higher 
influx of pro-inflammatory cytokines secreted by the excessive 
amounts of adipose tissue, are some of the molecular mechanisms 
known to induce OS in various cell compartments [62]. In that 
regard, it is known that NF-kB can supress the transcription of 
ARE-dependent genes [46], and both Nrf2 and NF-kB compete 
for binding to the CREB. The upregulation of Nrf2 by PP may 
reduce the activity of the pro-inflammatory NF-kB [63], which 
reinforces the hypothesis that PP have relevant anti-inflammatory 
and anti-oxidant properties. PP may exert not only a direct effect 
stimulating the formation of the small Maf-Nrf2 dimer, but also 
pre-transcriptionally, activating kinases such as PI3K, p38, ERK, 
PKC and JNK, which in turn release the Nrf2 transcription off its 
inhibitory complex Keap1/Nrf2. It is understood PP not only can 
act in the ubiquitin-proteasome pathway inhibiting proteolytic 
degradation of the Nrf2 and thereby prolonging its half-life, PP 
can also promote Nrf2 translocation to the nucleus and its binding 
to ARE, consequently inducing the transcription of target genes 
[64,65].

The promoter regions ARE and Xenobiotic-Responsive 
Element (XRE) are found in various target genes regulated by Nrf2. 
Constitutively, Nrf2 binds to ARE and induces upregulation of 
anti-oxidant systems, whilst XRE is activated by the transcription 
factor Aryl Hydrocarbon Receptor (AhR), leading to the same 
effect [46]. Both harmful xenobiotics and PP, including resveratrol 
and curcuminoids, can lead to the activation of AhR. Consequently, 
PP consumption favours the elimination of xenobiotics and 
carcinogens such as dioxin, once all these molecules compete for 
binding to the AhR [66-70].

Resveratrol Supplementation in Obesity-
Associated Metabolic Disorders

Recent evidence suggests that resveratrol, via its antioxidant 
and anti-inflammatory actions on various metabolic pathways, may 
positively influence outcomes associated with the management of 
obesity-associated metabolic disorders [71]. A meta-analysis study 
involving 388 individuals supplemented daily with doses ranging 
from 8 to 1,500 mg of resveratrol showed significantly improved 
glycaemic control and insulin sensitivity in the T2D participants 
included in the study [41]. A case-control study involving patients 
with uncomplicated T2D and patients with proliferative and non-

proliferative diabetic retinopathy found significantly decreased 
levels of BDNF and Lipoxin A4 (LXA4), and increased IL-6, 
in relation to healthy control subjects [72]. Whilst IL-6 is pro-
inflammatory, LXA4 is heavily involved in the resolution of 
inflammation. It is believed resveratrol supplementation may 
be employed as adjunctive therapy in T2D; several studies 
have found evidence of BDNF increased levels with resveratrol 
supplementation [50,73-75]. 

A randomised double-blind placebo-controlled study 
involving 50 NAFLD patients investigated the effects of 500 mg 
resveratrol supplementation for 12 weeks [76]. All participants were 
professionally advised to follow a lower calorie / lower fat diet and 
encouraged to adopt positive lifestyle changes, and a subgroup was 
additionally supplemented with resveratrol. Significant reductions 
in anthropometric markers and blood AST were found in both 
groups, but the resveratrol-supplemented group showed reduced 
ALT, pro-inflammatory cytokines, cytokeratin-18, NF-κB activity 
and lower steatosis, as compared to the participants receiving 
nutritional and lifestyle advice only [76]. This study showed that 
resveratrol supplementation in combination with nutritional and 
lifestyle advice was more effective than advice alone in reducing 
liver inflammation, steatosis and apoptosis.

A more recent placebo-controlled randomised clinical study, 
this time employing a higher dose of resveratrol for a longer period 
of time, was conducted with overweight individuals diagnosed 
with NAFLD and increased transaminases [77]. In this study, 
volunteers were given 1.5 g resveratrol supplementation daily for 
six months. Resveratrol supplementation promoted a small but 
statistically significant decrease in intrahepatic lipid content. On 
the other hand, resveratrol was ineffective in improving the other 
biomarkers of liver pathology, insulin sensitivity and metabolic 
profile measured. The authors also report adverse effects were 
seen in one participant [77]. The studies of [76,77] report different 
results regarding the outcomes of resveratrol supplementation in 
NAFLD, however it is worth highlighting specific methodologies 
employed for each study. 

Although the results described above suggest a beneficial, 
and promising, effect of resveratrol supplementation for the 
management and treatment of obesity-related metabolic disorders, 
caution is advised regarding possible side effects. In a clinical study 
involving healthy individuals receiving a daily supplementation of 
1 g resveratrol for four weeks, the activity of the Cytochrome P450 
(CYP) isoenzymes CYP1A2, 2D6, 2C9 and 3A4 were measured 
through metabolism of its specific compound targets caffeine, 
dextromethorphan, losartan and buspirone, respectively [78]. It 
was found that resveratrol supplementation induced the activity 
of CYP1A2 but inhibited the activity of 2D6, 2C9 and 3A4. As 
the CYP isoenzymes metabolize over three quarters of the drugs 
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currently approved and commercially available for administration 
in humans [71], the aforementioned study of [78] suggests a 
relatively high dose of resveratrol has the potential to adversely 
affect drug pharmacokinetics and pharmacodynamics in a wide 
context. In light of such observation, due care is recommended 
when co-administering resveratrol and drugs due to the risk of 
altering drug bioavailability and efficacy. 

Another possibly detrimental effect of resveratrol must 
be noted. The effects of resveratrol on hepatitis viral replication 
was investigated in an in vitro model employing hepatocellular 
carcinoma cells and in an in vivo model of hepatitis B. Resveratrol 
treatment was found to promote deacetylation of PGC-1α via 
activation of SirT1, subsequently increasing the transcriptional 
activity of PPAR-γ, which induced further replication of Hepatitis 
B virus (HBV) [79]. Similarly, the effects of resveratrol on Hepatitis 
C virus (HCV) replication potential was also investigated. Cultured 
hepatocytes infected with HCV and treated with resveratrol 
showed increased viral replication and reduced response to the 
antiviral drugs ribavirin and Interferon gamma (IFNγ) [80]. If 
these experimental results can be applied to humans, it may be 
suggested resveratrol supplementation could increase HBV and 
HCV replication and consequently exacerbate the manifestations 
of viral hepatitis. Substantial scientific evidence has so far 
demonstrated beneficial effects of resveratrol supplementation for 
metabolic diseases; however, resveratrol may not be recommended 
for the nutritional therapy of patients with hepatitis. The nutritional 
advice given to NALFD patients without viral hepatitis should 
carefully consider the resveratrol dosage and the supplementation 
period, and should always prioritize a nutritionally balanced diet.

Grape Polyphenol Supplementation in Obesity-
Associated Metabolic Disorders

Resveratrol is found abundantly in purple and dark grapes, 
but the plant polyphenols normally found in grape extract, which 
comprises seeds, skin and juice, comprise a mixture of other 
compounds including phenolic acids, anthocyanins, quercetin, 
myricetin, and other flavonoids in various concentrations [81,82]. It 
is therefore reasonable to suggest that the health benefits attributed 
to the consumption of grape-derived products are the result of 
a combined effect of all the polyphenols consumed, rather than 
resveratrol alone. In that regard, the effects of grape polyphenols on 
cardiovascular function have been the aim of substantial research 
in recent times. A double-blind study involving men with metabolic 
syndrome and supplemented with a freeze-dried grape polyphenol 
powder or a placebo for 30 days showed that the supplemented 
group had reduced levels of cell adhesion molecules, as well as 
improved vascular function and blood pressure, at the end of the 
supplementation period [83]. A meta-analysis which evaluated 
572 articles and filtered out 24 clinical studies for further analysis 

demonstrated that supplementation with grape polyphenols at 
daily doses ranging from 150 mg to 1400 mg significantly reduced 
systolic blood pressure, but to a lower extent than antihypertensive 
medications [84].

Blumberg et al. [85] conducted a literature review appraising 
studies which investigated the effects of pure grape juice of the 
Concord cultivar, and compared these results to other studies 
which investigated similar effects, but this time induced by a 
wider range of polyphenol-rich foods and drinks. The authors 
found associations between Concord grape polyphenol intake and 
improved flow-mediated vasodilation, blood pressure, platelet 
aggregation, and also a positive association with resistance of 
LDL-cholesterol to oxidation [85]. Grape polyphenols appear 
to have beneficial effects on different constituents of metabolic 
syndrome, reducing glycaemia, pro-inflammatory biomarkers 
and LDL oxidization, as well as preventing plasma postprandial 
oxidative stress and increasing total antioxidant capacity [86]. The 
daily doses of grape seed extract often used in clinical trials were 
in the range of 150 to 600 mg/kg, which appeared to be powerful 
enough to promote positive outcomes for the metabolic syndrome 
sufferers included in those investigations [86].

Olive Oil Supplementation in Obesity-Associated 
Metabolic Disorders

Olives are known for their antioxidant properties and 
rich composition of polyphenols, including flavonols, lignans, 
glycosides, hydroxytyrosol and several phenolic alcohols [87,88]. 
The antiobesogenic and antidiabetic properties of olive oil, which 
is considered a major ingredient of the traditional Mediterranean 
diet, have been investigated in several epidemiological studies 
and clinical trials. [89] observed in a Spanish population-based 
study a lower incidence of obesity in individuals who consumed 
proportionally more olive oil and less sunflower oil, in relation 
to the opposite, over the course of six years. A study involving 
overweight non-insulin-treated T2D patients found that the 
ingestion of polyphenol-rich extra-virgin olive oil equivalent to 
577 mg of phenolic compounds / kg of body weight (BW) for 
4 weeks significantly reduced fasting plasma glucose, HbA1c, 
serum visfatin, Aspartate Aminotransferase (AST), Alanine 
Aminotransferase (ALT) and Body Mass Index (BMI) [90]. 

Biomarkers of cardiovascular function have also been 
investigated in studies on olive oil. For example, [91] investigated 
the effects of polyphenol-rich olive oil supplementation for 3 
weeks on LDL cholesterol, apolipoprotein B-100 (ApoB-100) 
and atherogenicity, measured as number of small LDL particles 
and LDL oxidizability, in a controlled trial involving healthy men. 
Atherogenesis biomarkers, ApoB-100 and Very Low-Density 
Lipoprotein (VLDL) were significantly lower, and LPL gene 
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expression was significantly higher, in the group supplemented 
with polyphenol-rich olive oil. There appears to be, however, a 
dose-dependent effect. In a randomized double-blind crossover-
controlled trial, [92] supplemented 33 hypercholesterolemic, but 
otherwise healthy, volunteers with 25 mL/day of a standard raw 
virgin olive oil (80 ppm of phenolic compounds), virgin olive oil 
enriched with its own polyphenols (500 ppm), and virgin olive 
oil enriched with its own polyphenols plus thyme polyphenols 
(totalling 500 ppm). Volunteers who received olive oil enriched 
with its own polyphenols, as well as those who received olive 
oil enriched with its own polyphenols plus thyme polyphenols, 
improved their lipoprotein subclass profile, decreased the total 
LDL particle/total High-Density Lipoprotein (HDL) particle, 
small HDL/large HDL, and HDL-cholesterol/HDL-P ratios, and 
decreased the lipoprotein-to-insulin resistance index after 3 weeks 
of supplementation.

Curcumin Polyphenols in Obesity-Associated 
Metabolic Disorders

Curcumin, a yellow-orange plant polyphenol found 
in turmeric, has drawn attention for its antioxidant, anti-
inflammatory, hypoglycaemic and neuroprotective properties [93]. 
The effects of 500 mg or 750 mg curcumin daily supplementation 
for 12 weeks on protein oxidation and BDNF levels were tested 
in a controlled trial involving 40 non-diabetic obese men [94]. 
Despite not having any effect on BDNF serum levels, curcumin 
decreased protein oxidation at the end of the trial. In another study 
employing 1 g curcumin daily supplementation for 8 weeks in a 
group of metabolic syndrome sufferers, adiponectin levels were 
significantly increased and leptin significantly decreased at the end 
of the supplementation period [95]. 

The effects of curcumin supplementation on NAFLD 
have been investigated in a randomized double-blind placebo-
controlled study. NAFLD patients who received daily doses of 70 
mg curcumin for 8 weeks showed significantly reduced BMI, total 
cholesterol, LDL-cholesterol, triglycerides, AST, ALT, glycaemia, 
HbA1c and liver fat content as compared to the control group 
[96]. In a trial involving nephropathic diabetic patients, turmeric 
oral supplementation equivalent to 22.1 mg curcumin daily for 
2 months reduced proteinuria, IL-8 and Transforming Growth 
Factor-Beta (TGF-β) without observed side effects [97].

A meta-analysis of randomized controlled trials found 
reduced IL-6 levels following curcuminoid supplementation 
[98]. This study did not suggest a significant association between 
circulating IL-6 and the alleged beneficial effects of curcuminoids 
related to supplementation dose or duration; however, a significant 
association between the IL-6-lowering effects of curcumin and 
IL-6 concentration at baseline was found. The authors suggest the 

positive effects of curcumin lowering IL-6 may be more evident 
in individuals with the highest levels of systemic inflammation. 
On the other hand, a systematic review and meta-analysis of 
randomized controlled trials found that curcumin supplementation 
did not influence serum total cholesterol, LDL-cholesterol, 
triglycerides and HDL-cholesterol levels [99]. This review 
considered heterogeneous populations and concluded that further 
trials involving specific target populations are necessary for a more 
conclusive opinion. 

Ginkgo biloba Polyphenols in Obesity-Associated 
Metabolic Disorders

Ginkgo biloba extracts (GbE) have been traditionally used 
in the prevention and treatment of several chronic diseases, mainly 
due to its attributed antioxidant, anti-inflammatory, vasodilator, 
cardioprotective and antiedematogenic properties [100-105]. 
Standardized GbE contains in average a mixture of flavonoids, 
terpenes, bilobalides and ginkgolides, along with less than 5 ppm of 
ginkgolic acids, which are toxic [105,106] More specifically, GbE 
flavonoids are recognized as antioxidants, bilobalides are believed 
to present anti-apoptotic, anti-inflammatory and neuroprotective 
properties, and ginkgolides may play an inhibitory role on the 
Platelet-activating Factor [107]. It has been suggested that GbE 
may reduce glycaemia and insulin resistance. [108] observed 
that the daily intake of 120 mg of standardized GbE for 3 months 
significantly stimulated pancreatic β-cell function and insulin 
production by humans with normal glucose tolerance. The same 
protocol of treatment was able to reduce glycated haemoglobin 
in T2D patients, without affecting other parameters involved in 
glucose metabolism [109].

In a rodent model of diet-induced obesity, [110] observed 
that daily supplementation of GbE at 500 mg / Kg BW for 2 
weeks increased Insulin Receptor Substrate 1 (IRS-1) and Akt 
phosphorylation levels, followed by inhibition of the Protein 
Tyrosine Phosphatase 1B (PTP-1B) - an inhibitory protein of the 
insulin signalling pathway - in gastrocnemius muscle. The authors 
also observed reduced food intake and body adiposity, as well as 
improved serum lipid profile, at the end of the supplementation 
period [110]. Another study from the same group [111] employing 
similar experimental procedures found reduced visceral adiposity, 
lowered NF-κB-p65 phosphorylation, increased insulin receptor 
(IR) and Akt phosphorylation in the retroperitoneal adipose tissue 
of diet-induced obese rats after GbE supplementation [111]. 
GbE supplementation was also effective in stimulating the gene 
expression of adiponectin receptor AdipoR1 and IL-10, with a 
concomitant reduction of TNF-α gene expression [111]. 

The anti-inflammatory properties of GbE have been 
investigated both in vitro and in vivo. GbE was found to significantly 
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reduce the nuclear translocation of NF-kB-p50 and NF-kB-p65, 
which are involved in the synthesis of pro-inflammatory cytokines, 
such as TNF-α and IL-6 [112,113]. Similarly, the potential for 
GbE in reducing body fat accumulation has been observed. [114] 
described a potential lipolytic effect of GbE flavonoids due to 
their inhibitory effect on the cAMP-phosphodiesterase complex in 
epididymal adipose tissue of rats. [115] demonstrated that GbE 
biflavones stimulated lipolysis in 3T3-L1 adipocyte cell culture. 
Taken together, these results suggest that GbE supplementation is 
associated with improved insulin signalling as well as suppressed 
pro-inflammatory pathways. Such findings highlight a potential 
for GbE as a possible therapeutic tool for the prevention 
and management of obesity-associated metabolic disorders. 
Notwithstanding, the lack of more significant studies in human 
populations, also investigating chronic use, side-effects and risks 
associated with toxicity, warrant further investigations.

Green Tea Polyphenols
The main compounds of Green Tea (GT) (Camellia sinensis) 

solid extracts are polyphenols belonging to the large family of 
catechins, the most studied ones including Epigallocatechin-3-
Gallate (EGCG), Epicatechin (EC), Epigallocatechin (EGC) and 
Epicatechin-3-Gallate (ECG). The concentration of GT bioactive 
compounds can vary significantly depending on various factors, for 
example origin of the plant, infusion time and water temperature, 
but in average approximately 50 to 100 mg of catechins can be 
found in a typical 250 mL cup of green tea [116]. Lipid-lowering 
and anti-obesity properties have been attributed to GT catechins, 
due to their alleged effects on reducing lipid emulsification and 
absorption, also suppressing lipogenesis and adipogenesis [117]. 
Previous studies have discussed the alleged properties of GT 
extract upon modulation of cardiovascular function, obesity and 
oxidative stress [118-120].

A randomized double-blind placebo-controlled crossover 
study involving healthy individuals tested the effects of daily 
supplementation for 4 weeks with 100 mg epicatechin on 
cardiovascular function and insulin response [121]. Whilst 
epicatechin supplementation showed no significant effect on 
fasting blood glucose levels, lipid profile, systolic blood pressure, 
nitric oxide plasma levels, endothelin 1 and arterial stiffness after 4 
weeks of supplementation, it did show an improvement on insulin 
sensitivity [121]. The effects of GT extract supplementation for 
eight weeks, combined or not with a programme of physical 
activity, were investigated in a double-blind placebo-controlled 
study involving overweight or obese women [122]. At the end of 
the supplementation intervention period, the authors observed that 
exercise combined with GT supplementation was more effective 
in reducing body fat, waist circumference, plasma triglycerides, 
as well as increasing resting metabolic rate, lean body mass and 

muscle strength, as compared to the exercised group supplemented 
with placebo [122].

Studies involving GT polyphenols and low-calorie diets 
have also been conducted. A randomized double-blind placebo-
controlled study involving obese premenopausal women 
investigated the association between a low-calorie diet and 300 
mg EGCG daily supplementation for 12 weeks. EGCG associated 
with the low-calorie diet was not more effective in reducing body 
weight, adiposity, insulin resistance, lipid profile and inflammatory 
biomarkers than the low-calorie diet alone [122]. However, another 
study following a different protocol found evidence of weight 
loss after EGCG supplementation: [124] conducted a randomized 
double-blind placebo-controlled clinical study involving women 
with central obesity supplemented for 12 weeks with 856.8 mg 
EGCG, a dose much higher than the one employed in the study 
of [123]. [124] found increased weight loss and reduced waist 
circumference in the EGCG supplemented group, as compared to 
its respective placebo group. Reduced plasma ghrelin and increased 
adiponectin were also found.

Consensus regarding the effects of EGCG supplementation on 
metabolism is yet to be reached. A randomized placebo-controlled 
trial involving overweight and obese individuals investigated 
the combined effects of 282 mg EGCG and 80 mg resveratrol 
daily supplementation for 12 weeks [125]. The authors found no 
changes in plasma metabolic biomarkers, nor changes in insulin-
stimulated glucose disposal, gluconeogenesis, lipolysis markers, 
energy expenditure or total body fat between the groups. However, 
a tendency for visceral fat reduction was seen in the supplemented 
group, as well as smaller increase in plasma triglyceride induction 
after a fasting-high fat refeeding meal, in relation to the respective 
control group [125].

The biochemical properties of Camellia sinensis have 
been described in the scientific literature; however, it is not yet 
fully understood whether its supplementation could lead to, or 
exacerbate, liver damage. Cases of hepatotoxicity associated with 
GT extract intake have been reported [126]. These rare cases 
were often individuals consuming high doses of GT extract for 
prolonged period of time, or in combination with synthetic drugs, 
or in cases of previously established liver disease. It remains 
unknown whether the observed cases of liver damage could be 
attributed to the consumption of GT extract exclusively, or to a 
competitive mechanism of biotransformation between drug and 
phytochemical, or due to tissue incompetence, for example in liver 
disease [127].

A systematic review investigated the affinity of GT extract 
with various isoforms of the CYP microsomal complex, their 
possible interactions with drugs and the risks associated with drug-
induced liver injury [128]. It has been highlighted that despite a 
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weak association between GT extract and the risk of drug-induced 
liver injury, GT catechins may promote partial inhibition of some 
CYP isoenzymes responsible for detoxification reactions of phase 
I, and that the bioavailability of some drugs metabolized by 
CYP3A4 has increased when administered in combination with 
GT extract, which could potentially increase their concentration to 
toxic levels [128].

Therefore, despite the low prevalence of hepatic toxicity 
associated with GT, considering the worldwide popularity of 
this herbal tea, health professionals should always consider an 
individualized approach for the evaluation of benefits and potential 
side effects of herbal medicine therapies. Particular consideration 
is due to patients who already have chronic liver disease in the 
Child-Pugh classes B or C range. The scientific evidence so far 
available is not yet sufficient to assertively prove or disprove the 
safety and beneficial effects of GT polyphenols on management 
and or treatment of obesity and obesity-associated metabolic 
disorders.

Directions for Future Work and Final 
Considerations 

Despite the elucidation of several molecular pathways 
activated or inhibited by isolated plant polyphenols, some of them 
briefly discussed in this review, the exact mechanisms on how 
other nutrients, alongside other blood borne factors, influence the 
molecular effects of polyphenols are yet to be fully understood. 
Several investigations suggest that the metabolic effects associated 
with the consumption of polyphenol-containing foods are not 
limited to a single polyphenol only, but to a mixture of compounds, 
which further suggests a combination of polyphenolic agents with 
antioxidant properties may have a potential therapeutic approach. 
In light of that, as new therapeutic interventions take significant 
time to reach the general population, the development of additional 
supporting strategies, including nutritional interventions that can 
target specific molecular pathways affected in metabolic disorders, 
offers a new and promising therapeutic avenue.

The successful prevention of obesity and obesity-associated 
metabolic disorders is heavily dependent on a range of healthy and 
positive lifestyle choices, including active lifestyles and healthy 
diets. Such diets include low consumption of ultra-processed 
foods and contain naturally occurring sources of flavonoids and 
resveratrol, as well as antioxidant nutrients such as vitamins and 
trace elements, found in broad variety of fruits, vegetables, whole 
grains, beans and seeds. If an obesity-associated metabolic disorder 
develops, either as consequence of biochemical disturbance or 
chronic positive energy balance, the prescription of complementary 
nutritional therapeutics should follow similar principles, which 
are based on the prescription of nutritionally adequate diets and 

lower consumption of ultra-processed foods, in combination with 
supplementation, when justified.

Despite the widely publicised promising effects of plant 
polyphenols as therapeutic options in metabolic disorders, a careful 
evaluation of the benefits and risks of plant extract supplementation, 
be it in pharmacological doses or doses higher than those found in 
naturally occurring foods, is mandatory. As adverse effects have 
already been described after phytochemical supplementation, the 
risk of toxicity should be always considered. This consideration is 
even more relevant where patients are being treated with multiple 
allopathic medicines, in which the risk of metabolite interaction 
can alter the pharmacokinetics and pharmacodynamics of all 
compounds administered. Phytochemicals and nutraceuticals can 
compete with other substrates for the same cytochrome P450 
isoforms, and therefore their inappropriate prescription may 
jeopardize patient’s health. 

Due to the heterogeneity of the clinical studies so far 
conducted, which are understandably different in experimental 
procedures, frequency and duration of interventions, and specific 
inclusion criteria, for example severity of obesity and associated 
co-morbidities, the safe recommendation of the phytochemicals 
briefly discussed here has not yet been established. The patient’s 
genetic background, for example their ethnicity or the presence 
of Single Nucleotide Polymorphisms, as well as their microbiome 
and phytochemical bioavailability, are additional confounding 
factors that should be considered when assessing the applicability 
of clinical trials and the interpretation of findings to real life 
scenarios. Therefore, nutritional interventions for the prevention 
and management of obesity and associated co-morbidities should 
address first the intake of a quantitatively and qualitatively adequate 
diet, which provides natural sources of dietary polyphenols 
including flavonoids and resveratrol. The recommendations for 
a healthy diet should be encouraged before the prescription of 
isolated phytochemical supplementation.
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